JP5672622B2 - 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置 - Google Patents

波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置 Download PDF

Info

Publication number
JP5672622B2
JP5672622B2 JP2013537958A JP2013537958A JP5672622B2 JP 5672622 B2 JP5672622 B2 JP 5672622B2 JP 2013537958 A JP2013537958 A JP 2013537958A JP 2013537958 A JP2013537958 A JP 2013537958A JP 5672622 B2 JP5672622 B2 JP 5672622B2
Authority
JP
Japan
Prior art keywords
phosphor
zinc oxide
wavelength conversion
conversion element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013537958A
Other languages
English (en)
Other versions
JPWO2013175773A1 (ja
Inventor
濱田 貴裕
貴裕 濱田
鈴木 信靖
信靖 鈴木
折田 賢児
賢児 折田
長尾 宣明
宣明 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013537958A priority Critical patent/JP5672622B2/ja
Application granted granted Critical
Publication of JP5672622B2 publication Critical patent/JP5672622B2/ja
Publication of JPWO2013175773A1 publication Critical patent/JPWO2013175773A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)

Description

本願は、蛍光体粒子を含む波長変換素子およびその製造方法、ならびに、それを用いたLED素子、半導体レーザ発光装置に関する。
従来、白色LED素子として、青色光を発光する窒化ガリウム(GaN)系のLEDチップと、LEDチップからの青色光で励起されて黄色発光するYAG(イットリウム・アルミニウム・ガーネット)蛍光体およびシリコーン樹脂などの透光性樹脂から形成した波長変換素子とを用いるタイプのものが広く知られている。このような白色LED素子は、LEDチップからの青色光と、その青色光によって励起された蛍光体からの黄色発光が混ざり合うことにより、白色光を放射する。
均一な色度を持つ白色LED素子を作製するためには、LEDチップからの青色光と、蛍光体からの黄色発光の比率を一定にする必要がある。しかしながら、LEDチップに起因する青色光の発光バラツキは、製造上回避が困難な場合がある。このため、LEDチップの青色光の発光バラツキに応じて、波長変換素子を調整することによって、LED素子の白色光の色度を一定にすることが考えられる。
特許文献1は、透光性樹脂を硬化させた後に、透光性樹脂のうちの蛍光体粒子を含んでいない透光性樹脂層を、白色LED素子が目的の色度となるまで研磨することによって、LEDチップからの光線の経路を変化させて、LED素子の色度調整を行う方法を開示している。
特許文献2は、第2の蛍光体として第1の蛍光体の発光波長とは異なる発光波長を持つ蛍光体を選び、透光性樹脂に対して、第2の蛍光体の添加量および位置を調整することで、色度座標において様々な方向への色度調整を可能とする白色LED素子の色度調整方法を開示している。
特許文献3は、高い輝度を得るためにLED素子に流す電流を大きくすると、LEDチップからの光や熱によって、波長変換素子の透光性樹脂が経時的に劣化して、透過率が低下するため白色LED素子から出力される光量が低下する課題や、LEDチップから放射される光と蛍光体から放射される光とのバランスが崩れ、白色LED素子の色度がずれてしまうという課題を記載している。
特許文献3は、耐熱性、耐紫外線に優れたガラスを波長変換素子のマトリックスとして用いるために、蛍光体粒子とガラス粉末を混合した混合粉末を成形体に成形する工程と、成形体を焼成して焼結体を形成する焼成工程と、焼結体を熱間等方圧プレス処理するHIP工程と、HIP工程の後、焼結体を加工して波長変換素子を得る加工工程とを備え、蛍光体とガラスとの反応、ガラスの着色などが起こらない温度で焼成し、HIP工程では、ガラスのガラス転移温度以上、かつ焼成温度以下の温度で熱間等方圧プレス処理を行う方法が提案されており、このようにして得られた波長変換素子は、蛍光体の発光効率の低下が少なく、気泡の残留やガラスの着色がない。
特許文献4は、電気泳動法を用いて、蛍光体粒子を分散させた溶液から、基板上に蛍光体粒子層を形成した後、蛍光体粒子層の内部の空隙に、ゾルゲル法を用いて、無機物のマトリックスとなる透光性物質を充填している。さらに透光性物質としては、好ましくは、ガラスであり、ガラス状態となり、かつ、透光性のある物質であると開示している。
特許文献5は、波長変換素子の内部に、蛍光体粒子や、マトリックスとなる透光性材料が存在しない空洞が生じると、この空洞の存在によって、LEDからの光、蛍光体からの光が減衰することを開示している。
特許文献6は、LEDにおいて、通常、蛍光体は、屈折率が1.4のシリコーン樹脂に埋め込まれて波長変換素子となるため、蛍光体の屈折率(1.8)とシリコーン樹脂の屈折率(1.4)との間の屈折率の差(0.4)により、波長変換素子において、かなりの割合の光が、蛍光体と樹脂との界面で散乱されることを開示している。
またLED用に一般的に用いられている蛍光体の屈折率は、1.8〜2.0の範囲であることが特許文献4、7に記載されている。YAG(イットリウム・アルミニウム・ガーネット)蛍光体の屈折率が1.8(特許文献4)、SiAlON(サイアロン)蛍光体の屈折率が1.9(特許文献4)、CaAlSiN3(カズン)蛍光体の屈折率が2.0(特許文献7)である。
特開2004−186488号公報 特開2009−231569号公報 特開2009−96653号公報 特開2011−168627号公報(特に段落番号0028、0197〜0198) 特開2008−66365号公報(特に段落番号0003) 特表2011−503266号公報(特に段落番号0002) 特開2011−111506号公報(特に段落番号0027)
Mingsong Wang et.al., Phys. Stat. Sol. (a) 203/10 (2006) 2418
従来の波長変換素子を備えたLED素子等では、出射する光の色度をより容易に調整し得ることが求められる場合があった。本願の限定的ではないある例示的な実施形態は、色度を調整し得る波長変換素子およびその製造方法、ならびに、それを用いたLED素子、半導体レーザ発光装置を提供する。
本願一態様にかかる波長変換素子は、複数の蛍光体粒子と、前記複数の蛍光体粒子の一部の間に位置し、c軸に配向した酸化亜鉛によって構成された第1のマトリックスと、前記複数の蛍光体粒子の残りの部分の間に位置し、前記酸化亜鉛よりも屈折率が小さい材料によって構成された第2のマトリックスとを備える。
本願に開示された技術によれば、第1の蛍光体層の第1のマトリックスが結晶性の酸化亜鉛によって構成され、第2の蛍光体層の第2のマトリックスが酸化亜鉛よりも屈折率の小さい材料によって構成されているため、第1の蛍光体層および第2の蛍光体層の厚さの比率を調整することによって波長変換素子の色度を調整することができる。
実施の形態1における波長変換素子の断面図である。 (a)から(d)は、実施の形態1における波長変換素子の製造方法の工程順の断面図である。 溶液成長法を用いた酸化亜鉛の結晶成長過程を示す断面図である。 実施の形態2における波長変換素子の断面図である。 (a)から(d)は、実施の形態2における波長変換素子の製造方法の工程順の断面図である。 (a)および(b)は、実施の形態3における波長変換素子およびLED素子の断面図である。 (a)および(b)は、実施の形態4におけるLED素子の断面図である。 (a)および(b)は、実施の形態4におけるLED素子の他の断面図である。 (a)および(b)は、実施の形態5におけるLED素子の断面図である。 実施の形態6における半導体レーザ発光装置の断面図である。 (a)から(c)は、実施の形態7における車両およびヘッドライトの構成を示す図である。 実施例2における第1の蛍光体層まで形成した波長変換素子の断面SEM(走査型電子顕微鏡)観察像を示す図である。 実施例1における波長変換素子のXRD(X線回折)測定結果(2θ/ωスキャン)を示す図である。 比較例3における波長変換素子のXRD測定結果(2θ/ωスキャン)を示す図である。 (a)は、実施例1における第1の蛍光体層の基板界面付近の断面SEM観察像を示す顕微鏡写真であり、(b)は、実施例1における第1の蛍光体層の中央付近の断面SEM観察像を示す図である。 実施例1と比較例1におけるLED素子の発光スペクトルを測定した結果を示す図である。 集束イオンビーム(FIB)を用いて、波長変換素子の断面を加工したSEM観察像であって、(a)は、実施例6における第1の蛍光体層を示す図であり、(b)は、実施例1における第1の蛍光体層を示す図である。 溶液成長法を用いた蛍光体粒子層の内部での酸化亜鉛の結晶成長過程を示す断面図であって、(a)は、第1の蛍光体層の酸化亜鉛のc軸の傾きが大きい例を示し、(b)は、第1の蛍光体層の酸化亜鉛のc軸の傾きが小さい例を示す図である。 実施例9における波長変換素子のXRD測定結果(2θ/ωスキャン)を示す図である。 実施例9における波長変換素子のXRD測定結果(Φスキャン)を示す図である。 実施例9における第1の蛍光体層の中央付近の断面SEM観察像を示す図である。 実施例9、実施例1と比較例4におけるLED素子の発光スペクトルを測定した結果を示す図である。 実施例10における第1の蛍光体層の基板界面付近の断面SEM観察像を示す図である。 実施例10と比較例5におけるLED素子の発光スペクトルを測定した結果を示す図である。 実施例11と比較例6における半導体レーザ発光装置の発光スペクトルを測定した結果を示す図であって(a)は、半導体レーザチップからの励起光付近の拡大図であり、(b)は、励起光によって励起された蛍光付近の拡大図である。 実施例12と比較例7における半導体レーザ発光装置の発光スペクトルを測定した結果を示す図であって、(a)は、半導体レーザチップからの励起光付近の拡大図であり、(b)は励起光によって励起された蛍光付近の拡大図である。 ガラス基板上、サファイア基板上の酸化亜鉛膜の透過スペクトルを測定した結果を示す図である。
まず、本発明者らが見出した課題を詳細に説明する。
波長変換素子のマトリックスとして、シリコーン樹脂などの透光性樹脂を用いた場合、LED素子の色度の調整が容易であり、特許文献1、特許文献2のような方法で、白色LED素子の色度を調整できる。しかしながら、シリコーン樹脂などの透光性樹脂を用いた波長変換素子では、特許文献3に示されるように、高い輝度を得るために白色LED素子に流す電流が大きくなると、LEDチップからの紫外線や熱によって、経時的に、波長変換素子の透光性樹脂が劣化し、透光性樹脂の透過率が低下する。このため、LED素子から出力される光量が低下する。また、LEDチップから放射される光と、蛍光体から放射される光とのバランスが崩れ、LED素子の色度がずれる。
耐熱性や耐紫外線性に優れた波長変換素子を実現するために、波長変換素子を形成するマトリックスとして、耐熱性や耐紫外線性が低いシリコーン樹脂などの有機物のマトリックスではなく、耐熱性や耐紫外線性が高い無機物のマトリックスとして、ガラスを用いる方法が提案されている(例えば、特許文献3参照)。しかしながら、柔らかく、変形量が大きいシリコーン樹脂の場合とは異なり、ガラスは、硬く、変形量が小さい。このため、特許文献1のように、波長変換素子を薄くするために、波長変換素子を研磨すると、ガラスを用いた波長変換素子では、クラックが発生しやすい。また、シリコーン樹脂を用いた場合は、簡便な形成プロセスで、蛍光体量の微調整も容易である。しかしながら、特許文献3のように、波長変換素子のマトリックスにガラスを用いる場合は、複雑な形成プロセスが必要で、蛍光体量の微調整が難しいため、特許文献2のように、第1の波長変換素子を形成した後、色度調整用の第2の波長変換素子を形成することが困難である。
特許文献4では、電気泳動法を用いて、蛍光体粒子を分散させた溶液から、基板上に蛍光体粒子層を形成した後、蛍光体粒子層の内部の空隙を、ゾルゲル法を用いて、無機物のマトリックスとなるガラスを充填している。ガラスを充填する前の波長変換素子の内部には、空気(屈折率1.0)が存在している。ガラスを充填した後の波長変換素子の内部には、空気(屈折率1.0)に代えて、ガラス(屈折率1.45)が存在する。特許文献4によれば、蛍光体粒子の空隙をガラスで充填することによって、波長変換素子の色度に変化が生じないと記載されている(段落番号0197〜0198)。これは、ガラスの屈折率(1.45)が小さく、空気の屈折率(1.0)との屈折率差が小さいためであると考えられる。さらに、特許文献4の製造方法では、ガラスは絶縁性であるために、第1の蛍光体層を形成した後、色度調整用の第2の蛍光体層を電気泳動法で形成できないという課題も有している。
ガラスは、ガラス状態(アモルファス)であるために、結晶粒界がなく、形状の自由度が高い。そのため無機マトリックスとして、ガラスを用いた場合は、波長変換素子の無機マトリックスの結晶粒界による光散乱が発生せず、波長変換素子の内部に空洞(以降、ボイドと表記)の発生が抑制できる。しかしながら、無機のマトリックスとして、ガラス(屈折率1.45)よりも高い屈折率(2.0)を有する酸化亜鉛(ZnO)を適用する場合、酸化亜鉛は、結晶性であるために、結晶粒界が形成される。例えば、ゾルゲル法によって形成された酸化亜鉛は微結晶の集合体となり、ランダムな配向の多結晶である(例えば、非特許文献1参照)。波長変換素子の内部に、ランダムな配向の多結晶が形成されると、光の出射方向に、結晶粒界が数多く存在するために、波長変換素子での光散乱が生じる。波長変換素子での光散乱が生じると、波長変換素子で散乱された光がLEDチップや、LEDチップを固定するパッケージなどに戻り、吸収されて、LED素子から外部へ取り出す割合が低下するという大きな課題を有している。
さらに、波長変換素子の内部にボイドが残存すると、ボイドの中は、屈折率が1.0と低い空気が存在することになる。ボイドの中の空気の屈折率(1.0)は、LED用に一般的に用いられている蛍光体の屈折率(1.8〜2.0)や、シリコーン樹脂の屈折率(1.4)と大きく異なる。そのため、ボイドと蛍光体との間の屈折率差、およびボイドとマトリックスとの間の屈折率差によって、波長変換素子の内部で光が散乱されるという課題も有している。
また、電子ビーム蒸着法、反応性プラズマ蒸着法、スパッタリング法、パルスレーザー堆積法のような真空成膜法によって酸化亜鉛を形成する方法が知られている。しかし、蛍光体粒子を用いた波長変換素子を形成するために、蛍光体粒子層を形成した後、真空成膜法を用いて、酸化亜鉛を成膜した場合、蛍光体粒子層の上部に酸化亜鉛が堆積し、蛍光体粒子層の内部の空隙まで、酸化亜鉛で充填することが困難である。
すなわち、波長変換素子のマトリックスとして、耐熱性、耐紫外線性の高いガラスなどの無機マトリックスを用いたLED素子において、LEDチップの青色発光のバラツキに応じて、波長変換素子の発光色を調整することは困難であるという課題と、色度調整のために、ガラス(屈折率1.45)よりも高い屈折率を有する酸化亜鉛(屈折率2.0)を波長変換素子のマトリックスに適用すると、形状の自由度が低く、結晶性であるために、波長変換素子の内部に結晶粒界やボイドが形成されやすいという課題の、大きな2つの課題があった。
本願発明者らは、このような課題に鑑み新規な波長変換素子及びその製造方法ならびに波長変換素子を用いたLED素子、半導体レーザ装置を想到した。本発明の一態様である波長変換素子は、蛍光体粒子を用いた波長変換素子のマトリックスとして、耐熱性や耐紫外線性の高い無機材料である酸化亜鉛を用いた第1の蛍光体層と、酸化亜鉛よりも屈折率の低い材料を用いた第2の蛍光体層とを備える。高い屈折率を有するが、結晶性で、形状の自由度が低い酸化亜鉛を用いた第1の蛍光体層において、波長変換素子の結晶粒界とボイドを抑制する。また、第1の蛍光体層の厚さと第2の蛍光体層の厚さの比率を制御することにより、波長変換素子の発光色の色度調整と光散乱の抑制を行う。色度とは、波長変換素子、LED素子、半導体レーザ発光装置のいずれも、発光色の色度を意味する。これにより、発光色の色度調整が容易で、かつ光散乱が小さい波長変換素子およびその製造方法、その波長変換素子を用いた色度調整が容易で、かつ光出力が高いLED素子、半導体レーザ発光装置を提供する。
本発明の1つの態様において、第1の蛍光体層は、基板上に酸化亜鉛の薄膜を形成し、その酸化亜鉛の薄膜上に、蛍光体粒子で構成された蛍光体粒子層を形成し、酸化亜鉛の薄膜から、c軸配向に結晶成長した酸化亜鉛で、蛍光体粒子層の内部の空隙を充填した構成を有する。
酸化亜鉛は、ウルツ鉱型の結晶構造を有し、c軸配向の酸化亜鉛とは、基板に対し、平行な面がc面であることを意味する。また本開示では、基板とは、ガラス基板、サファイア基板、窒化ガリウム(GaN)基板などのいわゆる基板の他に、半導体発光素子、半導体発光素子の基板、またそれらに形成した薄膜表面、蛍光体層の主面などを含む。
c軸配向に結晶成長した酸化亜鉛は、柱状結晶となり、c軸方向に結晶粒界が少ない。さらに、基板に形成されたc軸配向の酸化亜鉛の薄膜からc軸方向に結晶成長しているため、LEDチップからの光の出射方向に、結晶粒界の少ない柱状結晶が配置できる。そのため第1の蛍光体層での光散乱を抑制できる。c軸配向の柱状結晶とは、c軸方向の酸化亜鉛成長が、a軸方向の酸化亜鉛成長よりも速く、基板に対し、縦長の酸化亜鉛結晶子が形成されていることを意味する。結晶子とは、多結晶体の中で単結晶と見なせる最小の領域を意味する。
酸化亜鉛の薄膜に、エピタキシャル成長した単結晶の酸化亜鉛の薄膜を用いることによって、蛍光体粒子層内部の空隙を、酸化亜鉛の薄膜からエピタキシャル成長した単結晶の酸化亜鉛で充填することができる。エピタキシャル成長した単結晶の酸化亜鉛は、結晶粒界が非常に少ないため、第1の蛍光体層において、酸化亜鉛の結晶粒界による光散乱が発生しない。
蛍光体粒子層の内部の空隙を、c軸配向の酸化亜鉛で充填するプロセスに、溶液成長法を用いてもよい。溶液成長法では、原料溶液としてZnイオンを含有する溶液を用いて、酸化亜鉛の薄膜を酸化亜鉛の結晶成長の核となる種結晶として、c軸配向の酸化亜鉛を成長できる。原料溶液が希薄な水溶液であるために粘度が低く、蛍光体粒子層の内部まで、原料溶液が容易に到達できる。さらに蛍光体粒子層を形成した基板を、原料溶液に浸漬させた状態で酸化亜鉛の結晶成長反応を行うことが可能で、かつ酸化亜鉛を成長させる原料がZnイオンと小さいため、酸化亜鉛の結晶成長でZnイオンが消費されても、蛍光体粒子層の外部の原料溶液から、蛍光体粒子層の内部まで、Znイオンが容易に拡散され到達できる。そのため、原料不足によりおこる蛍光体粒子層の内部のボイドの発生を抑制できる。さらに、図3に示すように、溶液成長法では、蛍光体の表面から酸化亜鉛が結晶成長せず、蛍光体粒子層の下部に形成された酸化亜鉛の薄膜を種結晶として、蛍光体粒子層の下部から表面側に、順に、酸化亜鉛が結晶成長するため、第1の蛍光体層の内部にボイドを閉じ込めることがなく、波長変換素子の内部のボイドを抑制することができる。さらに、蛍光体粒子層の内部の空隙をすべて酸化亜鉛で充填するだけでなく、下地ZnO層からの酸化亜鉛の成長を任意の厚さに制御が可能で、その制御性が高い。第2の蛍光体層は、第1の蛍光体層を形成した蛍光体粒子層の残りの空隙を、酸化亜鉛よりも屈折率の小さい材料で充填して形成するため、第1の蛍光体層の厚さと第2の蛍光体層の厚さの制御が容易であり、その制御性が高い。
本発明に係る波長変換素子およびその製造方法、波長変換素子を用いたLED素子および半導体レーザ発光装置の一実施形態の概要は以下の通りである。
本発明の一実施形態にかかる波長変換素子は、複数の蛍光体粒子と、前記複数の蛍光体粒子の一部の間に位置し、c軸に配向した酸化亜鉛または単結晶である酸化亜鉛によって構成された第1のマトリックスと、前記複数の蛍光体粒子の残りの部分の間に位置し、前記酸化亜鉛よりも屈折率が小さい材料によって構成された第2のマトリックスとを備える。
前記波長変換素子は、前記複数の蛍光体粒子の一部と、前記第1のマトリックスとを含む第1の蛍光体層と、複数の蛍光体粒子の残りの部分と、前記第2のマトリックスとを含む第2の蛍光体層とを備えていてもよい。
前記酸化亜鉛のc軸のX線ロッキングカーブ法による半値幅が4°以下であってもよい。
前記波長変換素子は、前記第1の蛍光体層に接し、酸化亜鉛で構成された薄膜をさらに備えていてもよい。
前記波長変換素子は、前記薄膜に接する基板をさらに備え、前記薄膜は前記蛍光体層と前記基板との間に位置していてもよい。
前記波長変換素子は、前記第1の蛍光体層に接する基板をさらに備えていてもよい。
前記基板は、ガラス、石英、酸化ケイ素、サファイア、窒化ガリウムおよび酸化亜鉛からなる群から選ばれる1つによって構成されていてもよい。
前記酸化亜鉛は柱状結晶であってもよい。
前記単結晶の酸化亜鉛がc軸配向であってもよい。
前記複数の蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ−SiAlON(サイアロン)からなる群から選ばれる少なくとも1つを含んでいてもよい。
前記酸化亜鉛よりも屈折率が小さい材料は、高温焼成ガラス、低温焼成ガラス、二酸化ケイ素、液状ガラス、無機−有機複合体およびシリコーンゴム系の高耐熱性の透光性樹脂、シリコーン樹脂からなる群から選ばれる少なくとも1つを含んでいてもよい。
前記複数の蛍光体粒子は、互いに隣接しており、前記第1のマトリックスと前記第2のマトリックスとは互いに接していてもよい。
本発明の一実施形態にかかるLED素子は、励起光を放射する半導体発光素子と、前記半導体発光素子から放射される前記励起光が入射する、上記いずれかに記載の波長変換素子とを備える。
前記LED素子は、前記半導体発光素子上に直接形成されていてもよい。
前記LED素子は、前記波長変換素子と前記半導体発光素子との間に位置する結晶分離層をさらに備えていてもよい。
前記結晶分離層は、二酸化ケイ素を主成分とするアモルファス材料によって構成されていてもよい。
前記結晶分離層は、プラズマ化学気相成長法によって形成されていてもよい。
前記半導体発光素子は、n型GaN層と、p型GaN層と、前記n型GaN層および前記p型GaN層に挟まれたInGaNからなる発光層とを含んでいてもよい。
前記励起光は青色または青紫色の波長帯域の光であってもよい。
前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、前記励起光は青紫色の波長帯域の光であり、前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射してもよい。
本発明の一実施形態にかかる半導体レーザ発光装置は、励起光を放射する半導体レーザチップと、前記半導体レーザチップから放射される前記励起光が入射する、上記いずれかに記載の波長変換素子とを備える。
前記励起光は青色または青紫色の波長帯域の光であってもよい。
前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、前記励起光は青紫の波長帯域の光であり、前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射してもよい。
本発明の一実施形態にかかる車両は、上記いずれかに記載の半導体レーザ発光装置と、前記半導体レーザ発光装置に電力を供給する電力供給源とを備える。
本発明の一実施形態にかかる波長変換素子の製造方法は、c軸配向した酸化亜鉛の薄膜上に、複数の蛍光体粒子からなる蛍光体粒子層を形成する工程(a)と、溶液成長法を用いて、前記蛍光体粒子層の内部の一部空隙を酸化亜鉛で充填し、前記複数の蛍光体粒子の一部およびその間に位置する酸化亜鉛によって構成される第1マトリックスを含む第1の蛍光体層を形成する工程(b)と、前記蛍光体粒子層の内部の残りの空隙を前記酸化亜鉛よりも屈折率が小さい材料によって充填し、前記複数の蛍光体粒子の残りの部分およびその間に位置する前記酸化亜鉛よりも屈折率が小さい材料によって構成される第2のマトリックスを含む第2の蛍光体層を形成する工程(c)とを含む。
前記酸化亜鉛の薄膜のc軸のX線ロッキングカーブ法による半値幅が4.5°以下であってもよい。
前記酸化亜鉛の薄膜は、エピタキシャル成長した単結晶であってもよい。
前記蛍光体粒子層を形成する工程が、電気泳動法であってもよい。
前記蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ−SiAlON(サイアロン)からなる群から選ばれる少なくとも1つを含んでいてもよい。
前記酸化亜鉛よりも屈折率が小さい材料は、高温焼成ガラス、低温焼成ガラス、二酸化ケイ素、液状ガラス、無機−有機複合体およびシリコーンゴム系の高耐熱性の透光性樹脂、シリコーン樹脂からなる群から選ばれる少なくとも1つを含んでいてもよい。
図面を参照しながら、以下、本発明の実施の形態を説明する。
(実施の形態1)
図1は、実施の形態1の波長変換素子の断面図である。
本実施形態の波長変換素子10は、第1の蛍光体層7と第2の蛍光体層8とを備える。波長変換素子10は、入射した光のうち、少なくとも一部の光を、入射した際の光の波長帯域とは異なる波長帯域の光に変換して出射する。
第1の蛍光体層7は、複数の蛍光体粒子3の一部と、複数の蛍光体粒子3の一部の間に位置し、c軸に配向した酸化亜鉛によって構成された第1のマトリックス5とを含む。第2の蛍光体層8は、複数の蛍光体粒子3の残りの部分と、複数の蛍光体粒子3の残りの部分の間に位置し、酸化亜鉛よりも屈折率が小さい材料によって構成された第2のマトリックス6とを含む。つまり、波長変換素子10において、複数の蛍光体粒子3の空隙の一部が第1のマトリックス5で充填され、残りの部分が第2のマトリックス6で充填されている。
第1の蛍光体層7および第2の蛍光体層8に含まれる複数の蛍光体粒子3には、発光素子に一般に用いられる種々の励起波長、出射光波長および粒子径を有する蛍光体を用いることができる。例えば、YAG(イットリウム・アルミニウム・ガーネット)、β−SiAlON(サイアロン)などを用いることができる。特に、蛍光体を励起する波長および出射する光の波長は、波長変換素子10の用途に応じて任意に選択し得る。また、これらの波長に応じて、YAGやβ−SiAlONにドープされる元素が選択され得る。
特に、第1の蛍光体層7および第2の蛍光体層8を励起する励起光の波長として、青紫光や青色光を選択する場合、蛍光体を効率良く励起できるため、高い出力のLED素子、高い出力の半導体レーザ発光装置等の発光素子や発光装置を実現できる。
発光素子から放出される青紫光で、青色蛍光体を励起し、発生した青色光を用いて、波長変換素子10の蛍光体粒子3を励起してもよい。このため、波長変換素子10に入射する青色光には、青色蛍光体からの青色光が含まれる。
蛍光体粒子3として、青色光によって励起される黄色蛍光体を用いた場合は、波長変換素子10から出射する光は、励起光の青色光と蛍光体からの黄色光が合成された白色光となる。ここで、波長400nmから420nmの光を青紫光、波長420nmから470nmの光を青色光と定義する。また、波長500nmから700nmの光を黄色光と定義する。青色蛍光体とは、青紫光で励起され、青色光を出射する蛍光体と定義する。また、黄色蛍光体とは、青色光または青紫光によって励起され、黄色光を出射する蛍光体と定義する。
蛍光体粒子3として、青紫光によって励起される青色蛍光体と、青色光によって励起される黄色蛍光体を用いてもよい。この場合にも波長変換素子10は、蛍光体からの青色光と黄色光が合成された白色光を出射する。あるいは、蛍光体粒子3として、青紫光によって励起される青色蛍光体と、青紫光によって励起される黄色蛍光体を用いてもよい。この場合にも波長変換素子10は、蛍光体からの青色光と黄色光が合成された白色光を出射する。
さらに、LED素子や半導体レーザ発光装置の演色性を高めるために、緑色光を発生する蛍光体や、赤色光を発生する蛍光体を合わせて用いても良い。
第1の蛍光体層7において、第1のマトリックス5は、c軸に配向した酸化亜鉛によって構成されている。より詳細には、c軸に配向した酸化亜鉛は、ウルツ鉱の結晶構造を有する柱状結晶、または、単結晶である。酸化亜鉛のc軸は、基板1の法線方向に平行または、基板1の法線方向に対するc軸の傾きが4°以下である。ここで、「c軸の傾きが4°以下」とは、c軸の傾きの分布が4°以下という意味で、すべての結晶子の傾きが4°以下とは限らない。「c軸の傾き」は、c軸のX線ロッキングカーブ法による半値幅で評価できる。上述したようにc軸配向の柱状結晶は、c軸方向に結晶粒界が少ない。
本実施形態では、第1の蛍光体層7において、蛍光体粒子3は互いに接している。第1のマトリックス5は、蛍光体粒子3の間の空隙を埋めるように充填されており、第1のマトリックス5と蛍光体粒子3とは接している。つまり、蛍光体粒子3は、隣接する蛍光体粒子3と互いに接しているとともに、第1のマトリックス5とも接している。また、第1の蛍光体層7において、空隙は実質的には存在していない。
c軸に配向した酸化亜鉛によって構成される第1のマトリックス5は、酸化亜鉛の結晶成長性を利用して形成される。このため、波長変換素子10は、基板1と薄膜2とをさらに備えていてもよい。薄膜2は、第1の蛍光体層7の例えば、主面7aと接している。また、基板1は、薄膜2と接しており、薄膜2は基板1と第1の蛍光体層7との間に位置している。
基板1は、上述したように、ガラス、石英、酸化ケイ素、サファイア、窒化ガリウムおよび酸化亜鉛からなる群から選ばれる1つによって構成されている。サファイアまたは窒化ガリウムから構成される基板1を用いる場合、基板1の主面はこれらの結晶のc面であってよい。薄膜2は、単結晶の酸化亜鉛、または、多結晶の酸化亜鉛によって構成される。
薄膜2が、第1のマトリックス5を構成する酸化亜鉛の結晶成長の核となる種結晶として機能するため、上述したc軸に配向した酸化亜鉛の第1のマトリックス5を形成することができる。
基板1および薄膜2は、第1のマトリックス5の形成後、あるいは、以下で説明する第2のマトリックス6を形成後、除去してもよく、波長変換素子10は、基板1または基板1および薄膜2の両方を含んでいなくてもよい。また、基板1上に直接c軸に配向した酸化亜鉛を形成することが可能であれば、波長変換素子10は、基板1を含み、薄膜2を含んでいなくてもよい。基板1を除去した場合のc軸配向の酸化亜鉛とは、マトリックス5の酸化亜鉛のc軸は、第1の蛍光体層7の主面7aまたは7bの法線方向に平行、または、第1の蛍光体層7の主面7aまたは7bの法線方向に対するc軸の傾きが4°以下である。詳細には、c軸のX線ロッキングカーブ法による半値幅が4°以下であれば、c軸方向に結晶粒界が少ない酸化亜鉛を形成できる。
第2の蛍光体層8において、第2のマトリックス6は、酸化亜鉛よりも屈折率が小さい材料によって構成されている。酸化亜鉛の屈折率は、結晶状態や製造方法によって多少異なるが、1.9以上2.0以下程度の値である。第2のマトリックス6は、第1のマトリックス5として用いられる酸化亜鉛の屈折率よりも小さい屈折率を有する材料によって構成されていればよい。第2のマトリックス6は、酸化亜鉛の屈折率よりも小さい屈折率を有し、アモルファス(ガラス)状態の透光性材料である。例えば、ケイ酸塩を主成分とするガラス、リン酸塩を主成分とするガラス、ホウ酸塩を主成分とするガラス、二酸化ケイ素(SiO2)、テトラエトキシシランなどのシリカ源を原料としてゾルゲル法によって形成されるガラス、硬化前は液体原料であって、硬化後は固体となるポリシラザンなどの液状ガラス、あるいは、二酸化ケイ素(SiO2)とシリコーン(R2SiO)の中間体であるシルセスキオキサンなどの無機−有機複合体、シロキサン骨格を直鎖構造としたシリコーンゴム系の高耐熱性の透光性樹脂、シロキサン骨格を分岐構造としたシリコーン樹脂などによって第2のマトリックス6を構成することができる。上述した主成分を有するガラスは、高温焼成ガラスであってもよいし、低温焼成ガラスであってもよい。高温焼成ガラスとは、概ね600℃以上の温度で焼結することによってガラスとなるものをいい、低温焼成ガラスとは概ね200℃以上600℃以下の温度で焼結することによってガラスとなるものをいう。
第2のマトリックス6は、このような高温焼成ガラス、低温焼成ガラス、二酸化ケイ素、液状ガラス、有機−無機複合体および樹脂からなる群から選ばれる少なくとも1つを含んでいてもよい。焼成ガラス、液状ガラス、無機−有機複合体などの屈折率は、例えば、1.4以上1.6以下である。また、シリコーンゴム系の高耐熱性の樹脂、シリコーン樹脂などの樹脂の屈折率は、例えば、1.4以上1.6以下である。
第2の蛍光体層8において、蛍光体粒子3は互いに接している。第2のマトリックス6は、蛍光体粒子3の間の空隙を埋めるように充填されており、第2のマトリックス6と蛍光体粒子3とは接している。つまり、蛍光体粒子3は、隣接する蛍光体粒子3と互いに接しているとともに、第2のマトリックス6とも接している。また、第2の蛍光体層8において、空隙は実質的には存在していない。
第2の蛍光体層8の蛍光体粒子3は、第1の蛍光体層7の蛍光体粒子3と同じ組成を有しており、蛍光体粒子3に含まれる蛍光体の濃度も同じである。つまり、同一の複数の蛍光体粒子3の一部が第1の蛍光体層7に含まれ、残りが第2の蛍光体層8に含まれる。第2の蛍光体層8における蛍光体粒子3の密度は第1の蛍光体層7における蛍光体粒子3の密度と一緒であってもよいし異なっていてもよい。
図1に示すように、第2のマトリックス6は第1のマトリックス5と接するように、蛍光体粒子3の空隙のうち、第1のマトリックス5が位置していない部分を充填している。これにより、第2の蛍光体層8は第1の蛍光体層7に接して配置される。第2の蛍光体層8と第1の蛍光体層7とは、第1のマトリックス5と第2のマトリックス6との界面によって規定される。このため、複数の蛍光体粒子3のうち、第1のマトリックス5と第2のマトリックス6との界面に位置する蛍光体粒子3は、一部が第1の蛍光体層7に帰属し、残りの部分が第2の蛍光体層8に帰属していてもよい。
波長変換素子10において、第1の蛍光体層7の主面7aから入射した光は第1の蛍光体層7および第2の蛍光体層8を透過し、第2の蛍光体層8の主面8bから出射する。この時、少なくとも一部の光を、入射した際の光の波長帯域とは異なる波長帯域の光に変換して出射する。あるいは、第2の蛍光体層8の主面8bから入射した光は第2の蛍光体層8および第1の蛍光体層7を透過し、第1の蛍光体層7の主面7aから出射する。この時、第1の蛍光体層7および第2の蛍光体層8のそれぞれにおいて、蛍光体粒子3は、少なくとも一部の光を、入射した際の光の波長帯域とは異なる波長帯域の光に励起し、出射する。
第1の蛍光体層7および第2の蛍光体層8において、蛍光体粒子3は同じ材料によって構成されているが、第1のマトリックス5および第2のマトリックス6の屈折率は互いに異なる。このため、第1の蛍光体層7における蛍光体粒子3と第1のマトリックス5との屈折率差と、第2の蛍光体層8における蛍光体粒子3と第2のマトリックス6との屈折率差とが異なる。これにより、第1の蛍光体層7および第2の蛍光体層8において、蛍光体粒子3に入射して蛍光体を励起する光と、蛍光体粒子に入射せず透過する光との割合は互いに異なり、生成する蛍光と透過光の割合も互いに異なる。その結果、同じ波長の光が第1の蛍光体層7および第2の蛍光体層8に入射した場合に、第1の蛍光体層7および第2の蛍光体層8から出射する、蛍光と透過光とが混合した光の色度は互いに異なる。
したがって、本実施形態によれば、第1の蛍光体層7の厚さt1および第2の蛍光体層8の厚さt2(主面7aあるいは主面7bの法線方向の厚さ)あるいは、これらの厚さの比を調整することによって、波長変換素子10から出射する光の色度を変化させることができる。例えば、波長変換素子10に入射する光源となる発光素子の発光波長にばらつきがある場合でも、第1の蛍光体層7および第2の蛍光体層8の厚さを調整することによって、波長変換素子10から出射する光の色度のばらつきを抑制することができる。
また、本実施形態の波長変換素子によれば、第1の蛍光体層において、蛍光体粒子の間を酸化亜鉛によって構成される第1のマトリックスで充填しているため、高い耐熱性を有する。酸化亜鉛の屈折率が大きいため、蛍光体粒子に入射する光の散乱を抑制し、また、酸化亜鉛がc軸方向に配向しているため、光の出射方向に結晶粒界が少なく、ボイドが抑制できる。そのため、波長変換素子から、光を効率良く外部に取り出すことができる。
以下、図面を参照しながら、本実施形態の波長変換素子10の製造方法を説明する。
図2(a)、(b)、(c)、(d)は、実施の形態1に係る方法の工程順の断面図を示す。
実施の形態1においては、蛍光体粒子3で構成される蛍光体粒子層4の内部の空隙の一部を、酸化亜鉛の薄膜2から結晶成長したc軸配向の酸化亜鉛で充填し、残りの空隙を酸化亜鉛よりも屈折率が小さい材料で充填する。
まず、図2(a)に示すように、基板1上に、酸化亜鉛の薄膜2を形成する。基板1としては、透明性の高い基板を用いてもよい。ガラス基板、石英基板などを用いることができる。PEN(ポリエチレンナフタレート)フィルムや、PET(ポリエチレンテレフタレート)フィルムなどを用いてもよい。蛍光体粒子からの蛍光または励起光を、波長変換素子の端面で反射させて利用する反射型の波長変換素子を半導体レーザ発光装置に用いる場合は、基板1は、透明基板だけでなく不透明の基板であってもよい。基板1の表面または裏面に、反射率の高い、銀やアルミニウムなどの反射層を設けても良い。反射層と基板を兼ねるために、基板1として、高い反射率を持つシリコン基板やアルミニウム基板などを用いても良い。
結晶構造を有しないアモルファス材料であるガラスなどの基板1を用いた場合、あるいは、単結晶基板であっても、基板と酸化亜鉛の結晶構造の格子不整合率が大きい基板1を用いた場合は、多結晶の酸化亜鉛によって構成される薄膜2が形成される。
酸化亜鉛の薄膜2を形成する方法としては、電子ビーム蒸着法、反応性プラズマ蒸着法、スパッタリング法、パルスレーザー堆積法などの真空成膜法が用いられる。真空成膜法では、成膜する際の基板温度やプラズマ密度などの成膜条件、成膜した後に行う加熱アニール処理などによって、c軸配向の酸化亜鉛の薄膜2を形成できる。また低い電気抵抗のc軸配向の酸化亜鉛の薄膜2を得るために、酸化亜鉛の薄膜にGa、Al、Bなどの元素を添加してもよい。
次に、図2(b)に示すように、基板1の上に形成した酸化亜鉛の薄膜2の上に、蛍光体粒子3からなる蛍光体粒子層4を形成する。蛍光体粒子層4を形成する方法としては、蛍光体粒子3を分散させた蛍光体分散溶液を作製し、電気泳動法を用いて、蛍光体粒子3を酸化亜鉛の薄膜2の上に、集積できる。あるいは、蛍光体分散溶液中で蛍光体粒子3を沈降させることによって、蛍光体粒子層4を形成してもよい。
次に、図2(c)に示すように、c軸配向の酸化亜鉛の薄膜2から、Znイオンを含有する溶液を使用した溶液成長法によって、c軸配向の酸化亜鉛からなる第1のマトリックス5を結晶成長し、蛍光体粒子3の隙間の一部を第1のマトリックス5で充填する。これにより、第1の蛍光体層7を形成する。溶液成長法には、大気圧下で行う化学浴析出法(chemical bath deposition)、大気圧以上の圧力下で行う水熱合成法(hydrothermal synthesis)、電圧あるいは電流を印加する電解析出法(electrochemical deposition)などが用いられる。結晶成長用の溶液として、例えば、ヘキサメチレンテトラミン(Hexamethylenetetramine)(C6124)を含有する硝酸亜鉛(Zinc nitrate)(Zn(NO32)の水溶液が用いられる。硝酸亜鉛の水溶液のpHの例は、5以上7以下である。これらの溶液成長法は例えば、特開2004−315342号公報に開示されている。
図3は、図2(c)のc軸配向の酸化亜鉛の薄膜2から、c軸配向の酸化亜鉛からなる第1のマトリックス5を結晶成長により形成する途中過程を示す。溶液成長法を用いることによって、蛍光体粒子3から、酸化亜鉛が直接、結晶成長するのではなく、薄膜2を種結晶として、第1の蛍光体層7の下部に形成された薄膜2から、上方に、順にc軸配向の酸化亜鉛が結晶成長できる。この際に、蛍光体粒子層4の空隙の一部のみをc軸配向の酸化亜鉛で充填する。
さらに、図2(d)に示すように、蛍光体粒子層4の上部に位置する残りの空隙に、第2のマトリックス6を充填し、第2の蛍光体層8を形成する。例えば、ゾルゲル法によって第2のマトリックス6を形成する。テトラメトキシシランなどのアルコキシドのゾルを第1の蛍光体層7の上の蛍光体粒子3の空隙に充填し、脱水縮合させ、さらに加熱することによって、ガラスによって構成される第2のマトリックス6を形成する。
これにより、第2の蛍光体層8が形成でき、第1の蛍光体層7および第2の蛍光体層8を備えた波長変換素子10が完成する。
(実施の形態2)
図4は、実施の形態2の波長変換素子の断面図を示す。本実施形態の波長変換素子40は、基板41と、薄膜42と、第1の蛍光体層47と、第2の蛍光体層8とを備える。第1の蛍光体層47は、複数の蛍光体粒子3の一部及びその一部の間に位置する第1のマトリックス45を含む。第1のマトリックス45は、単結晶の酸化亜鉛によって構成されている。また、基板41は単結晶基板であり、薄膜42は単結晶の酸化亜鉛によって構成されている。第2の蛍光体層8は実施の形態1の第2の蛍光体層8と同じである。
実施の形態2においては、蛍光体粒子3により構成される蛍光体粒子層4の内部の空隙の一部を、単結晶の酸化亜鉛の薄膜42から結晶成長した単結晶の酸化亜鉛で充填し、残りの空隙を酸化亜鉛よりも屈折率が小さい材料で充填する。
本実施形態の波長変換素子によれば、第1のマトリックス45が単結晶の酸化亜鉛によって構成されているため、第1のマトリックス45中の結晶粒界がより低減されており、第1の蛍光体層内に入射する光の散乱がより低減される。よって、本実施形態の波長変換素子はさらに光を効率良く外部に取り出すことができる。
以下、図面を参照しながら、本実施形態の波長変換素子の製造方法を説明する。
図5(a)、(b)、(c)、(d)は、実施の形態2に係る方法の工程順の断面図を示す。
基板41には、酸化亜鉛の結晶構造と基板の結晶構造との間の格子不整合率が小さい単結晶基板が用いられる。この場合、基板41の結晶方位と、酸化亜鉛の薄膜42の結晶方位との間に、一定の関係をもって、酸化亜鉛を結晶成長させることができる。以下、この成長をエピタキシャル成長とよぶ。エピタキシャル成長した酸化亜鉛の薄膜42において、結晶は全体として同じ向きに配向しており、結晶欠陥等を除いて、基本的には結晶粒界が発生しない。このように、単結晶とは、エピタキシャル成長し結晶粒界が非常に少ない結晶を意味する。単結晶の酸化亜鉛の薄膜42がエピタキシャル成長できる基板41として、サファイア基板、GaN基板、酸化亜鉛基板などを用いることができる。基板41として、基板と酸化亜鉛の結晶構造の格子不整合率を緩和するためのバッファー層を形成した上記の単結晶基板を用いてもよい。基板41として、単結晶のGaN薄膜が形成されたサファイア基板を用いてもよい。実施の形態1と同様に、蛍光体粒子からの蛍光または励起光を、波長変換素子の端面で反射させて利用する反射型の波長変換素子を半導体レーザ発光装置に用いる場合は、基板41は、透明基板だけでなく不透明の基板であってもよい。基板41の表面または裏面に、反射率の高い、銀やアルミニウムなどの反射層を設けても良い。反射層と基板を兼ねるために、基板41として、高い反射率を持つ単結晶のシリコン基板を用いてもよい。
図5(a)に示すように、基板41上に薄膜42を形成する。単結晶の酸化亜鉛の薄膜42を形成する方法としては、実施の形態1と同様の真空成膜法が用いられる。また、基板41の表面が、溶液成長時に酸化亜鉛の種結晶となりうる場合は、単結晶の酸化亜鉛の薄膜42を溶液成長法で形成してもよい。例えば、単結晶のGaN薄膜が形成されたサファイア基板上に、溶液成長法で、単結晶の酸化亜鉛の薄膜42を形成してもよい。
次に、図5(b)に示すように、基板41の上に形成した単結晶の酸化亜鉛の薄膜42の上に、蛍光体粒子3からなる蛍光体粒子層4を形成する。蛍光体粒子層4を形成する方法としては、実施の形態1と同様の方法が用いられる。
次に、図5(c)に示すように、単結晶の酸化亜鉛の薄膜42から、Znイオンを含有する溶液を使用した溶液成長法によって、単結晶の酸化亜鉛から構成される第1のマトリックス45を結晶成長し、第1の蛍光体層47を形成する。c軸配向した単結晶の酸化亜鉛の形成には、実施の形態1と同様の方法を用いることができる。実施の形態1と同様、蛍光体粒子層4の空隙の一部のみを、c軸配向の酸化亜鉛で、充填する。
さらに、図5(d)に示すように、蛍光体粒子層4の上部に位置する残りの空隙に、第2のマトリックス6を充填し、第2の蛍光体層8を形成する。第2のマトリックス6の形成には、実施の形態1と同様の方法が用いられる。
(実施の形態3)
本発明によるLED素子の実施形態を説明する。
本実施形態のLED素子は、実施の形態1、2のいずれの波長変換素子を用いることもできる。図6(a)は、実施の形態1に示した波長変換素子10を、上下を反転させた状態で示す。
図6(b)は、実施の形態3によるLED素子の断面図を示す。LEDチップの電極、LEDチップの内部構造などは、分かり易さのため、簡略化している。図6(b)に示すように、LED素子60は、支持体61と、LEDチップ62と、波長変換素子50とを備える。上述したように、波長変換素子50としては、実施の形態1に示した波長変換素子10、あるいは実施の形態2に示した波長変換素子40が用いられる。
支持体61は、LEDチップ62を支持する。本実施の形態では、LED素子60は、面実装が可能な構造を備えている。本実施形態は、高輝度LED素子に好適に用いられるため、LED素子で発生した熱を効率的に外部に拡散することができるように、支持体61は高い熱伝導率を有していてもよい。例えば、アルミナや窒化アルミニウムなどからなるセラミックスを支持体61として用いてもよい。LEDチップ62は、波長変換素子50の蛍光体を励起する励起光を出射する。例えば、基板62aと、n型GaN層62bと、p型GaN層62dと、n型GaN層62bおよびp型GaN層62dに挟まれたInGaNからなる発光層62cを含む。LEDチップ62は、例えば、青色光を出射する。LEDチップ62は、支持体61上において、LEDチップからの光の出射面63が上になるように、半田64などによって支持体61に固定されている。またLEDチップ62は、ボンディングワイヤ65によって支持体に設けられた電極66に電気的に接続されている。LEDチップ62の周囲は、支持体61に囲まれており、波長変換素子50は、支持体61に固定されている。波長変換素子50は、図6(a)に示す配置のように、基板1側をLED素子からの光の出射面67の側に配置すれば、第1の蛍光体層7および第2の蛍光体層8が外部にさらされることがない。しかし、LEDチップ62からの光の入射面68側に、波長変換素子50の基板1を配置してもよい。
LED素子60において、LEDチップ62の出射面63から放射される励起光は、波長変換素子50に入射される。波長変換素子50において、入射した励起光の一部が、蛍光体粒子3に入射し、蛍光体を励起することによって、励起光と異なる波長帯域の光を出射する。例えば蛍光体が黄色蛍光体である場合、励起光として青色光が入射し、黄色光を出射する。
蛍光体粒子3に入射しなかった励起光は、そのまま波長変換素子50を透過する。これにより、波長変換素子50から出射する光には青色光と黄色光とが含まれ、LED素子60は白色光を出射する。実施の形態1で説明したように、本実施形態によれば、LEDチップ62から放射される光の波長にばらつきが生じていても、第1の蛍光体層7および第2の蛍光体層8の厚さ(または厚さの比)を調整することによって、波長変換素子から出射する光のばらつきを抑制することができる。
(実施の形態4)
本発明によるLED素子の他の実施の形態を説明する。実施の形態4においては、実施の形態1と同様の方法で形成される波長変換素子を用いたLED素子を説明する。第1の蛍光体層に用いる第1のマトリックス5を、c軸配向の柱状結晶の酸化亜鉛で形成する。
図7、図8は、実施の形態4におけるLED素子の断面図を示す。LEDチップの電極、LED素子の支持体、電極、配線などは、分かり易さのため、簡略化している。
図7(a)に示すLED素子は、LEDチップ70と、波長変換素子75とを備える。LEDチップ70は、基板71と、基板71上に位置する半導体発光素子72とを含む。半導体発光素子72はさらに発光層73を有する。波長変換素子75は半導体発光素子72上に直接形成されており、実施の形態1の波長変換素子10から基板1を取り除いた構造を有する。つまり、波長変換素子75は、半導体発光素子72上に形成された薄膜2と、第1の蛍光体層7と、第2の蛍光体層84とを備える。
図7(b)に示すLED素子も、LEDチップ70と、波長変換素子75とを備え、LEDチップ70における上下が図7(a)に示すLED素子と逆転している。つまり、LEDチップ70の発光層73は、波長変換素子75と反対側に位置している。波長変換素子75は、基板71上に形成された薄膜2と、第1の蛍光体層7と、第2の蛍光体層84とを備える。
例えば、基板71としては、サファイア基板、GaN基板などを用いることができる。これらの基板は、透光性が高く、これらの基板上にn型GaN、InGaNからなる発光層およびp型GaNを含む良好な特性の半導体発光素子が形成できる。
図7(a)に示す構造および図7(b)に示す構造のいずれにおいても、LEDチップ70を基板として、半導体発光素子72の側、あるいは、半導体発光素子の基板71の側に、実施の形態1と同様の方法で、波長変換素子75を形成できる。
本実施の形態のLED素子は、結晶分離層74を含むLEDチップ80と、波長変換素子75とを用いて構成してもよい。詳細には、図8(a)、図8(b)に示すように、半導体発光素子72、あるいは、半導体発光素子の基板71の上に、結晶分離層74を形成したLEDチップ80を基板として、実施の形態1と同様の方法で、波長変換素子75を形成できる。結晶分離層74は、c軸配向の酸化亜鉛から構成される薄膜2を形成するための下地層である。結晶分離層74は、例えば、プラズマ化学気相成長法を用いて、結晶構造を有しないアモルファスの二酸化ケイ素(SiO2)を主成分とする材料によって形成できる。ポリシラザンなどの液状のガラス原料から形成したガラスでも良い。結晶分離層74を形成することによって、例えば、半導体発光素子の基板71がGaN基板のm面であり、半導体発光素子72が、基板71にエピタキシャル成長した結晶構造であっても、結晶分離層74がガラス基板と同様の結晶構造を有しないアモルファスであるため、基板71の結晶構造に関係なく、c軸配向の酸化亜鉛の薄膜2が形成できる。酸化亜鉛の薄膜2がc軸配向であるため、実施の形態1と同様の方法で、第1の蛍光体層7の第1のマトリックス5をc軸配向の酸化亜鉛で形成できる。
(実施の形態5)
本発明によるLED素子のさらに他の実施の形態を説明する。実施の形態5においては、実施の形態2と同様の方法で形成される波長変換素子を用いたLED素子を説明する。第1の蛍光体層の第1のマトリックスを、単結晶の酸化亜鉛で形成した例である。
図9は、実施の形態5におけるLED素子の断面図を示す。LEDチップの電極、LED素子の支持体、電極、配線などは、分かり易さのため、簡略化している。
実施の形態5のLED素子は、LEDチップ70と、波長変換素子95とを備える。
波長変換素子95は、単結晶の酸化亜鉛の薄膜42と、第1の蛍光体層47と、第2の蛍光体層8とを備える。実施の形態2と同様、第1の蛍光体層47の第1のマトリックス45は、単結晶の酸化亜鉛によって構成される。LEDチップは実施の形態4と同様、半導体発光素子72と基板71とを含む。
半導体発光素子72、あるいは、半導体発光素子の基板71の表面の結晶構造が、単結晶の酸化亜鉛の薄膜42を形成しうる結晶構造を有していれば、図9(a)および図9(b)に示すように、LEDチップ70を基板として、半導体発光素子72の側、あるいは、半導体発光素子の基板71の側に、単結晶の酸化亜鉛の薄膜42が形成できる。酸化亜鉛の薄膜42が単結晶であるため、実施の形態2と同様の方法で、第1の蛍光体層47の第1のマトリックス45を単結晶の酸化亜鉛で形成できる。
例えば、半導体発光素子の基板71としては、c面のサファイア基板、c面のGaN基板などを用いることができる。特に、酸化亜鉛および窒化ガリウムは、いずれもウルツ鉱型の結晶構造を有している。これらのa軸格子の不整合率は1.8%であり、c軸格子の不整合率は0.4%であり、いずれも非常に小さい。そのため、半導体発光素子の側、あるいは、基板側に、単結晶の酸化亜鉛からなる薄膜2をエピタキシャル成長させることができる。
(実施の形態6)
本発明による半導体レーザ発光装置の実施形態を説明する。
図10は、実施の形態6による半導体レーザ発光装置100の断面図を示す。半導体レーザチップの内部構造、電極、接続配線などは、分かり易さのため、簡略化している。半導体レーザ発光装置100は、半導体レーザチップ110と、波長変換素子50と、半導体レーザチップ110および波長変換素子50を支えるステム101とを備える。半導体レーザチップ110はブロック102によってステム101に支持され、波長変換素子50はキャップ103を介してステム101に支持される。ステム101とブロック102は、FeもしくはCuを主に含む金属性材料からなり、金型で一体成型され、動作時に半導体レーザチップ110中に発生する熱を効率的に排熱する。キャップ103はFeとNiを主に含む金属性材料から成型され、ステム101に溶接などにより融着されている。半導体レーザチップ110は、ブロック102に実装され、ボンディングワイヤによって、半導体レーザチップ110とリード105との間の電気的な接続を行う。キャップ103には、開口部104が設けられており、その開口部104を覆うように、実施の形態1または2による波長変換素子50が設けられている。半導体レーザチップ110からの励起光は、入射面107から波長変換素子50に入射する。半導体レーザ発光装置100は、出射面108から、波長変換素子50を透過した励起光と、励起光から変換された蛍光とを合成させた光を出射する。
図10においては、半導体レーザチップ110はブロック102に直接実装されているが、AlNやSiなどからなるサブマウントを介して、ブロック102に実装してもよい。
半導体レーザ発光装置100において、波長変換素子50の基板を出射面108の側に配置すれば、波長変換素子を外部にさらされないという利点がある。しかし、基板を入射面107側に、配置してもよい。
(実施の形態7)
本発明によるヘッドライトおよび車両の実施形態を説明する。実施の形態7においては、実施の形態1または2のいずれかの波長変換素子を用いたヘッドライトおよび車両を説明する。
図11(a)は本実施形態の車両の構成を概略的に示している。車両601は、車体605と車体605の前部に設けられたヘッドライト602と、電力供給源603と、発電機604とを備える。発電機604は図示しないエンジン等の駆動源によって、回転駆動され、電力を発生する。生成した電力は、電力供給源603に蓄えられる。本実施の形態では、電力供給源603は、充放電が可能な2次電池である。車両601が電気自動車、あるいは、ハイブリッド車である場合には、車両を駆動するモータが発電機604であってもよい。ヘッドライト602は電力供給源からの電力によって点灯する。
図11(b)は、ヘッドライト602の概略的な構成を示している。ヘッドライト602は、半導体レーザチップ611と光学系612と、光ファイバー613と、波長変換素子614と光学系615とを備える。半導体レーザチップ611は、例えば実施の形態6の半導体レーザ発光装置330において、波長変換素子50の代わりに透明板が設けられている構造を備える。
半導体レーザチップ611から放射した光は、光学系612によって光ファイバー613の一端に集光され、光ファイバー613を透過する。光ファイバー613の他端から出射した光は、波長変換素子614に入射し、少なくとも一部の波長が変換され、出射する。さらに、光学系615によって照射範囲が制御される。これにより、ヘッドライト602は車両601の前方を照射する。
図11(c)は、反射型の波長変換素子を用いたヘッドライトにおける、波長変換素子614付近の拡大図である。半導体レーザチップ611から放射した入射光617は、反射層616を備えた波長変換素子614に入射し、少なくとも一部の波長が変換された出射光618が、投射ミラー619で反射して、出射する。
本実施形態のヘッドライトによれば、波長変換素子の第1の蛍光体層の第1のマトリックスが熱伝導性および耐熱性の高い無機材料によって構成されているため、高強度で光を放射することが好ましいヘッドライトに用いた場合でも、優れた排熱性および耐熱性を有し、長期にわたって、蛍光体層が熱によって劣化するのが抑制される。また、出射効率が高いため、電力供給源の電力の消費が少ない。さらに、半導体レーザチップから出射した光を、光ファイバーによって波長変換素子へ導くため、ヘッドライトにおける半導体レーザチップと波長変換素子との配置に制約がない。また、波長変換素子の第1及び第2の蛍光体層の厚さの比を変えることによって色度を調整することが可能である。
以上説明したように、本実施形態の波長変換素子は、屈折率の高い酸化亜鉛を第1のマトリックスとして用いた第1の蛍光体層と、酸化亜鉛よりも屈折率の小さい材料を第2のマトリックスとして用いた第2の蛍光体層とを備える。第1の蛍光体層の厚さと第2の蛍光体層の厚さの比率を制御することによって、1種類の蛍光体、同一の蛍光体量にもかかわらず、波長変換素子およびLED素子、半導体レーザ発光装置の色度を制御できる。さらに、第1の蛍光体層の第1のマトリックスを構成する酸化亜鉛を結晶成長させる場合の厚さの制御性が高いため、波長変換素子およびLED素子、半導体レーザ発光装置の色度の制御性が高い。また、蛍光体粒子層を予め形成した後、形成する酸化亜鉛の厚さによって、波長変換素子の色度が制御できるため、第1の蛍光体層を形成するプロセスの途中段階で、波長変換素子の色度測定が可能であり、その結果に基づいて、波長変換素子の色度調整ができる。
実施の形態1によれば、c軸配向の酸化亜鉛によって構成される薄膜を用いることによって、蛍光体層の内部の空隙を、c軸配向の柱状結晶の酸化亜鉛によって構成される第1のマトリックスで緻密に充填することができる。これにより、第1の蛍光体層における光の出射方向における酸化亜鉛の結晶粒界が低減でき、かつボイドが抑制できる。よって波長変換素子に入射する光の散乱を抑制し、光を効率良く外部に取り出すことができる。
実施の形態2によれば、単結晶の酸化亜鉛によって構成される薄膜を用いることによって、蛍光体粒子層の内部の空隙を、エピタキシャル成長した単結晶の酸化亜鉛によって構成される第1のマトリックスで緻密に充填することができる。これにより、第1の蛍光体層での酸化亜鉛の結晶粒界による光散乱が発生せず、かつボイドが抑制できる。よって、本実施形態の波長変換素子はさらに光を効率良く外部に取り出すことができる。
また、実施の形態1および2によれば、薄膜から、同一の材料である第1のマトリックスを、直接、結晶成長することができる。そのため、第1の蛍光体層と基板の間の密着性が高い。
また、実施の形態1および2によれば、第2の蛍光体層のマトリックスは酸化亜鉛よりも屈折率の小さい材料によって構成されている。したがって、第1の蛍光体層側から波長変換すべき励起光を入射させた場合、励起光および第1及び第2の蛍光体層からの蛍光が第2の蛍光体層から出射する。このため、波長変換素子と外部環境との屈折率差が酸化亜鉛に比べて小さくなり、第2の蛍光体層と外部環境との界面において、全反射する光の量を少なくすることができ、光取り出し効率がより高い波長変換素子が実現し得る。
実施の形態3によれば、上述した特徴を波長変換素子が備えるため、高光出力のLED素子が実現し得る。
実施の形態4によれば、半導体発光素子上、あるいは半導体発光素子の基板上に、結晶分離層を介して、本実施形態の波長変換素子が形成されたLED素子を実現できる。この構成によれば、半導体発光素子、あるいは、半導体発光素子の基板の結晶構造が、酸化亜鉛のc軸配向を妨げる場合であっても、c軸配向の酸化亜鉛によって構成される薄膜を形成できる。これにより第1の蛍光体層の第1のマトリックスをc軸配向の酸化亜鉛で形成できる。
実施の形態5によれば、半導体発光素子、あるいは半導体発光素子の基板の結晶構造を利用して、第1の蛍光体層の第1のマトリックスを単結晶の酸化亜鉛で形成できる。高価な単結晶基板を別途用意する必要がなく、LED素子のコストを低減できる。
実施の形態6によれば、波長変換素子を半導体レーザチップから放出されるレーザ光で励起する発光装置を構成できる。この構成によれば、半導体レーザチップは、LEDチップよりも、指向性や輝度が高く、さらに本実施形態の波長変換素子は、蛍光体での光散乱を抑制できるため、本実施形態の半導体レーザ発光装置は、指向性の高い、あるいは輝度の高い光源を実現できる。
実施の形態7によれば、優れた耐熱性を有し、長期にわたって、波長変換素子の熱による劣化が抑制された信頼性の高いヘッドライトが実現される。
以下の実施例を用いて、本実施形態の波長変換素子、LED素子、半導体レーザ発光装置を詳細に説明する。
(実施例1)
(ガラス基板上の酸化亜鉛の薄膜の形成)
基板として、厚さ1mmのソーダガラス基板を用意した。電子ビーム蒸着法を用いて、150nmの厚さを有するGaが3at%ドープされたc軸配向の酸化亜鉛の薄膜(下地ZnO層)をガラス基板の上に形成した。成膜時の基板温度を180℃とし、成膜後に、大気中で、室温〜500℃まで30分で昇温し、500℃で20分間アニールを行った。
(蛍光体粒子層の形成)
屈折率が1.8、平均粒径が3μmのY3Al512:Ce(YAG:Ce)蛍光体を用いて、蛍光体分散溶液を用意した。分散溶媒のエタノール(30ml)に、YAG:Ce蛍光体粒子(0.1g)と、分散剤として、リン酸エステル(0.0003g)およびポリエチレンイミン(0.0003g)を混合し、超音波ホモジナイザを用いて、溶媒中に蛍光体粒子を分散させた。
得られた蛍光体分散溶液を用いて、下地ZnO層が形成された基板上に、電気泳動法によって、蛍光体粒子層を形成した。蛍光体粒子層の堆積条件は、下地ZnO層をカソードとし、Pt電極をアノードとして、印加電圧100V、印加時間3分とした。蛍光体粒子層を堆積させた後、溶媒のエタノールを乾燥させて、厚さ17μmの蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
(酸化亜鉛による第1の蛍光体層の形成)
第1のマトリックスとなる酸化亜鉛の溶液成長法として、化学浴析出法を用いた。酸化亜鉛成長溶液として、硝酸亜鉛(0.1mol/L)と、ヘキサメチレンテトラミン(0.1mol/L)が溶解した水溶液を用意した。溶液のpH値は、5〜7であった。蛍光体粒子層を形成した基板を、酸化亜鉛成長溶液に浸漬し、酸化亜鉛成長溶液の温度を90℃に保持し、蛍光体粒子層の内部の空間の一部に、酸化亜鉛を結晶成長させて、厚さ16μmの第1の蛍光体層を形成した。この後、基板を取り出し、純水によって洗浄し、乾燥した。
(ガラスによる第2の蛍光体層の形成)
第1の蛍光体層を形成した蛍光体粒子層の残りの空隙をガラスで充填し、厚さ1μmの第2の蛍光体層を形成した。エタノール(4ml)とテトラエトキシシラン(Tetraethoxysilane)(6ml)と、脱イオン水(3ml)と、濃塩酸(1ml)とを混合した液状のガラス原料溶液を用意した。得られた液状のガラス原料溶液を、第1の蛍光体層を形成した蛍光体粒子層に滴下し、ロータリーポンプで真空引きして蛍光体粒子層の残りの空隙に含浸させ、500℃で2時間加熱を行い、原料溶液からガラスであるSiO2に変換させた。
(波長変換素子のLED素子への実装、LED素子の評価)
発光波長が465nmで、発光強度が同じ青色LEDチップを複数用意した。第1の蛍光体層および第2の蛍光体層を備えた波長変換素子を、支持体61の大きさに合うよう、ダイシング加工を行って切断し、個片化された波長変換素子を用意した。図6(b)に示すように、青色LEDチップを支持体61に半田64を用いて取り付け、支持体61に設けられた電極66と青色LEDチップとの間の配線を行った。次に、図6(b)に示すように、支持体61の大きさに合うように切断した波長変換素子を、基板側がLED素子からの光の出射面67の側になるよう、支持体61と波長変換素子の端部を、シリコーン樹脂の接着剤で固定し、図6(b)のLED素子を完成させた。完成したLED素子を積分球に取り付け、20mAの定電流で駆動し、LED素子の色度と全放射束の発光強度を測定した。この結果を表1に示す。
(酸化亜鉛およびガラスの屈折率の評価)
実施例1と同じ下地ZnO層が形成されたガラス基板を、蛍光体粒子層を形成せずに、実施例1と同様の溶液成長法で、酸化亜鉛膜のみ結晶成長し形成した。この酸化亜鉛膜の分光エリプソメトリーで測定した屈折率は、2.0であった。また、厚さ1mmのソーダガラス基板上に、実施例1と同様の方法で、ガラス膜のみを形成した。このガラス膜の分光エリプソメトリーで測定した屈折率は、1.45であった。
(実施例2〜5)
実施例1と同じ下地ZnO層を形成したガラス基板上に、実施例1と同じ方法で、蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。第1の蛍光体層の厚さ、第2の蛍光体層の厚さを変えた以外は、実施例1と同様の方法で、LED素子を完成させ、LED素子の色度と全放射束の発光強度を測定した。この結果を表1に示す。
(参考例1)
実施例1と同じ下地ZnO層を形成したガラス基板上に、実施例1と同じ方法で、蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。実施例1と同様の方法で、第1の蛍光体層のみを形成した。この波長変換素子を用いて、実施例1と同様の方法で、LED素子を完成させ、LED素子の色度と全放射束の発光強度を測定した。この結果を表1に示す。
(比較例1)
実施例1と同じ酸化亜鉛の薄膜を形成したガラス基板上に、実施例1と同じ方法で、蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。この蛍光体粒子層の空隙に、実施例1と同様の方法で、ガラスを充填し、第2の蛍光体層のみを形成した。この波長変換素子を用いて、実施例1と同様の方法で、LED素子を完成させ、LED素子の色度と全放射束の発光強度を測定した。この結果を表1に示す。
(比較例2)
実施例1と同じ下地ZnO層を形成したガラス基板上に、実施例1と同じ方法で、蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。この波長変換素子を用いて、実施例1と同様の方法で、LED素子を完成させ、LED素子の色度と全放射束の発光強度を測定した。この結果を表1に示す。
(比較例3)
厚さ1mmのソーダガラス基板上に、ITO(錫ドープされた酸化インジウム)を電子ビーム蒸着法で成膜したITO付きガラス基板を用意した。実施例1と同様に、ITO付きガラス基板上に、蛍光体粒子層を形成した。単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
次に、蛍光体粒子層の内部の空隙の一部を、ゾルゲル法による酸化亜鉛で充填した。亜鉛源として、酢酸亜鉛二水和物(Zn(CH3COO)2・2H2O)、溶媒としてエタノール、安定化剤としてジエタノールアミン(HN(CH2CH2OH)2)を用意し、ジエタノールアミンとZn2+のモル比を等量とし、0.5mol/Lの酢酸亜鉛がエタノールに溶解したゾルゲル法の原料溶液を作製した。得られたゾルゲル法の原料溶液を蛍光体粒子層に滴下し、ロータリーポンプで真空引きして蛍光体粒子層の内部の空隙に含浸させ、400℃で1時間加熱を行い、原料溶液から酸化亜鉛に変換させた。この波長変換素子を用いて、実施例1と同様の方法で、LED素子を完成させ、LED素子の色度と全放射束の発光強度を測定した。この結果を表1に示す。
第1の蛍光体層の厚さの測定は、第1の蛍光体層まで形成した波長変換素子の断面をSEM観察することによって実施した。図12に、実施例2の第1の蛍光体層まで形成した波長変換素子の断面SEM観察像を示す。波長変換素子を破断した試料を観察しているため、観察像の中で示すような、丸く凹部に見える箇所は、蛍光体粒子が埋められていた跡を示し、破断した試料の反対側の面に蛍光体があると考えられる。
図12に示すように、蛍光体粒子層の内部の空隙を、蛍光体粒子層の下部に形成された下地ZnO層から、上方へ順に、ZnOが形成されていることが確認できた。第1の蛍光体層の厚さが14μm、第2の蛍光体層の厚さとなるZnOに埋め込まれていない波長変換素子の厚さが3μmであった。また、図12に示すように、第1の蛍光体層は、酸化亜鉛で緻密に充填されていることが確認できた。
図13は、実施例1の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。この測定は、基板に平行な結晶格子面を検出できる。図13に示されるように、蛍光体のピーク、および酸化亜鉛のc面以外の回折ピークに比べて、非常に大きなZnO(002)、(004)のピークが検出された。これにより実施例1の第1の蛍光体層の酸化亜鉛は、c軸配向が非常に強いことが確認できた。このように、波長変換素子のXRD測定結果(2θ/ωスキャン)において、酸化亜鉛のc面の回折ピークが、酸化亜鉛のc面以外の回折ピークよりも大きいことから、この酸化亜鉛がc軸配向の結晶であることが確認できる。
図14は、比較例3の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。図14に示されるように、実施例1とは異なり、蛍光体のピーク強度と酸化亜鉛のピーク強度は、同程度であった。またZnO(100)、(002)、(101)の各ピークが、同程度のピーク強度で検出された。これにより比較例3の波長変換素子の酸化亜鉛は、ランダムな配向であることが確認できた。
表1に、LED素子の色度と発光強度についての結果をまとめて示す。
Figure 0005672622
表1では、分かり易さのため、第1の蛍光体層の厚さの順で、実施例、比較例および参考例を示している。単位面積あたりの蛍光体の重量をすべての試料で合わせた。発光強度は、比較例1のLED素子の発光強度を100として他のLED素子の発光強度を示している。
比較例1のガラスで充填した第2の蛍光体層のみを有するLED素子では、ある白色の色度(x0.28、y0.32)が得られた。それと比較して、実施例1から実施例5では、比較例1と同じ、一種類の蛍光体、同一の蛍光体量にもかかわらず、第1の蛍光体層の厚さと第2の蛍光体層の厚さの比率を制御することによって、LED素子の色度を、実施例1の青白い色度(x0.24、y0.25)から、実施例5の白色の色度(x0.27、y0.31)まで、高い精度で調整することができた。この実験結果に基づけば、LED素子に起因する青色光のバラツキ、あるいは、蛍光体のバラツキによる黄色発光のバラツキがあった場合であっても、第1の蛍光体層の厚さと第2の蛍光体層の厚さの比率を制御することによって、LED素子の青色光と、蛍光体からの黄色発光の比率を制御し、LED素子の色度を調整できる範囲内で、所望の色度のLED素子が得られる。
ここで、LED素子の色度を調整できる範囲内とは、本実施例では、参考例1の第1の蛍光体層のみで形成したLED素子の色度(x、y)から、比較例1の第2の蛍光体層のみで形成したLED素子の色度(x、y)までの範囲内であり、第1の蛍光体層の厚さと第2の蛍光体層の厚さの比率により、連続的にLED素子の色度を調整できる。
さらに、実施例1〜実施例5は、比較例1よりも、高い発光強度が得られた。これは、第1の蛍光体層の内部が、ガラスよりも高い屈折率を有する酸化亜鉛のc軸配向の柱状結晶で、緻密に充填されているからである。
比較例2の蛍光体粒子を基板上に集積しただけの波長変換素子を用いたLED素子の発光強度は、60であった。比較例3の蛍光体粒子層の内部をランダム配向の酸化亜鉛で充填した波長変換素子を用いたLED素子の発光強度は、73であった。比較例3は、比較例2の1.2倍の発光強度が得られたものの、比較例3は、実施例1〜実施例5および比較例1よりも、小さい発光強度しか得られなかった。これは、蛍光体粒子層の内部をランダムな配向の酸化亜鉛で充填した場合、LEDチップからの光の出射方向に、酸化亜鉛の結晶粒界が数多く存在することによって、波長変換素子での光散乱が大きくなるからである。
図15は、実施例1の波長変換素子を破断した断面SEM観察像の拡大像を示す。波長変換素子を破断した試料を観察しているため、観察像の中で示すような、丸く凹部に見える箇所は、蛍光体粒子が埋められていた跡を示し、破断した試料の反対側の面に蛍光体があると考えられる。図15(a)は、第1の蛍光体層の基板界面付近を示し、図15(b)は、第1の蛍光体層の中央部を示す。図15(a)および図15(b)から明らかなように、第1の蛍光体層の内部が酸化亜鉛で緻密に充填されていることがわかる。また、第1の蛍光体層の内部の酸化亜鉛には、縦方向に結晶粒界が見られる。これは、溶液成長によって酸化亜鉛が柱状結晶に成長したことを示している。図15(a)から、酸化亜鉛は、下地ZnO層と密に接しており、下地ZnO層から酸化亜鉛が結晶成長したことがわかる。図15(b)から、蛍光体粒子の周囲を酸化亜鉛の柱状結晶が埋めている状態がわかる。光の出射方向に、結晶粒界の少ない柱状結晶の酸化亜鉛が配置できたため、第1の蛍光体層での光散乱が抑制できた。
図16に、実施例1と比較例1のLED素子の発光スペクトルを示す。実施例1では、蛍光体粒子層の内部を柱状結晶の酸化亜鉛で緻密に充填できたために、比較例1よりも波長変換素子での光散乱が抑制されて、LEDチップからの青色光を、効率良くLED素子の外部に取り出すことができた。図16に示すように、同一の蛍光体、同一の蛍光体量であっても、LEDチップからの青色光と、蛍光体からの黄色発光の比率を変えることができるために、実施例1は、比較例1と異なる色度の波長変換素子およびLED素子を実現できる。
(実施例6)
ガラス基板上に、下地ZnO層を成膜する成膜条件を、成膜時の基板加熱をなしとし、成膜後のアニールを行わなかった。それら以外は、実施例1と同様の方法で、LED素子を完成させ、LED素子からの全放射束の発光強度を測定した。この結果を表2に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
(実施例7)
ガラス基板上に、下地ZnO層を成膜する成膜条件を、成膜時の基板温度を180℃とし、成膜後のアニールを行わなかった。それら以外は、実施例1と同様の方法で、LED素子を完成させ、LED素子からの全放射束の発光強度を測定した。この結果を表2に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
(実施例8)
ガラス基板上に、下地ZnO層を成膜する成膜条件を、成膜時の基板温度を180℃とし、成膜後に、大気中で、室温〜300℃まで30分で昇温し、300℃で20分間アニールを行った。それら以外は、実施例1と同様の方法で、LED素子を完成させ、LED素子からの全放射束の発光強度を測定した。この結果を表2に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
実施例1の波長変換素子のZnO(002)のチルト(結晶軸の傾き)をX線ロッキングカーブ法(ωスキャン)にて評価した。この測定は、2θ(検出器位置)を固定して、試料のみ回転することで、結晶方位の分布を測定し、それが結晶方位の揃っている程度の指標となる。これによって酸化亜鉛のc軸の傾きを評価した。実施例1のZnO(002)のロッキングカーブの半値幅は、2.7°であった。これを第1の蛍光体層の酸化亜鉛のc軸の傾きと定義する。
同様の方法で、実施例6〜実施例8の波長変換素子のZnO(002)のX線ロッキングカーブの半値幅を測定した。これらの結果を表2に示す。さらに、同様の方法で、実施例1、実施例6〜実施例8のガラス基板上の下地ZnO層のZnO(002)のX線ロッキングカーブの半値幅を測定した。これを下地ZnO層のc軸の傾きと定義する。これらの結果を表2に示す。
なお、実施例1、実施例6〜実施例8のガラス基板上の下地ZnO層および、波長変換素子のXRD測定結果(2θ/ωスキャン)から、すべて、ZnOがc軸配向していることが確認できた。
表2に、波長変換素子の酸化亜鉛のc軸の傾きとLED素子の発光強度についての結果をまとめて示す。
Figure 0005672622
単位面積あたりの蛍光体の重量をすべての試料で合わせた。表2では、分かり易さのため、第1の蛍光体層の酸化亜鉛のc軸の傾きの順で、実施例を示している。発光強度は、比較例1のLED素子の発光強度を100として他のLED素子の発光強度を示している。
第1の蛍光体層の酸化亜鉛のc軸の傾きとLED素子の発光強度との間に相関関係が見られ、第1の蛍光体層の酸化亜鉛のc軸の傾きが小さくなるにつれて、LED素子の発光強度が向上した。また第1の蛍光体層の酸化亜鉛のc軸の傾きと下地ZnO層のc軸の傾きとの間にも相関関係が見られ、下地ZnO層のc軸の傾きが小さくなるにつれて、第1の蛍光体層のZnOのc軸の傾きが小さくなった。これは、下地ZnO層を種結晶として、下地ZnOのc軸方向に沿って、蛍光体粒子層の内部の酸化亜鉛が成長したからであると考えられる。
表2に示されるように、第1の蛍光体層の酸化亜鉛のc軸の傾きが4.0°以下の場合に、比較例1の第2の蛍光体層のみを用いたLED素子の発光強度よりも、発光強度が向上した。さらに、第1の蛍光体層の酸化亜鉛のc軸の傾きを4.0°以下にするためには、下地ZnO層のc軸の傾きを、4.5°以下にする必要があることがわかった。
さらに、実施例8によれば、第1の蛍光体層の酸化亜鉛のc軸の傾きは、2.9°以下が好ましく、その際の下地ZnO層のc軸の傾きは、4.2°以下が好ましい。さらに、実施例1によれば、第1の蛍光体層のZnOのc軸の傾きは、2.7°以下が好ましく、その際の下地ZnO層のc軸の傾きは、4.0°以下が好ましい。
第1の蛍光体層の内部のボイドをより詳細に観察するために、集束イオンビーム(FIB)を用いて、波長変換素子の断面を加工し、SEM観察を行った。図17(a)に、実施例6における第1の蛍光体層のSEM観察像を示し、図17(b)に実施例1における第1の蛍光体層のSEM観察像を示す。図17(a)に示すように、実施例6の第1の蛍光体層では、蛍光体粒子の上部にボイドが観察された。図17(b)から明らかなように、実施例1の第1の蛍光体層では、実施例6よりも、ボイドが少なく、ボイドが抑制できていることが確認できた。
上述したように、第1の蛍光体層の酸化亜鉛のc軸の傾きとLED素子の発光強度に相関関係があることについて、詳細は不明であるが、以下のように考えられる。図18は、溶液成長の酸化亜鉛によって、蛍光体粒子を埋める途中過程の模式図を示す。図18(a)は、第1の蛍光体層の酸化亜鉛のc軸の傾きが大きい場合であり、図18(b)は、第1の蛍光体層の酸化亜鉛のc軸の傾きが小さい場合を示す。分かり易くするために、図中では、蛍光体粒子を1個に簡略化した。
溶液成長法による酸化亜鉛成長では、蛍光体は、種結晶に、なりえず、蛍光体粒子からは、酸化亜鉛は、直接、結晶成長しない。第1の蛍光体層の内部の酸化亜鉛は、下地ZnO層からc軸方向に結晶成長する。蛍光体粒子の下方向からc軸方向に結晶成長した酸化亜鉛は、蛍光体粒子にぶつかるとそこで結晶成長が止まる。蛍光体粒子の上部では、横方向(ラテラル方向)に酸化亜鉛が結晶成長して、蛍光体粒子を埋めていく。
以上のように考えると、下地ZnO層のc軸の傾きが大きい場合は、第1の蛍光体層の酸化亜鉛のc軸の傾きが大きくなる。第1の蛍光体層の酸化亜鉛のc軸の傾きが大きいと、酸化亜鉛のラテラル方向の結晶成長の方向が揃わないために、蛍光体粒子を酸化亜鉛で埋める際に、蛍光体粒子の上部にボイドが残る。
下地ZnO層のc軸の傾きが小さい場合は、第1の蛍光体層の酸化亜鉛のc軸の傾きが小さくなる。第1の蛍光体層の酸化亜鉛のc軸の傾きが小さいと、酸化亜鉛のラテラル方向の結晶成長の方向が揃うために、蛍光体粒子を酸化亜鉛で埋める際に、蛍光体粒子の上部にボイドが残らない。このように、蛍光体粒子層の内部の空隙を充填する酸化亜鉛のc軸の傾きを小さくすることによって、第1の蛍光体層のボイドが抑制できた。
(実施例9)
基板として、単結晶のGaN薄膜が成膜されたサファイアc面基板を用意した。サファイア基板の厚さは、0.43mm、GaN薄膜の厚さは、5μmであった。GaN/サファイア基板上に、単結晶の下地ZnO層を溶液成長法で形成した。酸化亜鉛の溶液成長法として、化学浴析出法を用いた。酸化亜鉛成長溶液として、硝酸亜鉛(0.1mol/L)と、ヘキサメチレンテトラミン(0.1mol/L)が溶解した水溶液を用意した。溶液のph値は、5〜7であった。上記の基板を酸化亜鉛成長溶液に浸漬し、酸化亜鉛成長溶液の温度を90℃に保持し、GaN薄膜/サファイア基板上に単結晶の酸化亜鉛を0.7μm成長させた。この後、基板を取り出し、純水によって洗浄し、乾燥した。
その後は、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表3に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
(比較例4)
基板として、厚み0.43mmのサファイアc面基板を用意した。その後は、比較例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表3に示す。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。
図19は、実施例9の波長変換素子のXRD測定結果(2θ/ωスキャン)を示す。図19に示されるように、蛍光体のピーク、および酸化亜鉛のc面以外の回折ピークに比べて、非常に大きなZnO(002)、(004)のピークが検出された。これにより実施例9の第1の蛍光体層の酸化亜鉛は、c軸配向が非常に強いことが確認できた。しかし図19に示すように、酸化亜鉛とGaNは、結晶構造が同じで、格子定数も近いので、(002)、(004)では、酸化亜鉛とGaNのピークが近接しており、明確に分離することが難しい。
そこで、高角度側(123〜129°)での、実施例9の波長変換素子のXRD測定結果(2θ/ωスキャン)を実施した結果、ZnO(006)とGaN(006)のピークが、明確に分離して検出された。
実施例9の波長変換素子のZnO(006)のチルト(結晶軸の傾き)をX線ロッキングカーブ法(ωスキャン)にて評価した。これによって、酸化亜鉛のc軸の傾きを評価した。実施例9のZnO(006)のX線ロッキングカーブの半値幅は、0.2°であった。これを第1の蛍光体層の酸化亜鉛のc軸の傾きと定義する。実施例9の酸化亜鉛のc軸の結晶軸の傾きは、実施例1の柱状結晶の酸化亜鉛と比較して、非常に小さいことが確認できた。さらに、同様の方法で、実施例9のGaN/サファイア基板上の単結晶の下地ZnO層のZnO(006)のX線ロッキングカーブの半値幅を測定した。その半値幅は、0.2°であった。これを下地ZnO層のc軸の傾きと定義する。実施例9の下地ZnO層のc軸の傾きも、実施例1の下地ZnO層と比較して、非常に小さいことが確認できた。なお、実施例9のGaN/サファイア基板上の単結晶の下地ZnO層のXRD測定(2θ/ωスキャン)を行った結果から、酸化亜鉛がc軸配向していることが確認できた。
図20は、実施例9の波長変換素子のXRD測定結果(Φスキャン)を示す。この測定は、試料を面内方向に360°回転することによって、面内の結晶配向を評価できる。ZnO(202)、GaN(202)、Al23(113)で評価した。図20に示すように、酸化亜鉛の六回対称のパターンが表れていることから、波長変換素子の酸化亜鉛は、結晶方位がそろった単結晶であることが確認できた。またサファイア基板のAl23のピーク位置と、GaNのピーク位置と、酸化亜鉛のピーク位置が、全て一致しているため、酸化亜鉛の結晶方位は、サファイア基板およびGaN薄膜の結晶方位に対し、エピタキシャルな関係を示しており、酸化亜鉛がサファイア基板およびGaN薄膜に対し、エピタキシャル成長していることが確認できた。
図21は、実施例9の波長変換素子を破断した断面SEM観察像の第1の蛍光体層の中央付近の拡大像を示す。波長変換素子を破断した試料を観察しているため、観察像の中で示すような、丸く凹部に見える箇所は、蛍光体粒子が埋められていた跡を示し、破断した試料の反対側の面に蛍光体があると考えられる。図21から明らかなように、第1の蛍光体層の内部が酸化亜鉛で緻密に充填されていることが確認できた。さらに実施例1の酸化亜鉛と異なり、実施例9の酸化亜鉛には結晶粒界が見られない。これは、酸化亜鉛が単結晶の下地ZnO層からエピタキシャル成長したために、波長変換素子の内部を結晶粒界がない単結晶の酸化亜鉛で緻密に充填できたからである。
表3に、実施例9と比較例4のLED素子の発光強度についての結果をまとめて示す。
Figure 0005672622
単位面積あたりの蛍光体の重量をすべての試料で合わせた。発光強度は、比較例4のLED素子の発光強度を100として他のLED素子の発光強度を示している。実施例9の発光強度は、126であり、比較例4の第2の蛍光体層のみを用いたLED素子よりも、1.26倍の発光強度が得られた。波長変換素子の内部をc軸配向の柱状結晶の酸化亜鉛で充填した実施例1は、比較例1に対する発光強度が1.19倍であった。これらの結果を比較すると、蛍光体粒子間の空隙を単結晶の酸化亜鉛で充填した実施例9の方が、波長変換素子の内部を柱状結晶の酸化亜鉛で充填した実施例1よりも、発光強度の向上が大きい。これは、第1の蛍光体層の内部を、結晶粒界のない単結晶の酸化亜鉛で緻密に充填できたからである。そのため、柱状結晶の酸化亜鉛で充填した波長変換素子よりも、波長変換素子での光散乱が抑制できた。
図22に、実施例9と実施例1と比較例4のLED素子の発光スペクトルを示す。図22に示されるように、実施例9では、蛍光体粒子層の内部を結晶粒界のない単結晶の酸化亜鉛で緻密に充填できたために、実施例1、比較例4よりも第1の蛍光体層での光散乱が抑制され、LEDチップからの青色光を、効率良くLED素子の外部に取り出すことができた。図22に示すように、同一の蛍光体、同一の蛍光体量であっても、LEDチップからの青色光と、蛍光体からの黄色発光の比率を変えることができるために、実施例9は、比較例4と異なる色度の波長変換素子およびLED素子を実現できる。
(実施例10)
発光波長が446nmで、発光強度が同じ青色LEDチップを複数用意した。実施例1のYAG:Ce蛍光体に換えて、屈折率が1.9、平均粒径が6μmのβ−SiAlON(サイアロン):Eu蛍光体を用いて、実施例1と同様の方法で、蛍光体粒子層を形成した。蛍光体粒子層の厚さは、約30μmで、単位面積あたりの蛍光体重量は、5.0mg/cm2であった。次に、実施例1と同様の方法で、厚さ28μmの第1の蛍光体層と、厚さ2μmの第2の蛍光体層を形成した。さらに、実施例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表4に示す。
(比較例5)
実施例10と同様に、発光波長が446nmの発光強度が同じ青色LEDチップと、屈折率が1.9、平均粒径が6μmのβ−SiAlON:Eu蛍光体を用いて、比較例1と同様の方法で、厚さ30μmの第2の蛍光体層を形成した。なお、単位面積あたりの蛍光体重量は、5.0mg/cm2であった。さらに、比較例1と同様の方法で、LED素子を完成させ、LED素子の全放射束の発光強度を測定した。この結果を表4に示す。
実施例1と同様の方法で、実施例10の波長変換素子のXRD測定(2θ/ωスキャン)を行った。蛍光体のピーク、および酸化亜鉛のc面以外の回折ピークに比べて、非常に大きなZnO(002)、(004)のピークが検出された。これにより実施例10の波長変換素子の酸化亜鉛は、c軸配向が非常に強いことが確認できた。さらに実施例1と同様の方法で、実施例10の波長変換素子のZnO(002)のX線ロッキングカーブの半値幅を測定した。実施例10のZnO(002)のX線ロッキングカーブの半値幅は、2.7°であった。
図23は、実施例10の波長変換素子を破断した第1の蛍光体層の基板界面付近の断面SEM観察像を示す。波長変換素子を破断した試料を観察しているため、観察像の中で示すような、凹部に見える箇所は、蛍光体粒子が埋められていた跡を示し、破断した試料の反対側の面に蛍光体があると考えられる。図23から明らかなように、第1の蛍光体層の内部が酸化亜鉛で緻密に充填されていることがわかる。
また、第1の蛍光体層の内部の酸化亜鉛には、縦方向に結晶粒界が見られる。これは、溶液成長によって酸化亜鉛が柱状結晶に成長したことを示している。図23から、酸化亜鉛は、下地ZnO層と密に接しており、下地ZnO層から酸化亜鉛が結晶成長し、蛍光体粒子の周囲を酸化亜鉛の柱状結晶が埋めている状態がわかる。これにより、蛍光体に、β−SiAlONを用いた場合であっても、光の出射方向に、結晶粒界の少ない柱状結晶の酸化亜鉛が配置できたことが確認できた。
表4に、実施例10と比較例5のLED素子の発光強度についての結果をまとめて示す。
Figure 0005672622
単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例5のLED素子の発光強度を100として他のLED素子の発光強度を示している。
比較例5のガラスで充填した第2の蛍光体層のみを有するLED素子では、色度(x0.22、y0.28)が得られた。それと比較して、実施例10では、比較例5と同じ、一種類の蛍光体、同一の蛍光体量にもかかわらず、色度(x0.20、y0.22)が得られた。このように、同一の蛍光体、同一の蛍光体量であっても、LEDチップからの励起光と、蛍光体からの蛍光の比率を変えることができるために、実施例10は、比較例5と異なる色度の波長変換素子およびLED素子を実現できた。
実施例10の発光強度は、119であり、比較例5の第2の蛍光体層のみを形成したLED素子よりも、1.19倍の発光強度が得られた。これは、第1の蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、波長変換素子での光散乱が抑制できた。
図24に、実施例10と比較例5のLED素子の発光スペクトルを示す。図24に示されるように、実施例10では、第1の蛍光体層の内部をc軸配向の柱状結晶の酸化亜鉛で緻密に充填できたために、比較例5よりも波長変換素子での光散乱が抑制され、LEDチップからの励起光を、効率良くLED素子の外部に取り出すことができた。
(実施例11)
発光波長が446nmで、発光強度が同じ半導体レーザチップを複数用意した。実施例1と同様の方法で、厚さ16μmの第1の蛍光体層と、厚さ1μmの第2の蛍光体層を形成した。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。図10に示すように、キャップ103の開口部104の大きさに合うよう、波長変換素子をダイシング加工によって切断し、個片化された波長変換素子を用意した。さらに、半導体レーザチップをブロック102に半田を用いて取り付け、ボンディングワイヤを用いて、半導体レーザチップ110とステム101に設けられたリード105との間の電気的な接続を行った。次に、個片化された波長変換素子を、基板側が半導体レーザ発光装置からの光の出射面108の側になるよう、開口部104と波長変換素子の端部を、接着剤で固定し、図10の半導体レーザ発光装置を完成させた。完成した半導体レーザ発光装置を積分球に取り付け、30mAの定電流で駆動し、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表5に示す。
(比較例6)
比較例1と同様の方法で、厚さ17μmの第2の蛍光体層を形成した。なお、単位面積あたりの蛍光体重量は、3.3mg/cm2であった。その後は、実施例11と同様に、光波長が446nmの発光強度が同じ半導体レーザチップチップを用いて、半導体レーザ発光装置を完成させ、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表5に示す。
表5に、実施例11と比較例6の半導体レーザ発光装置の発光強度についての結果をまとめて示す。
Figure 0005672622
単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例6の半導体レーザ発光装置の発光強度を100として他の半導体レーザ発光装置の発光強度を示している。
比較例6のガラスで充填した第2の蛍光体層のみを有する半導体レーザ発光装置では、色度(x0.30、y0.31)が得られた。それと比較して、実施例11では、比較例6と同じ、一種類の蛍光体、同一の蛍光体量にもかかわらず、色度(x0.27、y0.25)が得られた。このように、同一の蛍光体、同一の蛍光体量であっても、半導体レーザチップからの青色光と、蛍光体からの黄色発光との比率を変えることができるために、実施例11は、比較例6と異なる色度の波長変換素子および半導体レーザ発光装置を実現できた。
実施例11の発光強度は、117であり、第2の蛍光体層のみを形成した波長変換素子を用いた半導体レーザ発光装置よりも、1.17倍の発光強度が得られた。これは、第1の蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、波長変換素子での光散乱が抑制できた。
図25(a)、(b)に、実施例11と比較例6の半導体レーザ発光装置の発光スペクトルを示す。図25(a)は、半導体レーザチップからの励起光付近の拡大図であり、図25(b)は、励起光によって励起された蛍光付近の拡大図である。図25(a)、(b)に示されるように、実施例11では、第1の蛍光体層の内部をc軸配向の柱状結晶の酸化亜鉛で緻密に充填できたために、比較例6よりも波長変換素子での光散乱が抑制され、半導体レーザチップからの励起光を、効率良く半導体レーザ発光装置の外部に取り出すことができた。
(実施例12)
屈折率が1.9、平均粒径が6μmのβ−SiAlON:Eu蛍光体を用いて、実施例10と同様の方法で、厚さ28μmの第1の蛍光体層と、厚さ2μmの第2の蛍光体層を形成した。なお、単位面積あたりの蛍光体重量は、5.0mg/cm2であった。さらに、実施例11と同様の方法で、半導体レーザ発光装置を完成させ、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表6に示す。
(比較例7)
屈折率が1.9、平均粒径が6μmのβ−SiAlON:Eu蛍光体を用いて、比較例5と同様の方法で、厚さ30μmの第2の蛍光体層を形成した。なお、単位面積あたりの蛍光体重量は、5.0mg/cm2であった。その後は、実施例11と同様の方法で、半導体レーザ発光装置を完成させ、半導体レーザ発光装置の全放射束の発光強度を測定した。この結果を表6に示す。
表6に、実施例12と比較例7の半導体レーザ発光装置の発光強度についての結果をまとめて示す。
Figure 0005672622
単位面積あたりの蛍光体の重量を2つの試料で合わせた。発光強度は、比較例7の半導体レーザ発光装置の発光強度を100として他の半導体レーザ発光装置の発光強度を示している。
比較例7のガラスで充填した第2の蛍光体層のみを有する半導体レーザ発光装置では、色度(x0.24、y0.35)が得られた。それと比較して、実施例12では、比較例7と同じ、一種類の蛍光体、同一の蛍光体量にもかかわらず、色度(x0.21、y0.21)が得られた。このように、同一の蛍光体、同一の蛍光体量であっても、半導体レーザチップからの青色光と、蛍光体からの蛍光との比率を変えることができるために、実施例12は、比較例7と異なる色度の波長変換素子および半導体レーザ発光装置を実現できた。
実施例12の発光強度は、137であり、比較例7の第2の蛍光体層のみを形成した波長変換素子を用いた半導体レーザ発光装置よりも、1.37倍の発光強度が得られた。これは、第1の蛍光体層の内部を、c軸配向の結晶粒界の少ない柱状結晶の酸化亜鉛で緻密に充填できたからである。そのため、波長変換素子での光散乱が抑制できた。
図26(a)、(b)に、実施例12と比較例7の半導体レーザ発光装置の発光スペクトルを示す。図26(a)は、半導体レーザチップからの励起光付近の拡大図であり、図26(b)は、励起光によって励起された蛍光付近の拡大図である。図26(a)、(b)に示されるように、実施例12では、第1の蛍光体層の内部をc軸配向の柱状結晶の酸化亜鉛で緻密に充填できたために、比較例7よりも波長変換素子での光散乱が抑制され、半導体レーザチップからの励起光を、効率良く半導体レーザ発光装置の外部に取り出すことができた。
(酸化亜鉛の透過率の評価)
実施例1と同じ下地ZnO層が形成されたガラス基板を、蛍光体粒子層を形成せずに、実施例1と同様の溶液成長法で、酸化亜鉛膜のみ結晶成長し形成した。酸化亜鉛膜の厚さは、約20μmであった。酸化亜鉛膜の透過率の測定は、酸化亜鉛膜を形成していないガラス基板を波長範囲330nmから800nmのリファレンスとして用いて行った。ガラス基板に換えて、サファイア基板上にも、実施例1と同様の方法で、下地ZnO層を形成し、実施例1と同様の溶液成長法で、約20μmの酸化亜鉛膜を形成した。サファイア基板上の酸化亜鉛膜についても、同様にサファイア基板をリファレンスとして用いて、透過率の測定を行った。図27に、ガラス基板上、サファイア基板上の酸化亜鉛膜の透過率スペクトルをそれぞれ示す。波長470nmでは、ガラス基板上の酸化亜鉛膜の透過率は、90%、サファイア基板上の酸化亜鉛膜の透過率は、95%であった。波長430nmでは、ガラス基板上の酸化亜鉛膜の透過率は、88%、サファイア基板上の酸化亜鉛膜の透過率は、94%であった。波長420nmでは、ガラス基板上の酸化亜鉛膜の透過率は、87%、サファイア基板上の酸化亜鉛膜の透過率は、92%であった。波長400nmでは、ガラス基板上の酸化亜鉛膜の透過率は、72%、サファイア基板上の酸化亜鉛膜の透過率は、75%であった。
溶液成長で形成した酸化亜鉛膜の透過率は、非常に高く、青紫光の波長400nmから420nmの範囲で透過率が72%以上であるため、励起光が青紫光の場合でも、本実施例の波長変換素子を励起できる。さらに、青色光の波長420nmから470nmの範囲では、透過率が87%以上であるため、励起光が青紫光よりも青色光の方が、さらに効率的に本実施例の波長変換素子を励起できる。
(蛍光体とマトリックスとの屈折率差)
蛍光体として、屈折率が1.8のYAG蛍光体を用いた場合は、第1の蛍光体層を形成する蛍光体と酸化亜鉛との屈折率差(Δn1)は、0.2、第2の蛍光体層を形成する蛍光体とガラスとの屈折率差(Δn2)は、0.35であった。
蛍光体として、屈折率が1.9のβ−SiAlON蛍光体を用いた場合は、第1の蛍光体層を形成する蛍光体と酸化亜鉛との屈折率差(Δn1)は、0.1、第2の蛍光体層を形成する蛍光体とガラスとの屈折率差(Δn2)は、0.45であった。
用いる蛍光体の屈折率が、酸化亜鉛に近いほど、第1の蛍光体層における屈折率差(Δn1)と、第2の蛍光体層における屈折率差(Δn2)との間の差(|Δn2−Δn1|)を大きくできるため、波長変換素子、およびLED素子、半導体レーザ発光素子の色度調整範囲が大きくできる。
上記の実験例から理解されるように、屈折率の高い酸化亜鉛を用いた第1の蛍光体層と、屈折率の低いガラスを用いた第2の蛍光体層とを備え、高い屈折率を有するが、形状の自由度が低く、かつ結晶性の酸化亜鉛を用いた第1の蛍光体層において、波長変換素子の結晶粒界とボイドを抑制し、さらに第1の蛍光体層の厚さと第2の蛍光体層の厚さの比率を制御することにより、波長変換素子の色度調整と光散乱の抑制を両立できた。
第1の蛍光体層の内部の空隙を、c軸配向であって、c軸の傾きが4°以下の柱状結晶の酸化亜鉛で充填した第1の蛍光体層は、波長変換素子での光散乱が抑制され、その波長変換素子を用いたLED素子は、色度調整が容易で、高い発光強度を達成した。
さらに、第1の蛍光体層の内部の空隙を単結晶の酸化亜鉛で充填した第1の蛍光体層は結晶粒界がなく、柱状結晶の酸化亜鉛で充填した第1の蛍光体層よりも、さらに波長変換素子での光散乱が抑制され、その波長変換素子を用いたLED素子は、さらに高い発光強度を達成した。
また、第1の蛍光体層の内部の空隙を、c軸配向であって、c軸の傾きが4°以下の柱状結晶の酸化亜鉛で充填した波長変換素子は、波長変換素子での光散乱が抑制され、同一の蛍光体、同一の蛍光体量であっても、本実施形態の半導体レーザ発光装置は、異なる色度を実現できた。さらに、その波長変換素子を用いた半導体レーザ発光装置は、高い発光強度を達成した。
また、蛍光体として、YAG蛍光体だけでなく、β−SiAlON蛍光体であっても、第1の蛍光体層の内部の空隙を、c軸配向であって、c軸の傾きが4°以下の柱状結晶の酸化亜鉛で充填した波長変換素子は、波長変換素子での光散乱が抑制され、同一の蛍光体、同一の蛍光体量であっても、本実施形態のLED素子、半導体レーザ発光装置は、異なる色度を実現できた。さらに、その波長変換素子を用いたLED素子、半導体レーザ発光装置は、高い発光強度を達成した。
本願に開示された波長変換素子、LED素子、半導体レーザ発光装置は、照明、自動車用HD(Head Light)、自動車用DRL(Daytime Running Light)またはディスプレイ、プロジェクタに組み込まれる。
1、41 基板
2 酸化亜鉛の薄膜
3 蛍光体
4 蛍光体粒子層
5 c軸配向の酸化亜鉛
6 ガラス
7、47 第1の蛍光体層
8 第2の蛍光体層
10、40、75、95 波長変換素子
42 単結晶の酸化亜鉛の薄膜
45 単結晶の酸化亜鉛
50 波長変換素子
60 LED素子
61 支持体
62 LEDチップ
63 LEDチップからの光の出射面
64 半田
65 ボンディングワイヤ
66 電極
67、108 出射面
68、107 入射面
70、80 LEDチップ
71 半導体発光素子の基板
72 半導体発光素子
73 半導体発光素子の発光層
74 結晶分離層
100 半導体レーザ発光装置
101 ステム
102 ブロック
103 キャップ
104 開口部
105 リード
110 半導体レーザチップ

Claims (30)

  1. 複数の蛍光体粒子と、
    前記複数の蛍光体粒子の一部の間に位置し、c軸に配向した酸化亜鉛または単結晶である酸化亜鉛によって構成された第1のマトリックスと、
    前記複数の蛍光体粒子の残りの部分の間に位置し、前記酸化亜鉛よりも屈折率が小さい材料によって構成された第2のマトリックスと
    を備えた波長変換素子。
  2. 前記酸化亜鉛のc軸のX線ロッキングカーブ法による半値幅が4°以下である、請求項1に記載の波長変換素子。
  3. 前記複数の蛍光体粒子の一部と、前記第1のマトリックスとを含む第1の蛍光体層と、
    複数の蛍光体粒子の残りの部分と、前記第2のマトリックスとを含む第2の蛍光体層とを備えた請求項1または2に記載の波長変換素子。
  4. 前記第1の蛍光体層に接し、酸化亜鉛で構成された薄膜をさらに備える請求項3に記載の波長変換素子。
  5. 前記薄膜に接する基板をさらに備え、前記薄膜は前記蛍光体層と前記基板との間に位置している請求項4に記載の波長変換素子。
  6. 前記第1の蛍光体層に接する基板をさらに備える請求項3に記載の波長変換素子。
  7. 前記基板は、ガラス、石英、酸化ケイ素、サファイア、窒化ガリウムおよび酸化亜鉛からなる群から選ばれる1つによって構成されている請求項5または6に記載の波長変換素子。
  8. 前記酸化亜鉛は柱状結晶である、請求項1から7のいずれかに記載の波長変換素子。
  9. 前記単結晶の酸化亜鉛がc軸配向である、請求項1から7のいずれかに記載の波長変換素子。
  10. 前記複数の蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ−SiAlON(サイアロン)からなる群から選ばれる少なくとも1つを含む、請求項1から9のいずれかに記載の波長変換素子。
  11. 前記酸化亜鉛よりも屈折率が小さい材料は、高温焼成ガラス、低温焼成ガラス、二酸化ケイ素、液状ガラス、無機−有機複合体およびシリコーンゴム系の高耐熱性の透光性樹脂、シリコーン樹脂からなる群から選ばれる少なくとも1つを含む請求項1から10のいずれかに記載の波長変換素子。
  12. 前記複数の蛍光体粒子は、互いに隣接しており、前記第1のマトリックスと前記第2のマトリックスとは互いに接している請求項1から11のいずれかに記載の波長変換素子。
  13. 励起光を放射する半導体発光素子と、
    前記半導体発光素子から放射される前記励起光が入射する、請求項1から12のいずれかに記載の波長変換素子と
    を備えるLED素子。
  14. 前記波長変換素子は、前記半導体発光素子上に直接形成されている、請求項13に記載のLED素子。
  15. 前記波長変換素子と前記半導体発光素子との間に位置する結晶分離層をさらに備え、前記波長変換素子は前記結晶分離層上に直接形成されている、請求項13に記載のLED素子。
  16. 前記結晶分離層は、二酸化ケイ素を主成分とするアモルファス材料によって構成されている、請求項15に記載のLED素子。
  17. 前記結晶分離層は、プラズマ化学気相成長法によって形成されている、請求項16に記載のLED素子。
  18. 前記半導体発光素子は、
    n型GaN層と、
    p型GaN層と、
    前記n型GaN層および前記p型GaN層に挟まれたInGaNからなる発光層と、
    を含む、請求項13から17のいずれかに記載のLED素子。
  19. 前記励起光は青色または青紫色の波長帯域の光である、請求項13から18のいずれかに記載のLED素子。
  20. 前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、
    前記励起光は青紫色の波長帯域の光であり、
    前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射する請求項19に記載のLED素子。
  21. 励起光を放射する半導体レーザチップと、
    前記半導体レーザチップから放射される前記励起光が入射する、請求項1から12のいずれかに記載の波長変換素子と
    を備えた半導体レーザ発光装置。
  22. 前記励起光は青色または青紫色の波長帯域の光である、請求項21に記載の半導体レーザ発光装置。
  23. 前記複数の蛍光体粒子は、青色蛍光体および黄色蛍光体を含み、
    前記励起光は青紫の波長帯域の光であり、
    前記励起光が前記青色蛍光体を励起することにより、前記青色蛍光体が青色光を出射し、前記励起光または前記青色光が前記黄色蛍光体を励起することにより、前記黄色蛍光体が黄色光を出射する請求項22に記載の半導体レーザ発光装置。
  24. 請求項21から23のいずれかに記載の半導体レーザ発光装置と、
    前記半導体レーザ発光装置に電力を供給する電力供給源と
    を備えた車両。
  25. c軸配向した酸化亜鉛の薄膜上に、複数の蛍光体粒子からなる蛍光体粒子層を形成する工程(a)と、
    溶液成長法を用いて、前記蛍光体粒子層の内部の一部空隙を酸化亜鉛で充填し、前記複数の蛍光体粒子の一部およびその間に位置する酸化亜鉛によって構成される第1マトリックスを含む第1の蛍光体層を形成する工程(b)と、
    前記蛍光体粒子層の内部の残りの空隙を前記酸化亜鉛よりも屈折率が小さい材料によって充填し、前記複数の蛍光体粒子の残りの部分およびその間に位置する前記酸化亜鉛よりも屈折率が小さい材料によって構成される第2のマトリックスを含む第2の蛍光体層を形成する工程(c)とを含む波長変換素子の製造方法。
  26. 前記酸化亜鉛の薄膜のc軸のX線ロッキングカーブ法による半値幅が4.5°以下である、請求項25に記載の波長変換素子の製造方法。
  27. 前記酸化亜鉛の薄膜は、エピタキシャル成長した単結晶である、請求項25に記載の波長変換素子の製造方法。
  28. 前記蛍光体粒子層を形成する工程が、電気泳動法である、請求項25から27のいずれかに記載の波長変換素子の製造方法。
  29. 前記蛍光体粒子が、YAG(イットリウム・アルミニウム・ガーネット)蛍光体およびβ−SiAlON(サイアロン)からなる群から選ばれる少なくとも1つを含む、請求項25から29のいずれかに記載の波長変換素子の製造方法。
  30. 前記酸化亜鉛よりも屈折率が小さい材料は、高温焼成ガラス、低温焼成ガラス、二酸化ケイ素、液状ガラス、無機−有機複合体およびシリコーンゴム系の高耐熱性の透光性樹脂、シリコーン樹脂からなる群から選ばれる少なくとも1つを含む請求項25から29のいずれかに記載の波長変換素子の製造方法。
JP2013537958A 2012-05-22 2013-05-21 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置 Active JP5672622B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013537958A JP5672622B2 (ja) 2012-05-22 2013-05-21 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012116189 2012-05-22
JP2012116189 2012-05-22
JP2013537958A JP5672622B2 (ja) 2012-05-22 2013-05-21 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
PCT/JP2013/003237 WO2013175773A1 (ja) 2012-05-22 2013-05-21 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置

Publications (2)

Publication Number Publication Date
JP5672622B2 true JP5672622B2 (ja) 2015-02-18
JPWO2013175773A1 JPWO2013175773A1 (ja) 2016-01-12

Family

ID=49623483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013537958A Active JP5672622B2 (ja) 2012-05-22 2013-05-21 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置

Country Status (4)

Country Link
US (1) US8780438B2 (ja)
JP (1) JP5672622B2 (ja)
CN (1) CN103563108B (ja)
WO (1) WO2013175773A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006269T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung, Projektor und Herstellungsverfahren für ein Wellenlängenumwandlungselement
DE112019006277T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung und Projektor

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169637B (zh) * 2012-06-21 2015-09-16 松下知识产权经营株式会社 发光装置以及投影装置
US20150171372A1 (en) * 2012-07-04 2015-06-18 Sharp Kabushiki Kaisha Fluorescent material, fluorescent coating material, phosphor substrate, electronic apparatus, and led package
JP6545679B2 (ja) * 2013-08-05 2019-07-17 コーニング インコーポレイテッド 発光コーティングおよびデバイス
US9935246B2 (en) * 2013-12-30 2018-04-03 Cree, Inc. Silazane-containing materials for light emitting diodes
JP6489348B2 (ja) * 2014-09-11 2019-03-27 パナソニックIpマネジメント株式会社 波長変換部材、発光装置、プロジェクタ、及び、波長変換部材の製造方法
CN105423238B (zh) 2014-09-11 2017-05-10 松下知识产权经营株式会社 波长变换部件、发光装置、投影机、以及波长变换部件的制造方法
JP6511766B2 (ja) * 2014-10-15 2019-05-15 日亜化学工業株式会社 発光装置
US10495268B1 (en) * 2014-10-31 2019-12-03 The Regents Of The University Of California High intensity solid state white emitter which is laser driven and uses single crystal, ceramic or polycrystalline phosphors
KR101731495B1 (ko) * 2015-01-08 2017-04-28 한국과학기술연구원 폴리오르가노―실세스퀴옥산 및 파장변환제를 포함하는 코팅 조성물, 및 이를 이용한 파장변환 시트
CN106154365B (zh) * 2015-04-16 2019-01-08 深圳市光峰光电技术有限公司 一种漫反射层的制备方法及波长转换装置
DE102015108876B3 (de) * 2015-06-04 2016-03-03 Otto-Von-Guericke-Universität Magdeburg, Ttz Patentwesen Lichtemittierendes Gruppe-III-Nitrid basiertes Bauelement
JP2017027019A (ja) 2015-07-22 2017-02-02 パナソニックIpマネジメント株式会社 光源装置
JP2017028251A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 波長変換部材、光源装置、照明装置車両、および波長変換部材の製造方法
DE102015113052A1 (de) * 2015-08-07 2017-02-09 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement umfassend ein Konversionselement, Verfahren zur Herstellung eines optoelektronischen Bauelements umfassend ein Konversionselement und Verwendung eines optoelektronischen Bauelements umfassend ein Konversionselement
EP3346511A4 (en) * 2015-09-03 2019-03-27 Seoul Viosys Co. Ltd. LIGHT-EMITTING ELEMENT WITH ZNO-BASED TRANSPARENT ELECTRODE AND METHOD FOR THE PRODUCTION THEREOF
WO2017043122A1 (ja) * 2015-09-08 2017-03-16 シャープ株式会社 波長変換部材および発光装置
AT517693B1 (de) * 2015-11-11 2017-04-15 Zkw Group Gmbh Konverter für Leuchtvorrichtungen
JP6688973B2 (ja) * 2015-12-11 2020-04-28 パナソニックIpマネジメント株式会社 波長変換体、波長変換部材及び発光装置
CN106969305B (zh) * 2016-01-14 2020-08-25 深圳光峰科技股份有限公司 一种可调节的光源装置及照明装置
CN107305921A (zh) * 2016-04-20 2017-10-31 松下知识产权经营株式会社 波长转换部件、光源以及车辆用前照灯
CN105870296B (zh) * 2016-05-27 2018-06-08 江苏罗化新材料有限公司 一种高透光led封装结构及工艺
DE102016113470A1 (de) * 2016-07-21 2018-01-25 Osram Opto Semiconductors Gmbh Laserbauelement
US10700242B2 (en) * 2016-12-27 2020-06-30 Nichia Corporation Method of producing wavelength conversion member
WO2018154868A1 (ja) * 2017-02-27 2018-08-30 パナソニックIpマネジメント株式会社 波長変換部材
DE102017104128A1 (de) 2017-02-28 2018-08-30 Osram Gmbh Konversionselement, optoelektronisches Bauelement und Verfahren zur Herstellung eines Konversionselements
DE102017113380A1 (de) * 2017-06-19 2018-12-20 Schreiner Group Gmbh & Co. Kg Folienaufbau mit Erzeugen von sichtbarem Licht mittels LED-Technologie
DE102017113375A1 (de) * 2017-06-19 2018-12-20 Schreiner Group Gmbh & Co. Kg Folienaufbau mit Erzeugen von sichtbarem Licht mittels LED-Technologie
US10920139B2 (en) * 2017-06-30 2021-02-16 Sharp Kabushiki Kaisha Phosphor layer composition, phosphor member, light source device, and projection device
JP6982746B2 (ja) * 2017-08-28 2021-12-17 パナソニックIpマネジメント株式会社 波長変換部材、光源、照明装置及び波長変換部材の製造方法
TWI677109B (zh) * 2018-02-02 2019-11-11 國立臺灣大學 抬頭顯示器、發光薄膜與其製法
JP2019176076A (ja) * 2018-03-29 2019-10-10 豊田合成株式会社 発光装置
WO2019239850A1 (ja) * 2018-06-12 2019-12-19 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらの製造方法、並びに発光装置
JP2020095233A (ja) * 2018-06-12 2020-06-18 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらの製造方法、並びに発光装置
CN110687674B (zh) * 2018-07-06 2021-10-29 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法以及投影装置
US11946606B2 (en) * 2018-09-12 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source device using same, projector and vehicle
US10360825B1 (en) 2018-09-24 2019-07-23 Innolux Corporation Flexible electronic device
DE112019006812T5 (de) * 2019-02-04 2021-10-21 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement und projektor
JP2020136671A (ja) * 2019-02-21 2020-08-31 シャープ株式会社 発光装置
TWI712165B (zh) * 2019-08-06 2020-12-01 國立臺灣大學 微發光二極體陣列與其製法
US11306898B2 (en) 2019-12-26 2022-04-19 Delta Electronics, Inc. Wavelength conversion element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338735A (ja) * 1991-05-15 1992-11-26 Ricoh Co Ltd 非線形光学材料
JP2004315342A (ja) * 2003-03-31 2004-11-11 Japan Science & Technology Agency 高密度柱状ZnO結晶膜体とその製造方法
JP2007046002A (ja) * 2005-08-12 2007-02-22 Canon Inc 複合酸化物蛍光体とその製造方法及び発光素子
WO2010140417A1 (ja) * 2009-06-05 2010-12-09 コニカミノルタオプト株式会社 波長変換用ガラス部材の製造方法
JP2011168627A (ja) * 2010-02-16 2011-09-01 National Institute For Materials Science 波長変換部材、その製造方法、および、それを用いた発光器具
JP2012059893A (ja) * 2010-09-08 2012-03-22 Nippon Electric Glass Co Ltd 波長変換部材、光源及び波長変換部材の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959262A (en) * 1988-08-31 1990-09-25 General Electric Company Zinc oxide varistor structure
JP3027670B2 (ja) * 1993-05-07 2000-04-04 キヤノン株式会社 光起電力素子
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US6870311B2 (en) * 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
JP4292794B2 (ja) 2002-12-04 2009-07-08 日亜化学工業株式会社 発光装置、発光装置の製造方法および発光装置の色度調整方法
DE102005061828B4 (de) * 2005-06-23 2017-05-24 Osram Opto Semiconductors Gmbh Wellenlängenkonvertierendes Konvertermaterial, lichtabstrahlendes optisches Bauelement und Verfahren zu dessen Herstellung
JP2007053170A (ja) * 2005-08-16 2007-03-01 Toshiba Corp 発光装置
CN100422394C (zh) * 2006-03-20 2008-10-01 中国科学院物理研究所 一种在Si(111)衬底上制备高质量ZnO单晶薄膜的方法
JP4835333B2 (ja) 2006-09-05 2011-12-14 日亜化学工業株式会社 発光装置の形成方法
JP4827099B2 (ja) * 2007-01-19 2011-11-30 トヨタ自動車株式会社 粉末蛍光体及びその製造方法、並びに粉末蛍光体を有する発光装置、表示装置及び蛍光ランプ
JP5347231B2 (ja) 2007-03-23 2013-11-20 日亜化学工業株式会社 半導体レーザ装置
JP2009096653A (ja) 2007-10-15 2009-05-07 Panasonic Electric Works Co Ltd 色変換部材の製造方法
JP5071037B2 (ja) 2007-10-22 2012-11-14 日亜化学工業株式会社 半導体レーザ装置
DE102007053770A1 (de) 2007-11-12 2009-05-14 Merck Patent Gmbh Beschichtete Leuchtstoffpartikel mit Brechungsindex-Anpassung
JP2009231569A (ja) 2008-03-24 2009-10-08 Citizen Holdings Co Ltd Led光源およびその色度調整方法
DE102009025266B4 (de) * 2009-06-17 2015-08-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
JP5406639B2 (ja) 2009-08-31 2014-02-05 カシオ計算機株式会社 光源装置及びプロジェクタ
JP2011111506A (ja) 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd 波長変換粒子、波長変換部材及び発光装置
JP2011180353A (ja) 2010-03-01 2011-09-15 Minebea Co Ltd プロジェクタ
JP5704987B2 (ja) * 2011-03-25 2015-04-22 富士フイルム株式会社 波長変換素子および光電変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338735A (ja) * 1991-05-15 1992-11-26 Ricoh Co Ltd 非線形光学材料
JP2004315342A (ja) * 2003-03-31 2004-11-11 Japan Science & Technology Agency 高密度柱状ZnO結晶膜体とその製造方法
JP2007046002A (ja) * 2005-08-12 2007-02-22 Canon Inc 複合酸化物蛍光体とその製造方法及び発光素子
WO2010140417A1 (ja) * 2009-06-05 2010-12-09 コニカミノルタオプト株式会社 波長変換用ガラス部材の製造方法
JP2011168627A (ja) * 2010-02-16 2011-09-01 National Institute For Materials Science 波長変換部材、その製造方法、および、それを用いた発光器具
JP2012059893A (ja) * 2010-09-08 2012-03-22 Nippon Electric Glass Co Ltd 波長変換部材、光源及び波長変換部材の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006269T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung, Projektor und Herstellungsverfahren für ein Wellenlängenumwandlungselement
DE112019006277T5 (de) 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung und Projektor
US11329198B2 (en) 2018-12-18 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, optical device, and projector
US11474423B2 (en) 2018-12-18 2022-10-18 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, optical device, projector, and manufacturing method for wavelength conversion member

Also Published As

Publication number Publication date
US8780438B2 (en) 2014-07-15
WO2013175773A1 (ja) 2013-11-28
CN103563108A (zh) 2014-02-05
US20140072812A1 (en) 2014-03-13
JPWO2013175773A1 (ja) 2016-01-12
CN103563108B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5672622B2 (ja) 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
JP6132204B2 (ja) 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
JP6578588B2 (ja) 蛍光体部材及び発光装置
JP5628394B2 (ja) 蛍光体変換半導体発光デバイス
CN105423238B (zh) 波长变换部件、发光装置、投影机、以及波长变换部件的制造方法
JP5432435B2 (ja) 蛍光体変換発光デバイス
JP6850885B2 (ja) 赤外発光装置
JP6307703B2 (ja) 波長変換素子、波長変換素子を備えた発光装置、発光装置を備えた車両、および波長変換素子の製造方法
US9068116B2 (en) Luminescent material
JP2021185596A (ja) 発光装置用の波長変換材料
WO2005090515A1 (ja) 蛍光体および発光ダイオード
CZ2013301A3 (cs) Dioda emitující bílé světlo s monokrystalickým luminoforem a způsob výroby
US9441153B2 (en) UV photoexcited red light-emitting material and light emitting apparatus
JP6356573B2 (ja) 単結晶蛍光体及び発光装置
JP6955501B2 (ja) 発光装置用の波長変換材料
JP4303776B2 (ja) SiC半導体、半導体用基板、粉末及び発光ダイオード
JP4303765B2 (ja) SiC半導体、半導体用基板、粉末及び窒化物半導体発光ダイオード
JP2007254759A5 (ja)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141212

R151 Written notification of patent or utility model registration

Ref document number: 5672622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151