WO2013161451A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013161451A1
WO2013161451A1 PCT/JP2013/057745 JP2013057745W WO2013161451A1 WO 2013161451 A1 WO2013161451 A1 WO 2013161451A1 JP 2013057745 W JP2013057745 W JP 2013057745W WO 2013161451 A1 WO2013161451 A1 WO 2013161451A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
conductivity type
type semiconductor
layer
semiconductor device
Prior art date
Application number
PCT/JP2013/057745
Other languages
English (en)
French (fr)
Inventor
憲幸 岩室
保幸 星
原田 祐一
原田 信介
Original Assignee
富士電機株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 独立行政法人産業技術総合研究所 filed Critical 富士電機株式会社
Priority to CN201380021928.1A priority Critical patent/CN104303307B/zh
Priority to DE112013002213.3T priority patent/DE112013002213T5/de
Priority to US14/397,086 priority patent/US9627486B2/en
Publication of WO2013161451A1 publication Critical patent/WO2013161451A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a semiconductor device.
  • a silicon (Si) single crystal has been used as a constituent material of a power semiconductor device that controls a high breakdown voltage and a large current.
  • power semiconductor devices such as bipolar transistors, IGBTs (insulated gate bipolar transistors), MOSFETs (insulated gate field effect transistors), SBDs (Schottky barrier diodes), PiN (P-intrinsic-N) diodes, These are properly used according to the application.
  • bipolar transistors and IGBTs have a higher current density than MOSFETs and can be increased in current, but cannot be switched at high speed.
  • the bipolar transistor is limited in use at a switching frequency of about several kHz
  • the IGBT is limited in use at a switching frequency of about 20 kHz.
  • a power MOSFET has a lower current density than a bipolar transistor or IGBT and is difficult to increase in current, but can perform a high-speed switching operation up to several MHz.
  • FIG. 17 is a cross-sectional view showing a configuration of a conventional MOSFET.
  • an n ⁇ drift layer 102 is deposited on the front surface of an n + semiconductor substrate 101 to be an n + drain layer, and a p base region is formed on the surface layer of the n ⁇ drift layer 102.
  • 103 is selectively provided.
  • n + source region 104 is selectively provided on the surface layer of the p base region 103.
  • a gate electrode 106 is provided on the surface of a portion of the p base region 103 sandwiched between the n ⁇ drift layer 102 and the n + source region 104 with a gate insulating film 105 interposed therebetween.
  • Source electrode 107 is in contact with p base region 103 and n + source region 104.
  • the drain electrode 108 is provided on the back surface of the n + semiconductor substrate 101.
  • the superjunction MOSFET was proposed by Fujihira in 1997 as shown in Non-Patent Document 1 below, and it was commercialized as Cool MOSFET by Deboy et al. In 1998 as shown in Non-Patent Document 2 below. It is known.
  • the super-junction MOSFET has a columnar p-type region having a longitudinal shape in the depth direction of the substrate in the n ⁇ drift layer at a predetermined interval, thereby reducing the on-resistance without degrading the breakdown voltage characteristics between the source and drain. It is characterized by a significant improvement.
  • silicon carbide is a semiconductor material that can produce (manufacture) a next-generation power semiconductor device that has excellent low on-voltage, high speed characteristics, and high temperature characteristics (SiC) is attracting attention (see Non-Patent Document 3 below).
  • silicon carbide is a chemically stable semiconductor material, has a wide band gap of 3 eV, and can be used extremely stably as a semiconductor even at high temperatures.
  • silicon carbide has a maximum electric field strength that is an order of magnitude greater than that of silicon, so that the on-resistance can be sufficiently reduced.
  • silicon carbide is expected to greatly expand in the future for power semiconductor devices, particularly MOSFETs, as a semiconductor material having a high possibility of exceeding the physical property limit of silicon.
  • silicon carbide there is a high expectation for low on-resistance, and it is expected to realize a vertical SiC-MOSFET that further reduces on-resistance while maintaining high withstand voltage characteristics.
  • the cross-sectional structure of a general vertical SiC-MOSFET is similar to the cross-sectional structure of a vertical MOSFET using silicon as a semiconductor material, and the cross-sectional structure shown in FIG.
  • Such vertical SiC-MOSFETs are expected to be used in power converters such as motor control inverters and uninterruptible power supplies (UPS) as switching devices with low on-resistance and capable of high-speed switching.
  • UPS uninterruptible power supplies
  • the high voltage is applied not only to the active region in which current flows when turned on, but also to a withstand voltage structure region that is provided in the periphery of the active region and retains withstand voltage.
  • the depletion layer spreads in the lateral direction (direction parallel to the main surface of the substrate) in the breakdown voltage structure region, and is thus easily affected by the charge on the substrate surface.
  • the withstand voltage characteristic may become unstable.
  • a junction termination which improves the breakdown voltage of the entire semiconductor device by relaxing or dispersing the electric field of the breakdown voltage structure area by forming a p-type region so as to surround the corner of the p base region.
  • a JTE (Junction Termination Extension) structure is known (for example, see Non-Patent Documents 4 and 5 below), and is applied to a semiconductor device using silicon carbide as a semiconductor material (for example, Patent Documents 1 to 3 below). reference.).
  • the JTE structure has a problem that the withstand voltage characteristic is greatly deteriorated due to variations in the impurity concentration of the p-type region formed so as to surround the corner of the p base region.
  • This problem has been a problem since it was applied to a semiconductor device using silicon as a semiconductor material, and it is estimated that the same problem occurs in a semiconductor device using silicon carbide as a semiconductor material.
  • An object of the present invention is to provide a semiconductor device having an element structure that stably exhibits high withstand voltage characteristics in order to eliminate the above-described problems caused by the prior art.
  • Another object of the present invention is to provide a semiconductor device with low on-resistance in order to solve the above-described problems caused by the prior art.
  • a semiconductor device includes an active region provided in a semiconductor substrate, a breakdown voltage structure region provided in the semiconductor substrate so as to surround the active region,
  • the semiconductor device has the following characteristics.
  • the active region includes a first conductive semiconductor layer having an impurity concentration lower than that of the semiconductor substrate provided on the semiconductor substrate, and a surface opposite to the semiconductor substrate side of the first conductive semiconductor layer.
  • a first electrically conductive semiconductor region selectively provided in a layer so as to reach a boundary between the active region and the breakdown voltage structure region, and electrically connected to the first electrically conductive semiconductor region;
  • the first withstand voltage structure region is provided on a surface layer opposite to the semiconductor substrate side of the first conductivity type semiconductor layer, and is provided apart from a boundary between the active region and the withstand voltage structure region.
  • a plurality of third second conductivity type semiconductor regions having an impurity concentration lower than that of the second conductivity type semiconductor region are provided.
  • the second second conductivity type semiconductor region is in contact with the input electrode.
  • at least the third second conductivity type semiconductor region closest to the active region is the second region in the vicinity of the boundary between the active region and the breakdown voltage structure region. Are electrically connected to the second conductivity type semiconductor region.
  • the front surface element structure is further provided on the first conductive type semiconductor layer and the first second conductive type semiconductor region.
  • a second conductivity type semiconductor layer having an impurity concentration lower than that of the first second conductivity type semiconductor region, and a side opposite to the first second conductivity type semiconductor region side of the second conductivity type semiconductor layer.
  • a fourth first conductivity type semiconductor region selectively formed in the surface layer, and a fifth first conductivity that penetrates the second conductivity type semiconductor layer in the depth direction and reaches the first conductivity type semiconductor layer.
  • a gate insulating film on a surface of a portion sandwiched between the fourth semiconductor region and the fourth first semiconductor region and the fifth first semiconductor region of the second conductive semiconductor layer A gate electrode provided, the fourth first-conductivity-type semiconductor region, and the front It said input electrode in contact with the second conductive type semiconductor layer, in that it is configured characterized.
  • the semiconductor device according to the present invention is the above-described invention, wherein the plurality of third second conductivity type semiconductor regions are separated from the first second conductivity type semiconductor region and the second conductivity type semiconductor layer. It is provided.
  • the activity of at least the third second conductivity type semiconductor region closest to the active region among the plurality of third second conductivity type semiconductor regions is 20 ⁇ m or less.
  • the activity of at least the third second conductivity type semiconductor region closest to the active region among the plurality of third second conductivity type semiconductor regions is 20 ⁇ m or less.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the second conductivity type semiconductor layer is an epitaxial layer formed by an epitaxial growth method.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the first conductivity type semiconductor layer is an epitaxial layer formed by an epitaxial growth method.
  • the semiconductor device according to the present invention is the above-described invention, wherein the first second conductivity type semiconductor region, the fourth first conductivity type semiconductor region, and the fifth first conductivity type semiconductor region are ions.
  • the impurity diffusion region is formed by an implantation method.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the semiconductor substrate is silicon carbide.
  • the front surface of the semiconductor substrate is parallel to the (000-1) plane or tilted within 10 degrees with respect to the (000-1) plane. It is characterized by having a surface.
  • the front surface of the semiconductor substrate is a surface parallel to the (0001) surface or a surface having an inclination of 10 degrees or less with respect to the (0001) surface. It is characterized by being.
  • the plurality of third second elements are only provided in the vicinity of the boundary between the active region and the breakdown voltage structure region, such as under the gate pad and under the gate runner, where the front surface element structure is not formed.
  • the first second conductivity type of the active region is brought into contact with at least the third second conductivity type semiconductor region closest to the active region and the second second conductivity type semiconductor region among the conductivity type semiconductor regions.
  • the element breakdown voltage is not affected by the impurity concentration and structure of the semiconductor region and the second conductivity type semiconductor layer, and regardless of variations in the impurity concentration of the plurality of third second conductivity type semiconductor regions constituting the JTE structure. High breakdown voltage characteristics can be obtained stably.
  • the first second conductivity type semiconductor region and the second conductivity type of the active region are reduced.
  • the device breakdown voltage can be determined by the pn junction between the semiconductor layer and the first conductivity type semiconductor layer, and a high breakdown voltage can be maintained.
  • the second conductive semiconductor layer is formed by the epitaxial growth method, the surface of the second conductive semiconductor layer can be made almost flat and surface roughness is hardly generated.
  • the channel mobility of the MOS structure portion formed of the type semiconductor layer, the gate insulating film, and the gate electrode can be extremely increased.
  • the main surface of the semiconductor substrate is a plane parallel to the (000-1) plane and tilted within 10 degrees with respect to the (000-1) plane.
  • Interface state density at the interface between the gate insulating film and the silicon carbide semiconductor by setting to a plane having a plane, a plane parallel to the (0001) plane, or a plane having an inclination of 10 degrees or less with respect to the (0001) plane Can be reduced. For this reason, the channel mobility of the MOS structure can be further improved.
  • the semiconductor device of the present invention it is possible to provide a semiconductor device having an element structure that stably exhibits high withstand voltage characteristics. Moreover, according to the semiconductor device concerning this invention, there exists an effect that a semiconductor device with low on-resistance can be provided.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the semiconductor device according to the first embodiment.
  • FIG. 2 is a plan view showing the configuration of the semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure taken along the cutting line AA ′ and the cutting line BB ′ of FIG. 4 is a cross-sectional view showing a cross-sectional structure taken along the section line CC ′ of FIG.
  • FIG. 5 is a cross-sectional view illustrating the semiconductor device according to the first embodiment in the middle of manufacturing.
  • FIG. 6 is a cross-sectional view showing a state in the middle of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a state in the middle of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 8 is a cross-sectional view illustrating the semiconductor device according to the first embodiment in the middle of manufacturing.
  • FIG. 9 is a cross-sectional view illustrating the semiconductor device according to the first embodiment in the middle of manufacturing.
  • FIG. 10 is a cross-sectional view illustrating the semiconductor device according to the first embodiment in the middle of manufacturing.
  • FIG. 11 is a cross-sectional view illustrating the semiconductor device according to the first embodiment in the middle of manufacturing.
  • FIG. 12 is a cross-sectional view illustrating a state in the middle of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 13 is a chart showing the breakdown voltage characteristics of the SiC-MOSFET according to the first example.
  • FIG. 14 is a chart showing the breakdown voltage characteristics of the SiC-MOSFET of the comparative example.
  • FIG. 15 is a characteristic diagram showing the load short-circuit tolerance of the SiC-MOSFET according to the first example.
  • FIG. 16 is a characteristic diagram showing the turn-off breakdown resistance of the SiC-MOSFET according to the first example.
  • FIG. 17 is a cross-sectional view showing a configuration of a conventional MOSFET.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the semiconductor device according to the first embodiment.
  • FIG. 1A shows a cross-sectional structure of one element structure in the active region 100a through which current flows when turned on. Although not shown, a plurality of element structures shown in FIG. 1A are provided in parallel in the active region 100a.
  • FIG. 1B schematically shows a cross-sectional structure of the breakdown voltage structure region 100b that surrounds the outermost peripheral portion of the active region 100a and holds the breakdown voltage (hereinafter, the same applies to FIGS. 5 to 12).
  • the semiconductor device includes an n ⁇ drift layer (epitaxial layer) formed on the front surface of an n + semiconductor substrate 1 serving as an n + drain layer made of silicon carbide.
  • a first conductivity type semiconductor layer) 2 is deposited.
  • a p + region (first second conductivity type semiconductor region) 3 is selectively provided on the surface layer of the n ⁇ drift layer 2 opposite to the n + semiconductor substrate 1 side. Yes.
  • the p + region 3 provided closest to the breakdown voltage structure region 100b is provided so that the end on the breakdown voltage structure region 100b side reaches the boundary between the active region 100a and the breakdown voltage structure region 100b. That is, the p + region 3 is not provided in the breakdown voltage structure region 100b.
  • the p + region 3 has, for example, a hexagonal shape or a rectangular shape (hereinafter referred to as a cell shape) planar shape, and has a planar layout in which a plurality of p + regions 3 are arranged in a matrix shape, for example.
  • the p + region 3 may have a striped planar layout extending in a direction orthogonal to the direction in which the plurality of p + regions 3 are arranged.
  • a p base layer (second conductivity type semiconductor layer) 4 made of an epitaxial layer is deposited on the surfaces of the n ⁇ drift layer 2 and the p + region 3.
  • the p base layer 4 is provided so that the end on the side of the withstand voltage structure region 100b reaches the boundary between the active region 100a and the withstand voltage structure region 100b.
  • n + source region (fourth first conductivity type semiconductor region) 5 and p + contact are formed on the surface layer opposite to p + region 3.
  • a region 6 is selectively provided.
  • the n + source region 5 is provided on the opposite side to the n-well region 7 side, which will be described later, in contact with the n + source region 5.
  • n well region (fifth first conductivity type semiconductor region) 7 that penetrates the p base layer 4 in the depth direction and reaches the n ⁇ drift layer 2.
  • a gate electrode 9 is provided on the surface of a portion of the p base layer 4 between the n + source region 5 and the n well region 7 with a gate insulating film 8 interposed therebetween.
  • Source electrode (input electrode) 10 is in contact with n + source region 5 and p + contact region 6.
  • the source electrode 10 is electrically insulated from the gate electrode 9 by the interlayer insulating film 11.
  • the surface layer on the opposite side of the n ⁇ drift layer 2 to the n + semiconductor substrate 1 side has at least one impurity concentration lower than the p + region 3 so as to surround the active region 100a.
  • P ⁇ region (third second conductivity type semiconductor region) is provided and constitutes the JTE structure 13. Part of the JTE structure 13 is in contact with the p + region 3 (or the p ++ region 33 described later, or both) (not shown), and most of the remaining part is separated from the p + region 3 and the p base layer 4. ing.
  • An interlayer insulating film 11 is provided on the JTE structure 13. Details of the JTE structure 13 will be described later.
  • n + semiconductor substrate 1 and the n - between the drift layer 2, n + semiconductor substrate 1 and n - n layer 14 in contact with the drift layer 2 is provided.
  • the impurity concentration of n layer 14 is higher than the impurity concentration of n ⁇ drift layer 2 and lower than the impurity concentration of n + semiconductor substrate 1.
  • the n layer 14 functions as a field stop (FS) layer that suppresses the spread of the depletion layer.
  • FS field stop
  • FIG. 2 is a plan view showing the configuration of the semiconductor device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure taken along the cutting line AA ′ and the cutting line BB ′ of FIG. 4 is a cross-sectional view showing a cross-sectional structure taken along the section line CC ′ of FIG.
  • FIG. 2 shows a planar layout of the active region 100a and the breakdown voltage structure region 100b.
  • FIG. 3 shows, for example, a cross-sectional structure in the case where the p + regions 3 having a cell-like planar shape are arranged in a matrix, and the same cross-sectional structure is taken along the cutting line AA ′ and the cutting line BB ′. It has become.
  • the active region 100 a is disposed, for example, in the central portion of the semiconductor chip 100.
  • the breakdown voltage structure region 100b is provided on the outer peripheral portion of the semiconductor chip 100 and surrounds the peripheral portion of the active region 100a.
  • the semiconductor chip 100 is formed by depositing an n ⁇ drift layer 2 made of an epitaxial layer on the front surface of an n + semiconductor substrate 1.
  • FIG. 2 shows a planar layout of the active region 100a and the breakdown voltage structure region 100b as viewed from the n ⁇ drift layer 2 side.
  • a gate pad and a gate runner are disposed above the n ⁇ drift layer 2, that is, on the source electrode 10 with a thick insulating film (not shown) interposed therebetween.
  • the gate pad is disposed at the center of the semiconductor chip 100, for example.
  • a gate electrode 9 is electrically connected to the gate pad via a gate runner.
  • the gate pad is an exposed portion of the aluminum electrode to which a bonding wire for taking out the gate electrode 9 is connected.
  • the gate runner is connected to the gate pad and wired in a straight line from the gate pad toward the breakdown voltage structure region 100b.
  • the gate runner is an aluminum electrode line that transmits a gate signal from the gate pad to each gate electrode 9.
  • the active region 100a is divided into a plurality of parts by a portion under the gate pad 100c and a portion under the gate runner 100d.
  • FIG. 3 shows a state in which the active region 100a is divided into four parts by the portion under the gate pad 100c and the portion under the gate runner 100d.
  • a MOS metal-oxide film-semiconductor insulating gate
  • a plurality of structures are formed.
  • p + region 33 reaching the p + region 3 through the p base layer 4 in the depth direction provided It has been.
  • the p + region 33 has, for example, the same planar shape as the portions under the gate pad 100c and the gate runner 100d, for example, a straight line extending from the gate pad 100c to the boundary position between the active region 100a and the breakdown voltage structure region 100b. It has a planar shape.
  • a part of the p + region 33 is in contact with the source electrode 10 (not shown).
  • the p + region 33 is a contact region between the p ⁇ region 21 and the source electrode 10 constituting a JTE structure described later.
  • a p ⁇ region 21 and a p ⁇ region 22 are provided on the surface layer of the n ⁇ drift layer 2 opposite to the n + semiconductor substrate 1 side.
  • the p ⁇ region 21 is provided closest to the active region 100a and surrounds the active region 100a.
  • the impurity concentration of the p ⁇ region 21 is lower than the impurity concentration of the p base layer 4.
  • p - region 22, p - than the region 21 is provided in a position away from the active region 100a, p - surrounding the region 21.
  • the p ⁇ region 22 is in contact with the p ⁇ region 21 and covers the region below the p ⁇ region 21 (on the n + semiconductor substrate 1 side).
  • the impurity concentration of the p ⁇ region 22 is lower than the impurity concentration of the p ⁇ region 21.
  • p ⁇ region 21 and p ⁇ region 22 are provided apart from p + region 3 and p base layer 4.
  • the distance t between the end of the p ⁇ region 21 on the active region 100a side and the end of the p + region 3 and the p base layer 4 on the withstand voltage structure region 100b side is For example, it is preferably 20 ⁇ m or less. Thereby, the effect of this invention appears notably.
  • the end of the p ⁇ region 21 on the active region 100a side is It contacts the end of p + region 3 or p + region 33, or both ends.
  • the p ⁇ region 21 is electrically connected to the source electrode 10 through the p + region 3 and / or the p + region 33, so that the potential during operation of the semiconductor device is stabilized.
  • the end of the p ⁇ region 22 on the active region 100a side is the p + region 3 or the p + region. It may be in contact with the end of 33 or both ends.
  • 5 to 12 are cross-sectional views illustrating a state in the process of manufacturing the semiconductor device according to the first embodiment.
  • a SiC-MOSFET having a rated voltage of 25 A and a breakdown voltage of 1200 V is manufactured (manufactured) will be described as an example.
  • an n + semiconductor substrate 1 made of silicon carbide (SiC) is prepared.
  • the n + semiconductor substrate 1 is, for example, a low-resistance silicon carbide single crystal substrate containing about 2 ⁇ 10 19 cm ⁇ 3 of nitrogen (N) as an impurity.
  • the n + semiconductor substrate 1 is a silicon carbide single crystal substrate made of, for example, silicon carbide four-layer periodic hexagonal crystal (4H—SiC).
  • the n + semiconductor substrate 1 has a (000-1) C plane whose main surface has an off angle of about 4 degrees in the ⁇ 11-20> direction, for example.
  • an n layer 14 functioning as a field stop layer is formed by an epitaxial growth method or an ion implantation method.
  • the n ⁇ drift layer 2 is epitaxially grown on the n layer 14 of the n + semiconductor substrate 1 to a thickness of about 10 ⁇ m, for example.
  • the n ⁇ drift layer 2 may be epitaxially grown so as to contain about 1.8 ⁇ 10 16 cm ⁇ 3 of nitrogen as an impurity.
  • ap + region 3 is selectively formed at a depth of, for example, about 0.5 ⁇ m on the surface layer of the n ⁇ drift layer 2 in the active region by ion implantation.
  • ion implantation for example, aluminum may be used as a dopant, and the dose may be set so that the impurity concentration of the p + region 3 is, for example, 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the width between adjacent p + regions 3 may be 2 ⁇ m, for example.
  • the width of the p + region 3 in the direction in which the plurality of p + regions 3 are arranged may be about 13 ⁇ m, for example.
  • the p base layer 4 is epitaxially grown to a thickness of, for example, 0.5 ⁇ m on the surfaces of the n ⁇ drift layer 2 and the p + region 3 from the active region to the breakdown voltage structure region.
  • the impurity may be introduced such that the impurity is aluminum, for example, and the impurity concentration of the p base layer 4 is, for example, 2.0 ⁇ 10 16 cm ⁇ 3 .
  • a part of the p base layer 4 is etched to a depth of, for example, 0.7 ⁇ m to expose the n ⁇ drift layer 2.
  • a bevel structure is formed in the breakdown voltage structure region, and the end portions of p + region 3 and p base layer 4 are exposed.
  • the conductivity type of the portion of the p base layer 4 on the n ⁇ drift layer 2 is inverted by ion implantation, penetrates the p base layer 4 in the depth direction, and passes through the n ⁇ drift layer.
  • An n-well region 7 reaching 2 is formed.
  • the dopant may be nitrogen, and the dose may be set so that the impurity concentration of the n-well region 7 is, for example, 5.0 ⁇ 10 16 cm ⁇ 3 .
  • the depth of n well region 7 may be a depth provided up to the inside of n ⁇ drift layer 2.
  • the depth and width of the n-well region 7 may be 1.5 ⁇ m and 2.0 ⁇ m, for example.
  • n + source region 5 and p + contact region 6 are selectively formed on the surface layer of p base layer 4 on p + region 3 by ion implantation. .
  • the p + region 33 is formed in the portion of the p base layer 4 that will be under the gate pad 100 c and under the gate runner 100 d.
  • the p + contact region 6 and the p + region 33 are formed so as to penetrate the p base layer 4 in the depth direction and to be in contact with the n ⁇ drift layer 2.
  • the order of forming the n + source region 5, the p + contact region 6 and the n well region 7 can be variously changed.
  • activation annealing is performed.
  • the activation annealing may be performed at a temperature of 1620 ° C. for 2 minutes, for example.
  • a JTE structure 13 is formed in the breakdown voltage structure region by ion implantation.
  • aluminum is ion-implanted into the surface layer of the n ⁇ drift layer 2 exposed by removing the p base layer 4 by etching to selectively form the p ⁇ region 21.
  • the dose amount of this ion implantation may be, for example, 6.0 ⁇ 10 13 cm ⁇ 2 .
  • the p ⁇ region is in contact with the p + region 3 or the p + region 33 or both at the portion below the gate pad 100c and the gate runner 100d. 21 is formed.
  • the p + region 3 and the p base layer 4 are separated by about 0.2 ⁇ m.
  • a p ⁇ region 21 is formed.
  • the dopant may be aluminum, and the dose may be, for example, 1.0 ⁇ 10 13 cm ⁇ 2 , which is lower than the dose at the time of forming the p ⁇ region 21.
  • the portion below the gate pad 100 c and the gate runner 100 d near the boundary between the active region and the breakdown voltage structure region is in contact with the p + region 3 and / or the p + region 33.
  • the p ⁇ region 22 may be formed.
  • activation annealing is performed. The activation annealing may be performed at a temperature of 1620 ° C. for 2 minutes, for example.
  • the SiC semiconductor exposed on the front surface side of the n + semiconductor substrate 1 is thermally oxidized to form a gate insulating film 8 with a thickness of 100 nm.
  • annealing is performed at a temperature of about 1000 ° C. in a hydrogen (H 2 ) atmosphere.
  • a polycrystalline silicon layer doped with phosphorus (P) is formed as the gate electrode 9.
  • a phosphor glass is formed to a thickness of 1.0 ⁇ m as the interlayer insulating film 11.
  • the interlayer insulating film 11 is patterned to form contact holes, and then heat treatment is performed.
  • an aluminum silicon film may be deposited to form the source electrode 10 in which the nickel film and the aluminum silicon film are stacked.
  • a titanium (Ti) film, a nickel film, and a gold (Au) film are sequentially formed on the nickel film.
  • a back electrode 15 formed by laminating a nickel film, a titanium film, a nickel film and a gold film is formed.
  • the surface element structure is covered with the passivation protection film 12 to complete the SiC-MOSFET shown in FIG.
  • FIG. 13 is a chart showing the breakdown voltage characteristics of the SiC-MOSFET according to the first example.
  • FIG. 14 is a chart showing the breakdown voltage characteristics of the SiC-MOSFET of the comparative example.
  • a plurality of Examples 1 were produced by changing the dose amount from ⁇ 50% (hereinafter referred to as a reference dose amount).
  • the reference dose amounts of the p ⁇ region 21 and the p ⁇ region 22 are 6.0 ⁇ 10 13 cm ⁇ 2 and 1.0 ⁇ 10 13 cm ⁇ 2 , respectively.
  • the reference dose is, for example, a suitable dose when a SiC-MOSFET having a breakdown voltage of 1400 V or more is manufactured.
  • an SiC-MOSFET was fabricated in which the entire inner periphery of the first JTE region (p ⁇ region) was in contact with the p + region 3 and the p base layer 4 (hereinafter referred to as a comparative example). Also in the comparative example, the same range as the p ⁇ region 21 and the p ⁇ region 22 in Example 1 is used to verify the breakdown voltage drop due to the ion implantation concentration variation in the first JTE region and the second JTE region (p ⁇ region). Thus, a plurality of doses were produced by variously changing the dose.
  • the dose amount of ion implantation for forming the p ⁇ region 21 is variously changed in the range of 3.0 ⁇ 10 13 cm ⁇ 2 to 1.2 ⁇ 10 14 cm ⁇ 2. is doing.
  • the dose of ion implantation for forming the p ⁇ region 22 is in the range of 4.0 ⁇ 10 12 cm ⁇ 2 to 2.0 ⁇ 10 13 cm ⁇ 2 to form the first JTE region.
  • Various modifications are made so that the dose amount is lower than the dose amount of ion implantation for this purpose.
  • the chip size was 3 mm ⁇ 3 mm
  • the area of the active region was 5.73 mm 2
  • the rated current was 25 A.
  • Example 1 a comparative example
  • voltage resistant measurement result of produced Example 1 and a comparative example is shown in FIG. 13 and FIG. 14, respectively.
  • the p ⁇ region 21 is referred to as a first JTE region
  • the p ⁇ region 22 is referred to as a second JTE region.
  • the device withstand voltage at the reference dose amount was 1450 V and 1451 V, respectively, in both Example 1 and Comparative Example, and no withstand voltage fluctuation occurred.
  • the breakdown voltage changes substantially from 1450 V even when the p ⁇ region 21 (first JTE region) and the p ⁇ region 22 (second JTE region) are formed with a dose amount away from the reference dose amount, respectively. It was confirmed not to.
  • the withstand voltage is the reference dose when the deviation of the dose amount is 20% from the reference dose amount. It was confirmed that the withstand voltage in the amount decreased from about 1451V to about 100V.
  • the reason why the breakdown voltage is reduced in the comparative example is that the first JTE region and the second JTE region are formed with a low impurity concentration by the ion implantation method in particular, and thus the impurity concentration easily varies in each region. Therefore, as in the first embodiment, by forming the first JTE region so as to be in contact with the end portions of the p + region 3 and the p ++ region 33 only at the portions under the gate pad 100c and the gate runner 100d, It was confirmed that a sufficient device breakdown voltage can be obtained regardless of the difference in impurity concentration between the first JTE region and the second JTE region.
  • FIG. 15 is a characteristic diagram showing the load short-circuit tolerance of the SiC-MOSFET according to the first example.
  • FIG. 16 is a characteristic diagram showing the turn-off breakdown resistance of the SiC-MOSFET according to the first example.
  • the load short-circuit resistance and the turn-off resistance of Example 1 manufactured under the conditions exemplified in the method for manufacturing the semiconductor device according to the first embodiment were measured.
  • the measurement waveforms shown in FIG. 15 are schematic diagrams of the source-drain voltage Vds waveform and the source-drain current Ids waveform.
  • the horizontal axis is time ( ⁇ s), and one square divided by a dotted line is 2 ⁇ s (Time: 2 ⁇ s / div.).
  • the vertical axis represents the current value of the source-drain current Ids, and the position indicated by the arrow A1 is the origin, and one square delimited by the dotted line is 25A (Ids: 25A / div.).
  • the vertical axis indicates the voltage value of the source-drain voltage Vds, and the waveform of the source-drain voltage Vds indicates 800 V, which is substantially the power supply voltage Vcc.
  • the measurement waveforms shown in FIG. 16 are a gate-source voltage Vgs waveform, a source-drain voltage Vds waveform, and a drain current Id waveform.
  • the horizontal axis is time ( ⁇ s), and one square divided by a dotted line is 5 ⁇ s (Time: 5 ⁇ s / div.).
  • the vertical axis represents the gate-source voltage Vgs, the source-drain voltage Vds, or the drain current Id.
  • the waveform of the gate-source voltage Vgs is 10 A (Vgs: 10 A / div.), With the origin indicated by the position indicated by the arrow A 2 and one square delimited by a dotted line.
  • the source-drain voltage Vds waveform has 500 V (Vds: 500 V / div.) As one square divided by a dotted line with the arrow A3 as the origin.
  • the drain current Id waveform has an origin of the arrow A3 and one square sectioned by a dotted line is 25A (Id: 25A / div.).
  • Example 1 the main surface of the n + silicon carbide substrate 1 is formed on the (000-1) plane having an off angle of about 0 degree, 2 degrees, 8 degrees, or 10 degrees in the ⁇ 11-20> direction, for example. Even when the semiconductor device according to Form 1 was fabricated, it was confirmed that good characteristics were exhibited as in Example 1.
  • the semiconductor device according to the second embodiment is different from the semiconductor device according to the first embodiment in that the main surface of the n + silicon carbide substrate 1 has an off angle of, for example, about 4 degrees in the ⁇ 1120> direction (0001) plane. It is a point.
  • Other configurations of the semiconductor device according to the second embodiment are the same as those of the semiconductor device according to the first embodiment.
  • the manufacturing method of the semiconductor device according to the second embodiment is the same as the manufacturing method of the semiconductor device according to the first embodiment.
  • Example 2 According to the method for manufacturing a semiconductor device according to the second embodiment described above, an SiC-MOSFET was manufactured under the conditions described in the method for manufacturing a semiconductor device according to the second embodiment (hereinafter referred to as Example 2). Then, the breakdown voltage characteristics, load short-circuit resistance, and turn-off resistance of the device were verified with respect to Example 2, as in Example 1. As a result, it was confirmed that Example 2 exhibited substantially the same characteristics as Example 1.
  • n + silicon carbide substrate 1 is, for example, on the (0001) plane having an off angle of about 0 degree, 2 degrees, 8 degrees, or 10 degrees in the ⁇ 1120> direction. Even when such a semiconductor device was fabricated, it was confirmed that good characteristics were exhibited as in Example 2.
  • the semiconductor device according to the third embodiment differs from the semiconductor device according to the first embodiment in that a p base layer (first second conductivity type) is formed on the surface layer of the n ⁇ drift layer 2 instead of the p + region 3. (Semiconductor region) 4 is selectively formed.
  • the p base layer 4 is selectively formed on the surface layer of the n ⁇ drift layer 2 by ion implantation. That is, in the semiconductor device according to the third embodiment, the p + region 3 and the n well region 7 are not provided.
  • the other configuration of the semiconductor device according to the third embodiment is the same as that of the semiconductor device according to the first embodiment.
  • n + semiconductor substrate 1 n layer 14 is formed on the front surface
  • n on the n layer 14 of n + semiconductor substrate 1 - drift layer 2 is grown epitaxially.
  • the p base layer 4 is selectively formed on the surface layer of the n ⁇ drift layer 2 in the active region with a depth of about 0.5 ⁇ m, for example, by ion implantation.
  • ion implantation for example, aluminum may be used as a dopant, and the dose may be set so that the impurity concentration of the p base layer 4 is, for example, 1.0 ⁇ 10 16 cm ⁇ 3 .
  • the width of the p base layer 4 in the direction in which the plurality of p base layers 4 are arranged may be, for example, about 13 ⁇ m.
  • the n + source region 5 and the p + contact region 6 are selectively formed on the surface layer of the p base layer 4 by ion implantation.
  • activation annealing is performed under the same conditions as in the first embodiment.
  • the p ⁇ region 21 and the p ⁇ region 22 are selectively formed in the surface layer of the n ⁇ drift layer 2 outside the p base layer 4 as in the first embodiment.
  • activation annealing is performed under the same conditions as in the first embodiment.
  • a gate insulating film 8, a gate electrode 9, an interlayer insulating film 11, a source electrode 10, a back electrode 15, and a passivation protective film 12 are formed in order, and the semiconductor device according to the third embodiment is formed. Complete.
  • Example 3 an SiC-MOSFET was manufactured under the conditions exemplified in the semiconductor device manufacturing method according to the third embodiment (hereinafter referred to as Example 3).
  • Example 3 a plurality of examples 3 were manufactured by variously changing the dose in the same range as the p ⁇ region 21 and the p ⁇ region 22 of example 1. Other conditions are the same as in the first embodiment.
  • Example 3 showed the same pressure resistance characteristics as Example 1.
  • Example 1 it was confirmed that Example 3 did not break even when conducting a 125A whose maximum current was five times the rated current, and did not break even after 15 ⁇ sec.
  • Example 3 the source-drain voltage was clamped at 1610 V, and it was confirmed that 100 A (four times the rated current 25 A) could be turned off in a temperature environment of 150 ° C. without destruction. Therefore, in the same manner as in Example 1, Example 3 is not only affected by static variation characteristics, but also dynamic tolerance such as load short-circuit tolerance and turn-off tolerance, and is not significantly affected by process variations, resulting in extremely large breakdown. It was confirmed that the tolerance can be obtained.
  • Example 3 the main surface of the n + silicon carbide substrate 1 is formed on the (000-1) plane having an off angle of about 0 degree, 2 degrees, 8 degrees, or 10 degrees in the ⁇ 11-20> direction, for example. Even when the semiconductor device according to the third embodiment was fabricated, it was confirmed that good characteristics were exhibited as in Example 3.
  • the semiconductor device according to the fourth embodiment is different from the semiconductor device according to the third embodiment in that the main surface of the n + silicon carbide substrate 1 has, for example, a (0001) plane having an off angle of about 4 degrees in the ⁇ 1120> direction. It is a point.
  • Other configurations of the semiconductor device according to the fourth embodiment are the same as those of the semiconductor device according to the third embodiment.
  • the semiconductor device manufacturing method according to the fourth embodiment is the same as the semiconductor device manufacturing method according to the third embodiment.
  • Example 4 an SiC-MOSFET was manufactured under the conditions described in the method for manufacturing a semiconductor device according to the fourth embodiment (hereinafter referred to as Example 4). Then, the breakdown voltage characteristics, load short-circuit resistance, and turn-off resistance of the device were verified with respect to Example 4, as in Example 3. As a result, it was confirmed that Example 4 exhibited substantially the same characteristics as Example 3.
  • Example 4 the main surface of n + silicon carbide substrate 1 is, for example, on the (0001) plane having an off angle of about 0 degree, 2 degrees, 8 degrees, or 10 degrees in the ⁇ 1120> direction. Even when such a semiconductor device was manufactured, it was confirmed that good characteristics were exhibited as in Example 4.
  • the p ⁇ region (first JTE region) constituting the JTE structure only in the portion under the gate pad and under the gate runner in the vicinity of the boundary between the active region and the breakdown voltage structure region.
  • the p + region or p + region of the active region or both of them are brought into contact with each other without the element withstand voltage being affected by the impurity concentration or structure of the p + region or p base layer of the active region, and High withstand voltage characteristics can be stably obtained regardless of variations in the impurity concentration of the first JTE region and the second JTE region constituting the JTE structure.
  • the element breakdown voltage determined by the JTE structure is lowered due to the variation in the impurity concentration of the first JTE region and the second JTE region, the element is formed at the pn junction of the p + region in the active region or the p base layer and the n ⁇ drift layer.
  • the breakdown voltage can be determined. For this reason, it is possible to provide a semiconductor device having an element structure that can stably maintain a high breakdown voltage and can stably maintain the breakdown voltage of the entire element without being affected by variations in the element manufacturing process. .
  • the p base layer is formed by the epitaxial growth method, the surface of the p base layer can be made almost flat and surface roughness is hardly caused. Therefore, the p base layer, the gate insulating film, and the gate The channel mobility of the MOS structure composed of electrodes can be extremely increased. Thereby, the on-resistance can be further reduced. According to the present invention, even when silicon carbide is used as the semiconductor material, the main surface of the n-type semiconductor substrate is parallel to the (000-1) plane and within 10 degrees with respect to the (000-1) plane.
  • the interface between the gate insulating film and the silicon carbide semiconductor is set to a plane having an inclination of ⁇ , a plane parallel to the (0001) plane, or a plane having an inclination of 10 degrees or less with respect to the (0001) plane.
  • the unit density can be reduced. For this reason, the channel mobility of the MOS structure can be further improved. Accordingly, the on-resistance can be extremely reduced.
  • the present invention has been described by taking the MOSFET as an example.
  • the present invention is not limited to the above-described embodiments, but can be applied to an IGBT, a Schottky barrier diode (SBD), and a PiN diode.
  • a p + semiconductor substrate may be used instead of an n + semiconductor substrate.
  • a Schottky barrier diode, and a PiN diode a p-type region electrically connected to an input electrode only under a gate pad and a gate runner, and a p ⁇ that forms a JTE structure. What is necessary is just to connect an area
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the present invention is similarly established if the first conductivity type is p-type and the second conductivity type is n-type.
  • silicon carbide used as a semiconductor material is described as an example.
  • the present invention is not limited to this, and a semiconductor material having a wider band gap than silicon other than silicon carbide (wide band gap semiconductor) is used. Alternatively, silicon may be used.
  • the semiconductor device according to the present invention is useful for a power semiconductor device that controls a high withstand voltage and a large current, and is particularly manufactured using silicon carbide which is one of wide band gap semiconductors as a semiconductor material. Suitable for vertical high voltage semiconductor devices.

Abstract

 活性領域(100a)において、n+半導体基板(1)上のn-ドリフト層(2)の表面層には、p+領域(3)が選択的に設けられている。n-ドリフト層(2)およびp+領域(3)の表面には、pベース層(4)が設けられ、pベース層(4)には、MOS構造が設けられている。活性領域(100a)の他の部分には、p+領域(3)上にソース電極(10)と接するp+領域(33)が設けられている。耐圧構造領域(100b)には、活性領域(100a)を囲むように、少なくともp-領域(21)からなるJTE構造(13)がp+領域(3)およびpベース層(4)から離れて設けられている。活性領域(100a)と耐圧構造領域(100b)との境界近傍の、MOS構造が形成されていない部分において、p-領域(21)はp+領域(33)に接する。これにより、安定的に高耐圧特性を示す素子構造を有し、オン抵抗の低い半導体装置を提供することができる。

Description

半導体装置
 この発明は、半導体装置に関する。
 従来、高耐圧、大電流を制御するパワー半導体装置の構成材料としては、シリコン(Si)単結晶が用いられている。パワー半導体装置は、バイポーラトランジスタやIGBT(絶縁ゲート型バイポーラトランジスタ)や、MOSFET(絶縁ゲート型電界効果トランジスタ)、SBD(ショットキーバリアダイオード)、PiN(P-intrinsic-N)ダイオードなど複数種類あり、これらは用途に合わせて使い分けられている。
 例えば、バイポーラトランジスタやIGBTは、MOSFETに比べて電流密度は高く大電流化が可能であるが、高速にスイッチングさせることができない。具体的には、バイポーラトランジスタは数kHz程度のスイッチング周波数での使用が限界であり、IGBTは20kHz程度のスイッチング周波数での使用が限界である。一方、パワーMOSFETは、バイポーラトランジスタやIGBTに比べて電流密度が低く大電流化が難しいが、数MHz程度までの高速スイッチング動作が可能である。
 しかしながら、市場では大電流と高速性とを兼ね備えたパワー半導体装置への要求が強く、IGBTやパワーMOSFETはその改良に力が注がれ、現在ではほぼ材料限界に近いところまで開発が進んでいる。このようなパワー半導体装置のうち、従来のMOSFETの断面構造について説明する。図17は、従来のMOSFETの構成を示す断面図である。図17に示すように、従来のMOSFETは、n+ドレイン層となるn+半導体基板101のおもて面にn-ドリフト層102が堆積され、n-ドリフト層102の表面層にpベース領域103が選択的に設けられている。
 pベース領域103の表面層には、n+ソース領域104が選択的に設けられている。pベース領域103の、n-ドリフト層102とn+ソース領域104とに挟まれた部分の表面に、ゲート絶縁膜105を介してゲート電極106が設けられている。ソース電極107は、pベース領域103およびn+ソース領域104に接する。ドレイン電極108は、n+半導体基板101の裏面に設けられている。さらに、最近では、ドリフト層を、p型領域とn型領域とを交互に繰り返し接合した構成の並列pn層とした超接合型MOSFETが注目を浴びている(下記、非特許文献1,2参照。)。
 超接合型MOSFETは、下記非特許文献1に示すように1997年に藤平らによりその理論が提案され、下記非特許文献2に示すように1998年にDeboyらによりCoolMOSFETとして製品化されたことが公知である。超接合型MOSFETは、n-ドリフト層内に基板深さ方向に長手形状を有する柱状のp型領域を所定間隔で配置することにより、ソース-ドレイン間の耐圧特性を劣化させることなくオン抵抗を格段に向上させたことを特徴としている。
 また、パワー半導体装置の観点からシリコンに変わる半導体材料が検討されており、低オン電圧、高速特性、高温特性に優れた次世代のパワー半導体装置を作製(製造)可能な半導体材料として、炭化珪素(SiC)が注目を集めている(下記、非特許文献3参照。)。その理由は、炭化珪素は、化学的に非常に安定した半導体材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用することができるからである。また、炭化珪素は、最大電界強度もシリコンより1桁以上大きいため、オン抵抗を十分に小さくすることができるからである。
 このように、炭化珪素は、シリコンの物性限界を超える高い可能性をもつ半導体材料としてパワー半導体装置用途、特にMOSFETにおいて今後の伸長が大きく期待される。炭化珪素のもつ特長のうち、特に低オン抵抗化に対する期待が高く、高耐圧特性を維持したままより一層の低オン抵抗化を図った縦型SiC-MOSFETの実現が期待される。一般的な縦型SiC-MOSFETの断面構造は、半導体材料としてシリコンを用いた縦型MOSFETの断面構造と同様であり、図17に示す断面構造となる。
 このような縦型SiC-MOSFETは、低オン抵抗でかつ高速スイッチングが可能なスイッチングデバイスとして、モータコントロール用インバータや無停電電源装置(UPS)などの電力変換装置への活用が期待されている。しかしながら、ソース-ドレイン間に高電圧が印加される場合、オン時に電流が流れる活性領域だけでなく、活性領域の周辺部に設けられ耐圧を保持する耐圧構造領域にも高電圧が印加される。高電圧印加時、耐圧構造領域では横方向(基板主面に平行な方向)に空乏層が広がるため、基板表面の電荷の影響を受けやすい。その結果、耐圧特性が不安定になる虞がある。
 このような問題を解消させる構造として、pベース領域のコーナー部を囲むようにp型領域を形成することにより耐圧構造領域の電界を緩和または分散させ、半導体装置全体の耐圧を向上させる接合終端(JTE:Junction Termination Extension)構造が公知であり(例えば、下記非特許文献4,5参照。)、半導体材料として炭化珪素を用いた半導体装置へも応用されている(例えば、下記特許文献1~3参照。)。
米国特許第6002159号明細書 米国特許第5712502号明細書 特許第3997551号公報
ティー・フジヒラ(T.Fujihira)、セオリー オブ セミコンダクター スーパージャンクションズ デバイシズ(Theory of Semiconductor Superjunctions Devices)、ジャパニーズ ジャーナル オブ アプライド フィジクス(Japanese Journal of Applied Physics)、1997年、第36巻、第1部、第10号、p.6254-6262 ジー・デボイ(G.Deboy)、外5名、ア ニュー ジェネレイション オブ ハイ ボルテージ MOSFETズ ブレイクス ザ リミット ライン オブ シリコン(A New Generation of High Voltage MOSFETs Breaks The Limit Line of Silicon)、アイ・トリプル・イー インターナショナル エレクトロン デバイシズ ミーティング(IEEE International Electron Devices Meeting(IEDM))、(米国)、1998年12月、p.683-685 ケイ・シェナイ(K.Shenai)、外2名、オプティウム セミコンダクターズ フォー ハイパワー エレクトロニクス(Optimum Semiconductors for High-Power Electronics)、アイ・トリプル・イー トランザクションズ オン エレクトロン デバイシズ(IEEE Transactions on Electron Devices)、1989年9月、第36巻、第9号、p.1811-1823 ティー・ケイ・ワング(T.K.Wang)、外3名、エフェクト オブ コンタクト レジスティビィティーズ アンド インターフェイス プロパティーズ オン ザ パフォーマンス オブ SiC パワー デバイシズ(Effect of Contact Resistivities and Interface Properties on The Performance of SiC Power Devices)、アイ・トリプル・イー インターナショナル シンポジウム オン パワー セミコンダクター デバイシズ アンド ICs.(IEEE International Symposium on Power Semiconductor Devices and ICs.(ISPSD))、1992年、p.303-308 ビー・エー・ケイ テンプル(V.A.K Temple)、ジャンクション ターミネイション エクステンション フォア ニア-アイディール,ブレイクダウン ボルテイジ イン p-n ジャンクションズ(Junction Termination Extension for Near-Ideal,Breakdown Voltage in p-n Junctions)、アイ・トリプル・イー トランザクションズ オン エレクトロン デバイシズ(IEEE Transactions on Electron Devices)、1986年10月、第33巻、第10号、p.1601-1608
 しかしながら、JTE構造は、pベース領域のコーナー部を囲むように形成されるp型領域の不純物濃度のばらつきによって耐圧特性が大きく低下するという問題がある。この問題は、半導体材料としてシリコンを用いた半導体装置への適用時から問題となっており、半導体材料として炭化珪素を用いた半導体装置においても同様の問題が生じると推測される。
 この発明は、上述した従来技術による問題点を解消するため、安定的に高耐圧特性を示す素子構造を有する半導体装置を提供することを目的とする。また、この発明は、上述した従来技術による問題点を解消するため、オン抵抗の低い半導体装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、この発明にかかる半導体装置は、半導体基板に設けられた活性領域と、前記活性領域を囲むように前記半導体基板に設けられた耐圧構造領域と、を有する半導体装置であって、次の特徴を有する。前記活性領域は、前記半導体基板上に設けられた、前記半導体基板よりも不純物濃度が低い第1導電型半導体層と、前記第1導電型半導体層の前記半導体基板側に対して反対側の表面層に、前記活性領域と前記耐圧構造領域との境界に達するように選択的に設けられた第1の第2導電型半導体領域と、前記第1の第2導電型半導体領域に電気的に接続された入力電極と、少なくとも前記第1の第2導電型半導体領域および前記入力電極で構成されたおもて面素子構造と、前記半導体基板の裏面に設けられた出力電極と、前記おもて面素子構造が設けられた領域を除く領域に、前記第1の第2導電型半導体領域に接し、かつ前記活性領域と前記耐圧構造領域との境界位置まで設けられた第2の第2導電型半導体領域と、を備える。前記耐圧構造領域は、前記第1導電型半導体層の前記半導体基板側に対して反対側の表面層に、前記活性領域と前記耐圧構造領域との境界から離れて設けられた、前記第1の第2導電型半導体領域よりも不純物濃度の低い複数の第3の第2導電型半導体領域を備える。前記第2の第2導電型半導体領域は、前記入力電極に接する。複数の前記第3の第2導電型半導体領域のうち、少なくとも最も前記活性領域側の前記第3の第2導電型半導体領域は、前記活性領域と前記耐圧構造領域との境界近傍において前記第2の第2導電型半導体領域に電気的に接続されている。
 また、この発明にかかる半導体装置は、上述した発明において、前記おもて面素子構造は、さらに、前記第1導電型半導体層および前記第1の第2導電型半導体領域の上に設けられた、前記第1の第2導電型半導体領域よりも不純物濃度が低い第2導電型半導体層と、前記第2導電型半導体層の前記第1の第2導電型半導体領域側に対して反対側の表面層に選択的に形成された第4の第1導電型半導体領域と、前記第2導電型半導体層を深さ方向に貫通し、前記第1導電型半導体層に達する第5の第1導電型半導体領域と、前記第2導電型半導体層の、前記第4の第1導電型半導体領域と前記第5の第1導電型半導体領域とに挟まれた部分の表面にゲート絶縁膜を介して設けられたゲート電極と、前記第4の第1導電型半導体領域および前記第2導電型半導体層に接する前記入力電極と、で構成されていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、複数の前記第3の第2導電型半導体領域は、前記第1の第2導電型半導体領域および前記第2導電型半導体層から離れて設けられていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、複数の前記第3の第2導電型半導体領域のうち、少なくとも最も前記活性領域側の前記第3の第2導電型半導体領域の前記活性領域側の端部と、前記第1の第2導電型半導体領域の前記耐圧構造領域の端部との距離は、20μm以下であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、複数の前記第3の第2導電型半導体領域のうち、少なくとも最も前記活性領域側の前記第3の第2導電型半導体領域の前記活性領域側の端部と、前記第2導電型半導体層の前記耐圧構造領域の端部との距離は、20μm以下であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2導電型半導体層は、エピタキシャル成長法により形成されたエピタキシャル層であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1導電型半導体層は、エピタキシャル成長法により形成されたエピタキシャル層であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1の第2導電型半導体領域、前記第4の第1導電型半導体領域、前記第5の第1導電型半導体領域は、イオン注入法により形成された不純物拡散領域であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板は、炭化珪素であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板のおもて面は、(000-1)面に平行な面または(000-1)面に対して10度以内の傾きをもつ面であることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板のおもて面は、(0001)面に平行な面または(0001)面に対して10度以内の傾きをもつ面であることを特徴とする。
 上述した発明によれば、活性領域と耐圧構造領域との境界近傍の、ゲートパッド下およびゲートランナー下などのおもて面素子構造が形成されていない部分でのみ、複数の第3の第2導電型半導体領域のうち、少なくとも最も活性領域側の第3の第2導電型半導体領域と、第2の第2導電型半導体領域とを接触させることにより、活性領域の第1の第2導電型半導体領域および第2導電型半導体層の不純物濃度や構造に素子耐圧が影響されることなく、かつ、JTE構造を構成する複数の第3の第2導電型半導体領域の不純物濃度のばらつきによらず、高耐圧特性を安定的に得ることができる。すなわち、複数の第3の第2導電型半導体領域の不純物濃度のばらつきによりJTE構造で決定される素子耐圧が低下したとしても、活性領域の第1の第2導電型半導体領域および第2導電型半導体層と第1導電型半導体層とのpn接合で素子耐圧を決定し、高耐圧を維持することができる。
 また、本発明によれば、エピタキシャル成長法によって第2導電型半導体層を形成することにより、第2導電型半導体層の表面をほぼ平坦にすることができ表面荒れがほぼ生じないため、第2導電型半導体層、ゲート絶縁膜およびゲート電極で構成されるMOS構造部のチャネル移動度を極めて大きくすることができる。また、本発明によれば、半導体材料として炭化珪素を用いた場合でも、半導体基板の主面を(000-1)面に平行な面、(000-1)面に対して10度以内の傾きをもつ面、(0001)面に平行な面、または(0001)面に対して10度以内の傾きをもつ面に設定することにより、ゲート絶縁膜と炭化珪素半導体との界面の界面準位密度を低減することができる。このため、MOS構造部のチャネル移動度をさらに向上させることができる。
 本発明にかかる半導体装置によれば、安定的に高耐圧特性を示す素子構造を有する半導体装置を提供することができるという効果を奏する。また、本発明にかかる半導体装置によれば、オン抵抗の低い半導体装置を提供することができるという効果を奏する。
図1は、実施の形態1にかかる半導体装置の構成を示す断面図である。 図2は、実施の形態1にかかる半導体装置の構成を示す平面図である。 図3は、図2の切断線A-A'および切断線B-B'における断面構造を示す断面図である。 図4は、図2の切断線C-C'における断面構造を示す断面図である。 図5は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図6は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図8は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図9は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図10は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図11は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図12は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図13は、実施例1にかかるSiC-MOSFETの耐圧特性を示す図表である。 図14は、比較例のSiC-MOSFETの耐圧特性を示す図表である。 図15は、実施例1にかかるSiC-MOSFETの負荷短絡耐量を示す特性図である。 図16は、実施例1にかかるSiC-MOSFETのターンオフ破壊耐量を示す特性図である。 図17は、従来のMOSFETの構成を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、"-"はその直後の指数につくバーを意味しており、指数の前に"-"を付けることで負の指数を表している。
(実施の形態1)
 実施の形態1にかかる半導体装置について、半導体材料として炭化珪素(SiC)を用いた縦型プレーナーゲート構造のSiC-MOSFETを例に説明する。図1は、実施の形態1にかかる半導体装置の構成を示す断面図である。図1(a)には、オン時に電流が流れる活性領域100aにおける1つの素子構造の断面構造を示す。図示省略するが、活性領域100aには、図1(a)に示す素子構造が複数並列して設けられている。図1(b)には、活性領域100aの最外周部を囲み、耐圧を保持する耐圧構造領域100bの断面構造を模式的に示す(以下、図5~12においても同様)。
 図1に示すように、実施の形態1にかかる半導体装置は、炭化珪素で構成されたn+ドレイン層となるn+半導体基板1のおもて面に、エピタキシャル層からなるn-ドリフト層(第1導電型半導体層)2が堆積されている。活性領域100aにおいて、n-ドリフト層2のn+半導体基板1側に対して反対側の表面層には、p+領域(第1の第2導電型半導体領域)3が選択的に設けられている。最も耐圧構造領域100b側に設けられたp+領域3は、耐圧構造領域100b側の端部が活性領域100aと耐圧構造領域100bとの境界に達するように設けられている。すなわち、p+領域3は、耐圧構造領域100bには設けられていない。
 p+領域3は、例えば六角形状や矩形状(以下、セル状とする)の平面形状を有し、複数のp+領域3が例えばマトリクス状に配置された平面レイアウトを有する。また、p+領域3は、複数のp+領域3が並ぶ方向に直交する方向に延びるストライプ状の平面レイアウトを有していてもよい。n-ドリフト層2およびp+領域3の表面には、エピタキシャル層からなるpベース層(第2導電型半導体層)4が堆積されている。pベース層4は、耐圧構造領域100b側の端部が活性領域100aと耐圧構造領域100bとの境界に達するように設けられている。pベース層4のp+領域3上の部分には、p+領域3側に対して反対側の表面層に、n+ソース領域(第4の第1導電型半導体領域)5およびp+コンタクト領域6が選択的に設けられている。
 p+コンタクト領域6は、n+ソース領域5の、後述するnウェル領域7側に対して反対側に設けられ、n+ソース領域5に接する。pベース層4のn-ドリフト層2上の部分には、深さ方向にpベース層4を貫通しn-ドリフト層2に達するnウェル領域(第5の第1導電型半導体領域)7が設けられている。pベース層4の、n+ソース領域5とnウェル領域7とに挟まれた部分の表面には、ゲート絶縁膜8を介してゲート電極9が設けられている。ソース電極(入力電極)10は、n+ソース領域5およびp+コンタクト領域6に接する。また、ソース電極10は、層間絶縁膜11によってゲート電極9と電気的に絶縁されている。
 耐圧構造領域100bにおいて、n-ドリフト層2のn+半導体基板1側に対して反対側の表面層には、活性領域100aを囲むように、p+領域3よりも不純物濃度が低い1つ以上のp-領域(第3の第2導電型半導体領域)が設けられ、JTE構造13を構成する。JTE構造13は、その一部がp+領域3(または後述するp++領域33、もしくはその両方)と接し(不図示)、残りの大部分がp+領域3およびpベース層4と離れている。JTE構造13上には、層間絶縁膜11が設けられている。JTE構造13の詳細な説明については、後述する。
 ソース電極10の端部は、パッシベーション保護膜12によって覆われている。n+半導体基板1とn-ドリフト層2との間には、n+半導体基板1およびn-ドリフト層2に接するようにn層14が設けられている。n層14の不純物濃度は、n-ドリフト層2の不純物濃度よりも高く、n+半導体基板1の不純物濃度よりも低い。n層14は、空乏層の広がりを抑制するフィールドストップ(FS)層として機能する。n+半導体基板1の裏面には、ドレイン電極となる裏面電極(出力電極)15が設けられている。
 次に、JTE構造13の構成について、図2~4を参照して詳細に説明する。図2は、実施の形態1にかかる半導体装置の構成を示す平面図である。図3は、図2の切断線A-A'および切断線B-B'における断面構造を示す断面図である。図4は、図2の切断線C-C'における断面構造を示す断面図である。図2には、活性領域100aおよび耐圧構造領域100bの平面レイアウトを示す。図3は、例えば、セル状の平面形状を有するp+領域3をマトリクス状に配置した場合の断面構造であり、切断線A-A'と切断線B-B'とで同様の断面構造となっている。
 図2に示すように、活性領域100aは、例えば、半導体チップ100の中央部に配置されている。耐圧構造領域100bは、半導体チップ100の外周部に設けられ、活性領域100aの周辺部を囲む。半導体チップ100は、n+半導体基板1のおもて面にエピタキシャル層からなるn-ドリフト層2が堆積されてなる。図2には、n-ドリフト層2側からみた活性領域100aおよび耐圧構造領域100bの平面レイアウトを示す。半導体チップ100の中央部近傍において、n-ドリフト層2の上方、すなわちソース電極10上には、厚い絶縁膜(不図示)を挟んでゲートパッドおよびゲートランナーが配置される。
 ゲートパッドは、例えば、半導体チップ100の中央部に配置されている。ゲートパッドには、ゲートランナーを介してゲート電極9が電気的に接続されている。ゲートパッドは、ゲート電極9取り出し用のボンディングワイヤーが接続されるアルミニウム電極露出部である。ゲートランナーは、ゲートパッドに接続され、ゲートパッドから耐圧構造領域100bに向かって直線状に配線されている。ゲートランナーは、ゲートパッドから各ゲート電極9にゲート信号を伝えるアルミニウム電極線である。
 活性領域100aは、ゲートパッド下100cおよびゲートランナー下100dの部分によって複数に分割されている。図3には、ゲートパッド下100cおよびゲートランナー下100dの部分によって、活性領域100aが4つに分割された状態を示す。分割された各活性領域100aには、n+ソース領域5、p+コンタクト領域6、nウェル領域7、ゲート絶縁膜8およびゲート電極9からなるMOS(金属-酸化膜-半導体からなる絶縁ゲート)構造(おもて面素子構造)が複数形成されている。
 一方、ゲートパッド下100cおよびゲートランナー下100dの部分には、MOS構造は形成されていない。また、ゲートパッド下100cおよびゲートランナー下100dの部分には、深さ方向にpベース層4を貫通しp+領域3に達するp+領域(第2の第2導電型半導体領域)33が設けられている。p+領域33は、例えばゲートパッド下100cおよびゲートランナー下100dの部分と同一の平面形状を有し、ゲートパッド下100cから、活性領域100aと耐圧構造領域100bとの境界位置にまで至る例えば直線状の平面形状を有する。p+領域33の一部は、ソース電極10と接する(不図示)。p+領域33は、後述するJTE構造を構成するp-領域21とソース電極10とのコンタクト領域である。
 図3,4に示すように、耐圧構造領域100bにおいて、n-ドリフト層2のn+半導体基板1側に対して反対側の表面層にはp-領域21およびp--領域22が設けられ、JTE構造を構成する。p-領域21は、最も活性領域100a側に設けられ、活性領域100aを囲む。p-領域21の不純物濃度は、pベース層4の不純物濃度よりも低い。p--領域22は、p-領域21よりも活性領域100aから離れた位置に設けられ、p-領域21を囲む。p--領域22は、p-領域21に接し、p-領域21の下側(n+半導体基板1側)の領域を覆う。p--領域22の不純物濃度は、p-領域21の不純物濃度よりも低い。
 また、図3に示すように、p-領域21およびp--領域22は、p+領域3およびpベース層4から離れて設けられている。活性領域100aと耐圧構造領域100bとの境界において、p-領域21の活性領域100a側の端部と、p+領域3およびpベース層4の耐圧構造領域100b側の端部との距離tは例えば20μm以下であるのが好ましい。これにより、本発明の効果が顕著にあらわれる。
 一方、図4に示すように、活性領域100aと耐圧構造領域100bとの境界近傍の、ゲートパッド下100cおよびゲートランナー下100dの部分において、p-領域21の活性領域100a側の端部は、p+領域3またはp+領域33の端部、もしくはその両方の端部に接する。p-領域21は、p+領域3またはp+領域33、もしくはその両方を介してソース電極10と電気的に接続されることにより、半導体装置の動作時の電位が安定する。活性領域100aと耐圧構造領域100bとの境界近傍の、ゲートパッド下100cおよびゲートランナー下100dの部分において、p--領域22の活性領域100a側の端部が、p+領域3またはp+領域33の端部、もしくはその両方の端部に接していてもよい。
 次に、実施の形態1にかかる半導体装置の製造方法について説明する。図5~12は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。例えば、定格電流25Aで、1200Vの耐圧を有するSiC-MOSFETを作製(製造)する場合を例に説明する。まず、図5に示すように、炭化珪素(SiC)からなるn+半導体基板1を用意する。n+半導体基板1は、例えば、不純物として窒素(N)を2×1019cm-3程度含む低抵抗な炭化珪素単結晶基板である。n+半導体基板1は、例えば炭化珪素の四層周期六方晶(4H-SiC)からなる炭化珪素単結晶基板である。
 また、n+半導体基板1は、主面が例えば<11-20>方向に4度程度のオフ角を有する(000-1)C面である。n+半導体基板1の主面(おもて面)には、フィールドストップ層として機能するn層14が、エピタキシャル成長法またはイオン注入法により形成されている。次に、n+半導体基板1のn層14上に、n-ドリフト層2を例えば10μm程度の厚さでエピタキシャル成長させる。n-ドリフト層2は、例えば、不純物として窒素を1.8×1016cm-3程度含むようにエピタキシャル成長させてもよい。
 次に、図6に示すように、イオン注入法により、活性領域のn-ドリフト層2の表面層に、p+領域3を例えば0.5μm程度の深さで選択的に形成する。このイオン注入は、ドーパントとして例えばアルミニウムを用い、p+領域3の不純物濃度が例えば1.0×1018cm-3となるようにドーズ量を設定してもよい。隣り合うp+領域3間の幅は、例えば2μmであってもよい。複数のp+領域3が並ぶ方向のp+領域3の幅は、例えば13μm程度であってもよい。
 次に、図7に示すように、活性領域から耐圧構造領域にわたって、n-ドリフト層2およびp+領域3の表面に、pベース層4を例えば0.5μmの厚さでエピタキシャル成長させる。このエピタキシャル成長は、不純物を例えばアルミニウムとし、pベース層4の不純物濃度が例えば2.0×1016cm-3となるように不純物の導入量を設定してもよい。次に、図8に示すように、耐圧構造領域において、pベース層4の一部を例えば0.7μmの深さでエッチングしn-ドリフト層2を露出させる。これにより、耐圧構造領域にベベル構造が形成され、p+領域3およびpベース層4の各端部が露出する。
 次に、図9に示すように、イオン注入法により、pベース層4のn-ドリフト層2上の部分の導電型を反転させ、深さ方向にpベース層4を貫通しn-ドリフト層2に達するnウェル領域7を形成する。このイオン注入は、例えばドーパントを窒素とし、nウェル領域7の不純物濃度が例えば5.0×1016cm-3となるようにドーズ量を設定してもよい。また、nウェル領域7の深さは、n-ドリフト層2の内部にまで設けられる深さであってもよい。nウェル領域7の深さおよび幅は、例えば1.5μmおよび2.0μmであってもよい。
 次に、図10に示すように、イオン注入法により、pベース層4のp+領域3上の部分の表面層に、n+ソース領域5およびp+コンタクト領域6をそれぞれ選択的に形成する。また、p+コンタクト領域6と同時に、pベース層4の、ゲートパッド下100cおよびゲートランナー下100dとなる部分にp+領域33を形成する。p+コンタクト領域6およびp+領域33は、深さ方向にpベース層4を貫通しn-ドリフト層2に接するように形成する。n+ソース領域5、p+コンタクト領域6およびnウェル領域7を形成する順番は種々変更可能である。次に、活性化アニールを実施する。活性化アニールは、例えば1620℃の温度で2分間行ってもよい。
 次に、図11に示すように、イオン注入法により、耐圧構造領域にJTE構造13を形成する。具体的には、エッチングによってpベース層4が除去されることにより露出したn-ドリフト層2の表面層に、アルミニウムをイオン注入しp-領域21を選択的に形成する。このイオン注入のドーズ量は、例えば6.0×1013cm-2であってもよい。このとき、活性領域100aと耐圧構造領域との境界近傍の、ゲートパッド下100cおよびゲートランナー下100dとなる部分で、p+領域3またはp+領域33、もしくはその両方に接するようにp-領域21を形成する。一方、活性領域100aと耐圧構造領域との境界、すなわち、ゲートパッド下100cおよびゲートランナー下100dとなる部分を除く部分では、p+領域3およびpベース層4から0.2μmほど離れた位置にp-領域21を形成する。
 さらに、イオン注入法により、p-領域21の外側に、p-領域21に接するp--領域22を選択的に形成する。このイオン注入は、ドーパントをアルミニウムとし、ドーズ量をp-領域21形成時のドーズ量よりも低い例えば1.0×1013cm-2としてもよい。p-領域21と同様に、活性領域と耐圧構造領域との境界近傍の、ゲートパッド下100cおよびゲートランナー下100dとなる部分で、p+領域3またはp+領域33、もしくはその両方に接するようにp--領域22を形成してもよい。次に、活性化アニールを実施する。活性化アニールは、例えば1620℃の温度で2分間行ってもよい。
 次に、図12に示すように、n+半導体基板1のおもて面側に露出するSiC半導体を熱酸化し、ゲート絶縁膜8を100nmの厚さで形成する。次に、水素(H2)雰囲気中において1000℃程度の温度でアニールを行う。次に、リン(P)がドープされた多結晶シリコン層をゲート電極9として形成する。次に、ゲート電極9のパターニング後、層間絶縁膜11としてリンガラスを1.0μmの厚さで成膜する。次に、層間絶縁膜11をパターニングしてコンタクトホールを形成した後、熱処理を行う。
 次に、スパッタ法により、活性領域の層間絶縁膜11上に、コンタクトホールに埋め込むように、1%の割合でシリコン(Si)を含んだアルミニウム(Al-Si、以下、アルミニウムシリコンとする)膜を例えば5μmの厚さで成膜し、ソース電極10を形成する。コンタクトホール内にニッケル(Ni)膜を埋め込んだ後に、アルミニウムシリコン膜を堆積し、ニッケル膜およびアルミニウムシリコン膜が積層されてなるソース電極10を形成してもよい。
 次に、n+半導体基板1の裏面にニッケル膜を成膜し、970℃の温度で熱処理した後、ニッケル膜上にチタン(Ti)膜、ニッケル膜および金(Au)膜を順次成膜し、ニッケル膜、チタン膜、ニッケル膜および金膜が積層されてなる裏面電極15を形成する。その後、パッシベーション保護膜12でおもて面素子構造を覆うことにより、図1に示すSiC-MOSFETが完成する。
 次に、JTE構造を構成するp-領域21およびp--領域22のイオン注入濃度ばらつきと耐圧との関係について検証した。図13は、実施例1にかかるSiC-MOSFETの耐圧特性を示す図表である。図14は、比較例のSiC-MOSFETの耐圧特性を示す図表である。まず、上述した実施の形態1にかかる半導体装置の製造方法にしたがい、実施の形態1にかかる半導体装置の製造方法に例示した条件でSiC-MOSFETを作製した(以下、実施例1とする)。すなわち、実施例1では、活性領域と耐圧構造領域との境界近傍の、ゲートパッド下100cおよびゲートランナー下100dの部分でのみ、p-領域21がp+領域3およびp++領域3の各端部と接する。
 また、p-領域21およびp--領域22のイオン注入濃度ばらつきによる耐圧低下を検証するために、実施の形態1にかかる半導体装置の製造方法に例示したp-領域21およびp--領域22の各ドーズ量(以下、基準ドーズ量とする)から±50%までドーズ量を変化させて、複数の実施例1を作製した。具体的には、p-領域21およびp--領域22の各基準ドーズ量は、それぞれ、6.0×1013cm-2および1.0×1013cm-2である。基準ドーズ量は、例えば1400V以上の耐圧を有するSiC-MOSFETを作製する際の好適なドーズ量である。
 比較として、第1JTE領域(p-領域)の内周全体がp+領域3およびpベース層4に接するSiC-MOSFETを作製した(以下、比較例とする)。比較例においても、第1JTE領域および第2JTE領域(p--領域)のイオン注入濃度ばらつきによる耐圧低下を検証するために、実施例1のp-領域21およびp--領域22と同様の範囲でドーズ量を種々変更して複数作製した。
 具体的には、p-領域21(第1JTE領域)を形成するためのイオン注入のドーズ量は、3.0×1013cm-2~1.2×1014cm-2の範囲で種々変更している。p--領域22(第2JTE領域)を形成するためのイオン注入のドーズ量は、4.0×1012cm-2~2.0×1013cm-2の範囲で、第1JTE領域を形成するためのイオン注入のドーズ量よりも低いドーズ量となるように種々変更している。また、実施例1および比較例はともに、チップサイズを3mm×3mmとし、活性領域の面積を5.73mm2とし、定格電流を25Aとした。
 そして、作製した実施例1および比較例の耐圧測定結果を、それぞれ図13および図14に示す。図13においても、p-領域21を第1JTE領域とし、p--領域22を第2JTE領域と示す。
 図13,14に示す結果より、実施例1および比較例ともに、基準ドーズ量における素子耐圧はそれぞれ1450Vおよび1451Vとなり、耐圧変動が生じないことが確認された。また、実施例1は、p-領域21(第1JTE領域)およびp--領域22(第2JTE領域)をそれぞれ基準ドーズ量から離れたドーズ量で形成した場合においても、耐圧が1450Vからほぼ変化しないことが確認された。それに対して、比較例では、第1JTE領域および第2JTE領域をそれぞれ基準ドーズ量から離れたドーズ量で形成した場合、ドーズ量のずれが基準ドーズ量から20%であるときに、耐圧が基準ドーズ量における耐圧1451Vから100V程度低下することが確認された。
 比較例において耐圧が低下した理由は、特に第1JTE領域および第2JTE領域が、イオン注入法により低い不純物濃度で形成するため、各領域内において不純物濃度のばらつきが生じやすいからである。したがって、実施例1のように、ゲートパッド下100cおよびゲートランナー下100dの部分でのみ、p+領域3およびp++領域33の各端部と接するように第1JTE領域を形成することにより、第1JTE領域および第2JTE領域の不純物濃度のずれによらず、十分な素子耐圧を得ることができることが確認された。
 次に、本発明にかかる半導体装置における負荷短絡耐量およびターンオフ耐量について検証した。図15は、実施例1にかかるSiC-MOSFETの負荷短絡耐量を示す特性図である。図16は、実施例1にかかるSiC-MOSFETのターンオフ破壊耐量を示す特性図である。実施の形態1にかかる半導体装置の製造方法に例示した条件で作製された上記実施例1の負荷短絡耐量およびターンオフ耐量を測定した。
 負荷短絡耐量の測定とは、電源電圧Vcc=ソース-ドレイン間電圧Vdsとなるように電源電圧Vccを直接ソース-ドレイン間に印加し、その状態でゲート電極にゲート電圧Vg=20Vを印加し、何μsec破壊しないかを評価するものである。ソース-ドレイン間に印加する電源電圧Vcc=800Vとし、測定開始時の半導体装置近傍の温度Tj=175℃として、実施例1の負荷短絡耐量を測定した結果を図15に示す。
 図15に示す測定波形は、ソース-ドレイン間電圧Vds波形およびソース-ドレイン間電流Ids波形の概略図である。図15において、横軸は、時間(μs)であり、点線で区切られた1マスが2μs(Time:2μs/div.)である。縦軸は、ソース-ドレイン間電流Idsの電流値であり、矢印A1で示す位置を原点とし、点線で区切られた1マスが25A(Ids:25A/div.)である。また、縦軸は、ソース-ドレイン間電圧Vdsの電圧値であり、ソース-ドレイン間電圧Vds波形はほぼ電源電圧Vccである800Vを示している。図15に示す結果より、最大電流Ipが素子定格電流25Aの5倍である125Aを導通としても破壊しないことが確認された。さらに、オンになったとき(Ids>0A)から15μsec経過しても破壊せず、オフ(Ids=0A)させることができることが確認された。
 また、実施例1のターンオフ耐量を測定した結果を図16に示す。図16に示す測定波形は、ゲート-ソース間電圧Vgs波形、ソース-ドレイン間電圧Vds波形、およびドレイン電流Id波形である。図16において、横軸は、時間(μs)であり、点線で区切られた1マスが5μs(Time:5μs/div.)である。縦軸は、ゲート-ソース間電圧Vgs、ソース-ドレイン間電圧Vdsまたはドレイン電流Idである。ゲート-ソース間電圧Vgs波形は、矢印A2で示す位置を原点とし、点線で区切られた1マスが10A(Vgs:10A/div.)である。また、ソース-ドレイン間電圧Vds波形は、矢印A3を原点とし、点線で区切られた1マスが500V(Vds:500V/div.)である。ドレイン電流Id波形は、矢印A3を原点とし、点線で区切られた1マスが25Aである(Id:25A/div.)。
 図16に示す結果より、実施例1のターンオフ時、すなわち、ゲート-ソース間電圧Vgsが10Vから0V以下となったとき、ソース-ドレイン間電圧Vdsは1650Vにクランプされた(図16中のVdsclamp)。そして、実施例1が破壊することなく、ドレイン電流Id=100A(定格電流25Aの4倍)を150℃の温度環境下でオフ(Ids=0A)することができることが確認された。したがって、実施例1は、静的な耐圧特性だけでなく、負荷短絡耐量やターンオフ耐量など動的な耐量に対しても、プロセスばらつきの影響はほぼ受けず極めて大きい破壊耐量を得ることができることが確認された。
 実施例1において、n+炭化珪素基板1の主面が例えば<11-20>方向に0度、2度、8度または10度程度のオフ角を有する(000-1)面上に、実施の形態1にかかる半導体装置を作製した場合にも、実施例1と同様に良好な特性を示すことが確認された。
(実施の形態2)
 実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、n+炭化珪素基板1の主面が例えば<1120>方向に4度程度のオフ角を有する(0001)面である点である。実施の形態2にかかる半導体装置のそれ以外の構成は、実施の形態1にかかる半導体装置と同様である。実施の形態2にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法と同様である。
 上述した実施の形態2にかかる半導体装置の製造方法にしたがい、実施の形態2にかかる半導体装置の製造方法に記載した条件でSiC-MOSFETを作製した(以下、実施例2とする)。そして、実施例2に対して、実施例1と同様に素子の耐圧特性、負荷短絡耐量、およびターンオフ耐量について検証した。その結果、実施例2は、実施例1とほぼ同様の特性を示すことが確認された。
 実施例2において、n+炭化珪素基板1の主面が例えば<1120>方向に0度、2度、8度または10度程度のオフ角を有する(0001)面上に、実施の形態2にかかる半導体装置を作製した場合にも、実施例2と同様に良好な特性を示すことが確認された。
(実施の形態3)
 実施の形態3にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、p+領域3に代えて、n-ドリフト層2の表面層にpベース層(第1の第2導電型半導体領域)4を選択的に形成する点である。pベース層4は、イオン注入法によりn-ドリフト層2の表面層に選択的に形成される。すなわち、実施の形態3にかかる半導体装置においては、p+領域3およびnウェル領域7が設けられていない。また、実施の形態3にかかる半導体装置のそれ以外の構成は、実施の形態1にかかる半導体装置と同様である。
 次に、実施の形態3にかかる半導体装置の製造方法について説明する。まず、実施の形態1にかかる半導体装置と同様に、おもて面にn層14が形成されたn+半導体基板1を用意し、n+半導体基板1のn層14上にn-ドリフト層2をエピタキシャル成長させる。次に、イオン注入法により、活性領域のn-ドリフト層2の表面層に、pベース層4を例えば0.5μm程度の深さで選択的に形成する。このイオン注入は、ドーパントとして例えばアルミニウムを用い、pベース層4の不純物濃度が例えば1.0×1016cm-3となるようにドーズ量を設定してもよい。複数のpベース層4が並ぶ方向のpベース層4の幅は、例えば13μm程度であってもよい。
 次に、実施の形態1と同様に、イオン注入法により、pベース層4の表面層に、n+ソース領域5およびp+コンタクト領域6をそれぞれ選択的に形成する。次に、実施の形態1と同様の条件で、活性化アニールを実施する。次に、pベース層4よりも外側のn-ドリフト層2の表面層に、実施の形態1と同様に、p-領域21およびp--領域22を選択的に形成する。次に、実施の形態1と同様の条件で、活性化アニールを実施する。その後、実施の形態1と同様に、ゲート絶縁膜8、ゲート電極9、層間絶縁膜11、ソース電極10、裏面電極15およびパッシベーション保護膜12を順次形成し、実施の形態3にかかる半導体装置が完成する。
 次に、JTE構造を構成するp-領域21およびp--領域22のイオン注入濃度ばらつきと耐圧との関係について検証した。まず、上述した実施の形態3にかかる半導体装置の製造方法にしたがい、実施の形態3にかかる半導体装置の製造方法に例示した条件でSiC-MOSFETを作製した(以下、実施例3とする)。また、実施例1のp-領域21およびp--領域22と同様の範囲でドーズ量を種々変更し、複数の実施例3を作製した。その他の条件は、実施例1と同様である。
 その結果、実施例3は、実施例1と同様の耐圧特性を示すことが確認された。また、実施例3は、実施例1と同様に、最大電流が定格電流の5倍である125Aを導通しても破壊せず、さらに15μsecでも破壊しないことが確認された。さらに、実施例3は、ソース・ドレイン間電圧が1610Vにクランプされ、破壊することなく100A(定格電流25Aの4倍)を150℃の温度環境下でオフすることができることが確認された。したがって、実施例3は、実施例1と同様に、静的な耐圧特性だけでなく、負荷短絡耐量やターンオフ耐量など動的な耐量に対しても、プロセスばらつきの影響はほぼ受けず極めて大きい破壊耐量を得ることができることが確認された。
 実施例3において、n+炭化珪素基板1の主面が例えば<11-20>方向に0度、2度、8度または10度程度のオフ角を有する(000-1)面上に、実施の形態3にかかる半導体装置を作製した場合にも、実施例3と同様に良好な特性を示すことが確認された。
(実施の形態4)
 実施の形態4にかかる半導体装置が実施の形態3にかかる半導体装置と異なる点は、n+炭化珪素基板1の主面が例えば<1120>方向に4度程度のオフ角を有する(0001)面である点である。実施の形態4にかかる半導体装置のそれ以外の構成は、実施の形態3にかかる半導体装置と同様である。実施の形態4にかかる半導体装置の製造方法は、実施の形態3にかかる半導体装置の製造方法と同様である。
 上述した実施の形態4にかかる半導体装置の製造方法にしたがい、実施の形態4にかかる半導体装置の製造方法に記載した条件でSiC-MOSFETを作製した(以下、実施例4とする)。そして、実施例4に対して、実施例3と同様に素子の耐圧特性、負荷短絡耐量、およびターンオフ耐量について検証した。その結果、実施例4は、実施例3とほぼ同様の特性を示すことが確認された。
 実施例4において、n+炭化珪素基板1の主面が例えば<1120>方向に0度、2度、8度または10度程度のオフ角を有する(0001)面上に、実施の形態4にかかる半導体装置を作製した場合にも、実施例4と同様に良好な特性を示すことが確認された。
 以上に説明したように、本発明によれば、活性領域と耐圧構造領域との境界近傍の、ゲートパッド下およびゲートランナー下の部分でのみ、JTE構造を構成するp-領域(第1JTE領域)と、活性領域のp+領域またはp+領域、もしくはその両方とを接触させることにより、活性領域のp+領域やpベース層の不純物濃度や構造に素子耐圧が影響されることなく、かつ、JTE構造を構成する第1JTE領域および第2JTE領域の不純物濃度のばらつきによらず、高耐圧特性を安定的に得ることができる。すなわち、第1JTE領域および第2JTE領域の不純物濃度のばらつきによりJTE構造で決定される素子耐圧が低下したとしても、活性領域のp+領域やpベース層とn-ドリフト層とのpn接合で素子耐圧を決定することができる。このため、素子作成プロセスばらつきに影響されることなく、素子全体の耐圧を高耐圧の状態で維持することができ、安定的に高耐圧特性を示す素子構造を有する半導体装置を提供することができる。
 また、本発明によれば、エピタキシャル成長法によってpベース層を形成することにより、pベース層の表面をほぼ平坦にすることができ表面荒れがほぼ生じないため、pベース層、ゲート絶縁膜およびゲート電極で構成されるMOS構造部のチャネル移動度を極めて大きくすることができる。これにより、オン抵抗をさらに小さくすることができる。また、本発明によれば、半導体材料として炭化珪素を用いた場合でも、n型半導体基板の主面を(000-1)面に平行な面、(000-1)面に対して10度以内の傾きをもつ面、(0001)面に平行な面、または(0001)面に対して10度以内の傾きをもつ面に設定することにより、ゲート絶縁膜と炭化珪素半導体との界面の界面準位密度を低減することができる。このため、MOS構造部のチャネル移動度をさらに向上させることができる。したがって、オン抵抗を極めて低くすることができる。
 以上において本発明では、MOSFETを例に説明しているが、上述した各実施の形態に限らず、IGBT、ショットキーバリアダイオード(SBD)およびPiNダイオードにも適用することが可能である。例えば、本発明をIGBTに適用する場合、n+半導体基板に代えて、p+半導体基板を用いればよい。また、本発明をIGBT、ショットキーバリアダイオードおよびPiNダイオードに適用する場合、ゲートパッド下およびゲートランナー下でのみ、入力電極に電気的に接続されたp型領域と、JTE構造を構成するp-領域(第1JTE領域)とを接続すればよい。
 また、本発明では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。また、本発明では、半導体材料として炭化珪素を用いた場合を例に説明しているが、これに限らず、炭化珪素以外のシリコンよりもバンドギャップの広い半導体材料(ワイドバンドギャップ半導体)を用いてもよいし、シリコンを用いてもよい。
 以上のように、本発明にかかる半導体装置は、高耐圧、大電流を制御するパワー半導体装置に有用であり、特に、半導体材料としてワイドバンドギャップ半導体の1つである炭化珪素を用いて作製された縦型高耐圧半導体装置に適している。
 1 n+半導体基板
 2 n-ドリフト層
 3 p+領域
 4 pベース層
 5 n+ソース領域
 6 p+コンタクト領域
 7 nウェル領域
 8 ゲート絶縁膜
 9 ゲート電極
 10 ソース電極
 11 層間絶縁膜
 12 パッシベーション保護膜
 13 JTE構造
 100a 活性領域
 100b 耐圧構造領域

Claims (11)

  1.  半導体基板に設けられた活性領域と、前記活性領域を囲むように前記半導体基板に設けられた耐圧構造領域と、を有する半導体装置であって、
     前記活性領域は、
     前記半導体基板上に設けられた、前記半導体基板よりも不純物濃度が低い第1導電型半導体層と、
     前記第1導電型半導体層の前記半導体基板側に対して反対側の表面層に、前記活性領域と前記耐圧構造領域との境界に達するように選択的に設けられた第1の第2導電型半導体領域と、
     前記第1の第2導電型半導体領域に電気的に接続された入力電極と、
     少なくとも前記第1の第2導電型半導体領域および前記入力電極で構成されたおもて面素子構造と、
     前記半導体基板の裏面に設けられた出力電極と、
     前記おもて面素子構造が設けられた領域を除く領域に、前記第1の第2導電型半導体領域に接し、かつ前記活性領域と前記耐圧構造領域との境界位置まで設けられた第2の第2導電型半導体領域と、
     を備え、
     前記耐圧構造領域は、
     前記第1導電型半導体層の前記半導体基板側に対して反対側の表面層に、前記活性領域と前記耐圧構造領域との境界から離れて設けられた、前記第1の第2導電型半導体領域よりも不純物濃度の低い複数の第3の第2導電型半導体領域を備え、
     前記第2の第2導電型半導体領域は、前記入力電極に接し、
     複数の前記第3の第2導電型半導体領域のうち、少なくとも最も前記活性領域側の前記第3の第2導電型半導体領域は、前記活性領域と前記耐圧構造領域との境界近傍において前記第2の第2導電型半導体領域に電気的に接続されていることを特徴とする半導体装置。
  2.  前記おもて面素子構造は、さらに、
     前記第1導電型半導体層および前記第1の第2導電型半導体領域の上に設けられた、前記第1の第2導電型半導体領域よりも不純物濃度が低い第2導電型半導体層と、
     前記第2導電型半導体層の前記第1の第2導電型半導体領域側に対して反対側の表面層に選択的に形成された第4の第1導電型半導体領域と、
     前記第2導電型半導体層を深さ方向に貫通し、前記第1導電型半導体層に達する第5の第1導電型半導体領域と、
     前記第2導電型半導体層の、前記第4の第1導電型半導体領域と前記第5の第1導電型半導体領域とに挟まれた部分の表面にゲート絶縁膜を介して設けられたゲート電極と、
     前記第4の第1導電型半導体領域および前記第2導電型半導体層に接する前記入力電極と、で構成されていることを特徴とする請求項1に記載の半導体装置。
  3.  複数の前記第3の第2導電型半導体領域は、前記第1の第2導電型半導体領域および前記第2導電型半導体層から離れて設けられていることを特徴とする請求項1に記載の半導体装置。
  4.  複数の前記第3の第2導電型半導体領域のうち、少なくとも最も前記活性領域側の前記第3の第2導電型半導体領域の前記活性領域側の端部と、前記第1の第2導電型半導体領域の前記耐圧構造領域の端部との距離は、20μm以下であることを特徴とする請求項1に記載の半導体装置。
  5.  複数の前記第3の第2導電型半導体領域のうち、少なくとも最も前記活性領域側の前記第3の第2導電型半導体領域の前記活性領域側の端部と、前記第2導電型半導体層の前記耐圧構造領域の端部との距離は、20μm以下であることを特徴とする請求項2に記載の半導体装置。
  6.  前記第2導電型半導体層は、エピタキシャル成長法により形成されたエピタキシャル層であることを特徴とする請求項2に記載の半導体装置。
  7.  前記第1導電型半導体層は、エピタキシャル成長法により形成されたエピタキシャル層であることを特徴とする請求項1に記載の半導体装置。
  8.  前記第1の第2導電型半導体領域、前記第4の第1導電型半導体領域、前記第5の第1導電型半導体領域は、イオン注入法により形成された不純物拡散領域であることを特徴とする請求項2に記載の半導体装置。
  9.  前記半導体基板は、炭化珪素であることを特徴とする請求項1に記載の半導体装置。
  10.  前記半導体基板のおもて面は、(000-1)面に平行な面または(000-1)面に対して10度以内の傾きをもつ面であることを特徴とする請求項1~9のいずれか一つに記載の半導体装置。
  11.  前記半導体基板のおもて面は、(0001)面に平行な面または(0001)面に対して10度以内の傾きをもつ面であることを特徴とする請求項1~9のいずれか一つに記載の半導体装置。
PCT/JP2013/057745 2012-04-27 2013-03-18 半導体装置 WO2013161451A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380021928.1A CN104303307B (zh) 2012-04-27 2013-03-18 半导体装置
DE112013002213.3T DE112013002213T5 (de) 2012-04-27 2013-03-18 Halbleitereinrichtung
US14/397,086 US9627486B2 (en) 2012-04-27 2013-03-18 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-104230 2012-04-27
JP2012104230A JP5818099B2 (ja) 2012-04-27 2012-04-27 半導体装置

Publications (1)

Publication Number Publication Date
WO2013161451A1 true WO2013161451A1 (ja) 2013-10-31

Family

ID=49482788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057745 WO2013161451A1 (ja) 2012-04-27 2013-03-18 半導体装置

Country Status (5)

Country Link
US (1) US9627486B2 (ja)
JP (1) JP5818099B2 (ja)
CN (1) CN104303307B (ja)
DE (1) DE112013002213T5 (ja)
WO (1) WO2013161451A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579322A (zh) * 2013-11-13 2014-02-12 国家电网公司 一种增强开关速度和开关均匀性的igbt器件及其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318721B2 (ja) * 2014-03-10 2018-05-09 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6589263B2 (ja) * 2014-09-11 2019-10-16 富士電機株式会社 半導体装置
DE112015005654T5 (de) * 2014-12-18 2017-08-31 Mitsubishi Electric Corporation Isolierte Leiterplatte, Leistungsmodul und Leistungseinheit
JP2016174030A (ja) 2015-03-16 2016-09-29 株式会社東芝 半導体装置
JP6471557B2 (ja) * 2015-03-18 2019-02-20 富士電機株式会社 半導体装置および半導体装置の試験方法
JP6550869B2 (ja) * 2015-04-01 2019-07-31 富士電機株式会社 半導体装置
JP2017011060A (ja) * 2015-06-19 2017-01-12 住友電気工業株式会社 ショットキーバリアダイオード
JP6690198B2 (ja) 2015-11-16 2020-04-28 富士電機株式会社 炭化珪素半導体装置の製造方法
CN105514155B (zh) * 2015-12-02 2018-10-26 株洲南车时代电气股份有限公司 一种功率半导体器件的制作方法
JP6801324B2 (ja) * 2016-09-15 2020-12-16 富士電機株式会社 半導体装置
JP6862781B2 (ja) * 2016-11-16 2021-04-21 富士電機株式会社 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
JP6844228B2 (ja) * 2016-12-02 2021-03-17 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6903942B2 (ja) * 2017-02-23 2021-07-14 富士電機株式会社 半導体装置の製造方法
JP6862381B2 (ja) * 2018-03-02 2021-04-21 株式会社東芝 半導体装置
JP7099369B2 (ja) 2018-03-20 2022-07-12 株式会社デンソー 半導体装置およびその製造方法
JP7099158B2 (ja) * 2018-08-09 2022-07-12 富士電機株式会社 模擬素子及び抵抗素子の不良検査方法
US11158703B2 (en) * 2019-06-05 2021-10-26 Microchip Technology Inc. Space efficient high-voltage termination and process for fabricating same
CN115832057A (zh) * 2022-12-15 2023-03-21 南京芯干线科技有限公司 一种碳化硅mosfet器件以及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223220A (ja) * 2004-02-06 2005-08-18 Kansai Electric Power Co Inc:The 高耐圧ワイドギャップ半導体装置及び電力装置
JP2007258742A (ja) * 2007-05-23 2007-10-04 Kansai Electric Power Co Inc:The 高耐電圧半導体装置
JP2011204710A (ja) * 2010-03-24 2011-10-13 Fuji Electric Co Ltd 半導体装置
JP2012033618A (ja) * 2010-07-29 2012-02-16 Kansai Electric Power Co Inc:The バイポーラ半導体素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW286435B (ja) 1994-07-27 1996-09-21 Siemens Ag
JP3997551B2 (ja) 1995-12-08 2007-10-24 株式会社日立製作所 プレーナ型半導体装置
US6002159A (en) 1996-07-16 1999-12-14 Abb Research Ltd. SiC semiconductor device comprising a pn junction with a voltage absorbing edge
JP4097417B2 (ja) * 2001-10-26 2008-06-11 株式会社ルネサステクノロジ 半導体装置
US6940110B2 (en) * 2002-11-29 2005-09-06 Matsushita Electric Industrial Co., Ltd. SiC-MISFET and method for fabricating the same
JP4967236B2 (ja) * 2004-08-04 2012-07-04 富士電機株式会社 半導体素子
US7541643B2 (en) * 2005-04-07 2009-06-02 Kabushiki Kaisha Toshiba Semiconductor device
JP5002148B2 (ja) * 2005-11-24 2012-08-15 株式会社東芝 半導体装置
JP4900662B2 (ja) * 2006-03-02 2012-03-21 独立行政法人産業技術総合研究所 ショットキーダイオードを内蔵した炭化ケイ素mos電界効果トランジスタおよびその製造方法
US7595241B2 (en) * 2006-08-23 2009-09-29 General Electric Company Method for fabricating silicon carbide vertical MOSFET devices
JP5298432B2 (ja) * 2007-01-31 2013-09-25 富士電機株式会社 半導体装置およびその製造方法
JP2011199000A (ja) 2010-03-19 2011-10-06 Toshiba Corp 半導体装置およびその製造方法
US8575729B2 (en) * 2010-05-18 2013-11-05 Panasonic Corporation Semiconductor chip with linear expansion coefficients in direction parallel to sides of hexagonal semiconductor substrate and manufacturing method
JP2012253293A (ja) * 2011-06-07 2012-12-20 Sumitomo Electric Ind Ltd 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223220A (ja) * 2004-02-06 2005-08-18 Kansai Electric Power Co Inc:The 高耐圧ワイドギャップ半導体装置及び電力装置
JP2007258742A (ja) * 2007-05-23 2007-10-04 Kansai Electric Power Co Inc:The 高耐電圧半導体装置
JP2011204710A (ja) * 2010-03-24 2011-10-13 Fuji Electric Co Ltd 半導体装置
JP2012033618A (ja) * 2010-07-29 2012-02-16 Kansai Electric Power Co Inc:The バイポーラ半導体素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579322A (zh) * 2013-11-13 2014-02-12 国家电网公司 一种增强开关速度和开关均匀性的igbt器件及其制造方法

Also Published As

Publication number Publication date
JP5818099B2 (ja) 2015-11-18
CN104303307B (zh) 2019-01-29
US9627486B2 (en) 2017-04-18
CN104303307A (zh) 2015-01-21
JP2013232562A (ja) 2013-11-14
US20150108501A1 (en) 2015-04-23
DE112013002213T5 (de) 2015-04-16

Similar Documents

Publication Publication Date Title
JP5818099B2 (ja) 半導体装置
JP5617175B2 (ja) ワイドバンドギャップ半導体装置とその製造方法
JP6074787B2 (ja) 炭化珪素半導体装置およびその製造方法
US9362392B2 (en) Vertical high-voltage semiconductor device and fabrication method thereof
US10263105B2 (en) High voltage semiconductor device
JP2018107168A (ja) 半導体装置および半導体装置の製造方法
WO2017047286A1 (ja) 半導体装置
US10096703B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6194779B2 (ja) 半導体装置および半導体装置の製造方法
JP5995252B2 (ja) 縦型高耐圧半導体装置および縦型高耐圧半導体装置の製造方法
JP2018206873A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2013146329A1 (ja) 高耐圧半導体装置
US10930775B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP6399161B2 (ja) 半導体装置および半導体装置の製造方法
JP2015056644A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2018064047A (ja) 半導体装置および半導体装置の製造方法
JP2018082056A (ja) 半導体装置および半導体装置の製造方法
JP2017092364A (ja) 半導体装置および半導体装置の製造方法
JP2003347548A (ja) 炭化珪素半導体装置
WO2019077878A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2021002652A (ja) 半導体装置および半導体装置の製造方法
JP2016004966A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397086

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130022133

Country of ref document: DE

Ref document number: 112013002213

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782516

Country of ref document: EP

Kind code of ref document: A1