JP2005223220A - 高耐圧ワイドギャップ半導体装置及び電力装置 - Google Patents

高耐圧ワイドギャップ半導体装置及び電力装置 Download PDF

Info

Publication number
JP2005223220A
JP2005223220A JP2004031214A JP2004031214A JP2005223220A JP 2005223220 A JP2005223220 A JP 2005223220A JP 2004031214 A JP2004031214 A JP 2004031214A JP 2004031214 A JP2004031214 A JP 2004031214A JP 2005223220 A JP2005223220 A JP 2005223220A
Authority
JP
Japan
Prior art keywords
junction
semiconductor region
semiconductor
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004031214A
Other languages
English (en)
Other versions
JP4585772B2 (ja
Inventor
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2004031214A priority Critical patent/JP4585772B2/ja
Priority to US10/588,523 priority patent/US20070170436A1/en
Priority to PCT/JP2005/001705 priority patent/WO2005076369A1/ja
Priority to EP05709770A priority patent/EP1713130A4/en
Publication of JP2005223220A publication Critical patent/JP2005223220A/ja
Application granted granted Critical
Publication of JP4585772B2 publication Critical patent/JP4585772B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41716Cathode or anode electrodes for thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)

Abstract

【課題】高耐圧半導体装置の順方向電圧劣化を低減し、長寿命かつ信頼性の高い半導体装置を提供すること。
【解決手段】バイポーラ半導体素子のドリフト層とアノード層との接合と、電界緩和層とを離隔して形成し、前記接合と電界緩和層との間の半導体領域に、アノード電極の端部を絶縁膜を介して対向させる。逆バイアス時には、絶縁膜を介して電極から前記接合と電界緩和層の間のドリフト層に与えられる電界効果により接合と電界緩和層は電気的に接続され、接合の端部の電界集中が緩和される。順バイアス時には、接合と電界緩和層を電気的にも離隔して順方向電流が接合のみを通って流れるようにする。
【選択図】図1

Description

本発明は、ワイドギャップ半導体装置に関し、特に高い耐電圧を有する高耐圧ワイドギャップ半導体装置及びこれを有する電力装置に関する。
炭化珪素(SiC)などのワイドギャップ半導体材料は、シリコン(Si)に比べて絶縁破壊電界強度が約10倍高い等の優れた特性を有していることから、高い耐電圧特性を有する高耐圧パワー半導体素子に好適な材料として注目されている。
ワイドギャップ半導体材料を用いたpinダイオード、バイポーラトランジスタ、GTOなどのバイポーラ半導体素子は、ショットキーダイオードやMOSFETなどのユニポーラ半導体素子に比べるとビルトイン電圧が高い。しかし少数キャリアの注入によるドリフト層の伝導度変調によりオン抵抗が大幅に小さくなるので損失が少ない。このため電力用途などの高電圧大電流を扱う用途では、損失を小さくするためバイポーラ半導体素子が多く用いられている。SiCのバイポーラ半導体素子をSiのバイポーラ半導体素子と比べると、例えば、SiCのpinダイオードは、10kVの高耐圧素子の場合、順方向電圧がSiのpinダイオードの約1/3であり、ターンオフ時の速度に相当する逆回復時間は約1/20以下と高速である。これらの点からSiCのpinダイオードの電力損失はSiの約1/5以下に低減され、省エネルギー化に大きく貢献できる。SiC−pinダイオード以外にも、SiC−npnトランジスタ、SiC−SIAFET、SiC−SIJFET、SiC−IGBTなどが開発されており、それぞれ電力損失低減効果が大きいことが報告されている(例えば非特許文献1)。また、ドリフト層としてpinダイオードとは反対極性のp型半導体層を用いたSiC−GTOなども開発されている(例えば非特許文献2)。
SiCのバイポーラ半導体素子においては、高耐圧を実現するために、バイポーラ半導体素子を流れる電流の主たる経路となる活性領域を形成するpn接合(以下、主接合という)の端部における電界集中を緩和する必要がある。この電界集中を緩和するため従来のSiCのバイポーラ半導体素子では、主接合の端部に接するように電界緩和領域や電界緩和層を設けている。電界緩和層を有する従来のSiC−pinダイオードについて図7を参照して説明する。
図7は非特許文献3に示されているプレーナ型の高耐圧pinダイオードの断面図である。図において、下面にアノード電極101を有するp型SiC半導体の基板103(アノード領域)の上面に、p型SiC半導体のエピタキシャル成長によりドリフト層105を形成している。ドリフト層105の中央部分にイオン打込みによりn型SiC半導体のカソード領域109を形成している。カソード領域109の端部112にそれぞれ接するように、電界緩和層として働くn型SiC半導体のJTE(Junction Termination Extension)層107が設けられている。カソード領域109とドリフト層105との接合部が主接合110である。カソード領域109に接してカソード電極113が設けられ、残る表面には表面保護膜111が設けられている。JTE層107はカソード領域109よりも低不純物濃度にするのが望ましく、同濃度の場合は厚さをカソード領域109より厚くしている。
このpinダイオードに逆方向電圧を印加すると、JTE層107の接合端部106に電界が集中するが、JTE層107は主接合110の端部112に比べると低濃度もしくは厚くなされているので電界の集中が抑制され、電界の値を低くおさえることができる。これにより接合端部106の電界の値が絶縁破壊電界に達する印加電圧を高くすることができるので高耐圧にできる。
別の方法として、当技術分野でRESURF(Reduced surface field)と呼ばれている電界緩和層も用いられる。これはJTE層107よりも更に低濃度にした層を主接合110の端部に設け、逆電圧が印加されるとRESURF内部にも空乏層が拡がるようにしたものである。耐圧に近い逆電圧が印加されるとRESURFはほぼ完全に空乏化し、RESURF内部の電界がほぼ均等になって印加電圧を分担する。これにより主接合110及びその近傍の電界集中を緩和し高耐圧を実現している。
松波弘之編著、「半導体SiC技術と応用」、日刊工業新聞社、2003年3月31日、218−221頁 A.K.Agarwal et.al、Materials Science Forum, Volume 389−393、2002年、1349−1352頁 K.Chatty et.al、Materials Science Forum, Volume 338−342、2000年、1331−1334頁
前記従来の構成のようなワイドギャップバイポーラ半導体素子には、2002年発刊のマテリアルズ サイエンス フォーラム 389−393巻、第1259−1264頁で報告されているように、通電時間(使用時間)の増大にともなって順方向電圧が増大するという劣化現象がある。以下、この現象を「順方向電圧劣化現象」と呼ぶ。順方向電圧劣化現象は、基板103からドリフト層105に伝搬するベーサルプレーン転位と呼ばれる結晶の転位による線状の結晶欠陥が根本原因とされている。この転位を起点として積層欠陥と呼ばれる多数の面状の欠陥が発生する。この積層欠陥は電子と正孔を再結合させやすいので、結果的にドリフト層105の抵抗を高くし順方向電圧を増大させる。積層欠陥は、この再結合時に放出されるエネルギや、順方向電流により生ずる熱に刺激されてドリフト層105内に拡がるように成長する。カソード領域109及びJTE層107はイオン打ち込みで形成されているために、ドリフト層105との接合部に多くの結晶欠陥が存在する。
発明者は以下の点に注目した。順方向電流はカソード領域109を流れるがその一部はJTE層107をも経てドリフト層105に流れる。このとき上記のように基板103とドリフト層105のベーサルプレーン転位を起点とする積層欠陥が生成され拡大するだけでなく、この結晶欠陥を源にしてカソード領域109及びJTE層107の下方のドリフト層105に積層欠陥が拡大し劣化が進行する。JTE層107の下方のドリフト層105内に拡大した積層欠陥は、カソード領域109と基板103との間のドリフト層105内にも進入してゆき、ドリフト層105全域に積層欠陥を拡大させるとともに積層欠陥の密度を増加させる。積層欠陥の密度が増大して順方向電圧が増大すると、ダイオード内部での発生熱が増大するので益々積層欠陥の成長が促進される。
例えば、耐圧5kVのSiC−pinダイオードの場合、新品のときは順方向電流密度100A/cmでの順方向電圧が3.5Vだったものが、電流密度100A/cmで1時間通電した後では20Vに増大してしまう。通電時間を更に長くすると、順方向電圧の増大の度合は飽和傾向を示すが、それでも徐々に増大する。順方向電圧の増大によりpinダイオードの内部で発生する電力損失が著しく増大し、それによる発熱により素子が破壊してしまう場合がある。このようにSiC等のワイドギャップバイポーラ半導体素子はSiの半導体素子に比べて大変優れた初期特性を有しているにもかかわらず劣化がはやくて信頼性が著しく低い。従って、電力損失が少なく長時間の運転が可能な信頼性の高いインバーター等の電力変換装置をワイドギャップバイポーラ半導体素子を用いて実現することが困難であった。
図7の従来例に示すような、主接合110の端部112に電界緩和層のJTE層107が接して設けられた従来の高耐圧半導体素子は、高耐圧を実現する点では効果がある。しかし前記のようにJTE層107の下方に生じる欠陥により順方向電圧劣化現象が生じる点では好ましくない。図7に示すpinダイオードに順方向の電圧を印加した場合、順方向電流は主接合110のみを通って流れるのではなく、カソード領域109、電界緩和層のJTE層107、及びその下のドリフト領域105をも通って流れる。このためにJTE層107の下方のドリフト層105内でも積層欠陥が発生し、これが成長拡大するため更に順方向電圧劣化が促進される。JTE層107は主接合110の周囲に形成されるので比較的大きな面積を占める。主接合110の面積に比べてJTE層107の面積が相対的に大きい場合、順方向電圧劣化へ与える影響は大きくなる。また、耐圧が高いpinダイオードほどドリフト層105が厚いので、JTE層107の下部の欠陥が起点になって発生した積層欠陥が主接合110の下方のドリフト層105内にも侵入してゆき、順方向電圧劣化を更に加速させるおそれがある。
SiC等のワイドギャップバイポーラ半導体の基板は通常その表面が結晶面に対して所定の角度を持つように形成される。この角度は当技術分野ではオフ角と呼ばれ通常15度以下である。オフ角を設けることにより、基板表面にドリフト層などをエピタキシャル成長で形成する場合、表面に局部的に基板とは異なる結晶面の領域が成長するのを防ぐことができ、成長層に発生する結晶欠陥を減らすことができる。しかしオフ角を有する基板を用いると、上記のベーサルプレーン転位と呼ばれる線欠陥は基板表面に対してオフ角と同じ角度をもってドリフト層等のエピタキシャル成長層内に形成されて伝搬する。またこれを基点に積層欠陥と呼ばれる面欠陥が発生する。従って、積層欠陥は素子表面と基板間を流れる電流を斜めに遮る2次元の面上に存在することになり順方向電圧劣化を大きくする。
一方、オフ角を90度にした場合は線欠陥は基板表面に垂直な方向にエピタキシャル成長層内に形成されて伝搬する。またこれを基点に発生する積層欠陥と呼ばれる面欠陥は素子表面と基板間を流れる電流に平行に存在することになる。このため、電流を斜めに遮るオフ角を持った積層欠陥に比べると電流の流れを遮る程度が軽微である。しかし、電子や正孔は結晶内をブラウン運動をしながら流れているので、基板に垂直な積層欠陥でも電子と正孔の再結合が発生し順方向電圧の劣化を生じる。
本発明は、上記の点を解消し、高耐圧ワイドギャップ半導体素子の順方向電圧劣化を低減し長寿命で信頼性の高い半導体装置を提供することを目的とする。
本発明のワイドギャップ半導体装置は、バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する第1のpn接合、前記第1のpn接合の端部から離隔して前記半導体領域の一方の半導体領域内に設けられ、前記一方の半導体領域内で周囲の半導体領域の導電型とは異なる導電型を有し、前記周囲の半導体領域との間に第2のpn接合を形成する電界緩和層、前記第1のpn接合を形成する他方の半導体領域に電気的に接続されるとともに、前記第1のpn接合と前記第2のpn接合との間の半導体領域に、電気絶縁膜を介して対向する前記バイポーラ半導体素子の電流通路となる第1の電極、及び 前記一方の半導体領域に設けられた第2の電極を有する。
本発明によると、電界緩和層を第1のpn接合から離隔して形成しているので、順方向電流は第1のpn接合のみを通って流れ、電界緩和層と第2のpn接合とを通って流れる電流はほとんどない。そのため順方向電流による積層欠陥は、第1のpn接合に対向する半導体領域内の順方向電流が流れる領域に形成され、電界緩和層に対向する半導体領域内には積層欠陥がほとんど発生しない。そのため第1のpn接合に対向する半導体領域内の積層欠陥の成長拡大が抑制され半導体素子の劣化が少ない。
また第1のpn接合を形成する半導体領域に電気的に接続される第1の電極を、前記第1のpn接合と前記電界緩和層との間の半導体領域に絶縁膜を介して対向するように構成しているので、前記第1の電極に逆電圧を印加したとき、電界効果により前記第1のpn接合の端部と電界緩和層との間の半導体領域に前記印加電圧の極性とは逆極性の電荷、すなわち電子又は正孔が集まる。その結果前記第1のpn接合と前記第2のpn接合とが電気的に接続された状態となり、高耐圧を実現できる。これにより高耐電圧特性を有しかつ長寿命のワイドギャップ半導体装置を実現できる。
本発明の他の観点のワイドギャップ半導体装置は、バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する第1のpn接合、前記第1のpn接合の端部から離隔して前記半導体領域の一方の半導体領域内に設けられ、前記一方の半導体領域内で周囲の半導体領域の導電型とは異なる導電型を有し、前記周囲の半導体領域との間に第2のpn接合を形成する電界緩和層、前記第1のpn接合を形成する他方の半導体領域に電気的に接続されるとともに、前記第1のpn接合と前記第2のpn接合との間の半導体領域に、電気絶縁膜を介して対向する前記バイポーラ半導体素子の電流通路となる第1の電極、及び前記一方の半導体領域に設けられた第2の電極を有し、前記第1のpn接合を含む半導体領域に空乏層が生じるように前記電極と前記半導体領域間に電圧を印加したとき、前記電極が、前記電気絶縁膜を介して前記第1のpn接合と第2のpn接合との間の前記半導体領域に与える電界効果により、前記第1のpn接合と第2のpn接合とを電気的接続状態にすることを特徴とする。
本発明によると、電界緩和層を第1のpn接合から離隔して形成しているので、順方向電流は第1のpn接合のみを通って流れ、電界緩和層と第2のpn接合とを通って流れる電流はほとんどない。そのため順方向電流による積層欠陥は第1のpn接合に対向する半導体領域内の順方向電流が流れる領域に形成され、電界緩和層に対向する半導体領域内には積層欠陥がほとんど発生しない。そのため第1のpn接合に対向する半導体領域内の積層欠陥の成長拡大が抑制され半導体素子の劣化が少ない。
また第1のpn接合を形成する半導体領域に電気的に接続される電極を、前記第1のpn接合と前記電界緩和層との間の半導体領域に絶縁膜を介して対向するように構成しているので、前記電極に逆電圧を印加したとき、電界効果により前記第1のpn接合の端部と電界緩和層との間の半導体領域に前記印加電圧の極性とは逆極性の電荷、すなわち電子又は正孔が集まる。その結果前記第1のpn接合と前記第2のpn接合とが電気的に接続された状態となり、高耐圧が実現できる。第1のpn接合と第2のpn接合を含む半導体領域に空乏層が拡がるので、第1のpn接合の端部への電界集中が回避され、前記電界緩和層が前記第1のpn接合の端部に接している構成と同等の電界緩和効果が得られる。これにより高耐電圧特性を有しかつ長寿命のワイドギャップ半導体装置を実現できる。
本発明の他の観点のワイドギャップ半導体装置は、第1の導電型の半導体層と第1のpn接合を形成する第2の導電型のメサ型の半導体層、前記第1の導電型の半導体層内に第1のpn接合から離隔して形成された第2の導電型の電界緩和層、前記第1のpn接合と前記電界緩和層との間の半導体層に電気絶縁膜を介して対向し、前記メサ型の半導体層に接続された第1の電極、及び前記第1の導電型の半導体層に設けられた第2の電極を有する。
本発明によれば、メサ型の半導体装置において、第1の電極が電気絶縁膜を介して第1のpn接合と電界緩和層との間の半導体層に与える電界効果により、半導体装置の逆バイアス時には第1pn接合と電界緩和層とを電気的に接続し、順バイアス時には両者を電気的に離隔する。これにより順方向電流が電界緩和層を経て流れないようにし、高耐圧特性を損ねることなく順方向電圧特性劣化を低減し、高耐圧と高信頼性を共に実現できる。
本発明の他の観点のワイドギャップ半導体装置は、第1の導電型の半導体層と第1のpn接合を形成する第2の導電型のプレーナ型の半導体層、前記第1の導電型の半導体層内に第1のpn接合から離隔して形成された第2の導電型の電界緩和層、前記第1のpn接合と前記電界緩和層との間の半導体層に電気絶縁膜を介して対向し、前記プレーナ型の半導体層に接続された第1の電極、及び前記第1の導電型の半導体層に接続された第2の電極を有する。
本発明によれば、プレーナ型の半導体装置において、第1の電極が電気絶縁膜を介して第1のpn接合と電界緩和層との間の半導体層に与える電界効果により、半導体装置の逆バイアス時には第1pn接合と電界緩和層とを電気的に接続し、順バイアス時には両者を電気的に離隔する。これにより順方向電流が電界緩和層を経て流れないようにし、高耐圧特性を損ねることなく順方向電圧特性劣化を低減し、高耐圧と高信頼性を共に実現できる。
本発明の他の観点のワイドギャップ半導体装置は、バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する第1のpn接合、前記第1のpn接合の端部から離隔して前記第1のpn接合を形成する第2の半導体領域内に設けられ、前記第2の半導体領域と異なる導電型を有して第2のpn接合を形成する電界緩和層、前記第1のpn接合を形成する前記第1の半導体領域上に形成された、少なくとも1つの前記第1の半導体領域と異なる導電型の第3の半導体領域、前記第3の半導体領域に電気的に接続され、端部が前記第1のpn接合と前記第2のpn接合との間の第2の半導体領域に、電気絶縁膜を介して対向する第1の電極、前記第1のpn接合を形成する第1の半導体領域に電気的に接続された第2の電極、前記第2の半導体領域の、前記第1のpn接合を有する面の対向面に設けた、前記第2の半導体領域と異なる導電型の第4の半導体領域、及び前記第4の半導体領域に設けた第3の電極を有する。
本発明によれば、ワイドギャップ半導体装置に、高い順バイアス電圧が印加されたときには、電気絶縁膜を介して第1の電極が、第1のpn接合と第2のpn接合との間の第2の半導体領域に与える電界効果により、第1のpn接合と第2のpn接合を電気的に接続し、低い順バイアス電圧が印加されたときには、両者間は電気的に離隔する。これにより電界緩和層を経て電流が流れないようにする。その結果、高耐圧を保ちつつ、順方向電圧劣化、オンゲート電流特性及び可制御電流特性の劣化を低減し、高耐圧と高信頼性をともに実現できる。
本発明の他の観点のワイドギャップ半導体装置は、バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し前記半導体領域に電流路を形成する少なくとも2つの第1のpn接合、前記第1のpn接合の端部から離隔して前記第1のpn接合を形成する第1の半導体領域内に設けられ、前記第1の半導体領域と異なる導電型を有して第2のpn接合を形成する電界緩和層、前記第1のpn接合を形成する一方の第2の半導体領域に形成された、少なくとも1つの前記第2の半導体領域と異なる導電型の第3の半導体領域、前記第3の半導体領域に電気的に接続され、端部が前記第1のpn接合と前記第2のpn接合との間の半導体領域に電気絶縁膜を介して対向する第1の電極、前記第1のpn接合を形成する他方の第4の半導体領域に電気的に接続された第2の電極、前記少なくとも2つの第1のpn接合の間の半導体領域に絶縁膜を介して対向する第3の電極、及び前記第4の半導体領域に設けられた第4の電極を有する。
本発明によれば、ワイドギャップ半導体装置の順バイアス電圧が高いときは、第1の電極が、電気絶縁膜を介して第1のpn接合と第2のpn接合との間の半導体領域に与える電界効果により、第1のpn接合と第2のpn接合とを電気的に接続し、順バイアス電圧が低いときには両者間を電気的に離隔して電界緩和層を経て電流が流れないようにする。これにより、高耐圧を保ちつつ順方向電圧劣化を低減して、電力損失の増大を抑制できるとともに高耐圧と高信頼性をともに有する半導体装置を実現できる。
本発明の電力装置は、バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し前記半導体領域に電流路を形成する少なくとも2つの第1のpn接合、前記第1のpn接合の端部から離隔して前記第1のpn接合を形成する第1の半導体領域内に設けられ、前記第1の半導体領域と異なる導電型を有して第2のpn接合を形成する電界緩和層、前記第1のpn接合を形成する一方の第2の半導体領域に形成された、少なくとも1つの前記第2の半導体領域と異なる導電型の第3の半導体領域、前記第3の半導体領域に電気的に接続され、端部が前記第1のpn接合と前記第2のpn接合との間の半導体領域に、電気絶縁膜を介して対向する第1の電極、前記第1のpn接合を形成する他方の第4の半導体領域に電気的に接続された第2の電極、前記少なくとも2つの第1のpn接合の間の半導体領域に、絶縁膜を介して対向する第3の電極、及び前記第4の半導体領域に接続された第4の電極を有する、ワイドギャップ半導体装置を制御素子として備える。
本発明によれば、ワイドギャップ半導体装置の順バイアス電圧が高いときは、第1の電極が、電気絶縁膜を介して第1のpn接合と第2のpn接合との間の半導体領域に与える電界効果により、第1のpn接合と第2のpn接合とを電気的に接続し、順バイアス電圧が低いときには両者間を電気的に離隔して電界緩和層を経て電流が流れないようにする。これにより、高耐圧を保ちつつ順方向電圧劣化を低減して、電力損失の増大を抑制できるので、本発明のワイドギャップ半導体装置を備える電力装置では、電力損失を抑制でき高耐圧と高信頼性をともに実現できる。
本発明によれば、ワイドギャップ半導体装置に順方向電流が流れているときに生じる積層欠陥が、主に半導体領域の順方向電流が流れる部分に形成されるので、積層欠陥の成長拡大が抑制され、積層欠陥の増大による順方向電圧の上昇を抑制することができる。
以下本発明の高耐圧ワイドギャップ半導体装置及び電力装置の好適な実施例を図1から図6を参照して説明する。各実施例の高耐圧ワイドギャップ半導体装置は、図示を省略したが平面図が円形、四角形、長方形などである
《第1実施例》
図1は本発明の第1実施例の高耐圧ワイドギャップ半導体装置である、メサ構造のSiC−pin接合ダイオードの断面図である。図において、不純物濃度が1×1019cm−3、厚さが400μmのカソードとして働くn型SiC半導体の基板11上に、不純物濃度が1×1014cm−3、厚さが75μmのn型SiC半導体のドリフト層12をエピタキシャル成長技術で形成している。基板11の下面には、電気的接続状態を良好に保つためのオーミックコンタクト層10を介して、金や銅等によるカソード電極19(第2の電極)が設けられている。ドリフト層12の上に不純物濃度が1×1018cm−3、厚さが1.5μmのp型SiC半導体のアノード層13と、不純物濃度が1×1019cm−3、厚さが0.2μmのp型SiC半導体のコンタクト層14を順次エピタキシャル成長技術で形成している。ドリフト層12とアノード層13との間に接合2(第1のpn接合)が形成される。
次に素子表面の中央部を残してエッチングしメサ構造にする。メサの高さは約2μmである。エッチングにより露出したドリフト層12に、アノード層13の両端部からそれぞれ約3μm離して、不純物濃度が3.5×1017cm−3、厚さが0.7μm、左右方向の長さが約150μmのp型SiC半導体の、電界緩和層であるJTE(Junction Termination Extension)層15をイオン打ち込み技術で形成している。JTE層15をアノード層13の両端部から離す、前記3μmの距離は、約0.5μmでも特に問題はなかった。これにより峡間部12aが形成される。JTE層15とドリフト層12との間に接合4(第2のpn接合)が形成される。更にJTE層15から約30μm離して不純物濃度が8×1018cm−3のn型SiC半導体のチャネルストッパー層16をイオン打ち込み技術で形成している。メサを囲む低部、メサ側面、メサ上面の両端部は厚さ約0.5μmの表面保護用の2酸化シリコンの絶縁膜17で被覆してある。被覆界面の固定電荷密度は約1×1012cm−2である。コンタクト層14の上にオーミックコンタクト層8を介して金や銅等によるアノード電極18(第1の電極)が設けられている。オーミックコンタクト層8は、一般にチタンとニッケルを含む金属材料で形成される。本実施例のSiC−pinダイオードは、オーミックコンタクト層8の形成過程で400℃〜700℃の高温度に加熱されることがある。上記の高温度に加熱されたとき、オーミックコンタクト層8が軟化して液状になり絶縁膜17とコンタクト層14との間の界面、及びアノード層13のメサ斜面と絶縁膜17との間の界面に侵入し障害を起こすことがある。本実施例では、オーミックコンタクト層8の両端部と絶縁層17との間に隙間を設けるとともに、その隙間にアノード電極18の凸部18aを挿入して、オーミックコンタクト層8が絶縁膜17に接触しないように構成している。凸部18aは直接コンタクト層14に接している。アノード電極18に凸部18aを設ける代わりに、図6に示すようにこの隙間にストッパー3と呼ばれる挿入物を設けてもよい。ストッパー3の材料は、オーミックコンタクト層8の金属材料と反応しにくい物質、例えば窒化アルミニウム、ポリイミド樹脂などの高耐熱の絶縁物、又はアルミニウム等のアノード電極18と異なる金属を用いることができる。
アノード電極18は絶縁膜17の上にも形成され、その外周部又は端部はJTE層15の内側端から約10μmの位置までJTE層15の上に延在している。すなわちアノード電極18の両端部は絶縁膜17を介してJTE層15に重なって対向している。第1のpn接合である接合2はドリフト層12とアノード層13との間に形成される。このSiC−pin接合ダイオードをキャンタイプのパッケージに実装して絶縁樹脂で被覆し、不活性ガスを封入して半導体装置を構成する。
上記のように構成した本実施例のSiC−pin接合ダイオードのアノード電極18とカソード電極19間に逆電圧を印加して(以下、逆バイアスという)耐圧を測定したところ約6750Vであった。この耐圧は、アノード層13にJTE層15が接するように構成した従来構造の同サイズのダイオードの耐圧とほぼ同じであった。これは以下の理由によるものであることを発明者は確認した。すなわち、本実施例のSiC−pin接合ダイオードを逆バイアスすると、アノード電極18がドリフト層12に対して低電位になる。そのため絶縁膜17を介してアノード電極18の両端部から与えられる電界効果により、アノード層13とJTE層15との間のドリフト層12(第1のpn接合と第2のpn接合との間)の峡間部12aと呼ぶ部分に「+」で示す多数の正孔が誘起される。正孔の密度は絶縁膜17に近い表面近傍で高い。その結果峡間部12aの、絶縁膜17に近い表面近傍ではn型のSiC半導体がp型のSiC半導体に反転するので、アノード層13にJTE層15を接して設けた従来の構成と実質的に同等になる。峡間部12aの絶縁膜17から遠い部分は空乏化する。峡間部12aの前記表面近傍のn型SiC半導体層をp型SiC半導体層に反転させるに十分なアノード電極18の印加電圧は、接合2がなだれ降伏する降伏電圧よりも低い電圧であることが必要である。前記印加電圧を降伏電圧より低くするためには、絶縁膜17の材質や厚さを変えたり、絶縁膜17のイオン量を変えて電荷を調節したりして絶縁膜17とSiC半導体層の界面の固定電荷を調節する必要がある。アノード電極18による前記の電界効果を確かめるため、発明者は、アノード電極18が図1に点線6で示す位置までしかなく、峡間部12a及びJTE層15の端部に対向していないpinダイオードを試作して試験をした。その結果、耐圧は4600Vであり前記の6750Vよりも約2150V低かった。
本実施例の新品のSiC−pin接合ダイオードに順方向の電圧を印加し(以下、順バイアスという)100A/cmの電流密度で1時間通電したところ、通電開始直後には4.1Vであった順方向電圧が、1時間通電後には約4.9Vになった。更に通電時間を長くすると、順方向電圧の増加は飽和傾向を示し、その後はわずかではあるが徐々に増加する。順バイアス時にはアノード電極18がドリフト層12に対して高電位になるので、アノード電極18による電界効果によりドリフト層12の峡間部12aには正孔ではなく電子が誘起される。そのためアノード層13とJTE層15は電気的に完全に分離される。その結果順方向電流はアノード層13の接合2のみを通って流れ、JTE層15とドリフト層12の接合4(第2のpn接合)を通って流れることはない。
アノード電極18の両端部の、JTE層15と重なって対向する部分の長さを長くし過ぎると、アノード電極18の端部とJTE層15との間の電位差が大きくなり、絶縁膜17が絶縁破壊を起こすおそれがある。そこで、接合2がなだれ降伏を起こす電圧に近い電圧を前記アノード電極18に印加してもアノード電極18が接する絶縁膜17が絶縁破壊しないように、アノード電極18の長さを設定するのが望ましい。また別法としてアノード電極18の端部近傍の絶縁膜17の厚さを他の部分より厚くしてもよい。
本実施例のSiC−pin接合ダイオードにおいても順方向電流が流れると、接合2と基板11との間のドリフト層12内で積層欠陥が生じ、順方向電圧劣化が進行する。この順方向電圧劣化により前記のように順方向電圧が4.1Vから4.9Vに上昇したものである。しかし、アノード層13にJTE層15を接して形成した従来構造のpin接合ダイオードの場合では、100A/cmの電流密度で1時間通電したところ、順方向電圧は4.1Vから約8.4Vになり、本実施例のpin接合ダイオードに比べてより順方向電圧劣化が激しいことを示している。
以上のように、本実施例によれば、逆バイアス時には、SiC−pinダイオードの表面保護の絶縁膜17を介して作用するアノード電極18の電界効果により、接合2とJTE層15とが電気的に接続される。また、順バイアス時には接合2とJTE層15とを電気的に分離し、JTE層15とドリフト層12との接合4を通って順方向電流が流れないようにする。これにより、高耐圧特性を保ちつつ順方向電圧劣化を低減し、長寿命で高い信頼性を有するSiC−pin接合ダイオードが得られる。
《第2実施例》
図2は本発明の第2実施例の半導体装置であるプレーナ構造のSiC−pin接合ダイオードの断面図である。図において、不純物濃度が1×1019cm−3、厚さが400μmの、カソードとして働くn型SiCの基板21上に、不純物濃度が5×1014cm−3、厚さが50μmのn型SiCのドリフト層22をエピタキシャル成長技術で形成している。ドリフト層22の中央領域には、不純物濃度が1×1018cm−3、厚さが0.5μmのp型SiCのアノード層23と、不純物濃度が1×1019cm−3、厚さが0.2μmのp型SiCのコンタクト層24を順次イオン打ち込み技術で形成している。アノード層23とドリフト層22の間に接合20(第1のpn接合)が形成される。アノード層23の両端部からそれぞれ約5μm離隔して、不純物濃度が8×1017cm−3、厚さが0.8μm、左右方向の長さが約25μmのp型SiCのJTE層25をそれぞれ設けている。JTE層25をアノード層23の両端部から離す前記約5μmの距離は、約22μmでも特に問題はなかった。これにより峡間部22aが形成される。各JTE層25に連結して、不純物濃度が2.0×1016cm−3、厚さが0.7μm、左右方向の長さが約75μmの、電界緩和層として働くp型SiCのRESURF(Reduced surface field)層26をイオン打ち込み技術で形成している。JTE層25及びRESURF層26と、ドリフト層22との間に接合20a(第2のpn接合)が形成される。RESURF層26から離れた両端部に、n型SiCのチャネルストッパー層27をイオン打ち込み技術で形成している。コンタクト層24にオーミックコンタクト層28aを介してアノード電極28(第1の電極)が接続されている。図1に示す前記第1実施例と同様に、オーミックコンタクト層28aの両端部と、絶縁膜29との間には隙間が設けられている。その隙間に、アノード電極28の下面に突出した凸部28bが入り込んでオーミックコンタクト層28aと絶縁膜29を隔離している。前記アノード電極28の凸部28bの代わりに、前記隙間にストッパー(図示省略)を設けてもよい。素子の表面は、アノード電極28が接続される部分を除いて、厚さ約0.3μmの酸化膜の絶縁膜29で被覆している。アノード電極28は絶縁膜29の上にも形成されており、その両端は、絶縁膜29を介してJTE層25に約5μm重なって対向するようになされている。カソード基板21の下面にはオーミックコンタクト層30a(第2の電極)を介してカソード電極30が設けられている。
このSiC−pin接合ダイオードをキャンタイプのパッケージに実装して絶縁樹脂で被覆し、不活性ガスを封入して半導体装置を構成する。
アノード電極28とカソード電極30間に逆電圧を印加し耐圧を測定したところ約4100Vであった。この耐圧はアノード層23にJTE層25が接している従来構造の同サイズのSiC−pin接合ダイオードの耐圧とほぼ同じである。これは以下の理由による。すなわち前記第1実施例と同様に、本実施例のSiC−pin接合ダイオードを逆バイアスしたとき、アノード電極28が、アノード層23とJTE層25の間の峡間部22aの表面近傍に絶縁膜29を介して与える電界効果により、峡間部22aのドリフト層22の表面近傍に「+」で示す正孔が誘起される。このためn型SiCのドリフト層22の表面近傍が部分的にp型SiCに反転し、アノード層23に接するようにJTE層25を形成した場合と実質的に同等になる。峡間部22aの表面から離れた部分では空乏化する。比較のためにアノード電極28の両端部をJTE層25の上方にまで延ばさない構成のSiC−pinダイオードを試作して試験したところ、耐圧が2600Vであり、前記の約4100Vより約1500V低かった。
本実施例の新品のSiC−pin接合ダイオードに順方向に100A/cmの電流密度で1時間通電したところ、通電開始直後には4.6Vであった順方向電圧が1時間通電後には約5.2Vになったが、その増分は0.6Vで比較的小さいと言える。更に通電時間を長くすると、順方向電圧の増加は飽和傾向を示し、その後はわずかではあるが、徐々に増加する。
本実施例のSiC−pin接合ダイオードでは、順バイアス時にはアノード電極28がドリフト層22に対して高電位になるので、アノード電極28が絶縁膜29を介してドリフト層22に与える電界効果により、峡間部22aに電子が引き寄せられて集まる(図示省略)。その結果アノード層23とJTE層25は電気的に完全に分離される。順方向電流はアノード層23を経て、アノード層23が接するドリフト層22の領域を通って流れ、アノード層23から電気的に分離されたJTE層25及びRESURF層26には電流が流れない。そのため積層欠陥は主としてアノード層23と基板21との間のドリフト層22内に発生し、JTE層25及びRESURF層26と、基板21との間のドリフト層22内には積層欠陥がほとんど発生しない。従って1時間通電後の順方向電圧は上記の0.6V程度の比較的少ない増加にとどまっている。
本実施例のSiC−pin接合ダイオードと比較するために、従来構造の、アノード層23にJTE層25を接して形成したSiC−pin接合ダイオードに順方向に100A/cmの電流密度で1時間通電したところ、順方向電圧は4.6Vから約10.6Vに大きく増大した。これはJTE層25がイオン打ち込みで形成されているためにドリフト層22との接合部に欠陥が多く存在し、この欠陥から通電時に積層欠陥が生長し、接合20aと基板21との間のドリフト層22に拡大するのみならず、アノード層23と基板21との間のドリフト層22にも浸入して欠陥密度が増大し順方向電圧劣化が進行したことによる。順方向電圧劣化の進行により順方向電圧が増大すると、pin接合ダイオード内部での発熱が増大し積層欠陥の成長が更に促進される。
本実施例によれば、プレーナ構造のSiC−pinダイオードのアノード電極28の端部から絶縁膜29を介してアノード層23とJTE層25の間のドリフト層22の峡間部22aに与える電界効果により、逆バイアス時には接合20とJTE層25を電気的に接続する。また順バイアス時には、前記アノード層23とJTE層25とを峡間部22aで電気的に切り離して、JTE層25を経て順方向電流が流れないようにしている。これにより、高耐圧を維持しつつ順方向電圧劣化による順方向電圧の上昇を抑制して信頼性の高い高耐圧pin接合ダイオードが得られる。
《第3実施例》
図3は本発明の第3実施例の高耐圧ワイドギャップ半導体装置である、メサ構造のSiC−GTOの断面図である。図において、下面にカソード電極31(第2の電極)を有する、n型SiCのエミッタ領域を構成する基板32の上面に、p型SiCのバッファー領域33が形成されている。バッファー領域33の上に、p型SiCのベース領域34が形成され、ベース領域34の中央領域にメサ型のn型SiCのベース層35が形成されている。ベース領域34とベース層35との間に接合30(第1のpn接合)が形成される。ベース層35には、4つのゲート電極40が設けられている。4つのゲート電極40は、図示しない部分で1つに接続されている。各ゲート電極40の間にp型SiCのエミッタ層36が形成されている。
型SiCの基板32は不純物濃度が1×1019cm−3、厚さが300μmである。バッファー層33は不純物濃度が3×1017cm−3、厚さが2.5μmである。ベース領域34は不純物濃度が5×1013cm−3、厚さ150μmである。ベース層35は不純物濃度が1×1018cm−3、厚さが1.8μmである。エミッタ層36は不純物濃度が1×1019cm−3、厚さが1.5μmである。ベース層35とエミッタ層36はいづれもエピタキシャル成長技術で形成している。ベース層35の端部はメサ状に整形されており、メサの高さは約3.7μmである。メサを囲む低部にはベース層35の端部から約4.0μm離れて不純物濃度が3.5×1017cm−、厚さが0.7μm、長さが約250μmのn型SiCの電界緩和層であるJTE層38がイオン打ち込み技術で形成されている。JTE層38とベース領域34との間に接合30a(第2のpn接合)が形成される。メサを囲む低部の面、メサの斜面及びメサの上面のエミッタ層36の上面中央部分を除く面は、厚さ約0.6μmの表面保護用酸化膜である絶縁膜39で被覆している。各エミッタ層36に電気的に接続されたアノード電極37(第1の電極)が前記絶縁膜39の上に設けられている。アノード電極37の端部は、メサの斜面及びJTE層38のメサの斜面側の端部の約15μmの領域に絶縁膜39を介して対向するように延長されている。各JTE層38から離れた両端部に、p型SiCのチャネルストッパー層27が形成されている。
上記の構造のSiC−GTOをキャンタイプのパッケージに実装し、絶縁樹脂で約1mm程度の厚さで被覆したのち不活性ガスを封入して半導体装置を構成する。
本実施例のSiC−GTOにおいて、ゲート電極40をアノード電極37に接続して、アノード電極37とカソード電極31間に順方向の電圧を印加し耐圧を測定したところ、約13100Vであった。この耐圧はJTE層38をベース層35の端部に接するように構成した従来の構造のSiC−GTOの耐圧とほぼ同じであった。本実施例のGTOでは上記のようにアノード電極37とカソード電極31間に順方向の電圧を印加し、順バイアス電圧が所定のしきい値を超えるときアノード電極37の両端部から絶縁膜39を介して与えられる電界効果により、ベース層35の端部とJTE層38との間のp型SiCのベース領域34aに「−」で表示するように電子が誘起される。そのため絶縁膜39に近い表面近傍がn型SiCに反転し、n型SiCのベース層35とn型SiCのJTE層38が、反転したn型SiCの領域で結合されたと同等の状態になる。絶縁膜39から遠い部分は空乏化する。そのためベース層35の端部での電界集中が緩和されて高い耐圧が得られる。
本実施例のGTOと比較するため、ベース層35とJTE層38との位置関係は本実施例と同じで、アノード電極37の端部が図3の点線37aの位置までしかないものを試作し、順方向の耐圧を測定したところ、7400Vであった。この耐圧は本実施例のGTOの耐圧13100Vより5700V低かった。この比較から、本実施例のGTOでアノード電極37をJTE層38に対向する位置まで延長することにより耐圧を大幅に高くできることが確認された。
本実施例のSiC−GTOのアノード電極37とカソード電極31間に順方向の電圧を印加し電流密度が約5A/cmのゲート電流をアノード電極37からゲート電極40に流すと、SiC−GTOはオンとなり順方向電流が流れる。順方向電流を100A/cmの電流密度で100時間通電したところ、通電開始時には4.6Vであった順方向電圧が100時間の通電後には約5.3Vになった。更に通電時間を長くすると、順方向電圧の増加は飽和傾向を示し、その後はわずかではあるが徐々に増加する。このように順方向電圧の上昇が少ないのは、本実施例のSiC−GTOでは、オン状態の順方向電圧が上記のように数V程度としきい値電圧より低く、従ってアノード電極37が絶縁膜39を介して与える電界効果により、ベース層35とJTE層38の間のベース領域34aがn型に反転することはないからである。このためベース層35とJTE層38は電気的に接続されず、電流はベース層35のみを経て流れ、主としてベース層35と基板32との間のベース領域34において順方向電圧劣化が進行する。
図3に示すようにベース層35とJTE層38との間にすき間を設けずに、両者を接して形成したSiC−GTO(従来のSiC−GTO)について図3を借りて説明すると、順方向電流はベース層35及びJTE層38と、基板32との間のベース領域34のほぼ全域を流れる。JTE層38はイオン打ち込み法で形成されるのでベース領域34との接合部30aには多くの欠陥を有する。このように欠陥の多い接合部30aを電流が流れると前記欠陥から積層欠陥が発生し、ベース層35と基板32で挟まれた部分のベース領域34にも拡大し侵入する。その結果ベース領域34の広範囲に順方向電圧劣化現象が生じて順方向電圧が上昇する。
この従来のGTOを試作して、電流密度100A/cmの順方向電流を20時間流す試験をした。その結果、通電直後4.6Vであった順方向電圧が20時間後には11.4Vに増大した。これは、接合30aに多くの欠陥を有するJTE層38の下部に生じた積層欠陥と、ベース領域35の下部に生じた積層欠陥とが相互に侵入し合って欠陥密度が増大し、順方向電圧劣化が進行したことによる。積層欠陥の密度が高くなると順方向電圧劣化が増大し、SiC−GTO内部での発熱が増加して積層欠陥の成長が更に促進される。
このように従来のSiC−GTOはベース領域34内で積層欠陥が成長拡大するため、これによる電子と正孔の再結合が増加する。そのためSiC−GTOをターンオンさせるために必要なオンゲート電流も増大するという現象も発生した。
また、従来のSiC−GTOでは積層欠陥が少ない使用初期には、GTOの素子内の各部分で比較的均等に電流が分布している状態でターンオフしている。しかし劣化の進行に伴って積層欠陥部分が成長拡大するので、GTOの素子内部でターンオフ時の電流分布が不均等になってしまう。このため、ターンオフ動作時に積層欠陥の存在しない箇所に残存電流が過度に集中して電流遮断に失敗しGTO素子が破壊されることがある。破壊に至らない場合でもターンオフ可能な可制御電流が低くなってしまう。
本発明のSiC−GTOでは積層欠陥の成長拡大が抑制されるので可制御電流が使用時間とともに低くなってゆくという劣化現象を抑えることができる。また、オンゲート電流が増加するという劣化現象を抑えることができる。
以上のように、本実施例によれば、SiC−GTOに高い順方向電圧を印加した時には、アノード電極による電界効果によりベース層35とJTE層38を電気的に接続するが、低い順方向電圧を印加した時には両者を電気的に切り離してJTE層38を経て電流が流れないようにしている。これにより、高耐圧を維持しつつ、順方向電圧やオンゲート電流の増加及び可制御電流の減少等の経時劣化を低減し、高信頼性と高耐圧を同時に有するGTOを実現することができた。
《第4実施例》
図4は本発明の第4実施例の高耐圧ワイドギャップ半導体装置である、SiC−MOSFETの断面図である。図において、不純物濃度が1×1019cm−3、厚さが350μmのn型SiCの、カソードとなる基板41上に、不純物濃度が9×1014cm−3、厚さが40μmのn型SiCのドリフト層42をエピタキシャル成長技術で形成している。ドリフト層42の上面をメサ型に加工し、前記メサに不純物濃度が1×1018cm−3、厚さが1.5μmのp型SiCの4つのボディ層51、52、53、54がイオン打ち込み技術で形成されている。ボディ層51、52、53、54と、ドリフト層42との間に接合75a、75b(第1のpn接合)が形成される。ボディ層51には不純物濃度が1×1019cm−3、厚さが0.6μmのn型SiCの2つのソース層61、62がイオン打ち込み技術で形成されている。同様にして、ボディ層52には2つのソース層63、64が形成されている。ボディ層53、54にはそれぞれソース層65、66が形成されている。ソース層65、66のそれぞれ約半分の面には、それぞれの第1の電極であるソース電極73、74が接している。ソース層61と62にまたがってそれぞれ約半分の面に接するように、ソース電極71が設けられており、ソース層63と64にまたがってそれぞれ約半分の面に接するように、ソース電極72が設けられている。ソース電極71〜74とボディ層51〜54との接続部を除くドリフト層42の面上に、薄い酸化膜によるゲート絶縁膜91、92、93が設けられている。ソース電極71〜74は1つのソース端子80に接続されている。絶縁膜91の上には、両端部がそれぞれソース層61、66に対向するゲート電極81が設けられている。絶縁膜92の上には、両端部がそれぞれソース層62、63に対向するゲート電極82が設けられている。絶縁膜93の上には、両端部がそれぞれソース層64、65に対向するゲート電極83が設けられている。ゲート電極81、82、83は1つのゲート端子90に接続されている。メサの高さは約2μmである。メサの周囲の低部にはボディ層53、54からそれぞれ約6μm離して不純物濃度が3.5×1017cm−3、厚さが0.7μm、左右方向の長さが約90μmのp型SiCの電界緩和層であるJTE層48a、48bをそれぞれイオン打ち込み技術で形成している。JTE層48a、48bをボディ層53、54から離す前記6μmの距離は、約0.3μmでも特に問題はなかった。JTE層48a、48bと、ドリフト層42との間に接合85(第2のpn接合)が形成される。更にJTE層48a、48bからそれぞれ約25μm離れて不純物濃度が8×1018cm−3のn型SiCのチャネルストッパー層49a、49bをイオン打ち込み技術で形成している。JTE層48a、48bの上面を含むメサの周囲の低部、メサ側面59a及びメサ上面の一部はそれぞれ厚さがゲート絶縁膜91〜93よりはるかに厚い、約0.25μmの酸化膜を含む絶縁膜50a、50bで被覆してある。ソース電極73、74の端部はそれぞれ絶縁膜50a、50bを介してJTE層48a、48bの端から約15μmの範囲に対向するように延長されている。カソード基板41の下面にはドレイン電極79が設けられている。
このSiC−MOSFETをキャンタイプのパッケージに実装し、絶縁樹脂で被覆した後不活性ガスを封入して半導体装置を構成する。
この半導体装置のソース端子80とドレイン端子79間に順方向の電圧を印加して耐圧を測定したところ約3650Vであった。この耐圧はボディ層53、54にそれぞれJTE層48a、48bを接して形成した従来構造のSiC−MOSFETの耐圧とほぼ同じであった。本実施例のSiC−MOSFETに順方向の電圧を印加したとき、ソース電極73、74はドリフト層42に対して低電位になる。そのため絶縁膜50a、50bを介してソース電極73、74からボディ層53とJTE層48aの間のドリフト層部分42a、及びボディ層54とJTE層48bの間のドリフト層部分42bに与えられる電界効果によりドリフト層部分42a、42bに「+」で表示した多数の正孔が誘起される。この正孔によりn型SiCのドリフト層部分42a、42bの絶縁膜50a、50bに近い表面近傍がp型SiCに反転し、ボディ層53とJTE層48a、及びボディ層54とJTE層48bがそれぞれ電気的に接続されたと同等の状態になる。前記表面から遠い部分は空乏化する。その結果ドリフト層部分42a、42bへの電界集中が緩和されて高い耐圧が得られることになる。
本実施例のSiC−MOSFETと比較するために、図4の構成において、ソース電極73、74を、それぞれ図の点線73a、74aから外側へは形成せず、ドリフト層部分42a、42bに対向しないようにしたものを試作して試験をした。その結果ソース端子80とドレイン端子79間に順方向に電圧を印加したときの耐圧は2300Vであった。この耐圧は本実施例のMOSFETの3650Vより1350V低い。
本実施例のSiC−MOSFETを用いて構成する電源装置としての3相のインバータについて以下に説明する。図5は直流電源96の直流を3相交流出力97に変換するインバータのよく知られた回路図である。6つのスイッチング素子98は、本実施例のSiC−MOSFETである。スイッチング素子98a、98b、98cのそれぞれのドレイン端子79は直流電源96の正端子に接続され、ソース端子80はスイッチング素子98d、98e、98fのドレイン端子79に接続されている。スイッチング素子98d、98e、98fのソース端子80は直流電源96の負端子に接続されている。ゲート端子90は図示を省略した既知の制御回路に接続される。スイッチング素子98a、98b、98cのそれぞれのソース端子80から3つの出力線97が導出されている。
本実施例の図4に示すSiC−MOSFETでは、ボディ層51〜54と、ドリフト層42、ドレイン層41との間のpn接合で、pinダイオード(以下、内部ダイオードという)が構成されている。この内部ダイオードは、図5にダイオード99で示すように内部でMOSFETに実質的に逆並列に接続されている。従って内部ダイオードはフライホイールダイオードとして機能する。
図5に示すインバータが動作しているとき、前記制御回路の制御により、それぞれ所定のタイミングでスイッチング素子98a〜98fが既知のオンオフ動作をする。その結果フライホイールダイオードとしてのダイオード99にそれぞれのタイミングで順方向電流が流れる。ダイオード99を順方向に流れる電流は、図4のSiC−MOSFETにおいては、ソース電極71〜74、ボディ層51〜54、接合75a、75b及びドレイン電極79で形成される内部ダイオードを通って、ソース端子80からドレイン電極79に向けて流れる。
図5に示すインバータを構成した本実施例のSiC−MOSFETにおいて、電流密度のピーク値が100A/cmになる状態で100時間動作させたところ、動作開始直後の順方向電圧4.4Vが、100時間通電後には4.9Vに増加し、わずかに順方向電圧劣化が生じた。この順方向電圧劣化は、インバータの動作時にフライホイールダイオードとして働くpinダイオード99、すなわち、図4の内部ダイオードを流れる電流によりドリフト層42内の内部ダイオードに積層欠陥が生じたことによる。
図4に示すSiC−MOSFETと類似の構成で、JTE層48aの左端を延長してボディ層53に接続しかつJTE層48bの右端を延長してボディ層54に接続した、従来の構成のものを試作して、図5と同じインバータを構成し本実施例の場合と同じ条件で順方向電圧を測定した。その結果、動作開始直後4.4Vであった順方向電圧が100時間の動作後は10.5Vに上昇した。この順方向電圧10.5Vは、本実施例のSiC−MOSFETの場合の前記4.9Vより5.6V大きかった。上記試作品の構成では、ボディ層53とJTE層48aが接続されかつボディ層54とJTE層48bが接続されているので、順方向電流は、ボディ層51〜54及びJTE層48a及び48bと、基板41との間のドリフト層42を流れる。そのためイオン注入法で形成されて多くの結晶欠陥を有するJTE層48a、48bと、基板41との間のドリフト層42内で通電中発生した積層欠陥が内部ダイオードを含むドリフト層42全域に成長拡大し、順方向電圧劣化が進行する。これはインバータ動作時にフライホイールダイオードであるダイオード99を流れる電流により積層欠陥がドリフト層42内に成長拡大するとともに、上記のようにJTE層48a、48bを流れる電流による積層欠陥の成長拡大が重畳して大きな順方向電圧劣化を生じたことによる。その結果、インバータの動作中に内部ダイオードの損失が増大するとともに、この損失の増大により素子温度が上昇してMOSFET内部のオン抵抗の増大を招き、インバータの電力損失が大幅に増大する。
図5のインバータ回路のフライホイールダイオードとして、スイッチング素子98に逆並列に外付けのダイオード(ショットキーダイオードやpinダイオード)を接続してもよい(図示省略)。この場合には、外付けのショットキーダイオードやpinダイオードの内部抵抗は、MOSFETの内部ダイオードより低いので内部ダイオードを流れる逆電流は減少する。SiC−MOSFETを流れる逆電流が減少するので、積層欠陥の成長を減らすことができる。この場合でも劣化の程度は低いが同様の劣化が発生した。これは、インバータが高い電流密度で駆動された際、一部の電流が外付けのダイオードの他にSiC−MOSFETの内部ダイオードも流れるので順方向電圧劣化が発生したものである。
以上のように、本実施例によれば、SiC−MOSFETの順バイアス電圧が大きいときには表面保護膜である絶縁膜50a、50bを介してソース電極73、74が与える電界効果によりボディ層53、54とJTE層48a、48bを電気的に接続するが、順バイアス電圧が小さいときには両者を電気的に分離してJTE層48a、48bを経由して電流が流れないようにしている。これにより、高耐圧を維持しつつインバータ動作時のフライホイールダイオードの順方向電圧の劣化を低減して素子の損失の増大を抑制でき、高信頼性と高耐圧を同時に実現することができる。
以上、本発明のワイドギャップ半導体装置を各実施例について詳細に説明したが、本発明は上記の各実施例に限定されるものではない。半導体装置の各部の不純物濃度や、各部の厚さ長さ等の寸法は各部の機能を良好に達成できるように変更可能である。各実施例のものと反対の極性の半導体装置(例えばnpnトランジスタに対するpnpトランジスタ)などの各種のワイドギャップバイポーラ半導体装置に適用可能である。その例としては、IGBT、SIAFET、SIJFET、サイリスタ、GTO、MCT(MOS Controlled Thyristor)、SiCGT(SiC Commutated Gate Thyristor)、EST(Emitter Switched Thyristor)、BRT(Base Resistance cotrolled Thyristor)などの各種のSiCバイポーラスイッチング半導体装置や高耐圧SiC発光ダイオード、高耐圧SiC半導体レーザ等に変形応用が可能である。
また、本発明は、第4実施例に示したバイポーラ半導体装置として動作する部分を有するMOSFETのように、バイポーラ半導体装置として動作する部分を含むワイドギャップ半導体装置である、JFET、SIT等のワイドギャップ半導体スイッチング半導体装置や、MPS(Marged Pin/ Schottky)ダイオードおよびJBS(Junction Barrier Controlled Schottky)ダイオード装置等にも変形応用が可能である。
本発明はSiC以外のGaNやダイヤモンド等の他のワイドギャップ半導体で構成したバイポーラ半導体装置動作部分を含むワイドギャップ半導体装置や高耐圧ワイドギャップ半導体発光ダイオードや高耐圧ワイドギャップ半導体レーザ等にも適用できる。前記第4実施例では、本発明のワイドギャップ半導体装置であるSiC−MOSFETを、インバータに適用した例を示したが、本発明のワイドギャップ半導体装置は、スイッチング電源装置、大電力高周波発振装置、電力増幅装置などの電力装置等にも適用可能である。
また第3及び第4実施例では言及しなかったが、各実施例において必要に応じて第1の電極とアノード層との間にpコンタクト層やオーミックコンタクト層を設けても良い。更にオーミックコンタクト層が表面保護用酸化膜とワイドギャップ半導体の界面に侵入していかないように、オーミックコンタクト層と表面保護用酸化膜の間にスペース部分を設けたり、スペース部分にアノード電極が直接接触する部分やオーミックコンタクト層形成材料の浸入を阻止するストッパー材を設けても良い。
本発明は高耐圧かつ高信頼性を必要とするワイドギャップ半導体装置及び電力装置に利用可能である。
本発明の第1実施例のワイドギャップ半導体装置であるメサ構造のSiC−pinダイオードの断面図。 本発明の第2実施例のワイドギャップ半導体装置であるプレーナ構造のSiC−pinダイオードの断面図。 本発明の第3実施例のワイドギャップ半導体装置であるメサ構造のSiC−GTOの断面図。 本発明の第4実施例のワイドギャップ半導体装置であるメサ構造のSiC−MOSFETの断面図。 第4実施例のSiC−MOSFETを用いたインバータの回路図 本発明の図1に示すSiC−pinダイオードにおいて、オーミックコンタクト層8の両端部と、絶縁膜17との間の隙間にストッパー3を設けた構成例を示す断面図。 従来例のワイドギャップ半導体装置であるプレーナ構造のSiC−pinダイオードの断面図。
符号の説明
3 ストッパー
13、23 アノード層
12、22、42、105 ドリフト層
12a、22a 峡間部
42a、42b ドリフト層部分
41 ドレイン層
17、29、39、91、92、93、50a、50b 絶縁膜
8、10、14、24、28a、30a コンタクト層
40、81、82、83 ゲート電極
71、72、73、74 ソース電極
61、62、63、64、65、66 ソース層
52、53、54 ボディ層
11、21、3241、103 基板
19、30、31、113 カソード電極
18、28、37、101 アノード電極
33 バッファー領域
34、34a ベース領域
35 ベース層
36 エミッタ層
16、27、49a、49b チャネルストッパー層
15、17、25、38、48a、48b、107 JTE層
110 主接合
26 RESURF層
109 カソード領域

Claims (11)

  1. バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する第1のpn接合、
    前記第1のpn接合の端部から離隔して前記半導体領域の一方の半導体領域内に設けられ、前記一方の半導体領域内で周囲の半導体領域の導電型とは異なる導電型を有し、前記周囲の半導体領域との間に第2のpn接合を形成する電界緩和層、
    前記第1のpn接合を形成する他方の半導体領域に電気的に接続されるとともに、前記第1のpn接合と前記第2のpn接合との間の半導体領域に、電気絶縁膜を介して対向する前記バイポーラ半導体素子の電流通路となる第1の電極、及び
    前記一方の半導体領域に接続された第2の電極
    を少なくとも有するワイドギャップ半導体装置。
  2. バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する第1のpn接合、
    前記第1のpn接合の端部から離隔して前記半導体領域の一方の半導体領域内に設けられ、前記一方の半導体領域内で周囲の半導体領域の導電型とは異なる導電型を有し、前記周囲の半導体領域との間に第2のpn接合を形成する電界緩和層、
    前記第1のpn接合を形成する他方の半導体領域に電気的に接続されるとともに、前記第1のpn接合と前記第2のpn接合との間の半導体領域に、電気絶縁膜を介して対向する前記バイポーラ半導体素子の電流通路となる第1の電極、及び
    前記一方の半導体領域に接続された第2の電極を少なくとも有し、
    前記第1のpn接合を含む半導体領域に空乏層が生じるように前記第1の電極と前記半導体領域間に電圧を印加したとき、前記第1の電極が、前記電気絶縁膜を介して前記第1のpn接合と第2のpn接合との間の前記半導体領域に与える電界効果により、前記第1のpn接合と第2のpn接合とを電気的接続状態にすることを特徴とするワイドギャップ半導体装置。
  3. 第1の導電型の半導体層と第1のpn接合を形成する第2の導電型の半導体層がメサ型であり、
    前記第1の導電型の半導体層内に第1のpn接合から離隔して形成された第2の導電型の電界緩和層、
    前記第1のpn接合と前記電界緩和層との間の半導体層に電気絶縁膜を介して対向し、前記メサ型の半導体層に接続された第1の電極、及び
    前記第1の導電型の半導体層に接続された第2の電極
    を有する請求項1又は2記載のワイドギャップ半導体装置。
  4. 第1の導電型の半導体層と第1のpn接合を形成する第2の導電型の半導体層がプレーナ型であり、
    前記第1の導電型の半導体層内に第1のpn接合から離隔して形成された第2の導電型の電界緩和層、
    前記第1のpn接合と前記電界緩和層との間の半導体層に電気絶縁膜を介して対向し、前記プレーナ型の半導体層に接続された第1の電極、及び
    前記第1の導電型の半導体層に接続された第2の電極
    を有する請求項1又は2記載のワイドギャップ半導体装置。
  5. バイポーラ半導体素子として動作するp型及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する第1のpn接合、
    前記第1のpn接合の端部から離隔して前記第1のpn接合を形成する第2の半導体領域内に設けられ、前記第2の半導体領域と異なる導電型を有して第2のpn接合を形成する電界緩和層、
    前記第1のpn接合を形成する第1の半導体領域上に形成された、少なくとも1つの前記第1の半導体領域と異なる導電型の第3の半導体領域、
    前記第3の半導体領域に電気的に接続され、端部が前記第1のpn接合と前記第2のpn接合との間の第2の半導体領域に、電気絶縁膜を介して対向する第1の電極、
    前記第1のpn接合を形成する前記第1の半導体領域に電気的に接続された第2の電極、
    前記第2の半導体領域の、前記第1のpn接合を有する面の対向面に設けた、前記第2の半導体領域と異なる導電型の第4の半導体領域、及び
    前記第4の半導体領域に設けた第3の電極
    を有するワイドギャップ半導体装置。
  6. バイポーラ半導体素子として動作するp型、及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する少なくとも2つの第1のpn接合、
    前記第1のpn接合の端部から離隔して前記第1のpn接合を形成する第1の半導体領域内に設けられ、前記第1の半導体領域と異なる導電型を有して第2のpn接合を形成する電界緩和層、
    前記第1のpn接合を形成する一方の第2の半導体領域に形成された、少なくとも1つの前記第2の半導体領域と異なる導電型の第3の半導体領域、
    前記第3の半導体領域に電気的に接続され、端部が前記第1のpn接合と前記第2のpn接合との間の半導体領域に、電気絶縁膜を介して対向する第1の電極、
    前記第1のpn接合を形成する他方の第4の半導体領域に電気的に接続された第2の電極、
    前記少なくとも2つの第1のpn接合の間の半導体領域に、絶縁膜を介して対向する第3の電極、及び
    前記第4の半導体領域に接続された第4の電極
    を有するワイドギャップ半導体装置。
  7. 前記第1の電極と、前記第1の電極に電気的に接続される半導体領域との間に設けたオーミックコンタクト層を更に有し、
    前記絶縁膜を、前記オーミックコンタクト層の端部に対して所定の隙間を保って前記半導体領域の面に設けたことを特徴とする、請求項1から6のいずれかに記載のワイドギャップ半導体装置。
  8. 前記第1の電極は、前記隙間に入り込むように形成された凸部を有することを特徴とする請求項7記載のワイドギャップ半導体装置。
  9. 前記第1のpn接合と前記第2のpn接合との間の半導体領域に電気絶縁膜を介して対向する前記第1の電極は、前記第2のpn接合を形成する電界緩和層に電気絶縁膜を介して所定の距離だけ重なるように延在していることを特徴とする請求項1から8のいずれかに記載のワイドギャップ半導体装置。
  10. 前記隙間に、オーミックコンタクト層の金属材料と反応しにくい物質の挿入物を設けたことを特徴とする請求項7記載のワイドギャップ半導体装置。
  11. バイポーラ半導体素子として動作するp型、及びn型の導電型の半導体領域を有し、前記半導体領域に電流路を形成する少なくとも2つの第1のpn接合、
    前記第1のpn接合の端部から離隔して前記第1のpn接合を形成する第1の半導体領域内に設けられ、前記第1の半導体領域と異なる導電型を有して第2のpn接合を形成する電界緩和層、
    前記第1のpn接合を形成する一方の第2の半導体領域に形成された、少なくとも1つの前記第2の半導体領域と異なる導電型の第3の半導体領域、
    前記第3の半導体領域に電気的に接続され、端部が前記第1のpn接合と前記第2のpn接合との間の半導体領域に、電気絶縁膜を介して対向する第1の電極、
    前記第1のpn接合を形成する他方の第4の半導体領域に電気的に接続された第2の電極、
    前記少なくとも2つの第1のpn接合の間の半導体領域に、絶縁膜を介して対向する第3の電極、及び
    前記第4の半導体領域に接続された第4の電極
    を有するワイドギャップ半導体装置
    を制御素子として備える電力装置。
JP2004031214A 2004-02-06 2004-02-06 高耐圧ワイドギャップ半導体装置及び電力装置 Expired - Fee Related JP4585772B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004031214A JP4585772B2 (ja) 2004-02-06 2004-02-06 高耐圧ワイドギャップ半導体装置及び電力装置
US10/588,523 US20070170436A1 (en) 2004-02-06 2005-02-04 High-withstand voltage wide-gap semiconductor device and power device
PCT/JP2005/001705 WO2005076369A1 (ja) 2004-02-06 2005-02-04 高耐電圧ワイドギャップ半導体装置及び電力装置
EP05709770A EP1713130A4 (en) 2004-02-06 2005-02-04 SEMICONDUCTOR ELEMENT AND POWER ELEMENT WITH HIGH BREAKTHROUGH VOLTAGE AND GREAT SPLIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031214A JP4585772B2 (ja) 2004-02-06 2004-02-06 高耐圧ワイドギャップ半導体装置及び電力装置

Publications (2)

Publication Number Publication Date
JP2005223220A true JP2005223220A (ja) 2005-08-18
JP4585772B2 JP4585772B2 (ja) 2010-11-24

Family

ID=34836038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031214A Expired - Fee Related JP4585772B2 (ja) 2004-02-06 2004-02-06 高耐圧ワイドギャップ半導体装置及び電力装置

Country Status (4)

Country Link
US (1) US20070170436A1 (ja)
EP (1) EP1713130A4 (ja)
JP (1) JP4585772B2 (ja)
WO (1) WO2005076369A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173705A (ja) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc 窒化物半導体装置
JP2007194006A (ja) * 2006-01-18 2007-08-02 Hitachi Appliances Inc 誘導加熱装置
JP2008085187A (ja) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd 半導体装置
JP2008153358A (ja) * 2006-12-15 2008-07-03 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
WO2011105434A1 (ja) 2010-02-23 2011-09-01 富士電機ホールディングス株式会社 半導体装置
JP2012028640A (ja) * 2010-07-26 2012-02-09 Advanced Power Device Research Association Pn接合ダイオードおよびその製造方法
JP2012256698A (ja) * 2011-06-08 2012-12-27 Hitachi Cable Ltd 半導体ダイオード
JP2013522909A (ja) * 2010-03-16 2013-06-13 ビシャイ・ジェネラル・セミコンダクター・エルエルシー 高電圧印加のための改善された終端構造を備えるトレンチdmosデバイス
JP2013536576A (ja) * 2010-07-26 2013-09-19 クリー インコーポレイテッド 表面パッシベーションのための半導体レッジ層を有する電子デバイス構造
WO2013146329A1 (ja) * 2012-03-30 2013-10-03 富士電機株式会社 高耐圧半導体装置
WO2013161451A1 (ja) * 2012-04-27 2013-10-31 富士電機株式会社 半導体装置
JP2014030018A (ja) * 2012-07-30 2014-02-13 General Electric Co <Ge> 炭化ケイ素デバイスにおけるバイアス温度不安定性(bti)を低減する半導体デバイスおよび方法
US8786024B2 (en) 2010-04-15 2014-07-22 Yoshitaka Sugawara Semiconductor device comprising bipolar and unipolar transistors including a concave and convex portion
JP2018088536A (ja) * 2013-08-05 2018-06-07 レイセオン カンパニー 表面荷電抑制を有するPiNダイオード構造
JPWO2017179102A1 (ja) * 2016-04-11 2018-08-30 三菱電機株式会社 半導体装置
JP2020533812A (ja) * 2017-09-15 2020-11-19 アスカトロン アーベー 高電流能力を有するフィーダ設計
JP2021022745A (ja) * 2015-05-21 2021-02-18 パナソニック株式会社 窒化物半導体装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900477B1 (en) * 2001-12-07 2005-05-31 The United States Of America As Represented By The Secretary Of The Army Processing technique to improve the turn-off gain of a silicon carbide gate turn-off thyristor and an article of manufacture
US9455356B2 (en) * 2006-02-28 2016-09-27 Cree, Inc. High power silicon carbide (SiC) PiN diodes having low forward voltage drops
JP5411422B2 (ja) * 2007-01-31 2014-02-12 関西電力株式会社 バイポーラ型半導体装置、その製造方法およびツェナー電圧の制御方法
JP4367508B2 (ja) * 2007-03-13 2009-11-18 株式会社デンソー 炭化珪素半導体装置およびその製造方法
FI119669B (fi) * 2007-06-20 2009-01-30 Vacon Oyj Jännitepulssin rajoitus
JP2009094203A (ja) * 2007-10-05 2009-04-30 Denso Corp 炭化珪素半導体装置
WO2009101668A1 (ja) * 2008-02-12 2009-08-20 Mitsubishi Electric Corporation 炭化珪素半導体装置
JP5693831B2 (ja) * 2008-08-15 2015-04-01 トヨタ自動車株式会社 トランジスタ
JP5047133B2 (ja) * 2008-11-19 2012-10-10 昭和電工株式会社 半導体装置の製造方法
US8106487B2 (en) * 2008-12-23 2012-01-31 Pratt & Whitney Rocketdyne, Inc. Semiconductor device having an inorganic coating layer applied over a junction termination extension
JP5525917B2 (ja) 2010-05-27 2014-06-18 ローム株式会社 電子回路
JP5861081B2 (ja) * 2010-06-03 2016-02-16 パナソニックIpマネジメント株式会社 半導体装置およびこれを用いた半導体リレー
JP5756911B2 (ja) * 2010-06-03 2015-07-29 パナソニックIpマネジメント株式会社 半導体装置およびこれを用いた半導体リレー
US9640617B2 (en) * 2011-09-11 2017-05-02 Cree, Inc. High performance power module
EP2754177A1 (en) 2011-09-11 2014-07-16 Cree, Inc. High current density power module comprising transistors with improved layout
US8716716B2 (en) 2011-12-22 2014-05-06 Avogy, Inc. Method and system for junction termination in GaN materials using conductivity modulation
CH707901B1 (de) 2012-02-06 2017-09-15 Cree Inc SIC-Vorrichtung mit hoher Sperrspannung, abgeschlossen durch einen Abflachungskantenabschluss.
JP6063629B2 (ja) 2012-03-12 2017-01-18 ローム株式会社 半導体装置および半導体装置の製造方法
CN102768947B (zh) * 2012-07-20 2015-03-18 深圳深爱半导体股份有限公司 具结终端扩展结构的功率半导体器件及该结构的制造方法
JP2015046502A (ja) * 2013-08-28 2015-03-12 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP2016174041A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置
CN108140676B (zh) * 2015-10-30 2020-12-18 三菱电机株式会社 碳化硅半导体器件
WO2017161489A1 (zh) * 2016-03-22 2017-09-28 廖慧仪 坚固的功率半导体场效应晶体管结构
US9917149B1 (en) * 2016-05-27 2018-03-13 National Technology & Engineering Solutions Of Sandia, Llc Diode and method of making the same
SE541466C2 (en) 2017-09-15 2019-10-08 Ascatron Ab A concept for silicon carbide power devices
SE541402C2 (en) 2017-09-15 2019-09-17 Ascatron Ab Integration of a schottky diode with a mosfet
SE541290C2 (en) 2017-09-15 2019-06-11 Ascatron Ab A method for manufacturing a grid
US11158703B2 (en) * 2019-06-05 2021-10-26 Microchip Technology Inc. Space efficient high-voltage termination and process for fabricating same
JP7194855B2 (ja) * 2021-03-18 2022-12-22 ローム株式会社 半導体装置
JP7194856B2 (ja) * 2021-03-18 2022-12-22 ローム株式会社 半導体装置の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346222A (ja) * 1991-05-23 1992-12-02 Sony Corp コンタクトホール形成方法
JPH06291082A (ja) * 1993-04-06 1994-10-18 Nippon Steel Corp 半導体装置及びその製造方法
JPH08293618A (ja) * 1995-04-20 1996-11-05 Toshiba Corp 高耐圧半導体素子
JPH1032247A (ja) * 1996-07-17 1998-02-03 Sony Corp 半導体装置及びその製造方法
JPH1174524A (ja) * 1997-06-30 1999-03-16 Denso Corp 半導体装置及びその製造方法
JPH11307474A (ja) * 1998-04-17 1999-11-05 Sony Corp 半導体装置およびその製造方法
WO2000022679A1 (fr) * 1998-10-09 2000-04-20 The Kansai Electric Power Co., Inc. Dispositif semi-conducteur a effet de champ
JP2000294804A (ja) * 1999-04-07 2000-10-20 Fuji Electric Co Ltd ショットキーバリアダイオードおよびその製造方法
JP2001237312A (ja) * 2000-02-23 2001-08-31 Nec Kansai Ltd 半導体装置及びその製造方法
JP2002093742A (ja) * 2000-09-18 2002-03-29 National Institute Of Advanced Industrial & Technology オーミック電極構造体、その製造方法、半導体装置及び半導体装置の製造方法
JP2002185015A (ja) * 2000-12-12 2002-06-28 Kansai Electric Power Co Inc:The 高耐電圧半導体装置
JP2002261295A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk ショットキーダイオード、pn接合ダイオード、pin接合ダイオード、および製造方法
WO2002097888A1 (fr) * 2001-05-25 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Dispositif semi-conducteur de puissance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969400A (en) * 1995-03-15 1999-10-19 Kabushiki Kaisha Toshiba High withstand voltage semiconductor device
US6054752A (en) * 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
DE19839970C2 (de) * 1998-09-02 2000-11-02 Siemens Ag Randstruktur und Driftbereich für ein Halbleiterbauelement sowie Verfahren zu ihrer Herstellung
JP3708057B2 (ja) * 2001-07-17 2005-10-19 株式会社東芝 高耐圧半導体装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346222A (ja) * 1991-05-23 1992-12-02 Sony Corp コンタクトホール形成方法
JPH06291082A (ja) * 1993-04-06 1994-10-18 Nippon Steel Corp 半導体装置及びその製造方法
JPH08293618A (ja) * 1995-04-20 1996-11-05 Toshiba Corp 高耐圧半導体素子
JPH1032247A (ja) * 1996-07-17 1998-02-03 Sony Corp 半導体装置及びその製造方法
JPH1174524A (ja) * 1997-06-30 1999-03-16 Denso Corp 半導体装置及びその製造方法
JPH11307474A (ja) * 1998-04-17 1999-11-05 Sony Corp 半導体装置およびその製造方法
WO2000022679A1 (fr) * 1998-10-09 2000-04-20 The Kansai Electric Power Co., Inc. Dispositif semi-conducteur a effet de champ
JP2000294804A (ja) * 1999-04-07 2000-10-20 Fuji Electric Co Ltd ショットキーバリアダイオードおよびその製造方法
JP2001237312A (ja) * 2000-02-23 2001-08-31 Nec Kansai Ltd 半導体装置及びその製造方法
JP2002093742A (ja) * 2000-09-18 2002-03-29 National Institute Of Advanced Industrial & Technology オーミック電極構造体、その製造方法、半導体装置及び半導体装置の製造方法
JP2002185015A (ja) * 2000-12-12 2002-06-28 Kansai Electric Power Co Inc:The 高耐電圧半導体装置
JP2002261295A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk ショットキーダイオード、pn接合ダイオード、pin接合ダイオード、および製造方法
WO2002097888A1 (fr) * 2001-05-25 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Dispositif semi-conducteur de puissance

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173705A (ja) * 2005-12-26 2007-07-05 Toyota Central Res & Dev Lab Inc 窒化物半導体装置
JP2007194006A (ja) * 2006-01-18 2007-08-02 Hitachi Appliances Inc 誘導加熱装置
JP4652983B2 (ja) * 2006-01-18 2011-03-16 日立アプライアンス株式会社 誘導加熱装置
JP2008085187A (ja) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd 半導体装置
JP2008153358A (ja) * 2006-12-15 2008-07-03 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法
WO2011105434A1 (ja) 2010-02-23 2011-09-01 富士電機ホールディングス株式会社 半導体装置
US8896084B2 (en) 2010-02-23 2014-11-25 Yoshitaka Sugawara Semiconductor device
JP2013522909A (ja) * 2010-03-16 2013-06-13 ビシャイ・ジェネラル・セミコンダクター・エルエルシー 高電圧印加のための改善された終端構造を備えるトレンチdmosデバイス
US8786024B2 (en) 2010-04-15 2014-07-22 Yoshitaka Sugawara Semiconductor device comprising bipolar and unipolar transistors including a concave and convex portion
JP2013536576A (ja) * 2010-07-26 2013-09-19 クリー インコーポレイテッド 表面パッシベーションのための半導体レッジ層を有する電子デバイス構造
JP2012028640A (ja) * 2010-07-26 2012-02-09 Advanced Power Device Research Association Pn接合ダイオードおよびその製造方法
JP2012256698A (ja) * 2011-06-08 2012-12-27 Hitachi Cable Ltd 半導体ダイオード
WO2013146329A1 (ja) * 2012-03-30 2013-10-03 富士電機株式会社 高耐圧半導体装置
JP2013211460A (ja) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial & Technology 高耐圧半導体装置
CN104321875B (zh) * 2012-03-30 2017-05-24 富士电机株式会社 高耐压半导体装置
CN104321875A (zh) * 2012-03-30 2015-01-28 富士电机株式会社 高耐压半导体装置
US9450051B2 (en) 2012-03-30 2016-09-20 Fuji Electric Co., Ltd. High voltage semiconductor apparatus
WO2013161451A1 (ja) * 2012-04-27 2013-10-31 富士電機株式会社 半導体装置
JP2013232562A (ja) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology 半導体装置
US9627486B2 (en) 2012-04-27 2017-04-18 Fuji Electric Co., Ltd. Semiconductor device
JP2014030018A (ja) * 2012-07-30 2014-02-13 General Electric Co <Ge> 炭化ケイ素デバイスにおけるバイアス温度不安定性(bti)を低減する半導体デバイスおよび方法
JP2018088536A (ja) * 2013-08-05 2018-06-07 レイセオン カンパニー 表面荷電抑制を有するPiNダイオード構造
JP2019114817A (ja) * 2013-08-05 2019-07-11 レイセオン カンパニー 表面荷電抑制を有するPiNダイオード構造
JP2021022745A (ja) * 2015-05-21 2021-02-18 パナソニック株式会社 窒化物半導体装置
JP7012137B2 (ja) 2015-05-21 2022-01-27 パナソニック株式会社 窒化物半導体装置
JPWO2017179102A1 (ja) * 2016-04-11 2018-08-30 三菱電機株式会社 半導体装置
JP2020533812A (ja) * 2017-09-15 2020-11-19 アスカトロン アーベー 高電流能力を有するフィーダ設計
JP7295867B2 (ja) 2017-09-15 2023-06-21 アスカトロン アーベー 高電流能力を有するフィーダ設計

Also Published As

Publication number Publication date
JP4585772B2 (ja) 2010-11-24
EP1713130A4 (en) 2009-07-29
EP1713130A1 (en) 2006-10-18
US20070170436A1 (en) 2007-07-26
WO2005076369A1 (ja) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4585772B2 (ja) 高耐圧ワイドギャップ半導体装置及び電力装置
US10504785B2 (en) Semiconductor device
US9082811B2 (en) 3C-SiC transistor
JP5328930B2 (ja) 電流シフト領域を有する半導体デバイスおよび関連方法
JP5090740B2 (ja) ブール成長された炭化ケイ素ドリフト層を使用してパワー半導体デバイスを形成する方法
JP2006332127A (ja) 電力用半導体装置
JP2002319676A (ja) 半導体装置とその製造方法およびその制御方法
JP2009055063A (ja) ゲートターンオフサイリスタ
JP2009123914A (ja) 逆耐圧を有するスイッチング用半導体装置
JP2000252456A (ja) 半導体装置並びにそれを用いた電力変換器
US11184001B2 (en) Power switching devices with high dV/dt capability and methods of making such devices
Chowdhury et al. Operating principles, design considerations, and experimental characteristics of high-voltage 4H-SiC bidirectional IGBTs
WO2012124191A1 (ja) 半導体装置
US20200168707A1 (en) Power semiconductor device
TW202017188A (zh) 功率半導體元件
JP2979964B2 (ja) 半導体装置及びそれを用いたインバータ装置
WO2021005903A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US10930775B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP6101440B2 (ja) ダイオードおよびそれを用いた電力変換装置
JP4237086B2 (ja) 電圧制御型半導体装置
JP2014225589A (ja) 半導体装置およびその動作方法
JP2018107479A (ja) 半導体装置
JPWO2019049251A1 (ja) 半導体装置
US8969959B2 (en) Semiconductor device and method of manufacturing the same
JP3776103B2 (ja) 半導体装置及びサステイン回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees