WO2021005903A1 - 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置および炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2021005903A1
WO2021005903A1 PCT/JP2020/020808 JP2020020808W WO2021005903A1 WO 2021005903 A1 WO2021005903 A1 WO 2021005903A1 JP 2020020808 W JP2020020808 W JP 2020020808W WO 2021005903 A1 WO2021005903 A1 WO 2021005903A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
silicon carbide
semiconductor
type
semiconductor device
Prior art date
Application number
PCT/JP2020/020808
Other languages
English (en)
French (fr)
Inventor
俵 武志
智教 水島
慎一郎 松永
研介 竹中
学 武井
秀一 土田
晃一 村田
皓洋 小山
中山 浩二
満 染谷
米澤 喜幸
祐治 木内
Original Assignee
富士電機株式会社
一般財団法人電力中央研究所
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 一般財団法人電力中央研究所, 三菱電機株式会社 filed Critical 富士電機株式会社
Priority to DE112020002222.6T priority Critical patent/DE112020002222T5/de
Priority to CN202080039260.3A priority patent/CN113892189A/zh
Publication of WO2021005903A1 publication Critical patent/WO2021005903A1/ja
Priority to US17/538,331 priority patent/US20220123112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • H01L29/745Gate-turn-off devices with turn-off by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing a silicon carbide semiconductor device.
  • a silicon (Si) single crystal has been used as a material for a power semiconductor element that controls a high withstand voltage and a large current.
  • silicon power semiconductor devices There are several types of silicon power semiconductor devices, and the current situation is that they are used properly according to the application.
  • a PiN diode P-intrinsic-N diode
  • a bipolar transistor P-intrinsic-N diode
  • an IGBT Insulated Gate Bipolar Transistor: an insulated gate bipolar transistor
  • these elements can obtain a large current density, they cannot be switched at high speed, and the usage limit of the bipolar transistor is several kHz, and that of the IGBT is about 20 kHz.
  • a power MOSFET Metal Oxide Semiconductor Field Effect Transistor: Insulated Gate Field Effect Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor: Insulated Gate Field Effect Transistor
  • SiC silicon carbide
  • I'm collecting This is because SiC is a chemically very stable material, has a wide bandgap of 3 eV, and can be used extremely stably as a semiconductor even at high temperatures. This is also because the maximum electric field strength is one order of magnitude higher than that of silicon. Since SiC has a high possibility of exceeding the material limit of silicon, future growth is expected in power semiconductor applications. In particular, in ultra-high withstand voltage applications such as power with a withstand voltage exceeding 10 kV and pulse power, expectations for a PiN diode as a bipolar device are also gathering.
  • FIG. 20 is a cross-sectional view showing the structure of a conventional bipolar semiconductor device having an n-type semiconductor substrate.
  • FIG. 20 shows the PiN diode 161.
  • the PiN diode 161 shown in FIG. 20 is silicon carbide formed by laminating an n-type buffer layer 102, an n-type drift layer 103, and a p-type anode layer 104 in this order by epitaxial growth on the front surface of an n-type silicon carbide substrate 101. It is constructed using a substrate.
  • the anode electrode 105 is provided on the p-type anode layer 104, and the cathode electrode 106 is provided on the back surface.
  • the p-type anode layer 104 is provided only in the active region 151 through which a current flows when it is turned on, and is not provided in the edge termination region 152.
  • the edge termination region 152 has a function of surrounding the active region 151, relaxing the electric field concentration at the end of the active region 151, and maintaining a predetermined withstand voltage (withstand voltage).
  • the withstand voltage is the limit voltage at which the element does not malfunction or break.
  • a pressure-resistant structure composed of a p-type termination region 107 whose impurity concentration is lowered so as to be arranged on the outside (side surface side of the semiconductor substrate) is arranged.
  • a bipolar power semiconductor device using a silicon carbide semiconductor usually has a structure in which two or more n-type or p-type semiconductor layers are laminated on an n-type silicon carbide substrate. This is because it is difficult to improve the quality and resistance of the p-type silicon carbide substrate, and the n-type silicon carbide substrate can be easily manufactured (manufactured).
  • patterns such as PiN diodes, p-channel IGBTs, n-GTO (Gate Turn-Off thyristor) electrode structures, MOS structures, mesa structures, and termination structures, the semiconductor layer on the substrate side is thick, and the patterning of the substrate is possible. Since it is difficult, it is formed on the side opposite to the substrate side (this is the front surface).
  • FIG. 21 is a graph showing the carrier distribution in the drift layer of a conventional bipolar semiconductor device having an n-type semiconductor substrate.
  • the horizontal axis represents the depth of the p-type anode layer 104 from the surface, and the unit is ⁇ m.
  • the vertical axis shows the density of electrons or holes, and the unit is cm -3 .
  • the thin line in FIG. 21 indicates the electron density, and the thick line indicates the hole density.
  • the electron density is the density of free electrons in each semiconductor layer.
  • a bipolar type silicon carbide semiconductor element such as a PiN diode using an n-type semiconductor substrate
  • the surface of a drift layer composed of an n-type buffer layer 102, an n-type drift layer 103, and a p-type anode layer 104.
  • the hole density is high, and the hole current predominantly flows in the direction of arrow B in FIG. 22, which will be described later.
  • the electron density is high, which will be described later in FIG. 22. The electron current predominantly flows in the direction of the arrow A.
  • FIG. 22 is a cross-sectional view showing the carrier distribution in the drift layer of a conventional bipolar semiconductor device having an n-type semiconductor substrate.
  • the hole density (hDensity) is shown as the carrier distribution. Since the hole mobility of silicon carbide is 1/10 of the electron mobility, the carrier (electron and hole) density in the drift layer is n-type on the surface of the p-type anode layer 104 on the surface. It becomes larger than the vicinity of the buffer layer 102. As a result, conductivity modulation occurs under the p-type anode layer 104 on the surface, and the current concentrates under the p-type anode layer 104 in the active region 151.
  • an energization deterioration prevention layer that spatially separates the surface and the pn junction interface on the mesa wall or the mesa wall and the periphery of the mesa, the occurrence of stacking defects and the expansion of the area are suppressed. It is known to suppress an increase in forward voltage (see Patent Document 1 below). Further, the buffer layer formed between the n-type SiC substrate and the n-type drift layer acts as a trap for holes from the p-type anode layer to prevent a small number of carriers from reaching the substrate in order. It is known to prevent an increase in directional voltage (see Patent Document 2 below).
  • FIG. 23 is a cross-sectional view showing the structure of a conventional bipolar semiconductor device having a p-type semiconductor substrate.
  • FIG. 23 shows the PiN diode 161.
  • the PiN diode 161 shown in FIG. 23 is silicon carbide formed by sequentially laminating a p-type buffer layer 112, a p-type drift layer 113, and an n-type cathode layer 114 on the front surface of a p-type silicon carbide substrate 111 by epitaxial growth. It is constructed using a substrate.
  • the n-type cathode layer 114 is provided only in the active region 151 through which a current flows when it is turned on, and is not provided in the edge termination region 152.
  • FIG. 24 is a cross-sectional view showing the carrier distribution in the drift layer of a conventional bipolar semiconductor device having a p-type semiconductor substrate.
  • the hole density (hDensity) is shown as the carrier distribution.
  • an electron current is generated in the direction of arrow C in FIG. 24 near the p-type buffer layer 112 on the substrate side, and an n-type cathode on the surface.
  • hole currents flow predominantly in the direction of arrow D in FIG.
  • the carrier (electron and hole) density in the drift layer is n on the surface near the p-type buffer layer 112 on the substrate side. It is larger than that near the mold cathode layer 114.
  • conductivity modulation also occurs between the n-type cathode layer 114 on the surface and the end of the edge termination region 152 of the device, and a part of the current (arrow D'in FIG. 24) is from the edge termination region 152 to the active region. It flows to 151.
  • Bipolar semiconductor devices using silicon carbide semiconductors have a forward voltage increase phenomenon in which the on-voltage increases when energized in the on-state. This occurs because a line defect called a basal dislocation in a silicon carbide semiconductor expands to a surface defect called a stacking defect due to the recombination energy of electrons and holes to form a high resistance layer.
  • basal plane dislocations of the basal plane in the drift layer where conductivity modulation occurs and electron and hole recombination occur have almost disappeared.
  • basal plane dislocations may be introduced in the substrate, the surface of the device, or the end of the device by processing or the like.
  • carriers also exist between the element active region on the surface and the element end portion, and carrier recombination occurs also at the element end portion. There is a problem that the forward voltage increase phenomenon occurs and the reliability of the semiconductor element is lowered.
  • the present invention reduces carrier recombination at the end of a bipolar silicon carbide semiconductor device using a p-type semiconductor substrate and suppresses an increase in forward voltage.
  • An object of the present invention is to provide a silicon carbide semiconductor device and a method for manufacturing the silicon carbide semiconductor device.
  • the silicon carbide semiconductor device has the following features.
  • the silicon carbide semiconductor device has an active region through which an electric current flows, and a terminal structure portion that is arranged outside the active region and has a pressure-resistant structure that surrounds the active region.
  • a second conductive type first semiconductor layer is provided on one main surface side of the second conductive type semiconductor substrate.
  • a first conductive type second semiconductor layer is provided on the surface of the first semiconductor layer opposite to the semiconductor substrate.
  • a second conductive type first semiconductor region is provided on the surface layer of the second semiconductor layer opposite to the semiconductor substrate.
  • a first conductive type second semiconductor region having a higher impurity concentration than the second semiconductor layer is provided on the surface layer of the first semiconductor region opposite to the semiconductor substrate.
  • a gate insulating film is provided on the surface of the region of the first semiconductor region sandwiched between the second semiconductor layer and the second semiconductor region.
  • a gate electrode is provided on the gate insulating film.
  • a first electrode in contact with the first semiconductor region and the second semiconductor region is provided.
  • a second electrode is provided on the other main surface side of the first semiconductor layer.
  • the density of the electron density or the hole density at the end of the second semiconductor layer in the terminal structure portion when energized is 1 ⁇ 10 15 / cm 3 or less.
  • the density of holes at the end of the second semiconductor layer in the terminal structure portion when energized is 1 ⁇ 10 15 / cm 3 or less. It is characterized by that.
  • the silicon carbide semiconductor device according to the present invention is characterized in that, in the above-described invention, the distance between the active region and the end portion of the terminal structure portion is 1.2 mm or more.
  • the silicon carbide semiconductor device according to the present invention has a distance of 1.2 mm from the active region to the end of the terminal structure portion in a direction perpendicular to the off angle of the semiconductor substrate. It is characterized by the above.
  • the silicon carbide semiconductor device according to the present invention is characterized in that, in the above-described invention, a low lifetime region is provided between the active region and the end portion of the terminal structure portion.
  • the silicon carbide semiconductor device according to the present invention has a low lifetime region between the active region and the end portion of the terminal structure portion in a direction perpendicular to the off angle of the semiconductor substrate. It is characterized in that it is provided.
  • the silicon carbide semiconductor device according to the present invention is a first conductive type semiconductor device having a higher impurity concentration than the second semiconductor layer between the first semiconductor layer and the second semiconductor layer in the above-described invention. It is characterized in that it includes three semiconductor layers, and vanadium, titanium, boron or nitrogen is added to the third semiconductor layer in the terminal structure portion.
  • the density of nitrogen is 1 ⁇ 10 18 / cm 3 or more
  • the density of boron is 1 ⁇ 10 17 / cm 3 or more
  • the density of vanadium or the titanium is 1 ⁇ 10 14 / cm 3 or more.
  • the silicon carbide semiconductor device according to the present invention is characterized in that, in the above-described invention, the thickness of the third semiconductor layer is 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the silicon carbide semiconductor device is a first conductive type first conductive type having a higher impurity concentration than the second semiconductor layer between the first semiconductor layer and the second semiconductor layer.
  • the third semiconductor layer in the terminal structure portion includes three semiconductor layers, and is characterized in that the crystal structure is damaged.
  • the silicon carbide semiconductor device according to the present invention is characterized in that nitrogen is added to the first semiconductor layer in the terminal structure portion in the above-described invention.
  • the silicon carbide semiconductor device according to the present invention is characterized in that, in the above-described invention, the semiconductor substrate and the second electrode are provided only in the active region.
  • the silicon carbide semiconductor device according to the present invention is characterized in that, in the above-described invention, the second electrode is provided only in the active region.
  • the silicon carbide semiconductor device according to the present invention has a groove in the terminal structure portion that reaches the first semiconductor layer from the surface of the second semiconductor layer opposite to the semiconductor substrate. Is provided.
  • the silicon carbide semiconductor device according to the present invention is characterized in that, in the above-mentioned invention, the silicon carbide semiconductor device does not have a basal plane dislocation in a predetermined region from the end portion of the terminal structure portion to the active region.
  • the method for manufacturing a silicon carbide semiconductor device has the following features.
  • This is a method for manufacturing a silicon carbide semiconductor device having an active region through which an electric current flows and a terminal structure portion arranged outside the active region and having a pressure-resistant structure surrounding the active region.
  • the first step of forming the second conductive type first semiconductor layer on one main surface side of the second conductive type semiconductor substrate is performed.
  • a second step of forming the first conductive type second semiconductor layer on the surface of the first semiconductor layer opposite to the semiconductor substrate is performed.
  • a third step of forming the second conductive type first semiconductor region on the surface layer of the second semiconductor layer opposite to the semiconductor substrate is performed.
  • a fourth step of forming a first conductive type second semiconductor region having a higher impurity concentration than the second semiconductor layer on the surface layer of the first semiconductor region opposite to the semiconductor substrate is performed.
  • a fifth step of forming a gate insulating film on the surface of the region of the first semiconductor region sandwiched between the second semiconductor layer and the second semiconductor region is performed.
  • the sixth step of forming the gate electrode on the gate insulating film is performed.
  • a seventh step of forming the first electrode in contact with the first semiconductor region and the second semiconductor region is performed.
  • the eighth step of forming the second electrode on the other main surface side of the first semiconductor layer is performed.
  • the density of holes at the end of the second semiconductor layer in the terminal structure is formed to be 1 ⁇ 10 15 / cm 3 or less.
  • a predetermined region from the end portion of the terminal structure portion to the active region is removed by dry etching. It is characterized by further including 9 steps.
  • the carrier density at the end of the chip is less than or equal to the threshold value of 1 ⁇ 10 15 / cm 3 in which stacking defects (SF) are expanded. This makes it possible to suppress the expansion of stacking defects (SF) from the end of the semiconductor chip when the semiconductor chip is energized. Therefore, the forward voltage increase can be suppressed.
  • the silicon carbide semiconductor device and the method for manufacturing a silicon carbide semiconductor device according to the present invention in a bipolar type silicon carbide semiconductor device using a p-type semiconductor substrate, the recombination of carriers at the end of the device is reduced and the forward voltage is applied. It has the effect of suppressing the increase.
  • FIG. 1 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 2 is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is a graph showing the distance dependence of the carrier density from the active region.
  • FIG. 4 is a graph showing the characteristics of the conventional silicon carbide semiconductor device before and after energization.
  • FIG. 5 is a graph showing the characteristics of the silicon carbide semiconductor device according to the first embodiment before and after energization.
  • FIG. 6 is a cross-sectional view showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (No. 1).
  • FIG. 1 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 2 is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is a graph showing the distance dependence of the carrier density from the active region.
  • FIG. 7 is a cross-sectional view showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (No. 2).
  • FIG. 8 is a cross-sectional view showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (No. 3).
  • FIG. 9 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the second embodiment.
  • FIG. 10 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the third embodiment.
  • FIG. 11 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the fourth embodiment.
  • FIG. 12 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the fifth embodiment.
  • FIG. 13 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the sixth embodiment.
  • FIG. 14 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the seventh embodiment.
  • FIG. 15 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the eighth embodiment.
  • FIG. 16 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the ninth embodiment.
  • FIG. 17 is a cross-sectional view showing another structure of the silicon carbide semiconductor device according to the first to ninth embodiments (No. 1).
  • FIG. 18 is a cross-sectional view showing another structure of the silicon carbide semiconductor device according to the first to ninth embodiments (No. 2).
  • FIG. 14 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the seventh embodiment.
  • FIG. 15 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the eighth embodiment.
  • FIG. 16 is a cross-
  • FIG. 19 is a cross-sectional view showing another structure of the silicon carbide semiconductor device according to the first to ninth embodiments (No. 3).
  • FIG. 20 is a cross-sectional view showing the structure of a conventional bipolar semiconductor device having an n-type semiconductor substrate.
  • FIG. 21 is a graph showing the carrier distribution in the drift layer of a conventional bipolar semiconductor device having an n-type semiconductor substrate.
  • FIG. 22 is a cross-sectional view showing the carrier distribution in the drift layer of a conventional bipolar semiconductor device having an n-type semiconductor substrate.
  • FIG. 23 is a cross-sectional view showing the structure of a conventional bipolar semiconductor device having a p-type semiconductor substrate.
  • FIG. 24 is a cross-sectional view showing the carrier distribution in the drift layer of a conventional bipolar semiconductor device having a p-type semiconductor substrate.
  • n and p electrons or holes are a large number of carriers in the layers and regions marked with n or p, respectively.
  • + and-attached to n and p mean that the impurity concentration is higher and the impurity concentration is lower than that of the layer or region to which it is not attached, respectively.
  • the notation of n and p including + and-is the same it indicates that the concentrations are close to each other, and the concentrations are not necessarily the same.
  • FIG. 1 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • the n-channel silicon carbide IGBT 60 is a p-type collector layer (second conductive type first semiconductor layer) on the front surface of a p-type silicon carbide substrate (second conductive type semiconductor substrate) 1. ) 2, an n-type field stop layer (first conductive type third semiconductor layer) 3, an n-type drift layer (first conductive type second semiconductor layer) 4, and an n-type carrier storage layer 5. It is constructed using a silicon carbide substrate that is laminated in order. It is also possible not to provide the n-type field stop layer 3 and the n-type carrier storage layer 5.
  • a p-type base region (second conductive type first semiconductor region) on the surface of the n-type carrier storage layer 5 (n-type drift layer 4 when the n-type carrier storage layer 5 is not provided, hereinafter abbreviated as (4)). ) 6 is selectively provided.
  • the p-type silicon carbide substrate 1 is, for example, a silicon carbide single crystal substrate doped with aluminum (Al).
  • the p-type collector layer 2 is a layer provided with an impurity concentration lower than that of the p-type silicon carbide substrate 1.
  • the n-type field stop layer 3 is a layer provided with a higher impurity concentration than the n-type drift layer 4. Since the n-type field stop layer 3 suppresses the depletion layer extending from the high-resistance n-type drift layer 4 into the n-type field stop layer 3 when off, even if the n-type drift layer 4 is thinned, the p-type collector layer 2 It is possible to prevent the punch-through that the depletion layer reaches.
  • the n-type field stop layer 3 may be a single layer or a multilayer, and in the case of a multilayer, the n-type field stop layer 3 may be multilayered with the same set film thickness and set carrier concentration, or may be laminated with different set film thickness and set carrier concentration.
  • the IGBT has an advantage that the on-resistance is low due to the conductivity modulation effect.
  • the same conductive type as the n-type drift layer 4 and The n-type carrier accumulation layer 5 having a higher impurity concentration than the n-type drift layer 4 is provided on the substrate front surface side inside the n-type drift layer 4. Since the n-type carrier storage layer 5 acts as a barrier for the minority carriers and the minority carrier storage effect is enhanced, the current density between the collector and the emitter is increased, and the conductivity modulation effect is enhanced.
  • a MOS gate (insulated gate made of metal-oxide film-semiconductor) structure (element structure) is provided on the front surface side (p-type base region 6 side, which will be described later) of the silicon carbide substrate.
  • the MOS gate includes a p-type base region 6, an n + -type emitter region (first conductive type second semiconductor region) 7, a p + -type contact region 8, a gate insulating film 9, and a gate electrode 10.
  • the p-type base region 6 is provided on the n-type carrier storage layer 5 (4) and is formed by ion implantation.
  • an n-type JFET region (Jinchion Field Effect Transistor) 18 that penetrates the p-type base region 6 in the depth direction and reaches the n-type carrier storage layer 5 (4) is provided. There is.
  • the impurity concentration in the JFET region 18 is higher than the impurity concentration in the n-type drift layer 4.
  • the JFET region 18 has a function of reducing the JFET resistance and lowering the on-resistance.
  • a channel is formed along the gate electrode 9 in a portion of the p-type base region 6 other than the JFET region 18.
  • an n + type emitter region 7 is selectively provided inside the p-type base region 6.
  • a p + type contact region 8 may be selectively provided inside the p-type base region 6. In this case, the n + type emitter region 7 may be provided deeper than the p-type base region 6.
  • the n + type emitter region 7 and the p + type contact region 8 are arranged apart from the JFET region 18.
  • p + -type contact region 8, than the n + -type emitter region 7 is located away from the JFET region 18, and contact with the n + -type emitter region 7.
  • a gate insulating film 9 is provided on the surface of the portion of the p-type base region 6 sandwiched between the JFET region 18 and the n + type emitter region 7 from the surface of the JFET region 18 to the surface of the n + type emitter region 7. Has been done.
  • a gate electrode 10 is provided on the surface of the gate insulating film 9.
  • An interlayer insulating film (not shown) is provided so as to cover the gate electrode 10.
  • the interlayer insulating film is provided on the front surface of the silicon carbide substrate.
  • the n + type emitter region 7 and the p + type contact region 8 are exposed in the contact hole penetrating the interlayer insulating film in the depth direction.
  • the emitter electrode 11 is in contact with the n + type emitter region 7 and the p + type contact region 8 through a contact hole penetrating the interlayer insulating film in the depth direction, and is connected to the gate electrode 10 by the gate insulating film 9 and the interlayer insulating film. It is electrically insulated.
  • the p + type contact region 8 is not provided, the emitter electrode 11 is in contact with the n + type emitter region 7 and the p-type base region 6.
  • a collector electrode 12 is provided on the back surface of the silicon carbide substrate (that is, the back surface of the p-type silicon carbide substrate 1).
  • the depletion layer spreads from the p-type base region 6 to the n-type drift layer 4 via the n-type carrier accumulation layer 5. At this time, if the electric field is concentrated on the corners or sides of the p-type base region 6, an avalanche is generated and the withstand voltage is lowered.
  • FIG. 2 is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • the edge termination region 52 is arranged so as to surround the active region 51.
  • the p-type base region 6 and the JFET region 18 are provided only in the active region 51 in which the current flows when the current is turned on, and are not provided in the edge termination region 52.
  • the terminal structure portion 53 surrounds the active region 51 and is a region from the active region 51 to the end portion T of the p-type silicon carbide substrate (semiconductor chip) 1.
  • FIG. 3 is a graph showing the distance dependence of the carrier density from the active region.
  • the horizontal axis indicates the position from the active region 51, and the unit is mm.
  • the vertical axis shows the hole density as the carrier density, and the unit is cm -3 .
  • FIG. 3 shows a simulation result at a current of 100 A / cm 2 and room temperature (about 25 ° C.) when the carrier life of holes is 10 ⁇ s.
  • the carrier density exceeds the threshold value of 1 ⁇ 10 15 / cm 3
  • the stacking defect (SF) from the end portion T of the n-type drift layer 4 increases.
  • the carrier density when energized is 1 ⁇ 10 15 / cm 3 or more. This is the same result when the carrier density is the electron density. Therefore, in the silicon carbide semiconductor device of the first embodiment, the distance from the active region 51 to the end portion T of the chip is set to 1.2 mm or more so that the electron density at the end portion T of the chip is positive or positive.
  • the density of the smaller pore density is set to a threshold value of 1 ⁇ 10 15 / cm 3 or less at which stacking defects (SF) expand. Therefore, when the semiconductor chip is energized, it is possible to suppress the expansion of stacking defects (SF) from the end portion T of the chip. Further, in order to cope with high temperature and large current, the distance from the active region 51 to the end portion T of the chip is preferably 1.5 mm or more, and more preferably 2.0 mm or more.
  • the silicon carbide substrate is provided with an off angle of 4 degrees in order to epitaxially grow the semiconductor layer on the substrate.
  • the direction in which the off angle is provided (off direction) is the ⁇ 11-20> direction.
  • the expansion direction of the stacking defect is the ⁇ 1-100> direction perpendicular to the off direction
  • the distance from the active region 51 to the end portion T of the chip is 1.2 mm at least in the ⁇ 1-100> direction. It is necessary to be above.
  • FIG. 4 is a graph showing the characteristics of the conventional silicon carbide semiconductor device before and after energization.
  • FIG. 5 is a graph showing the characteristics of the silicon carbide semiconductor device according to the first embodiment before and after energization.
  • the characteristics before energization are shown by solid lines, and the characteristics after energization are shown by dotted lines.
  • the horizontal axis represents the forward voltage
  • the unit is V
  • the vertical axis represents the forward current density
  • the unit is A / cm 2 .
  • the distance from the active region 151 to the end portion T of the chip is 0.5 mm
  • the distance from the active region 51 to the end portion of the chip is 0.5 mm
  • the distance to T (between the active region 51 and the end of the terminal structure portion 53) is 1.2 mm or more.
  • the increase ⁇ Vf of the forward voltage is 5 V or more at the forward current density of 100 A / cm 2 before and after the energization, and the forward voltage is significantly increased.
  • the carrier density is 1 ⁇ 10 15 / cm 3 or less at the element end portion, carrier recombination does not occur. Therefore, when the forward current density is 100 A / cm 2 , the increase ⁇ Vf of the forward voltage is 0.01 V or less, there is almost no change in the forward voltage, and the increase in the forward voltage can be suppressed.
  • the method for manufacturing the silicon carbide semiconductor device according to the first embodiment will be described by taking as an example a case where silicon carbide is used as a semiconductor material and an n-channel type IGBT is manufactured (manufactured).
  • 6 to 8 are cross-sectional views showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • a p-type silicon carbide substrate 1 made of p-type silicon carbide is prepared.
  • the p-type collector layer 2, the n-type field stop layer 3, and the n-type drift layer 4 are deposited on the first main surface (front surface) of the p-type silicon carbide substrate 1 by epitaxial growth. The state up to this point is shown in FIG.
  • the n-type carrier accumulation layer 5 is deposited on the surface of the n-type drift layer 4 by epitaxial growth.
  • an ion implantation mask is formed on the surface of the n-type carrier storage layer 5 by opening a portion corresponding to the formation region of the p-type base region 6.
  • the p-type base region 6 is formed by p-type impurity ion implantation using this ion implantation mask as a mask.
  • the region sandwiched between the p-type base regions 6 of the n-type carrier storage layer 5 is the JFET region 18.
  • the ion implantation mask is removed.
  • the p + type contact region 8 is selectively formed on the surface layer of the p-type base region 6 by photolithography and ion implantation of p-type impurities.
  • the n + type emitter region 7 is selectively formed on the surface layer of the p-type base region 6 by photolithography and ion implantation of n-type impurities.
  • the p-type termination region 13 is selectively formed on the surface layer of the p-type base region 6 of the edge termination region 52 by photolithography and ion implantation of p-type impurities.
  • each ion implantation for forming the n + type emitter region 7 and the p + type contact region 8 described above can be variously changed.
  • activation annealing heat treatment
  • the state up to this point is shown in FIG.
  • the front surface (the surface on the p + type base region 6 side) of the silicon carbide substrate is thermally oxidized to form the gate insulating film 9.
  • a polycrystalline silicon (poly-Si) layer is formed as the gate electrode 10 on the gate insulating film 9 and patterned.
  • an interlayer insulating film (not shown) is formed so as to cover the gate electrode 10, patterning is performed, and then heat treatment (reflow) is performed.
  • a contact hole is formed and the gate insulating film 9 exposed to the contact hole is also removed to expose the n + type emitter region 7 and the p + type contact region 8. The state up to this point is shown in FIG.
  • the emitter electrode 11 is formed so as to embed the contact hole by, for example, a sputtering method.
  • the collector electrode 12 is formed on the back surface of the p-type silicon carbide substrate 1.
  • an emitter wiring (not shown) is formed on the emitter electrode 11.
  • a protective film (not shown) is formed on the front surface of the silicon carbide substrate. Then, the silicon carbide substrate is cut (diced) into chips to complete the IGBT shown in FIG.
  • the carrier density at the end of the chip is 1 ⁇ 10 15 / cm 3 or less, which is the threshold value at which the stacking defect (SF) expands.
  • FIG. 9 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the second embodiment.
  • the low lifetime region 14 is set in the region from the active region 51 to the end portion T (between the active region 51 and the end portion of the terminal structure portion 53) of the p-type silicon carbide substrate (semiconductor chip) 1. It is provided in the entire height (thickness) direction.
  • the crystal structure of the low lifetime region 14 is damaged by irradiation with an electron beam.
  • the low lifetime region extends from the active region 51 to the chip end T in at least the ⁇ 1-100> direction. It is necessary that 14 is provided.
  • the silicon carbide semiconductor device for example, after forming the element structure and before dicing the p-type silicon carbide substrate 1, from the active region 51 to the end T of the p-type silicon carbide substrate 1.
  • the low lifetime region 14 can be formed by irradiating the region with an electron beam from the front side of the chip.
  • a low lifetime region is provided from the active region to the end.
  • the lifetime of carriers at the end of the chip can be shortened, carriers (holes) can be suppressed from being injected into the end of the chip, and stacking defects (SF) from the end of the chip can be suppressed. It is possible to suppress the expansion of. Therefore, the forward voltage increase can be suppressed.
  • FIG. 10 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the third embodiment.
  • the n-type region in contact with the p-type region (p-type silicon carbide substrate 1 and p-type collector layer 2) on the p-type silicon carbide substrate 1 side between the active region 51 and the end of the terminal structure portion 53.
  • An impurity addition region 15 is provided in the region (n-type field stop layer 3 or n-type drift layer 4).
  • FIG. 10 shows an example in which the impurity addition region 15 is provided in the n-type field stop layer 3.
  • the impurity addition region 15 is formed by adding vanadium (V), titanium (Ti), boron (B), nitrogen (N) and the like.
  • the lifetime of the carrier at the end T of the chip is shortened by introducing crystal damage by ion implantation, introducing a recombination center by heterogeneous impurity doping, or promoting Auger recombination. It is possible to prevent carriers (holes) from being implanted from the p-type collector layer 2 into the end of the chip, and to suppress the expansion of stacking defects (SF) from the end of the chip.
  • the density of nitrogen is 1 ⁇ 10 18 / cm 3 or more
  • the density of boron is 1 ⁇ 10 17 / cm 3 or more
  • the density of vanadium or titanium is 1 ⁇ 10 14 / cm 3 or more. preferable.
  • the silicon carbide semiconductor device for example, after forming an n-type region in contact with the p-type region on the p-type silicon carbide substrate 1 side, vanadium (V) and titanium (Ti) are formed in the n-type region. , Boron (B), nitrogen (N) and the like are added by ion implantation.
  • the thickness of this n-type region is preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the impurity addition region is provided in the n-type region in contact with the p-type region on the p-type silicon carbide substrate side from the active region to the end portion.
  • the lifetime of carriers at the end of the chip can be shortened, carriers (holes) can be suppressed from being injected from the p-type collector layer 2 into the end of the chip, and the carrier (hole) can be suppressed from the end of the chip. It is possible to suppress the expansion of stacking defects (SF). Therefore, the forward voltage increase can be suppressed.
  • FIG. 11 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the fourth embodiment.
  • a counter-doped region 16 is provided in the region (p-type silicon carbide substrate 1 and p-type collector layer 2).
  • FIG. 11 shows a form in which the counter-doped region 16 is provided in the p-type collector layer 2.
  • the counter-doped region 16 is a region having high resistance, which is formed by counter-doping impurities that serve as donors to the p-type region.
  • carriers (holes) can be suppressed from being injected from the p-type collector layer 2 into the end portion T of the chip, and the expansion of stacking defects (SF) from the end portion of the chip can be suppressed. can do.
  • an impurity that becomes a donor to the p-type region for example, nitrogen (N).
  • N nitrogen
  • a highly resistant counter-doped region is provided in the p-type region in contact with the n-type region on the p-type silicon carbide substrate side from the active region to the end.
  • FIG. 12 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the fifth embodiment.
  • the p-type silicon carbide substrate 1 and the collector electrode 12 are removed in the region S between the active region 51 and the end of the terminal structure portion 53.
  • no current flows in the removed region S when the region S is turned on so that it is possible to suppress the injection of carriers (holes) from the p-type silicon carbide substrate 1 into the end portion T of the chip, and the region S from the end portion of the chip
  • the expansion of stacking defects (SF) can be suppressed.
  • the p-type carbonization of the region S from the active region 51 to the end portion T is performed before dicing the p-type silicon carbide substrate 1 after forming the element structure. It can be formed by removing the silicon substrate 1 and the collector electrode 12.
  • the p-type silicon carbide substrate and the collector electrode are removed in the region from the active region to the end portion.
  • this region it is possible to suppress the injection of carriers (holes) from the p-type silicon carbide substrate into the end portion of the chip, and it is possible to suppress the expansion of stacking defects (SF) from the end portion of the chip. it can. Therefore, the forward voltage increase can be suppressed.
  • FIG. 13 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the sixth embodiment.
  • the collector electrode 12 is removed in the region S'between the active region 51 and the end of the terminal structure portion 53.
  • the expansion of defects (SF) can be suppressed.
  • the silicon carbide semiconductor device can be formed by forming the collector electrode 12 only in the active region 51 when forming the collector electrode 12 on the back surface of the p-type silicon carbide substrate 1, for example. Further, it can also be formed by removing the collector electrode 12 in the region S'from the active region 51 to the end portion T before dicing the semiconductor substrate (semiconductor chip) 1 after forming the element structure.
  • the p-type silicon carbide substrate 1 is formed by epitaxial growth with the p-type region as the p-type region, ion implantation is performed at the position where the collector electrode 12 is formed in order to form an ohmic contact.
  • ion implantation is performed at the position where the collector electrode 12 is formed in order to form an ohmic contact.
  • the collector electrode is removed in the region from the active region to the end portion.
  • this region it is possible to suppress the injection of carriers (holes) from the p-type silicon carbide substrate into the end portion of the chip, and it is possible to suppress the expansion of stacking defects (SF) from the end portion of the chip. it can. Therefore, the forward voltage increase can be suppressed.
  • FIG. 14 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the seventh embodiment.
  • a bevel mesa 17 that penetrates the n-type carrier storage layer 5 (4) and reaches the p-type collector layer 2 is provided between the active region 51 and the end of the terminal structure portion 53. ..
  • the line defect called the basal plane dislocation it is possible to prevent the line defect called the basal plane dislocation from extending from the end T of the silicon carbide semiconductor device to the surface defect called the stacking defect and reach the active region 51.
  • the silicon carbide semiconductor device according to the seventh embodiment can also be formed, for example, by forming the n-type carrier storage layer 5 (4) and then forming the bevel mesa 17 by dry etching.
  • the bevel mesa is provided between the active region and the end portion. As a result, it is possible to prevent the line defect called the basal plane dislocation from extending from the end portion of the silicon carbide semiconductor device to the surface defect called the stacking defect and reaching the active region. Therefore, the forward voltage increase can be suppressed.
  • FIG. 15 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the eighth embodiment.
  • the predetermined region S "between the active region 51 and the end of the terminal structure portion 53 is removed in the entire height (thickness) direction of the p-type silicon carbide substrate 1, for example, 10 to 30 ⁇ m.
  • the basal plane dislocations existing at the end portion T are removed, and the line defects called basal plane dislocations can be prevented from expanding to surface defects called stacking defects and reaching the active region 51.
  • the active region 51 to the terminal structure portion 53 of the p-type silicon carbide substrate 1 are used. It can be formed by removing a predetermined region S "up to the end of the surface by dry etching.
  • the predetermined region from the end portion to the active region is removed in the entire height (thickness) direction of the p-type silicon carbide substrate.
  • the basal plane dislocations existing at the ends are removed, and the line defects called basal plane dislocations can be prevented from expanding to surface defects called stacking defects and reaching the active region. Therefore, the forward voltage increase can be suppressed.
  • FIG. 16 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the ninth embodiment.
  • the low lifetime region 14 is provided in the entire height (thickness) direction of the p-type silicon carbide substrate 1 between the active region 51 and the end portion of the terminal structure portion 53.
  • the crystal structure of the low lifetime region 14 is damaged by irradiating the proton (H + ).
  • the lifetime of carriers at the end T of the chip can be shortened, carriers (holes) can be suppressed from being injected into the end of the chip, and the end of the chip can be prevented. It is possible to suppress the expansion of stacking defects (SF) from the portion.
  • SF stacking defects
  • the p-type silicon carbide substrate 1 extends from the active region 51 to the end T.
  • the region with protons (H + ) from the side surface side (arrow V'side in FIG. 16)
  • the low lifetime region 14 can be formed.
  • a low lifetime region is provided from the active region to the end portion.
  • the lifetime of carriers at the end of the chip can be shortened, carriers (holes) can be suppressed from being injected into the end of the chip, and stacking defects (SF) from the end of the chip can be suppressed. It is possible to suppress the expansion of. Therefore, the forward voltage increase can be suppressed.
  • n-channel silicon carbide IGBT 60 has been described as an example in the first to ninth embodiments, the first to ninth embodiments can be applied to silicon carbide semiconductor devices having other structures.
  • 17 to 19 are cross-sectional views showing another structure of the silicon carbide semiconductor device according to the first to ninth embodiments.
  • FIG. 17 shows an example of the PiN diode 61.
  • the PiN diode 61 has a p-type buffer layer 20, a p-type drift layer 21, and an n-type cathode layer 22 laminated in this order by epitaxial growth on the front surface of the p-type silicon carbide substrate 1. It is constructed by using a silicon carbide substrate.
  • a cathode electrode 23 is provided on the n-type cathode layer 22, and an anode 24 is provided on the back surface.
  • the n-type cathode layer 22 is provided only in the active region through which a current flows when it is turned on, and is not provided in the terminal structure portion 53.
  • a pressure-resistant structure composed of an n-type terminal region 25 whose impurity concentration is lowered so as to be arranged on the outside (side surface side of the semiconductor substrate) is arranged.
  • FIG. 18 shows an example of the MOSFET 62.
  • the MOSFET 62 is formed by stacking a p-type field stop layer 26, a p-type drift layer 21, and a p-type carrier storage layer 27 in this order on the front surface of the p-type semiconductor substrate 1 by epitaxial growth. It is constructed using a silicon carbide substrate.
  • An n-type base region 28 is provided inside the n-type carrier storage layer 27.
  • a p + type source region 29 and an n + type contact region 30 are provided inside the n-type base region 28.
  • a p-type JFET region 18 is provided that penetrates the n-type base region 28 in the depth direction and reaches the p-type carrier storage layer 27.
  • a gate insulating film 9 is provided over the surfaces of the n-type base region 28 and the p + -type source region 29.
  • a gate electrode 10 is provided on the surface of the gate insulating film 9, and an interlayer insulating film (not shown) is provided so as to cover the gate electrode 10.
  • a source electrode 31 in contact with the p + type source region 29 and the n + type contact region 30 is provided on the front surface side of the silicon carbide substrate, and a source wiring (not shown) is provided on the source electrode 31.
  • a protective film (not shown) is provided on the top.
  • a drain electrode 32 is provided on the back surface.
  • the n-type base region 28 and the JFET region 18 are provided only in the active region in which a current flows when turned on, and are not provided in the terminal structure portion 53.
  • a pressure-resistant structure composed of an n-type terminal region 25 whose impurity concentration is lowered so as to be arranged on the outside (side surface side of the semiconductor substrate) is arranged.
  • FIG. 19 shows an example of the thyristor 63.
  • the thyristor 63 has a p-type buffer layer 20, an n-type buffer layer 34, an n-type drift layer 4, and a p-type gate layer 35 due to epitaxial growth on the front surface of the p-type semiconductor substrate 1. It is configured by using a silicon carbide substrate formed by sequentially laminating n-type cathode layers 22.
  • a p + type contact region 8 is provided inside the p-type gate layer 35, and the p + type contact region 8 is exposed in the contact hole penetrating the n-type cathode layer 22 in the depth direction.
  • a gate electrode 10 is provided on the surface of the p + type contact region 8, and an interlayer insulating film (not shown) is provided so as to cover the gate electrode 10.
  • a cathode electrode 23 in contact with the n-type cathode layer is provided on the front surface side of the silicon carbide substrate. Further, the anode electrode 24 is provided on the back surface.
  • the p-type gate layer 35 is provided only in the active region through which a current flows when it is turned on, and is not provided in the terminal structure portion 53.
  • a pressure-resistant structure composed of a p-type terminal region 13 whose impurity concentration is lowered so as to be arranged on the outside (side surface side of the semiconductor substrate) is arranged.
  • the present invention can be variously modified without departing from the spirit of the present invention, and in each of the above-described embodiments, for example, the dimensions of each part, the impurity concentration, and the like are set in various ways according to the required specifications and the like.
  • the silicon carbide semiconductor device and the method for manufacturing the silicon carbide semiconductor device according to the present invention are power semiconductors used in power conversion devices such as inverters, power supply devices such as various industrial machines, and igniters of automobiles. Useful for equipment.
  • Termination structure 60 n-type silicon carbide substrate 2 p-type collector layer 3 n-type field stop layer 4 n-type drift layer 5 n-type carrier storage layer 6 p-type base region 7 n + type emitter region 8 p + type contact region 9 gate insulating film 10 Gate electrode 11 Emitter electrode 12 Collector electrode 13 p-type termination region 14 Low lifetime region 15 Impurity addition region 16 Counter-doped region 17 Bevel mesa 18 JFET region 20 p-type buffer layer 21 p-type drift layer 22 n-type cathode layer 23 Cathode electrode 24 Anode electrode 25 n-type termination region 26 p-type field stop layer 27 p-type carrier storage layer 28 n-type base region 29 p + type source region 30 n + type contact region 31 source electrode 32 drain electrode 34, 134 n-type buffer layer 35 p-type gate layer 51, 151 Active region 52, 152 Edge termination region 53 Termination structure 60 n-channel type IGBT 61, 161 PiN diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)

Abstract

炭化珪素半導体装置(60)は、活性領域(51)と、前記活性領域(51)の外側に配置された終端構造部(52)と、を有する。炭化珪素半導体装置(60)は、第2導電型の半導体基板(1)、第2導電型の第1半導体層(2)と、第1導電型の第2半導体層(4)と、第2導電型の第1半導体領域(6)と、第1導電型の第2半導体領域(7)と、ゲート絶縁膜(9)と、ゲート電極(10)と、第1電極(11)と、第2電極(12)と、を備える。終端構造部(52)における第2半導体層(4)の端部(T)の通電時の電子密度または正孔の密度の小さい方の密度は、1×1015/cm3以下である。

Description

炭化珪素半導体装置および炭化珪素半導体装置の製造方法
 この発明は、炭化珪素半導体装置および炭化珪素半導体装置の製造方法に関する。
 高耐圧、大電流を制御するパワー半導体素子の材料としては、従来シリコン(Si)単結晶が用いられている。シリコンパワー半導体素子にはいくつかの種類があり、用途に合わせてそれらが使い分けられているのが現状である。例えば、PiNダイオード(P-intrinsic-N diode)やバイポーラトランジスタ、さらに、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)は、いわゆるバイポーラ型デバイスである。これらの素子は、電流密度は多く取れるものの高速でのスイッチングができず、バイポーラトランジスタは数kHzが、IGBTでは20kHz程度の周波数がその使用限界である。一方、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)は、大電流は取れないものの、数MHzまでの高速で使用できる。しかしながら、市場では大電流と高速性を兼ね備えたパワーデバイスへの要求は強く、シリコンIGBTやパワーMOSFETなどの改良に力が注がれ、現在ではほぼシリコン材料物性限界に近いところまで開発が進んできた。
 また、パワー半導体素子の観点からの材料検討も行われ、炭化珪素(SiC)が次世代のパワー半導体素子として、低オン電圧、高速・高温特性に優れた素子であることから、最近特に注目を集めている。というのも、SiCは化学的に非常に安定な材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用できるためである。また、最大電界強度もシリコンより1桁以上大きいからである。SiCはシリコンにおける材料限界を超える可能性大であることから、パワー半導体用途で今後の伸長が大きく期待される。特に、耐圧10kVを超えるような電力ならびにパルスパワーなどの超高耐圧用途では、バイポーラデバイスであるPiNダイオードへの期待も集まっている。
 図20は、n型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。図20は、PiNダイオード161を示す。図20に示すPiNダイオード161は、n型炭化珪素基板101のおもて面上にエピタキシャル成長により、n型バッファ層102、n型ドリフト層103、p型アノード層104を順に積層してなる炭化珪素基体を用いて構成される。p型アノード層104上にアノード電極105が設けられ、裏面にカソード電極106が設けられている。
 p型アノード層104は、オン時に電流の流れる活性領域151のみに設けられ、エッジ終端領域152に設けられていない。エッジ終端領域152は、活性領域151の周囲を囲み、活性領域151の端部での電界集中を緩和して所定の耐圧(耐電圧)を保持する機能を有する。耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。エッジ終端領域152には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたp型終端領域107からなる耐圧構造が配置される。
 上述のように、通常、炭化珪素半導体を用いたバイポーラ型パワー半導体素子では、n型炭化珪素基板上に、n型もしくはp型半導体層をふたつ以上積層した構造を持っている。これは、p型炭化珪素基板の高品質化と低抵抗化が難しく、n型炭化珪素基板の方が容易に作製(製造)できるためである。また、PiNダイオードや、pチャネルIGBT、n-GTO(Gate Turn-Off thyristor)の電極構造やMOS構造、メサ構造、終端構造などのパターンについては、基板側の半導体層が厚く、基板のパターニングが難しいことから、基板側とは反対側(こちらをおもて面とする)に形成されている。
 図21は、n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示すグラフである。図21において、横軸はp型アノード層104の表面からの深さを示し、単位はμmである。縦軸は電子または正孔の密度を示し、単位は、cm-3である。図21の細線が電子の密度を示し、太線が正孔の密度を示す。深さ0μm~100μmでは、電子と正孔の密度が同程度であるため、太線のみが描かれている。ここで、電子の密度とは、各半導体層の中の自由電子の密度である。
 図21に示すように、n型半導体基板を用いたPiNダイオードなどのバイポーラ型炭化珪素半導体素子において、n型バッファ層102、n型ドリフト層103およびp型アノード層104からなるドリフト層の表面のp型アノード層104では、正孔の密度が高く、後述する図22の矢印Bの方向に正孔電流が支配的に流れ、n型バッファ層102では、電子の密度が高く、後述する図22の矢印Aの方向に電子電流が支配的に流れる。
 図22は、n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。キャリア分布として正孔密度(hDensity)を示している。炭化珪素の正孔移動度は、電子移動度の1/10であるため、ドリフト層中のキャリア(電子と正孔)密度は、表面のp型アノード層104の方が、基板側のn型バッファ層102付近より、大きくなる。その結果、表面のp型アノード層104の下で伝導度変調が起こり、活性領域151のp型アノード層104の下に電流が集中する。
 また、メサ壁部またはメサ壁部およびメサ周辺部に、その表面とpn接合界面とを空間的に分離する通電劣化防止層を形成することで、積層欠陥の発生およびその面積拡大を抑制し、順方向電圧の増加を抑制することが知られている(下記、特許文献1参照)。また、n型SiC基板とn型のドリフト層との間に形成したバッファ層が、p型のアノード層からの正孔のトラップとして働いて、基板へ少数キャリアが到達するのを防いで、順方向電圧の増大を防ぐことが知られている(下記、特許文献2参照)。
特開2007-165604号公報 特開2012-4318号公報
 ここで、チャネル領域において、電子の方が正孔より移動度が大きく、低抵抗なIGBTの作製が期待できる。このため、p型半導体基板を有するnチャネルIGBTの開発が進められている。
 図23は、p型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。図23は、PiNダイオード161を示す。図23に示すPiNダイオード161は、p型炭化珪素基板111のおもて面上にエピタキシャル成長により、p型バッファ層112、p型ドリフト層113、n型カソード層114を順に積層してなる炭化珪素基体を用いて構成される。n型カソード層114は、オン時に電流の流れる活性領域151のみに設けられ、エッジ終端領域152に設けられていない。
 図24は、p型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。キャリア分布として正孔密度(hDensity)を示している。p型半導体基板を用いたpチャネルIGBTなどのバイポーラ型炭化珪素半導体素子のドリフト層において、基板側のp型バッファ層112付近では図24の矢印Cの方向に電子電流が、表面のn型カソード層114では図24の矢印Dの方向に正孔電流が、それぞれ支配的に流れる。
 炭化珪素の正孔移動度は、電子移動度の1/10であるため、ドリフト層中のキャリア(電子と正孔)密度は、基板側のp型バッファ層112付近の方が、表面のn型カソード層114付近の方より、大きくなる。その結果、表面のn型カソード層114から素子のエッジ終端領域152の端部の間にも伝導度変調が起こり、電流の一部(図24の矢印D’)がエッジ終端領域152から活性領域151に流れる。
 炭化珪素半導体を用いたバイポーラ半導体素子には、オン状態の通電で、オン電圧が増加する順方向電圧増大現象が存在する。これは、炭化珪素半導体中の基底面転位という線欠陥が、電子と正孔の再結合エネルギーにより、積層欠陥という面欠陥に拡張し、高抵抗層となることにより起こる。
 近年の結晶成長技術向上により、伝導度変調が起こり、電子と正孔の再結合が発生するドリフト層中の基底面転位は、ほとんど見られなくなった。しかし、基板中や素子表面、素子端部には、加工などにより、基底面転位が導入される場合がある。この場合、p型半導体基板を用いたバイポーラ型炭化珪素半導体素子では、表面の素子活性領域と素子端部の間にもキャリアが存在し、素子端部においても、キャリアの再結合が発生し、順方向電圧増大現象が発生し、半導体素子の信頼性が低下するという課題がある。
 この発明は、上述した従来技術による問題点を解消するため、p型半導体基板を用いたバイポーラ型炭化珪素半導体素子において、素子端部のキャリアの再結合を減少させ、順方向電圧増大を抑制することができる炭化珪素半導体装置および炭化珪素半導体装置の製造方法を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。炭化珪素半導体装置は、電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する。第2導電型の半導体基板の一方の主面側に第2導電型の第1半導体層が設けられる。前記第1半導体層の、前記半導体基板に対して反対側の表面に第1導電型の第2半導体層が設けられる。前記第2半導体層の、前記半導体基板に対して反対側の表面層に第2導電型の第1半導体領域が設けられる。前記第1半導体領域の、前記半導体基板に対して反対側の表面層に前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域が設けられる。前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面上にゲート絶縁膜が設けられる。前記ゲート絶縁膜上にゲート電極が設けられる。前記第1半導体領域および前記第2半導体領域に接する第1電極が設けられる。前記第1半導体層の他方の主面側に第2電極が設けられる。前記終端構造部における前記第2半導体層の端部の通電時の電子密度または正孔の密度の小さい方の密度は、1×1015/cm3以下である。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部における前記第2半導体層の端部の通電時の正孔の密度は、1×1015/cm3以下であることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、前記終端構造部における前記第3半導体層に、バナジウム、チタン、ホウ素または窒素が添加されていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記窒素の密度は1×1018/cm3以上であり、前記ホウ素の密度は1×1017/cm3以上であり、前記バナジウムまたは前記チタンの密度は1×1014/cm3以上であることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第3半導体層の厚さは、0.1μm以上2μm以下であることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、前記終端構造部における前記第3半導体層は、結晶構造にダメージが設けられていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部における前記第1半導体層に、窒素が添加されていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記半導体基板および前記第2電極は、前記活性領域のみに設けられていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2電極は、前記活性領域のみに設けられていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部に、前記第2半導体層の、前記半導体基板に対して反対側の表面から、前記第1半導体層に達する溝が設けられていることを特徴とする。
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部の端部から前記活性領域までの所定の領域に基底面転位を有していないことを特徴とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置の製造方法は、次の特徴を有する。電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する炭化珪素半導体装置の製造方法である。まず、第2導電型の半導体基板の一方の主面側に第2導電型の第1半導体層を形成する第1工程を行う。次に、前記第1半導体層の、前記半導体基板に対して反対側の表面に第1導電型の第2半導体層を形成する第2工程を行う。次に、前記第2半導体層の、前記半導体基板に対して反対側の表面層に第2導電型の第1半導体領域を形成する第3工程を行う。次に、前記第1半導体領域の、前記半導体基板に対して反対側の表面層に前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域を形成する第4工程を行う。次に、前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面にゲート絶縁膜を形成する第5工程を行う。次に、前記ゲート絶縁膜上にゲート電極を形成する第6工程を行う。次に、前記第1半導体領域および前記第2半導体領域に接する第1電極を形成する第7工程を行う。次に、前記第1半導体層の他方の主面側に第2電極を形成する第8工程を行う。前記終端構造部における前記第2半導体層の端部の正孔の密度を、1×1015/cm3以下に形成する。
 また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第8工程より後に、前記終端構造部の端部から前記活性領域までの所定の領域をドライエッチングにより除去する第9工程をさらに含むことを特徴とする。
 上述した発明によれば、チップの端部でのキャリア密度は、積層欠陥(SF)が拡大する閾値1×1015/cm3以下となっている。これにより、半導体チップの通電時に、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
 本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法によれば、p型半導体基板を用いたバイポーラ型炭化珪素半導体素子において、素子端部のキャリアの再結合を減少させ、順方向電圧増大を抑制することができるという効果を奏する。
図1は、実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。 図2は、実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。 図3は、キャリア密度の活性領域からの距離依存性を示すグラフである。 図4は、従来の炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。 図5は、実施の形態1にかかる炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。 図6は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その1)。 図7は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その2)。 図8は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その3)。 図9は、実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。 図10は、実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。 図11は、実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。 図12は、実施の形態5にかかる炭化珪素半導体装置の構造を示す断面図である。 図13は、実施の形態6にかかる炭化珪素半導体装置の構造を示す断面図である。 図14は、実施の形態7にかかる炭化珪素半導体装置の構造を示す断面図である。 図15は、実施の形態8にかかる炭化珪素半導体装置の構造を示す断面図である。 図16は、実施の形態9にかかる炭化珪素半導体装置の構造を示す断面図である。 図17は、実施の形態1~9にかかる炭化珪素半導体装置の他の構造を示す断面図である(その1)。 図18は、実施の形態1~9にかかる炭化珪素半導体装置の他の構造を示す断面図である(その2)。 図19は、実施の形態1~9にかかる炭化珪素半導体装置の他の構造を示す断面図である(その3)。 図20は、n型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。 図21は、n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示すグラフである。 図22は、n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。 図23は、p型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。 図24は、p型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。
 以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。+および-を含めたnやpの表記が同じ場合は近い濃度であることを示し濃度が同等とは限らない。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数をあらわしている。
(実施の形態1)
 本発明にかかる炭化珪素半導体装置として、nチャネル炭化珪素IGBT60を例に説明する。図1は、実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。
 図1に示すように、nチャネル炭化珪素IGBT60は、p型炭化珪素基板(第2導電型の半導体基板)1のおもて面に、p型コレクタ層(第2導電型の第1半導体層)2と、n型フィールドストップ層(第1導電型の第3半導体層)3と、n型ドリフト層(第1導電型の第2半導体層)4と、n型キャリア蓄積層5と、を順に積層してなる炭化珪素基体を用いて構成される。n型フィールドストップ層3とn型キャリア蓄積層5は設けないことも可能である。n型キャリア蓄積層5(n型キャリア蓄積層5を設けない場合は、n型ドリフト層4、以下(4)と略する)の表面にp型ベース領域(第2導電型の第1半導体領域)6が選択的に設けられる。
 p型炭化珪素基板1は、例えばアルミニウム(Al)がドーピングされた炭化珪素単結晶基板である。p型コレクタ層2は、p型炭化珪素基板1より低い不純物濃度で設けられた層である。n型フィールドストップ層3は、n型ドリフト層4よりも高い不純物濃度で設けられた層である。n型フィールドストップ層3により、オフ時に高抵抗のn型ドリフト層4からn型フィールドストップ層3中に伸びる空乏層が抑えられるため、n型ドリフト層4を薄くしてもp型コレクタ層2に空乏層が到達するパンチスルーを防ぐことができる。n型フィールドストップ層3は単層でも良いし多層でも良く、多層の場合は同じ設定膜厚と設定キャリア濃度で多層としても良いし、異なる設定膜厚と設定キャリア濃度で積層しても良い。
 ここで、IGBTは、伝導度変調効果によりオン抵抗が低いという利点を有する。従来、伝導度変調効果による低オン抵抗化を効率よく図るために、上述のようにn型ドリフト層4の内部の基体おもて面側に、n型ドリフト層4と同導電型で、かつn型ドリフト層4よりも不純物濃度の高いn型キャリア蓄積層5を設けている。n型キャリア蓄積層5が少数キャリアの障壁となり、少数キャリアの蓄積効果が高くなるため、コレクタ-エミッタ間の電流密度が増大され、伝導度変調効果が高くなる。
 炭化珪素基体のおもて面側(後述するp型ベース領域6側)には、MOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)構造(素子構造)が設けられている。MOSゲートは、p型ベース領域6、n+型エミッタ領域(第1導電型の第2半導体領域)7、p+型コンタクト領域8、ゲート絶縁膜9およびゲート電極10からなる。具体的には、p型ベース領域6は、n型キャリア蓄積層5(4)上に設けられ、イオン注入により形成される。p型ベース領域6の内部には、p型ベース領域6を深さ方向に貫通してn型キャリア蓄積層5(4)に達するn型のJFET領域(Junction Field Effect Transistor)18が設けられている。JFET領域18の不純物濃度は、n型ドリフト層4の不純物濃度よりも高い。JFET領域18は、JFET抵抗を低減させ、オン抵抗を低下させる機能を有する。p型ベース領域6の、JFET領域18以外の部分に、ゲート電極9に沿ってチャネルが形成される。
 また、p型ベース領域6の内部には、n+型エミッタ領域7が選択的に設けられている。p型ベース領域6の内部に、p+型コンタクト領域8を選択的に設けてもよい。この場合、n+型エミッタ領域7は、p型ベース領域6よりも深く設けられてもよい。n+型エミッタ領域7およびp+型コンタクト領域8は、JFET領域18と離して配置されている。p+型コンタクト領域8は、n+型エミッタ領域7よりもJFET領域18から離れた位置に配置され、かつn+型エミッタ領域7に接する。p型ベース領域6の、JFET領域18とn+型エミッタ領域7とに挟まれた部分の表面上には、JFET領域18の表面からn+型エミッタ領域7の表面にわたってゲート絶縁膜9が設けられている。ゲート絶縁膜9の表面上には、ゲート電極10が設けられている。ゲート電極10を覆うように層間絶縁膜(不図示)が設けられている。
 層間絶縁膜は、炭化珪素基体のおもて面上に設けられている。層間絶縁膜を深さ方向に貫通するコンタクトホールには、n+型エミッタ領域7およびp+型コンタクト領域8が露出されている。エミッタ電極11は、層間絶縁膜を深さ方向に貫通するコンタクトホールを介してn+型エミッタ領域7およびp+型コンタクト領域8に接するとともに、ゲート絶縁膜9および層間絶縁膜によってゲート電極10と電気的に絶縁されている。p+型コンタクト領域8が設けられていない場合、エミッタ電極11は、n+型エミッタ領域7およびp型ベース領域6に接する。炭化珪素基体の裏面(すなわちp型炭化珪素基板1の裏面)には、コレクタ電極12が設けられている。
 このような炭化珪素IGBTでは、ゲート電極10に正の電圧を印加した場合には、ゲート絶縁膜9と接するp型ベース領域6(p型炭化珪素チャネル層)の界面近傍付近に反転層が形成され、IGBTがオン状態になる。チャネルから流れ出た電子はp型ベース領域6間のn型キャリア蓄積層5から、n型ドリフト層4に到達すると、p型ベース領域6とn型ドリフト層4とp型コレクタ層2とで形成されるPNPトランジスタがオンされp型コレクタ層2からホール(空孔)がn型ドリフト層4に注入されて伝導変調により低抵抗化する。
 一方、逆方向印加時には、p型ベース領域6からn型キャリア蓄積層5を経由してn型ドリフト層4に空乏層が広がる。このとき、p型ベース領域6の角部あるいは側部に電界が集中するとアバランシェが発生し耐圧が下がる。
 図2は、実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。図2に示すように、エッジ終端領域52は活性領域51を囲むように配置されている。また、図1に示すように、p型ベース領域6およびJFET領域18は、オン時に電流の流れる活性領域51のみに設けられ、エッジ終端領域52に設けられていない。終端構造部53は、活性領域51を囲み、活性領域51からp型炭化珪素基板(半導体チップ)1の端部Tまでの領域である。
 図3は、キャリア密度の活性領域からの距離依存性を示すグラフである。図3において、横軸は、活性領域51からの位置を示し、単位はmmである。縦軸は、キャリア密度として正孔密度を示し、単位はcm-3である。また、図3は、正孔のキャリア寿命を10μsとした場合の電流100A/cm2、室温(25℃程度)でのシミュレーション結果である。
 ここで、キャリア密度が閾値1×1015/cm3を上回ると、n型ドリフト層4の端部Tからの積層欠陥(SF)が拡大してしまう。図3に示すように、チップの端部Tからの位置が1.2mm以下の領域は、通電時キャリア密度が1×1015/cm3以上となっている。これは、キャリア密度が電子密度である場合も同様の結果となる。このため、実施の形態1の炭化珪素半導体装置では、活性領域51からチップの端部Tまでの間を1.2mm以上とすることにより、チップの端部Tでの通電時の電子密度または正孔密度の小さい方の密度を、積層欠陥(SF)が拡大する閾値1×1015/cm3以下にしている。このため、半導体チップの通電時に、チップの端部Tからの積層欠陥(SF)の拡大を抑制することができる。また、高温、大電流に対応するため、活性領域51からチップの端部Tまでの間を1.5mm以上にすることが好ましく、2.0mm以上とすることがより好ましい。
 炭化珪素基板は、基板上に半導体層をエピタキシャル成長させるため、4度のオフ角が設けられている。オフ角が設けられている方向(オフ方向)は、<11-20>方向である。ここで、積層欠陥の拡張方向は、オフ方向と垂直な<1-100>方向であるため、少なくとも<1-100>方向で、活性領域51からチップの端部Tまでの間が1.2mm以上であることが必要である。
 図4は、従来の炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。図5は、実施の形態1にかかる炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。図4および図5では通電前の特性は実線で示し、通電後の特性は点線で示す。図4および図5において、横軸は順方向電圧を示し、単位はVであり、縦軸は順方向電流密度を示し、単位はA/cm2である。ここで、従来の炭化珪素半導体装置では、活性領域151からチップの端部Tまでの間が0.5mmであり、実施の形態1にかかる炭化珪素半導体装置では、活性領域51からチップの端部Tまでの間(活性領域51から終端構造部53の端部までの間)は1.2mm以上である。
 図4に示すように、従来の炭化珪素半導体装置では、素子端部において、キャリアの再結合が発生することにより、順方向電圧増大現象が発生している。図4では、通電前と通電後では、順方向電流密度100A/cm2で順方向電圧の増加ΔVfは5V以上となり、順方向電圧は大幅に増えている。一方、実施の形態1にかかる炭化珪素半導体装置では、素子端部において、キャリアの密度が1×1015/cm3以下であるため、キャリアの再結合が発生することがない。このため、順方向電流密度100A/cm2で順方向電圧の増加ΔVfは0.01V以下となり、順方向電圧にほとんど変化がなく、順方向電圧増大を抑制できている。
(実施の形態1にかかる炭化珪素半導体装置の製造方法)
 実施の形態1にかかる炭化珪素半導体装置の製造方法について、半導体材料として炭化珪素を用い、nチャネル型IGBTを作製(製造)する場合を例に説明する。図6~図8は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。
 まず、p型の炭化珪素でできた、p型炭化珪素基板1を用意する。次に、p型炭化珪素基板1の第1主面(おもて面)の上に、エピタキシャル成長により、p型コレクタ層2、n型フィールドストップ層3およびn型ドリフト層4を堆積させる。ここまでの状態が図6に記載される。
 次に、n型ドリフト層4の表面に、エピタキシャル成長により、n型キャリア蓄積層5を堆積させる。次に、n型キャリア蓄積層5の表面にp型ベース領域6の形成領域に対応する部分を開口したイオン注入用マスクを形成する。次に、このイオン注入用マスクをマスクとしてp型不純物イオン注入により、p型ベース領域6を形成する。n型キャリア蓄積層5のp型ベース領域6に挟まれた領域がJFET領域18となる。次に、イオン注入用マスクを除去する。
 次に、フォトリソグラフィおよびp型不純物のイオン注入によりp型ベース領域6の表面層に、p+型コンタクト領域8を選択的に形成する。次に、フォトリソグラフィおよびn型不純物のイオン注入により、p型ベース領域6の表面層に、n+型エミッタ領域7を選択的に形成する。次に、フォトリソグラフィおよびp型不純物のイオン注入により、エッジ終端領域52のp型ベース領域6の表面層に、p型終端領域13を選択的に形成する。
 上述したn+型エミッタ領域7およびp+型コンタクト領域8を形成するための各イオン注入の順序は種々変更可能である。次に、各イオン注入によってそれぞれ形成された拡散領域を活性化させるための活性化アニール(熱処理)を行う。ここまでの状態が図7に記載される。
 次に、炭化珪素基体のおもて面(p+型ベース領域6側の面)を熱酸化して、ゲート絶縁膜9を形成する。次に、ゲート絶縁膜9上にゲート電極10として、例えば多結晶シリコン(poly-Si)層を形成し、パターニングする。
 次に、ゲート電極10を覆うように層間絶縁膜(不図示)を形成し、パターニングしてから熱処理(リフロー)する。層間絶縁膜のパターニング時、コンタクトホールを形成するとともに、コンタクトホールに露出されたゲート絶縁膜9も除去して、n+型エミッタ領域7およびp+型コンタクト領域8を露出させる。ここまでの状態が図8に記載される。
 次に、例えばスパッタ法により、コンタクトホールを埋め込むようにエミッタ電極11を形成する。次に、p型炭化珪素基板1の裏面にコレクタ電極12を形成する。次に、エミッタ電極11上に、エミッタ配線(不図示)を形成する。次に、炭化珪素基体のおもて面に保護膜(不図示)を形成する。その後、炭化珪素基体をチップ状に切断(ダイシング)することで、図1に示したIGBTが完成する。
 以上、説明したように、実施の形態1によれば、チップの端部でのキャリア密度は、積層欠陥(SF)が拡大する閾値1×1015/cm3以下となっている、これにより、半導体チップの通電時に、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態2)
 図9は、実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態2では、活性領域51から端部Tまでの領域(活性領域51から終端構造部53の端部までの間)に低ライフタイム領域14をp型炭化珪素基板(半導体チップ)1の高さ(厚さ)方向全体に設けたものである。低ライフタイム領域14は、電子線照射することにより、結晶構造にダメージが設けられている。低ライフタイム領域14を設けることにより、チップの端部Tでのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。また、積層欠陥の拡張方向は、オフ方向と垂直な<1-100>方向であるため、少なくとも<1-100>方向で、活性領域51からチップの端部Tまでの領域に低ライフタイム領域14が設けられていることが必要である。
 また、実施の形態2にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後、p型炭化珪素基板1をダイシングする前に、p型炭化珪素基板1の活性領域51から端部Tまでの領域にチップのおもて側から電子線を照射することで、低ライフタイム領域14を形成することができる。
 以上、説明したように、実施の形態2によれば、活性領域から端部までに低ライフタイム領域が設けられている。これにより、チップの端部でのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態3)
 図10は、実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態3では、活性領域51から終端構造部53の端部までの間のp型炭化珪素基板1側のp型領域(p型炭化珪素基板1およびp型コレクタ層2)に接するn型領域(n型フィールドストップ層3またはn型ドリフト層4)に不純物添加領域15を設けたものである。図10は、n型フィールドストップ層3に不純物添加領域15を設けた例を示している。不純物添加領域15は、バナジウム(V)、チタン(Ti)、ホウ素(B)、窒素(N)などを添加することにより形成される。不純物添加領域15を設けることにより、イオン注入による結晶ダメージの導入、異種不純物ドープによる再結合中心の導入、又はオージェ再結合の促進により、チップの端部Tでのキャリアのライフタイムを短くすることができ、p型コレクタ層2からチップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。また、窒素の密度は1×1018/cm3以上であり、ホウ素の密度は1×1017/cm3以上であり、バナジウムまたはチタンの密度は1×1014/cm3以上であることが好ましい。
 また、実施の形態3にかかる炭化珪素半導体装置は、例えば、p型炭化珪素基板1側のp型領域に接するn型領域を形成した後に、n型領域にバナジウム(V)、チタン(Ti)、ホウ素(B)、窒素(N)などをイオン注入により添加することにより形成される。このn型領域の厚さは、0.1μm以上2μm以下であることが好ましい。
 以上、説明したように、実施の形態3によれば、活性領域から端部までのp型炭化珪素基板側のp型領域に接するn型領域に不純物添加領域が設けられている。これにより、チップの端部でのキャリアのライフタイムを短くすることができ、p型コレクタ層2からチップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態4)
 図11は、実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態4では、活性領域51から終端構造部53の端部までの間のp型炭化珪素基板1側のn型領域(n型フィールドストップ層3またはn型ドリフト層4)に接するp型領域(p型炭化珪素基板1およびp型コレクタ層2)にカウンタードープ領域16を設けたものである。図11は、p型コレクタ層2にカウンタードープ領域16を設けた形態を示している。カウンタードープ領域16は、p型領域へドナーとなる不純物をカウンタードープすることにより形成され、高抵抗な領域である。カウンタードープ領域16を設けることにより、p型コレクタ層2からチップの端部Tにキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
 また、実施の形態4にかかる炭化珪素半導体装置は、例えば、p型炭化珪素基板1側のn型領域に接するp型領域を形成した後に、p型領域へドナーとなる不純物、例えば窒素(N)などをイオン注入により添加することにより形成される。
 以上、説明したように、実施の形態4によれば、活性領域から端部までのp型炭化珪素基板側のn型領域に接するp型領域に高抵抗なカウンタードープ領域が設けられている。これにより、p型コレクタ層2からチップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態5)
 図12は、実施の形態5にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態5は、活性領域51から終端構造部53の端部までの間の領域Sにおいて、p型炭化珪素基板1およびコレクタ電極12が除去されたものである。これにより、除去された領域Sはオン時に電流が流れなくなるため、p型炭化珪素基板1からチップの端部Tにキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
 また、実施の形態5にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後のp型炭化珪素基板1をダイシングする前に、活性領域51から端部Tまでの領域Sのp型炭化珪素基板1およびコレクタ電極12を除去することにより形成することができる。
 以上、説明したように、実施の形態5によれば、活性領域から端部までの領域において、p型炭化珪素基板およびコレクタ電極が除去される。これにより、当該領域では、p型炭化珪素基板からチップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態6)
 図13は、実施の形態6にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態6では、活性領域51から終端構造部53の端部までの間の領域S’において、コレクタ電極12が除去されたものである。これにより、当該領域S’はオン時に電流が流れなくなるため、p型炭化珪素基板1からチップの端部Tにキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
 また、実施の形態6にかかる炭化珪素半導体装置は、例えば、p型炭化珪素基板1の裏面にコレクタ電極12を形成する際、活性領域51のみにコレクタ電極12を形成することで形成できる。また、素子構造を形成した後の半導体基板(半導体チップ)1をダイシングする前に、活性領域51から端部Tまでの領域S’のコレクタ電極12を除去することにより、形成することもできる。
 また、p型炭化珪素基板1をp型領域としてエピタキシャル成長で形成する場合、コレクタ電極12を形成する箇所に、オーミックコンタクトを形成するため、イオン注入を行っている。このイオン注入を活性領域51のみに行うことで、コレクタ電極12を全面に形成しても、活性領域51から端部Tまでの領域S’のコレクタ電極12を除去した形態と同様の効果が得られる。
 以上、説明したように、実施の形態6によれば、活性領域から端部までの領域において、コレクタ電極が除去される。これにより、当該領域では、p型炭化珪素基板からチップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態7)
 図14は、実施の形態7にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態7では、活性領域51から終端構造部53の端部までの間に、n型キャリア蓄積層5(4)を貫通して、p型コレクタ層2に達するベベルメサ17が設けられている。これにより、炭化珪素半導体装置の端部Tから、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域51に達することを防ぐことができる。
 また、実施の形態7にかかる炭化珪素半導体装置は、例えば、n型キャリア蓄積層5(4)を形成後に、ドライエッチングにより、ベベルメサ17を形成することにより、形成することもできる。
 以上、説明したように、実施の形態7によれば、活性領域から端部までの間に、ベベルメサが設けられている。これにより、炭化珪素半導体装置の端部から、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域に達することを防ぐことができる。このため、順方向電圧増大を抑制することができる。
(実施の形態8)
 図15は、実施の形態8にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態8では、活性領域51から終端構造部53の端部までの間の所定の領域S”が、p型炭化珪素基板1の高さ(厚さ)方向全体に、例えば10~30μm除去されている。これにより、端部Tに存在していた基底面転位が除去され、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域51に達することを防ぐことができる。
 また、実施の形態8にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後の半導体基板(半導体チップ)1をダイシングした後に、p型炭化珪素基板1の活性領域51から終端構造部53の端部までの間の所定の領域S”をドライエッチングにより除去することで形成することができる。
 以上、説明したように、実施の形態8によれば、端部から活性領域までの所定の領域が、p型炭化珪素基板の高さ(厚さ)方向全体に除去されている。これにより、端部に存在していた基底面転位が除去され、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域に達することを防ぐことができる。このため、順方向電圧増大を抑制することができる。
(実施の形態9)
 図16は、実施の形態9にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態9では、活性領域51から終端構造部53の端部までの間のp型炭化珪素基板1の高さ(厚さ)方向全体に低ライフタイム領域14が設けられている。低ライフタイム領域14は、プロトン(H+)を照射することにより、結晶構造にダメージが設けられている。低ライフタイム領域14を設けることにより、チップの端部Tでのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
 また、実施の形態9にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後のp型炭化珪素基板1をダイシングした後に、p型炭化珪素基板1の活性領域51から端部Tまでの領域に側面側(図16の矢印V’側)からプロトン(H+)を照射することで、低ライフタイム領域14を形成することができる。
 以上、説明したように、実施の形態9によれば、活性領域から端部までに低ライフタイム領域が設けられている。これにより、チップの端部でのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
 以上、実施の形態1~9では、nチャネル炭化珪素IGBT60を例に説明したが、実施の形態1~9は他の構造の炭化珪素半導体装置にも適用可能である。図17~19は、実施の形態1~9にかかる炭化珪素半導体装置の他の構造を示す断面図である。
 図17は、PiNダイオード61の例を示す。PiNダイオード61は、図17に示すように、p型炭化珪素基板1のおもて面上にエピタキシャル成長により、p型バッファ層20、p型ドリフト層21、n型カソード層22を順に積層してなる炭化珪素基体を用いて構成される。n型カソード層22上にカソード電極23が設けられ、裏面にアノード24が設けられている。
 n型カソード層22は、オン時に電流の流れる活性領域のみに設けられ、終端構造部53に設けられていない。終端構造部53には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたn型終端領域25からなる耐圧構造が配置される。
 図18は、MOSFET62の例を示す。図18に示すように、MOSFET62は、p型半導体基板1のおもて面上にエピタキシャル成長により、p型フィールドストップ層26、p型ドリフト層21、p型キャリア蓄積層27を順に積層してなる炭化珪素基体を用いて構成される。n型キャリア蓄積層27の内部にn型ベース領域28が設けられる。また、n型ベース領域28の内部に、p+型ソース領域29およびn+型コンタクト領域30が設けられている。n型ベース領域28の内部には、n型ベース領域28を深さ方向に貫通してp型キャリア蓄積層27に達するp型のJFET領域18が設けられている。
 また、n型ベース領域28およびp+型ソース領域29の表面にわたってゲート絶縁膜9が設けられている。ゲート絶縁膜9の表面上には、ゲート電極10が設けられており、ゲート電極10を覆うように層間絶縁膜(不図示)が設けられている。炭化珪素基体のおもて面側に、p+型ソース領域29およびn+型コンタクト領域30に接するソース電極31が設けられ、ソース電極31上にソース配線(不図示)が設けられ、ソース配線上に保護膜(不図示)が設けられている。また、裏面にドレイン電極32が設けられている。
 n型ベース領域28およびJFET領域18は、オン時に電流の流れる活性領域のみに設けられ、終端構造部53に設けられていない。終端構造部53には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたn型終端領域25からなる耐圧構造が配置される。
 図19は、サイリスタ63の例を示す。また、GTOやGCT(Gate Commutated Turn-off thyristor)でも同様である。図19に示すように、サイリスタ63は、p型半導体基板1のおもて面上にエピタキシャル成長により、p型バッファ層20、n型バッファ層34、n型ドリフト層4、p型ゲート層35、n型カソード層22を順に積層してなる炭化珪素基体を用いて構成される。p型ゲート層35の内部にp+型コンタクト領域8が設けられ、n型カソード層22を深さ方向に貫通するコンタクトホールには、p+型コンタクト領域8が露出されている。
 また、p+型コンタクト領域8の表面上には、ゲート電極10が設けられており、ゲート電極10を覆うように層間絶縁膜(不図示)が設けられている。炭化珪素基体のおもて面側に、n型カソード層に接するカソード電極23が設けられている。また、裏面にアノード電極24が設けられている。
 p型ゲート層35は、オン時に電流の流れる活性領域のみに設けられ、終端構造部53に設けられていない。終端構造部53には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたp型終端領域13からなる耐圧構造が配置される。
 以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。
 以上のように、本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法は、インバータなどの電力変換装置や種々の産業用機械などの電源装置や自動車のイグナイタなどに使用されるパワー半導体装置に有用である。
 1 p型炭化珪素基板
 2 p型コレクタ層
 3 n型フィールドストップ層
 4 n型ドリフト層
 5 n型キャリア蓄積層
 6 p型ベース領域
 7 n+型エミッタ領域
 8 p+型コンタクト領域
 9 ゲート絶縁膜
10 ゲート電極
11 エミッタ電極
12 コレクタ電極
13 p型終端領域
14 低ライフタイム領域
15 不純物添加領域
16 カウンタードープ領域
17 ベベルメサ
18 JFET領域
20 p型バッファ層
21 p型ドリフト層
22 n型カソード層
23 カソード電極
24 アノード電極
25 n型終端領域
26 p型フィールドストップ層
27 p型キャリア蓄積層
28 n型ベース領域
29 p+型ソース領域
30 n+型コンタクト領域
31 ソース電極
32 ドレイン電極
34、134 n型バッファ層
35 p型ゲート層
51、151 活性領域
52、152 エッジ終端領域
53 終端構造部
60 nチャネル型IGBT
61、161 PiNダイオード
62 MOSFET
63 サイリスタ
101 n型炭化珪素基板
102 n型バッファ層
103 n型ドリフト層
104 p型アノード層
105 アノード電極
106 カソード電極
107 p型終端領域
111 p型炭化珪素基板
112 p型バッファ層
113 p型ドリフト層
114 n型カソード層
115 カソード電極
116 アノード電極
117 n型終端領域

Claims (18)

  1.  電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する炭化珪素半導体装置であって、
     第2導電型の半導体基板と、
     前記半導体基板の一方の主面側に設けられた第2導電型の第1半導体層と、
     前記第1半導体層の、前記半導体基板に対して反対側の表面に設けられた第1導電型の第2半導体層と、
     前記第2半導体層の、前記半導体基板に対して反対側の表面層に設けられた第2導電型の第1半導体領域と、
     前記第1半導体領域の、前記半導体基板に対して反対側の表面層に設けられた前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域と、
     前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面上に設けられたゲート絶縁膜と、
     前記ゲート絶縁膜上に設けられたゲート電極と、
     前記第1半導体領域および前記第2半導体領域に接する第1電極と、
     前記第1半導体層の他方の主面側に設けられた第2電極と、
     を備え、
     前記終端構造部における前記第2半導体層の端部の通電時の電子密度または正孔の密度の小さい方の密度は、1×1015/cm3以下であることを特徴とする炭化珪素半導体装置。
  2.  前記終端構造部における前記第2半導体層の端部の通電時の正孔の密度は、1×1015/cm3以下であることを特徴とする請求項1に記載の炭化珪素半導体装置。
  3.  前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする請求項1または2に記載の炭化珪素半導体装置。
  4.  前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする請求項1または2に記載の炭化珪素半導体装置。
  5.  前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  6.  前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  7.  前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、
     前記終端構造部における前記第3半導体層に、バナジウム、チタン、ホウ素または窒素が添加されていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  8.  前記窒素の密度は1×1018/cm3以上であり、前記ホウ素の密度は1×1017/cm3以上であり、前記バナジウムまたは前記チタンの密度は1×1014/cm3以上であることを特徴とする請求項7に記載の炭化珪素半導体装置。
  9.  前記第3半導体層の厚さは、0.1μm以上2μm以下であることを特徴とする請求項8に記載の炭化珪素半導体装置。
  10.  前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、
     前記終端構造部における前記第3半導体層は、結晶構造にダメージが設けられていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  11.  前記終端構造部における前記第1半導体層に、窒素が添加されていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  12.  前記半導体基板および前記第2電極は、前記活性領域のみに設けられていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  13.  前記第2電極は、前記活性領域のみに設けられていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  14.  前記終端構造部に、前記第2半導体層の、前記半導体基板に対して反対側の表面から、前記第1半導体層に達する溝が設けられていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  15.  前記終端構造部の端部から前記活性領域までの所定の領域に基底面転位を有していないことを特徴とする請求項1に記載の炭化珪素半導体装置。
  16.  前記終端構造部の端部から前記活性領域までの所定の領域は、結晶構造にダメージが設けられていることを特徴とする請求項1に記載の炭化珪素半導体装置。
  17.  電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する炭化珪素半導体装置の製造方法であって、
     第2導電型の半導体基板の一方の主面側に第2導電型の第1半導体層を形成する第1工程と、
     前記第1半導体層の、前記半導体基板に対して反対側の表面に第1導電型の第2半導体層を形成する第2工程と、
     前記第2半導体層の、前記半導体基板に対して反対側の表面層に第2導電型の第1半導体領域を形成する第3工程と、
     前記第1半導体領域の、前記半導体基板に対して反対側の表面層に前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域を形成する第4工程と、
     前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面にゲート絶縁膜を形成する第5工程と、
     前記ゲート絶縁膜上にゲート電極を形成する第6工程と、
     前記第1半導体領域および前記第2半導体領域に接する第1電極を形成する第7工程と、
     前記第1半導体層の他方の主面側に第2電極を形成する第8工程と、
     を含み、
     前記終端構造部における前記第2半導体層の端部の正孔の密度を、1×1015/cm3以下に形成することを特徴とする炭化珪素半導体装置の製造方法。
  18.  前記第8工程より後に、前記終端構造部の端部から前記活性領域までの所定の領域をドライエッチングにより除去する第9工程をさらに含むことを特徴とする請求項17に記載の炭化珪素半導体装置の製造方法。
PCT/JP2020/020808 2019-07-11 2020-05-26 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 WO2021005903A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020002222.6T DE112020002222T5 (de) 2019-07-11 2020-05-26 Siliziumkarbid-halbleitervorrichtung und verfahren zum herstellen einer siliziumkarbid-halbleitervorrichtung
CN202080039260.3A CN113892189A (zh) 2019-07-11 2020-05-26 碳化硅半导体装置及碳化硅半导体装置的制造方法
US17/538,331 US20220123112A1 (en) 2019-07-11 2021-11-30 Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019129407A JP7410478B2 (ja) 2019-07-11 2019-07-11 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2019-129407 2019-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/538,331 Continuation US20220123112A1 (en) 2019-07-11 2021-11-30 Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
WO2021005903A1 true WO2021005903A1 (ja) 2021-01-14

Family

ID=74113999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020808 WO2021005903A1 (ja) 2019-07-11 2020-05-26 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Country Status (5)

Country Link
US (1) US20220123112A1 (ja)
JP (1) JP7410478B2 (ja)
CN (1) CN113892189A (ja)
DE (1) DE112020002222T5 (ja)
WO (1) WO2021005903A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973116B2 (en) 2021-05-10 2024-04-30 Kabushiki Kaisha Toshiba Semiconductor device
CN114783873B (zh) * 2022-06-22 2022-10-14 泰科天润半导体科技(北京)有限公司 具有两层外延的碳化硅凹槽mos栅控晶闸管的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004547A (ja) * 2007-06-21 2009-01-08 Toshiba Corp 半導体装置
WO2010131573A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 絶縁ゲート型バイポーラトランジスタ
WO2014030457A1 (ja) * 2012-08-22 2014-02-27 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2014229794A (ja) * 2013-05-23 2014-12-08 トヨタ自動車株式会社 Igbt
JP2018125490A (ja) * 2017-02-03 2018-08-09 株式会社デンソー 半導体装置
JP2018137483A (ja) * 2018-05-23 2018-08-30 Sppテクノロジーズ株式会社 プラズマ加工方法及びこの方法を用いて製造された基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044117B2 (ja) 2005-12-14 2012-10-10 関西電力株式会社 炭化珪素バイポーラ型半導体装置
JP2012004318A (ja) 2010-06-16 2012-01-05 Kansai Electric Power Co Inc:The バイポーラ半導体素子
JP6904774B2 (ja) * 2017-04-28 2021-07-21 富士電機株式会社 炭化珪素エピタキシャルウェハ、炭化珪素絶縁ゲート型バイポーラトランジスタ及びこれらの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004547A (ja) * 2007-06-21 2009-01-08 Toshiba Corp 半導体装置
WO2010131573A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 絶縁ゲート型バイポーラトランジスタ
WO2014030457A1 (ja) * 2012-08-22 2014-02-27 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2014229794A (ja) * 2013-05-23 2014-12-08 トヨタ自動車株式会社 Igbt
JP2018125490A (ja) * 2017-02-03 2018-08-09 株式会社デンソー 半導体装置
JP2018137483A (ja) * 2018-05-23 2018-08-30 Sppテクノロジーズ株式会社 プラズマ加工方法及びこの方法を用いて製造された基板

Also Published As

Publication number Publication date
DE112020002222T5 (de) 2022-02-17
US20220123112A1 (en) 2022-04-21
CN113892189A (zh) 2022-01-04
JP2021015880A (ja) 2021-02-12
JP7410478B2 (ja) 2024-01-10

Similar Documents

Publication Publication Date Title
JP4967200B2 (ja) 逆阻止型igbtを逆並列に接続した双方向igbt
JP5606529B2 (ja) 電力用半導体装置
JP6844163B2 (ja) 炭化珪素半導体装置
US11063122B2 (en) Silicon carbide semiconductor device and power conversion device
JP6988175B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6933274B2 (ja) 炭化珪素半導体装置および電力変換装置
JP6667774B1 (ja) パワー半導体素子及びその製造方法
US10516017B2 (en) Semiconductor device, and manufacturing method for same
JP7263740B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US7262478B2 (en) Semiconductor device and manufacturing method thereof
JP2011061064A (ja) 電力用半導体装置
JPWO2018037701A1 (ja) 半導体装置
US20220123112A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2004247593A (ja) 半導体装置及びその製造方法
JP5028749B2 (ja) 半導体装置の製造方法
JP3885616B2 (ja) 半導体装置
JP4573490B2 (ja) 逆阻止型igbtおよびその製造方法
US20050184317A1 (en) Semiconductor device
WO2019049251A1 (ja) 半導体装置
JP2017092364A (ja) 半導体装置および半導体装置の製造方法
JP7396000B2 (ja) 炭化珪素半導体装置
JP7333509B2 (ja) 炭化珪素半導体装置
JPWO2013035300A1 (ja) 半導体素子、半導体装置、およびその製造方法
WO2023100454A1 (ja) 炭化珪素半導体装置及びその製造方法
JP3214236B2 (ja) 半導体装置及び電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836963

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836963

Country of ref document: EP

Kind code of ref document: A1