WO2013125661A1 - 多孔質支持体―ゼオライト膜複合体 - Google Patents
多孔質支持体―ゼオライト膜複合体 Download PDFInfo
- Publication number
- WO2013125661A1 WO2013125661A1 PCT/JP2013/054417 JP2013054417W WO2013125661A1 WO 2013125661 A1 WO2013125661 A1 WO 2013125661A1 JP 2013054417 W JP2013054417 W JP 2013054417W WO 2013125661 A1 WO2013125661 A1 WO 2013125661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite membrane
- porous support
- zeolite
- membrane composite
- water
- Prior art date
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 599
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 598
- 239000012528 membrane Substances 0.000 title claims abstract description 551
- 239000002131 composite material Substances 0.000 title claims abstract description 267
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 525
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 264
- 229910001868 water Inorganic materials 0.000 claims abstract description 245
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 165
- 238000001179 sorption measurement Methods 0.000 claims abstract description 58
- 238000007654 immersion Methods 0.000 claims abstract description 34
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 139
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 131
- 238000000926 separation method Methods 0.000 claims description 127
- 239000000203 mixture Substances 0.000 claims description 106
- 238000000034 method Methods 0.000 claims description 91
- 150000001875 compounds Chemical class 0.000 claims description 83
- 239000007788 liquid Substances 0.000 claims description 52
- 239000000126 substance Substances 0.000 claims description 47
- 239000007789 gas Substances 0.000 claims description 33
- 150000002894 organic compounds Chemical class 0.000 claims description 30
- 239000011148 porous material Substances 0.000 claims description 30
- 238000002441 X-ray diffraction Methods 0.000 claims description 29
- 239000001301 oxygen Substances 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 27
- 239000011541 reaction mixture Substances 0.000 claims description 26
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 17
- -1 nitrogen-containing organic compounds Chemical class 0.000 claims description 17
- 150000007524 organic acids Chemical class 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 8
- 235000005985 organic acids Nutrition 0.000 claims description 6
- 150000002926 oxygen Chemical class 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 4
- 150000002576 ketones Chemical class 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 150000001299 aldehydes Chemical class 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 24
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 11
- 239000000377 silicon dioxide Substances 0.000 abstract description 8
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 125000004430 oxygen atom Chemical group O* 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000006884 silylation reaction Methods 0.000 description 67
- 230000000052 comparative effect Effects 0.000 description 59
- 239000013078 crystal Substances 0.000 description 56
- 235000011054 acetic acid Nutrition 0.000 description 53
- 239000012466 permeate Substances 0.000 description 52
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 39
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 37
- 230000004907 flux Effects 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 28
- 239000002904 solvent Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 26
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 25
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 24
- 239000007864 aqueous solution Substances 0.000 description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 239000011259 mixed solution Substances 0.000 description 23
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 20
- 238000005259 measurement Methods 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 20
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 18
- 239000002253 acid Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000005373 pervaporation Methods 0.000 description 16
- 150000001768 cations Chemical class 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 12
- 230000035699 permeability Effects 0.000 description 11
- 239000004809 Teflon Substances 0.000 description 10
- 229920006362 Teflon® Polymers 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 238000010304 firing Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 229910000323 aluminium silicate Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 235000019253 formic acid Nutrition 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052863 mullite Inorganic materials 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000006200 vaporizer Substances 0.000 description 6
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000007522 mineralic acids Chemical class 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920005597 polymer membrane Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910006358 Si—OH Inorganic materials 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical group [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000012454 non-polar solvent Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 108010085603 SFLLRNPND Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 150000002085 enols Chemical class 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- SYJRVVFAAIUVDH-UHFFFAOYSA-N ipa isopropanol Chemical compound CC(C)O.CC(C)O SYJRVVFAAIUVDH-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 150000002828 nitro derivatives Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000005371 permeation separation Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/028—Molecular sieves
- B01D71/0281—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0051—Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/026—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/70—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
- C07C37/82—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/47—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/10—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D2053/221—Devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/24—Use of template or surface directing agents [SDA]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/40—Details relating to membrane preparation in-situ membrane formation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
- B01D2325/02834—Pore size more than 0.1 and up to 1 µm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/12—Adsorbents being present on the surface of the membranes or in the pores
Definitions
- the present invention relates to a porous support-zeolite membrane composite, and more particularly to a porous support-zeolite membrane composite in which a zeolite membrane having specific physicochemical properties is formed on an inorganic porous support.
- the porous support-zeolite membrane composite of the present invention is capable of permeating and separating a highly permeable substance from a gas or liquid mixture consisting of a plurality of components and concentrating the low permeable substance. It is.
- separation or concentration of a gas or liquid mixture containing an organic compound is performed by distillation, azeotropic distillation, solvent extraction / distillation, adsorbent, etc., depending on the properties of the target substance. .
- these methods have drawbacks that they require a lot of energy or have a limited application range for separation and concentration.
- membrane separation and concentration methods using membranes such as polymer membranes and zeolite membranes have been proposed as separation methods instead of these methods.
- Polymer membranes such as flat membranes and hollow fiber membranes are excellent in processability, but have the disadvantage of low heat resistance.
- polymer membranes have low chemical resistance, and many of them swell when contacted with organic compounds such as organic solvents and organic acids, so that the range of application for separation and concentration is limited.
- the zeolite membrane is usually used for separation and concentration as a zeolite membrane composite in which zeolite is formed into a membrane on a support.
- the organic compound can be separated and concentrated by bringing a mixture of the organic compound and water into contact with the zeolite membrane composite and selectively permeating water. Separation and concentration using membranes of inorganic materials can reduce the amount of energy used compared to separation by distillation or adsorbent, and can be separated and concentrated in a wider temperature range than polymer membranes. It can also be applied to the separation of mixtures.
- a separation method using a zeolite membrane for example, a method of selectively permeating water using an A-type zeolite membrane composite to concentrate alcohol (Patent Document 1), and a mordenite-type zeolite membrane composite using alcohol
- Patent Document 2 a method of selectively permeating water from a mixed system of water
- Patent Document 3 A method for separating and concentrating acetic acid (Patent Document 3) has been proposed.
- the mordenite type zeolite membrane composite of Patent Document 2 and the ferrierite type zeolite membrane composite of Patent Document 3 have a small permeation flux, and the amount of treatment is insufficient for practical use. is there.
- the de-Al reaction proceeds under acidic conditions, the separation performance changes as the use time becomes longer, and use under conditions where an organic acid is present is not desirable.
- the A-type zeolite of Patent Document 1 has no acid resistance or water resistance, and its application range is limited.
- An object of the present invention is to solve the problems of the prior art, and in the separation and concentration using an inorganic material separation membrane, a porous support-zeolite membrane composite that achieves both a practically sufficient throughput and separation performance,
- An object of the present invention is to provide a separation and concentration method using a zeolite membrane composite.
- the inventors of the present invention can achieve both practically sufficient throughput and separation performance if a certain type of zeolite is formed into a film on an inorganic porous support. It has been found that a zeolite membrane composite can be obtained, and previously proposed (International Publication No. 2010/098473, Japanese Unexamined Patent Publication No. 2011-112040, Japanese Unexamined Patent Publication No. 2011-121045, Japanese Unexamined Patent Publication No. 2011-2011. 121854). As a result of further investigations, the present inventors have controlled the properties of the zeolite membrane surface on the porous support to make the zeolite membrane on the porous support have specific physicochemical properties. The present inventors have found that the separation performance of the zeolite membrane is dramatically improved. The present invention has been accomplished based on these findings.
- the gist of the present invention resides in the following (1) to (15).
- the amount of water adsorption of the porous support-zeolite membrane composite at a relative pressure of 0.8 determined from the water vapor adsorption isotherm of the porous support-zeolite membrane composite is equal to the porous support-zeolite membrane composite.
- the porous support according to (1) which is 82% or more of the water adsorption amount of the porous support-zeolite membrane composite under the same conditions as described above after being immersed in a 90% by mass aqueous acetic acid solution for 1 week at room temperature. -Zeolite membrane composite.
- a porous support-zeolite membrane composite in which a zeolite membrane is formed on an inorganic porous support, wherein the zeolite membrane contains a zeolite having a pore structure of an oxygen 8-membered ring or less The amount of water adsorption of the porous support-zeolite membrane composite at a relative pressure of 0.8 obtained from the water vapor adsorption isotherm of the porous support-zeolite membrane composite was determined as follows. A porous support-zeolite membrane composite that is 82% or more of the water adsorption amount of the porous support-zeolite membrane composite under the same conditions as described above after immersion for 1 week.
- the porous support-zeolite membrane composite according to any one of (8). (10) In any one of (1) to (9), the zeolite membrane is formed by hydrothermal synthesis using an aqueous reaction mixture containing a Si element source, an Al element source, and an alkali source. The porous support-zeolite membrane composite described. (11) The porous support-zeolite membrane composite according to (10), wherein the alkali source contains at least potassium.
- the porous membrane when a specific substance is separated and concentrated from a gas or liquid mixture composed of a plurality of components, the porous membrane has a zeolite membrane that has a sufficiently large processing amount for practical use and has sufficient separation performance.
- a solid support-zeolite membrane composite is provided.
- FIG. 1 is a schematic view of a measuring apparatus used in the pervaporation method.
- FIG. 2 is a schematic view of a measuring apparatus used in the vapor permeation method.
- the porous support-zeolite membrane composite of the present invention is a porous support-zeolite membrane composite formed by forming a zeolite membrane on an inorganic porous support, and the zeolite membrane has an oxygen 8-membered ring or less.
- the porous support-zeolite membrane composite of another aspect of the present invention is a porous support-zeolite membrane composite in which a zeolite membrane is formed on an inorganic porous support, wherein the zeolite membrane is Water adsorption of a porous support-zeolite membrane composite at a relative pressure of 0.8 obtained from a water vapor adsorption isotherm of the porous support-zeolite membrane composite containing a zeolite having a pore structure of an oxygen 8-membered ring or less It is characterized in that the amount is 82% or more of the water adsorption amount of the porous support-zeolite membrane composite after the zeolite membrane composite is immersed in a 90% by mass acetic acid aqueous solution at room temperature for 1 week.
- porous support-zeolite membrane composite is referred to as “zeolite membrane composite” or “membrane composite”
- inorganic porous support is referred to as “porous support” or “ It may be abbreviated as “support”.
- the porous support has a chemical stability that allows the zeolite to be crystallized into a film on the surface thereof, and is a support made of an inorganic porous material (inorganic porous support). It can be anything.
- sintered ceramics ceramics support
- ceramics support such as silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide
- sintered metals such as iron, bronze, and stainless steel, glass And carbon moldings.
- porous supports there are inorganic porous supports (ceramic supports) including sintered ceramics, which are solid materials whose basic components or most of them are composed of inorganic nonmetallic substances. preferable. If this support is used, a part of the support is zeoliticized during the synthesis of the zeolite membrane, thereby improving the adhesion at the interface.
- ceramic supports including sintered ceramics, which are solid materials whose basic components or most of them are composed of inorganic nonmetallic substances.
- this support is used, a part of the support is zeoliticized during the synthesis of the zeolite membrane, thereby improving the adhesion at the interface.
- Ceramic support containing silica, ⁇ -alumina, ⁇ -alumina, mullite, zirconia, titania, yttria, silicon nitride, silicon carbide, and the like.
- an inorganic porous support containing at least one of alumina, silica, and mullite is preferable. When these supports are used, partial zeolitization is easy, so that the bond between the support and the zeolite becomes strong, and a dense membrane with high separation performance is easily formed.
- the shape of the porous support is not particularly limited as long as it can effectively separate a gas mixture or a liquid mixture, and specifically, for example, a flat plate shape, a tubular shape, a cylindrical shape, a cylindrical shape, a prismatic shape, or the like. Honeycomb-like ones having a large number of pores, monoliths and the like can be mentioned.
- zeolite is formed into a film on such a porous support, that is, on the surface of the support.
- the surface of the support may be any surface or a plurality of surfaces depending on the shape of the support. For example, in the case of a cylindrical tube support, it may be the outer surface or the inner surface, and in some cases both the outer and inner surfaces.
- the average pore diameter on the surface of the porous support is not particularly limited, but those having a controlled pore diameter are preferred.
- the average pore diameter on the surface of the support is usually 0.02 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. If the average pore diameter is not less than the above lower limit value, the amount of permeation tends to be large, and if it is not more than the above upper limit value, the strength of the support itself is sufficient, and the proportion of pores on the support surface is reduced to be dense. There is a tendency that a zeolite membrane is easily formed.
- a method for measuring the average pore diameter on the surface of the porous support is a mercury intrusion method.
- the average thickness (wall thickness) of the porous support is usually 0.1 mm or more, preferably 0.3 mm or more, more preferably 0.5 mm or more, usually 7 mm or less, preferably 5 mm or less, more preferably 3 mm. It is as follows.
- the support is used for the purpose of giving mechanical strength to the zeolite membrane. If the average thickness of the support is not less than the above lower limit, the zeolite membrane composite has sufficient strength, and the zeolite membrane composite There is a tendency to be strong against shock and vibration. When the average thickness of the support is not more than the above upper limit value, the diffusion of the permeated substance tends to be improved and the permeation flux tends to be high.
- the porosity of the porous support is usually 20% or more, preferably 25% or more, more preferably 30% or more, and usually 70% or less, preferably 60% or less, more preferably 50% or less.
- the porosity of the support influences the permeation flow rate when separating the gas or liquid, and if it is above the lower limit value, there is a tendency not to inhibit the diffusion of the permeate. There is a tendency to improve.
- a method for measuring the porosity of the porous support is a mercury intrusion method.
- the surface of the porous support is preferably smooth, and the surface may be polished with a file or the like as necessary.
- the surface of the porous support means the surface portion of the inorganic porous support that crystallizes the zeolite, and any surface of each shape may be used as long as the surface is a plurality of surfaces. Also good.
- a cylindrical tube support it may be the outer surface or the inner surface, and in some cases both the outer and inner surfaces.
- a zeolite membrane is formed on the porous support to obtain a zeolite membrane composite.
- an inorganic binder such as silica or alumina, an organic compound such as a polymer, a silylating agent for modifying the zeolite surface, or the like may be included as necessary in addition to zeolite.
- the zeolite membrane in the present invention may partially contain an amorphous component or the like, but a zeolite membrane substantially consisting only of zeolite is preferable.
- the thickness of the zeolite membrane is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.6 ⁇ m or more, more preferably 1.0 ⁇ m or more, and usually 100 ⁇ m or less, preferably 60 ⁇ m or less, more preferably 20 ⁇ m or less. It is. When the film thickness is not more than the above upper limit value, the amount of permeation tends to increase, and when it is not less than the above lower limit value, the selectivity tends to be improved and the film strength tends to be improved.
- the particle diameter of the zeolite is not particularly limited, but is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more, and the upper limit is the thickness of the film or less. If it is at least the above lower limit value, the grain boundary tends to be small and the permeation selectivity tends to be improved. Furthermore, it is particularly preferred that the zeolite particle size is the same as the membrane thickness. When the zeolite particle size is the same as the membrane thickness, the zeolite grain boundary is smallest. Zeolite membranes obtained by hydrothermal synthesis described later are particularly preferred because the zeolite particle size and membrane thickness may be the same.
- the shape of the zeolite membrane composite is not particularly limited, and any shape such as a tubular shape, a hollow fiber shape, a monolith type, and a honeycomb type can be adopted.
- the size is not particularly limited.
- a tubular shape a length of 2 cm to 200 cm, an inner diameter of 0.05 cm to 2 cm, and a thickness of 0.5 mm to 4 mm are practical and preferable.
- One of the separation functions of the zeolite membrane is separation as a molecular sieve, and suitably separates gas molecules or liquid molecules having a size larger than the effective pore diameter of the zeolite used and gas or liquid molecules smaller than that. Can do. There is no upper limit to the molecules used for separation, but the size of the molecules is usually about 100 mm or less.
- the zeolite membrane has a SiO 2 / Al 2 O 3 molar ratio on the surface of the zeolite membrane (hereinafter sometimes referred to as “SAR on the membrane surface”), and the SiO 2 / Al 2 of the zeolite membrane itself. It is preferably 20 or more larger than the O 3 molar ratio (hereinafter sometimes referred to as “SAR of the film itself”).
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself is a numerical value obtained by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX).
- SEM-EDX scanning electron microscope-energy dispersive X-ray spectroscopy
- information of only a film of several microns can be obtained by measuring the acceleration voltage of X-rays at about 10 kV. Since the zeolite membrane is uniformly formed, the SAR of the membrane itself can be obtained by this measurement.
- the SiO 2 / Al 2 O 3 molar ratio on the zeolite membrane surface is a numerical value obtained by X-ray photoelectron spectroscopy (XPS).
- XPS is an analysis method for obtaining information on the film surface, and the SAR on the film surface can be obtained by this analysis method.
- the zeolite is preferably an aluminosilicate, and the zeolite membrane itself has a SiO 2 / Al 2 O 3 molar ratio of preferably 5 or more, more preferably 8 or more, still more preferably 10 or more, and particularly preferably 12 or more. Preferably, it is 2000 or less, More preferably, it is 1000 or less, More preferably, it is 500 or less, Most preferably, it is 100 or less. If the SAR of the membrane itself is not less than the above lower limit value, the durability tends to be improved. If the SAR is not more than the above upper limit value, the permeation flux tends to increase because the hydrophobicity is not too strong.
- the SiO 2 / Al 2 O 3 molar ratio on the zeolite membrane surface is preferably 25 or more, more preferably 28 or more, still more preferably 30 or more, particularly preferably 32 or more, and preferably 3000 or less, more preferably 2000 or less, more preferably 1000 or less, particularly preferably 500 or less.
- the SAR on the membrane surface is not less than the above lower limit value, the durability tends to be improved.
- the SAR is not more than the above upper limit value, the permeation flux tends to increase because the hydrophobicity is not too strong.
- the SAR on the film surface is preferably 20 or more larger than the SAR on the film itself, but this value (a value obtained by subtracting the SAR on the film itself from the SAR on the film surface) is more preferably 22 or more, More preferably, it is 25 or more, and particularly preferably 30 or more.
- the upper limit of this value is not particularly limited, but is usually 1000 or less, preferably 700 or less, more preferably 500 or less, and particularly preferably 400 or less.
- the hydrophilicity of the membrane surface is sufficiently improved and the separation performance is improved.
- the water adsorption amount of the porous support-zeolite membrane composite at a relative pressure of 0.8 determined from the water vapor adsorption isotherm of the porous support-zeolite membrane composite (hereinafter referred to as “before acetic acid immersion”).
- the amount of water adsorbed on the porous support-zeolite membrane composite after the porous support-zeolite membrane composite was immersed in a 90% by mass acetic acid aqueous solution for 1 week at room temperature. It is preferably 82% or more of the amount (hereinafter, this may be referred to as “water adsorption amount after acetic acid immersion”).
- the adsorption isotherm is a graph obtained by measuring changes in pressure and the amount of adsorption while keeping the material at a constant temperature.
- the horizontal axis takes a value of 0 to 1 as a relative pressure (P / P 0 ) obtained by dividing the equilibrium pressure by the saturated vapor pressure.
- the water (water vapor) adsorption amount (g / g) on the porous support-zeolite membrane composite at a relative pressure of 0.8 is used as an index.
- the room temperature is a temperature when the laboratory is placed in a state where strict temperature control is not performed. In measuring the influence of the zeolite membrane composite on the amount of water adsorbed by acetic acid immersion, strict temperature control of the aqueous acetic acid solution is not particularly required, but the room temperature is usually 15 ° C.
- the porous support such as the ceramic sintered body and sintered metal described above has a very small amount of water adsorption as is generally known. Specifically, the adsorption amount of water per 1 g of the porous support at a relative pressure of 0.8 of the mullite tube PM manufactured by Nikkato is 0.00108 g. As shown in Comparative Example 6 described later, the mullite tube PM- The CHA-type zeolite membrane composite has a water adsorption of 0.01423 g at a relative pressure of 0.8, which is 1/10 or less. That is, the water adsorption amount of the porous support-zeolite membrane composite may be substantially regarded as the water adsorption amount of the zeolite membrane.
- the water adsorption amount of the porous support-zeolite membrane composite after acetic acid immersion is preferably 82% or more, more preferably 85% or more, particularly preferably relative to the water adsorption amount before acetic acid immersion. Is 90% or more. This value indicates the ease of adsorption of acetic acid on the zeolite membrane, and the larger the value, the more difficult it is to adsorb acetic acid.
- Use a porous support-zeolite membrane composite in which the water adsorption amount of the porous support-zeolite membrane complex after acetic acid immersion is 82% or more with respect to the water adsorption amount before acetic acid immersion, for example, for the separation of acetic acid.
- adsorption of acetic acid on the zeolite membrane can be suppressed, and efficient separation becomes possible.
- the zeolite membrane contains zeolite having a pore structure having an oxygen 8-membered ring or less.
- the main zeolite constituting the zeolite membrane preferably contains a zeolite having a pore structure having an oxygen 8-membered ring or less, and more preferably contains a zeolite having a pore structure having an oxygen 6- to 8-membered ring.
- n of the zeolite having an oxygen n-membered ring has the largest number of oxygen in the pores composed of oxygen forming the zeolite skeleton and T element (element other than oxygen constituting the skeleton).
- T element element other than oxygen constituting the skeleton.
- pores of an oxygen 12-membered ring and an oxygen 8-membered ring are present as in MOR type zeolite, it is regarded as an oxygen 12-membered ring zeolite.
- Examples of the zeolite having a pore structure having an oxygen 8-membered ring or less include AEI, AFG, ANA, BRE, CAS, CDO, CHA, DDR, DOH, EAB, EPI, ERI, ESV, FAR, FRA, GIS, and GIU. , GOO, ITE, KFI, LEV, LIO, LOS, LTN, MAR, MEP, MER, MEL, MON, MSO, MTF, MTN, NON, PAU, PHI, RHO, RTE, RTH, RUT, SGT, SOD, TOL , TSC, UFI, VNI, YUG and the like.
- Examples of the zeolite having an oxygen 6-8 membered ring structure include AEI, AFG, ANA, CHA, EAB, ERI, ESV, FAR, FRA, GIS, ITE, KFI, LEV, LIO, LOS, LTN, MAR, PAU , RHO, RTH, SOD, TOL, UFI and the like.
- the structure of a zeolite is shown with the code
- IZA International Zeolite Association
- the oxygen n-membered ring structure determines the pore size of the zeolite, and in zeolites with 6 or more oxygen rings, the permeation flux increases because the pore diameter is larger than the kinetic diameter of the H 2 O molecule. It is practical. In the case of an oxygen 8-membered ring or less, the pore diameter is small, and a large organic compound has improved separation performance and wide application.
- the ratio of the zeolite having a pore structure having an oxygen 8-membered ring or less in the zeolite membrane is usually 10% by volume or more, preferably 30% by volume or more, more preferably 60% by volume or more, and further preferably 80% by volume or more. 100% by volume is most preferred.
- the proportion of the zeolite having a pore structure having a 6 to 8-membered ring oxygen in the zeolite membrane is usually 10% by volume or more, preferably 30% by volume or more, more preferably 60% by volume or more, and further preferably 80% by volume or more. 100 volume% is most preferable.
- the framework density (T / 1000 3 ) of the zeolite is not particularly limited, but is usually 17 or less, preferably 16 or less, more preferably 15.5 or less, particularly preferably 15 or less, usually 10 or more, preferably 11 or more. More preferably, it is 12 or more.
- the framework density means the number of elements (T element) other than oxygen constituting the framework per 1000 3 of the zeolite, and this value is determined by the structure of the zeolite.
- the relationship between framework density and zeolite structure is shown in ATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition 2001 ELSEVIER.
- preferred zeolite structures are AEI, AFG, CHA, EAB, ERI, ESV, FAR, FRA, GIS, ITE, KFI, LEV, LIO, LOS, LTN, MAR, PAU, RHO, RTH, SOD, TOL and UFI are more preferable structures, and AEI, CHA, ERI, KFI, LEV, PAU, RHO, RTH and UFI are more preferable structures.
- CHA and LEV are more preferable structures, and CHA is the most preferable structure.
- the CHA-type zeolite indicates a CHA structure with a code that defines the structure of the zeolite defined by International Zeolite Association (IZA).
- IZA International Zeolite Association
- This is a zeolite having a crystal structure equivalent to that of naturally occurring chabazite.
- the CHA-type zeolite has a structure characterized by having three-dimensional pores composed of 8-membered oxygen rings having a diameter of 3.8 ⁇ 3.8 mm, and the structure is characterized by X-ray diffraction data.
- the framework density (T / 1000 3 ) of the CHA-type zeolite is 14.5.
- the SiO 2 / Al 2 O 3 molar ratio is the same as described above.
- the peak intensity refers to the value obtained by subtracting the background value from the measured value.
- peak intensity ratio A Peak intensity ratio
- it is usually 0.5 or more, preferably 1 or more, more preferably 1.2 or more, and particularly preferably 1.5 or more.
- an upper limit is not specifically limited, Usually, it is 1000 or less.
- peak intensity ratio B Peak intensity ratio B
- it is usually 2 or more, preferably 2.5 or more, more preferably 3 or more, more preferably 4 or more, still more preferably 6 or more, particularly preferably 8 or more, and most preferably 10 or more.
- an upper limit is not specifically limited, Usually, it is 1000 or less.
- the X-ray diffraction pattern is obtained by irradiating the surface on the side where zeolite is mainly adhered with X-rays using CuK ⁇ as a radiation source to obtain a scanning axis of ⁇ / 2 ⁇ .
- the shape of the sample to be measured may be any shape that can irradiate the surface of the membrane composite to which the zeolite is mainly attached, with X-ray irradiation.
- the body itself or the one cut into an appropriate size restricted by the apparatus is preferable.
- the X-ray diffraction pattern may be measured by fixing the irradiation width using an automatic variable slit when the surface of the zeolite membrane composite is a curved surface.
- An X-ray diffraction pattern using an automatic variable slit refers to a pattern subjected to variable ⁇ fixed slit correction.
- Non-Patent Document 1 According to COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIER (hereinafter sometimes referred to as "Non-Patent Document 1") in the X-ray diffraction pattern. Set the space group
- Peak intensity ratio B The typical ratio of the peak intensity derived from the (2, 0, -1) plane of the (1, 0, 0) plane in the CHA type aluminosilicate zeolite membrane (peak intensity ratio B) is , Halil Kalipcilar et al., "Synthesis and Separation Performance of SSZ-13 Zeolite Membranes on Tubular Supports", Chem. Mater. 2002, 14, 3458-3464 (hereinafter referred to as "Non-Patent Document 2"). ) Is less than 2.
- the zeolite crystal is oriented so that the (1, 0, 0) plane is nearly parallel to the surface of the membrane complex when the CHA structure is rhombohedral setting. Is considered to mean that the crystals are oriented and growing. Orientation and growth of zeolite crystals in the zeolite membrane composite is advantageous in that a dense membrane with high separation performance can be formed.
- a typical ratio (peak intensity ratio A) of the peak intensity derived from the (1,1,1) plane and the peak intensity derived from the (2,0, -1) plane in the CHA type aluminosilicate zeolite membrane is According to Non-Patent Document 2, it is less than 0.5.
- this ratio is 0.5 or more, for example, when the CHA structure is rhombohedral setting, the (1,1,1) plane is oriented almost parallel to the surface of the membrane composite. It is thought to mean that the crystals are oriented and growing. Orientation and growth of zeolite crystals in the zeolite membrane composite is advantageous in that a dense membrane with high separation performance can be formed.
- any one of the peak intensity ratios A and B is a value in the above-mentioned specific range means that the zeolite crystals are oriented and grow, and a dense membrane with high separation performance is formed. Is shown.
- the peak intensity ratios A and B indicate that the greater the value, the stronger the degree of orientation, and generally the stronger the degree of orientation, the more dense the film is formed. In general, the stronger the orientation, the higher the separation performance tends to be. However, the optimum degree of orientation in which the separation performance becomes higher differs depending on the mixture to be separated. It is desirable to select and use the membrane complex.
- the method for producing the porous support-zeolite membrane composite is not particularly limited.
- a zeolite membrane was formed by forming a zeolite membrane on the inorganic porous support by hydrothermal synthesis. Thereafter, a method of immersing in a solution containing the Si compound is preferable.
- a zeolite membrane composite is prepared by mixing a reaction mixture for hydrothermal synthesis (hereinafter sometimes referred to as an “aqueous reaction mixture”) having a uniform composition and a porous support. It can be prepared by placing in a heat-resistant pressure-resistant container such as an autoclave, which is gently fixed inside, and sealing and heating for a certain time.
- aqueous reaction mixture a reaction mixture for hydrothermal synthesis
- a heat-resistant pressure-resistant container such as an autoclave
- the aqueous reaction mixture preferably contains an Si element source, an Al element source, an alkali source, and water, and further contains an organic template as necessary.
- Si element source used in the aqueous reaction mixture examples include amorphous silica, colloidal silica, silica gel, sodium silicate, amorphous aluminum silicate gel, tetraethoxysilane (TEOS), and trimethylethoxysilane.
- Al element source for example, sodium aluminate, aluminum hydroxide, aluminum sulfate, aluminum nitrate, aluminum oxide, amorphous aluminosilicate gel, or the like can be used.
- other element sources for example, element sources such as Ga, Fe, B, Ti, Zr, Sn, and Zn may be included.
- an organic template (structure directing agent) can be used as necessary, but those synthesized using an organic template are preferred.
- synthesizing using the organic template the ratio of silicon atoms to aluminum atoms in the crystallized zeolite is increased, and the acid resistance is improved.
- the organic template may be any type as long as it can form a desired zeolite membrane. Further, one type of template or a combination of two or more types may be used.
- amines and quaternary ammonium salts are usually used as the organic template.
- organic templates described in U.S. Pat. No. 4,544,538 and U.S. Patent Publication No. 2008/0075656 are preferred.
- cations derived from alicyclic amines such as cations derived from 1-adamantanamine, cations derived from 3-quinacridinal, and cations derived from 3-exo-aminonorbornene. It is done. Among these, a cation derived from 1-adamantanamine is more preferable.
- a cation derived from 1-adamantanamine is used as an organic template, CHA-type zeolite capable of forming a dense film is crystallized.
- a CHA-type zeolite having hydrophilicity sufficient for the membrane to selectively permeate water can be generated, and a CHA-type zeolite excellent in acid resistance can be obtained.
- the N, N, N-trialkyl-1-adamantanammonium cation is more preferred.
- the three alkyl groups of the N, N, N-trialkyl-1-adamantanammonium cation are usually independent alkyl groups, preferably a lower alkyl group, more preferably a methyl group.
- the most preferred compound among them is the N, N, N-trimethyl-1-adamantanammonium cation.
- Such cations are accompanied by anions that do not harm the formation of CHA-type zeolite.
- Representative examples of such anions include halogen ions such as Cl ⁇ , Br ⁇ and I ⁇ , hydroxide ions, acetates, sulfates, and carboxylates. Of these, hydroxide ions are particularly preferably used.
- N, N, N-trialkylbenzylammonium cations can also be used.
- the alkyl group is an independent alkyl group, preferably a lower alkyl group, more preferably a methyl group.
- the most preferred compound is N, N, N-trimethylbenzylammonium cation. The anion accompanied by this cation is the same as described above.
- alkali source used in the aqueous reaction mixture a hydroxide ion of a counter anion of an organic template, an alkali metal hydroxide such as NaOH or KOH, or an alkaline earth metal hydroxide such as Ca (OH) 2 is used.
- the type of alkali is not particularly limited, and Na, K, Li, Rb, Cs, Ca, Mg, Sr, Ba and the like are usually used. Among these, Na and K are preferable, and K is more preferable. Further, two or more alkalis may be used in combination, and specifically, Na and K are preferably used in combination.
- the ratio of Si element source to Al element source in the aqueous reaction mixture is usually expressed as the molar ratio of the oxides of the respective elements, that is, the SiO 2 / Al 2 O 3 molar ratio.
- the SiO 2 / Al 2 O 3 molar ratio is not particularly limited, but is usually 5 or more, preferably 8 or more, more preferably 10 or more, and further preferably 15 or more. Further, it is usually 10,000 or less, preferably 1000 or less, more preferably 300 or less, and still more preferably 100 or less.
- the zeolite membrane When the SiO 2 / Al 2 O 3 molar ratio is within this range, the zeolite membrane is densely formed, and the produced zeolite exhibits strong hydrophilicity, for example, a hydrophilic compound from a mixture containing an organic compound, In particular, it can selectively permeate water. In addition, a zeolite membrane that is strong in acid resistance and difficult to remove from Al can be obtained. In particular, when the SiO 2 / Al 2 O 3 molar ratio is within this range, CHA-type zeolite that can form a dense film can be crystallized. In addition, a CHA-type zeolite having hydrophilicity sufficient for the membrane to selectively permeate water can be generated, and a CHA-type zeolite excellent in acid resistance can be obtained.
- the ratio of the silica source and an organic template in the aqueous reaction mixture usually 0.005 or higher, preferably at least 0.01, more preferably 0 0.02 or more, usually 1 or less, preferably 0.4 or less, more preferably 0.2 or less.
- organic template / SiO 2 molar ratio is in the above range, in addition to being able to produce a dense zeolite membrane, the produced zeolite has strong acid resistance and Al is not easily desorbed. Moreover, a particularly dense and acid-resistant CHA-type zeolite can be formed under these conditions.
- the ratio of the Si element source to the alkali source is M (2 / n) 2 O / SiO 2 (where M represents an alkali metal or alkaline earth metal, and n represents the valence 1 or 2). In general, it is 0.02 or more, preferably 0.04 or more, more preferably 0.05 or more, and usually 0.5 or less, preferably 0.4 or less, more preferably 0.3 or less. In the case of forming a CHA-type zeolite membrane, it is preferable that K is contained in the alkali metal because a denser and highly crystalline membrane is formed.
- the molar ratio of K to the total of all alkali metals and alkaline earth metals including K is usually 0.01 or more and 1 or less, preferably 0.1 or more and 1 or less, more preferably 0.3 or more and 1 or less. It is.
- Addition of K to the aqueous reaction mixture is performed by changing the space group by rhombohedral setting as described above.
- the ratio of Si element source to water is the molar ratio of water to SiO 2 (H 2 O / SiO 2 molar ratio), which is usually 10 or more, preferably 30 or more, more preferably 40 or more, and particularly preferably 50 or more. Usually, it is 1000 or less, preferably 500 or less, more preferably 200 or less, and particularly preferably 150 or less.
- a dense zeolite membrane can be formed.
- the amount of water is particularly important in the formation of a dense zeolite membrane, and a denser membrane tends to be formed more easily under conditions where the amount of water is greater than that of the general powder synthesis method.
- the amount of water in the synthesis of powdered CHA-type zeolite is about 15 to 50 in terms of H 2 O / SiO 2 molar ratio.
- Zeolite membrane composite with high separation performance in which CHA-type zeolite is crystallized into a dense membrane on the support by using a high H 2 O / SiO 2 molar ratio (50 to 1000), that is, water-rich conditions. You can get a body.
- the crystallization of zeolite can be promoted on the support by adding the seed crystal.
- the method of adding the seed crystal is not particularly limited, and a method of adding the seed crystal to the aqueous reaction mixture or the method of attaching the seed crystal on the support as in the synthesis of the powdered zeolite is used. Can do.
- the seed crystal to be used is not limited as long as it is a zeolite that promotes crystallization, but it is preferably the same crystal type as the zeolite membrane to be formed for efficient crystallization.
- seed crystals of CHA type zeolite it is preferable to use seed crystals of CHA type zeolite.
- the particle diameter of the seed crystal is usually 0.5 nm or more, preferably 1 nm or more, more preferably 2 nm or more, and is usually 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
- the method for attaching the seed crystal on the support is not particularly limited.
- a dip method in which the seed crystal is dispersed in a solvent such as water and the support is immersed in the dispersion to attach the seed crystal, or a seed crystal is attached.
- a method in which a slurry mixed with a solvent such as water is coated on a support can be used.
- the dip method is desirable for controlling the amount of seed crystals attached and producing a membrane composite with good reproducibility.
- the solvent for dispersing the seed crystal is not particularly limited, but water is particularly preferable.
- the amount of the seed crystal to be dispersed is not particularly limited, and is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on the total mass of the dispersion. Usually, it is 20 mass% or less, Preferably it is 10 mass% or less, More preferably, it is 5 mass% or less, More preferably, it is 4 mass% or less, Most preferably, it is 3 mass% or less.
- the amount of seed crystals to be dispersed is equal to or greater than the above lower limit value, the amount of seed crystals adhering to the support is large. There is a high possibility that the film will not be.
- the amount of seed crystals adhering to the support by the dip method becomes substantially constant when the amount of seed crystals in the dispersion is higher than a certain level. Therefore, if the amount of seed crystals in the dispersion is equal to or lower than the above upper limit, This is advantageous in terms of cost.
- the amount of the seed crystal to be preliminarily deposited on the support is not particularly limited, and is usually 0.01 g or more, preferably 0.05 g or more, more preferably 0.1 g or more in terms of mass per 1 m 2 of the support. Usually, it is 100 g or less, preferably 50 g or less, more preferably 10 g or less, still more preferably 8 g or less.
- the amount of the seed crystal is not less than the above lower limit value, the crystal is easily formed, and the film growth tends to be sufficient or the film growth tends to be uniform.
- the amount of the seed crystal is not more than the above upper limit value, the unevenness of the surface is hardly increased by the seed crystal, and the spontaneous growth of the seed nuclei from the seed crystal that has dropped from the support makes it difficult to grow the film on the support. There is a tendency not to be disturbed. In either case, a dense zeolite membrane tends to be easily formed.
- the method for immobilizing the support there are no particular limitations on the method for immobilizing the support, and it can take any form such as vertically or horizontally.
- the zeolite membrane may be formed by a stationary method, or the aqueous reaction mixture may be stirred to form a zeolite membrane.
- the temperature at which the zeolite membrane is formed is not particularly limited, but is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 150 ° C. or higher, usually 200 ° C. or lower, preferably 190 ° C. or lower, more preferably 180 ° C. It is as follows. If the reaction temperature is equal to or higher than the lower limit, the zeolite will be easily crystallized. Further, when the reaction temperature is not more than the above upper limit value, it is difficult to produce a type of zeolite different from the zeolite in the present invention.
- the heating time is not particularly limited, but is usually 1 hour or more, preferably 5 hours or more, more preferably 10 hours or more, and usually 10 days or less, preferably 5 days or less, more preferably 3 days or less, and even more preferably 2 Less than a day.
- the reaction time is not less than the above lower limit value, the zeolite is easily crystallized.
- the reaction time is less than or equal to the above upper limit value, it is difficult to produce a type of zeolite different from the zeolite in the present invention.
- the pressure at the time of forming the zeolite membrane is not particularly limited, and the self-generated pressure generated when the aqueous reaction mixture placed in the closed vessel is heated to this temperature range is sufficient. If necessary, an inert gas such as nitrogen may be added.
- the zeolite membrane composite obtained by hydrothermal synthesis is washed with water, then heated and dried.
- the heat treatment means that the template is fired when heat is applied to dry the zeolite membrane composite or the template is used.
- the temperature of the heat treatment is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 200 ° C. or lower, preferably 150 ° C. or lower, for the purpose of drying.
- it is 350 degreeC or more normally, Preferably it is 400 degreeC or more, More preferably, it is 430 degreeC or more, More preferably, it is 480 degreeC or more, Usually 900 degrees C or less, Preferably it is 850 degrees C or less, and more Preferably it is 800 degrees C or less, More preferably, it is 750 degrees C or less.
- the temperature of the heat treatment is equal to or higher than the above lower limit value, the proportion of the remaining organic template is reduced, and there are many zeolite pores.
- the permeation flux increases.
- the heat treatment temperature is not more than the above upper limit value, the difference in the coefficient of thermal expansion between the support and the zeolite becomes small, so that the zeolite membrane is hardly cracked, the denseness of the zeolite membrane is maintained, and the separation performance is enhanced.
- the heating time is not particularly limited as long as the zeolite membrane is sufficiently dried or the template is calcined, and is preferably 0.5 hours or more, more preferably 1 hour or more.
- the upper limit is not particularly limited, and is usually within 200 hours, preferably within 150 hours, and more preferably within 100 hours.
- the heat treatment for the purpose of firing the template may be performed in an air atmosphere, but may be performed in an atmosphere to which an inert gas such as N 2 or oxygen is added.
- the obtained zeolite membrane composite can be washed with water, and then the organic template can be removed by, for example, heat treatment or extraction, preferably by heat treatment, that is, baking. Is appropriate.
- the temperature increase rate during the heat treatment for firing the template is as slow as possible in order to reduce the difference in the thermal expansion coefficient between the support and the zeolite from causing cracks in the zeolite membrane.
- the temperature rising rate is usually 5 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, and particularly preferably 0.5 ° C./min or less. Usually, it is 0.1 ° C./min or more in consideration of workability.
- the temperature lowering rate is usually 5 ° C./min or less, preferably 2 ° C./min or less, more preferably 1 ° C./min or less, and particularly preferably 0.5 ° C./min or less. Usually, it is 0.1 ° C./min or more in consideration of workability.
- the zeolite membrane may be ion exchanged as necessary. In the case of synthesizing using a template, ion exchange is usually performed after removing the template.
- ions to be ion-exchanged include protons, alkali metal ions such as Na + , K + and Li + , group 2 element ions such as Ca 2+ , Mg 2+ , Sr 2+ and Ba 2+, and transitions such as Fe, Cu and Zn.
- Examples include metal ions.
- alkali metal ions such as proton, Na + , K + , and Li + are preferable.
- the zeolite membrane after calcination (such as when a template is used) is replaced with an ammonium salt such as NH 4 NO 3 or NaNO 3 or an aqueous solution containing ions to be exchanged, and in some cases an acid such as hydrochloric acid.
- an ammonium salt such as NH 4 NO 3 or NaNO 3
- an aqueous solution containing ions to be exchanged and in some cases an acid such as hydrochloric acid.
- an acid such as hydrochloric acid. What is necessary is just to perform by the method of washing with water etc. after processing at the temperature of 100 degreeC. Further, it may be fired at 200 ° C. to 500 ° C. as necessary.
- the air permeation [L / (m 2 ⁇ h)] of the porous support-zeolite membrane composite (zeolite membrane composite after heat treatment) thus obtained is usually 1400 L / (m 2 ⁇ h) or less, preferably Is 1000 L / (m 2 ⁇ h) or less, more preferably 700 L / (m 2 ⁇ h) or less, more preferably 600 L / (m 2 ⁇ h) or less, more preferably 500 L / (m 2 ⁇ h) or less, Particularly preferably, it is 300 L / (m 2 ⁇ h) or less, most preferably 200 L / (m 2 ⁇ h) or less.
- lower limit of the transmission amount is not particularly limited, it is generally 0.01L / (m 2 ⁇ h) or more, preferably 0.1L / (m 2 ⁇ h) or more, more preferably 1L / (m 2 ⁇ h) or higher is there.
- the air permeation amount is the air permeation amount [L / (m 2 ⁇ h)] when the zeolite membrane composite is connected to a vacuum line having an absolute pressure of 5 kPa, as will be described later.
- the zeolite membrane composite is immersed in a liquid containing at least a Si element source, for example, a Si compound (hereinafter, this may be referred to as “silylation treatment”).
- a Si element source for example, a Si compound
- the zeolite membrane surface can be modified with the Si compound to have the specific physicochemical properties described above.
- an effect of closing fine defects existing on the membrane surface may be obtained as a secondary effect.
- the liquid used for the silylation treatment is not particularly limited as long as the zeolite membrane composite can be immersed under the silylation treatment conditions, and is a Si element source, for example, a solution obtained by adding a solvent to a Si compound. It may be a liquid without adding a solvent, or a sol or gel. Here, the solvent may be water or an organic solvent. In addition, solvents that are liquid under pressure at temperatures above the boiling point are also included in the solvent. The pressure in this case may be an autogenous pressure or a pressurization. Furthermore, the liquid for silylation processing should just contain Si compound at least, and may contain, for example, an Al compound as another element source (compound).
- the temperature of the solution is usually 20 ° C or higher, preferably 60 ° C or higher, more preferably 80 ° C or higher, and usually 200 ° C or lower, preferably 150 ° C or lower, more preferably 130 ° C or lower. is there. If the temperature is equal to or higher than the above lower limit, the dehydration condensation reaction and hydrolysis reaction performed between the Si compound, the film surface, and the Si compound are sufficiently advanced, and the modification with the Si compound is sufficiently performed, so that the hydrophilicity of the film surface is sufficient. improves. When the temperature is not more than the above upper limit value, it is unlikely that the zeolite membrane is partially dissolved in water and the zeolite membrane is broken.
- the immersion time is usually 1 hour or longer, preferably 4 hours or longer, more preferably 8 hours or longer, and usually 100 hours or shorter, preferably 50 hours or shorter, more preferably 24 hours or shorter.
- the immersion time is equal to or more than the above lower limit value, the change of the film surface sufficiently proceeds and a sufficient effect is obtained. If the immersion time is less than or equal to the above upper limit value, it is unlikely that the zeolite is partially dissolved in water and broken.
- the pressure during the silylation treatment is not particularly limited, and atmospheric pressure or a self-generated pressure generated when the treatment solution placed in a sealed container is heated to the above temperature range is sufficient. If necessary, an inert gas such as nitrogen may be added.
- Examples of the Si compound include alkoxysilanes such as tetraethoxysilane, tetramethoxysilane, methyltriethoxysilane, and 3-aminopropyltriethoxysilane, amorphous silica, fumed silica, colloidal silica, silica gel, sodium silicate, and silicate. An oligomer, silica sol, or the like can be used. Of these, alkoxysilanes are preferable in terms of reactivity, and tetraethoxysilane and 3-aminopropyltriethoxysilane, which have few alkyl groups and have high hydrophilicity after hydrolysis, are particularly preferable.
- alkoxysilanes such as tetraethoxysilane, tetramethoxysilane, methyltriethoxysilane, and 3-aminopropyltriethoxysilane, amorphous silica, fumed si
- Al compound for example, aluminum alkoxide such as sodium aluminate, aluminum hydroxide, aluminum sulfate, aluminum nitrate, aluminum oxide, alumina sol, amorphous aluminosilicate gel, and aluminum isopropoxide can be used. Of these, aluminum alkoxide is preferred.
- These Si compounds and Al compounds may be used alone or in combination of two or more.
- the content of the Si compound or Al compound in the solution is usually 0.01% by mass or more, preferably 0.03% by mass or more, more preferably 0.1% by mass as the total concentration of Si element and Al element. %, Usually 20% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less.
- the concentration in the case of Si element is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less, preferably 5% by mass. % Or less, more preferably 2% by mass or less.
- the pH of the solution may be generally 0 to 12, preferably 0.5 to 10, more preferably about 1 to 8.
- the OH ⁇ 1 ion concentration in the aqueous solution is usually 0. 0.01 mol / l or less, more preferably 0.005 mol / l or less, and usually 0.0001 mol / l or more, preferably 0.0005 mol / l or more, more preferably 0.001 mol / l or more.
- the presence of OH -1 ions in water makes it possible to obtain the same effect in a shorter time than when no OH -1 ion is present.
- the OH -1 ion concentration in water is not more than the above upper limit value, the zeolite membrane dissolves and is not easily destroyed, and strict control of the treatment time becomes unnecessary.
- Examples of the acid present in the aqueous solution include organic acids such as carboxylic acid and sulfonic acid, and inorganic acids such as sulfuric acid and phosphoric acid.
- carboxylic acid and inorganic acid are particularly preferable.
- the carboxylic acid for example, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, maleic acid, phthalic acid, lactic acid, citric acid, acrylic acid and the like are preferable, formic acid, acetic acid and lactic acid are more preferable, and acetic acid is particularly preferable.
- As the inorganic acid for example, sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid and the like are preferable, and sulfuric acid, nitric acid, and phosphoric acid are more preferable.
- the concentration of the acidic substance in the aqueous solution is preferably 0.01 mol / l or more, more preferably 0.05 mol / l or more, preferably 10 mol / l or less, more preferably 1 mol / l or less.
- the H + concentration is usually 1 ⁇ 10 ⁇ 10 mol / l or more, preferably 1 ⁇ 10 ⁇ 8 mol / l or more, more preferably 1 ⁇ 10 ⁇ 7 mol / l or more, particularly preferably 1 ⁇ 10 ⁇ 5. 5 mol / l or more, usually 10 mol / l or less, preferably 5 mol / l or less, more preferably 1 mol / l or less.
- a basic substance may coexist so that the H + concentration falls within the above range.
- Examples of the basic substance include NaOH, KOH, amine and the like.
- the temperature of the solution is usually 20 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 110 ° C. or lower. If the temperature is equal to or higher than the above lower limit, the dehydration condensation reaction and hydrolysis reaction performed between the Si compound and the film surface and the Si compound are sufficiently progressed, and the modification with the Si compound is sufficiently performed, and the hydrophilicity of the film surface is sufficient. To improve. If the temperature is not more than the above upper limit, it is unlikely that the zeolite membrane is partially dissolved in water and the zeolite membrane is broken.
- the immersion time is usually 0.5 hours or more, preferably 1 hour or more, more preferably 3 hours or more, and usually 50 hours or less, preferably 24 hours or less, more preferably 10 hours or less.
- the immersion time is equal to or more than the above lower limit value, the change of the film surface sufficiently proceeds and a sufficient effect is obtained. If the immersion time is less than or equal to the above upper limit value, it is unlikely that the zeolite is partially dissolved in water and broken.
- the pressure during the silylation treatment is not particularly limited, and atmospheric pressure can be performed under reflux conditions as necessary. Or you may process under the self-generated pressure which arises when the processing solution put into the airtight container was heated to the said temperature range as needed. Further, if necessary, an inert gas such as nitrogen may be added.
- organic solvent examples include nonpolar solvents such as toluene and hexane, alcohol solvents such as anisole and isopropyl alcohol, and polar solvents such as acetone. Of these, toluene and isopropyl alcohol are particularly preferable. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
- water may be added into the system.
- concentration of water that can be added is usually 0.001% by mass or more, preferably 0.05% by mass or more, more preferably 0.2% by mass or more, and usually 5% by mass or less, preferably 3% by mass or less, More preferably, it is 2 mass% or less.
- Si compound and Al compound that can be used are the same as in the case of using water as a solvent, but as the Si compound, alkoxysilane is preferable, and tetraethoxysilane and 3-aminopropyltriethoxysilane are particularly preferable.
- Al compound aluminum alkoxide is particularly preferable.
- These Si compounds and Al compounds may be used alone or in combination of two or more.
- the content of the Si compound in the solution is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less, as the Si element concentration. Preferably it is 5 mass% or less, More preferably, it is 2 mass% or less.
- the content of the Al compound is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less, preferably as Al element concentration. Is 5% by mass or less, more preferably 1% by mass or less.
- the treatment can be performed without further adding a solvent when immersed in a liquid containing at least a Si element source, for example, a Si compound.
- a Si element source for example, a Si compound.
- a silicate oligomer is used as the Si compound, it is not necessary to add a solvent.
- an Al compound may be included.
- the immersion temperature is usually 1 ° C. or higher, preferably 5 ° C. or higher, more preferably 10 ° C. or higher, particularly preferably 15 ° C. or higher, and usually 200 ° C. or lower, preferably It is 150 ° C. or lower, more preferably 130 ° C. or lower, particularly preferably 100 ° C. or lower, and most preferably 80 ° C. or lower.
- the temperature is equal to or higher than the lower limit, the fluidity of the Si compound is increased, the Si compound or Al compound is uniformly adhered to the surface of the zeolite membrane composite, and the modification is not partially performed.
- the temperature is equal to or lower than the above upper limit value, reactions between Si compounds, Al compounds, Si compound and Al compound proceed slowly, and adhesion to the surface of the zeolite membrane complex and reaction proceed sufficiently.
- the immersion time is usually 0.5 seconds or more, preferably 1 second or more, more preferably 2 seconds or more, particularly preferably 3 seconds or more, and usually 10 hours or less, preferably 7 hours or less, more preferably 5 hours or less. More preferably, it is 3 hours or less, particularly preferably 1 hour or less.
- the silylation treatment tends to be sufficiently performed at a lower temperature and in a shorter time than when the solvent is generally added. .
- the pressure during the silylation treatment is not particularly limited, and an atmospheric pressure or a self-generated pressure generated when the treatment solution placed in a sealed container is heated to the above temperature range is sufficient. If necessary, an inert gas such as nitrogen may be added.
- the bottom or top and bottom of the tubular zeolite membrane composite is silicon rubber stopper or Teflon. It is desirable to prevent a large amount of Si compound or Al compound from penetrating into the support by covering with (registered trademark) tape or the like. By contacting the Si compound and Al compound only on the surface of the zeolite membrane and preventing the penetration into the support portion, the surface of the zeolite membrane can be efficiently silylated while maintaining a high permeation amount.
- the zeolite membrane composite When performing the silylation treatment without adding a solvent, the zeolite membrane composite may be heated after being immersed in the above-mentioned Si element source, for example, a liquid, sol or gel containing at least a Si compound.
- the heating temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower. is there.
- the temperature is equal to or higher than the lower limit, the modification of the zeolite membrane surface with the Si compound and Al compound is sufficiently immobilized.
- Si—OH generated by modification is condensed to form Si—O—Si bonds, and the hydrophilicity of the film surface is sufficiently improved.
- the heating time is usually 30 minutes or longer, preferably 1 hour or longer, more preferably 1.5 hours or longer, more preferably 2 hours or longer, usually 30 hours or shorter, preferably 25 hours or shorter. More preferably, it is 20 hours or less, More preferably, it is 15 hours or less.
- the time is not less than the above lower limit, the modification with the Si compound and Al compound on the zeolite membrane surface is sufficiently immobilized.
- the time is less than or equal to the above upper limit value, heating is performed within a range where the modification with the Si compound and the Al compound is sufficiently fixed, which is advantageous in terms of energy.
- the heating after the immersion can be performed with a normal dryer or the like, or the film after the immersion can be put in a sealed container and heated.
- a small amount of water may be allowed to coexist so as not to contact the film.
- examples of particularly preferred methods are (1) and (2) below.
- the manufacturing method of the zeolite membrane composite of the present invention is not limited to the following (1) and (2).
- Silylation method when alkoxysilane such as tetraethoxysilane, tetramethoxysilane, methyltriethoxysilane, 3-aminopropyltriethoxysilane is used as the Si compound
- Water is used as a solvent for the solution used for the silylation treatment. It is important to control the concentration of the acid or base, the reaction temperature, etc. in a balanced manner while appropriately controlling the concentration of the alkoxysilane in the solution within a predetermined range.
- the content of the Si compound in the solution is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass as the concentration of Si element.
- an acid or a base is present in the solution.
- the acid for example, carboxylic acid and inorganic acid are preferable.
- carboxylic acid for example, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, maleic acid, phthalic acid, lactic acid, citric acid, acrylic acid and the like are preferable, formic acid, acetic acid and lactic acid are more preferable, and acetic acid is particularly preferable. .
- the inorganic acid for example, sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid and the like are preferable, and sulfuric acid, nitric acid, and phosphoric acid are more preferable.
- the concentration of the acidic substance in the aqueous solution is preferably 0.01 mol / l or more, more preferably 0.05 mol / l or more, further preferably 10 mol / l or less, and particularly preferably 1 mol / l or less.
- the base for example, basic substances such as NaOH, KOH, and amine are preferable, and the OH- 1 ion concentration in the aqueous solution is usually 0.01 mol / l or less, more preferably 0.005 mol / l or less, and usually 0 0.0001 mol / l or more, preferably 0.0005 mol / l or more, more preferably 0.001 mol / l or more.
- the temperature of the solution is usually 20 ° C. or higher, preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 130 ° C. or lower.
- the immersion time in the solution is usually 1 hour or more, preferably 4 hours or more, more preferably 8 hours or more, and usually 100 hours or less, preferably 50 hours or less, more preferably 24 hours or less.
- the pressure during the silylation treatment is not particularly limited, and the atmospheric pressure or the self-generated pressure generated when the treatment solution placed in the sealed container is heated to the above temperature range is sufficient.
- the silicate oligomer may not be further added with a solvent, but a nonpolar solvent such as toluene or hexane, an alcohol solvent such as anisole or isopropyl alcohol, and A polar solvent such as acetone may be added.
- a nonpolar solvent such as toluene or hexane
- an alcohol solvent such as anisole or isopropyl alcohol
- a polar solvent such as acetone
- the content of the Si compound in the solution when the solvent is added and immersed is usually 0.1% by mass or more, preferably 1% by mass or more as the concentration of Si element.
- the immersion temperature when performing the silylation treatment is usually 1 ° C. or higher, preferably 5 ° C. or higher, more preferably 10 ° C. or higher, particularly preferably 15 ° C. or higher, and usually 200 ° C.
- the dipping time and the heating conditions after dipping are important.
- the immersion time is usually 0.5 seconds or more, preferably 1 second or more, more preferably 2 seconds or more, particularly preferably 3 seconds or more, and usually 10 hours or less, preferably 7 hours or less, more preferably 5 hours or less. More preferably, it is 3 hours or less, particularly preferably 1 hour or less.
- the dipping time may be the same as that in the case of not adding a solvent.
- the zeolite membrane composite When the zeolite membrane composite is immersed in a liquid containing a Si compound, in the case of a tubular zeolite membrane composite, the bottom or top and bottom are covered with a silicon rubber stopper, Teflon (registered trademark) tape, etc. It is desirable to prevent a large amount of Si compound and Al compound from penetrating.
- a silicate oligomer it is preferable to heat after immersing.
- the heating temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower. is there.
- the heating time is usually 30 minutes or longer, preferably 1 hour or longer, more preferably 1.5 hours or longer, more preferably 2 hours or longer, usually 30 hours or shorter, preferably 25 hours or shorter. More preferably, it is 20 hours or less, More preferably, it is 15 hours or less.
- the heating after immersion can be performed with a normal dryer or the like, or the film after the immersion can be put in a sealed container and heated. When the immersed film is placed in a sealed container, it is preferable that a small amount of water coexist so as not to contact the film.
- the zeolite membrane composite thus produced has excellent characteristics as described above, and can be suitably used as a membrane separation means in the separation or concentration method of the present invention.
- ⁇ Separation or concentration method In the separation or concentration method of the present invention, a gas or liquid mixture composed of a plurality of components is brought into contact with the porous support-zeolite membrane complex, and a highly permeable substance is permeated from the mixture. Or a substance having a low permeability is concentrated by allowing a substance having a high permeability to permeate from the mixture.
- the same porous support-zeolite membrane composite as described above is used. The preferable ones are also the same as described above.
- a gas or liquid mixture composed of a plurality of components is brought into contact with one side of the support side or the zeolite membrane side through an inorganic porous support provided with a zeolite membrane, and the opposite side thereof.
- a substance having a high permeability to the zeolite membrane (a substance in the mixture having a relatively high permeability) is selectively selected from the mixture, that is, the main substance of the permeate.
- Permeate as a component.
- the specific component can be separated and recovered or concentrated by increasing the concentration of the specific component (substance in the mixture having relatively low permeability) in the mixture.
- the mixture to be separated or concentrated is not particularly limited as long as it is a gas or liquid mixture composed of a plurality of components that can be separated or concentrated by the porous support-zeolite membrane composite in the present invention. It may be a mixture.
- the mixture to be separated or concentrated is, for example, a mixture of an organic compound and water (hereinafter sometimes referred to as “hydrous organic compound”)
- water is usually highly permeable to the zeolite membrane. So water is separated from the mixture and the organic compound is concentrated in the original mixture.
- a separation or concentration method called a pervaporation method (permeation vaporization method) or a vapor permeation method (vapor permeation method) is one embodiment of the method of the present invention.
- the pervaporation method is a separation or concentration method in which a liquid mixture is directly introduced into a separation membrane, so that a process including separation or concentration can be simplified.
- the vapor permeation method is a separation / concentration method in which a liquid mixture is vaporized and then introduced into a separation membrane. Therefore, the vapor permeation method can be used in combination with a distillation apparatus or for separation at higher temperatures and pressures. In addition, the vapor permeation method introduces the liquid mixture after vaporizing it into the separation membrane, reducing the effects of impurities contained in the supply liquid and substances that form aggregates and oligomers in the liquid state on the membrane. can do.
- the inorganic porous support-zeolite membrane composite obtained by the present invention can be suitably used for any method.
- the inorganic porous support-zeolite membrane composite obtained by the present invention has high separation performance even at high temperatures and at high concentrations of components with low permeability in the mixture. Can be expressed.
- the vapor permeation method separates the liquid mixture after vaporizing it, and therefore usually the separation is performed under harsher conditions than the pervaporation method. Therefore, durability of the membrane composite is also required.
- the inorganic porous support-zeolite membrane composite obtained according to the present invention is suitable for the vapor permeation method because it has durability capable of being separated even under high temperature conditions.
- the porous support-zeolite membrane composite has specific physicochemical properties, so that not only when the concentration of the low-permeability component in the mixture is high, but also when the concentration of the low-permeability component is low However, it exhibits high permeation performance, selectivity, and performance as a separation membrane with excellent durability. For example, a mixture of an organic compound and water exhibits high selectivity regardless of the concentration of water. That is, the zeolite membrane composite having specific physicochemical properties of the present invention is suitable for separation and concentration of a mixture in a wide concentration range.
- the high permeation performance here indicates a sufficient throughput, for example, a permeation flux of a substance that permeates the membrane is, for example, a mixture of acetic acid and water having a water content of 10% by mass at 90 ° C. at 1 atm ( When permeated with a pressure difference of 1.01 ⁇ 10 5 Pa), 0.5 kg / (m 2 ⁇ h) or more, preferably 1 kg / (m 2 ⁇ h) or more, more preferably 1.5 kg / (m 2 ⁇ h) or more.
- the upper limit of the permeation flux is not particularly limited, and is usually 20 kg / (m 2 ⁇ h) or less, preferably 15 kg / (m 2 ⁇ h) or less.
- the permeation flux of the substance that permeates the membrane is It means 0.5 kg / (m 2 ⁇ h) or more, preferably 1 kg / (m 2 ⁇ h) or more, more preferably 3 kg / (m 2 ⁇ h) or more.
- the upper limit of the permeation flux is not particularly limited, and is usually 30 kg / (m 2 ⁇ h) or less, preferably 20 kg / (m 2 ⁇ h) or less.
- permeance also referred to as “permeance”.
- Permeance refers to the pressure normalized flux, divided by the product of membrane area, time, and water partial pressure difference. When expressed in units of permeance, for example, a mixture of acetic acid and water having a water content of 10% by mass permeated at 90 ° C. with a pressure difference of 1 atm (1.01 ⁇ 10 5 Pa).
- the upper limit of permeance is not particularly limited, and is usually 1 ⁇ 10 ⁇ 4 mol / (m 2 ⁇ s ⁇ Pa) or less, preferably 5 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ Pa) or less.
- the water permeance is usually 3 ⁇ 10 ⁇ 7 mol / (M 2 ⁇ s ⁇ Pa) or more, preferably 5 ⁇ 10 ⁇ 7 mol / (m 2 ⁇ s ⁇ Pa) or more, more preferably 1 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa) or more, particularly It is preferably 2 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa) or more.
- the upper limit of permeance is not particularly limited, and is usually 1 ⁇ 10 ⁇ 4 mol / (m 2 ⁇ s ⁇ Pa) or less, preferably 5 ⁇ 10 ⁇ 5 mol / (m 2 ⁇ s ⁇ Pa) or less.
- Separativity is represented by a separation factor.
- the separation factor is, for example, when a mixture of acetic acid and water having a water content of 10% by mass is permeated at 90 ° C. with a pressure difference of 1 atm (1.01 ⁇ 10 5 Pa), and for example having a water content of 10% by mass.
- a mixture of phenol and water is permeated at 75 ° C. with a pressure difference of 1 atm (1.01 ⁇ 10 5 Pa), and for example 2-propanol or N-methyl-2-pyrrolidone with a water content of 30% by weight
- the mixture of water and water is permeated at 70 ° C.
- the separation factor is infinite, but is preferably 10000000 or less, more preferably 1000000 or less.
- the water-containing organic compound may have a water content adjusted in advance by an appropriate water control method.
- the moisture adjustment method include methods known per se, such as distillation, pressure swing adsorption (PSA), temperature swing adsorption (TSA), and desiccant system.
- water may be further separated from the water-containing organic compound from which water has been separated by the zeolite membrane composite. Thereby, water can be separated to a higher degree and the water-containing organic compound can be further concentrated.
- organic compound examples include carboxylic acids such as acetic acid, acrylic acid, propionic acid, formic acid, lactic acid, oxalic acid, tartaric acid, benzoic acid, sulfonic acid, sulfinic acid, habituric acid, uric acid, phenol, enol, and diketone type compounds.
- carboxylic acids such as acetic acid, acrylic acid, propionic acid, formic acid, lactic acid, oxalic acid, tartaric acid, benzoic acid, sulfonic acid, sulfinic acid, habituric acid, uric acid, phenol, enol, and diketone type compounds.
- Organic acids such as thiophenol, imide, oxime, aromatic sulfonamide, primary and secondary nitro compounds; alcohols such as methanol, ethanol and isopropanol (2-propanol); ketones such as acetone and methyl isobutyl ketone Aldehydes such as acetaldehyde, ethers such as dioxane and tetrahydrofuran; organic compounds containing nitrogen such as amides such as dimethylformamide and N-methylpyrrolidone (N-containing organic compounds), esters such as acetates and acrylates Etc., and the like.
- the effect of the inorganic porous support-zeolite membrane composite stands out when separating the organic acid from a mixture of organic acid and water that can take advantage of both the characteristics of molecular sieve and hydrophilicity.
- a preferred example is a mixture of carboxylic acids and water, particularly preferably separation of acetic acid and water.
- the organic substance in the case of separating the organic substance and water from the mixture of the organic substance other than the organic acid and water preferably has 2 or more carbon atoms, and more preferably 3 or more carbon atoms.
- an organic compound containing at least one selected from alcohols, ethers, ketones, aldehydes, and amides is particularly desirable.
- these organic compounds those having 2 to 10 carbon atoms are preferable, and those having 3 to 8 carbon atoms are more preferable.
- the high molecular compound which can form a mixture (mixed solution) with water may be sufficient.
- a polymer compound include those having a polar group in the molecule, for example, polyols such as polyethylene glycol and polyvinyl alcohol; polyamines; polysulfonic acids; polycarboxylic acids such as polyacrylic acid; Carboxylic acid esters; modified polymer compounds obtained by modifying polymers by graft polymerization, etc .; copolymerized polymer compounds obtained by copolymerization of nonpolar monomers such as olefins and polar monomers having polar groups such as carboxyl groups And the like.
- the water-containing organic compound may be a mixture that forms an azeotrope, such as a mixture of water and phenol.
- an azeotrope such as a mixture of water and phenol.
- water is selectively used rather than separation by distillation. It is preferable in terms of efficient separation.
- a mixture of alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol and water; a mixture of esters and water such as ethyl acetate, ethyl acrylate and methyl methacrylate;
- a mixture of carboxylic acids such as formic acid, isobutyric acid, valeric acid and water; a mixture of aromatic organic substances such as phenol and aniline and water; a mixture of nitrogen-containing compounds such as acetonitrile and acrylonitrile and water, and the like.
- the water-containing organic compound may be a mixture of water and a polymer emulsion.
- the polymer emulsion is a mixture of a surfactant and a polymer, which is usually used for adhesives, paints, and the like.
- the polymer used in the polymer emulsion include polyvinyl acetate, polyvinyl alcohol, acrylic resin, polyolefin, olefin-polar monomer copolymer such as ethylene-vinyl alcohol copolymer, polystyrene, polyvinyl ether, polyamide, polyester, and cellulose.
- Thermoplastic resins such as derivatives; thermosetting resins such as urea resins, phenol resins, epoxy resins, polyurethanes; rubbers such as natural rubber, polyisoprene, polychloroprene, butadiene copolymers such as styrene-butadiene copolymers, etc. Can be mentioned.
- As the surfactant a known one may be used.
- the mixture to be separated or concentrated may be a gas mixture composed of a plurality of components.
- the gas mixture include carbon dioxide, hydrogen, oxygen, nitrogen, methane, ethane, ethylene, propane, propylene, normal butane, isobutane, 1-butene, 2-butene, isobutene, sulfur hexafluoride, helium, one Examples include those containing at least one component selected from carbon oxide, nitric oxide, water and the like.
- the gas component having a high permeance passes through the zeolite membrane composite and is separated, and the gas component having a low permeance is concentrated on the supply gas side.
- the gas mixture those containing at least two components of the above components are more preferable.
- the two components are preferably a combination of a component having a high permeance and a component having a low permeance.
- the conditions for separating and concentrating the gas mixture (gas) may be those known per se according to the gas type and composition of interest.
- the zeolite membrane composite of the present invention has acid resistance, it can be effectively used for water separation from a mixture of water and an organic acid such as acetic acid and water separation for promoting esterification reaction.
- the separation or concentration method of the present invention may be carried out by preparing an appropriate separation or concentration apparatus using the zeolite membrane complex and introducing a gas or liquid mixture composed of a plurality of components into it.
- These separating or concentrating devices can be made by members known per se.
- the present invention will be described more specifically based on experimental examples (Examples and Comparative Examples). However, the present invention is not limited to the following experimental examples unless it exceeds the gist.
- the values of various production conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the value of the upper limit or the lower limit. It may be a range defined by a combination of values of the following examples or values of the examples.
- X-rays were irradiated in a direction perpendicular to the axial direction of the cylindrical tube. Also, X-rays are not the sample table surface, but the sample table surface, out of two lines where the cylindrical tubular membrane complex placed on the sample table and the surface parallel to the sample table surface are in contact with each other so that noise and the like do not enter as much as possible. It was made to hit mainly on the other line above the surface.
- the irradiation width was fixed to 1 mm by an automatic variable slit and measured, and Materials Data, Inc.
- XRD analysis software JADE 7.5.2 Japanese version
- SEM-EDX measurement of the zeolite membrane was performed under the following conditions. -Device name: SEM: FE-SEM Hitachi: S-4800 EDX: EDAX Genesis ⁇ Acceleration voltage: 10 kV The entire field of view (25 ⁇ m ⁇ 18 ⁇ m) at a magnification of 5000 was scanned, and X-ray quantitative analysis was performed. By this SEM-EDX measurement, the SiO 2 / Al 2 O 3 molar ratio of the produced zeolite membrane itself was determined. In the SEM-EDX measurement, information on only the zeolite membrane of several microns can be obtained by setting the X-ray irradiation energy to about 10 kV.
- XPS X-ray photoelectron spectroscopy
- Device name Quantum2000 manufactured by PHI -X-ray source: Monochromatic Al-K ⁇ , output 16kV-34W (X-ray generation area 170 ⁇ m ⁇ )
- Charge neutralization combined use of electron gun (5 ⁇ A) and ion gun (10V)
- Spectral system Pulse energy 187.85 eV @ Wide spectrum 58.70 eV @ Narrow spectrum (Na1s, Al2p, Si2p, K2p, S2p) 29.35eV@wide spectrum (C1s, O1s, Si2p)
- Measurement area Spot irradiation (irradiation area ⁇ 340 ⁇ m ⁇ ) ⁇ Extraction angle: 45 ° (from the surface)
- the SiO 2 / Al 2 O 3 molar ratio on the surface of the produced zeolite membrane was determined
- FIG. 1 shows a schematic diagram of an apparatus used for the pervaporation method.
- the inside of the zeolite membrane composite 5 is depressurized by a vacuum pump 9, and the pressure difference from the outside in contact with the liquid 4 to be separated is about 1 atm.
- the inner pressure is measured with a Pirani gauge 6. Due to this pressure difference, the permeate water permeates into the zeolite membrane composite 5 and permeates through the liquid 4 to be separated.
- the permeated substance is collected by the permeate collecting trap 7, and if there is a substance not collected by the permeate collecting trap 7, it is collected by the cold trap 8.
- the organic compound in the liquid to be separated 4 stays outside the zeolite membrane composite 5.
- the liquid to be separated is heated to a predetermined temperature by the hot water bath 2 and stirred by the stirring bar 3 that is rotated by the stirrer 1.
- mass measurement and composition analysis of the permeate collected in the permeate collection trap 7 and composition analysis of the liquid to be separated 4 are performed, and using these values, the separation factor and permeation flux for each time are measured.
- the permeance of water was calculated as described above.
- the composition analysis was performed by gas chromatography.
- FIG. 2 shows a schematic diagram of an apparatus used for the vapor permeation method.
- the liquid to be separated 10 is sent to the vaporizer 12 at a predetermined flow rate by the liquid feed pump 11, and the entire amount is vaporized by heating in the vaporizer 12 to become a gas to be separated.
- the gas to be separated is introduced into the zeolite membrane composite module 14 in the thermostatic chamber 13 and supplied to the outside of the zeolite membrane composite.
- the zeolite membrane composite module 14 is obtained by housing a zeolite membrane composite in a housing.
- the inside of the zeolite membrane composite is depressurized by the vacuum pump 18, and the pressure difference with the gas to be separated is about 1 atm.
- the inner pressure can be measured with a Pirani gauge. Due to this pressure difference, the permeate water in the gas to be separated permeates the zeolite membrane composite. The permeated substance is collected by the permeate collecting trap 16, and any substance that has not been collected by the permeate collecting trap 16 is collected by the cold trap 17. On the other hand, components that have not permeated in the gas to be separated are liquefied and collected by the liquid collecting trap 15.
- the inorganic porous support CHA-type zeolite membrane composite was prepared as follows by directly hydrothermally synthesizing CHA-type zeolite on the inorganic porous support. The following was prepared as a reaction mixture for hydrothermal synthesis. A mixture of 10.5 g of 1 mol / L-NaOH aqueous solution, 7.0 g of 1 mol / L-KOH aqueous solution and 100.5 g of water was mixed with aluminum hydroxide (containing 53.5% by mass of Al 2 O 3 , manufactured by Aldrich). 88 g was added, stirred and dissolved to obtain a transparent solution.
- TMADAOH N, N, N-trimethyl-1-adamantanammonium hydroxide
- a mullite tube PM (outer diameter: 12 mm, inner diameter: 9 mm) manufactured by Nikkato Co., Ltd. was cut into a length of 80 mm, washed with an ultrasonic cleaner and dried.
- a CHA-type zeolite crystallized by hydrothermal synthesis at 2 ° C. for 2 days was used.
- the seed crystal grain size was about 1 ⁇ m.
- the support was immersed in a dispersion obtained by dispersing the seed crystal in 1% by mass of water for a predetermined time, and then dried at 100 ° C. for 5 hours to adhere the seed crystal.
- the mass of the attached seed crystal was 0.9 g / m 2 .
- the support to which the seed crystal was attached was immersed in a Teflon (registered trademark) inner cylinder (200 ml) containing the above reaction mixture in the vertical direction to seal the autoclave, and left standing at 160 ° C. for 48 hours. Heated under autogenous pressure. After the elapse of a predetermined time, the support-zeolite membrane composite was taken out of the reaction mixture after being allowed to cool, washed and dried at 100 ° C. for 5 hours or more.
- Teflon registered trademark
- the zeolite membrane composite before template firing was fired in an electric furnace at 500 ° C. for 5 hours.
- the mass of the CHA-type zeolite crystallized on the support which was determined from the difference between the mass of the membrane composite after firing and the mass of the support, was 130 g / m 2 .
- the air permeation amount of the zeolite membrane composite after calcination was 60 L / (m 2 ⁇ h).
- This zeolite membrane composite, SiO 2 / Al 2 O 3 molar ratio of SEM-EDX SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself was measured by 17, zeolite membrane surface as measured by XPS 36.2
- the difference between the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself and the SiO 2 / Al 2 O 3 molar ratio of the membrane surface was 20 or less.
- separation was performed by selectively permeating water from a 90 ° C. water / acetic acid mixed solution (5/95% by mass) by a pervaporation method. .
- the permeation results after 5.5 hours were a permeation flux: 1.3 kg / (m 2 ⁇ h), a separation factor: 400, and a water concentration in the permeate: 95.75% by mass.
- the water permeance was 1.5 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 1 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1. This zeolite membrane composite was placed vertically in a Teflon (registered trademark) inner cylinder containing 135 g of demineralized water, 2.5 g of tetraethoxysilane (hereinafter sometimes referred to as “TEOS”) and 1.4 g of sulfuric acid. The autoclave was sealed by dipping, heated at 100 ° C. for 20 hours under an autogenous pressure, allowed to cool after a predetermined time, and then the zeolite membrane composite was taken out and washed with demineralized water. Hereinafter, this treatment is referred to as “silylation treatment 1”. The pH of the treatment liquid used for silylation treatment 1 was 1.0, the H + concentration was 0.1 mol / l, and the Si content was 0.24% by mass.
- TEOS tetraethoxysilane
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX was 19, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS The molar ratio was 109.8. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- Example 2 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1.
- This zeolite membrane composite was immersed vertically in a Teflon (registered trademark) inner tube containing 135 g of demineralized water, 2.5 g of tetraethoxysilane (TEOS) and 1.62 g of acetic acid, and the autoclave was hermetically sealed. And heated for 20 hours under an autogenous pressure. After a predetermined time, the mixture was allowed to cool, and then the zeolite membrane composite was taken out and washed with demineralized water.
- silation treatment 2 The pH of the treatment liquid used for silylation treatment 2 was 2.9, the H + concentration was 0.001 mol / l, and the Si content was 0.24% by mass.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX is 15, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS
- the molar ratio was 91.2. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- Comparative Example 2 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1.
- This zeolite membrane composite, SiO 2 / Al 2 O 3 molar ratio of SEM-EDX SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself was measured by 17, zeolite membrane surface as measured by XPS 36.2
- the difference between the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself and the SiO 2 / Al 2 O 3 molar ratio of the membrane surface was 20 or less.
- separation was performed by selectively permeating water from a 90 ° C. water / acetic acid mixed solution (10/90 mass%) by a pervaporation method. .
- the permeation performance after 5 hours was as follows: permeation flux: 1.8 kg / (m 2 ⁇ h), separation factor: 1900, concentration of water in the permeate: 99.49% by mass.
- the water permeance was 1.3 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 3 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1.
- This zeolite membrane composite was immersed vertically in a Teflon (registered trademark) inner cylinder containing 135 g of demineralized water, 2.5 g of tetraethoxysilane (TEOS) and 4.7 g of phosphoric acid, and the autoclave was sealed.
- the mixture was heated at 0 ° C. for 20 hours under an autogenous pressure. After a predetermined time had passed, the mixture was allowed to cool, and then the support-zeolite membrane composite was taken out and washed with demineralized water.
- silation treatment 3 The pH of the treatment solution used for silylation treatment 3 was 1.3, the H + concentration was 0.05 mol / l, and the Si content was 0.24% by mass.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX is 17, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS
- the molar ratio was 90.0. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- water is selectively permeated from a water / acetic acid mixed solution (10/90% by mass) at 90 ° C. by a pervaporation method.
- the separation was performed in the same manner as in Comparative Example 1.
- the permeation results after 5 hours were a permeation flux of 1.7 kg / (m 2 ⁇ h), a separation factor of 99100, and a water concentration in the permeate of 99.99% by mass.
- the water permeance was 1.3 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 4 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1.
- This zeolite membrane composite was immersed vertically in a Teflon (registered trademark) inner cylinder containing 134 g of demineralized water and 1.8 g of colloidal silica (Snowtex 40 manufactured by Nissan Chemical Co., Ltd.), and the autoclave was hermetically sealed. And heated for 21 hours under an autogenous pressure. After a predetermined time, the mixture was allowed to cool, and then the zeolite membrane composite was taken out and washed with demineralized water.
- silation treatment 4 The Si content of the treatment liquid used for silylation treatment 4 was 0.25% by mass.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX is 17, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS
- the molar ratio was 43.6. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- Water is selectively permeated from a water / acetic acid mixed solution (10/90 mass%) at 90 ° C. by a pervaporation method using an inorganic porous support-CHA type zeolite membrane composite subjected to silylation treatment 4. Separation was performed as in Comparative Example 2.
- the permeation performance after 5 hours was as follows: permeation flux: 2.3 kg / (m 2 ⁇ h), separation factor: 91000, concentration of water in the permeate: 99.99% by mass.
- the water permeance was 1.6 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Comparative Example 3 An inorganic porous support-CHA type zeolite membrane composite was prepared in the same manner as in Comparative Example 1 except that a porous alumina tube (outer diameter 12 mm, inner diameter 9 mm) was used as the inorganic porous support.
- This zeolite membrane composite SiO 2 / Al 2 O 3 molar ratio of SEM-EDX SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself was measured by 17, zeolite membrane surface as measured by XPS 32.4 The difference between the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself and the SiO 2 / Al 2 O 3 molar ratio of the membrane surface was 20 or less.
- separation was performed by selectively permeating water from a 75 ° C. water / phenol mixed solution (10/90 mass%) by a pervaporation method. .
- the permeation results after 3 hours are as follows: permeation flux: 5.8 kg / (m 2 ⁇ h), separation factor: 700, water concentration in the permeate: 98.78% by mass, phenol concentration is 1.22% %Met.
- the water permeance was 2.9 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 5 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 3. This zeolite membrane composite was immersed vertically in a Teflon (registered trademark) inner tube containing 135 g of demineralized water, 2.5 g of tetraethoxysilane (TEOS) and 4.05 g of acetic acid, and the autoclave was hermetically sealed. And heated for 20 hours under an autogenous pressure. After a predetermined time, the mixture was allowed to cool, and then the support-zeolite membrane composite was taken out and washed with demineralized water.
- silation treatment 5 The pH of the treatment solution used for silylation treatment 5 was 2.8, the H + concentration was 0.0016 mol / l, and the Si content was 0.24% by mass.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself as measured by SEM-EDX is 17, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface as measured by XPS The molar ratio was 60.4. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- Comparative Example 4 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1.
- This zeolite membrane composite, SiO 2 / Al 2 O 3 molar ratio of SEM-EDX SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself was measured by 17, zeolite membrane surface as measured by XPS 36.2
- the difference between the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself and the SiO 2 / Al 2 O 3 molar ratio of the membrane surface was 20 or less.
- inorganic porous support-CHA type zeolite membrane composite separation was carried out by selectively permeating water from a water / acetic acid mixed solution (10/90 mass%) by a vapor permeation method.
- the inorganic porous support-CHA-type zeolite membrane composite is placed in a thermostatic chamber at 130 ° C., and a water / acetic acid mixed solution is sent to a vaporizer at a flow rate of 0.8 cm 3 / min to vaporize the entire amount.
- the inorganic porous support-CHA type zeolite membrane composite was supplied.
- permeation results after 2 hours were as follows: permeation flux: 2.8 kg / (m 2 ⁇ h), separation factor: 5, concentration of water in the permeate: 34.92% by mass.
- the water permeance was 5.5 ⁇ 10 ⁇ 7 mol / (m 2 ⁇ s ⁇ Pa).
- Example 6 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1. This zeolite membrane composite was subjected to silylation treatment 1 in the same manner as in Example 1, and then heated at 170 ° C. for 1 hour.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX was 19, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS The molar ratio was 109.8. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- a water / acetic acid mixed solution was obtained by vapor permeation as in Comparative Example 4 using the inorganic porous support-CHA type zeolite membrane composite heated at 170 ° C. for 1 hour after the silylation treatment 1. Separation of selectively permeating water from (10/90% by mass) was performed. The permeation results after 2 hours were as follows: permeation flux: 0.88 kg / (m 2 ⁇ h), separation factor: 18000, concentration of water in the permeate: 99.95% by mass. The water permeance was 5.0 ⁇ 10 ⁇ 7 mol / (m 2 ⁇ s ⁇ Pa).
- Comparative Example 5 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 3.
- This zeolite membrane composite, SiO 2 / Al 2 O 3 molar ratio of SEM-EDX SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself was measured by 17, zeolite membrane surface as measured by XPS 32.4
- the difference between the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself and the SiO 2 / Al 2 O 3 molar ratio of the membrane surface was 20 or less.
- Example 7 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 3.
- This zeolite membrane composite was placed in an eggplant flask containing 135 g of toluene, 2.5 g of tetraethoxysilane (TEOS) and 2.66 g of 3-aminopropyltriethoxysilane (hereinafter sometimes abbreviated as “APTS”). It was immersed in a solvent and heated at 100 ° C. for 8 hours under a nitrogen stream. After a predetermined time, the zeolite membrane composite was taken out and washed with acetone. Thereafter, it was heated at 170 ° C. for 2 hours. Hereinafter, this process is referred to as “silylation process 6”. The Si content in the treatment liquid used for silylation treatment 6 was 0.48% by mass.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane measured by SEM-EDX is 17, and the SiO 2 / Al 2 O 3 mol of the zeolite membrane surface measured by XPS The ratio was 146.4. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- the mass of the CHA-type zeolite crystallized on the support which was determined from the difference between the mass of the membrane composite after firing and the mass of the support, was 160 g / m 2 .
- the air permeation amount of the zeolite membrane composite after calcination was 50 L / (m 2 ⁇ h). When XRD of the produced membrane was measured, it was found that CHA-type zeolite was produced.
- the resulting inorganic porous support-CHA type zeolite membrane composite was subjected to silylation treatment 2.
- silylation treatment 2 the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX is 22, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS The molar ratio was 44.2. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- the mass of the CHA-type zeolite crystallized on the support which was determined from the difference between the mass of the membrane composite after firing and the mass of the support, was 160 g / m 2 .
- the air permeation amount of the zeolite membrane composite after calcination was 140 L / (m 2 ⁇ h). When XRD of the produced membrane was measured, it was found that CHA-type zeolite was produced.
- the resulting inorganic porous support-CHA type zeolite membrane composite was subjected to silylation treatment 2.
- silylation treatment 2 the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane measured by SEM-EDX was 28, and the SiO 2 / Al 2 O 3 mol of the zeolite membrane surface measured by XPS The ratio was 57.6. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- Comparative Example 6 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1. A portion of the obtained inorganic porous support-CHA type zeolite membrane composite was used to measure a water vapor adsorption isotherm. The amount of water adsorbed per gram of the CHA-type zeolite membrane composite at a relative pressure of 0.8 determined from this water vapor adsorption isotherm was 0.01423 g.
- a portion of the obtained inorganic porous support-CHA type zeolite membrane composite was immersed in a 90% by mass acetic acid aqueous solution for 1 week at room temperature.
- the zeolite membrane composite was taken out of the liquid and washed well with demineralized water, and then the water vapor adsorption isotherm was measured in the same manner.
- the amount of water adsorbed per 1 g of the CHA-type zeolite membrane composite at a relative pressure of 0.8 determined from this adsorption isotherm was 0.01135 g.
- the water adsorption amount of the CHA-type zeolite membrane composite after being immersed in a 90% by mass acetic acid aqueous solution for one week was reduced to 80% of the adsorption amount before immersion.
- Example 10 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 1. This zeolite membrane composite was subjected to silylation treatment 2. The water vapor adsorption isotherm was measured in the same manner as in Comparative Example 6 using a part of the inorganic porous support-CHA type zeolite membrane composite subjected to silylation treatment 2. The amount of water adsorbed per gram of the CHA-type zeolite membrane composite at a relative pressure of 0.8 determined from this water vapor adsorption isotherm was 0.01368 g.
- a portion of the inorganic porous support-CHA type zeolite membrane composite that had undergone silylation treatment 2 was immersed in a 90% by mass acetic acid aqueous solution for 1 week at room temperature in the same manner as in Comparative Example 6.
- the zeolite membrane composite was taken out of the liquid and washed well with demineralized water, and then the water vapor adsorption isotherm was measured in the same manner.
- the amount of water adsorbed per gram of the CHA-type zeolite membrane composite at a relative pressure of 0.8 determined from this adsorption isotherm was 0.01275 g.
- the amount of water adsorbed by the CHA-type zeolite membrane composite at a relative pressure of 0.8 after being immersed in a 90% by mass acetic acid aqueous solution for 1 week was 93% before immersion.
- a CHA-type aluminosilicate zeolite was directly hydrothermally synthesized on an inorganic porous support to prepare an inorganic porous support-CHA-type zeolite membrane composite.
- a reaction mixture for hydrothermal synthesis was prepared as follows. A mixture of 12.0 g of 1 mol / L-NaOH aqueous solution, 8.0 g of 1 mol / L-KOH aqueous solution and 115 g of water was mixed with 0.306 g of aluminum hydroxide (containing 53.5% by mass of Al 2 O 3 , manufactured by Aldrich). In addition, the mixture was stirred and dissolved to obtain a transparent solution.
- TMADAOH N, N, N-trimethyl-1-adamantanammonium hydroxide
- a porous alumina tube (outer diameter 12 mm, inner diameter 9 mm) was cut into a length of 80 mm, washed with an ultrasonic cleaner and dried.
- the gel composition (molar ratio) of SiO 2 / Al 2 O 3 / NaOH / KOH / H 2 O / TMADAOH 1 / 0.066 / 0.15 / 0.1 / 100 / 0.04, A CHA-type zeolite obtained by filtering, washing and drying a precipitate formed by hydrothermal synthesis at 160 ° C. for 2 days in the presence of a porous alumina tube (outer diameter 12 mm, inner diameter 9 mm) was used.
- the seed crystal grain size was about 2 to 4 ⁇ m.
- the seed crystal is dispersed in an alkaline aqueous solution of 0.33% by mass of NaOH and 0.31% of KOH in an amount of about 1% by mass, and the support is dipped for a predetermined time and then at 100 ° C. for 4 hours or more.
- the seed crystal was attached by drying.
- the increase in mass after drying was 8.3 g / m 2 .
- the support to which the seed crystal was attached was immersed in a Teflon (registered trademark) inner cylinder (200 ml) containing the aqueous reaction mixture in the vertical direction, and the autoclave was sealed, and allowed to stand at 160 ° C. for 48 hours. And heated under autogenous pressure. After a predetermined time, the zeolite membrane composite was taken out of the reaction mixture after being allowed to cool, washed, and dried at 100 ° C. for 4 hours or more.
- Teflon registered trademark
- This membrane composite was baked in an electric furnace at 500 ° C. for 5 hours in air. At this time, the rate of temperature increase and the rate of temperature decrease were both 0.5 ° C./min.
- the mass of the CHA zeolite crystallized on the support which was determined from the difference between the mass of the membrane composite after firing and the mass of the support, was 150 g / m 2 .
- the air permeation amount of the zeolite membrane composite after calcination was 440 L / (m 2 ⁇ h).
- the water vapor adsorption isotherm was measured in the same manner as in Comparative Example 6 by using a part of the inorganic porous support-CHA type zeolite membrane composite subjected to silylation treatment 1.
- the amount of water adsorbed per gram of the CHA-type zeolite membrane composite at a relative pressure of 0.8 determined from this water vapor adsorption isotherm was 0.01072 g.
- a portion of the inorganic porous support-CHA type zeolite membrane composite that had undergone silylation treatment 1 was immersed in a 90% by mass acetic acid aqueous solution for 1 week at room temperature in the same manner as in Comparative Example 6.
- the zeolite membrane composite was taken out of the liquid and washed well with demineralized water, and then the water vapor adsorption isotherm was measured in the same manner.
- the amount of water adsorbed per gram of the CHA-type zeolite membrane composite at a relative pressure of 0.8 determined from this adsorption isotherm was 0.00958 g.
- the water adsorption amount of the CHA-type zeolite membrane composite at a relative pressure of 0.8 after being immersed in a 90 mass% acetic acid aqueous solution for 1 week was 89% before immersion.
- permeation results were as follows: permeation flux: 1.7 kg / (m 2 ⁇ h), separation factor: 600, and water concentration in the permeate: 99.08% by mass.
- the water permeance was 6.9 ⁇ 10 ⁇ 7 mol / (m 2 ⁇ s ⁇ Pa).
- Comparative Example 7 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 3.
- This zeolite membrane composite, SiO 2 / Al 2 O 3 molar ratio of SEM-EDX SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself was measured by 17, zeolite membrane surface as measured by XPS 32.4
- the difference between the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself and the SiO 2 / Al 2 O 3 molar ratio of the membrane surface was 20 or less.
- inorganic porous support-CHA type zeolite membrane composite separation by selectively allowing water to permeate from a water / isopropanol (IPA) mixed solution (10/90% by mass) by vapor permeation method is performed. went.
- the inorganic porous support-CHA-type zeolite membrane composite is placed in a constant temperature bath at 120 ° C., and the water / IPA mixed solution is sent to the vaporizer at a flow rate of 1.2 cm 3 / min to vaporize the entire amount.
- the inorganic porous support-CHA type zeolite membrane composite was supplied.
- permeation results after 4 hours were as follows: permeation flux: 2.5 kg / (m 2 ⁇ h), separation factor: 800, concentration of water in the permeate: 98.85% by weight.
- the water permeance was 1.4 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 12 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 3. This zeolite membrane composite was subjected to silylation treatment 1. For the zeolite membrane composite subjected to silylation treatment 1, the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX is 20, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS The molar ratio was 64.6.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- a water / isopropanol (IPA) mixed solution (10/90 mass%) was obtained by the vapor permeation method using the inorganic porous support-CHA-type zeolite membrane composite subjected to silylation treatment 1 in the same manner as in Comparative Example 7. ) To selectively permeate water.
- the permeation results after 4 hours were as follows: permeation flux: 2.0 kg / (m 2 ⁇ h), separation factor: 55000, and water concentration in the permeate: 99.98 wt%.
- the water permeance was 1.1 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Example 13 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 3.
- This zeolite membrane composite was immersed vertically in a Teflon (registered trademark) inner cylinder containing 121.5 g of demineralized water, 2.5 g of tetraethoxysilane (TEOS), and 13.5 g of a 1 mol / l nitric acid aqueous solution.
- TEOS tetraethoxysilane
- a 1 mol / l nitric acid aqueous solution was sealed, heated at 100 ° C. for 20 hours under an autogenous pressure, allowed to cool after a predetermined time, and then the zeolite membrane composite was taken out and washed with demineralized water.
- silation process 7 The pH of the treatment liquid used for silylation treatment 7 was 1.3, the H + concentration was 0.05 mol / l, and the Si content was 0.24% by mass.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX is 17, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS
- the molar ratio was 95.0. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- a water / isopropanol (IPA) mixed solution (10/90 mass%) was obtained by the vapor permeation method in the same manner as in Comparative Example 7 using the inorganic porous support-CHA type zeolite membrane composite subjected to silylation treatment 7.
- IPA isopropanol
- the permeation results after 4 hours were a permeation flux: 1.7 kg / (m 2 ⁇ h), a separation factor: 74500, and a water concentration in the permeate: 99.99% by weight.
- the water permeance was 9.9 ⁇ 10 ⁇ 7 mol / (m 2 ⁇ s ⁇ Pa).
- Example 14 An inorganic porous support-CHA type zeolite membrane composite was produced under the same conditions as in Comparative Example 3. After the top and bottom of the zeolite membrane composite were plugged with silicon rubber plugs, the zeolite membrane was applied to MKC (registered trademark) silicate MS51 (methyl silicate oligomer, SiO 2 content 52.0 ⁇ 1.0%) manufactured by Mitsubishi Chemical Corporation. After immersing so that the entire composite is immersed, the zeolite membrane composite is pulled up after being held for 5 seconds, allowed to stand for 1 hour, and then heated at 100 ° C. for 4 hours in a dryer coexisting with water. Went. This process is referred to as “silylation process 8”.
- the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself measured by SEM-EDX is 17, and the SiO 2 / Al 2 O 3 on the zeolite membrane surface measured by XPS
- the molar ratio was 626.4. Since the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane surface is 20 or more larger than the SiO 2 / Al 2 O 3 molar ratio of the zeolite membrane itself, it is presumed that the zeolite membrane surface is modified with a Si compound .
- a water / isopropanol (IPA) mixed solution (10/90 mass%) was obtained by the vapor permeation method in the same manner as in Comparative Example 7 using the inorganic porous support-CHA type zeolite membrane composite subjected to silylation treatment 8.
- IPA isopropanol
- the permeation results after 4 hours were a permeation flux: 1.9 kg / (m 2 ⁇ h), a separation factor: 198800, and a water concentration in the permeate: 99.99% by weight.
- the water permeance was 1.2 ⁇ 10 ⁇ 6 mol / (m 2 ⁇ s ⁇ Pa).
- Table 1 shows the results of Comparative Examples 1 to 5, 7 and Examples 1 to 9, and 12 to 14, and Table 2 shows the results of Comparative Examples 6 and 10 and 11.
- the present invention can be used in any industrial field.
- water is separated from a water-containing organic compound such as a chemical plant, a fermentation plant, a precision electronic component factory, a battery manufacturing factory, etc.
- a water-containing organic compound such as a chemical plant, a fermentation plant, a precision electronic component factory, a battery manufacturing factory, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Water Supply & Treatment (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Analytical Chemistry (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
近年、これらの方法に代わる分離方法として、高分子膜やゼオライト膜などの膜を用いた膜分離、濃縮方法が提案されている。高分子膜、例えば平膜や中空糸膜などは、加工性に優れるが、耐熱性が低いという欠点がある。また高分子膜は、耐薬品性が低く、特に有機溶媒や有機酸といった有機化合物との接触で膨潤するものが多いため、分離、濃縮対象の適用範囲が限定的である。
(1)無機多孔質支持体上にゼオライト膜が形成されてなる多孔質支持体-ゼオライト膜複合体であって、前記ゼオライト膜が、酸素8員環以下の細孔構造を有するゼオライトを含み、ゼオライト膜表面のSiO2/Al2O3モル比が、ゼオライト膜自体のSiO2/Al2O3モル比よりも20以上大きい、多孔質支持体-ゼオライト膜複合体。
(2)多孔質支持体-ゼオライト膜複合体の水蒸気吸着等温線より求めた相対圧0.8における多孔質支持体-ゼオライト膜複合体の水吸着量が、多孔質支持体-ゼオライト膜複合体を90質量%酢酸水溶液に室温で1週間浸漬した後の前記と同条件における多孔質支持体-ゼオライト膜複合体の水吸着量の82%以上である、(1)に記載の多孔質支持体-ゼオライト膜複合体。
(3)無機多孔質支持体上にゼオライト膜が形成されてなる多孔質支持体-ゼオライト膜複合体であって、前記ゼオライト膜が、酸素8員環以下の細孔構造を有するゼオライトを含み、多孔質支持体-ゼオライト膜複合体の水蒸気吸着等温線より求めた相対圧0.8における多孔質支持体-ゼオライト膜複合体の水吸着量が、ゼオライト膜複合体を90質量%酢酸水溶液に室温で1週間浸漬した後の前記と同条件における多孔質支持体-ゼオライト膜複合体の水吸着量の82%以上である、多孔質支持体-ゼオライト膜複合体。
(4)ゼオライト膜表面のSiO2/Al2O3モル比が、ゼオライト膜自体のSiO2/Al2O3モル比よりも20以上大きい、(3)に記載の多孔質支持体-ゼオライト膜複合体。
(5)ゼオライト膜表面のSiO2/Al2O3モル比が、25以上3000以下である、(1)~(4)のいずれかに記載の多孔質支持体-ゼオライト膜複合体。
(6)ゼオライト膜自体のSiO2/Al2O3モル比が、5以上2000以下である、(1)~(5)のいずれかに記載の多孔質支持体-ゼオライト膜複合体。
(7)前記酸素8員環以下の細孔構造を有するゼオライトがCHA型ゼオライトである、(1)~(6)のいずれかに記載の多孔質支持体-ゼオライト膜複合体。
(8)ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて、2θ=17.9°付近のピーク強度が、2θ=20.8°付近のピーク強度の0.5倍以上である、(1)~(7)のいずれかに記載の多孔質支持体-ゼオライト膜複合体。
(9)ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて、2θ=9.6°付近のピーク強度が、2θ=20.8°付近のピーク強度の2倍以上である、(1)~(8)のいずれかに記載の多孔質支持体-ゼオライト膜複合体。
(10)前記ゼオライト膜が、Si元素源、Al元素源、およびアルカリ源を含む水性反応混合物を用いて、水熱合成により形成されたものである、(1)~(9)のいずれかに記載の多孔質支持体-ゼオライト膜複合体。
(11)前記アルカリ源が、少なくともカリウムを含む、(10)に記載の多孔質支持体-ゼオライト膜複合体。
(12)前記ゼオライト膜が、水熱合成により形成された後、Si元素源を含む溶液中で浸漬処理されたものである、(1)~(11)のいずれかに記載の多孔質支持体-ゼオライト膜複合体。
(13)(1)~(12)のいずれかに記載の多孔質支持体-ゼオライト膜複合体に、複数の成分からなる気体または液体の混合物を接触させて、該混合物のうち透過性の高い物質を透過させることにより、該混合物から該透過性の高い物質を分離する、または、該混合物から透過性の高い物質を透過させることにより、透過性の低い物質を濃縮する、分離または濃縮方法。
(14)前記複数の成分からなる気体または液体の混合物が、有機化合物と水との混合物である、(13)に記載の方法。
(15)前記有機化合物が、有機酸、アルコール、エーテル、アルデヒド、ケトン、エステルおよび窒素を含む有機化合物よりなる群から選ばれる少なくとも1種の化合物である、(14)に記載の方法。
本発明において、多孔質支持体としては、その表面などにゼオライトを膜状に結晶化できるような化学的安定性があり、無機の多孔質よりなる支持体(無機多孔質支持体)であれば如何なるものであってもよい。例えば、シリカ、α-アルミナ、γ-アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などのセラミックス焼結体(セラッミクス支持体)、鉄、ブロンズ、ステンレス等の焼結金属や、ガラス、カーボン成型体などが挙げられる。
本発明において、かかる多孔質支持体上、すなわち支持体の表面などにゼオライトを膜状に形成させる。支持体の表面は、支持体の形状に応じて、どの表面であってもよく、複数の面であってもよい。例えば、円筒管の支持体の場合には外側の表面でも内側の表面でもよく、場合によっては外側と内側の両方の表面であってよい。
本発明において、上記多孔質支持体上にゼオライト膜を形成させて、ゼオライト膜複合体を得る。
ゼオライト膜を構成する成分としては、ゼオライト以外にシリカ、アルミナなどの無機バインダー、ポリマーなどの有機化合物、あるいはゼオライト表面を修飾するシリル化剤などを必要に応じ含んでいてもよい。また、本発明におけるゼオライト膜は、一部アモルファス成分などを含んでいてもよいが、実質的にゼオライトのみで構成されるゼオライト膜が好ましい。
また、室温とは、実験室内で厳密な温度管理をしない状態に置いたときの温度である。ゼオライト膜複合体の酢酸浸漬による水吸着量に及ぼす影響の測定に際して、酢酸水溶液の厳密な温度管理は特に必要ないが、室温は通常15℃である。
この値は、ゼオライト膜への酢酸の吸着しやすさを示すものであり、値が大きいほど、酢酸が吸着し難いことを意味するものである。酢酸浸漬後の多孔質支持体-ゼオライト膜複合体の水吸着量が酢酸浸漬前の水吸着量に対して82%以上の多孔質支持体-ゼオライト膜複合体を、例えば酢酸の分離に用いることにより、ゼオライト膜への酢酸の吸着を抑制することができ、効率的な分離が可能となる。
ゼオライト膜を構成する主たるゼオライトは、酸素8員環以下の細孔構造を有するゼオライトを含むものが好ましく、酸素6~8員環の細孔構造を有するゼオライトを含むものがより好ましい。
なお、本明細書において、ゼオライトの構造は、上記のとおり、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードで示す。
フレームワーク密度とは、ゼオライトの1000Å3あたりの、骨格を構成する酸素以外の元素(T元素)の数を意味し、この値はゼオライトの構造により決まる。なおフレームワーク密度とゼオライトとの構造の関係はATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition 2001 ELSEVIERに示されている。
本発明において、ゼオライト膜複合体は、ゼオライト膜がCHA型ゼオライトを含む場合、X線回折のパターンにおいて、2θ=17.9°付近のピークの強度が2θ=20.8°付近のピークの強度の0.5倍以上の大きさであることが好ましい。
(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)で表されるピーク強度比(以下これを「ピーク強度比B」ということがある。)でいえば、通常2以上、好ましくは2.5以上、より好ましくは3以上、より好ましくは4以上、さらに好ましくは6以上、特に好ましくは8以上、もっとも好ましくは10以上である。上限は特に限定されないが、通常1000以下である。
2θ=20.8°付近のピークとは、基材に由来しないピークのうち20.8°±0.6°の範囲に存在するピークで最大のものを指す。
2θ=9.6°付近のピークとは、基材に由来しないピークのうち9.6°±0.6°の範囲に存在するピークのうち最大のものを指す。
また、X線回折パターンで2θ=17.9°付近のピークは、非特許文献1によればrhombohedral settingで空間群を
X線回折パターンで2θ=20.8°付近のピークは、非特許文献1によればrhombohedral settingで空間群を
本発明において、多孔質支持体-ゼオライト膜複合体の製造方法は特に限定されないが、例えば、水熱合成により、無機多孔質支持体上にゼオライト膜を形成させて、ゼオライト膜複合体を調製した後、Si化合物を含む溶液中に浸漬する方法が好ましい。
有機テンプレート/SiO2モル比が上記範囲にあるとき、緻密なゼオライト膜が生成し得ることに加えて、生成したゼオライトが耐酸性に強くAlが脱離しにくい。また、この条件において、特に緻密で耐酸性のCHA型ゼオライトを形成させることができる。
CHA型ゼオライト膜を形成する場合、アルカリ金属の中でKを含む場合がより緻密で結晶性の高い膜を生成させるという点で好ましい。その場合、Kを含むすべてのアルカリ金属およびアルカリ土類金属の合計に対するKのモル比は、通常0.01以上1以下、好ましくは0.1以上1以下、さらに好ましくは0.3以上1以下である。
水性反応混合物中の物質のモル比がこれらの範囲にあるとき、緻密なゼオライト膜が生成し得る。水の量は緻密なゼオライト膜の生成においてとくに重要であり、粉末合成法の一般的な条件よりも水がシリカに対して多い条件のほうが緻密な膜ができやすい傾向にある。
ゼオライト膜複合体を製造する場合は、支持体上に種結晶を付着させておくことが好ましい。支持体上に予め種結晶を付着させておくことで緻密で分離性能良好なゼオライト膜が生成しやすくなる。
種結晶の粒子径は、通常0.5nm以上、好ましくは1nm以上、より好ましくは2nm以上であり、通常20μm以下、好ましくは15μm以下、より好ましくは10μm以下である。
分散させる種結晶の量は特に限定されず、分散液の全質量に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であり、通常20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下、特に好ましくは3質量%以下である。
支持体上に予め付着させておく種結晶の量は特に限定されず、支持体1m2あたりの質量で、通常0.01g以上、好ましくは0.05g以上、より好ましくは0.1g以上であり、通常100g以下、好ましくは50g以下、より好ましくは10g以下、更に好ましくは8g以下である。
水熱合成により得られたゼオライト膜複合体は、水洗した後に、加熱処理して、乾燥させる。ここで、加熱処理とは、熱をかけてゼオライト膜複合体を乾燥又はテンプレートを使用した場合にテンプレートを焼成することを意味する。
また、焼成後の降温速度もゼオライト膜に亀裂が生じることを避けるためにコントロールする必要がある。昇温速度と同様、遅ければ遅いほど望ましい。降温速度は、通常5℃/分以下、好ましくは2℃/分以下、より好ましくは1℃/分以下、特に好ましくは0.5℃/分以下である。通常、作業性を考慮し0.1℃/分以上である。
水を溶媒として用いる場合、溶液の温度は、通常20℃以上、好ましくは60℃以上、より好ましくは80℃以上であり、通常200℃以下、好ましくは150℃以下、より好ましくは130℃以下である。温度が上記下限値以上だと、Si化合物と膜表面およびSi化合物間で行われる脱水縮合反応、加水分解反応の進行が十分でSi化合物による修飾が十分に行われ膜表面の親水性が十分に向上する。温度が上記上限値以下だと、ゼオライトが一部水中に溶出してゼオライト膜が壊れる可能性が低い。
カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、マレイン酸、フタル酸、乳酸、クエン酸、アクリル酸などが好ましく、ギ酸、酢酸、乳酸がより好ましく、酢酸が特に好ましい。無機酸としては、例えば、硫酸、硝酸、燐酸、塩酸などが好ましく、硫酸、硝酸、燐酸がより好ましい。
また、H+濃度は、通常1×10-10mol/l以上、好ましくは1×10-8mol/l以上、より好ましくは1×10-7mol/l以上、特に好ましくは1×10-5mol/l以上であり、通常10mol/l以下、好ましくは5mol/l以下、より好ましくは1mol/l以下である。
この場合、溶液の温度は、通常20℃以上、好ましくは60℃以上、より好ましくは80℃以上であり、通常200℃以下、好ましくは150℃以下、より好ましくは110℃以下である。温度が上記下限値以上であると、Si化合物と膜表面およびSi化合物間で行われる脱水縮合反応、加水分解反応の進行が十分でSi化合物による修飾が十分に行われ膜表面の親水性が十分に向上する。温度が上記上限値以下であると、ゼオライトが一部水中に溶出してゼオライト膜が壊れる可能性が低い。
本発明のゼオライト膜複合体を得るためには、シリル化処理を適切な条件で行うことが大切である。上記シリル化処理方法の中でも、特に好ましい方法の例は、下記の(1)、(2)である。ただし、本発明のゼオライト膜複合体の製造方法は下記の(1)、(2)に限定されるものではない。
シリル化処理に用いる溶液の溶媒として水を用い、溶液中のアルコキシシランの濃度を所定の範囲に適切にコントロールしつつ、それに応じて酸または塩基の濃度、反応温度等をバランスよくコントロールすることが重要である。
溶液中のSi化合物の含有量は、Si元素の濃度としては、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常10質量%以下、好ましくは5質量%以下、より好ましくは2質量%以下である。
溶液中には、酸または塩基を存在させることが好ましい。酸としては、例えば、カルボン酸、無機酸が好ましい。カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、マレイン酸、フタル酸、乳酸、クエン酸、アクリル酸などが好ましく、ギ酸、酢酸、乳酸がより好ましく、酢酸が特に好ましい。無機酸としては、例えば、硫酸、硝酸、燐酸、塩酸などが好ましく、硫酸、硝酸、燐酸がより好ましい。水溶液中の酸性物質の濃度は、好ましくは0.01mol/l以上、より好ましくは0.05mol/l以上であり、さらに好ましくは10mol/l以下、特に好ましくは1mol/l以下である。塩基としては、例えばNaOH、KOH、アミン等の塩基性物質が好ましく、水溶液中のOH-1イオン濃度は、通常0.01mol/l以下、より好ましくは0.005mol/l以下であり、通常0.0001mol/l以上、好ましくは0.0005mol/l以上、より好ましくは0.001mol/l以上である。溶液の温度は、通常20℃以上、好ましくは60℃以上、より好ましくは80℃以上であり、通常200℃以下、好ましくは150℃以下、より好ましくは130℃以下である。溶液への浸漬時間は、通常1時間以上、好ましくは4時間以上、より好ましくは8時間以上であり、通常100時間以下、好ましくは50時間以下、より好ましくは24時間以下である。シリル化処理時の圧力は特に限定されず、大気圧あるいは、密閉容器中に入れた処理溶液を、上記温度範囲に加熱したときに生じる自生圧力で十分である。
シリケートオリゴマーには、溶媒をさらに加えなくてもよいが、トルエン、ヘキサン等の非極性溶媒、アニソール、イソプロピルアルコール等のアルコール溶媒、および、アセトンなどの極性溶媒を加えてもよい。溶媒を加えて浸漬する場合の溶液中のSi化合物の含有量は、Si元素の濃度として、通常0.1質量%以上、好ましくは1質量%以上である。シリル化処理を行う場合の浸漬温度は、通常1℃以上、好ましくは5℃以上、より好ましくは10℃以上、特に好ましくは15℃以上であり、通常200℃以下、好ましくは150℃以下、より好ましくは130℃以下、特に好ましくは100℃以下、最も好ましくは80℃以下である。本方法においては、浸漬時間及び浸漬した後の加熱条件が重要である。浸漬時間は、通常0.5秒以上、好ましくは1秒以上、より好ましくは2秒以上、特に好ましくは3秒以上であり、通常10時間以下、好ましくは7時間以下、より好ましくは5時間以下、さらに好ましくは3時間以下、特に好ましくは1時間以下である。溶媒を加えて浸漬する場合に浸漬時間は溶媒を加えない場合と同様でもよい。ゼオライト膜複合体を、Si化合物を含む液体に浸漬する際に、管状のゼオライト膜複合体の場合、下のみあるいは上下をシリコンゴム栓やテフロン(登録商標)テープなどでふさぐことにより、支持体に多量のSi化合物、Al化合物が浸透するのを妨げることが望ましい。シリケートオリゴマーを用いる場合、浸漬した後に加熱することが好ましい。加熱温度としては、通常30℃以上、好ましくは50℃以上、より好ましくは70℃以上であり、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下、特に好ましくは150℃以下である。浸漬後に加熱する際には、加熱時間は通常30分以上、好ましくは1時間以上、より好ましくは1.5時間以上、さらに好ましくは2時間以上であり、通常30時間以下、好ましくは25時間以下、より好ましくは20時間以下、さらに好ましくは15時間以下である。浸漬後に加熱する際には、加熱する系内に水を共存させることが好ましく、例えば加熱する雰囲気を空気とする場合、大気中に通常含まれる水分があればよいが、さらに湿度を上げてもよい。浸漬後の加熱は通常の乾燥機などで行うことも出来るし、密閉容器中に浸漬後の膜を入れて加熱してもよい。密閉容器中に浸漬後の膜を入れる際には少量の水を膜に接触しないように共存させることが好ましい。
本発明の分離または濃縮方法は、上記多孔質支持体-ゼオライト膜複合体に、複数の成分からなる気体または液体の混合物を接触させて、該混合物から、透過性の高い物質を透過させて分離する、または、該混合物から透過性の高い物質を透過させることにより、透過性の低い物質を濃縮することに特徴をもつものである。この発明において、多孔質支持体-ゼオライト膜複合体は、上記と同様のものが用いられる。また、好ましいものも上記と同様である。
分離係数=(Pα/Pβ)/(Fα/Fβ)
[ここで、Pαは透過液中の主成分の質量パーセント濃度、Pβは透過液中の副成分の質量パーセント濃度、Fαは透過液において主成分となる成分の被分離混合物中の質量パーセント濃度、Fβは透過液において副成分となる成分の被分離混合物中の質量パーセント濃度である。]
また、有機酸以外の有機物と水との混合物から有機物と水を分離する場合の有機物は炭素数が2以上であることが好ましく、炭素数が3以上であることがより好ましい。
かかる高分子化合物としては、分子内に極性基を有するもの、例えば、ポリエチレングリコール、ポリビニルアルコールなどのポリオール類;ポリアミン類;ポリスルホン酸類;ポリアクリル酸などのポリカルボン酸類;ポリアクリル酸エステルなどのポリカルボン酸エステル類;グラフト重合等によってポリマー類を変性させた変性高分子化合物類;オレフィンなどの非極性モノマーとカルボキシル基等の極性基を有する極性モノマーとの共重合によって得られる共重合高分子化合物類などが挙げられる。
以下の実験例において、物性や分離性能等の測定は、特に明記しない限り次のとおり行った。
(1)X線回折(XRD)測定
ゼオライト膜のXRD測定を、以下の条件で行った。
・装置名:オランダPANalytical社製X’PertPro MPD
・光学系仕様 入射側:封入式X線管球(CuKα)
Soller Slit (0.04rad)
Divergence Slit (Valiable Slit)
試料台:XYZステージ
受光側:半導体アレイ検出器(X’ Celerator)
Ni-filter
Soller Slit (0.04rad)
ゴニオメーター半径:240mm
・測定条件 X線出力(CuKα):45kV、40mA
走査軸:θ/2θ
走査範囲(2θ):5.0-70.0°
測定モード:Continuous
読込幅:0.05°
計数時間:99.7sec
自動可変スリット(Automatic-DS):1mm(照射幅)
横発散マスク:10mm(照射幅)
また、照射幅を自動可変スリットによって1mmに固定して測定し、Materials Data, Inc.のXRD解析ソフトJADE 7.5.2(日本語版)を用いて可変スリット→固定スリット変換を行ってXRDパターンを得た。
ゼオライト膜複合体の一端を封止し、他端を、密閉状態で5kPaの真空ラインに接続して、真空ラインとゼオライト膜複合体の間に設置したマスフローメーターで空気の流量を測定し、空気透過量[L/(m2・h)]とした。マスフローメーターとしてはKOFLOC社製8300、N2ガス用、最大流量500ml/min(20℃、1気圧換算)を用いた。KOFLOC社製8300においてマスフローメーターの表示が10ml/min(20℃、1気圧換算)以下であるときはLintec社製MM-2100M、Airガス用、最大流量20ml/min(0℃、1気圧換算)を用いて測定した。
SEM測定は以下の条件に基づき行った。
・装置名:SEM:FE-SEM Hitachi:S-4100
・加速電圧:10kV
ゼオライト膜のSEM-EDX測定を、以下の条件で行った。
・装置名:SEM:FE-SEM Hitachi:S-4800
EDX:EDAX Genesis
・加速電圧:10kV
倍率5000倍での視野全面(25μm×18μm)を走査し、X線定量分析を行った。
このSEM-EDX測定により、生成したゼオライト膜自体のSiO2/Al2O3モル比を求めた。なお、SEM-EDX測定において、X線の照射エネルギーを10kV程度とすることにより数ミクロンのゼオライト膜のみの情報を得ることができる。
ゼオライト膜表面のXPS(X線光電子分光法)測定を、以下の条件で行った。
・装置名:PHI社製 Quantum2000
・X線源:単色化Al-Kα、出力 16kV-34W(X線発生面積170μmφ)
・帯電中和:電子銃(5μA)、イオン銃(10V)併用
・分光系:パルスエネルギー 187.85eV@ワイドスペクトル
58.70eV@ナロースペクトル(Na1s、Al2p、Si2p、K2p、S2p)
29.35eV@ワイドスペクトル(C1s、O1s、Si2p)
・測定領域:スポット照射(照射面積<340μmφ)
・取り出し角:45°(表面より)
このXPS測定により、生成したゼオライト膜表面のSiO2/Al2O3モル比を求めた。
パーベーパレーション法に用いた装置の概略図を図1に示す。図1においてゼオライト膜複合体5は真空ポンプ9によって内側が減圧され、被分離液4が接触している外側と圧力差が約1気圧になっている。内側の圧力は、ピラニーゲージ6で測定する。この圧力差によって被分離液4中、透過物質の水がゼオライト膜複合体5に浸透気化して透過する。透過した物質は透過液捕集用トラップ7で捕集され、透過液捕集用トラップ7で捕集されなかった物質があればコールドトラップ8によって捕集される。一方、被分離液4中の有機化合物は、ゼオライト膜複合体5の外側に滞留する。被分離液は湯浴2によって所定温度に加熱され、スターラー1によって回転する攪拌子3によって攪拌される。
ベーパーパーミエーション法に用いた装置の概略図を図2に示す。図2において、被分離液10は送液ポンプ11によって気化器12に所定流量で送られ、気化器12での加熱により全量が気化され、被分離ガスとなる。被分離ガスは恒温槽13内のゼオライト膜複合体モジュール14に導入され、ゼオライト膜複合体の外側に供給される。ゼオライト膜複合体モジュール14は、ゼオライト膜複合体を筐体中に納めたものである。ゼオライト膜複合体は真空ポンプ18によって内側が減圧され、被分離ガスとの圧力差が約1気圧になっている。内側の圧力は、図示はしないがピラニーゲージで測定することができる。この圧力差によって被分離ガス中透過物質の水がゼオライト膜複合体を透過する。透過した物質は透過液捕集用トラップ16で捕集され、透過液捕集用トラップ16で捕集されなかった物質があればコールドトラップ17によって捕集される。一方、被分離ガス中の透過しなかった成分は、被分離液回収用トラップ15で液化、捕集される。
35℃における水蒸気吸着等温線を吸着等温線測定装置(ベルソープ18:日本ベル社製)で測定した。なお、ゼオライト膜複合体は、予め測定セルに入るよう適当なサイズに切断し、真空排気しながら120℃で5時間加熱乾燥させて測定に用いた。測定は、空気恒温槽温度50℃、吸着温度35℃、初期導入圧力3torr(4.00×102Pa)、飽和蒸気圧42.181torr(56.237×102Pa)、平衡時間500秒で行った。
この測定結果から、相対圧0.8におけるCHA型ゼオライト膜複合体1gあたりの水吸着量(g)を求めた。
無機多孔質支持体CHA型ゼオライト膜複合体は、CHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで次のとおり作製した。
水熱合成用の反応混合物として、以下のものを調製した。
1mol/L-NaOH水溶液10.5gと1mol/L-KOH水溶液7.0gと水100.5gを混合したものに水酸化アルミニウム(Al2O3 53.5質量%含有、アルドリッチ社製)0.88gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(以下これを「TMADAOH」という。)水溶液(TMADAOH 25質量%含有、セイケム社製)2.36gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック-40)10.5gを加えて2時間撹拌し、反応混合物とした。
この種結晶を1質量%水中に分散させた分散液に、上記支持体を所定時間浸漬した後、100℃で5時間乾燥させて、種結晶を付着させた。付着した種結晶の質量は0.9g/m2であった。
焼成後のゼオライト膜複合体の空気透過量は60L/(m2・h)であった。
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
無機多孔質支持体-CHA型ゼオライト膜複合体をSEMで観測した結果、表面に結晶が緻密に生成していた。
5.5時間後の透過成績は、透過流束:1.3kg/(m2・h)、分離係数:400、透過液中の水の濃度:95.75質量%であった。水のパーミエンスであらわすと、1.5×10-6mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体を、脱塩水135gとテトラエトキシシラン(以下、「TEOS」と略称することがある)2.5gおよび硫酸1.4gが入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し、100℃で20時間、自生圧力下で加熱し、所定時間経過後、放冷した後にゼオライト膜複合体を取りだし、脱塩水で洗浄した。以下、この処理を「シリル化処理1」という。シリル化処理1に用いた処理液のpHは1.0であり、H+濃度は0.1mol/l、Si含有量が0.24質量%であった。
5時間後の透過成績は、透過流束:0.92kg/(m2・h)、分離係数:17900、透過液中の水の濃度:99.89質量%であった。水のパーミエンスであらわすと、1.2×10-6mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体を、脱塩水135gとテトラエトキシシラン(TEOS)2.5gおよび酢酸1.62gが入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し、100℃で20時間、自生圧力下で加熱し、所定時間経過後、放冷した後にゼオライト膜複合体を取りだし、脱塩水で洗浄した。以下、この処理を「シリル化処理2」という。シリル化処理2に用いた処理液のpHは2.9であり、H+濃度は0.001mol/l、Si含有量が0.24質量%であった。
5時間後の透過成績は、透過流束:1.2kg/(m2・h)、分離係数:210000、透過液中の水の濃度:99.99質量%であった。水のパーミエンスであらわすと、1.7×10-6mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜自体のSiO2/Al2O3モル比は17、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は36.2であり、ゼオライト膜自体のSiO2/Al2O3モル比と膜表面のSiO2/Al2O3モル比の差は20以下であった。
5時間後の透過成績は、透過流束:1.8kg/(m2・h)、分離係数:1900、透過液中の水の濃度:99.49質量%であった。水のパーミエンスであらわすと、1.3×10-6mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。
このゼオライト膜複合体を、脱塩水135gとテトラエトキシシラン(TEOS)2.5gおよびリン酸4.7gが入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し、100℃で20時間、自生圧力下で加熱し、所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を取りだし、脱塩水で洗浄した。以下、この処理を「シリル化処理3」という。シリル化処理3に用いた処理液のpHは1.3であり、H+濃度は0.05mol/l、Si含有量が0.24質量%であった。
5時間後の透過成績は、透過流束:1.7kg/(m2・h)、分離係数:99100、透過液中の水の濃度:99.99質量%であった。水のパーミエンスであらわすと、1.3×10-6mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体を、脱塩水134gとコロイダルシリカ(日産化学社製 スノーテックス40)1.8gが入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し、100℃で21時間、自生圧力下で加熱し、所定時間経過後、放冷した後にゼオライト膜複合体を取りだし、脱塩水で洗浄した。以下、この処理を「シリル化処理4」という。シリル化処理4に用いた処理液のSi含有量は0.25質量%であった。
5時間後の透過成績は、透過流束:2.3kg/(m2・h)、分離係数:91000、透過液中の水の濃度:99.99質量%であった。水のパーミエンスであらわすと、1.6×10-6mol/(m2・s・Pa)であった。
無機多孔質支持体として多孔質アルミナチューブ(外径12mm、内径9mm)を用いた以外は比較例1と同様にして無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜自体のSiO2/Al2O3モル比は17、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は32.4であり、ゼオライト膜自体のSiO2/Al2O3モル比と、膜表面のSiO2/Al2O3モル比の差は20以下であった。
比較例3と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体を、脱塩水135gとテトラエトキシシラン(TEOS)2.5gおよび酢酸4.05gが入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し、100℃で20時間、自生圧力下で加熱し、所定時間経過後、放冷した後に支持体-ゼオライト膜複合体を取りだし、脱塩水で洗浄した。以下、この処理を「シリル化処理5」という。シリル化処理5に用いた処理液のpHは2.8であり、H+濃度は0.0016mol/l、Si含有量が0.24質量%であった。
3時間後の透過成績は、透過流束:5.2kg/(m2・h)、分離係数:75500、透過液中の水の濃度:99.99質量%、フェノールの濃度は0.01質量%であった。水のパーミエンスであらわすと、2.7×10-6mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜自体のSiO2/Al2O3モル比は17、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は36.2であり、ゼオライト膜自体のSiO2/Al2O3モル比と、膜表面のSiO2/Al2O3モル比の差は20以下であった。
2時間後の透過成績は、透過流束:2.8kg/(m2・h)、分離係数:5、透過液中の水の濃度:34.92質量%であった。水のパーミエンスで表すと、5.5×10-7mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体を、実施例1と同様にシリル化処理1を施し、その後170℃で1時間加熱した。
2時間後の透過成績は、透過流束:0.88kg/(m2・h)、分離係数:18000、透過液中の水の濃度:99.95質量%であった。水のパーミエンスで表すと、5.0×10-7mol/(m2・s・Pa)であった。
比較例3と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜自体のSiO2/Al2O3モル比は17、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は32.4であり、ゼオライト膜自体のSiO2/Al2O3モル比と、膜表面のSiO2/Al2O3モル比の差は20以下であった。
5時間後の透過成績は、透過流束:1.4kg/(m2・h)、分離係数:40、透過液中の水の濃度:82.63質量%であった。水のパーミエンスで表すと、6.3×10-7mol/(m2・s・Pa)であった。
比較例3と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体を、トルエン135gとテトラエトキシシラン(TEOS)2.5gおよび3-アミノプロピルトリエトキシシラン(以下、「APTS」と略称することがある。)2.66gが入ったナスフラスコにいれて溶媒に浸漬させ、窒素気流下、100℃で8時間加熱し、所定時間経過後、ゼオライト膜複合体を取りだし、アセトンで洗浄した。その後170℃で2h加熱した。以下、この処理を「シリル化処理6」という。シリル化処理6に用いた処理液のSi含有量が0.48質量%であった。
5時間後の透過成績は、透過流束:0.84kg/(m2・h)、分離係数:500、透過液中の水の濃度:98.15質量%であった。水のパーミエンスで表すと、4.5×10-7mol/(m2・s・Pa)であった。
水熱合成用の反応混合物として組成(モル比)がSiO2/Al2O3/NaOH/KOH/H2O/TMADAOH=1/0.033/0.05/0.1/100/0.04、SiO2/Al2O3=30のものを用いた以外は比較例1と同様に無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は160g/m2であった。
焼成後のゼオライト膜複合体の空気透過量は50L/(m2・h)であった。
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
また、ゼオライト膜複合体をSEMで観測した結果、表面に結晶が緻密に生成していることが分かった。
シリル化処理2を施したゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜自体のSiO2/Al2O3モル比は22、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は44.2であった。ゼオライト膜表面のSiO2/Al2O3モル比は、ゼオライト膜自体のSiO2/Al2O3モル比に比べ20以上大きいため、ゼオライト膜表面がSi化合物で修飾されていると推測される。
水熱合成用の反応混合物として組成(モル比)がSiO2/Al2O3/NaOH/KOH/H2O/TMADAOH=1/0.02/0.05/0.1/100/0.05、SiO2/Al2O3=50のものを用いた以外は比較例1と同様に無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は160g/m2であった。
焼成後のゼオライト膜複合体の空気透過量は140L/(m2・h)であった。
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
また、ゼオライト膜複合体をSEMで観測した結果、表面に結晶が緻密に生成していた。
シリル化処理2を施したゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜のSiO2/Al2O3モル比は28、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は57.6であった。ゼオライト膜表面のSiO2/Al2O3モル比は、ゼオライト膜自体のSiO2/Al2O3モル比に比べ20以上大きいため、ゼオライト膜表面がSi化合物で修飾されていると推測される。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。得られた無機多孔質支持体-CHA型ゼオライト膜複合体の一部分を用いて水蒸気吸着等温線を測定した。この水蒸気吸着等温線から求めた、相対圧0.8におけるCHA型ゼオライト膜複合体1gあたりの水吸着量は0.01423gであった。
このように、90質量%酢酸水溶液に1週間浸漬した後のCHA型ゼオライト膜複合体の水吸着量は、浸漬前の吸着量の80%に減少した。
5時間後の透過成績は、透過流束:1.8kg/(m2・h)、分離係数:1900、透過液中の水の濃度:99.49質量%であった。水のパーミエンスであらわすと、1.3×10-6mol/(m2・s・Pa)であった。
比較例1と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体にシリル化処理2を施した。
シリル化処理2を施した無機多孔質支持体-CHA型ゼオライト膜複合体の一部分を用いて水蒸気吸着等温線を比較例6と同様に測定した。この水蒸気吸着等温線から求めた、相対圧0.8におけるCHA型ゼオライト膜複合体1gあたりの水吸着量は0.01368gであった。
5時間後の透過成績は、透過流束:1.7kg/(m2・h)、分離係数:96400、透過液中の水の濃度:99.99質量%であった。水のパーミエンスであらわすと、1.2×10-6mol/(m2・s・Pa)であった。
比較例6、実施例10の結果を表2に示す。
無機多孔質支持体上にCHA型アルミノ珪酸塩のゼオライトを直接水熱合成することにより無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。
水熱合成用の反応混合物は次のとおり調製した。
1mol/L-NaOH水溶液12.0g、1mol/L-KOH水溶液8.0g、水115gを混合したものに水酸化アルミニウム(Al2O3 53.5質量%含有、アルドリッチ社製)0.306gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(以下これを「TMADAOH」と称する。)水溶液(TMADAOH25質量%含有、セイケム社製)2.7gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック-40)12.0gを加えて2時間撹拌し、水性反応混合物とした。
得られた無機多孔質支持体-CHA型ゼオライト膜複合体にシリル化処理1を施した。
2時間後の透過成績は、透過流束:1.7kg/(m2・h)、分離係数:600、透過液中の水の濃度:99.08質量%であった。水のパーミエンスで表すと、6.9×10-7mol/(m2・s・Pa)であった。
比較例3と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜自体のSiO2/Al2O3モル比は17、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は32.4であり、ゼオライト膜自体のSiO2/Al2O3モル比と、膜表面のSiO2/Al2O3モル比の差は20以下であった。
4時間後の透過成績は、透過流束:2.5kg/(m2・h)、分離係数:800、透過液中の水の濃度:98.85重量%であった。水のパーミエンスであらわすと、1.4×10-6mol/(m2・s・Pa)であった。
比較例3と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体にシリル化処理1を施した。
シリル化処理1を施したゼオライト膜複合体について、SEM-EDXにより測定したゼオライト膜自体のSiO2/Al2O3モル比は20、XPSにより測定したゼオライト膜表面のSiO2/Al2O3モル比は64.6であった。ゼオライト膜表面のSiO2/Al2O3モル比は、ゼオライト膜自体のSiO2/Al2O3モル比に比べ20以上大きいため、ゼオライト膜表面がSi化合物で修飾されていると推測される。
4時間後の透過成績は、透過流束:2.0kg/(m2・h)、分離係数:55000、透過液中の水の濃度:99.98重量%であった。水のパーミエンスであらわすと、1.1×10-6mol/(m2・s・Pa)であった。
比較例7と実施例12の結果からゼオライト膜表面のSiO2/Al2O3モル比をゼオライト膜自体のSiO2/Al2O3モル比に比べ20以上大きくすることによって分離係数が69倍に向上したことがわかる。
比較例3と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体を、脱塩水121.5gとテトラエトキシシラン(TEOS)2.5gおよび硝酸1mol/l水溶液13.5gが入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し、100℃で20時間、自生圧力下で加熱し、所定時間経過後、放冷した後にゼオライト膜複合体を取りだし、脱塩水で洗浄した。以下、この処理を「シリル化処理7」という。シリル化処理7に用いた処理液のpHは1.3であり、H+濃度は0.05mol/l、Si含有量が0.24質量%であった。
4時間後の透過成績は、透過流束:1.7kg/(m2・h)、分離係数:74500、透過液中の水の濃度:99.99重量%であった。水のパーミエンスであらわすと、9.9×10-7mol/(m2・s・Pa)であった。
比較例7と実施例13の結果からゼオライト膜表面のSiO2/Al2O3モル比をゼオライト膜自体のSiO2/Al2O3モル比に比べ20以上大きくすることによって分離係数が93倍に向上したことがわかる。
比較例3と同じ条件で無機多孔質支持体-CHA型ゼオライト膜複合体を作製した。このゼオライト膜複合体の上下をシリコンゴム栓で栓をした後に、三菱化学社製MKC(登録商標)シリケート MS51(メチルシリケートオリゴマー、SiO2含有量として52.0±1.0%)にゼオライト膜複合体全体が浸漬するように浸漬した後、5秒間保持してからゼオライト膜複合体を引上げ、1時間静置した後に水を共存させた乾燥機内で、100℃で4時間加熱するシリル化処理を行った。この処理を「シリル化処理8」という。
4時間後の透過成績は、透過流束:1.9kg/(m2・h)、分離係数:198800、透過液中の水の濃度:99.99重量%であった。水のパーミエンスであらわすと、1.2×10-6mol/(m2・s・Pa)であった。
比較例7と実施例14の結果からゼオライト膜表面のSiO2/Al2O3モル比をゼオライト膜自体のSiO2/Al2O3モル比に比べ20以上大きくすることによって分離係数が249倍に向上したことがわかる。
2 湯浴
3 撹拌子
4 被分離液
5 ゼオライト膜複合体
6 ピラニーゲージ
7 透過液捕集用トラップ
8 コールドトラップ
9 真空ポンプ
10 被分離液
11 送液ポンプ
12 気化器
13 恒温槽
14 ゼオライト膜複合体モジュール
15 被分離液回収用トラップ
16 透過液捕集用トラップ
17 コールドトラップ
18 真空ポンプ
Claims (15)
- 無機多孔質支持体上にゼオライト膜が形成されてなる多孔質支持体-ゼオライト膜複合体であって、前記ゼオライト膜が、酸素8員環以下の細孔構造を有するゼオライトを含み、ゼオライト膜表面のSiO2/Al2O3モル比が、ゼオライト膜自体のSiO2/Al2O3モル比よりも20以上大きい、多孔質支持体-ゼオライト膜複合体。
- 多孔質支持体-ゼオライト膜複合体の水蒸気吸着等温線より求めた相対圧0.8における多孔質支持体-ゼオライト膜複合体の水吸着量が、多孔質支持体-ゼオライト膜複合体を90質量%酢酸水溶液に室温で1週間浸漬した後の前記と同条件における多孔質支持体-ゼオライト膜複合体の水吸着量の82%以上である、請求項1に記載の多孔質支持体-ゼオライト膜複合体。
- 無機多孔質支持体上にゼオライト膜が形成されてなる多孔質支持体-ゼオライト膜複合体であって、前記ゼオライト膜が、酸素8員環以下の細孔構造を有するゼオライトを含み、多孔質支持体-ゼオライト膜複合体の水蒸気吸着等温線より求めた相対圧0.8における多孔質支持体-ゼオライト膜複合体の水吸着量が、ゼオライト膜複合体を90質量%酢酸水溶液に室温で1週間浸漬した後の前記と同条件における多孔質支持体-ゼオライト膜複合体の水吸着量の82%以上である、多孔質支持体-ゼオライト膜複合体。
- ゼオライト膜表面のSiO2/Al2O3モル比が、ゼオライト膜自体のSiO2/Al2O3モル比よりも20以上大きい、請求項3に記載の多孔質支持体-ゼオライト膜複合体。
- ゼオライト膜表面のSiO2/Al2O3モル比が、25以上3000以下である、請求項1~請求項4のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体。
- ゼオライト膜自体のSiO2/Al2O3モル比が、5以上2000以下である、請求項1~請求項5のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体。
- 前記酸素8員環以下の細孔構造を有するゼオライトがCHA型ゼオライトである、請求項1~請求項6のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体。
- ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて、2θ=17.9°付近のピーク強度が、2θ=20.8°付近のピーク強度の0.5倍以上である、請求項1~請求項7のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体。
- ゼオライト膜表面にX線を照射して得たX線回折パターンにおいて、2θ=9.6°付近のピーク強度が、2θ=20.8°付近のピーク強度の2倍以上である、請求項1~請求項8のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体。
- 前記ゼオライト膜が、Si元素源、Al元素源、およびアルカリ源を含む水性反応混合物を用いて、水熱合成により形成されたものである、請求項1~請求項9のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体。
- 前記アルカリ源が、少なくともカリウムを含む、請求項10に記載の多孔質支持体-ゼオライト膜複合体。
- 前記ゼオライト膜が、水熱合成により形成された後、Si元素源を含む溶液中で浸漬処理されたものである、請求項1~請求項11のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体。
- 請求項1~請求項12のいずれか1項に記載の多孔質支持体-ゼオライト膜複合体に、複数の成分からなる気体または液体の混合物を接触させて、該混合物のうち透過性の高い物質を透過させることにより、該混合物から該透過性の高い物質を分離する、または、該混合物から透過性の高い物質を透過させることにより、透過性の低い物質を濃縮する、分離または濃縮方法。
- 前記複数の成分からなる気体または液体の混合物が、有機化合物と水との混合物である、請求項13に記載の方法。
- 前記有機化合物が、有機酸、アルコール、エーテル、アルデヒド、ケトン、エステルおよび窒素を含む有機化合物よりなる群から選ばれる少なくとも1種の化合物である、請求項14に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13751699.3A EP2818231B1 (en) | 2012-02-24 | 2013-02-21 | Porous support-zeolite membrane composite |
CN201380010119.0A CN104144738B (zh) | 2012-02-24 | 2013-02-21 | 多孔支持体‑沸石膜复合体 |
KR1020147023103A KR102017483B1 (ko) | 2012-02-24 | 2013-02-21 | 다공질 지지체-제올라이트막 복합체 |
JP2014500936A JP6107809B2 (ja) | 2012-02-24 | 2013-02-21 | 多孔質支持体―ゼオライト膜複合体 |
US14/467,622 US11090617B2 (en) | 2012-02-24 | 2014-08-25 | Porous support-zeolite membrane composite |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012039271 | 2012-02-24 | ||
JP2012-039271 | 2012-02-24 | ||
JP2012-187576 | 2012-08-28 | ||
JP2012187576 | 2012-08-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/467,622 Continuation US11090617B2 (en) | 2012-02-24 | 2014-08-25 | Porous support-zeolite membrane composite |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125661A1 true WO2013125661A1 (ja) | 2013-08-29 |
Family
ID=49005838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054417 WO2013125661A1 (ja) | 2012-02-24 | 2013-02-21 | 多孔質支持体―ゼオライト膜複合体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11090617B2 (ja) |
EP (1) | EP2818231B1 (ja) |
JP (1) | JP6107809B2 (ja) |
KR (1) | KR102017483B1 (ja) |
CN (1) | CN104144738B (ja) |
WO (1) | WO2013125661A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014198308A (ja) * | 2013-03-29 | 2014-10-23 | 日本碍子株式会社 | セラミック分離フィルタ及び脱水方法 |
US20160114313A1 (en) * | 2014-10-24 | 2016-04-28 | Chevron U.S.A. Inc | Processes using molecular sieve ssz-102 |
JPWO2016043209A1 (ja) * | 2014-09-16 | 2017-06-22 | 積水化学工業株式会社 | ブタジエンの製造方法及びブタジエン製造装置 |
JP2018164908A (ja) * | 2017-03-28 | 2018-10-25 | 三菱ケミカル株式会社 | 多孔質支持体−ゼオライト膜複合体の製造方法 |
JP2020032419A (ja) * | 2014-04-18 | 2020-03-05 | 三菱ケミカル株式会社 | 多孔質支持体−ゼオライト膜複合体及び多孔質支持体−ゼオライト膜複合体の製造方法 |
JPWO2018225793A1 (ja) * | 2017-06-07 | 2020-04-16 | 日本碍子株式会社 | 脱水方法及び脱水装置 |
JP2021109177A (ja) * | 2020-01-15 | 2021-08-02 | コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation | 低温熱処理工程を用いたチャバサイトゼオライト分離膜の欠陥構造の調節方法 |
JPWO2020050137A1 (ja) * | 2018-09-05 | 2021-08-26 | 日本ゼオン株式会社 | ピペリレンの製造方法 |
WO2022239873A1 (ja) * | 2021-05-13 | 2022-11-17 | イーセップ株式会社 | Co2転換装置 |
KR102625225B1 (ko) * | 2022-12-26 | 2024-01-15 | (주)파인텍 | 제올라이트 분리막을 이용한 폐유기용제 재생시스템 |
CN118240360A (zh) * | 2024-04-03 | 2024-06-25 | 江苏君华特种高分子材料股份有限公司 | 一种隔热、低介电常数的聚芳醚酮基复合材料及其制备方法 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6107808B2 (ja) * | 2012-02-24 | 2017-04-05 | 三菱化学株式会社 | ゼオライト膜複合体 |
WO2013129625A1 (ja) * | 2012-02-29 | 2013-09-06 | 日本碍子株式会社 | セラミック分離膜及び脱水方法 |
JP6134621B2 (ja) * | 2012-11-15 | 2017-05-24 | 日立造船株式会社 | パラフィンとオレフィンの混合物からのオレフィンの分離・回収装置および方法 |
TWI565681B (zh) * | 2013-10-15 | 2017-01-11 | 中原大學 | 多孔二氧化矽氣凝膠複合薄膜及其製造方法以及二氧化碳吸收裝置 |
JP6413283B2 (ja) * | 2014-01-08 | 2018-10-31 | 三菱ケミカル株式会社 | 多孔質支持体−ゼオライト膜複合体の製造方法 |
ES2951081T3 (es) * | 2014-11-25 | 2023-10-17 | Mitsubishi Chem Corp | Uso de un material compuesto de soporte poroso-membrana de zeolita CHA para la separación de una mezcla de gases |
JP6378786B2 (ja) | 2015-01-30 | 2018-08-22 | 日本碍子株式会社 | 分離膜構造体及び窒素濃度低減方法 |
US9943808B2 (en) * | 2016-02-19 | 2018-04-17 | King Fahd University Of Petroleum And Minerals | Aluminum oxide supported gas permeable membranes |
JP6757606B2 (ja) * | 2016-06-21 | 2020-09-23 | 日立造船株式会社 | Mfi型ゼオライト(シリカライト)を用いた分離膜の製造方法 |
JP6751326B2 (ja) | 2016-09-16 | 2020-09-02 | キオクシア株式会社 | 基板処理装置および半導体装置の製造方法 |
JP6740460B2 (ja) * | 2017-03-31 | 2020-08-12 | 日本碍子株式会社 | Afx構造のゼオライト膜、膜構造体、及び膜構造体の製造方法 |
DE112018001782T5 (de) * | 2017-03-31 | 2020-02-20 | Ngk Insulators, Ltd. | Zeolithmembran mit einer eri-struktur und membranstruktur |
CN106861454A (zh) * | 2017-04-14 | 2017-06-20 | 北京工业大学 | 一种原位合成水滑石复合膜的方法 |
CN110709154B (zh) * | 2017-06-07 | 2022-01-07 | 日本碍子株式会社 | 脱水方法、脱水装置以及膜结构体 |
KR102205266B1 (ko) * | 2018-12-28 | 2021-01-20 | 고려대학교 산학협력단 | Cha 제올라이트 분리막 및 그 제조방법 |
JPWO2020149352A1 (ja) * | 2019-01-18 | 2021-12-02 | 東レ株式会社 | 流体分離用炭素膜 |
JP7297475B2 (ja) | 2019-03-08 | 2023-06-26 | 日本碍子株式会社 | ゼオライト合成用ゾル、ゼオライト膜の製造方法、および、ゼオライト粉末の製造方法 |
SG11202108991XA (en) * | 2019-03-26 | 2021-09-29 | Zeon Corp | Separation method and production method of branched diolefin |
JP7174146B2 (ja) * | 2019-03-26 | 2022-11-17 | 日本碍子株式会社 | ゼオライト膜複合体、ゼオライト膜複合体の製造方法、ゼオライト膜複合体の処理方法、および、分離方法 |
JP7257244B2 (ja) * | 2019-05-08 | 2023-04-13 | 日立造船株式会社 | ゼオライト膜複合体及びその製造方法 |
WO2020255867A1 (ja) * | 2019-06-17 | 2020-12-24 | 日本碍子株式会社 | ゼオライト膜複合体、ゼオライト膜複合体の製造方法、分離装置、膜型反応装置および分離方法 |
US20220387964A1 (en) * | 2019-11-13 | 2022-12-08 | Rensselaer Polytechnic Institute | NaA ZEOLITE MEMBRANE FOR RECOVERY OF AMMONIA |
CN111893375B (zh) * | 2020-06-16 | 2021-09-28 | 宁波市华涛不锈钢管材有限公司 | 一种三通管件用薄壁不锈钢及其制备方法 |
CN111744368B (zh) * | 2020-06-24 | 2021-04-30 | 中国石油大学(华东) | 一种基于超小尺寸emt分子筛的有机/无机杂化膜材料、制备方法及在水处理方面的应用 |
CN112553054A (zh) * | 2020-12-10 | 2021-03-26 | 上海艾众生物科技有限公司 | 用于生物反应器的细胞分离设备 |
CN114288871B (zh) * | 2021-12-31 | 2023-06-16 | 武汉智宏思博环保科技有限公司 | 一种浸涂分子筛晶种法制备分子筛膜的方法 |
CN114653228A (zh) * | 2022-04-08 | 2022-06-24 | 南京科技职业学院 | 一种rho型分子筛膜的制备方法 |
US11826477B1 (en) | 2022-06-17 | 2023-11-28 | Imam Abdulrahman Bin Faisal University | Metal organic framework/porous silicate and/or aluminosilicate nanocarrier for blastocystosis treatment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544538A (en) | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
JPH07185275A (ja) | 1993-12-27 | 1995-07-25 | Mitsui Eng & Shipbuild Co Ltd | 液体混合物分離膜 |
JP2000237561A (ja) | 1998-01-08 | 2000-09-05 | Tosoh Corp | Fer型ゼオライト膜、その製造方法及びそれを用いた有機酸の濃縮方法 |
JP2003144871A (ja) | 2001-08-24 | 2003-05-20 | Tosoh Corp | モルデナイト型ゼオライト膜複合体およびその製造方法並びにそれを用いた濃縮方法 |
US20080075656A1 (en) | 2006-09-25 | 2008-03-27 | Zones Stacey I | Preparation of Molecular Sieves Using a Structure Directing Agent and An N, N, N-Triakyl Benzyl Quaternary Ammonium Cation |
WO2010098473A1 (ja) | 2009-02-27 | 2010-09-02 | 三菱化学株式会社 | 無機多孔質支持体-ゼオライト膜複合体、その製造方法およびそれを用いた分離方法 |
JP2011079818A (ja) * | 2009-09-14 | 2011-04-21 | Mitsubishi Chemicals Corp | プロピレンの製造方法 |
JP2011121045A (ja) | 2009-11-11 | 2011-06-23 | Mitsubishi Chemicals Corp | 含水有機化合物の分離方法および分離装置 |
JP2011241097A (ja) * | 2010-05-14 | 2011-12-01 | Osaka Univ | 疎水性ゼオライトの製造方法及びその方法で得られた疎水性ゼオライト |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5554286A (en) | 1993-12-27 | 1996-09-10 | Mitsui Engineering & Shipbuilding Co., Ltd. | Membrane for liquid mixture separation |
KR100335966B1 (ko) * | 2000-04-14 | 2002-05-10 | 정한채 | 기질에 제올라이트 분자체 또는 이의 유사체를 단층 또는다층으로 결합시킨 복합체 및 이의 제조 방법 |
US20020114958A1 (en) * | 2000-11-27 | 2002-08-22 | Toray Industries, Inc. | Method of coating zeolite crystals, substrate containing zeolite crystals, method of manufacturing zeolite membrane, method of processing zeolite membrane, zeolite membrane, aluminum electrolytic capacitor, degassing membrane and separation method |
JP4494685B2 (ja) * | 2001-09-17 | 2010-06-30 | 日本碍子株式会社 | ゼオライト積層複合体及びその製造方法 |
WO2007119286A1 (ja) * | 2006-03-14 | 2007-10-25 | Ngk Insulators, Ltd. | 脱水方法、脱水装置及び膜型反応装置 |
CN101343067B (zh) * | 2008-09-04 | 2010-11-10 | 天津大学 | 借助液-液界面化学液相沉积修复分子筛膜缺陷的方法 |
CN102285666B (zh) * | 2010-06-18 | 2015-02-04 | 江西师范大学 | 一种菱沸石及菱沸石膜的制备方法 |
CN102139188B (zh) * | 2011-01-05 | 2013-10-30 | 常州大学 | 分子筛/有机复合渗透汽化分离膜的制备方法及其应用 |
-
2013
- 2013-02-21 JP JP2014500936A patent/JP6107809B2/ja active Active
- 2013-02-21 KR KR1020147023103A patent/KR102017483B1/ko active IP Right Grant
- 2013-02-21 CN CN201380010119.0A patent/CN104144738B/zh active Active
- 2013-02-21 WO PCT/JP2013/054417 patent/WO2013125661A1/ja active Application Filing
- 2013-02-21 EP EP13751699.3A patent/EP2818231B1/en active Active
-
2014
- 2014-08-25 US US14/467,622 patent/US11090617B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544538A (en) | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
JPH07185275A (ja) | 1993-12-27 | 1995-07-25 | Mitsui Eng & Shipbuild Co Ltd | 液体混合物分離膜 |
JP2000237561A (ja) | 1998-01-08 | 2000-09-05 | Tosoh Corp | Fer型ゼオライト膜、その製造方法及びそれを用いた有機酸の濃縮方法 |
JP2003144871A (ja) | 2001-08-24 | 2003-05-20 | Tosoh Corp | モルデナイト型ゼオライト膜複合体およびその製造方法並びにそれを用いた濃縮方法 |
US20080075656A1 (en) | 2006-09-25 | 2008-03-27 | Zones Stacey I | Preparation of Molecular Sieves Using a Structure Directing Agent and An N, N, N-Triakyl Benzyl Quaternary Ammonium Cation |
WO2010098473A1 (ja) | 2009-02-27 | 2010-09-02 | 三菱化学株式会社 | 無機多孔質支持体-ゼオライト膜複合体、その製造方法およびそれを用いた分離方法 |
JP2011121040A (ja) | 2009-02-27 | 2011-06-23 | Mitsubishi Chemicals Corp | 無機多孔質支持体−ゼオライト膜複合体、その製造方法およびそれを用いた分離方法 |
JP2011079818A (ja) * | 2009-09-14 | 2011-04-21 | Mitsubishi Chemicals Corp | プロピレンの製造方法 |
JP2011121045A (ja) | 2009-11-11 | 2011-06-23 | Mitsubishi Chemicals Corp | 含水有機化合物の分離方法および分離装置 |
JP2011121854A (ja) | 2009-11-11 | 2011-06-23 | Mitsubishi Chemicals Corp | 多孔質支持体−ゼオライト膜複合体の製造方法 |
JP2011241097A (ja) * | 2010-05-14 | 2011-12-01 | Osaka Univ | 疎水性ゼオライトの製造方法及びその方法で得られた疎水性ゼオライト |
Non-Patent Citations (3)
Title |
---|
"ATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition", 2001, ELSEVIER |
"COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE, Third Revised Edition,", 1996, ELSEVIER |
HALIL KALIPCILAR ET AL.: "Synthesis and Separation Performance of SSZ-13 Zeolite Membranes on Tubular Supports", CHEM. MATER, vol. 14, 2002, pages 3458 - 3464, XP001164088, DOI: doi:10.1021/cm020248i |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014198308A (ja) * | 2013-03-29 | 2014-10-23 | 日本碍子株式会社 | セラミック分離フィルタ及び脱水方法 |
JP2022071056A (ja) * | 2014-04-18 | 2022-05-13 | 三菱ケミカル株式会社 | 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 |
JP2020032419A (ja) * | 2014-04-18 | 2020-03-05 | 三菱ケミカル株式会社 | 多孔質支持体−ゼオライト膜複合体及び多孔質支持体−ゼオライト膜複合体の製造方法 |
US11065586B2 (en) | 2014-04-18 | 2021-07-20 | Mitsubishi Chemical Corporation | Porous support-zeolite membrane composite and process for producing porous support-zeolite membrane composite |
JP7107296B2 (ja) | 2014-04-18 | 2022-07-27 | 三菱ケミカル株式会社 | 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 |
JPWO2016043209A1 (ja) * | 2014-09-16 | 2017-06-22 | 積水化学工業株式会社 | ブタジエンの製造方法及びブタジエン製造装置 |
US20160114313A1 (en) * | 2014-10-24 | 2016-04-28 | Chevron U.S.A. Inc | Processes using molecular sieve ssz-102 |
JP2018164908A (ja) * | 2017-03-28 | 2018-10-25 | 三菱ケミカル株式会社 | 多孔質支持体−ゼオライト膜複合体の製造方法 |
JP7353017B2 (ja) | 2017-03-28 | 2023-09-29 | 三菱ケミカル株式会社 | 多孔質支持体-ゼオライト膜複合体の製造方法 |
JPWO2018225793A1 (ja) * | 2017-06-07 | 2020-04-16 | 日本碍子株式会社 | 脱水方法及び脱水装置 |
JP7179724B2 (ja) | 2017-06-07 | 2022-11-29 | 日本碍子株式会社 | 脱水方法及び脱水装置 |
JPWO2020050137A1 (ja) * | 2018-09-05 | 2021-08-26 | 日本ゼオン株式会社 | ピペリレンの製造方法 |
JP7367684B2 (ja) | 2018-09-05 | 2023-10-24 | 日本ゼオン株式会社 | ピペリレンの製造方法 |
US11905242B2 (en) | 2018-09-05 | 2024-02-20 | Zeon Corporation | Method of producing piperylene |
JP7111850B2 (ja) | 2020-01-15 | 2022-08-02 | コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーション | 低温熱処理工程を用いたチャバサイトゼオライト分離膜の欠陥構造の調節方法 |
JP2021109177A (ja) * | 2020-01-15 | 2021-08-02 | コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation | 低温熱処理工程を用いたチャバサイトゼオライト分離膜の欠陥構造の調節方法 |
US11904282B2 (en) | 2020-01-15 | 2024-02-20 | Korea University Research And Business Foundation | Method of controlling structure of defects in chabazite zeolite membranes through low temperature heat treatment |
WO2022239873A1 (ja) * | 2021-05-13 | 2022-11-17 | イーセップ株式会社 | Co2転換装置 |
KR102625225B1 (ko) * | 2022-12-26 | 2024-01-15 | (주)파인텍 | 제올라이트 분리막을 이용한 폐유기용제 재생시스템 |
CN118240360A (zh) * | 2024-04-03 | 2024-06-25 | 江苏君华特种高分子材料股份有限公司 | 一种隔热、低介电常数的聚芳醚酮基复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20140130442A (ko) | 2014-11-10 |
US20140360939A1 (en) | 2014-12-11 |
CN104144738B (zh) | 2018-02-16 |
KR102017483B1 (ko) | 2019-09-03 |
JPWO2013125661A1 (ja) | 2015-07-30 |
CN104144738A (zh) | 2014-11-12 |
EP2818231B1 (en) | 2020-12-23 |
US11090617B2 (en) | 2021-08-17 |
EP2818231A4 (en) | 2015-04-08 |
EP2818231A1 (en) | 2014-12-31 |
JP6107809B2 (ja) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6107809B2 (ja) | 多孔質支持体―ゼオライト膜複合体 | |
JP6260684B2 (ja) | Cha型ゼオライト膜複合体の製造方法 | |
JP7060042B2 (ja) | 多孔質支持体-ゼオライト膜複合体及び多孔質支持体-ゼオライト膜複合体の製造方法 | |
JP5903802B2 (ja) | 多孔質支持体―ゼオライト膜複合体の製造方法 | |
JP6551578B2 (ja) | 多孔質支持体−ゼオライト膜複合体の製造方法 | |
JP2018130719A (ja) | 多孔質支持体−ゼオライト膜複合体、rho型ゼオライトの製造方法及び分離方法 | |
JP6167484B2 (ja) | 多孔質支持体−ゼオライト膜複合体 | |
JP6213062B2 (ja) | 気体の分離または濃縮方法、および高酸素濃度混合気体の製造方法 | |
JP6163719B2 (ja) | 硫化水素の分離方法 | |
JP2012045464A (ja) | 含水有機化合物の脱水濃縮装置 | |
JP6056310B2 (ja) | アンモニアの分離方法 | |
JP6436207B2 (ja) | 気体の分離または濃縮方法、および高酸素濃度混合気体の製造方法 | |
JP6413283B2 (ja) | 多孔質支持体−ゼオライト膜複合体の製造方法 | |
JP2012045484A (ja) | ゼオライト膜の再生方法 | |
JP6217242B2 (ja) | 多孔質支持体−ゼオライト膜複合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751699 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014500936 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147023103 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013751699 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |