WO2013121936A1 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2013121936A1 WO2013121936A1 PCT/JP2013/052633 JP2013052633W WO2013121936A1 WO 2013121936 A1 WO2013121936 A1 WO 2013121936A1 JP 2013052633 W JP2013052633 W JP 2013052633W WO 2013121936 A1 WO2013121936 A1 WO 2013121936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- etching
- film
- plasma
- torr
- frequency power
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000005530 etching Methods 0.000 claims abstract description 121
- 238000012545 processing Methods 0.000 claims abstract description 81
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 67
- 239000000758 substrate Substances 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 238000001020 plasma etching Methods 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 description 89
- 238000000034 method Methods 0.000 description 43
- 239000007789 gas Substances 0.000 description 41
- 238000009966 trimming Methods 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 15
- 238000012546 transfer Methods 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004969 ion scattering spectroscopy Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32155—Frequency modulation
- H01J37/32165—Plural frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
Definitions
- the present invention relates to a method for manufacturing a semiconductor device.
- an object of the present invention is to provide a semiconductor device manufacturing method capable of increasing the etching rate in the horizontal direction of the mask material and improving the throughput.
- a parallel plate type plasma processing apparatus having an upper electrode and a lower electrode
- plasma is generated by introducing a processing gas and applying high frequency power to the lower electrode, and the relative dielectric constant is different on the substrate.
- a multi-layer film in which first films and second films are alternately stacked is etched by the plasma using a photoresist layer on the multi-layer film as a mask, and a semiconductor device for forming the multi-layer film in a step shape
- the first step of etching the first film using the photoresist layer as the mask the pressure in the processing chamber is set to 6 Torr or more and 30 Torr or less
- the high frequency power for generating plasma and the bias Plasma is generated by applying high frequency power to the lower electrode
- the horizontal surface of the photoresist layer is generated by the generated plasma.
- a method for manufacturing a semiconductor device wherein the first step and the third step are repeatedly performed a predetermined number of times.
- FIG. The whole block diagram which showed the longitudinal cross-section of the semiconductor device which concerns on one Embodiment.
- FIG. 1 is a perspective view conceptually showing the structure of a 3D NAND flash memory.
- FIG. 2 is a cross-sectional view taken along the line 1-1 of the 3D NAND flash memory of FIG.
- the 3D NAND flash memory is an example of a three-dimensional stacked semiconductor memory.
- the NAND flash memory 100 shown in FIG. 1 is composed of, for example, a plurality of blocks each serving as a unit of erasure.
- FIG. 1 illustrates two blocks BK1 and BK2.
- the source diffusion layer 102 is formed in the semiconductor substrate, for example, one is provided in common for all the blocks. Source diffusion layer 102 is connected to source line SL through contact plug PS.
- On the source diffusion layer 102 for example, a multilayer film in which first films and second films having different relative dielectric constants are alternately stacked is formed.
- the multilayer film has a six-layer structure for convenience of illustration, but may be 16 layers, 32 layers, or more.
- the remaining five insulating films except for the uppermost layer are formed in a plate shape in each of the blocks BK1 and BK2, and the end portions in the X direction are used to contact the respective insulating films. It is formed in a staircase shape. Thereby, the multilayer film is formed in a substantially pyramid shape.
- the lowermost layer becomes the source line side select gate line SGS, and the remaining four insulating films excluding the lowermost layer and the uppermost layer become the four word lines WL.
- the uppermost layer is composed of a plurality of linear conductive lines extending in the X direction. For example, six conductive lines are arranged in one block BK1. For example, six conductive lines in the uppermost layer become six bit line side select gate lines SGD.
- the plurality of active layers AC for forming the NAND cell unit are formed in a columnar shape in the Z direction (perpendicular to the surface of the semiconductor substrate) so as to penetrate the plurality of insulating films and reach the source diffusion layer 102. Is done.
- the upper ends of the plurality of active layers AC are connected to a plurality of bit lines BL extending in the Y direction. Also, source line side select gate line SGS via the contact plug PSG, it is connected to the lead line SGS 1 extending in the X direction, the word lines WL, the lead lines extending in the X direction via the contact plugs PW1 ⁇ PW4 respectively Connected to W1 to W4.
- bit line side select gate line SGD is connected to a lead line SGD 1 extending in the X direction via a contact plug PSD.
- the plurality of bit lines BL, the lead lines SGS 1 and the lead lines W1 to W4 are made of, for example, metal.
- FIG. 2 is a cross-sectional view taken along line 1-1 of FIG.
- the source line side select gate line SGS and the word lines WL1 to WL4 are transistors Tr that constitute a driver (not shown) from the lead line SGS 1 and lead lines W1 to W4 extending in the X direction via the contact plug PSG and the contact plugs PW1 to PW4. Connected to.
- the plasma processing apparatus 10 is configured as a parallel plate type (capacitive coupling type) plasma etching apparatus having two lower frequencies, and is, for example, a cylindrical vacuum chamber (processing vessel) made of aluminum whose surface is anodized (anodized). ) 11. The chamber 11 is grounded.
- a mounting table 12 on which a semiconductor wafer W (hereinafter referred to as a wafer W) as an object to be processed is mounted.
- the mounting table 12 is made of, for example, aluminum, and is supported by a cylindrical support portion 16 that extends vertically upward from the bottom of the chamber 11 via an insulating cylindrical holding portion 14.
- a focus ring 18 made of, for example, silicon is disposed on the upper surface of the mounting table 12 and on the peripheral edge of the electrostatic chuck 40 in order to improve in-plane uniformity of etching.
- An exhaust path 20 is formed between the side wall of the chamber 11 and the cylindrical support portion 16.
- An annular baffle plate 22 is attached to the exhaust path 20.
- An exhaust port 24 is provided at the bottom of the exhaust path 20 and is connected to an exhaust device 28 via an exhaust pipe 26.
- the exhaust device 28 has a vacuum pump (not shown), and depressurizes the processing space in the chamber 11 to a predetermined degree of vacuum.
- a transfer gate valve 30 that opens and closes the loading / unloading port for the wafer W is attached to the side wall of the chamber 11.
- a first high-frequency power source 31 for attracting ions (for bias) and a second high-frequency power source 32 for generating plasma are electrically connected to the mounting table 12 via a matching unit 33 and a matching unit 34, respectively.
- the first high-frequency power supply 31 applies a first high-frequency power of a frequency that contributes to drawing plasma ions into the wafer W on the mounting table 12, for example, 3.2 MHz, to the mounting table 12.
- the second high frequency power supply 32 applies a second high frequency power of 100 MHz, for example, a frequency contributing to generate plasma in the chamber 11 to the mounting table 12.
- the mounting table 12 also functions as a lower electrode.
- a shower head 38 which will be described later, is provided on the ceiling of the chamber 11 as an upper electrode having a ground potential. Thereby, the high frequency power from the second high frequency power supply 32 is capacitively applied between the mounting table 12 and the shower head 38.
- An electrostatic chuck 40 is provided on the top surface of the mounting table 12 for holding the wafer W with electrostatic attraction.
- the electrostatic chuck 40 is obtained by sandwiching an electrode 40a made of a conductive film between a pair of insulating films.
- a DC voltage source 42 is electrically connected to the electrode 40 a via a switch 43.
- the electrostatic chuck 40 attracts and holds the wafer W on the electrostatic chuck with a Coulomb force by the voltage from the DC voltage source 42.
- the heat transfer gas supply source 52 supplies a heat transfer gas such as He gas between the upper surface of the electrostatic chuck 40 and the back surface of the wafer W through the gas supply line 54.
- the shower head 38 at the ceiling includes an electrode plate 56 having a large number of gas vent holes 56a and an electrode support 58 that detachably supports the electrode plate 56.
- the gas supply source 62 supplies gas into the shower head 38 from the gas introduction port 60 a via the gas supply pipe 64, and is introduced into the chamber 11 through a number of gas vent holes 56 a.
- a magnet 66 extending annularly or concentrically is arranged to control plasma generated in the plasma generation space in the chamber 11 by magnetic force.
- a refrigerant pipe 70 is provided inside the mounting table 12.
- a refrigerant having a predetermined temperature is circulated and supplied to the refrigerant pipe 70 from the chiller unit 71 through the pipes 72 and 73.
- a heater 75 is provided on the back surface of the electrostatic chuck 40.
- a desired AC voltage is applied to the heater 75 from the AC power supply 44. According to such a configuration, the wafer W can be adjusted to a desired temperature by cooling by the chiller unit 71 and heating by the heater 75. Further, these temperature controls are performed based on commands from the control device 80.
- the control device 80 includes components attached to the plasma processing apparatus 10, such as an exhaust device 28, an AC power supply 44, a DC voltage source 42, an electrostatic chuck switch 43, first and second high frequency power supplies 31, 32, and a matching unit. 33, 34, the heat transfer gas supply source 52, the gas supply source 62, and the chiller unit 71 are controlled.
- the control device 80 is also connected to a host computer (not shown).
- the control device 80 has a CPU (Central Processing Unit) (not shown), a ROM (Read Only Memory), and a RAM (Random Access Memory), and the CPU executes plasma processing according to various recipes stored in a storage unit (not shown).
- the storage unit in which the recipe is stored can be realized as a RAM or a ROM using, for example, a semiconductor memory, a magnetic disk, or an optical disk.
- the recipe may be provided by being stored in a storage medium and read into the storage unit via a driver (not shown), or may be downloaded from a network (not shown) and stored in the storage unit. Good. Further, a DSP (Digital Signal Processor) may be used in place of the CPU in order to realize the functions of the above units.
- the function of the control device 80 may be realized by operating using software, may be realized by operating using hardware, or may be realized using both software and hardware. May be.
- the gate valve 30 when performing etching, the gate valve 30 is first opened and the wafer W held on the transfer arm is loaded into the chamber 11.
- the wafer W is held by pusher pins (not shown), and is placed on the electrostatic chuck 40 when the pusher pins are lowered.
- the gate valve 30 is closed, an etching gas is introduced into the chamber 11 from the gas supply source 62 at a predetermined flow rate and flow rate ratio, and the pressure in the chamber 11 is reduced to a set value by the exhaust device 28. .
- high frequency power of a predetermined power is supplied from the first high frequency power supply 31 and the second high frequency power supply 32 to the mounting table 12.
- a voltage is applied from the DC voltage source 42 to the electrode 40a of the electrostatic chuck 40 to fix the wafer W on the electrostatic chuck 40, and from the heat transfer gas supply source 52 to the upper surface of the electrostatic chuck 40 and the wafer W. He gas is supplied as a heat transfer gas between the back surface.
- the etching gas introduced in a shower form from the shower head 38 is turned into plasma by the high-frequency power from the second high-frequency power source 32, thereby causing a gap between the upper electrode (shower head 38) and the lower electrode (mounting table 12). Plasma is generated in the plasma generation space, and the main surface of the wafer W is etched by the plasma. Further, ions in the plasma can be drawn toward the wafer W by the high frequency power from the first high frequency power supply 31.
- the wafer W is lifted and held by the pusher pin, the gate valve 30 is opened, and the transfer arm is loaded into the chamber 11, and then the pusher pin is lowered and the wafer W is held on the transfer arm. .
- the transfer arm goes out of the chamber 11, and the next wafer W is loaded into the chamber 11 by the transfer arm. By repeating this process, the wafer W is continuously processed.
- a staircase shape is formed in the multilayer film.
- a 36-layer multilayer film ml in which the first films 110 and the second films 120 are alternately stacked is formed on the substrate S.
- 16 or more layers of the first film 110 and the second film 120 may be alternately stacked.
- the first film 110 and the second film 120 are insulating films having different relative dielectric constants.
- a silicon oxide film (SiO 2 ) is formed on the first film 110 and a silicon nitride film (SiN) is formed on the second film 12 as the multilayer film ml having different relative dielectric constants.
- the combination of the first film 110 and the second film 120 is not limited to the silicon oxide film / silicon nitride film.
- a polysilicon film impurity doping
- a polysilicon film no impurity doping
- the relative dielectric constants of the first film 110 and the second film 120 can be made different depending on the presence or absence of doping.
- boron or the like may be doped as an impurity for impurity doping.
- a silicon oxide film (SiO 2 ) is formed on the first film 110 and a polysilicon film (impurity doping) is formed on the second film 120.
- a silicon oxide film (SiO 2 ) may be formed on the first film 110, and a polysilicon film (without impurity doping) may be formed on the second film 120.
- a photoresist layer PR that functions as a mask is provided immediately above the multilayer film ml. Etching of the photoresist layer PR mainly in the horizontal direction contributes to the step shape formed in the multilayer film ml.
- Examples of the material of the photoresist layer PR include an organic film and an amorphous carbon film ( ⁇ -C). It may be an i-line (wavelength 365 nm) photoresist layer PR.
- S2 First step
- the silicon oxide film (SiO 2 ) that is the first film 110 is etched using the photoresist layer PR as a mask.
- the etching at this time is so-called normal etching that promotes etching in the vertical direction by ion energy, and the process conditions are as follows.
- the photoresist layer PR is etched.
- the process conditions are optimized so that the etching in the horizontal direction with respect to the vertical direction is enhanced and the photoresist layer PR is etched in the horizontal direction as much as possible.
- the process conditions for the horizontal etching of the photoresist layer PR will be described in detail later.
- ⁇ Third Step (S4)> the second film 120 is etched using the photoresist layer PR and the first film 110 as a mask. The etching at this time is etching that promotes etching in the vertical direction by ion energy, and the process conditions are as follows.
- the first to third steps are repeatedly executed. Thereby, the multilayer film ml can be formed in a staircase shape.
- the first and third steps are so-called normal etching that mainly promotes etching in the vertical direction.
- a technique for selectively etching the photoresist layer PR in the horizontal direction instead of the vertical direction is required.
- the photoresist layer PR In the first place, it is difficult to etch the photoresist layer PR in the horizontal direction, and the vertical direction is always etched. For this reason, there is a possibility that the photoresist layer PR may not be scraped before the staircase shape is completed up to the lowest layer of the multilayer film ml.
- the ratio of the horizontal etching with respect to the vertical direction that is, the photoresist layer trimming ratio (horizontal etching index) It is desirable to increase the ratio obtained by dividing the etching rate in the direction by the etching rate in the vertical direction.
- etching by radicals (O * ) is mainly isotropic etching with respect to the photoresist layer PR.
- the etching with ions (O 2 +) is etching having directivity for etching depending on the ion angle.
- the ion incident angle ⁇ is 45 °.
- the ion incident angle ⁇ that is, the closer the ion incident angle is to 0 °
- the more the etching by ions in the vertical direction is promoted.
- the etching rate in the horizontal direction by ion energy is lowered, which is not preferable.
- the incident angle of ions when the incident angle of ions is greater than 45 °, the larger the incident angle ⁇ of ions (that is, the closer the incident angle of ions is to 90 °), the lower the bottom of the processed surface to be etched (side SW in FIG. 5). It becomes difficult for ions to enter, and the contribution ratio of etching in the horizontal direction by ion energy is lowered, which is not preferable.
- FIG. 7 and 8 show the pressure dependence of the incident angle of ions.
- the horizontal axis of FIG. 7 is an ion incident angle (°), and the vertical axis is an ion angle contribution function IADF (Ion Angle Distribution Function).
- IADF Ion Angle Distribution Function
- the ions in the plasma have various angles.
- the incident angle of ions has pressure dependency. Specifically, in the pressure region on the order of 100 mTorr, the ion scattering angle in the plasma (corresponding to the incident angle of ions) is about 20%, but most ions contribute to the etching in the horizontal direction at this angle. You can see that they are not. That is, in the pressure zones of 100 mTorr, 500 mTorr, and 1 Torr shown in FIG.
- etching is performed in a high pressure region on the order of several Torr so that ions can contribute to etching in the horizontal direction.
- shaft of FIG. 8 shows the incident angle of ion by the half value width (FWHM: Full Width Half Maximum).
- the half-value width of the incident angle of ions is 1 ⁇ 2 of the value obtained by subtracting the minimum value of the angular distribution from the maximum value of the angular distribution.
- the full width at half maximum is an index indicating ions having the most typical energy among ions.
- the pressure at which the ion incident angle ⁇ is 45 ° is a preferable condition that makes the greatest contribution to the etching in the horizontal direction.
- a suitable pressure may be a pressure band of 6 Torr to 30 Torr in which the half width of the ion angle is in the range of 15 ° to 75 °.
- a bias power is applied at the time of mask trimming, and the photoresist layer PR is maintained while maintaining a pressure (6 Torr to 30 Torr) so that the ion angle in the plasma is 15 ° to 75 °. Is trimmed, the etching rate of the photoresist layer PR is improved, and high-throughput trimming can be realized.
- the pressure in the processing chamber is set to 6 Torr to 30 Torr so that the scattering angle of ions in the plasma is 15 ° to 75 °, and the high frequency power for plasma generation and the high frequency power for bias are set. Are applied to the lower electrode.
- the photoresist layer PR is etched by the generated plasma so as to reduce the horizontal area of the photoresist layer PR.
- the pressure in the processing chamber is 10 Torr to 26 Torr so that the ion scattering angle is 25 ° to 65 °.
- the pressure in the processing chamber is set to 14 Torr to 22 Torr so that the ion scattering angle is 35 ° to 55 °.
- FIG. 9 shows an experimental result in the case of a semiconductor manufacturing apparatus applying lower two-frequency power and having a narrow electrode gap (hereinafter referred to as gap GAP) between the upper electrode and the lower electrode (hereinafter referred to as plasma processing apparatus A).
- FIG. 10 shows an experimental result in the case of a semiconductor manufacturing apparatus to which upper and lower power is applied and an apparatus having a wide gap GAP between the upper electrode and the lower electrode (hereinafter referred to as plasma processing apparatus B).
- the plasma processing apparatus A and the plasma processing apparatus B are capacitively coupled plasma processing apparatuses.
- Experimental results in the case of the plasma processing apparatus A in FIG. 9 will be described.
- Specific process conditions for etching the photoresist layer in the horizontal etching (second step) are as follows.
- the diameter of the wafer W is 300 mm.
- the unit W / cm 2 of RF power has the value obtained by converting the power (W) applied per unit area (cm 2).
- Plasma processing equipment A Gap GAP 35mm High frequency application method Lower 2 frequency Second high frequency power supply High frequency (HF) 100 MHz High frequency power of the second high frequency power supply 1000 W (1.415 W / cm 2 ) High frequency (LF) of the first high frequency power supply 3.2 MHz Comparative example of high frequency power of the first high frequency power source: 0 W / cm 2
- Example 1 200 W (0.28 W / cm 2 )
- Example 2 500 W (0.71 W / cm 2 )
- oxygen gas O 2 is filled in the processing chamber, and when the processing chamber reaches a predetermined pressure, the APC (Auto Pressure Controller) is closed to close the gas. After the gas was sealed in this manner, the photoresist layer was etched.
- Etching is performed under the above process conditions.
- the first high-frequency power LF for drawing ions in the plasma is not applied. Therefore, in the comparative example, ions do not actively contribute to the etching, and the etching is the same as the conventional method in which the etching is mainly promoted only by radicals.
- Example 1 0.28 (W / cm 2 ) of first high frequency power LF is applied to the lower electrode.
- the first high-frequency power LF of 0.71 (W / cm 2 ) is applied to the lower electrode. Therefore, in Example 1 and Example 2, etching is promoted by radicals and ions. In Example 1 and Example 2 under high pressure atmosphere, ions are expected to contribute positively to the horizontal etching.
- the photoresist layer trimming ratio of Example 1 and Example 2 is equal to or higher than the photoresist layer trimming ratio of the comparative example.
- the photoresist layer trimming ratio of Example 2 in the case of 5 Torr is the same as the photoresist layer trimming ratio of the comparative example, but the photoresist layer trimming ratio of Example 1 in the case of 5 Torr and 9 Torr.
- the photoresist layer trimming ratio of Example 1 and Example 2 is larger than the photoresist layer trimming ratio of the comparative example.
- the photoresist layer trimming ratio of Example 1 in the case of 9 Torr is about twice the photoresist layer trimming ratio of the comparative example.
- Specific process conditions for etching the photoresist layer in the horizontal etching are as follows. Three conditions for changing the high-frequency power of the first high-frequency power source to 0 W (Comparative Example), 200 W (Example 1), and 500 W (Example 2), and the pressure in the processing chamber to 0.1 Torr, 0.5 Torr, 1 Torr, and 5 Torr A total of 12 experiments were performed in combination with the four conditions to be changed.
- Example 1 200 W (0.28 W / cm 2 )
- Example 2 500 W (0.71 W / cm 2 )
- the first high-frequency power LF for drawing ions in the plasma is not applied. Therefore, in the comparative example, ions do not actively contribute to the etching, and the etching is the same as the conventional method in which the etching is mainly promoted only by radicals.
- Example 1 0.28 (W / cm 2 ) of first high frequency power LF is applied to the lower electrode.
- the first high-frequency power LF of 0.71 (W / cm 2 ) is applied to the lower electrode. Therefore, in Example 1 and Example 2, the etching mainly involves radicals and ions. In Example 1 and Example 2 under high pressure atmosphere, ions are expected to contribute positively to the horizontal etching.
- FIG. 11 shows a graph comparing the experimental results of FIGS. 9 and 10.
- the plasma processing apparatus A of FIG. 11 is a semiconductor manufacturing apparatus that performs etching under the process conditions shown in FIG. 9, and the plasma processing apparatus B of FIG. 11 is a semiconductor manufacturing apparatus that performs etching under the process conditions shown in FIG. Device.
- the photoresist layer trimming ratio is higher than that of the comparative example. Becomes significantly larger. That is, it can be seen that the photoresist layer trimming ratio is remarkably high in the case of Example 1 and Example 2 in which the bias high frequency power LF is applied and the pressure is set to a high pressure.
- the photoresist layer trimming is performed in the case of the first and second embodiments where the biasing high frequency power LF is applied and the pressure is set to 5 Torr as compared with the case of the plasma processing apparatus A.
- the ratio is not so large. That is, in the case of Example 1 and Example 2 where the high frequency power LF for bias is applied and the pressure is set to a high pressure, the etching in the horizontal direction is slightly lower than when the pressure is set to a low pressure. It can also be seen that the horizontal etching rate is slightly increased. Looking at the photoresist layer trimming ratio of FIG.
- the photoresist layer trimming ratio of the plasma processing apparatus A is greater than 0.6 when the bias high frequency power LF of 500 W is applied in the case of 5 Torr.
- the photoresist layer trimming ratio of the plasma processing apparatus B when the bias high frequency power LF of 500 W is applied is 5 Torr is smaller than 0.4. Therefore, in this case, the photoresist layer trimming ratio of the plasma processing apparatus A is about 1.5 times the photoresist layer trimming ratio of the plasma processing apparatus B.
- the photoresist layer trimming ratio of the plasma processing apparatus A in the case of 9 Torr and the application of 500 W bias high frequency power LF is about twice the photoresist layer trimming ratio of the plasma processing apparatus B in the case of 5 Torr. It has become.
- the plasma processing apparatus B has a wider gap than the plasma processing apparatus A.
- the plasma processing apparatus B since the high frequency for plasma generation is applied to the upper electrode, plasma is generated in the vicinity of the upper electrode.
- the plasma processing apparatus A since a high frequency for plasma generation is applied to the lower electrode, plasma is generated in the vicinity of the lower electrode. Therefore, in the plasma processing apparatus B, the moving distance until ions in the plasma reach the substrate is long. Therefore, in the case of the plasma processing apparatus B, collisions with a large number of gases occur while ions in the plasma fly to the substrate, and most of the ion energy is lost.
- the moving distance until ions in the plasma reach the substrate is short. Therefore, in the case of the plasma processing apparatus A, the probability that the ions in the plasma collide with the gas while flying to the substrate is less than in the case of the plasma processing apparatus B. Therefore, the ion energy reaches the substrate without much loss.
- the high frequency power for bias is applied and the process condition is set to a high pressure of several Torr. It is considered that the etching was not accelerated and the horizontal etching rate did not increase. From the above, in order to improve the photoresist layer trimming ratio, it is found that the gap between the upper electrode and the lower electrode is preferably 20 mm to 40 mm, and it is preferable to apply the high frequency for plasma generation to the lower electrode. . (ICP (inductively coupled) plasma processing equipment) In the case of an ICP plasma processing apparatus (not shown), if the gap is narrow due to the structure of the apparatus, the uniformity of the plasma deteriorates.
- ICP inductively coupled
- a coil is disposed outside the chamber, and a dielectric window is formed on a part of the chamber ceiling surface located below the coil.
- the electromagnetic wave emitted from the coil passes through the dielectric window and is introduced into the chamber.
- the intensity distribution of the introduced electromagnetic wave has a pattern almost similar to the shape of the coil. Therefore, in the plasma in the chamber, there is a portion where the plasma density is increased in a circular shape in accordance with the electromagnetic wave pattern having high intensity. In order to suppress this poor uniformity of plasma, it is necessary to widen the gap and diffuse the plasma. Therefore, in the ICP plasma processing apparatus, in-plane uniformity of fine processing cannot be achieved unless a structure with a wide gap is provided.
- the distance from the generated plasma to the substrate is long even if the pressure is set to a high pressure of about several Torr.
- the photoresist layer PR formed on the multilayer film ml is etched in a state where all the following process conditions (1) to (5) are satisfied.
- Etching is performed using a parallel plate type plasma processing apparatus (CCP plasma processing apparatus) having a gap between the upper electrode and the lower electrode of 20 mm to 40 mm.
- HF High frequency power
- the pressure in the processing chamber is set to 6 Torr or more and 30 Torr or less so that the scattering angle of ions in the plasma is 15 degrees or more and 75 degrees or less.
- Bias high frequency power (LF) is applied to the lower electrode. It is preferable to apply a high frequency power of 0.28 (W / cm 2 ) to 0.71 (W / cm 2 ).
- the photoresist layer trimming ratio can be increased and the etching rate in the horizontal direction can be increased. Therefore, in the second step, the photoresist layer PR can be etched in the horizontal direction so as to reduce the horizontal area of the photoresist layer at a desired etching rate. Thereby, throughput can be improved. In addition, it is possible to prevent the photoresist layer PR from being lost during the etching of the multilayer film ml into a stepped shape.
- O 2 processing chamber sealing
- the semiconductor device manufacturing method according to the present invention is not limited to this, and O 2 , H 2 , A gas selected from at least one of N 2 , CO, and CO 2 can be used.
- the gas is sealed for convenience, but the gas supply method may continue to flow a desired gas at a predetermined gas flow rate as usual.
- the object to be processed in the present invention is not limited to a semiconductor wafer and may be, for example, a large substrate for a flat panel display (FPD), an EL element, or a substrate for a solar cell. .
- the pressure in the processing chamber may be set to 10 Torr or more and 26 Torr or less.
- the pressure in the processing chamber may be set to 14 Torr or more and 22 Torr or less.
- a high frequency power for bias of 0.28 W / cm 2 or more and 0.71 W / cm 2 or less may be applied to the lower electrode.
- At least one gas selected from O 2 , H 2 , N 2 , CO, and CO 2 may be used as the processing gas.
- the first film may be made of a silicon oxide film
- the second film may be made of a silicon nitride film.
- the multilayer film may be formed by alternately stacking 16 layers or more of the first film and the second film.
- Plasma processing apparatus 11 Chamber 12 Mounting table (lower electrode) 31 First high frequency power supply (for bias) 32 Second high frequency power supply (for plasma generation) 38 Shower head (upper electrode) 62 Gas supply source 80 Control device 110 First film 120 Second film PR Photoresist layer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Plasma Technology (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
まず、本発明の一実施形態に係る半導体装置の製造方法を用いて製造される三次元積層半導体メモリの一例について、図1及び図2を参照しながら説明する。図1は、3D NANDフラッシュメモリの構造を概念的に示した斜視図である。図2は、図1の3D NANDフラッシュメモリの1-1断面図である。3D NANDフラッシュメモリは、三次元積層半導体メモリの一例である。
次に、本発明の一実施形態に係るプラズマ処理装置の全体構成について、図3を参照しながら説明する。プラズマ処理装置10は、下部2周波数の平行平板型(容量結合型)プラズマエッチング装置として構成されており、例えば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなる円筒形の真空チャンバ(処理容器)11を有している。チャンバ11は、接地されている。
次に、本発明の一実施形態に係る半導体装置の製造方法により行われるエッチング工程について、図4を参照しながら説明する。図4では、本実施形態にて行われるエッチング工程開始前の初期状態(S1)、第1の工程(S2)、第2の工程(S3)、第3の工程(S4)、エッチング工程完了後の最終状態(S5)が示されている。
<エッチング工程開始前の初期状態(S1)>
本実施形態では、基板S上に第1の膜110と第2の膜120とが交互に積層された36層の多層膜mlが形成されている。なお、多層膜mlは、第1の膜110及び第2の膜120が交互に16層以上積層されてもよい。
<第1の工程(S2)>
第1の工程では、フォトレジスト層PRをマスクとして第1の膜110であるシリコン酸化膜(SiO2)をエッチングする。このときのエッチングは、イオンエネルギーにより鉛直方向のエッチングを促進する、所謂通常のエッチングであり、プロセス条件は以下の通りである。
第1の工程のプロセス条件:
圧力 30mT(=3.99966Pa)
第1高周波電源31及び第2高周波電源32のパワー 1000/400W (141.5W/cm2、56.6W/cm2)
ガス種及びガス流量 O2/Ar/C4F6=30/1000/16sccm
<第2の工程(S3)>
第2の工程では、フォトレジスト層PRをエッチングする。第2の工程では、鉛直方向に対する水平方向のエッチングを高め、フォトレジスト層PRがなるべく水平方向にエッチングされるように、プロセス条件が適正化される。フォトレジスト層PRの水平方向のエッチングのプロセス条件等については後程詳述する。
<第3の工程(S4)>
第3の工程では、フォトレジスト層PRと第1の膜110とをマスクとして第2の膜120をエッチングする。このときのエッチングは、イオンエネルギーにより鉛直方向のエッチングを促進するエッチングであり、プロセス条件は以下の通りである。
第3の工程のプロセス条件:
圧力 150mT(=19.9983Pa)
第1高周波電源31及び第2高周波電源32のパワー 300/800W(42.5W/cm2、113.2W/cm2)
ガス種及びガス流量 CH2F2/Ar/C2=140/400/70sccm
<エッチング工程完了後の最終状態(S5)>
本実施形態では、第1の工程~第3の工程を繰り返し実行する。これにより、多層膜mlを階段形状に形成することができる。
以上に説明したように、第1の工程及び第3の工程では、鉛直方向へのエッチングを主に促進する、いわゆる通常のエッチングであった。これに対して、第2の工程では、フォトレジスト層PRを鉛直方向ではなく、水平方向に選択的にエッチングする技術が求められる。
(圧力とイオン角度分布)
イオンエネルギーを下げてエッチングに関与するイオンの比率を下げることにより相対的にエッチングに関与するラジカルの比率を高め、水平方向のエッチングを促進する従来方法では、バイアス用の高周波電力を下部電極に印加し、プラズマ中のイオンを基板側に鉛直方向に引き込むことは行われない。また、圧力を数百mTorrに設定してエッチング処理が行われる。
以上の理論に基づき、実験を行った。まず、イオン角度と圧力との図7の関係に従って、圧力を1Torr(133.322Pa),5Torr(666.61Pa),9Torr(1199.898Pa)と変更した場合の3条件で実験した。マスク材料の水平方向のエッチングがどの程度促進されるかについて、プラズマ生成用の高周波電力とバイアス用の高周波電力の両方を下部電極に印加する下部2周波数電力印加の半導体製造装置(図3:CCPプラズマ処理装置)及びプラズマ生成用の高周波電力を上部電極へ印加し、バイアス用の高周波電力を下部電極に印加する上下部電力印加の半導体製造装置(図示せず)を用いて実験を行った。下部2周波数電力印加の半導体製造装置であって、上部電極と下部電極との電極間隔(以下ギャップGAPと称する)が狭い装置(以下プラズマ処理装置Aと称する)の場合の実験結果を図9に示す。上下部電力印加の半導体製造装置であって、上部電極と下部電極とのギャップGAPが広い装置(以下プラズマ処理装置Bと称する)の場合の実験結果を図10に示す。プラズマ処理装置A及びプラズマ処理装置Bは、容量結合型のプラズマ処理装置である。
(プラズマ処理装置Aの場合の水平方向のエッチング(第2の工程)の実験結果)
まず、初めに図9のプラズマ処理装置Aの場合の実験結果について説明する。水平方向のエッチング(第2の工程)のフォトレジスト層をエッチングする具体的なプロセス条件は次の通りである。なお、本実施形態ではウエハWの直径は300mmである。第1高周波電源の高周波パワーを0W(比較例),200W(実施例1),500W(実施例2)に変更する3条件と、処理室内の圧力を1Torr,5Torr,9Torrに変更する3条件との組み合わせにより、合計9通りの実験を行った。また、高周波パワーの単位W/cm2は単位面積当たり(cm2)に印加されるパワー(W)として換算した値を表示している。
・プラズマ処理装置A
ギャップGAP 35mm
高周波の印加方式 下部2周波
第2高周波電源の高周波(HF) 100MHz
第2高周波電源の高周波パワー 1000W(1.415W/cm2)
第1高周波電源の高周波(LF) 3.2MHz
第1高周波電源の高周波パワー 比較例 :0W/cm2
実施例1:200W(0.28W/cm2)
実施例2:500W(0.71W/cm2)
ガス種 O2(処理室密閉)
伝熱ガス He 20Torr
圧力 3条件:1,5,9Torr
なお、処理室密閉とは、酸素ガスO2を処理室内に充填させ、処理室内が所定の圧力に達したらAPC(Auto Pressure Controller:自動圧力制御装置)を閉じ、ガスを密閉状態とする。このようにしてガスを密閉状態とした後、フォトレジスト層のエッチングを行った。
(プラズマ処理装置Bの場合の水平方向のエッチング(第2の工程)の実験結果)
次に、図10のギャップGAPが広い上下部電力印加のプラズマ処理装置Bの場合の実験結果について説明する。水平方向のエッチング(第2の工程)のフォトレジスト層をエッチングする具体的なプロセス条件は次の通りである。第1高周波電源の高周波パワーを0W(比較例),200W(実施例1),500W(実施例2)に変更する3条件と、処理室内の圧力を0.1Torr,0.5Torr,1Torr,5Torrに変更する4条件との組み合わせにより、合計12通りの実験を行った。
・プラズマ処理装置B
ギャップGAP 87mm
高周波の印加方式 上下部2周波
第2高周波電源の高周波(HF) 60MHz
第2高周波電源の高周波パワー 1000W(1.415W/cm2)
第1高周波電源の高周波(LF) 13.56MHz
第1高周波電源の高周波パワー 比較例 :0W/cm2
実施例1:200W(0.28W/cm2)
実施例2:500W(0.71W/cm2)
ガス種 O2(処理室密閉)
伝熱ガス He 20Torr
圧力 4条件:0.1,0.5,1,5Torr
以上のプロセス条件において、エッチング処理を行う。比較例では、プラズマ中のイオンを引き込むための第1の高周波パワーLFは印加しない。よって、比較例では、イオンはエッチングに積極的に寄与せず、エッチングは主にラジカルのみによって促進される従来の方法と同じである。
(上部電極と下部電極の電極間隔(ギャップGAP)の大きさ)
プラズマ処理装置Bは、プラズマ処理装置Aよりギャップが広い。また、プラズマ処理装置Bでは、プラズマ生成用の高周波は上部電極に印加されるため、上部電極の近傍にてプラズマが生成される。一方、プラズマ処理装置Aでは、プラズマ生成用の高周波は下部電極に印加されるため、下部電極の近傍にてプラズマが生成される。よって、プラズマ処理装置Bでは、プラズマ中のイオンが基板まで到達するまでの移動距離が長い。よって、プラズマ処理装置Bの場合、プラズマ中のイオンが、基板まで飛来する間に多数のガスとの衝突が生じ、イオンエネルギーのほとんどが失われてしまう。
(ICP(誘導結合型)プラズマ処理装置)
ICPプラズマ処理装置の場合(図示せず)、装置の構造上ギャップが狭いとプラズマの均一性が悪くなる。具体的には、ICPプラズマ処理装置では、チャンバの外部にコイルが配置され、コイルの下方に位置するチャンバ天井面の一部に誘電窓が形成されている。コイルから発せられた電磁波は、誘電窓を透過しチャンバ内に導入される。導入された電磁波の強度分布はコイルの形状とほぼ同じようなパターンを持つ。よって、チャンバ内のプラズマには、強度が高い電磁波のパターンに応じて円形状にプラズマ密度が高くなる部分が生じる。このプラズマの均一性の悪さを抑制するためには、ギャップを広く取ってプラズマを拡散させる必要がある。よって、ICPプラズマ処理装置では、装置の構造上、ギャップを広くとる構造にしなければ微細加工の面内均一性を図れない。
以上に説明したように、本実施形態では、次のプロセス条件(1)~(5)をすべて満たした状態で、多層膜ml上に形成されたフォトレジスト層PRをエッチングする。
(1)上部電極と下部電極とのギャップが20mm~40mmの平行平板型プラズマ処理装置(CCPプラズマ処理装置)を使用してエッチングを行う。
(2)下部電極にプラズマ生成用の高周波電力(HF)を印加する。
(3)プラズマ中のイオンの散乱角度が15度以上75度以下になるように処理室内の圧力を6Torr以上30Torr以下にする。
(4)下部電極にバイアス用の高周波電力(LF)を印加する。0.28(W/cm2)~0.71(W/cm2)の高周波電力を印加することが好ましい。
11 チャンバ
12 載置台(下部電極)
31 第1高周波電源(バイアス用)
32 第2高周波電源(プラズマ生成用)
38 シャワーヘッド(上部電極)
62 ガス供給源
80 制御装置
110 第1の膜
120 第2の膜
PR フォトレジスト層
Claims (7)
- 上部電極と下部電極とを有する平行平板型プラズマ処理装置において、処理ガスを導入し前記下部電極に高周波電力を印加することによりプラズマを生成し、基板上に比誘電率の異なる第1の膜及び第2の膜が交互に積層された多層膜を、該多層膜上のフォトレジスト層をマスクとして前記プラズマによりエッチングし、前記多層膜を階段形状に形成するための半導体装置の製造方法であって、
前記フォトレジスト層を前記マスクとして前記第1の膜をエッチングする第1工程と、
処理室内の圧力を6Torr以上30Torr以下に設定し、プラズマ生成用の高周波電力とバイアス用の高周波電力とを前記下部電極に印加することによりプラズマを生成し、生成されたプラズマにより前記フォトレジスト層の水平方向の面積を狭めるように前記フォトレジスト層をエッチングする第2の工程と、
前記フォトレジスト層と前記第1の膜とを前記マスクとして前記第2の膜をエッチングする第3の工程と、を含み、
前記第1の工程及至前記第3の工程を所定回数繰り返し実行することを特徴とする半導体装置の製造方法。 - 前記第2の工程では、前記処理室内の圧力を10Torr以上26Torr以下に設定することを特徴とする請求項1に記載の半導体装置の製造方法。
- 前記第2の工程では、前記処理室内の圧力を14Torr以上22Torr以下に設定することを特徴とする請求項2に記載の半導体装置の製造方法。
- 前記第2の工程では、0.28W/cm2以上0.71W/cm2以下のバイアス用の高周波電力を前記下部電極に印加することを特徴とする請求項1に記載の半導体装置の製造方法。
- 前記第2の工程では、処理ガスとしてO2、H2、N2、CO、CO2の中から少なくとも1つ選択されたガスを使用することを特徴とする請求項1に記載の半導体装置の製造方法。
- 前記第1の膜はシリコン酸化膜からなり、前記第2の膜はシリコン窒化膜からなることを特徴とする請求項1に記載の半導体装置の製造方法。
- 前記多層膜は、前記第1の膜及び前記第2の膜が交互に16層以上積層されていることを特徴とする請求項1に記載の半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380007751.XA CN104081502B (zh) | 2012-02-17 | 2013-02-05 | 半导体器件的制造方法 |
KR1020147021411A KR102038608B1 (ko) | 2012-02-17 | 2013-02-05 | 반도체 장치의 제조 방법 |
US14/376,644 US9202707B2 (en) | 2012-02-17 | 2013-02-05 | Semiconductor device manufacturing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-033372 | 2012-02-17 | ||
JP2012033372A JP5912637B2 (ja) | 2012-02-17 | 2012-02-17 | 半導体装置の製造方法 |
US201261603405P | 2012-02-27 | 2012-02-27 | |
US61/603,405 | 2012-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013121936A1 true WO2013121936A1 (ja) | 2013-08-22 |
Family
ID=48984049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052633 WO2013121936A1 (ja) | 2012-02-17 | 2013-02-05 | 半導体装置の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9202707B2 (ja) |
JP (1) | JP5912637B2 (ja) |
KR (1) | KR102038608B1 (ja) |
CN (1) | CN104081502B (ja) |
TW (1) | TW201351499A (ja) |
WO (1) | WO2013121936A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9362109B2 (en) | 2013-10-16 | 2016-06-07 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
CN105762115A (zh) * | 2014-12-18 | 2016-07-13 | 中芯国际集成电路制造(上海)有限公司 | 存储器件的形成方法 |
US9401273B2 (en) | 2013-12-11 | 2016-07-26 | Asm Ip Holding B.V. | Atomic layer deposition of silicon carbon nitride based materials |
US9564309B2 (en) | 2013-03-14 | 2017-02-07 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US9576790B2 (en) | 2013-10-16 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9576792B2 (en) | 2014-09-17 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of SiN |
US9824881B2 (en) | 2013-03-14 | 2017-11-21 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
KR20190085873A (ko) | 2018-01-11 | 2019-07-19 | 도쿄엘렉트론가부시키가이샤 | 에칭 방법 및 에칭 장치 |
US10410857B2 (en) | 2015-08-24 | 2019-09-10 | Asm Ip Holding B.V. | Formation of SiN thin films |
US10580645B2 (en) | 2018-04-30 | 2020-03-03 | Asm Ip Holding B.V. | Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors |
US11056353B2 (en) | 2017-06-01 | 2021-07-06 | Asm Ip Holding B.V. | Method and structure for wet etch utilizing etch protection layer comprising boron and carbon |
US11996286B2 (en) | 2020-12-09 | 2024-05-28 | Asm Ip Holding B.V. | Silicon precursors for silicon nitride deposition |
Families Citing this family (370)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US9793148B2 (en) | 2011-06-22 | 2017-10-17 | Asm Japan K.K. | Method for positioning wafers in multiple wafer transport |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US8946830B2 (en) | 2012-04-04 | 2015-02-03 | Asm Ip Holdings B.V. | Metal oxide protective layer for a semiconductor device |
US9558931B2 (en) | 2012-07-27 | 2017-01-31 | Asm Ip Holding B.V. | System and method for gas-phase sulfur passivation of a semiconductor surface |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US9324811B2 (en) | 2012-09-26 | 2016-04-26 | Asm Ip Holding B.V. | Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US9640416B2 (en) | 2012-12-26 | 2017-05-02 | Asm Ip Holding B.V. | Single-and dual-chamber module-attachable wafer-handling chamber |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US8993054B2 (en) | 2013-07-12 | 2015-03-31 | Asm Ip Holding B.V. | Method and system to reduce outgassing in a reaction chamber |
US9018111B2 (en) | 2013-07-22 | 2015-04-28 | Asm Ip Holding B.V. | Semiconductor reaction chamber with plasma capabilities |
US9793115B2 (en) | 2013-08-14 | 2017-10-17 | Asm Ip Holding B.V. | Structures and devices including germanium-tin films and methods of forming same |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US9556516B2 (en) | 2013-10-09 | 2017-01-31 | ASM IP Holding B.V | Method for forming Ti-containing film by PEALD using TDMAT or TDEAT |
US9343308B2 (en) * | 2013-10-28 | 2016-05-17 | Asm Ip Holding B.V. | Method for trimming carbon-containing film at reduced trimming rate |
US10179947B2 (en) | 2013-11-26 | 2019-01-15 | Asm Ip Holding B.V. | Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US9447498B2 (en) | 2014-03-18 | 2016-09-20 | Asm Ip Holding B.V. | Method for performing uniform processing in gas system-sharing multiple reaction chambers |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US9404587B2 (en) | 2014-04-24 | 2016-08-02 | ASM IP Holding B.V | Lockout tagout for semiconductor vacuum valve |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9543180B2 (en) | 2014-08-01 | 2017-01-10 | Asm Ip Holding B.V. | Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US9997405B2 (en) | 2014-09-30 | 2018-06-12 | Lam Research Corporation | Feature fill with nucleation inhibition |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
KR102300403B1 (ko) | 2014-11-19 | 2021-09-09 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
KR102263121B1 (ko) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 및 그 제조 방법 |
US9478415B2 (en) | 2015-02-13 | 2016-10-25 | Asm Ip Holding B.V. | Method for forming film having low resistance and shallow junction depth |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US9613824B2 (en) * | 2015-05-14 | 2017-04-04 | Tokyo Electron Limited | Etching method |
JP6449141B2 (ja) * | 2015-06-23 | 2019-01-09 | 東京エレクトロン株式会社 | エッチング処理方法及びプラズマ処理装置 |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US9899291B2 (en) | 2015-07-13 | 2018-02-20 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10087525B2 (en) | 2015-08-04 | 2018-10-02 | Asm Ip Holding B.V. | Variable gap hard stop design |
US9647114B2 (en) | 2015-08-14 | 2017-05-09 | Asm Ip Holding B.V. | Methods of forming highly p-type doped germanium tin films and structures and devices including the films |
US9711345B2 (en) | 2015-08-25 | 2017-07-18 | Asm Ip Holding B.V. | Method for forming aluminum nitride-based film by PEALD |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
KR102522161B1 (ko) * | 2015-10-08 | 2023-04-17 | 삼성전자주식회사 | 반도체 소자 및 이의 제조 방법 |
US9704878B2 (en) | 2015-10-08 | 2017-07-11 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices and methods of forming same |
US9909214B2 (en) | 2015-10-15 | 2018-03-06 | Asm Ip Holding B.V. | Method for depositing dielectric film in trenches by PEALD |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US9455138B1 (en) | 2015-11-10 | 2016-09-27 | Asm Ip Holding B.V. | Method for forming dielectric film in trenches by PEALD using H-containing gas |
US9905420B2 (en) | 2015-12-01 | 2018-02-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium tin films and structures and devices including the films |
US9607837B1 (en) | 2015-12-21 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming silicon oxide cap layer for solid state diffusion process |
US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
US9735024B2 (en) | 2015-12-28 | 2017-08-15 | Asm Ip Holding B.V. | Method of atomic layer etching using functional group-containing fluorocarbon |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US9754779B1 (en) | 2016-02-19 | 2017-09-05 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
KR102592471B1 (ko) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법 |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102354490B1 (ko) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
CN106206454B (zh) * | 2016-09-12 | 2019-05-03 | 武汉新芯集成电路制造有限公司 | 一种形成3d nand闪存的方法 |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US9997366B2 (en) * | 2016-10-19 | 2018-06-12 | Lam Research Corporation | Silicon oxide silicon nitride stack ion-assisted etch |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR20180068582A (ko) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR102374697B1 (ko) * | 2017-09-07 | 2022-03-15 | 삼성전자주식회사 | 반도체 소자의 제조방법 |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
CN111344522B (zh) | 2017-11-27 | 2022-04-12 | 阿斯莫Ip控股公司 | 包括洁净迷你环境的装置 |
WO2019103613A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | A storage device for storing wafer cassettes for use with a batch furnace |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI852426B (zh) | 2018-01-19 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | 沈積方法 |
KR102695659B1 (ko) | 2018-01-19 | 2024-08-14 | 에이에스엠 아이피 홀딩 비.브이. | 플라즈마 보조 증착에 의해 갭 충진 층을 증착하는 방법 |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
CN108557758B (zh) * | 2018-02-08 | 2020-04-28 | 南京大学 | 一种循环交替刻蚀同质多级坡面台阶引导生长纳米线阵列的方法 |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US10580783B2 (en) | 2018-03-01 | 2020-03-03 | Sandisk Technologies Llc | Multi-tier three-dimensional memory device containing differential etch rate field oxides and method of making the same |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
CN109196644B (zh) * | 2018-04-18 | 2019-09-10 | 长江存储科技有限责任公司 | 用于形成三维存储器设备的阶梯结构的方法 |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TW202349473A (zh) | 2018-05-11 | 2023-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
JP2021529254A (ja) | 2018-06-27 | 2021-10-28 | エーエスエム・アイピー・ホールディング・ベー・フェー | 金属含有材料ならびに金属含有材料を含む膜および構造体を形成するための周期的堆積方法 |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (zh) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | 衬底保持设备、包含所述设备的系统及其使用方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (ko) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
KR20210089260A (ko) * | 2018-12-05 | 2021-07-15 | 램 리써치 코포레이션 | 보이드 프리 (void free) 저응력 (low stress) 충진 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
TW202037745A (zh) | 2018-12-14 | 2020-10-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成裝置結構之方法、其所形成之結構及施行其之系統 |
TW202405220A (zh) | 2019-01-17 | 2024-02-01 | 荷蘭商Asm Ip 私人控股有限公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
TWI756590B (zh) | 2019-01-22 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
JP2020136678A (ja) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
CN111627809B (zh) * | 2019-02-28 | 2024-03-22 | 东京毅力科创株式会社 | 基片处理方法和基片处理装置 |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
KR20200108243A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
JP2020167398A (ja) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | ドアオープナーおよびドアオープナーが提供される基材処理装置 |
KR20200116855A (ko) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP2020188255A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP2020188254A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
CN110416077A (zh) * | 2019-07-12 | 2019-11-05 | 深圳市华星光电技术有限公司 | 膜层结构的干法刻蚀方法及膜层结构 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (ko) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | 화학물질 공급원 용기를 위한 액체 레벨 센서 |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (ko) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR20210029663A (ko) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210043460A (ko) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
KR20210053193A (ko) | 2019-10-29 | 2021-05-11 | 에이에스엠 아이피 홀딩 비.브이. | N형 도핑된 재료를 표면 상에 선택적으로 형성하는 방법, n형 도핑된 재료를 선택적으로 형성하기 위한 시스템, 및 이를 사용하여 형성된 구조체 |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885693A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
KR20210080214A (ko) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
JP2021109175A (ja) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム |
JP2021111783A (ja) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | チャネル付きリフトピン |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (ko) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | 고 종횡비 피처를 형성하는 방법 |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202130846A (zh) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括釩或銦層的結構之方法 |
KR20210100010A (ko) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 대형 물품의 투과율 측정을 위한 방법 및 장치 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
KR20210117157A (ko) | 2020-03-12 | 2021-09-28 | 에이에스엠 아이피 홀딩 비.브이. | 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법 |
KR20210124042A (ko) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
TW202146689A (zh) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | 阻障層形成方法及半導體裝置的製造方法 |
TW202145344A (zh) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
CN113555279A (zh) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | 形成含氮化钒的层的方法及包含其的结构 |
KR20210132605A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 냉각 가스 공급부를 포함한 수직형 배치 퍼니스 어셈블리 |
KR20210134226A (ko) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
JP2021177545A (ja) | 2020-05-04 | 2021-11-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板を処理するための基板処理システム |
KR20210141379A (ko) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145078A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
TW202200837A (zh) | 2020-05-22 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基材上形成薄膜之反應系統 |
TW202201602A (zh) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TW202217953A (zh) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
KR102707957B1 (ko) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
TW202219628A (zh) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構與方法 |
TW202204662A (zh) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202212623A (zh) | 2020-08-26 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
TW202217037A (zh) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積釩金屬的方法、結構、裝置及沉積總成 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202226899A (zh) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 具匹配器的電漿處理裝置 |
TW202242184A (zh) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法 |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
CN116322057A (zh) * | 2021-02-22 | 2023-06-23 | 长江存储科技有限责任公司 | 三维存储器装置的接触部结构及其形成方法 |
CN112951802A (zh) * | 2021-02-22 | 2021-06-11 | 长江存储科技有限责任公司 | 三维存储器件及其制造方法 |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
WO2024171888A1 (ja) * | 2023-02-15 | 2024-08-22 | 東京エレクトロン株式会社 | プラズマ処理方法及びプラズマ処理装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011003722A (ja) * | 2009-06-18 | 2011-01-06 | Toshiba Corp | 半導体装置の製造方法 |
JP2011166061A (ja) * | 2010-02-15 | 2011-08-25 | Toshiba Corp | 半導体装置の製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04280629A (ja) * | 1991-03-08 | 1992-10-06 | Fujitsu Ltd | 微細階段状構造体の製造方法およびそれを用いた半導 体装置 |
US6635185B2 (en) * | 1997-12-31 | 2003-10-21 | Alliedsignal Inc. | Method of etching and cleaning using fluorinated carbonyl compounds |
US6391787B1 (en) * | 2000-10-13 | 2002-05-21 | Lam Research Corporation | Stepped upper electrode for plasma processing uniformity |
US7851369B2 (en) * | 2006-06-05 | 2010-12-14 | Lam Research Corporation | Hardmask trim method |
JP2008078404A (ja) * | 2006-09-21 | 2008-04-03 | Toshiba Corp | 半導体メモリ及びその製造方法 |
US7838426B2 (en) * | 2007-08-20 | 2010-11-23 | Lam Research Corporation | Mask trimming |
JP2009170661A (ja) * | 2008-01-16 | 2009-07-30 | Toshiba Corp | 半導体装置の製造方法 |
JP2009200443A (ja) * | 2008-02-25 | 2009-09-03 | Toshiba Corp | 不揮発性半導体記憶装置、及びその製造方法 |
JP2009266944A (ja) | 2008-04-23 | 2009-11-12 | Toshiba Corp | 三次元積層不揮発性半導体メモリ |
KR101434588B1 (ko) * | 2008-06-11 | 2014-08-29 | 삼성전자주식회사 | 반도체 장치 및 그 제조 방법 |
JP5330017B2 (ja) * | 2009-02-17 | 2013-10-30 | 株式会社東芝 | 不揮発性半導体記憶装置、及びその製造方法 |
US7786020B1 (en) * | 2009-07-30 | 2010-08-31 | Hynix Semiconductor Inc. | Method for fabricating nonvolatile memory device |
KR101744127B1 (ko) * | 2010-11-17 | 2017-06-08 | 삼성전자주식회사 | 반도체 소자 및 그 제조방법 |
US8530350B2 (en) * | 2011-06-02 | 2013-09-10 | Micron Technology, Inc. | Apparatuses including stair-step structures and methods of forming the same |
-
2012
- 2012-02-17 JP JP2012033372A patent/JP5912637B2/ja active Active
-
2013
- 2013-02-05 WO PCT/JP2013/052633 patent/WO2013121936A1/ja active Application Filing
- 2013-02-05 US US14/376,644 patent/US9202707B2/en active Active
- 2013-02-05 KR KR1020147021411A patent/KR102038608B1/ko active IP Right Grant
- 2013-02-05 CN CN201380007751.XA patent/CN104081502B/zh active Active
- 2013-02-08 TW TW102105074A patent/TW201351499A/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011003722A (ja) * | 2009-06-18 | 2011-01-06 | Toshiba Corp | 半導体装置の製造方法 |
JP2011166061A (ja) * | 2010-02-15 | 2011-08-25 | Toshiba Corp | 半導体装置の製造方法 |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9905416B2 (en) | 2013-03-14 | 2018-02-27 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US11069522B2 (en) | 2013-03-14 | 2021-07-20 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US11289327B2 (en) | 2013-03-14 | 2022-03-29 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US10424477B2 (en) | 2013-03-14 | 2019-09-24 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US9564309B2 (en) | 2013-03-14 | 2017-02-07 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US10395917B2 (en) | 2013-03-14 | 2019-08-27 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US11587783B2 (en) | 2013-03-14 | 2023-02-21 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US9824881B2 (en) | 2013-03-14 | 2017-11-21 | Asm Ip Holding B.V. | Si precursors for deposition of SiN at low temperatures |
US9922817B2 (en) | 2013-10-16 | 2018-03-20 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9576790B2 (en) | 2013-10-16 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9362109B2 (en) | 2013-10-16 | 2016-06-07 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US10790137B2 (en) | 2013-10-16 | 2020-09-29 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9543140B2 (en) | 2013-10-16 | 2017-01-10 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US10410856B2 (en) | 2013-10-16 | 2019-09-10 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9837263B2 (en) | 2013-12-11 | 2017-12-05 | Asm Ip Holding B.V. | Atomic layer deposition of silicon carbon nitride based materials |
US10818489B2 (en) | 2013-12-11 | 2020-10-27 | Asm Ip Holding B.V. | Atomic layer deposition of silicon carbon nitride based material |
US10199211B2 (en) | 2013-12-11 | 2019-02-05 | Asm Ip Holding B.V. | Atomic layer deposition of silicon carbon nitride based materials |
US10515794B2 (en) | 2013-12-11 | 2019-12-24 | Asm Ip Holding B.V. | Atomic layer deposition of silicon carbon nitride based materials |
US9401273B2 (en) | 2013-12-11 | 2016-07-26 | Asm Ip Holding B.V. | Atomic layer deposition of silicon carbon nitride based materials |
US10262854B2 (en) | 2014-09-17 | 2019-04-16 | Asm Ip Holding B.V. | Deposition of SiN |
US11367613B2 (en) | 2014-09-17 | 2022-06-21 | Asm Ip Holding B.V. | Deposition of SiN |
US9576792B2 (en) | 2014-09-17 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of SiN |
US10741386B2 (en) | 2014-09-17 | 2020-08-11 | Asm Ip Holding B.V. | Deposition of SiN |
CN105762115B (zh) * | 2014-12-18 | 2018-12-21 | 中芯国际集成电路制造(上海)有限公司 | 存储器件的形成方法 |
CN105762115A (zh) * | 2014-12-18 | 2016-07-13 | 中芯国际集成电路制造(上海)有限公司 | 存储器件的形成方法 |
US11133181B2 (en) | 2015-08-24 | 2021-09-28 | Asm Ip Holding B.V. | Formation of SiN thin films |
US10410857B2 (en) | 2015-08-24 | 2019-09-10 | Asm Ip Holding B.V. | Formation of SiN thin films |
US11784043B2 (en) | 2015-08-24 | 2023-10-10 | ASM IP Holding, B.V. | Formation of SiN thin films |
US11056353B2 (en) | 2017-06-01 | 2021-07-06 | Asm Ip Holding B.V. | Method and structure for wet etch utilizing etch protection layer comprising boron and carbon |
KR20190085873A (ko) | 2018-01-11 | 2019-07-19 | 도쿄엘렉트론가부시키가이샤 | 에칭 방법 및 에칭 장치 |
US10658193B2 (en) | 2018-01-11 | 2020-05-19 | Tokyo Electron Limited | Etching method and etching apparatus |
US10580645B2 (en) | 2018-04-30 | 2020-03-03 | Asm Ip Holding B.V. | Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors |
US11996286B2 (en) | 2020-12-09 | 2024-05-28 | Asm Ip Holding B.V. | Silicon precursors for silicon nitride deposition |
Also Published As
Publication number | Publication date |
---|---|
US20140363980A1 (en) | 2014-12-11 |
TW201351499A (zh) | 2013-12-16 |
CN104081502B (zh) | 2016-06-29 |
JP5912637B2 (ja) | 2016-04-27 |
CN104081502A (zh) | 2014-10-01 |
KR20140125370A (ko) | 2014-10-28 |
TWI563561B (ja) | 2016-12-21 |
US9202707B2 (en) | 2015-12-01 |
KR102038608B1 (ko) | 2019-10-30 |
JP2013171890A (ja) | 2013-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5912637B2 (ja) | 半導体装置の製造方法 | |
KR102034556B1 (ko) | 플라즈마 처리 방법 | |
US9449838B2 (en) | Semiconductor device manufacturing method | |
TWI621176B (zh) | Semiconductor device manufacturing method | |
WO2014069559A1 (ja) | プラズマ処理方法及びプラズマ処理装置 | |
KR102307417B1 (ko) | 에칭 방법 | |
JP6431557B2 (ja) | プラズマ処理装置及びプラズマ処理方法 | |
JP2007258426A (ja) | プラズマエッチング方法 | |
US9418863B2 (en) | Method for etching etching target layer | |
JP2020088174A (ja) | エッチング方法及び基板処理装置 | |
CN110034021B (zh) | 蚀刻方法和蚀刻装置 | |
JP2021028968A (ja) | 基板および基板処理方法 | |
JP6077354B2 (ja) | プラズマ処理方法及びプラズマ処理装置 | |
JP7267484B2 (ja) | エッチング方法およびエッチング装置 | |
US11810792B2 (en) | Etching method and substrate processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13749736 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147021411 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14376644 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13749736 Country of ref document: EP Kind code of ref document: A1 |