WO2013073035A1 - 硫化物固体電解質の製造方法 - Google Patents

硫化物固体電解質の製造方法 Download PDF

Info

Publication number
WO2013073035A1
WO2013073035A1 PCT/JP2011/076530 JP2011076530W WO2013073035A1 WO 2013073035 A1 WO2013073035 A1 WO 2013073035A1 JP 2011076530 W JP2011076530 W JP 2011076530W WO 2013073035 A1 WO2013073035 A1 WO 2013073035A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
pulverization
diameter
grinding
Prior art date
Application number
PCT/JP2011/076530
Other languages
English (en)
French (fr)
Inventor
杉浦 功一
三和子 大橋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013544060A priority Critical patent/JP5800027B2/ja
Priority to PCT/JP2011/076530 priority patent/WO2013073035A1/ja
Priority to CN201180074622.3A priority patent/CN103918039A/zh
Priority to US14/355,985 priority patent/US20140295260A1/en
Publication of WO2013073035A1 publication Critical patent/WO2013073035A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing a sulfide solid electrolyte.
  • Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • a lithium ion secondary battery includes a positive electrode and a negative electrode, and an electrolyte layer disposed between them.
  • an electrolyte used for the electrolyte layer for example, a non-aqueous liquid or solid substance is known. ing.
  • electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode and the negative electrode. Therefore, an interface between the active material contained in the positive electrode or the negative electrode and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte that is flame retardant
  • solid electrolyte layer a layer containing a solid electrolyte
  • Patent Document 1 discloses a ball made of two or more kinds of balls having different diameters when manufacturing a sulfide-based solid electrolyte that manufactures a sulfide-based solid electrolyte using a ball mill. Techniques using groups are disclosed. In the paragraph 0018 of Patent Document 1, it is preferable that the two or more kinds of balls each have a ball diameter within a range of 5 to 40 mm ⁇ and that the ball diameter is smaller than 5 mm ⁇ . Describes that there is a possibility that a solid electrolyte with high conductivity cannot be synthesized because the energy per one is small.
  • Patent Document 2 discloses a method for producing sulfide-based solid electrolyte fine particles having an average particle size of 0.1 to 10 ⁇ m by multistage grinding of sulfide-based solid electrolyte coarse particles in a non-aqueous solvent. .
  • pulverization when pulverization is performed using a pulverizer that uses balls as pulverization media, comparison is preferably performed after pulverization with relatively large balls (1 mm ⁇ or more, preferably 1 to 50 mm ⁇ ). It describes that multistage pulverization is performed using a small ball (0.1 to 0.6 mm ⁇ ).
  • JP 2010-90003 A Japanese Patent Laid-Open No. 2008-4459
  • the particle size of the pulverized sulfide solid electrolyte needs to be within a predetermined range.
  • the material, diameter, and peripheral speed of the grinding medium can be considered.
  • the pulverization energy is controlled by the material of the pulverization medium, the pulverization medium having the same diameter is used, so that the atomization is hardly promoted.
  • the solid electrolyte particles are agglomerated rapidly and become secondary particles, resulting in intergranular resistance.
  • an object of the present invention is to provide a method for producing a sulfide solid electrolyte capable of improving the productivity of a sulfide solid electrolyte having a small average particle diameter.
  • the present inventors have mixed at least one of a sulfide solid electrolyte and its raw material with a solvent, a pulverized media (ball, bead) having a diameter of less than 1 mm, and a diameter of 1 mm or more. It was found that a sulfide solid electrolyte having a small average particle size can be produced with good productivity by mechanically grinding simultaneously using grinding media (balls and beads). The present invention has been completed based on this finding.
  • the present invention takes the following means. That is, The present invention includes a mixing step of mixing at least one of a sulfide solid electrolyte and its raw material and a solvent to obtain a mixture, a first grinding medium having a diameter of less than 1 mm, and a diameter of 1 mm or more. And a pulverization step of mechanically pulverizing the sulfide solid electrolyte using the second pulverization medium at the same time.
  • grinding medium refers to media such as balls used in planetary ball mills and batch type ball mills, and beads used in circulating bead mills.
  • the “sulfide solid electrolyte” pulverized in the pulverization step is, for example, the first pulverization medium
  • the sulfide solid electrolyte is synthesized with the sulfide solid electrolyte raw material contained in the mixture after the mixture is put into an apparatus such as a planetary ball mill together with the second grinding medium.
  • the sulfide solid electrolyte is manufactured through a pulverization process in which the mixture is mechanically pulverized using the first pulverization medium and the second pulverization medium at the same time.
  • the pulverizing step the sulfide solid electrolyte having a large initial particle size is pulverized using the second pulverizing medium, and the pulverized sulfide solid electrolyte is further pulverized using the first pulverizing medium.
  • the first grinding medium and the second grinding medium it becomes possible to obtain a sulfide solid electrolyte having a small average particle diameter.
  • the sulfide solid electrolyte can be obtained. Productivity can be improved.
  • the ether compound is preferably further mixed and pulverized in the pulverization step.
  • the “ether compound” includes dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, cyclopentyl methyl ether, anisole and the like.
  • the present invention it is possible to provide a method for producing a sulfide solid electrolyte capable of improving the productivity of a sulfide solid electrolyte having a small average particle diameter.
  • FIG. 2 is a photograph showing a sulfide solid electrolyte of Example 1.
  • FIG. 2 is a photograph showing a sulfide solid electrolyte of Example 2.
  • 4 is a photograph showing a sulfide solid electrolyte of Example 3.
  • 4 is a photograph showing a sulfide solid electrolyte of Example 4.
  • 2 is a photograph showing a sulfide solid electrolyte of Comparative Example 1.
  • 4 is a photograph showing a sulfide solid electrolyte of Comparative Example 2.
  • 6 is a photograph showing a sulfide solid electrolyte of Comparative Example 3.
  • 6 is a photograph showing a sulfide solid electrolyte of Comparative Example 3.
  • 6 is a photograph showing a sulfide solid electrolyte of Comparative Example 4.
  • 6 is a photograph showing a sulfide solid electrolyte of Comparative Example 5.
  • FIG. 1 is a diagram for explaining a method for producing a sulfide solid electrolyte of the present invention (hereinafter sometimes referred to as “the production method of the present invention”).
  • FIG. 2 is a diagram for explaining the production method of the present invention using sulfide solid electrolytes 1, 1,... In the mixing step.
  • the manufacturing method of this invention has a mixing process (S1) and a grinding
  • the mixing step (hereinafter sometimes referred to as “S1”) is a step of obtaining a mixture by mixing at least one of the sulfide solid electrolyte and its raw material with a solvent.
  • S1 may be in a form in which a synthesized sulfide solid electrolyte 1, 1,... And solvent 2 are mixed to obtain a mixture.
  • the form which mixes the raw material of a sulfide solid electrolyte and a solvent, and obtains a mixture may be sufficient, and the form which mixes the raw material of a sulfide solid electrolyte and a solvent and obtains a mixture may be sufficient.
  • the sulfide solid electrolytes 1, 1,... Can be synthesized by, for example, the method described in Japanese Patent Application No. 2010-189965. Further, when the raw material of the sulfide solid electrolyte is used in S1, S1 can be a step of obtaining a mixture by a method described in JP 2010-186682A, for example.
  • S2 the first pulverization media 3, 3,... Having a diameter of less than 1 mm and the second pulverization media 4, 4,.
  • the sulfide solid electrolyte mechanically pulverized in S2 was included in the mixture.
  • the sulfide solid electrolyte mechanically pulverized in S2 is synthesized in S2 when a mixture is obtained by mixing the raw material and the solvent of the sulfide solid electrolyte without using the sulfide solid electrolyte. Sulfide solid electrolyte.
  • a sulfide solid electrolyte having a large initial particle size is mechanically treated using the second grinding media 4, 4,.
  • the pulverized sulfide solid electrolyte is further mechanically pulverized using the first pulverizing media 3, 3.
  • a sulfide solid electrolyte having a small average particle diameter can be obtained by mechanically pulverizing using the first pulverizing media 3, 3,... And the second pulverizing media 4, 4,. 3 and the second grinding media 4, 4,... Can be used at the same time to improve the productivity of the sulfide solid electrolyte having a small average particle size. Therefore, according to the production method of the present invention for producing a sulfide solid electrolyte through S1 and S2, the productivity of a sulfide solid electrolyte having a small average particle size can be improved.
  • the sulfide solid electrolyte usable in the mixing step includes Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 SP—S 2 S 5 , LiI—Li 2 S—.
  • P 2 O 5 , LiI—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 , Li 3 PS 4 and the like can be exemplified.
  • a sulfide solid electrolyte in which the total ratio of the molecular weights of Li, P, and S in the molecular weight of the sulfide solid electrolyte is 10% or more can be preferably used, and F, Cl, Br, and A sulfide solid electrolyte containing one or more elements selected from the group consisting of I can be preferably used.
  • raw material for the sulfide solid electrolyte that can be used in the mixing step
  • a known substance that can be used as the raw material for the sulfide solid electrolyte can be appropriately used.
  • raw materials for such a sulfide solid electrolyte (i) Li 2 S and SiS 2 , (ii) LiI, Li 2 S, and SiS 2 , (iii) LiI, Li 2 S, and P 2 S 5 , (iv) LiI, Li 2 S, and P 2 O 5 , (v) LiI, Li 3 PO 4 , and P 2 S 5 , (vi) Li 2 S and P 2 S 5 , or these A mixture etc. can be mentioned.
  • the solvent that can be used in the mixing step is not particularly limited, but a solvent that does not react with sulfide can be preferably used.
  • a solvent that does not react with sulfide include saturated hydrocarbons and aromatic compounds such as benzene, toluene and xylene.
  • the materials of the first pulverizing media 3, 3,... And the second pulverizing media 4, 4,... Used in the pulverizing step are not particularly limited, but ceramics that are not contaminated by metal can be preferably used.
  • ceramics include zirconia, alumina, agate and the like. Among these, zirconia and alumina which are not easily contaminated by metal can be used more preferably.
  • the diameter of the first grinding media 3, 3,... Used in the grinding process is not particularly limited as long as it is less than 1 mm.
  • the diameter of the first grinding media 3, 3,... can be, for example, 0.1 mm or more and less than 1 mm.
  • the diameter of the second grinding media 4, 4,... Used in the grinding process is not particularly limited as long as it is 1 mm or more.
  • the diameter of the second grinding media 4, 4,... can be, for example, 1 mm or more and 5 mm or less.
  • the pulverization step may be a step of mechanically pulverizing the sulfide solid electrolyte using the first pulverization media 3, 3,... And the second pulverization media 4, 4,.
  • the method is not particularly limited. Examples of the pulverization method that can be used in the present invention include a method using a planetary ball mill, a circulation type bead mill, a batch type ball mill and the like.
  • ether compounds that can be used in the present invention include dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, cyclopentyl methyl ether, and anisole.
  • diethyl ether, dipropyl ether, and dibutyl ether having a low boiling point (60 ° C. or more and 200 ° C. or less) and low polarity can be preferably used.
  • the mixing ratio of the first pulverizing media 3, 3,... And the second pulverizing media 4, 4,... Used in the pulverizing step is not particularly limited, but it is easy to obtain a sulfide solid electrolyte with small average particles. From the standpoint of form, etc., it is preferable that the number of first grinding media 3, 3,... Used is larger than the number of second grinding media 4, 4,.
  • the form having the pulverization step using the first pulverization media 3, 3,... And the second pulverization media 4, 4, is not limited to two types.
  • the grinding step includes one or more other grinding media in addition to the first grinding media 3, 3,... Having a diameter of less than 1 mm and the second grinding media 4, 4,.
  • the present invention includes a process of mechanically pulverizing a sulfide solid electrolyte using a first pulverizing medium and a second pulverizing medium simultaneously while mixing at least one of the sulfide solid electrolyte and its raw material and a solvent. After that, it is also possible to adopt a form for producing sulfide solid electrolyte fine particles.
  • the sulfide solid electrolyte produced by the production method of the present invention can be used for a solid electrolyte layer, a positive electrode, a negative electrode, and the like of a solid battery.
  • Example 1 Mixing powder 1g of the sulfide solid electrolyte material, (10 g of ZrO 2 balls having a diameter of 1 mm, and the ZrO 2 balls having a diameter of 0.3 mm 30 g) grinding media 40 g, 8 g of a solvent (dehydrated heptane, Kanto Chemical And 1 g of additive (dibutyl ether) were put into a 45 ml ZrO 2 pot.
  • a solvent dehydrated heptane, Kanto Chemical And 1 g of additive (dibutyl ether)
  • Example 1 a sulfide solid electrolyte of Example 1 is obtained by performing a pulverization treatment for 10 hours under a condition of 150 revolutions per minute by a mechanical milling method using a planetary ball mill (manufactured by Fritsch, P7). It was.
  • Example 2 A sulfide solid electrolyte of Example 2 was obtained under the same conditions as in Example 1 except that the pulverization time was 20 hours.
  • Example 3 A sulfide solid electrolyte of Example 3 was obtained under the same conditions as in Example 1 except that the number of rotations of the pulverization treatment was 200 rpm.
  • Example 4 The ZrO 2 balls having a diameter of 1 mm 20g and, except using 20g of ZrO 2 balls having a diameter of 0.3 mm, under the same conditions as those in Example 2, to give a sulfide solid electrolyte of Example 4.
  • Comparative Example 2 A sulfide solid electrolyte of Comparative Example 2 was obtained under the same conditions as in Comparative Example 1 except that the number of rotations of the pulverization treatment was 100 revolutions per minute.
  • Comparative Example 4 A sulfide solid electrolyte of Comparative Example 4 was obtained under the same conditions as in Comparative Example 3 except that the number of rotations of the pulverization treatment was 300 rpm.
  • Comparative Example 5 A sulfide solid electrolyte of Comparative Example 5 was obtained under the same conditions as in Comparative Example 3 except that the number of rotations of the pulverization treatment was 450 rpm.
  • Lithium ion conductivity measurement 0.1 g of each of the obtained sulfide solid electrolytes of Examples 1 to 4 and Comparative Examples 1 to 5 was weighed and pressed at a pressure of 421.4 MPa. Two pellets were made. Then, after adjusting the temperature to 25 ° C. using an isothermal layer in an environment not exposed to the atmosphere, the lithium ion conduction of each of the nine pellets was measured by the AC impedance method using a solartron 1260 manufactured by Toyo Corporation. The degree was measured.
  • Results Table 1 shows the production conditions of the sulfide solid electrolyte, the lithium ion conductivity measurement results, and the particle size distribution measurement results of Examples 1 to 4 and Comparative Examples 1 to 5.
  • D10 is the diameter of a grain having a cumulative particle size distribution of 10% from the fine particle side
  • D50 is the diameter of a particle having a cumulative particle size distribution of 50% from the fine particle side
  • D90 is a fine particle of the cumulative particle size distribution. It refers to the diameter of a grain that is 90% cumulative from the side.
  • FIG. 3 shows the relationship between the average particle size and lithium ion conductivity of the sulfide solid electrolytes of Examples 1 to 4 and Comparative Examples 1 to 5.
  • FIG. 3 shows the relationship between the average particle size and lithium ion conductivity of the sulfide solid electrolytes of Examples 1 to 4 and Comparative Examples 1 to 5.
  • FIG. 3 shows the relationship between the average particle size and lithium ion conductivity of the sulfide solid electrolytes of Examples 1 to
  • the vertical axis represents the lithium ion conductivity ⁇ [S / cm]
  • the horizontal axis represents the average particle diameter D50 [ ⁇ m].
  • the sulfide solid electrolytes of Examples 1 to 4 and Comparative Examples 1 to 5 were magnified 5000 times (FIGS. 4 to 10, 12, and 13) or 1000 times magnification (FIG. 11). The photographs observed in Fig. 4 are shown in Figs.
  • the sulfide solid electrolytes of Examples 1 to 4 have a lithium ion conductivity of 1.0 ⁇ 10 ⁇ 3 S / cm or more and an average particle diameter D50 of 1.2 ⁇ m or less. Met. As shown in FIGS. 4 to 7, the sulfide solid electrolytes of Examples 1 to 4 had a small average particle size. In contrast, the sulfide solid electrolytes of Comparative Examples 1 to 5 have a lithium ion conductivity of 4.1 ⁇ 10 ⁇ 4 to 1.2 ⁇ 10 ⁇ 3 and an average particle diameter D50 of 1.6 ⁇ m or more. Met. As shown in FIGS.
  • the sulfide solid electrolytes of Comparative Examples 1 to 5 have a particle size larger than that of the sulfide solid electrolytes of Examples 1 to 4 shown in FIGS. As shown in FIG. 11, in Comparative Example 3, coarse particles that were not pulverized remained. Further, even if Comparative Examples 1 to 5 and Examples 1 and 3 having the same pulverization time are compared with those of Examples 1 and 3 using the present invention, the sulfide solid electrolyte The average particle size of was small. As described above, according to the present invention, the productivity of a sulfide solid electrolyte having a small average particle diameter can be improved.

Abstract

本発明は、平均粒径の小さい硫化物固体電解質の生産性を向上させることが可能な、硫化物固体電解質の製造方法を提供することを主目的とする。 本発明は、硫化物固体電解質及びその原料のうち少なくとも一方と、溶媒とを混合して混合物を得る混合工程と、直径が1mm未満である第1粉砕媒体、及び、直径が1mm以上である第2粉砕媒体を同時に用いて、硫化物固体電解質を機械的に粉砕する粉砕工程と、を有する、硫化物固体電解質の製造方法とする。

Description

硫化物固体電解質の製造方法
 本発明は、硫化物固体電解質の製造方法に関する。
 リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池には、正極及び負極と、これらの間に配置される電解質層とが備えられ、電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質が知られている。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極や負極の内部へと浸透しやすい。そのため、正極や負極に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、難燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)の開発が進められている。
 このような固体電池に関する技術として、例えば特許文献1には、ボールミルを用いて硫化物系固体電解質を製造する硫化物系固体電解を製造する際に、径の異なる2種以上のボールからなるボール群を用いる技術が開示されている。そして、特許文献1の明細書段落0018には、2種以上のボールは、いずれもそのボール径が5~40mmφの範囲内のものであることが好ましいこと、及び、ボール径が5mmφより小さい場合は、1個当たりのエネルギーが小さいため、高い伝導度の固体電解質を合成できないおそれがあることが記載されている。また、特許文献2には、非水系溶媒中で、硫化物系固体電解質粗粒子を多段粉砕する平均粒径が0.1~10μmである硫化物系固体電解質微粒子の製造方法が開示されている。そして、特許文献2の明細書段落0022には、ボールを粉砕メディアとして用いる粉砕機を用いて粉砕する場合、好ましくは比較的大きなボール(1mmφ以上、好ましくは1~50mmφ)により粉砕した後に、比較的小さなボール(0.1~0.6mmφ)を用いて多段粉砕する旨、記載されている。
特開2010-90003号公報 特開2008-4459号公報
 特許文献1に開示されている技術では、大きなボールを用いているため、粒径の小さい硫化物固体電解質が得られ難かった。粒径の小さい硫化物固体電解質を得るには、直径が小さい粉砕媒体を用いることが有効だが、粗大粒子を粉砕する粉砕エネルギーは、微粒子を得る粉砕エネルギーとは異なる。そのため、直径が小さい粉砕媒体のみを用いて、初期粒径の大きい硫化物固体電解質から平均粒径の小さい硫化物固体電解質を得ることは困難であり、直径が小さい粉砕媒体を用いて粒径の小さい硫化物固体電解質を得るには、粉砕される硫化物固体電解質の粒径を所定の範囲内にする必要がある。ここで、粉砕エネルギーの制御因子としては、粉砕媒体の材質、直径、及び周速が考えられる。粉砕媒体の材質で粉砕エネルギーを制御する場合には同径の粉砕媒体を用いることになるため、微粒化が促進され難い。また、粉砕媒体の周速で粉砕エネルギーを制御しようとして、粉砕時に必要以上のエネルギーを与えると、固体電解質粒子が急激に造粒され、二次粒子化して粒界抵抗が発生するため、硫化物固体電解質のイオン伝導度が低下しやすい。それゆえ、複数の粉砕エネルギーを与えるには、粉砕媒体の直径を制御することが有効であり、かかる観点から、これまでに、特許文献2に開示されているような、多段粉砕を用いる方法が提案されている。多段粉砕する技術によれば、粒径の小さい硫化物固体電解質を得ることも可能になると考えられる。しかしながら、多段粉砕により微粒子化すると、平均粒径の小さい硫化物固体電解質を製造するための工程数が増えるため、生産性が低下しやすい。それゆえ、特許文献1及び特許文献2に開示されている技術を組み合わせても、平均粒径の小さい硫化物固体電解質の生産性を向上させることは困難であった。
 そこで本発明は、平均粒径の小さい硫化物固体電解質の生産性を向上させることが可能な、硫化物固体電解質の製造方法を提供することを課題とする。
 本発明者らは、鋭意検討の結果、硫化物固体電解質及びその原料のうち少なくとも一方と、溶媒とを混合し、直径が1mm未満である粉砕メディア(ボール、ビーズ)、及び、直径が1mm以上である粉砕メディア(ボール、ビーズ)を同時に用いて機械的に粉砕することにより、平均粒径の小さい硫化物固体電解質を生産性良く製造可能であることを知見した。本発明は、当該知見に基づいて完成させた。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明は、硫化物固体電解質及びその原料のうち少なくとも一方と、溶媒とを混合して混合物を得る、混合工程と、直径が1mm未満である第1粉砕媒体、及び、直径が1mm以上である第2粉砕媒体を同時に用いて、硫化物固体電解質を機械的に粉砕する、粉砕工程と、を有する、硫化物固体電解質の製造方法である。
 ここに、「粉砕媒体」とは、遊星型ボールミル及びバッチ式のボールミル等で用いられるボールや、循環式ビーズミル等で用いられるビーズ等のメディアをいう。また、混合工程で硫化物固体電解質を使用せず、硫化物固体電解質の原料を用いて混合物を得た場合、粉砕工程で粉砕される「硫化物固体電解質」とは、例えば、第1粉砕媒体及び第2粉砕媒体とともに、混合物を遊星型ボールミル等の装置に投入した後に、混合物に含まれていた硫化物固体電解質原料を用いて当該装置で合成された硫化物固体電解質をいう。
 本発明では、第1粉砕媒体及び第2粉砕媒体を同時に用いて混合物を機械的に粉砕する粉砕工程を経て、硫化物固体電解質を製造する。粉砕工程では、第2粉砕媒体を用いて初期粒径が大きい硫化物固体電解質を粉砕し、さらに、粉砕された硫化物固体電解質を、第1粉砕媒体を用いて粉砕する。第1粉砕媒体及び第2粉砕媒体を用いることにより平均粒径の小さい硫化物固体電解質を得ることが可能になり、第1粉砕媒体及び第2粉砕媒体を同時に用いることにより、硫化物固体電解質の生産性を向上させることが可能になる。
 また、上記本発明において、粉砕工程で、さらに、エーテル化合物が混合されて粉砕されることが好ましい。かかる形態とすることにより、硫化物固体電解質の、第1粉砕媒体や第2粉砕媒体への固着や再凝集を防止することが可能になるので、平均粒径の小さい硫化物固体電解質の生産性を向上させやすくなる。ここに、本発明において、「エーテル化合物」には、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、アニソール等が含まれる。
 本発明によれば、平均粒径の小さい硫化物固体電解質の生産性を向上させることが可能な、硫化物固体電解質の製造方法を提供することができる。
本発明の硫化物固体電解質の製造方法を説明する図である。 本発明の硫化物固体電解質の製造方法を説明する図である。 実施例及び比較例にかかる硫化物固体電解質のリチウムイオン伝導度と平均粒径との関係を示す図である。 実施例1の硫化物固体電解質を示す写真である。 実施例2の硫化物固体電解質を示す写真である。 実施例3の硫化物固体電解質を示す写真である。 実施例4の硫化物固体電解質を示す写真である。 比較例1の硫化物固体電解質を示す写真である。 比較例2の硫化物固体電解質を示す写真である。 比較例3の硫化物固体電解質を示す写真である。 比較例3の硫化物固体電解質を示す写真である。 比較例4の硫化物固体電解質を示す写真である。 比較例5の硫化物固体電解質を示す写真である。
 以下、図面を参照しつつ、本発明について説明する。以下の図面では、繰り返される符号の一部を省略することがある。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。
 図1は、本発明の硫化物固体電解質の製造方法(以下において、「本発明の製造方法」ということがある。)を説明する図である。また、図2は、混合工程で硫化物固体電解質1、1、…を用いる、本発明の製造方法を説明する図である。図1及び図2に示したように、本発明の製造方法は、混合工程(S1)と、粉砕工程(S2)と、を有している。
 混合工程(以下において、「S1」ということがある。)は、硫化物固体電解質及びその原料のうち少なくとも一方と、溶媒とを混合して、混合物を得る工程である。S1は、図2に示したように、合成された硫化物固体電解質1、1、…と溶媒2とを混合して混合物を得る形態であっても良く、合成された硫化物固体電解質及び該硫化物固体電解質の原料と溶媒とを混合して混合物を得る形態であっても良く、硫化物固体電解質の原料と溶媒とを混合して混合物を得る形態であっても良い。
 S1で、合成された硫化物固体電解質1、1、…を用いる場合、S1で使用される硫化物固体電解質1、1、…の合成方法は特に限定されない。硫化物固体電解質1、1、…は、例えば特願2010-189965に記載されている方法等によって合成することができる。また、S1で、硫化物固体電解質の原料を用いる場合、S1は、例えば、特開2010-186682号公報に記載されている方法等によって混合物を得る工程、とすることができる。また、S1で、硫化物固体電解質及び該硫化物固体電解質の原料を用いる場合には、合成された硫化物固体電解質も混合するほかは、硫化物固体電解質の原料を用いる場合と同様にして、混合物を得ることができる。
 粉砕工程(以下において、「S2」ということがある。)は、直径が1mm未満である第1粉砕媒体3、3、…、及び、直径が1mm以上である第2粉砕媒体4、4、…を同時に用いて、硫化物固体電解質を機械的に粉砕する工程である。上記S1で、硫化物固体電解質の原料を用いることなく、硫化物固体電解質1、1、…及び溶媒2を混合して混合物を得た場合、S2で機械的に粉砕される硫化物固体電解質は、混合物に含まれていた硫化物固体電解質1、1、…である。また、上記S1で、硫化物固体電解質及び硫化物固体電解質の原料と溶媒とを混合して混合物を得た場合、S2で機械的に粉砕される硫化物固体電解質は、混合物に含まれていた硫化物固体電解質、及び、S2で合成された硫化物固体電解質である。また、上記S1で、硫化物固体電解質を用いることなく、硫化物固体電解質の原料及び溶媒を混合して混合物を得た場合、S2で機械的に粉砕される硫化物固体電解質は、S2で合成された硫化物固体電解質である。
 第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…を同時に用いるS2では、初期粒径が大きい硫化物固体電解質を、第2粉砕媒体4、4、…を用いて機械的に粉砕し、粉砕された硫化物固体電解質を、第1粉砕媒体3、3、…を用いてさらに機械的に粉砕する。第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…を用いて機械的に粉砕することにより、平均粒径の小さい硫化物固体電解質を得ることができ、第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…を同時に用いることにより、平均粒径の小さい硫化物固体電解質の生産性を向上させることが可能になる。したがって、S1及びS2を経て硫化物固体電解質を製造する本発明の製造方法によれば、平均粒径の小さい硫化物固体電解質の生産性を向上させることが可能である。
 本発明において、混合工程で使用可能な硫化物固体電解質としては、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P、LiPS等を例示することができる。本発明では、硫化物固体電解質の分子量に占めるLi、P、及び、Sの分子量の合計の割合が10%以上である硫化物固体電解質を好ましく用いることができ、F、Cl、Br、及び、Iからなる群より選択された1以上の元素を含む硫化物固体電解質を、好ましく用いることができる。
 また、混合工程で使用可能な硫化物固体電解質の原料は、硫化物固体電解質の原料として使用可能な公知の物質を適宜用いることができる。そのような硫化物固体電解質の原料としては、(i)LiS及びSiS、(ii)LiI、LiS、及び、SiS、(iii)LiI、LiS、及び、P、(iv)LiI、LiS、及び、P、(v)LiI、LiPO、及び、P、(vi)LiS及びP、又はこれらの混合体等を挙げることができる。
 また、混合工程で使用可能な溶媒は特に限定されないが、硫化物と反応しない溶媒を好ましく用いることができる。そのような溶媒としては、飽和炭化水素のほか、ベンゼン、トルエン、キシレン等の芳香族化合物等を例示することができる。
 また、本発明において、粉砕工程で使用する第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…の材質は特に限定されないが、金属によって汚染されないセラミックスを好ましく用いることができる。そのようなセラミックスとしては、ジルコニア、アルミナ、メノウ等を例示することができる。これらの中でも、金属によって汚染され難いジルコニア及びアルミナをより好ましく用いることができる。
 また、粉砕工程で使用する第1粉砕媒体3、3、…の直径は、1mm未満であれば特に限定されない。第1粉砕媒体3、3、…の直径は、例えば、0.1mm以上1mm未満とすることができる。また、粉砕工程で使用する第2粉砕媒体4、4、…の直径は、1mm以上であれば特に限定されない。第2粉砕媒体4、4、…の直径は、例えば、1mm以上5mm以下とすることができる。
 また、粉砕工程は、第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…を同時に用いて硫化物固体電解質を機械的に粉砕する工程であれば良く、機械的に粉砕する方法は特に限定されない。本発明で使用可能な粉砕方法としては、遊星型ボールミル、循環式ビーズミル、バッチ式ボールミル等を用いる方法を例示することができる。
 また、硫化物固体電解質の、第1粉砕媒体3、3、…や第2粉砕媒体4、4、…への固着や再凝集を防止することを可能にする等の観点から、本発明では、第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…を同時に用いて硫化物固体電解質を機械的に粉砕する際に、エーテル化合物が添加されていることが好ましい。本発明で使用可能なエーテル化合物としては、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、アニソール等を例示することができる。これらの中でも、本発明では、沸点が低く(60℃以上200℃以下)、且つ、極性の低いジエチルエーテル、ジプロピルエーテル、ジブチルエーテルを好ましく用いることができる。
 また、本発明において、粉砕工程で用いられる第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…の混合比率は特に限定されないが、平均粒子の小さい硫化物固体電解質を得やすい形態にする等の観点からは、使用される第1粉砕媒体3、3、…の数を第2粉砕媒体4、4、…の数よりも多くすることが好ましい。
 また、本発明に関する上記説明では、第1粉砕媒体3、3、…及び第2粉砕媒体4、4、…を同時に用いる粉砕工程を有する形態を例示したが、本発明における粉砕工程で同時に用いる粉砕媒体の種類は、2種類に限定されない。本発明における粉砕工程は、直径が1mm未満である第1粉砕媒体3、3、…及び直径が1mm以上である第2粉砕媒体4、4、…に加えて、1種類以上の他の粉砕媒体を同時に用いて硫化物固体電解質を機械的に粉砕する工程、とすることも可能である。
 また、本発明に関する上記説明では、混合工程の後に粉砕工程が行われる形態を例示したが、本発明は当該形態に限定されない。本発明は、硫化物固体電解質及びその原料のうち少なくとも一方と、溶媒とを混合しながら、第1粉砕媒体及び第2粉砕媒体を同時に用いて、硫化物固体電解質を機械的に粉砕する過程を経て、硫化物固体電解質微粒子を製造する形態、とすることも可能である。
 本発明の製造方法によって製造した硫化物固体電解質は、固体電池の固体電解質層、正極、及び、負極等に用いることができる。
 以下に、実施例及び比較例を示して本発明についてさらに具体的に説明する。
 1.硫化物固体電解質の製造
  <硫化物固体電解質材料の混合>
  硫化リチウム(日本化学工業株式会社製、純度99.9%)70.0g、及び、五硫化二リン(アルドリッチ社製、純度99%)をメノウ乳鉢でプレミキシング後に、乾式メカニカルミリングで毎分300回転の条件で20時間に亘って混合することにより、硫化物固体電解質材料の混合粉体を得た。
 <粉砕工程>
  [実施例1]
  1gの上記硫化物固体電解質材料の混合粉体、40gの粉砕媒体(直径1mmのZrOボールを10g、及び、直径0.3mmのZrOボールを30g)、8gの溶媒(脱水ヘプタン、関東化学株式会社製)、及び、1gの添加剤(ジブチルエーテル)を、45mlのZrOポットに投入した。そして、遊星型ボールミル機(フリッチュ製、P7)を用いて、メカニカルミリング法にて、毎分150回転の条件で10時間に亘る粉砕処理を行うことにより、実施例1の硫化物固体電解質を得た。
 [実施例2]
  粉砕処理の時間を20時間にしたほかは、上記実施例1と同様の条件で、実施例2の硫化物固体電解質を得た。
 [実施例3]
  粉砕処理の回転数を毎分200回転にしたほかは、上記実施例1と同様の条件で、実施例3の硫化物固体電解質を得た。
 [実施例4]
  直径1mmのZrOボールを20g、及び、直径0.3mmのZrOボールを20g用いたほかは、上記実施例2と同様の条件で、実施例4の硫化物固体電解質を得た。
 [比較例1]
  1gの上記硫化物固体電解質材料の混合粉体、40gの粉砕媒体(直径1mmのZrOボールを40g)、8.9gの溶媒(脱水ヘプタン、関東化学株式会社製)、及び、0.1gの添加剤(ジブチルエーテル)を、45mlのZrOポットに投入した。そして、遊星型ボールミル機(フリッチュ製、P7)を用いて、メカニカルミリング法にて、毎分150回転の条件で10時間に亘る粉砕処理を行うことにより、比較例1の硫化物固体電解質を得た。
 [比較例2]
  粉砕処理の回転数を毎分100回転にしたほかは、上記比較例1と同様の条件で、比較例2の硫化物固体電解質を得た。
 [比較例3]
  1gの上記硫化物固体電解質材料の混合粉体、40gの粉砕媒体(直径0.3mmのZrOボールを40g)、8gの溶媒(脱水ヘプタン、関東化学株式会社製)、及び、1gの添加剤(ジブチルエーテル)を、45mlのZrOポットに投入した。そして、遊星型ボールミル機(フリッチュ製、P7)を用いて、メカニカルミリング法にて、毎分200回転の条件で10時間に亘る粉砕処理を行うことにより、比較例3の硫化物固体電解質を得た。
 [比較例4]
  粉砕処理の回転数を毎分300回転にしたほかは、上記比較例3と同様の条件で、比較例4の硫化物固体電解質を得た。
 [比較例5]
  粉砕処理の回転数を毎分450回転にしたほかは、上記比較例3と同様の条件で、比較例5の硫化物固体電解質を得た。
 2.リチウムイオン伝導度測定
  得られた実施例1乃至実施例4及び比較例1乃至比較例5の硫化物固体電解質を、それぞれ0.1gずつ秤量し、421.4MPaの圧力でプレスすることにより、9つのペレットを作製した。そして、大気非暴露の環境下で、恒温層を用いて25℃に温度調整をした後、株式会社東陽テクニカ製のソーラートロン1260を用いて、交流インピーダンス法により、9つのペレットそれぞれのリチウムイオン伝導度を測定した。
 3.粒度分布測定
  得られた実施例1乃至実施例4及び比較例1乃至比較例5の硫化物固体電解質を、それぞれ少量ずつサンプリングし、レーザー回折・散乱式粒度分布計(日機装株式会社製、マイクロトラックMT3300EXII)を用いて粒度分布を測定した。
 4.結果
  実施例1乃至実施例4並びに比較例1乃至比較例5の、硫化物固体電解質の製造条件、リチウムイオン伝導度測定結果、及び、粒度分布測定結果を表1に示す。ここで、D10は累積粒度分布の微粒側からの累積が10%である粒の直径、D50は累積粒度分布の微粒側からの累積が50%である粒の直径、D90は累積粒度分布の微粒側からの累積が90%である粒の直径をいう。また、実施例1乃至実施例4並びに比較例1乃至比較例5の硫化物固体電解質の、平均粒径とリチウムイオン伝導度との関係を、図3に示す。図3の縦軸はリチウムイオン伝導度σ[S/cm]、横軸は平均粒径D50[μm]である。また、実施例1乃至実施例4並びに比較例1乃至比較例5の硫化物固体電解質を、倍率5000倍(図4乃至図10、図12、及び、図13)又は倍率1000倍(図11)で観察した写真を、図4乃至図13にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、実施例1乃至実施例4の硫化物固体電解質は、リチウムイオン伝導度が1.0×10-3S/cm以上であり、平均粒径D50は1.2μm以下であった。図4乃至図7にも示したように、実施例1乃至実施例4の硫化物固体電解質は、平均粒径が小さかった。これに対し、比較例1乃至比較例5の硫化物固体電解質は、リチウムイオン伝導度が4.1×10-4~1.2×10-3であり、平均粒径D50は1.6μm以上であった。図8乃至図13にも示したように、比較例1乃至比較例5の硫化物固体電解質は、図4乃至図7に示した実施例1乃至実施例4の硫化物固体電解質よりも粒径が大きく、図11に示したように、比較例3では、粉砕されない粗大粒子が残存していた。また、比較例1乃至比較例5、及び、これらと粉砕処理時間を同一にした実施例1、3を比較しても、本発明を用いた実施例1、3の方が、硫化物固体電解質の平均粒径が小さかった。
  以上より、本発明によれば、平均粒径の小さい硫化物固体電解質の生産性を向上させることができた。
 1…硫化物固体電解質
 2…溶媒
 3…第1粉砕媒体
 4…第2粉砕媒体

Claims (2)

  1. 硫化物固体電解質及びその原料のうち少なくとも一方と、溶媒とを混合して混合物を得る、混合工程と、
     直径が1mm未満である第1粉砕媒体、及び、直径が1mm以上である第2粉砕媒体を同時に用いて、硫化物固体電解質を機械的に粉砕する、粉砕工程と、
    を有する、硫化物固体電解質の製造方法。
  2. 前記粉砕工程で、さらに、エーテル化合物が混合されて粉砕される、請求項1に記載の硫化物固体電解質の製造方法。
PCT/JP2011/076530 2011-11-17 2011-11-17 硫化物固体電解質の製造方法 WO2013073035A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013544060A JP5800027B2 (ja) 2011-11-17 2011-11-17 硫化物固体電解質の製造方法
PCT/JP2011/076530 WO2013073035A1 (ja) 2011-11-17 2011-11-17 硫化物固体電解質の製造方法
CN201180074622.3A CN103918039A (zh) 2011-11-17 2011-11-17 硫化物固体电解质的制造方法
US14/355,985 US20140295260A1 (en) 2011-11-17 2011-11-17 Method for producing sulfide solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076530 WO2013073035A1 (ja) 2011-11-17 2011-11-17 硫化物固体電解質の製造方法

Publications (1)

Publication Number Publication Date
WO2013073035A1 true WO2013073035A1 (ja) 2013-05-23

Family

ID=48429146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076530 WO2013073035A1 (ja) 2011-11-17 2011-11-17 硫化物固体電解質の製造方法

Country Status (4)

Country Link
US (1) US20140295260A1 (ja)
JP (1) JP5800027B2 (ja)
CN (1) CN103918039A (ja)
WO (1) WO2013073035A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014192309A1 (ja) * 2013-05-31 2017-02-23 出光興産株式会社 固体電解質の製造方法
US10020535B2 (en) * 2015-12-01 2018-07-10 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
KR20180115130A (ko) * 2017-04-12 2018-10-22 한국전기연구원 황화물계 고체전해질 분말 제조방법, 고체전해질 분말을 포함하는 고체전해질층, 전극복합체층 제조방법 및 이를 포함하는 전고체전지
JP2020126760A (ja) * 2019-02-04 2020-08-20 三井金属鉱業株式会社 固体電解質
JP6780140B1 (ja) * 2020-01-17 2020-11-04 住友化学株式会社 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池
DE112014004188B4 (de) * 2013-09-13 2020-12-24 Toyota Jidosha Kabushiki Kaisha Verfahren zum Herstellen von Sulfidfestelektrolyt
JP2022077680A (ja) * 2020-11-12 2022-05-24 株式会社テオス シリコン破砕用低汚染衝撃工具
KR102560211B1 (ko) 2022-04-26 2023-07-28 주식회사 포스코제이케이솔리드솔루션 전고체 이차전지용 황화물계 고체전해질 및 이의 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035913A (ja) 2014-07-31 2016-03-17 富士フイルム株式会社 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法
JP6962260B2 (ja) * 2018-04-13 2021-11-05 トヨタ自動車株式会社 硫化物固体電解質粒子の製造方法
KR20220036213A (ko) * 2020-09-15 2022-03-22 삼성에스디아이 주식회사 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 전기화학전지
KR20240038634A (ko) * 2022-09-16 2024-03-25 주식회사 엘지화학 고체 전해질의 제조 방법 및 고체 전해질

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194748A (ja) * 1987-02-05 1988-08-11 日本鋼管株式会社 高濃度石炭・水スラリ−の製造装置及びその製造方法
JPH09253517A (ja) * 1996-03-25 1997-09-30 Natl Res Inst For Metals 粉末粒子の粉砕方法と粒子修飾方法
JP2009211950A (ja) * 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2010090003A (ja) * 2008-10-09 2010-04-22 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267056A (ja) * 1991-02-22 1992-09-22 Matsushita Electric Ind Co Ltd 固形電極組成物
US5513803A (en) * 1994-05-25 1996-05-07 Eastman Kodak Company Continuous media recirculation milling process
JP3233345B2 (ja) * 1997-10-31 2001-11-26 大阪府 全固体型電池用イオン伝導性硫化物ガラス微粉末の製造方法、全固体型電池用イオン伝導性硫化物ガラス微粉末、固体型電解質及び全固体型二次電池
AU8847101A (en) * 2000-08-31 2002-03-13 Rtp Pharma Inc Milled particles
KR100436712B1 (ko) * 2001-12-19 2004-06-22 삼성에스디아이 주식회사 캐소드 전극, 그 제조방법 및 이를 채용한 리튬 전지
CN1297026C (zh) * 2002-10-11 2007-01-24 株式会社日本触媒 固体氧化物型燃料电池用电解质薄片及其制法
US7955735B2 (en) * 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP3954085B2 (ja) * 2005-10-07 2007-08-08 シャープ株式会社 光電変換素子およびこれを用いた太陽電池
JP2009082910A (ja) * 2007-09-14 2009-04-23 Toyota Motor Corp 微粒子コンポジット、その製造方法、固体高分子型燃料電池用触媒、及び固体高分子型燃料電池
JP2009104990A (ja) * 2007-10-25 2009-05-14 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用電解質シートの製造方法および電解質シート
EP2231815A1 (en) * 2007-12-14 2010-09-29 Basf Se Inorganic phosphor, obtainable by wet milling
JP5680288B2 (ja) * 2008-07-07 2015-03-04 トヨタ自動車株式会社 硫化物系固体電解質の製造方法
JP4835736B2 (ja) * 2009-08-31 2011-12-14 トヨタ自動車株式会社 固体電解質シートの製造方法
JP5272995B2 (ja) * 2009-09-29 2013-08-28 トヨタ自動車株式会社 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
CN102205946A (zh) * 2011-05-03 2011-10-05 浙江大学 一种非碱金属类金属硼氢化物的液相合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194748A (ja) * 1987-02-05 1988-08-11 日本鋼管株式会社 高濃度石炭・水スラリ−の製造装置及びその製造方法
JPH09253517A (ja) * 1996-03-25 1997-09-30 Natl Res Inst For Metals 粉末粒子の粉砕方法と粒子修飾方法
JP2009211950A (ja) * 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2010090003A (ja) * 2008-10-09 2010-04-22 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116002B2 (en) 2013-05-31 2018-10-30 Idemitsu Kosan Co., Ltd. Production method of solid electrolyte
JPWO2014192309A1 (ja) * 2013-05-31 2017-02-23 出光興産株式会社 固体電解質の製造方法
DE112014004188B4 (de) * 2013-09-13 2020-12-24 Toyota Jidosha Kabushiki Kaisha Verfahren zum Herstellen von Sulfidfestelektrolyt
US10020535B2 (en) * 2015-12-01 2018-07-10 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
KR20180115130A (ko) * 2017-04-12 2018-10-22 한국전기연구원 황화물계 고체전해질 분말 제조방법, 고체전해질 분말을 포함하는 고체전해질층, 전극복합체층 제조방법 및 이를 포함하는 전고체전지
KR102398467B1 (ko) * 2017-04-12 2022-05-13 한국전기연구원 황화물계 고체전해질 분말을 포함하는 복합체 제조방법, 이를 이용한 고체전해질층, 전극복합체층 제조방법 및 이를 포함하는 전고체전지
JP2020126760A (ja) * 2019-02-04 2020-08-20 三井金属鉱業株式会社 固体電解質
JP7239337B2 (ja) 2019-02-04 2023-03-14 三井金属鉱業株式会社 固体電解質
JP6780140B1 (ja) * 2020-01-17 2020-11-04 住友化学株式会社 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池
JP2021114407A (ja) * 2020-01-17 2021-08-05 住友化学株式会社 全固体リチウムイオン電池用混合粉末、全固体リチウムイオン電池用混合ペースト、電極および全固体リチウムイオン電池
JP2022077680A (ja) * 2020-11-12 2022-05-24 株式会社テオス シリコン破砕用低汚染衝撃工具
JP7316670B2 (ja) 2020-11-12 2023-07-28 株式会社テオス シリコン破砕用低汚染衝撃工具
KR102560211B1 (ko) 2022-04-26 2023-07-28 주식회사 포스코제이케이솔리드솔루션 전고체 이차전지용 황화물계 고체전해질 및 이의 제조방법

Also Published As

Publication number Publication date
CN103918039A (zh) 2014-07-09
JP5800027B2 (ja) 2015-10-28
JPWO2013073035A1 (ja) 2015-04-02
US20140295260A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5800027B2 (ja) 硫化物固体電解質の製造方法
EP3454405B1 (en) Sulfide-based solid electrolyte for lithium secondary battery
KR101780917B1 (ko) 황화물 고체 전해질 재료를 제조하는 방법
JP5403925B2 (ja) 固体電解質及びその製造方法
CN107078295B (zh) 全固体二次电池用正极及其制备方法和全固体二次电池
KR101710294B1 (ko) 황화물 고체 전해질의 제조 방법
KR20190009323A (ko) 전고체형 리튬 이차전지용 양극 활물질
CN108232308A (zh) 硫化物固体电解质的制造方法
JP2008004459A (ja) 固体電解質微粒子及びその製造方法
JP2011181260A (ja) 全固体リチウム二次電池用正極及びその製造方法
JP2019532459A (ja) 二次電池用正極活物質及びその製造方法
CN112384993A (zh) 硫化物固体电解质及其处理方法
JP2019102412A (ja) 硫化物固体電解質材料の製造方法
KR20140028002A (ko) 티탄산리튬의 제조 방법
WO2022158458A1 (ja) 改質硫化物固体電解質及びその製造方法
JP2016203087A (ja) 硫化物固体電解質材料の製造方法
JP6389773B2 (ja) リチウム二次電池用正極材料の製造方法
CN105870420A (zh) 一种锂离子动力电池用磷酸锰锂正极材料及其制备方法
JP2017061409A (ja) リチウムマンガン複合酸化物の製造方法
JP2013069665A (ja) リチウムイオン二次電池正極材料の製造方法
JP2013097892A (ja) リチウムイオン二次電池正極材料粉末
EP3719886A1 (en) Lithium ion battery cathode material, preparation method therefor, and lithium ion battery
Tsukasaki et al. Enhanced specific capacity of Co-doped Li2O by optimization of synthesis conditions
CN108232290A (zh) 硫化物固体电解质的制造方法
KR102560211B1 (ko) 전고체 이차전지용 황화물계 고체전해질 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544060

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14355985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875739

Country of ref document: EP

Kind code of ref document: A1