WO2013001821A1 - 蓄電デバイスおよび蓄電デバイスの製造方法 - Google Patents

蓄電デバイスおよび蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2013001821A1
WO2013001821A1 PCT/JP2012/004198 JP2012004198W WO2013001821A1 WO 2013001821 A1 WO2013001821 A1 WO 2013001821A1 JP 2012004198 W JP2012004198 W JP 2012004198W WO 2013001821 A1 WO2013001821 A1 WO 2013001821A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
collector plate
welding
positive electrode
storage device
Prior art date
Application number
PCT/JP2012/004198
Other languages
English (en)
French (fr)
Inventor
正行 森
久保内 達郎
孝司 縄野
晃弘 古澤
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to EP12805322.0A priority Critical patent/EP2728647B1/en
Priority to JP2013522451A priority patent/JP6070552B2/ja
Priority to CN201280031675.1A priority patent/CN103620824B/zh
Priority to KR1020147001939A priority patent/KR101943675B1/ko
Publication of WO2013001821A1 publication Critical patent/WO2013001821A1/ja
Priority to US14/135,810 priority patent/US10777802B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/182Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells with a collector centrally disposed in the active mass, e.g. Leclanché cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/008Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to the formation and connection technology of a storage element and a terminal member.
  • the electrical connection between the electricity storage element and the external terminal affects the reduction of the internal resistance on the element side and the contact resistance of the connection portion, and thus measures for reduction are taken.
  • a current collecting terminal is provided on the end face of the element, a positive current collector plate is provided on one end face of the winding element, a negative current collector plate is provided on the other end face, and exposed on the end face of the winding element. It is known that a current collector plate is provided so as to cover the current collector foil, and the current collector plate and the current collector foil are connected by laser welding (for example, Patent Document 1).
  • a current collector is provided on an element end face of a power storage element such as a battery device
  • the distribution of internal resistance differs between the inner part and the outer part of the element. Therefore, it is necessary to take countermeasures and pay attention to the connection between the element and the current collector. is there.
  • the structure using the current collector can reduce the internal resistance of the element, but depending on the stress applied during the manufacturing process to the current collector interposed between the external terminal and the element, the reliability of the connection is reduced and the connection resistance is large. There is a case.
  • an object of the present invention is to reduce the resistance of the power storage element, to strengthen the connection structure, and to simplify the connection process.
  • an electricity storage device of the present invention seals an electricity storage element in which a positive electrode body and a negative electrode body face each other with a separator interposed therebetween, and a case member in which the electricity storage element is accommodated.
  • a positive electrode-side electrode overhanging portion and a negative electrode-side electrode overhanging portion may be provided on the same element end face of the electricity storage device.
  • the current collector plate and the terminal member may be laser welded or electron beam welded.
  • the electrode projecting portion may be folded on the element end face by providing a fold.
  • the terminal member is an external terminal connected to the current collector plate, and a connection plate installed between the external terminal and the current collector plate. And may be included.
  • a first gap is formed between the positive electrode-side electrode protruding portion and the negative electrode-side electrode protruding portion that protrudes from the element end surface of the power storage element.
  • An insulation interval is set, and between a positive current collector plate installed on the positive electrode extension portion of the power storage element and a negative current collector plate installed on the negative electrode extension portion.
  • a second insulation interval may be set.
  • the current collector plate has a connection region connected to the terminal member, and a connection region connected to the electrode extension, and these connection regions are provided. Different positions may be set.
  • the current collector plate and the terminal member may include a connection surface portion having an arc surface with the element center of the electricity storage element as a reference.
  • the current collector plate includes a thick portion, and the heat capacity of the current collector plate may be increased at the thick portion.
  • a welded portion by a laser beam or an electron beam may be shifted with respect to a contact surface between the current collector plate and the terminal member.
  • a cover portion formed on the current collector plate or the terminal member covers a contact surface between the current collector plate and the terminal member, and the cover portion includes You may provide the welding part which welded the said current collection board and the said terminal member by irradiation of the laser beam or the electron beam.
  • the irradiation position of the laser beam or the electron beam coincides with the contact surface between the current collector plate and the terminal member, or on the contact surface. On the other hand, it may be different in the crossing direction.
  • the nugget depth of the laser welding or the electron beam welding may be 1.2 [mm] or less.
  • a method of manufacturing an electricity storage device of the present invention includes a step of forming an electricity storage element including a positive electrode body and a negative electrode body with a separator interposed therebetween, and a positive electrode side and a negative electrode side of the electricity storage element.
  • a step of welding the electrode projecting portion and the current collector plate between side surfaces by welding, and the current collector plate and the terminal member are laser-connected. Connecting by welding or electron beam welding.
  • the current collector plate is fixed to the current collector plate, and the current collector plate and the electrode are extended in a state where the electricity storage element is pressed against the current collector plate.
  • a step of connecting the parts by laser welding may be included.
  • a welding line is set on the upper surface of the current collector plate, laser irradiation is performed on the welding line, and the current collector plate and the electricity storage element are You may include the process of welding with an electrode overhang
  • the method for manufacturing the electricity storage device may more preferably include a step of changing a laser output irradiated on a welding line set on the current collector plate.
  • an irradiation position of a laser beam or an electron beam is set at a position different from a contact surface between the current collector plate and the terminal member. May be irradiated with a laser beam or an electron beam.
  • connection between the terminal member and the electrode overhanging portion can be simplified with the current collector plate interposed, and the connection process can be simplified.
  • the current collector plate or terminal member, or the flat surface on the current collector plate covering the contact surface between the current collector plate and the terminal member can be selected and irradiated with a laser beam or an electron beam, the current collector plate and the terminal member Even when the processing accuracy of the contact surface is low, even if there is a gap, an optimum welding range can be obtained, and the welding accuracy and welding strength between the current collector plate and the terminal member can be increased.
  • the contact surface between the current collector plate and the terminal member is covered with a cover portion on the current collector plate or the terminal member, and this cover portion is irradiated with a laser beam or an electron beam. Both can be welded regardless of the surface condition.
  • the first embodiment includes a configuration in which an electrode overhanging portion is provided on the element end face of the battery, and the electrode overhanging portion and a terminal member are connected via a current collector plate.
  • FIG. 1 is referred to for the battery according to the first embodiment.
  • FIG. 1 shows a longitudinal section showing an example of a battery.
  • the configuration illustrated in FIG. 1 is an example, and the present invention is not limited to such a configuration.
  • This battery 2 is an example of the battery of the present invention and a method for manufacturing the battery.
  • the electricity storage device include lead batteries and Ni-Cd batteries with higher capacities, Ni-MH batteries, large-capacity capacitors, lithium batteries, and the like.
  • This lithium battery uses, for example, a transition metal oxide such as manganese dioxide, lithium manganese spinel, lithium cobalt oxide, lithium nickel oxide, or a sulfide such as thionyl chloride or SO 2 as a positive electrode active material, and a negative electrode active material.
  • Metallic lithium, lithium alloy or carbon material that absorbs and releases lithium is used.
  • the large capacity capacitor includes, for example, a lithium ion capacitor.
  • a lithium ion capacitor is an electrical storage device (nonaqueous lithium-type electrical storage device) that uses a nonaqueous electrolytic solution containing, for example, a lithium salt as an electrolyte.
  • This lithium ion capacitor reversibly occludes and releases lithium ions, and a positive electrode body consisting of an active carbon alone or a composite electrode layer of activated carbon and lithium-containing transition metal oxide and a current collector such as a metal foil.
  • the electrical storage device using the negative electrode body which consists of collectors, such as an electrode layer comprised from possible carbon materials or titanium oxides, such as lithium titanate, and metal foil.
  • This large-capacity capacitor is expected to have a larger capacity than an electric double layer capacitor using polarizable electrodes in which activated carbon is applied to both electrodes.
  • a battery 2 shown in FIG. 1 is an example of an electricity storage device, and a battery element 4 that is a wound element is used.
  • This battery element 4 is an example of an electricity storage element of an electricity storage device, and is held by, for example, a holding tape 6. And stored in the outer case 8.
  • the holding tape 6 prevents the battery element 4 that is a winding element from rewinding.
  • a positive electrode portion 12 and a negative electrode portion 14 are formed on the element end surface 10 of the battery element 4, and an insulating interval 16 is provided between the positive electrode portion 12 and the negative electrode portion 14.
  • the positive electrode portion 12 and the negative electrode portion 14 are an example of an electrode extension portion formed on the common element end surface 10.
  • the insulation interval 16 is an example of a first insulation interval set between the positive electrode portion 12 and the negative electrode portion 14 projecting from the element end face of the battery element 4.
  • the outer case 8 is a bottomed cylindrical body, and the opening 17 (FIG. 2) is sealed with a sealing plate 18.
  • the sealing plate 18 is provided with a sealing portion 22 at the upper surface side edge portion of the base portion 20 which is a sealing plate main body.
  • the base portion 20 is made of an insulating synthetic resin, for example, as an insulating material.
  • the sealing part 22 is formed of a member made of a material having high airtightness, for example, a rubber ring.
  • the outer case 8 is firmly sealed by causing the opening end portion 26 of the outer case 8 to bite into the sealing portion 22 of the sealing plate 18 positioned at the caulking step portion 24 by a curling process.
  • the sealing plate 18 is provided with a positive electrode terminal 28 and a negative electrode terminal 30 that penetrate the base portion 20 as terminal members.
  • the positive terminal 28 and the negative terminal 30 are fixed to the base portion 20 and insulated by the base portion 20.
  • a positive current collector plate 32 is provided between the positive electrode terminal 28 and the positive electrode portion 12 of the battery element 4, and a negative current collector plate 34 is provided between the negative electrode terminal 30 and the negative electrode portion 14 of the battery element 4. Is provided.
  • An insulation interval 36 is provided between the current collecting plates 32 and 34.
  • the insulation interval 36 is an example of a second insulation interval set between the positive current collector 32 and the negative current collector 34 of the battery element 4.
  • the current collector plate 32 is connected to the positive electrode portion 12, and the current collector plate 32 is connected to the positive electrode terminal 28 by a side weld connection portion 38.
  • laser welding or electron beam welding is used to connect the current collector plate 32 and the positive electrode terminal 28.
  • the current collector plate 34 is connected to the negative electrode portion 14 by welding and is connected to the negative electrode terminal 30 by welding. That is, the positive electrode portion 12 of the battery element 4 is connected to the positive electrode terminal 28 via the current collector plate 32, and the negative electrode portion 14 of the battery element 4 is connected to the negative electrode terminal 30 via the current collector plate 34. Yes.
  • the battery element 4 is fixed to the sealing plate 18, housed in the outer case 8, held between the sealing plate 18 and the bottom surface of the outer case 8, and fixed in the outer case 8.
  • FIG. 2 is referred to for each part of the battery 2.
  • FIG. 2 shows an example of a disassembled battery.
  • the configuration illustrated in FIG. 2 is an example, and the present invention is not limited to such a configuration.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the positive electrode portion 12 and the negative electrode portion 14 of the battery element 4 are, for example, equally divided every 60 degrees, folded toward the element center 40, and compression molded. By this compression molding, each positive electrode portion 12 and each negative electrode portion 14 are formed with ridge portions 42 that form a radial shape around the element center 40.
  • the current collector plates 32 and 34 are substantially semicircular, and a semicircular cutout 44 corresponding to the element center 40 is formed.
  • the protrusion 42 described above is formed from the cutout 44 toward the peripheral edge.
  • concave portions 46 are formed radially.
  • the current collector plates 32 and 34 are provided with a terminal connection portion 48 as a first connection region connected to the positive electrode terminal 28 or the negative electrode terminal 30, and the positive electrode portion 12 or the negative electrode portion 14 at a position different from the terminal connection portion 48.
  • An element connection portion 50 is formed as a second connection region to be connected.
  • the first welding surface portion 52 on the side of the current collector plates 32, 34 of the weld connection portion 38 described above is formed on the side surfaces of the current collector plates 32, 34.
  • the second welding surface portion 54 on the terminal side of the above-described weld connection portion 38 is formed.
  • the welding surface portions 52 and 54 constitute a common surface portion, and in this embodiment, for example, are equidistant from the element center 40 and constitute a flat surface.
  • FIG. 3 shows an example of a battery manufacturing process.
  • the manufacturing process shown in FIG. 3 is an example of the manufacturing method of the electrical storage device of this invention.
  • the battery element 4 is formed as a power storage element (step S11)
  • the positive electrode portion 12 and the negative electrode portion 14 of the battery element 4 are formed (step S12), the positive electrode portion 12, the current collector plate 32, and the negative electrode portion. 14 and the current collector plate 34 (step S13), the current collector plate 32 and the positive electrode terminal 28 are connected, and the current collector plate 34 and the negative electrode terminal 30 are connected (step S14).
  • the exterior case 8 is sealed (step S15).
  • FIG. 4 shows a configuration example of a battery element partially disassembled.
  • the configuration illustrated in FIG. 4 is an example, and the present invention is not limited to such a configuration.
  • the battery element 4 shown in FIG. 4 includes a winding element, and includes, for example, a positive electrode side current collector 120 as a positive electrode body, and a negative electrode side current collector 140 and separators 56 and 58 as negative electrode bodies. ing. In the electronic element 4, separators 56 and 58 are sandwiched between the current collectors 120 and 140 to form a cylindrical winding element.
  • An electrode material is used for the base material of each of the current collectors 120 and 140.
  • a positive electrode body containing lithium titanate or a negative electrode body containing a carbon material that absorbs and releases lithium is formed on both sides of the current collector. Form.
  • an insulation interval 16 having a constant width is formed between the positive electrode part 12 and the negative electrode part 14 formed on the same element end face 10 side, and the positive electrode part 12 and the negative electrode part 14 are connected to each current collector.
  • the electrode body is not formed.
  • the formation part of the positive electrode part 12 or the negative electrode part 14 is set to be larger than the width W of the separators 56 and 58 which are insulating means, and is formed to a length L corresponding to the arc length of each positive electrode part 12 or each negative electrode part 14. .
  • a fold 60 for folding on the element end face 10 is formed in parallel with the element end face 10.
  • FIG. 5 is referred to for the formation of the positive electrode portion 12 and the negative electrode portion 14.
  • FIG. 5 shows an end face of the battery element.
  • the positive electrode portion 12 and the negative electrode portion 14 before forming are columnar bodies of current collectors 120 and 140 projecting from the element end surface 10 of the battery element 4.
  • the current collector 120 is defined as the partition portions 12A, 12B, and 12C
  • the current collector 140 is defined as the partition portions 14A, 14B, and 14C.
  • a pressure F1 is applied to the battery element 4 from the periphery of the partition portions 12A and 14A in the central portion toward the element center 40 to thereby define the partition portions 12A, 14A is pushed down and compression-molded in the direction orthogonal to the element end face 10.
  • pressure F2 is applied to the remaining partition parts 12B, 12C, 14B, and 14C from the peripheral edge toward the element center 40 to push down the partition parts 12B, 12C, 14B, and 14C, and the element end face 10 And compression molding in the orthogonal direction.
  • the protrusions 42 (FIG. 2) extending from the element center 40 toward the periphery of the battery element 4 at the overlapping portions of the current collector 120 are radially formed. It is formed. Similarly, protrusions 42 (FIG. 2) are formed radially at the boundary between the partition 14A and the partitions 14B and 14C.
  • the positive electrode portion 12 and the negative electrode portion 14 are formed on the element end surface 10 of the battery element 4, and the positive electrode portion 12 and the negative electrode portion 14 are divided by a plurality of protrusions 42.
  • the height dimension is adjusted when the compression molding is performed toward the element center 40.
  • a cut is made in the partition line 62 in the positive electrode portion 12 and the negative electrode portion 14, and after the partition portions 12 ⁇ / b> A and 14 ⁇ / b> A are compression-molded, both sides are sequentially compression-molded so The height dimension of the protruding ridge portion 42 is adjusted.
  • FIG. 6 is referred to regarding the connection between the positive electrode portion 12 or the negative electrode portion 14 and the current collector plate.
  • FIG. 6 shows an element end face of the battery element and a current collector plate.
  • the current collecting plates 32 and 34 have the same shape and are formed in a semicircular shape that bisects the element end face 10 that constitutes the element end face of the power storage element.
  • concave portions 46 for accommodating the above-described protrusions 42 are formed radially. Since the protrusions 42 on the element end face 10 of the battery element 4 are accommodated in the respective recesses 46, the current collector plates 32 and 34 are formed on the positive electrode part 12 and the negative electrode part 14 which are flattened by being flattened. It can be installed horizontally, that is, in parallel with the element end face 10 and in a close contact state.
  • a terminal connection portion 48 is set in a region sandwiched between the concave portions 46 on the upper surface of each current collecting plate 32, 34, and a region between the concave portion 46 and the edge is formed on the lower surface of each current collecting plate 32, 34.
  • the element connection unit 50 is set.
  • the positive terminal 28 (FIG. 2) is connected to the terminal connection portion 48 of the current collector plate 32
  • the negative terminal 30 (FIG. 2) is connected to the terminal connection portion 48 of the current collector plate 34.
  • the partition portions 12B and 12C of the positive electrode portion 12 described above are connected to the element connection portion 50 of the current collector plate 32
  • the partition portions 14B of the negative electrode portion 14 described above are connected to the element connection portion 50 of the current collector plate 34. , 14C are connected.
  • FIG. 7 shows a battery element provided with a current collector plate.
  • the current collector plates 32 and 34 accommodate the protruding portion 42 on the positive electrode portion 12 and negative electrode portion 14 side in the recess 46.
  • the current collector plates 32 and 34 are disposed on the positive electrode portion 12 and the negative electrode portion 14, and the current collector plates 32 and 34 are pressed against the element end surface 10.
  • Each of the current collecting plates 32 and 34 accommodates each protruding portion 42 in the recess 46, and the positive electrode portion 12 and the negative electrode portion 14 are flatly compressed, so that the element connecting portion 50 is connected to the positive electrode portion 12 or the negative electrode. It can be made to adhere to part 14.
  • the element connection portion 50 of the current collector plates 32 and 34 is subjected to laser irradiation 66 from the laser irradiation device 64, for example, and the positive electrode portion 12 is connected to the element connection portion 50 of the current collector plate 32.
  • the negative electrode part 14 is melted and connected to the connection part 50.
  • the positional relationship between the laser irradiation device 64 and the element connecting portions 50 of the current collector plates 32 and 34 may be scanned with the laser irradiation 66 of the laser irradiation device 64 or a battery element including the current collector plates 32 and 34. 4 may be scanned.
  • a laser irradiation site 68 is set as an example of a welding line in the element connection portion 50 of the current collector plates 32 and 34, and each irradiation site 68 extends from the element center 40 to the periphery of the current collector plates 32 and 34.
  • a straight line extending in the direction is used.
  • the laser irradiation portions 68 are two portions of the element connecting portions 50 on both end sides separated by the concave portions 46 of the current collector plates 32 and 34.
  • the laser irradiation 66 is applied to the irradiation site 68 shown in FIG. 7 in the order of [I], [II], [III] and [IV] from the directions of arrows [I], [II], [III] and [IV]. Done in
  • laser irradiation 66 is performed on one current collecting plate 34 linearly from the outer peripheral side of the battery element 4 toward the element center 40.
  • laser irradiation 66 is performed from the element center 40 side toward the outer peripheral side of the battery element 4 on the other current collector plate 32 facing the element center 40.
  • the laser irradiation 66 is performed on one current collecting plate 34 linearly from the outer peripheral side of the battery element 4 toward the element center 40.
  • laser irradiation 66 is performed linearly from the element center 40 side toward the outer peripheral side of the battery element 4 on the other current collector plate 32 facing the element center 40.
  • the element connection portion 50 between the positive electrode portion 12 and the current collector plate 32 and the element connection portion 50 between the negative electrode portion 14 and the current collector plate 34 are performed by a series of processes in which the laser irradiation 66 is performed linearly across the element center 40. Are connected by melting by laser irradiation 66.
  • the series of operations [I] and [II] of laser irradiation may be repeated twice, or the series of operations [I] to [IV] of laser irradiation may be repeated twice, or a plurality of welding lines
  • the laser irradiation region 68 may be set to two parallel lines. If the laser irradiation 66 is multiplexed in this way, the connection resistance can be further reduced.
  • the scanning direction of the laser irradiation 66 may be the above-described scanning [I] and [II], but may be a direction from the element center 40 side toward the element outer peripheral side. Further, individual scanning may be performed instead of continuous scanning as described in [I] and [II].
  • the scanning from [I] to [IV] is performed by performing [I] to [IV] instead of continuously irradiating the same portion with the laser, and then again from [I] to [IV]. ] May be scanned.
  • a time interval can be provided in the laser irradiation 66 between the laser irradiation portions 68, the laser irradiation portions 68 can be cooled, and the connection by laser welding can be stabilized.
  • the laser irradiation 68 may be continuously performed while providing a cooling interval by providing a plurality of times of laser irradiation 66 by providing a time interval to the same laser irradiation site 68. In this way, the welding time of the laser irradiation 68 can be shortened.
  • FIG. 8 and FIG. 9 show the connection between the current collector plate and the positive terminal or the negative terminal.
  • a sealing plate 18 formed in advance is used.
  • the sealing plate 18 has a base portion 20 formed of an insulating synthetic resin, and a positive electrode terminal 28 and a negative electrode terminal 30 are insert-molded when the base portion 20 is formed.
  • the sealing portion 22 may be joined to the base portion 20 or may be installed on the base portion 20 after connection with the current collector plates 32 and 34.
  • the positive electrode terminal 28 and the negative electrode terminal 30 of the sealing plate 18 and the current collector plates 32 and 34 are connected to the current collector plate 32 connected to the battery element 4 as shown in FIG. Is positioned, and the negative electrode terminal 30 in the sealing plate 18 is placed on the current collector plate 34 for positioning.
  • the welded surface portion 52 of the current collector plate 32 and the welded surface portion 54 of the positive electrode terminal 28 are matched, and similarly, the welded surface portion 52 of the current collector plate 34 and the welded surface portion 54 of the negative electrode terminal 30 are matched.
  • Laser irradiation 66 is performed from the laser irradiation device 64 across 54, and the welded surface portions 52 and 54 are melted and connected as shown in FIG.
  • electron beam welding may be used to connect the positive electrode terminal 28 and the negative electrode terminal 30 to the current collector plates 32 and 34.
  • the positive electrode terminal 28 and the negative electrode terminal 30 of the sealing plate 18 are connected to the element end face 10 of the battery element 4 with the current collector plates 32 and 34 interposed therebetween, so that the battery element 4 and the sealing plate 18 can be integrated.
  • welding surface parts 52 and 54 are made to correspond and the laser irradiation 66 is performed over this welding surface parts 52 and 54, it is preferable that this welding surface parts 52 and 54 are in agreement with no gap, There is no limitation, and there may be a gap of about 1 mm.
  • the weld surface portions 52 and 54 may be inclined surfaces (taper surfaces), respectively.
  • the battery element 4 is impregnated with an electrolytic solution and accommodated in the outer case 8, and the inserted sealing plate 18 is caulked on the outer case 8 by a caulking process in advance. Position to. The opening end portion 26 of the outer case 8 is sealed by a curling process to complete the battery 2 as a product.
  • a predetermined insulating interval 16 is provided between the positive electrode portion 12 and the negative electrode portion 14 at the protruding portion of the current collectors 120 and 140.
  • the insulation interval 16 or the protruding length of the current collectors 120 and 140 is such that the positive electrode portion 12 and the negative electrode portion 14 do not come into contact when the protruding portions of the current collectors 120 and 140 are compression-molded toward the element center 40.
  • the interval or length may be set.
  • the projecting portions of the current collectors 120 and 140 for forming the positive electrode portion 12 and the negative electrode portion 14 may be omitted in the vicinity of the element center 40 of the battery element 4 constituting the power storage element.
  • the insulation interval 16 that prevents short circuit between the positive electrode portion 12 and the negative electrode portion 14 and can reduce the resistance may be, for example, 3 [mm] to 10 [mm] as an optimum value.
  • Insulation may be performed by, for example, winding an insulating tape around the outer peripheral surfaces of the current collector plates 32 and 34, or by insulating a ring or the like between the outer peripheral surfaces of the current collector plates 32 and 34 and the outer case 8. Good.
  • the connection interval is greatly shortened by laser welding, and an increase in internal resistance is suppressed.
  • the current collector plates 32 and 34 connected to the positive electrode portion 12 and the negative electrode portion 14 of the battery element 4 are thin metal plates, and the weld surface portion 52, the positive electrode terminal 28, and the negative electrode terminal 30 are connected to the side surfaces thereof.
  • a welded surface portion 54 is formed, which constitutes a matched surface portion.
  • Laser irradiation 66 is performed at the boundary between the weld surface portions 52 and 54 to form a weld connection portion 38.
  • Low resistance ESR: Equivalent Series Resistance
  • a small space is provided between the battery element 4 and the sealing plate 18, and these are electrically connected by the current collector plates 32 and 34 to increase the occupied volume of the battery element 4 in the outer case 8. ing. And the space
  • the positive electrode terminal 28 and the negative electrode terminal 30 and the current collector plates 32 and 34 on the battery element 4 have welded surface portions 52 and 54 formed on the side surface portions of the two surface portions as the matching surface portions. Since the laser irradiation 66 is performed and welding is performed, the connection process is simplified and the connection portion is strengthened.
  • the thickness of the positive electrode terminal 28, the negative electrode terminal 30, and the current collector plates 32 and 34 is a dimension that allows laser welding and the internal resistance is hardly increased, and the battery
  • the optimum value for shortening the height dimension of 2 may be set in the range of 0.5 mm to 5 mm, for example.
  • the welded surface portions 52 and 54 are formed as flat surfaces by notches, for example. However, the present invention is not limited to this, and may be a curved surface, a flat surface or a curved surface portion that matches both do it. Moreover, the welding surface parts 52 and 54 may be installed in the vicinity of the outer peripheral surface of the battery element 4 so that excessive stress is not applied to other members (the positive electrode part 12 and the negative electrode part 14) when the laser irradiation 66 is performed. More specifically, for example, it may be within 10 mm from the outer peripheral surface of the battery element 4.
  • the ratio of the terminal connection structure in the space of the outer case 8 can be reduced, and the ratio of the battery element per volume can be increased.
  • the battery element 4 is firmly supported by the sealing plate 18 which is an exterior member. That is, since the battery element 4 is firmly fixed to the positive electrode terminal 28 and the negative electrode terminal 30 by laser welding or electron beam welding using the current collector plates 32 and 34, the support strength of the battery element 4 is increased. (Hardening). As a result, a mechanically robust support structure is formed, and the seismic resistance of the product can be improved.
  • the second embodiment includes a configuration in which a connection plate is provided as a terminal member between an external terminal and a current collector plate.
  • FIG. 10 shows an exploded battery including a connection plate
  • FIG. 11 shows a connection configuration example provided with the connection plate. 10 and 11, the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • connection plates 72 and 74 are provided as terminal members.
  • Each of the connection plates 72 and 74 is formed with a connection recess 76 for connecting the positive electrode terminal 28 and the negative electrode terminal 30, and a third welding surface portion 78 is formed on the side surface.
  • the positive electrode terminal 28 and the negative electrode terminal 30 protruding to the lower surface side of the sealing plate 18 are cylindrical, and the connection recess 76 is formed so as to match the end surface, but is not limited to a circle.
  • each welding surface part 78 is a flat surface, for example, and the welding surface part 52 of the current collecting plates 32 and 34 is formed in the position which corresponds with the welding surface part 78 unlike 1st Embodiment. Other configurations are the same as those of the first embodiment.
  • a connecting plate 72 connected to the positive electrode terminal 28 by laser welding, and similarly, a connecting plate 74 connected to the negative electrode terminal 30 by laser welding includes a current collecting plate 32 connected to the battery element 4, as shown in FIG. It is good also as a structure which connects between the welding surface parts 52 and 78 which were piled up on 34 and made it correspond by laser welding.
  • connection plates 72 and 74 In the configuration using such connection plates 72 and 74, the connection range between the positive electrode terminal 28 and the negative electrode terminal 30, which are external terminals, and the current collector plates 32 and 34 connected to the battery element 4 side is expanded. The connection resistance can be reduced and the connection strength is increased.
  • 3rd Embodiment contains the structure which made the range of the electrode part connected with a current collecting plate differ from 1st Embodiment.
  • FIG. 12 is referred to for the third embodiment.
  • FIG. 12 shows an example of the current collector plate, the positive electrode portion and the negative electrode portion of the battery element.
  • FIG. 12 the same parts as those of FIG.
  • the element connection portion 50 is formed by flattening the back surfaces of the current collector plates 32 and 34.
  • a projecting surface portion 80 having a flat surface projecting within a range of 60 degrees and a recessed surface portion 82 that is retracted across the projecting surface portion 80 may be provided.
  • the positive electrode portion 12 and the negative electrode portion 14 are protruded with a concave portion 84 recessed in a range of 60 degrees and the concave portion 84 interposed therebetween.
  • the protrusion 84 may be a portion where the negative electrode portion 14 or the positive electrode portion 12 is not formed, and the protrusion 86 may be a portion that is compression-molded toward the center of the battery element 4.
  • the protrusion 86 is compression-molded toward the center direction of the battery element 4 as shown in FIG. And like the said embodiment, you may connect the positive electrode part 12 and the current collecting plate 32, the negative electrode part 14, and the current collecting plate 34 by laser welding, and unite them.
  • a current collector plate provided with a terminal connecting portion protruding to the external terminal side, and a predetermined width is folded from the element end surface, and then folded on the element end surface of a battery element which is an example of a storage element And a configuration including a single or a plurality of electrode protrusions stacked one on top of the other.
  • FIG. 13 is referred to for the battery according to the fourth embodiment.
  • FIG. 13 shows an example of each member of the battery.
  • the same parts as those in FIG. 13 are identical to FIG. 13 in FIG. 13, the same parts as those in FIG. 13 in FIG. 13, the same parts as those in FIG. 13
  • each of the current collector plates 32 and 34 has a fan-shaped terminal connection portion 48 connected to the positive electrode terminal 28 and the negative electrode terminal 30, and protrudes from the back side of the current collector plate.
  • a positive electrode portion 12 and a negative electrode portion 14 are formed on the same element end face 10 of the battery element 4 with an insulating interval 16.
  • FIG. 14 shows an example of a current collector
  • FIG. 15 shows a battery element. 14 and 15, the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • the positive electrode part 12 is formed by a current collector 120 on the positive electrode side
  • the negative electrode part 14 is formed by an uncoated part 88 which is an electrode overhanging part of the current collector 140 on the negative electrode side.
  • an aluminum foil is used for the base material 90.
  • the base material 90 is a strip having the same width, and as shown in FIG. 14A, polarizable electrodes 92 including an active material such as activated carbon and a binder are formed on both surfaces of the base material 90.
  • the polarizable electrode 92 is formed, the base material 90 is formed with an uncoated portion 88 having a constant width on one edge side, and the uncoated portion 88 is a portion where the polarizable electrode 92 is not formed. is there.
  • the uncoated portion 88 is the electrode overhang portion described above, and the positive electrode portion 12 or the negative electrode portion 14 is formed by the uncoated portion 88.
  • a fold 60 having a constant width is formed on the uncoated portion 88.
  • the fold line 60 is not a scratch but a marking line (fold line), and can prevent buckling when the positive electrode portion 12 and the negative electrode portion 14 are bent.
  • the fold 60 is a groove, and the cross-sectional shape may be a triangle, a square, or may be curved. Examples of the method of forming the fold 60 include pressing, laser, cutting, and the like.
  • the fold line 60 may be formed by a single line, but may be formed by a plurality of lines in consideration of the size of the uncoated portion 88. Both sides may be sufficient.
  • the current collector 120 is formed with a plurality of positive electrode portions 12 (88) having different widths, and as shown in FIG. A plurality of negative electrode portions 14 (88) having different widths are formed.
  • Each positive electrode part 12 is formed at different intervals so as to be drawn out on the element end face 10 of the battery element 4 every half circumference.
  • Each negative electrode portion 14 is also drawn out to the element end surface 10 of the battery element 4 every half circumference, and the above-described insulation interval 16 is set between the positive electrode portion 12 and the negative electrode portion 14.
  • a fold 60 is formed in each positive electrode portion 12 and each negative electrode portion 14.
  • the battery element 4 is wound by using a winding shaft (not shown) so that the current collectors 120 and 140 are wound with separators 56 and 58 interposed therebetween as shown in FIG.
  • the battery element 4 which is an element is formed.
  • the positive electrode portion 12 or the negative electrode portion 14 protrudes from the width W 1 of the separators 56 and 58 as insulating means, and is formed to have a length L 1 corresponding to the arc length of each positive electrode portion 12 or negative electrode portion 14. ing. Further, each positive electrode part 12 or negative electrode part 14 has a fold 60 formed at a position of a predetermined width W 2 from the element end face 10.
  • the element end face 10 is formed by the edges of the separators 56 and 58 exposed on the end face of the battery element 4.
  • the fold 60 is formed so that the surface of the element end face 10 facing the element center 40 is valley-folded.
  • the dimension of the predetermined width W 2 from the element end face 10 is preferably 0.5 [mm] or more.
  • the fold 60 is formed at a position separated by a predetermined width W 2 from the end position of the separator on the element end face 10.
  • the mechanical stress applied to the separators 56 and 58 when the positive electrode portion 12 or the negative electrode portion 14 is bent is reduced, and a short circuit due to the contact between the current collectors 120 and 140 is prevented.
  • the projecting length of the positive electrode portion 12 and the negative electrode portion 14 from the element end face 10 is preferably 3 [mm] to 10 [mm].
  • FIG. 16 and FIG. 17 will be referred to for forming each electrode part.
  • FIG. 16 shows each electrode part before and after molding
  • FIG. 17 shows the molded state of the electrode part. 16 and 17, the same parts as those in FIG. 6 are denoted by the same reference numerals.
  • the positive electrode portion 12 or the negative electrode portion 14 led to the element end face 10 of the battery element 4 is shown in FIG. 16B before being connected to the current collector plate 32 or current collector plate 34.
  • the battery element 4 is molded into a close contact state on the element end surface 10.
  • the positive electrode portion 12 and the negative electrode portion 14 constituting the electrode overhanging portion are erected in an inclined state by a fold 60 on the element end surface 10 of the battery element 4.
  • An insulation interval 16 having a predetermined width is set between the portion 14 and the portion 14.
  • the Y-axis is centered on the insulation interval 16 and the element center 40
  • the X-axis is orthogonal to the Y-axis
  • the angles ⁇ 1 and ⁇ 2 (> ⁇ 1 ) are set to the left and right about the X-axis.
  • the depth of the notch 94 is set such that the overhang length is set to the height h 1 of the positive electrode portion 12 and the negative electrode portion 14, and the partition portions 12 A, 12 B, 12 C of the positive electrode portion 12 and the partition portions 14 A, 14 B, 14 C of the negative electrode portion 14. Is bent at the above-described fold 60 in the middle portion, and pushed down in the direction of the core of the battery element 4 to perform compression molding, so that each partition portion 12A, 12B, 12C, negative electrode is formed as shown in FIG.
  • the partition 14 of the part 14 is molded into 14A, 14B, 14C.
  • the partition portions 12B and 12C and the partition portions 14B and 14C are set as welded portions with the current collector plates 32 and 34, respectively.
  • the protruding height h 2 of the partition parts 12A, 14A is set higher than the height h 3 of each partition part 12B, 12C, 14B, 14C, and the partition parts 12A, 12B, 12C and the partition part 14A of the negative electrode part 8
  • the heights of 14B and 14C are made to correspond to the bent shape of the current collector plates 32 and.
  • the positive electrode part 12 and the negative electrode part 14 of the battery element 4 suppress the height dimension by compression-molding the whole positive electrode part 12 and the negative electrode part 14 toward the center direction of the battery element 4 in this way. Yes.
  • the partition portions 12B and 12C of the positive electrode portion 12 are compression-formed to form a stable flat connecting surface, and then the partition portion 12A that is a non-connecting surface is compression-molded to form each partition portion.
  • the height dimension of the boundary portion caused by the overlap between 12A-12B and 12A-12C is suppressed.
  • the suppression of the height of the boundary portion is the same in the negative electrode portion 14.
  • each positive electrode portion 12 and each negative electrode portion 14 after winding the battery element 4, the positive electrode portion 12 and the negative electrode portion 14 exposed on the element end surface 10 are formed by a fold 60 as shown in FIG.
  • the element centers 40 are opposed to each other in a state of being bent in the facing direction. Therefore, as shown in FIG. 17B, in order to connect the current collector plates 32 and 34, the element center 40 is bent using a fold 60, and the partition sections 12B, 12C, 14B, and 14C described above are folded. Form.
  • the partition portions 12A and 14A are further bent toward the element end face 10 using the fold 60.
  • FIG. 18 shows an example of a current collector plate. 18, the same parts as those in FIG. 6 are denoted by the same reference numerals.
  • the current collector plates 32 and 34 of this embodiment are formed of, for example, an aluminum plate that is the same as the electrode material, and the partition portions 12A, 12B, and 12C of the positive electrode portion 12 described above (FIG. 16). ), Has a laser welding area with the partition portions 12B and 12C, and has a shape and an area with a laser welding area with the positive electrode terminal 28.
  • the battery element 4 has a half size of the element end face 10 and a substantially semicircular plate as a shape that secures the insulation interval 36.
  • arc-shaped notches 44 corresponding to the element center 40 of the battery element 4 are formed in the string side center, and on the arc side, A welding surface portion 52 is formed by cutting off linearly in the direction orthogonal to the X axis with the X axis as the center.
  • the current collector plate 32 or the current collector plate 34 is a step bent at a right angle with the notch 44 at the center, that is, with the angle ⁇ 1 left and right about the X axis.
  • An arc-shaped terminal connection portion 48 is formed by the portion 96, and an element connection portion 50 is formed with the terminal connection portion 48 interposed therebetween.
  • Each terminal connecting portion 48 and element connecting portion 50 form a parallel surface with the terminal connecting portion 48 projecting and sandwiching the step portion 96.
  • the inner height h 5 of the terminal connection portion 48 is the difference ⁇ h ( ⁇ h) between the protruding height h 2 of the partition portions 12A, 14A and the height h 3 of the partition portions 12B, 12C, 14B, 14C. 2 -h 3 ) is absorbed, and the current collector plate 32 is in close contact with each of the partition portions 12B and 12C, and the partition portion 12A is accommodated.
  • FIG. 19 shows the connection between the current collector plate and the battery element.
  • the notch 44 is arranged in alignment with the element center 40 of the element end surface 10 of the battery element 4, and the insulation interval 36 corresponds to the insulation interval 16 between the positive electrode portion 12 and the negative electrode portion 14. Is set.
  • the partition portion 12 ⁇ / b> A of the positive electrode portion 12 of the battery element 4 is disposed on the lower surface side of the terminal connection portion 48, and the partition portion of the positive electrode portion 12 of the battery element 4 is disposed on the lower surface side of the element connection portion 50 of the current collector plate 32.
  • 12B and 12C are positioned and brought into close contact with each other.
  • the partition portions 12 ⁇ / b> B and 12 ⁇ / b> C and the element connection portion 50 are partially or entirely melted and connected by laser irradiation from the peripheral direction of the battery element 4 toward the core direction. Such connection is the same on the current collector 34 side. Since the welding process is the same as that of the first embodiment, the same reference numerals are given to FIG. 19 and the description thereof is omitted.
  • FIG. 20 will be referred to regarding the connection between the current collector plates 32 and 34 on the battery element 4 and the external terminals.
  • FIG. 20 shows the connection between the current collector plate on the battery element and the external terminal.
  • the positive terminal 28 and the negative terminal 30 of the sealing plate 18 are positioned at the connection positions of the current collecting plates 32 and 34.
  • the positive electrode terminal 28 and the negative electrode terminal 30 are formed with a welded surface portion 54, and the welded surface portion 54 is a side wall surface that forms the same surface as the welded surface portion 52 on the current collector plates 32, 34 side. Therefore, as shown in FIG. 20B, if the welding surface portions 52 and 54 are matched and laser irradiation 66 is performed using the laser irradiation device 64 (FIG. 8), the welding surface portions 52 and 54 are laser welded.
  • the positive terminal 28 and the negative terminal 30 corresponding to the current collector plates 32 and 34 can be connected.
  • electron beam welding may be used.
  • the current collector plates 32 and 34 are connected to the positive electrode portion 12 and the negative electrode portion 14 of the battery element 4 through the laser irradiation unit 68.
  • a positive electrode terminal 28 is connected to the positive electrode portion 12 of the battery element 4 through a welding connection portion 38 (FIG. 9) with a current collector plate 32 interposed therebetween, and a current collector is connected to the negative electrode portion 8 of the battery element 4.
  • the negative electrode terminal 30 is connected via the plate 34 with a welding connection portion 38 (FIG. 9). Thereby, an external terminal is formed in the battery element 4.
  • the distance (distance) between the battery element 4 and the sealing plate 18 is increased, the resistance increases and the height dimension of the battery 2 increases. Therefore, the battery element 4 and the sealing plate 18 are increased.
  • the distance (distance) between and is made as short as possible.
  • laser irradiation 66 that can be locally welded is performed between the welded surface portions 52, 54 matched. What is necessary is just to simplify and strengthen welding by this process.
  • the thicknesses of the current collector plates 32 and 34, the positive electrode terminal 28, and the negative electrode terminal 30 are set in the range of 0.5 [mm] to 5 [mm], respectively, according to which laser welding is possible. It is difficult to increase the internal resistance due to the size, and the height of the battery 2 can be shortened.
  • the welded surface portions 52 and 54 are also in the vicinity of the outer peripheral surface of the battery element 4 in order to prevent excessive stress on other members (the positive electrode portion 12 and the negative electrode portion 14) during the laser irradiation 66. Specifically, it is preferable that the distance is 10 mm or less from the outer peripheral surface of the battery element 4.
  • connection region between the positive electrode portion 12 and the negative electrode portion 14 of the battery element 4 and the connection region between the positive electrode terminal 28 and the negative electrode terminal 30 are set at different positions.
  • the connection between the electrode parts 12 and 14 and the current collector plates 32 and 34, the external terminals 28 and 30 and the current collector plates 32 and 34 can be stabilized, the resistance of the battery element 4 is reduced, the connection is strengthened, etc. Electrical characteristics can be enhanced.
  • connection plates 72 and 74 are provided between the current collector plates 32 and 34 and the positive terminal 28 and the negative terminal 30. It is good also as a structure.
  • the fifth embodiment includes laser output control for a laser irradiation site (welding line).
  • FIG. 21 is referred to for the fifth embodiment.
  • FIG. 21 shows a laser output control mode.
  • a in FIG. 21 shows a laser irradiation portion 68 which is an example of the above-described welding line on the current collector plates 32 and. Sections a, b, and c are set between the welding start point 68S and the welding end point 68E of the laser irradiation portion 68, and a section d is set outside the welding end point 68E.
  • a laser irradiation device 64 is used as an example of a beam irradiation means, and a laser irradiation portion 68 is a welded portion by laser irradiation 66.
  • a shielding gas such as argon gas or helium gas is used, and a welding process is performed.
  • the beam output is varied stepwise and continuously at the laser irradiation site 68 at a constant irradiation speed.
  • the laser output P is set to a constant value of the laser output Pa in the section a, the laser output Pb ( ⁇ Pa) in the section b, and from the laser output Pb in the section c.
  • the laser output is attenuated to Pc ( ⁇ Pb).
  • the laser output Pa in the section a is set to the highest value, and is 50 W to 3000 [W] as an example.
  • the laser output Pb in the section b is smaller than the laser output Pa and is set to 90% or less of the laser output Pa.
  • the laser output Pc in the section c is a value smaller than the laser output Pb, and the laser output is 80% or less of the laser output Pa.
  • the horizontal axis represents the distance [mm].
  • the laser output Pa irradiated at the welding start point 68S is set to the highest value, and the irradiation section a is set to be shorter than the section b.
  • the laser irradiation section b of the laser output Pb is set to be the longest.
  • the section c is set to a section shorter than the section b, and the laser output Pb is linearly attenuated to the laser output Pc in the section c.
  • the laser output may be attenuated in the vicinity of the welding start point 68S and the welding end point 68E. That is, it is preferable that at least the attenuation of the laser output is two or more.
  • the speed of the laser scanning with respect to the laser irradiation portion 68 is a constant speed, for example, a constant speed selected from 300 [mm / second] to 3,000 [mm / second].
  • the scanning speed may be changed.
  • the laser output is controlled by the laser irradiation part 68 in this way, the following effects can be obtained.
  • the laser output is set high at the welding start point 68S of laser irradiation, and laser irradiation is performed with high laser output energy.
  • the current collector plates 32 and 34 that have received the laser irradiation 66 and the welding line of the positive electrode portion 12 or the negative electrode portion 14 and the vicinity thereof are heated. That is, if the laser irradiation 66 is performed along the welding line, the heated portion corresponding to the scanning of the laser irradiation 66 moves in a chained state along with the scanning. It becomes a state. For this reason, even if the laser output is attenuated stepwise and continuously (in the above embodiment), stepwise or continuously, the thermal energy generated by the laser irradiation 66 applied to the welded portion is made uniform. For this reason, the connectivity between the current collector plates 32 and 34 and the positive electrode portion 12 or the negative electrode portion 14 can be improved.
  • the same control can be performed when the laser irradiation site 68 is set to a plurality of lines.
  • laser welding is performed from [I] to [IV] instead of continuously irradiating the same part with laser, and then laser is applied to different parts. If it irradiates, the time interval can be provided in the laser irradiation of the same location, As a result, cooling of a laser irradiation location can be achieved and the connection by laser welding is stabilized.
  • the laser irradiation part 68 may set the laser irradiation parts 681 and 682 as two parallel welding lines. In this case, as shown in FIG. 22A, in laser welding of the laser irradiation portions 681 and 682, the laser irradiation 66 is performed with a cooling interval. In this case, if the line interval between the laser irradiation parts 681 and 682 is W 9 , the line interval W 9 may be set within 3 [mm], for example. Further, the laser irradiation portions 681 and 682 may partially overlap.
  • the laser irradiation portions 681 and 682 are individually welded by the laser irradiation device 64, and the start points 681S and 682S and the end points 681E and 682E are set, respectively, according to the welding scanning direction. Sections a, b, c, and d are set.
  • the laser scanning part 681 and the laser irradiation part 682 have opposite welding scanning directions.
  • the laser output for each section a, b, c may be set as shown in B of FIG. Such a configuration can also provide the effects described above.
  • the sixth embodiment includes a configuration in which a fixed current collector plate and a battery element are laser-welded in a pressed state.
  • FIG. 23 is referred to for the sixth embodiment.
  • FIG. 23 shows a fixed state of the current collector plate and a positioning jig.
  • FIG. 23 the same parts as those in FIG. 23
  • the current collector plates 32 and 34 are positioned horizontally on the element end face 10 side of the battery element 4.
  • a positioning jig 102 is used together with a plurality of chuck mechanisms 98 and a pair of interval holding mechanisms 100.
  • the chuck mechanism 98 includes a plurality of chucks 982 arranged in a plurality of locations on the current collector plates 32 and 34 to be held, that is, radially.
  • Each chuck 982 applies the restoring force of the spring 984 in a compressed state. In this case, the structure which makes tension act may be sufficient.
  • the interval holding mechanism 100 is provided with a pair of spacers 103 installed in the insulating interval 36 of the current collector plates 32 and 34 with the positioning jig 102 interposed therebetween. Each spacer 103 is disposed between the opposing surfaces of the current collector plates 32 and 34. The spacers 103 are maintained in parallel by the constant width of the spacers 103, and the insulation interval 36 between the current collector plates 32 and 34 is set.
  • the above-described positioning jig 102 is installed in the space between the spacers 103, and the notches 44 of the current collecting plates 32 and 34 are fitted into the positioning jig 102 so that the center positions of the current collecting plates 32 and 34 are set. It is determined.
  • the positioning jig 102 includes a cylindrical portion 1021 that engages the arc-shaped notches 44 of the current collector plates 32 and 34 at the center, and a flat plate-like shape on the side wall of the cylindrical portion 1021.
  • a pair of arm portions 1022 and 1023 is provided. Each of the arm portions 1022 and 1023 is formed in the axial direction and the diameter direction of the cylindrical portion 1021.
  • each of the arm portions 1022 and 1023 is installed between the opposing surfaces of the current collector plates 32 and 34, and is held by each spacer 103, so that the cylindrical portion 1021 is attached to the current collector plates 32 and 34. Is fitted into the notch 44. Therefore, the diameter of the cylindrical portion 1021 and the arc surface thereof coincide with the inner diameter of the cutout portion 44.
  • the battery element 4 is arrange
  • the folds 60 are in contact with the lower surfaces of the current collector plates 32 and 34 and are positioned horizontally.
  • a pressure 106 is applied to the battery element 4 and the current collector plates 32 and 34 from below the support member 104. That is, the battery element 4 is raised with respect to the current collector numbers 32 and 34 that are positioned and fixed, and the positive electrode portion 12 and the negative electrode portion 14 are pressed against the lower surfaces of the current collector plates 32 and 34.
  • the chuck 982 of the chuck mechanism 98 that supports the battery element 4 upward with respect to the pressure 106 from the lower surface side of the battery element 4 is provided with a support protrusion 980 that covers and supports the current collector plates 32 and 34. It has been.
  • Each support protrusion 980 is contacted with the upper surface of the edge of the current collector plates 32 and 34 on the battery element 4 side, so that the current collector plates 32 and 34 on the battery element 4 are kept horizontal and the battery element 4 Parallelism with the element end face 10 is maintained.
  • the battery element 4 is pushed up and maintained up to the upper limit position shown in FIG. 24B, and laser welding is performed. In this case, the following fixed state is maintained.
  • the current collectors of the positive electrode portion 12 and the negative electrode portion 14 are pressed against the lower surface side of the current collector plates 32 and 34 while being bent at an obtuse angle (an angle of less than 90 degrees), and the parallelism is maintained.
  • the positive electrode portion 12 and the negative electrode portion 14 are controlled to be bent between the current collecting plates 32 and 34 and the element end face 10.
  • the notch 44 at the center of the current collecting plates 32 and 34 is made to correspond to the cylindrical portion 1021 of the positioning jig 102, and the center of the notched portion 44 of the current collecting plates 32 and 34 is made to coincide with the cylindrical portion 1021.
  • the cylindrical portion 1021 surrounded by the cutout portions 44 of the current collector plates 32 and 34 is disposed at the element center (winding center in the case of a winding element) 40 of the battery element 4 when pressed. Thereby, the center of the notch 44 of the current collector plates 32 and 34 is positioned at the element center 40 of the battery element 4.
  • a laser irradiation device 64 is disposed above the current collector plates 32 and 34 positioned in this manner.
  • FIG. 25 (B in FIG. 25 is shown by omitting the intermediate portion between the positive electrode portion 12 and the negative electrode portion 14 in the drawing). .
  • 25A shows a state in which the positive electrode portion 12 on the element end face 10 of the battery element 4 is in contact with the current collector plate 32 and the negative electrode portion 14 is in contact with the current collector plate 34. This state is before pressing the battery element 4 or at an initial stage thereof.
  • 25A shows the partition portions 12B and 12C of the positive electrode portion 12, and the partition portions 14B and 14C of the negative electrode portion 14.
  • the pressurization state (FIG. 24) with respect to the battery element 4 proceeds, and the positive electrode portion 12 is in contact with the current collector plate 32 in the pressurization state, which is the obtuse angle state described above. .
  • the negative electrode portion 14 is in contact with the current collector plate 34 in a pressurized state, and is in the obtuse angle state described above. That is, the current collectors of the positive electrode portion 12 are in close contact with the current collector plate 32 and contacted with no gap, and similarly, the current collectors of the negative electrode portion 14 are in close contact with the current collector plate 34 and contacted with no gap.
  • the heat energy of laser welding can be efficiently applied to the welded portion.
  • the seventh embodiment includes a configuration using a current collector plate in which an arc-shaped weld surface is formed with reference to the element center of the battery element.
  • FIG. 26 is referred to for the seventh embodiment.
  • FIG. 26 shows the current collector plate and the electrode part of the battery element.
  • the same parts as those in FIG. 26 are identical parts as those in FIG. 26.
  • a fan-shaped terminal connection portion 48 of 90 degrees is formed between the element connection portions 50.
  • a terminal installation surface portion 110, a first welding surface portion 112, and an element covering portion 114 are formed.
  • the terminal installation surface portion 110 is a surface portion on which an external terminal is installed, and its form is, for example, a flat surface portion on which the positive electrode terminal 28 or the negative electrode terminal 30 is placed.
  • the surface portion of the positive electrode terminal 28 or the negative electrode terminal 30 is a flat surface, and each positive electrode terminal 28 or negative electrode terminal 30 is brought into close contact with the terminal installation surface portion 110.
  • a recess 116 is formed on the back side of the terminal installation surface 110 to insert the partition 12A of the positive electrode 12 or the partition 14A of the negative electrode 14 on the battery element 4 side.
  • connection surface portion 112 is an arc-shaped surface portion that faces the side surface of the battery element 4.
  • the element covering portion 114 is a flat surface portion that falls with the connection surface portion 112 as a step between the terminal installation surface portion 110 and covers the element end surface 10 of the battery element 4. That is, by leaving the flat terminal installation surface portion 110 on each of the current collector plates 32 and 34 and cutting or molding the element cover portion 114 in an arc shape, the connection surface portion 112 is stepped between the terminal installation surface portion 110 and the element cover portion 114. It is the circular arc surface formed by.
  • the arc surface of the connection surface portion 112 is a concentric circular surface that is the same as or similar to the battery element 4 with the element center 40 of the battery element 4 as the center. About the battery element 4, the same code
  • FIG. 27 shows an example of welding current collector plates 32 and 34 and external terminals.
  • a positive current collector plate 32 is installed on the positive electrode portion 12 of the element end face 10 of the battery element 4 and welded, and a negative current collector plate 34 is installed on the negative electrode portion 14.
  • the positive electrode terminal 28 is installed on the terminal installation surface portion 110 of the current collector plate 32
  • the negative electrode terminal 30 is installed on the terminal installation surface portion 110 of the current collector plate 34.
  • the welding surface portion 54 of the positive terminal 28 is positioned on the welding surface portion 112 of the current collector plate 32 to form a uniform surface portion.
  • the welded surface portion 54 of the negative electrode terminal 30 is positioned on the welded surface portion 112 of the current collector plate 34 to form a uniform surface portion.
  • the positive electrode terminal 28 is connected to the terminal installation surface portion 110 of the current collector plate 32, and the negative electrode terminal 30 is connected to the terminal installation surface portion 110 of the current collector plate 34. That is, the positive electrode portion 12 of the battery element 4 is connected to the positive electrode terminal 28, and the negative electrode portion 14 is connected to the negative electrode terminal 30.
  • each welding surface part 54,112 is made into the circular arc surface which has the same curvature radius, the welding part by laser irradiation 66 can be expanded, but not only this but each welding surface part 54,112 is made into The same linear surface portion may be used.
  • FIG. 28 shows an example of the laser irradiation angle and the welding surface.
  • Each current collector plate 32, 34 is installed with reference to the element center 40 of the element end face 10 of the battery element 4, and is connected to the positive electrode part 12 or the negative electrode part 14 of the battery element 4. Therefore, as shown in FIG. 28, the positive terminal 28 or the negative terminal 30 installed on the terminal installation surface portion 110 causes the welding surface portion 54 to coincide with the welding surface portion 112.
  • the laser emitting portion 118 of the laser irradiation device 64 is installed toward the welding surface portions 54 and 112.
  • the distance between the laser emitting portion 118 and the laser irradiation point 119 of the welding surface portions 54 and 112 is Lp, the distance can be obtained even if the laser irradiation device 64 is rotated in the direction of the arrow N with the element center 40 as the rotation center. Lp can be maintained.
  • the rotation angle ⁇ of the battery element 4 is set around the laser irradiation point 119 and this rotation angle ⁇ is set in the welding range, the laser irradiation 66 is uniformly applied to the welding surface portions 54 and 112 at the same distance Lp. Can be done and welded.
  • the distance Lp of the laser irradiation 66 is the same, and stable laser irradiation 66 can be performed continuously, and a uniform welding process can be performed. Connection reliability can be improved.
  • the laser irradiation device 64 is rotated. However, the laser irradiation device 64 is fixed, the battery element 4 side is rotated by a predetermined angle ⁇ , and the laser irradiation 66 is scanned. Also good.
  • the eighth embodiment includes performing laser welding by increasing the heat capacity of the current collector plate.
  • the battery 2 which is an example of the electricity storage device includes the current collector plates 32 and 34 on the element end face 10 of the battery element 4 constituting the electricity storage element.
  • the battery element 4 as an example is a wound element, but may be an element other than the wound element, for example, a laminated element.
  • the positioning jig 102 of the current collector plates 32 and 34 shown in FIGS. 23 and 24 is used as a heat dissipation jig and a spacer.
  • Each current collector plate 32, 34 is a terminal member interposed between the battery element 4 and an external terminal (not shown). As shown in FIG. 27, the current collector plate 32 is connected to the positive electrode portions 12B, 12C (FIG. 26). The current collector plate 34 is connected by welding, and is similarly connected to the negative electrode portions 14B and 14C. Each of the current collector plates 32 and 34 is formed with a terminal connection portion 48 around the notch 44 and an element connection portion 50 sandwiching the terminal connection portion 48. The terminal connection portion 48 is a portion connected to the external terminal (positive electrode terminal 28 or negative electrode terminal 30 in FIG. 1) side, and is set high with a step between the element connection portion 50.
  • each element connecting portion 50 of the current collector plates 32 and 34 is formed with a rectangular parallelepiped protrusion 122, and each protrusion 122 corresponds to the opposite edge surface portion 124 of each current collector plate 32 and 34.
  • the thick part is formed in the edge part of.
  • the thick portion formed by each protrusion 122 increases the heat capacity of the current collector plates 32 and 34, and the current collector plates 32 and 34 constitute a gripped portion that is gripped by gripping means (for example, a chuck). Yes.
  • the gripped portion may be formed separately from the protrusion 122.
  • the current collector plates 32 and 34 are positioned on the element end face 10 of the battery element 4 with the element center 40 of the battery element 4 as a reference, and the insulation interval 36 is set in the same manner as the insulation interval 16 described above. Therefore, the above-described positioning jig 102 (FIG. 23) is used for manufacturing the battery 2.
  • the positioning jig 102 is an example of a heat radiating unit.
  • the positioning jig 102 is formed of a metal material having good heat absorption and heat dissipation, such as steel, and has the cylindrical portion 1021 as the central holding portion and the arm described above as the interval holding portion in the diameter direction around the cylindrical portion 1021. Parts 1022 and 1023 are provided.
  • the cylindrical portion 1021 is a columnar portion that positions the notch portions 44 of the current collector plates 32 and 34 to be positioned in the element center portion 40.
  • the height of the columnar part is formed to be equal to or equal to or higher than the height of the notch part 44. What is necessary is just to form the radius of the outer periphery of the cylindrical part 1021 equivalent to the radius of the internal peripheral surface of the notch part 44.
  • the arm portions 1022 and 1023 are in contact with the opposing edge surface portions 124 of the current collector plates 32 and 34 that are arranged to face each other, and the cylindrical portion 1021 has the notch 44 as a center and the interval between the current collector plates 32 and 34 is parallel. It is a parallel part held at the insulating interval 36.
  • the arm portions 1022 and 1023 are plate-like bodies made of flat rectangular parallelepipeds, and parallel reference surfaces 102A and 102B are formed on the front and back surfaces.
  • the notch 44 is applied to the peripheral surface portion of the cylindrical portion 1021 disposed at the center of the battery element 4, and the opposing edge surface portion 124 is brought into close contact with the reference surfaces 102A and 102B of the arm portions 1022 and 1023. Then, the current collecting plates 32 and 34 are positioned at appropriate positions on the element end surface 10 of the battery element 4 with the insulation interval 36. In addition, the positioning jig 102 can be brought into contact with the current collector plates 32 and 34 as a heat radiating member.
  • the current collector plates 32 and 34 placed on the battery element 4 are subjected to laser irradiation 66 from the laser irradiation device 64 to the laser irradiation portions 68 of the current collector plates 32 and 34 to perform welding.
  • This laser irradiation 66 may be performed simultaneously at four locations, or may be performed by alternately selecting each portion.
  • the heat capacity of the current collector plates 32 and 34 is increased by the volume of the protrusion 122.
  • produced in the welding location is thermally radiated through the protrusion 122, for example.
  • the heat of the laser irradiation portion 68 also flows to the positioning jig 102 and is radiated through each spacer 103 (FIG. 23). In such a heat radiation mode, the heat generated in the other laser irradiation parts 68 is also radiated in the same manner.
  • each of the current collecting plates 32 and 34 is increased by the formation of the protrusion 122 which is an example of the wall pressure portion, so that the heat dissipation function described above is enhanced.
  • laser irradiation is performed during laser welding.
  • the welding energy applied from the apparatus 64 to each laser irradiation site 68 can be increased.
  • the current collector plates 32 and 34, the positive electrode portion 12 that is the electrode overhanging portion, and the electrode foil that constitutes the negative electrode portion 14 are thin and are missing. And unevenness can be suppressed.
  • the inconvenience that the unconnected portion occurs when the laser output is weakened can be improved by increasing the laser output.
  • the heat dissipation efficiency is improved in combination with the improvement of the heat capacity of the current collector plates 32 and 34, the welding energy applied to the current collector plates 32 and 34, the positive electrode portion 12 or the negative electrode portion 14 can be absorbed, and the welding accuracy is improved. And the reliability of the connection can be improved.
  • the increase in the heat capacity due to the protrusions 122 of the current collector plates 32 and 34 can suppress a change in the heat of fusion caused by the various heat dissipation routes being secured in the current collector plates 32 and 34, thereby stabilizing the welding state.
  • the welding accuracy can be improved.
  • FIG. 29 is referred to regarding welding of the positive electrode current collector plate 132 and the positive electrode terminal 130 (or the negative electrode current collector plate 136 and the negative electrode terminal 134) according to the ninth embodiment.
  • FIG. 29 is an enlarged view of the welded portion of the positive electrode current collector plate 132 and the positive electrode terminal 130.
  • the positive electrode current collector plate 132 is processed by headering an aluminum plate, and the connection surface portion 152 forms an inclined surface with respect to the upper surface or the lower surface of the positive electrode current collector plate 132.
  • the connection surface portion 152 is an inclined surface that is inclined clockwise with respect to the vertical surface, and the edge on the contact surface 165 side is a curved surface.
  • the positive terminal 130 is also processed by header processing, for example, an aluminum plate, the terminal-side connection surface 164 forms an inclined surface toward the positive current collector plate 132, and the terminal-side connection surface 164 as an example is perpendicular to the vertical surface.
  • the positive electrode terminal 130 and the positive electrode current collector plate 132 are provided with a portion that is in close contact with each other on the contact surface 165 side and a non-contact portion 167 that is curved and expands in the vertical direction.
  • the configuration of the positive electrode current collector plate 132 and the positive electrode terminal 130 is the same in the relationship between the negative electrode current collector plate 136 and the negative electrode terminal 134.
  • the center position (irradiation positions 171 and 173) of the laser beam 169 (FIG. 30) is set at a position different from the contact position (contact surface 165) on the side surface side between the positive electrode current collector plate 132 and the positive electrode terminal 130.
  • the irradiation position 171 is a position shifted upward from the contact surface 165 in the drawing
  • the irradiation position 173 is a position shifted downward from the contact surface 165 in the drawing.
  • These irradiation positions 171 and 173 are positions different from the contact surface 165 as long as they can include the contact surface 165 within the range (welded portion) of the nugget 138 (FIG. 31) formed by the laser beam 169. Good.
  • FIG. 30 for the welding mode of this laser beam 169.
  • the welding form of the laser beam 169 there are a heat conduction welding as shown in FIG. 30A and a keyhole welding as shown in FIG. 30B. Any welding form may be used for welding between metals, but in keyhole welding, as shown in FIG. 30B, the sharp focus 175 of the laser beam 169 is applied to the welding surface, so that it is sharp and long. Nuggets 138 are produced, and multiple spatters 177 may be formed as the nuggets 138 grow.
  • the focus 175 is defocused in front of the irradiation positions 171 and 173 of the laser beam 169, and the irradiation positions 171 and 173 have a large aperture. 179 is formed. Compared with the sharp focus 175, the irradiation unit 179 causes heat conduction more gently, and a slow nugget 138 is formed. That is, in heat conduction welding, a nugget 138 having a spread in the radial direction of the irradiation part 179 is generated. In this welding process, the laser beam 169 is defocused to increase the nugget diameter, and the keyhole welding is shifted to the heat conduction welding.
  • the irradiation positions 171 and 173 indicate the center positions of the laser beam 169.
  • the irradiation range of the laser beam 169 is the same as the nugget diameter of the nugget 138 (FIG. 31). Therefore, if the center position is made different (that is, the irradiation position is not a non-contact portion 167 but a flat surface), the efficiency of the laser beam 169 is reduced without reducing the welding energy at the center position that is the maximum energy of the laser beam 169 to the welded portion. Therefore, a desired nugget depth (welding range) can be obtained.
  • FIG. 31 for the nugget 138 formed by such heat conduction welding.
  • the center position of the laser beam 169 is set at the irradiation position 171 for irradiation, the irradiation form enlarges the nugget diameter by defocusing, and FIG. 31B shows the laser beam 169 at the irradiation position 173.
  • Irradiation is performed by setting the center position of irradiation, and the irradiation form increases the nugget diameter by defocusing. That is, in FIG. 31A, the nugget center O is set above the contact surface 165 in the drawing, and in FIG. 31B, the nugget center O is set below the contact surface 165 in the drawing.
  • is the nugget diameter
  • Nd is the nugget depth
  • Wd is the welding depth. Since the nugget diameter ⁇ is large and the nugget 138 approaches a flat shape as compared with the keyhole welding, a welding depth Wd ( ⁇ Nd) equivalent to the nugget depth Nd is obtained. That is, this improves the welding accuracy and welding strength.
  • the desired welding strength can be obtained by setting the dimensional difference between the nugget depth Nd and the welding depth Wd within 0.5 [mm].
  • the outer surface portion of the nugget 138 is integrated by melting a portion that is in close contact with the contact surface 165 side before welding and a non-contact portion 167 that is curved and expands in the vertical direction. A gentle surface portion 181 is generated.
  • the nugget 138 is parallel to the contact surface 165 between the positive electrode current collector plate 132 and the positive electrode terminal 130 or the contact surface 165 between the negative electrode current collector plate 136 and the negative electrode terminal 134 (along the connection surface portion 152 and the terminal side connection surface 164). (Parallel direction) is formed continuously or discontinuously.
  • the irradiation positions 171 and 173 of the laser beam 169 or the electron beam are different in the direction orthogonal to the contact surface 165, but may be different in the intersecting direction.
  • the laser beam 169 is used, but an electron beam may be used instead of the laser beam 169.
  • the laser beam 169 or the electron beam is irradiated to a position different from the contact surface 165 between the positive electrode current collector plate 132 or the negative electrode current collector plate 136 and the positive electrode terminal 130 or the negative electrode terminal 134. Both can be welded regardless of the state of the contact surface with the terminal member.
  • the laser beam 169 may select either the irradiation position 171 on the positive electrode terminal 130 (or negative electrode terminal 134) side or the irradiation position 173 on the positive electrode current collector plate 132 (or negative electrode current collector plate 136) side, Any flat surface can be selected and irradiated with the laser beam 169 or the electron beam.
  • the processing accuracy of the contact surface 165 between the positive electrode current collector 132 (or negative electrode current collector 136) and the positive electrode terminal 130 (or negative electrode terminal 134) is low. Even when there is, an optimum welding range can be obtained, and the welding accuracy and welding strength between the current collector plate and the external terminal member can be increased.
  • the irradiation positions 171 and 173 of the laser beam 169 or the electron beam only need to be different from the contact surface 165 in the crossing direction, the number and the range thereof are, for example, ⁇ 0.1 to ⁇ 0.5 [mm]. It is preferable. By setting to this range, the contact surface 165 can be included in the welding range by the laser beam 169 or the electron beam.
  • the depth of the nugget 138 of laser welding or electron beam welding is only required to be able to be welded, and is preferably 1.2 mm or less, for example. If set in this range, the irradiation range of the laser beam 169 or the electron beam can be optimized, the thickness dimension of the current collector plate and the external terminal member is not increased, and the enlargement of the electricity storage device can be avoided.
  • the tenth embodiment discloses welding of current collector plates and terminals.
  • FIG. 32 is referred with respect to welding of the positive electrode current collector plate 132 and the positive electrode terminal 130 (or the negative electrode current collector plate 136 and the negative electrode terminal 134) according to the tenth embodiment.
  • FIG. 32 shows an enlarged view of the welded portion of the positive electrode current collector plate 132 and the positive electrode terminal 130.
  • the positive electrode current collector plate 132 is processed by header processing of an aluminum plate.
  • the connection surface portion 152 has a cover portion 153 having a triangular cross section as a cover portion.
  • the positive electrode terminal 130 is formed by header processing an aluminum plate to form a tapered surface 163. If the angle of the taper surface 163 is matched with the inclination angle of the inner wall surface of the cover portion 153, both can be matched. In this case, a gap or the like is generated on the contact surface 165 according to the processing accuracy.
  • the contact surface 165 side includes a portion that is in close contact with each other and a non-contact portion 167 that curves and expands in the vertical direction.
  • the configuration of the positive electrode current collector plate 132 and the positive electrode terminal 130 is the same in the relationship between the negative electrode current collector plate 136 and the negative electrode terminal 134.
  • the irradiation center position (irradiation position 171) of the laser beam 169 is set at a position coinciding with the contact surface 165 between the positive electrode current collector plate 132 and the positive electrode terminal 130.
  • the irradiation position 171 may coincide with the contact surface 165 in the drawing or may be a different position.
  • FIG. 33 is referred to for the nugget 138 formed by heat conduction welding.
  • the irradiation position 171 is irradiated with the laser beam 169, and the irradiation form increases the nugget diameter ⁇ by defocusing. That is, in FIG. 33, the nugget center O is set so as to coincide with the contact surface 165, but it may be set upward or downward in the drawing (the crossing direction differs from the contact surface 165).
  • a gentle surface portion 181 is generated.
  • the irradiation position 171 of the laser beam 169 is within the range of the side surface of the positive electrode current collector plate 132 or the negative electrode current collector plate 136 provided with the cover portion 153 (FIG. 32) or the cover portion 153. It may be varied upward from the contact surface 165, or may be varied downward as shown in FIG. Also in this case, the contact surface 165 is taken into the nugget 138 whose nugget diameter is enlarged, and the positive electrode current collector plate 132 and the positive electrode terminal 130 are welded.
  • is the nugget diameter
  • Nd is the nugget depth
  • Wd is the welding depth.
  • a welding depth Wd ( ⁇ Nd) equivalent to the nugget depth Nd is obtained. That is, this improves the welding accuracy and the welding strength.
  • the desired welding strength can be obtained by setting the dimensional difference between the nugget depth Nd and the welding depth Wd within 0.5 [mm].
  • the nugget 138 is parallel to the contact surface 165 between the positive electrode current collector plate 132 and the positive electrode terminal 130 or the contact surface 165 between the negative electrode current collector plate 136 and the negative electrode terminal 134 (along the connection surface portion 152 and the terminal side connection surface 164). (Parallel direction) is formed continuously or discontinuously.
  • the electricity storage device and the manufacturing method thereof according to the present invention contribute to simplification of the terminal connection structure and the connection process, and can increase productivity and reliability, and are useful.

Landscapes

  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 セパレータ(56、58)を挟んで正極側の電極体(集電体120)と負極側の電極体(集電体140)とを対向させた蓄電素子(電池素子4)と、蓄電素子が収容されるケース部材を封口する封口部材(封口板18)と、蓄電素子の素子端面に電極体を取り出させた単一または複数の電極張出し部(正極部12、負極部14)と電極張出し部に接続された単一または複数の集電板(32、34)と、封口部材に設置され、集電板と側面間で接続された端子部材(正極端子28、負極端子30、接続板72、74)とを備えることにより、蓄電デバイスの低抵抗化、接続構造の堅牢化とともに、接続工程の簡略化を図る。

Description

蓄電デバイスおよび蓄電デバイスの製造方法
 本発明は、蓄電素子および端子部材の形成や接続技術に関する。
 たとえば電気自動車の実用化や新しいポータブル機器などの開発では、高エネルギー密度の蓄電デバイスが強く望まれている。このような蓄電デバイスでは、蓄電素子と外部端子との電気的な接続が素子側の内部抵抗の低減や、接続部分の接触抵抗に影響するので、低減対策が施されている。
 このような電気的接続に関し、素子の端面に集電端子を設け、巻回素子の一方の端面に正極集電板、他方の端面に負極集電板を設け、巻回素子の端面に露出した集電箔を覆って集電板を備え、集電板と集電箔とをレーザ溶接接続すること(たとえば、特許文献1)が知られている。
特開2003-263977号公報
 ところで、たとえば電池デバイスなどの蓄電素子の素子端面に集電体を備える構成にあっては、素子を外装する外装部材に正極側および負極側の外部端子を隣接して備える場合には、各外部端子と集電体との間に接続距離を確保する必要がある。また、巻回型素子にあっては、素子の内側部分と外側部分との間で内部抵抗の分布が異なるため、その対策が必要となり、素子と集電体との接続に注意を払う必要がある。また、集電体を用いた構造では素子の内部抵抗を低減できるが、外部端子と素子との間に介在する集電体に製造途上で加わる応力によっては接続の信頼性低下や接続抵抗が大きくなる場合がある。
 そこで、本発明の目的は、上記課題に鑑み、蓄電素子の低抵抗化、接続構造の堅牢化とともに、接続工程の簡略化を図ることにある。
 上記目的を達成するため、本発明の蓄電デバイスは、セパレータを挟んで正極側の電極体と負極側の電極体とを対向させた蓄電素子と、前記蓄電素子が収容されるケース部材を封口する封口部材と、前記蓄電素子の素子端面に前記電極体を取り出させた単一または複数の電極張出し部と、前記電極張出し部に接続された単一または複数の集電板と、前記封口部材に設置され、前記集電板と側面間で接続された端子部材とを備える。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、正極側の電極張出し部と負極側の電極張出し部を前記蓄電素子の同一の素子端面に備えてもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記集電板と前記端子部材がレーザ溶接または電子ビーム溶接されてもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記電極張出し部は折目を設けて前記素子端面上に折り曲げられてもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記端子部材は、前記集電板に接続される外部端子と、該外部端子と前記集電板との間に設置された接続板とを含んでもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記蓄電素子の前記素子端面に張り出させた前記正極側の電極張出し部と前記負極側の電極張出し部との間に第1の絶縁間隔を設定し、前記蓄電素子の前記正極側の電極張出し部に設置された正極側の集電板と、前記負極側の電極張出し部に設置された負極側の集電板との間に第2の絶縁間隔を設定してもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記集電板は、前記端子部材と接続する接続領域と、前記電極張出し部と接続する接続領域とを有し、これら接続領域を異なる位置に設定してもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記集電板と前記端子部材は、前記蓄電素子の素子中心を基準とする円弧面とした接続面部を備えてもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記集電板は、肉厚部を備え、該肉厚部で前記集電板が持つ熱容量を増大させてよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記集電板と前記端子部材との接触面に対してレーザビームまたは電子ビームによる溶接部をずらしてもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記集電板または前記端子部材に形成された覆い部で前記集電板と前記端子部材との接触面を覆い、前記覆い部にレーザビームまたは電子ビームの照射により前記集電板および前記端子部材とを溶接した溶接部を備えてもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記レーザビームまたは前記電子ビームの前記照射位置は、前記集電板と前記端子部材との接触面に一致させ、または前記接触面に対して交差方向に異ならせてもよい。
 上記目的を達成するため、上記蓄電デバイスにおいて、より好ましくは、前記レーザ溶接または前記電子ビーム溶接のナゲット深さは1.2〔mm〕以下であってもよい。
 また、上記目的を達成するため、本発明の蓄電デバイスの製造方法は、セパレータを介在させた正極体と負極体とを備える蓄電素子を形成する工程と、前記蓄電素子の正極側および負極側の前記電極体の何れか一方または双方を素子端面に引き出させた単一または複数の電極張出し部を形成する工程と、前記蓄電素子を収容するケース部材を封口する封口部材に設置された端子部材と、前記電極張出し部とを集電板を介在させて接続する工程とを含んでいる。
 上記目的を達成するため、上記蓄電デバイスの製造方法において、より好ましくは、前記電極張出し部および前記集電板を側面間で溶接により接続する工程と、前記集電板と前記端子部材とをレーザ溶接または電子ビーム溶接により接続する工程とを含んでもよい。
 上記目的を達成するため、上記蓄電デバイスの製造方法において、より好ましくは、前記集電板を固定するとともに、前記集電板に前記蓄電素子を押し当てた状態で前記集電板と前記電極張出し部とをレーザ溶接により接続する工程を含んでよい。
 上記目的を達成するため、上記蓄電デバイスの製造方法において、より好ましくは、前記集電板の上面に溶接ラインを設定し、該溶接ラインでレーザ照射を行い、前記集電板と前記蓄電素子の電極張出し部と溶接する工程を含んでもよい。
 上記目的を達成するため、上記蓄電デバイスの製造方法において、より好ましくは、前記集電板に設定された溶接ライン上で照射するレーザ出力を変化させる工程を含んでもよい。
 上記目的を達成するため、記蓄電デバイスの製造方法において、より好ましくは、前記集電板と前記端子部材との接触面と異なる位置にレーザビームまたは電子ビームの照射位置を設定し、この照射位置にレーザビームまたは電子ビームを照射させてもよい。
 本発明の蓄電デバイスまたはその製造方法によれば、次の何れかの効果が得られる。
 (1) 電池デバイスを含む蓄電素子の素子端面に張り出させた電極張出し部と端子部材との間に集電板を介在させて接続したので、蓄電素子の低抵抗化を図ることができる。
 (2) 蓄電素子の正極側または負極側の電極体の何れか一方又は双方から素子端面に引き出された単一または複数の電極張出し部に接続された集電板と、外装部材にある端子部材とを重ね、側面部間で溶接接続しているので、接続のための空間部を狭小化でき、しかも接続の強化、接続の信頼性向上とともに、蓄電素子の低抵抗化を図ることができ、低ESR化を図ることができる。
 (3) 蓄電素子の素子端面に張り出させた電極張出し部と端子部材との間に個別に集電板を備えた接続構造であるから、端子部材と電極張出し部ないし蓄電素子との接続構造を堅牢化できる。
 (4) 上記構造により、集電板を介在させて端子部材と電極張出し部との接続が簡易化でき、接続工程の簡略化を図ることができる。
 (5) レーザビームまたは電子ビームを集電板と端子部材との接触面と異なる位置に照射するので、集電板と端子部材との接触面の状態と無関係に両者を溶接することができる。
 (6) 集電板または端子部材、もしくは集電板と端子部材との接触面を覆う集電板側の平坦面を選択してレーザビームまたは電子ビームを照射できるので、集電板と端子部材との接触面の加工精度が低い場合でも、隙間があっても、最適な溶接範囲が得られ、集電板と端子部材との間の溶接精度や溶接強度を高めることができる。
 (7) 集電板と端子部材との接触面を集電板または端子部材にある覆い部で覆い、この覆い部にレーザビームまたは電子ビームを照射するので、集電板と端子部材との接触面の状態に無関係に両者を溶接することができる。
 そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
第1の実施の形態に係る電池の一例を示す縦断面図である。 電池を示す分解斜視図である。 電池の製造工程の一例を示すフローチャートである。 電池素子の一部を分解して示す斜視図である。 電池素子の素子端面を示す図である。 電池素子の素子端面および集電板を示す斜視図である。 電池素子と集電板の接続処理の一例を示す図である。 外装端子と集電板の接続処理の一例を示す図である。 集電板および外部端子の接続状態を示す図である。 第2の実施の形態に係る電池を示す分解斜視図である。 接続板を備える接続構造を示す図である。 第3の実施の形態に係る集電板および成形前後の電極部を示す斜視図である。 第4の実施の形態に係る電池を示す分解斜視図である。 電池素子および電極部を形成するための集電体の一例を示す図である。 電池素子を分解して示す斜視図である。 成形前後の電極部の一例を示す斜視図である。 成形前後の電極部の一例を示す拡大断面図である。 集電板の平面および側面を示す図である。 集電板の溶接ラインの一例を示す図である。 溶接前後の外部端子と集電板を示す図である。 第5の実施の形態に係るレーザ出力制御の一例を示す図である。 レーザ出力制御の変形例を示す図である。 第6の実施の形態に係る集電板および電池素子の固定構造の一例を示す図である。 集電板および電池素子の保持および接続処理の一例を示す図である。 集電板および電池素子の電極部の一例を示す拡大断面図である。 第7の実施の形態に係る集電板および電池素子の一例を示す斜視図である。 外部端子および集電板間のレーザ溶接の一例を示す斜視図である。 レーザ照射の一例を示す図である。 第9の実施の形態に係る正極集電板および正極端子の溶接部分を拡大して示した図である。 レーザビームの溶接形態を示す図である。 熱伝導溶接によって形成されたナゲットを示す図である。 第10の実施の形態に係る正極集電板及び正極端子の溶接部分を拡大して示した図である。 熱伝導溶接によって形成されたナゲットを示す図である。 熱伝導溶接によって形成された他のナゲットを示す図である。
〔第1の実施の形態〕
 第1の実施の形態は、電池の素子端面に電極張出し部を備え、この電極張出し部と端子部材とを集電板を介して接続した構成を含んでいる。
 第1の実施の形態に係る電池について、図1を参照する。図1は電池の一例を示す縦断面を示している。図1に示す構成は一例であって、係る構成に本発明が限定されるものではない。
 この電池2は、本発明の電池およびその製造方法の一例である。蓄電デバイスは、たとえば鉛電池やNi-Cd電池の高容量化品およびNi-MH電池、大容量キャパシタ、リチウム電池等が含まれる。このリチウム電池は、たとえば正極活物質に二酸化マンガン、リチウムマンガンスピネル、リチウムコバルト酸化物、リチウムニッケル酸化物などの遷移金属酸化物、もしくは塩化チオニル、SO2 などの硫化物を用い、負極活物質に金属リチウム、リチウム合金もしくはリチウムを吸蔵放出する炭素材料を用いている。また、大容量キャパシタには、たとえばリチウムイオンキャパシタ等が含まれる。リチウムイオンキャパシタは、たとえばリチウム塩を電解質として含む非水系電解液を使用する蓄電デバイス(非水系リチウム型蓄電デバイス)である。このリチウムイオンキャパシタは、活性炭単体もしくは活性炭とリチウム含有遷移金属酸化物等との複合化した電極層及び金属箔等の集電体からなる正極の電極体と、リチウムイオンを可逆的に吸蔵、放出可能な炭素材料もしくはチタン酸リチウムなどのチタン酸化物より構成された電極層及び金属箔等の集電体からなる負極の電極体を用いた蓄電デバイスの一例である。この大容量キャパシタは、両極に活性炭を適用した分極性電極を用いた電気二重層キャパシタに比べて大容量化が見込まれる。
 図1に示す電池2は、蓄電デバイスの一例であり、巻回型素子である電池素子4が用いられ、この電池素子4は、蓄電デバイスの蓄電素子の一例であり、たとえば保持テープ6で保持されて外装ケース8に収納されている。保持テープ6は巻回素子である電池素子4の巻き戻りを防止している。この電池素子4の素子端面10には正極部12、負極部14が形成され、これら正極部12と負極部14との間には絶縁間隔16が設けられている。正極部12および負極部14は共通の素子端面10に形成された電極張出し部の一例である。また、この絶縁間隔16は、電池素子4の素子端面に張り出させた正極部12と負極部14との間に設定される第1の絶縁間隔の一例である。外装ケース8は有底筒体であり、その開口部17(図2)は封口板18で封口されている。この封口板18には封口板本体であるベース部20の上面側縁部に封止部22を備えている。ベース部20は絶縁材料としてたとえば、絶縁性合成樹脂で形成されている。封止部22は密閉性の高い材料からなる部材たとえば、ゴム環で形成されている。外装ケース8は、加締め段部24に位置決めされた封口板18の封止部22にカーリング処理によって外装ケース8の開口端部26を食い込ませて強固に封止されている。
 封口板18には、端子部材として、ベース部20を貫通させた正極端子28および負極端子30が備えられている。正極端子28および負極端子30はベース部20に固定されるとともに、ベース部20によって絶縁されている。正極端子28と電池素子4の正極部12との間には正極側の集電板32が設けられ、負極端子30と電池素子4の負極部14との間には負極側の集電板34が設けられている。集電板32、34の間には絶縁間隔36が設けられている。この絶縁間隔36は、電池素子4の正極側の集電板32と、負極側の集電板34との間に設定された第2の絶縁間隔の一例である。そして、集電板32は正極部12と接続されているとともに集電板32は正極端子28と側面の溶接接続部38によって接続されている。集電板32と正極端子28との接続には、たとえば、レーザ溶接や電子ビーム溶接が用いられる。同様に集電板34は負極部14に溶接によって接続されているとともに負極端子30に溶接によって接続されている。すなわち、正極端子28には電池素子4の正極部12が集電板32を介して接続され、また、負極端子30には電池素子4の負極部14が集電板34を介して接続されている。
 電池素子4は封口板18に固定されているとともに、外装ケース8に収納されて封口板18と、外装ケース8の底面との間に保持され、外装ケース8内に固定されている。
 次に、この電池2の各部について、図2を参照する。図2は分解した電池の一例を示している。図2に示す構成は一例であって、係る構成に本発明が限定されるものではない。図1と同一部分には同一符号を付してある。
 電池素子4の正極部12および負極部14はたとえば、60〔度〕毎に等分され、素子中心40に向かって折り畳まれ、圧縮成形されている。この圧縮成形により、各正極部12および各負極部14には素子中心40を中心に放射状を成す突条部42が形成されている。
 集電板32、34はほぼ半円状であって、素子中心40に対応する半円状の切欠部44が形成され、この切欠部44から周縁部に向かって既述の突条部42を収容する収容部の一例として凹部46が放射状に形成されている。
 集電板32、34には正極端子28または負極端子30と接続される第一の接続領域として端子接続部48を備えるとともに、端子接続部48と異なる位置に、正極部12または負極部14と接続される第二の接続領域として素子接続部50が形成されている。端子接続部48には、集電板32、34の側面に既述の溶接接続部38の集電板32、34側の第1の溶接面部52が形成されている。
 そして、封口板18にある正極端子28、負極端子30の側面には、既述の溶接接続部38の端子側の第2の溶接面部54が形成されている。溶接面部52、54は、共通の面部を構成し、この実施の形態ではたとえば、素子中心40から等距離であって、平坦面を構成している。
 次に、この電池2の製造方法について、図3を参照する。図3は電池の製造工程の一例を示している。
 図3に示す製造工程は、本発明の蓄電デバイスの製造方法の一例である。この製造工程では、たとえば蓄電素子として電池素子4を形成し(ステップS11)、電池素子4の正極部12および負極部14を成形し(ステップS12)、正極部12と集電板32、負極部14と集電板34の接続(ステップS13)、集電板32と正極端子28の接続、集電板34と負極端子30の接続(ステップS14)を経て形成された電池素子4を外装ケース8に収納し、外装ケース8を封止する(ステップS15)。
〔電池素子の形成(ステップS11)〕
 電池素子4について、図4を参照する。図4は一部を分解した電池素子の構成例を示している。図4に示す構成は一例であって、係る構成に本発明が限定されるものではない。
 図4に示す電池素子4は巻回素子で構成され、正極体としてたとえば、正極側の集電体120と、負極体としてたとえば、負極側の集電体140と、セパレータ56、58とを備えている。電子素子4は、各集電体120、140との間にセパレータ56、58を挟み込んで、円筒状の巻回素子を形成する。各集電体120、140のベース材には電極材料が用いられ、集電体の両面にはたとえば、チタン酸リチウムを含む正極電極体や、リチウムを吸蔵放出する炭素材料を含む負極電極体を形成する。
 この電池素子4では、同一の素子端面10側に形成された正極部12と負極部14との間には一定幅の絶縁間隔16が形成され、正極部12および負極部14は各集電体の基材で形成され、電極体は形成されていない。正極部12または負極部14の形成部は、絶縁手段であるセパレータ56、58の幅Wより大きく設定され、各正極部12または各負極部14の円弧長に対応する長さLに形成される。各正極部12および各負極部14には、素子端面10上に折り畳むための折目60を素子端面10と平行に形成する。
〔正極部および負極部の成形(ステップS12)〕
 正極部12および負極部14の成形について、図5を参照する。図5は電池素子の素子端面を示している。
 成形前の正極部12および負極部14は、図5に示すように、電池素子4の素子端面10に張り出させた集電体120、140の柱状体で、各集電体120、140を一定角度θとしてたとえば、θ=60〔度〕毎の仕切り線62で区画する。これにより集電体120を区画部12A、12B、12Cとし、集電体140を区画部14A、14B、14Cとする。
 この電池素子4に対し、区画部12A、12B、12C、14A、14B、14Cのうち、中央部の区画部12A、14Aの周縁から素子中心40に向かって圧力F1を作用させて区画部12A、14Aを押し倒し、素子端面10と直交方向に圧縮成形する。この成形処理の後、残りの区画部12B、12C、14B、14Cに対し、その周縁から素子中心40に向かって圧力F2を作用させて区画部12B、12C、14B、14Cを押し倒し、素子端面10と直交方向に圧縮成形する。これにより、区画部12Aと区画部12B、12Cとの境目には、集電体120の重なり合う部分で素子中心40から電池素子4の周縁に向かって延びる突条部42(図2)が放射状に形成される。同様に区画部14Aと区画部14B、14Cとの境目にも突条部42(図2)が放射状に形成される。
 この成形処理により、電池素子4の素子端面10には正極部12および負極部14が形成され、正極部12および負極部14は複数の突条部42で区分された形態となる。
 正極部12および負極部14の圧縮成形では、素子中心40に向かって圧縮成形する際に、高さ寸法を調整する。この処理では、たとえば、正極部12および負極部14に仕切り線62に切込みを入れ、区画部12A、14Aを圧縮成形した後、両脇側を順次圧縮成形することで、重なりによって生成される線状の突条部42の高さ寸法を調整する。
〔正極部または負極部と集電板の接続(ステップS13)〕
 正極部12または負極部14と集電板の接続について、図6を参照する。図6は電池素子の素子端面および集電板を示している。
 集電板32、34は図6示すように、同一形状であって、蓄電素子の素子端面を構成する素子端面10を二分する半円形状に形成されている。各集電板32、34の下面側には、既述の突条部42を収容する凹部46が放射状に形成されている。各凹部46には電池素子4の素子端面10にある突条部42が収納されるので、各集電板32、34は、偏平に圧縮されて平坦化された正極部12および負極部14に水平にすなわち、素子端面10と平行に、かつ密着状態で設置することができる。
 各集電板32、34の上面には各凹部46で挟まれた領域に端子接続部48が設定され、各集電板32、34の下面には凹部46と縁部との間の領域に素子接続部50が設定されている。集電板32の端子接続部48には正極端子28(図2)が接続され、集電板34の端子接続部48には負極端子30(図2)が接続される。また、集電板32の素子接続部50には既述の正極部12の区画部12B、12Cが接続され、集電板34の素子接続部50には既述の負極部14の区画部14B、14Cが接続される。
 この正極部12または負極部14と集電板の接続について、図7を参照する。図7は集電板が設置された電池素子を示している。
 図7に示すように、集電板32、34は、凹部46に正極部12、負極部14側の突条部42を収納する。集電板32、34の設置では、正極部12、負極部14上に集電板32、34を配置し、集電板32、34を素子端面10に押圧する。各集電板32、34は、凹部46に各突状部42を収納し、しかも、正極部12、負極部14が平坦に圧縮生成されているので、素子接続部50を正極部12または負極部14に密着させることができる。
 この状態を維持し、集電板32、34の素子接続部50にたとえばレーザ照射装置64からレーザ照射66を行い、集電板32の素子接続部50に正極部12を集電板34の素子接続部50に負極部14を溶融させて接続する。レーザ照射装置64と、集電板32、34の素子接続部50との位置関係は、レーザ照射装置64のレーザ照射66を走査してもよいし、集電板32、34を備えた電池素子4を走査してもよい。
 そして、レーザ照射66では、集電板32、34の素子接続部50に溶接ラインの一例としてレーザ照射部位68を設定し、各照射部位68は素子中心40から集電板32、34の周縁に向かって延びる直線状とする。この実施の形態におけるレーザ照射部位68は、集電板32、34の凹部46で隔てられた両端側の素子接続部50の各2箇所である。
 レーザ照射66は、図7に示す照射部位68に、矢印〔I〕、〔II〕、〔III〕および〔IV〕の方向から〔I〕、〔II〕、〔III〕および〔IV〕の順で行われる。
 矢印〔I〕を付した照射部位68では、電池素子4の外周側より、素子中心40に向かって直線状に一方の集電板34にレーザ照射66を行う。
 矢印〔II〕を付した照射部位68では、素子中心40を隔てて対向する他方の集電板32に素子中心40側より、電池素子4の外周側に向かってレーザ照射66を行う。
 また、矢印〔III〕を付した照射部位68では、電池素子4の外周側より、素子中心40に向かって直線状に一方の集電板34にレーザ照射66を行う。
 矢印〔IV〕を付した照射部位68では、素子中心40を隔てて対向する他方の集電板32に素子中心40側より、電池素子4の外周側に向かって直線上にレーザ照射66を行う。
 このように、素子中心40を隔てて直線状にレーザ照射66を行う一連の処理により、正極部12と集電板32の素子接続部50、負極部14と集電板34の素子接続部50とがレーザ照射66による溶融により接続される。
 なお、レーザ照射の〔I〕および〔II〕の一連の動作を2回繰り返し、または、レーザ照射の〔I〕ないし〔IV〕の一連の動作を2回繰り返してもよいし、複数の溶接ラインの一例として、レーザ照射部位68を平行二線に設定してもよい。このようにレーザ照射66を多重化すれば、接続抵抗をより低減させることができる。レーザ照射66の走査方向は、既述の〔I〕および〔II〕の走査でもよいが、素子中心40側より素子外周側に向かう方向でもよい。また、既述の〔I〕および〔II〕のように連続走査ではなく、個別走査でもよい。
 また、レーザ照射66について、〔I〕ないし〔IV〕の走査は、同一箇所を連続してレーザ照射するのではなく、〔I〕から〔IV〕を行い、その後、再び〔I〕から〔IV〕に走査してもよい。このようにすれば、レーザ照射部位68間のレーザ照射66に時間間隔を設けることができ、レーザ照射部位68を冷却でき、レーザ溶接による接続を安定化できる。
 また、同一のレーザ照射部位68に時間間隔を設けて複数回のレーザ照射66を行うことで、冷却間隔を取りながら、レーザ照射68を連続的に行ってもよい。このようにすれば、レーザ照射68の溶接時間を短縮化できる。
〔集電板と正極端子または負極端子との接続(ステップS14)〕
 集電板と正極端子または負極端子との接続について、図8および図9を参照する。図8および図9は集電板と正極端子または負極端子との接続を示している。
 この接続には、予め形成された封口板18が用いられる。この封口板18は、図2に示すように、絶縁性合成樹脂でベース部20が成形され、このベース部20の成形の際に、正極端子28、負極端子30がインサート成形されている。この場合、封止部22は、ベース部20に接合されていてもよいし、集電板32、34との接続の後にベース部20に設置してもよい。
 この封口板18の正極端子28、負極端子30と集電板32、34の接続は、図8に示すように、電池素子4に接続された集電板32に封口板18にある正極端子28を載せて位置決めをするとともに、集電板34に封口板18にある負極端子30を載せて位置決めをする。集電板32の溶接面部52と正極端子28の溶接面部54とを一致させ、同様に、集電板34の溶接面部52と負極端子30の溶接面部54とを一致させ、これら溶接面部52、54に跨がってレーザ照射装置64からレーザ照射66を行い、図9に示すように、溶接面部52、54間を溶融させて接続する。この正極端子28、負極端子30と集電板32、34の接続では、レーザ溶接のほかたとえば電子ビーム溶接を利用してもよい。
 この結果、電池素子4の素子端面10には集電板32、34を介在させて封口板18の正極端子28、負極端子30が接続され、電池素子4と封口板18を一体化できる。
 なお、溶接面部52、54を一致させてこの溶接面部52、54に跨ってレーザ照射66を行っているが、この溶接面部52、54は隙間が無く一致していることが好ましいが、これに限ることはなく、1〔mm〕程度の隙間があってもよい。また溶接面部52、54は、それぞれ傾斜面(テーパ面)であってもよい。
〔電池素子の封入および外装ケースの封止(ステップS15)〕
 電池素子4は、電解液を含浸され、図1に示すように、外装ケース8に収納するとともに、挿入した封口板18を、外装ケース8に予め加締め処理によって形成された加締め段部24に位置決めする。この外装ケース8の開口端部26をカーリング処理により封止し、製品である電池2を完成する。
 以上説明した第1の実施の形態の電池2の特徴事項や利点を列挙すれば以下の通りである。
 (1) 正極部12および負極部14の間には集電体120、140の張出し部分で所定の絶縁間隔16が設けられている。この絶縁間隔16または集電体120、140の張出し長さは、集電体120、140の張出し部分を素子中心40に向かって圧縮成形した際に、正極部12および負極部14が接触しない程度の間隔または長さに設定すればよい。また、蓄電素子を構成する電池素子4の素子中心40の近傍には、正極部12および負極部14を形成するための集電体120、140の張出し部分を省略してもよい。
 (2) 正極部12および負極部14は、その形成部位が多いほど(または面積が大きいほど)、抵抗の低減につながる。そこで、正極部12および負極部14間の短絡を防止し、且つ、低抵抗化が図れる絶縁間隔16は最適値としてたとえば、3〔mm〕~10〔mm〕であればよい。
 (3) 電池素子4の最外周では、正極部12および負極部14の圧縮成形時にずれ等が生じても正極部12および負極部14と外装ケース8との接触を防止するには、たとえば、集電板32、34の外周面に絶縁テープを巻き付けるなどにより絶縁してもいし、集電板32、34の外周面と外装ケース8との間に絶縁環などを設置して絶縁してもよい。
 (4) 正極端子28および負極端子30と電池素子4との接続距離が長くなると、その分だけ内部抵抗を増加させることになる。そこで、集電板32、34を備えることにより、また、レーザ溶接により接続間隔を大幅に短縮し、内部抵抗の増加を抑えている。具体的には、電池素子4の正極部12および負極部14に接続された集電板32、34は薄い金属板であり、この側面には溶接面部52、正極端子28および負極端子30には溶接面部54が形成され、これらは、一致した面部を構成している。この溶接面部52、54の境界部にレーザ照射66を行い、溶接接続部38が形成されている。低抵抗(ESR:Equivalent Series Resistance)化を図っている。
 (5) 電池素子4と封口板18との間には僅かなスペースを設け、集電板32、34によってこれらを電気的に接続し、外装ケース8内の電池素子4の占有体積を増加させている。そして、電池素子4と封口板18との間隔(距離)を短くして抵抗を抑え、電池素子4と封口板18との間隔(距離)の狭小化を図っている。
 (6) 正極端子28および負極端子30と、電池素子4上の集電板32、34とは、両者の側面部に形成された溶接面部52、54を一致した面部とし、この部位に局所的にレーザ照射66を行い、溶接しているので、その接続処理の簡易化および接続部の強化が図られている。ここで、正極端子28、負極端子30および集電板32、34の厚み(溶接面部52、54の高さ寸法)は、レーザ溶接が可能な寸法でかつ内部抵抗が増大され難く、また、電池2の高さ寸法を短くする最適値としてたとえば、それぞれ0.5〔mm〕~5〔mm〕の範囲に設定すればよい。
 (7) 溶接面部52、54はたとえば、切欠きによって平面として構成しているが、これに限られることはなく、曲面でもよく、平坦面または曲面のいずれであっても双方を一致した面部とすればよい。また、溶接面部52、54は、レーザ照射66を行う際に他の部材(正極部12や負極部14)に対する過剰なストレスが加わらないように電池素子4の外周面近傍に設置されることが好ましく、具体的には、電池素子4の外周面より、たとえば、10〔mm〕以内とすればよい。
 (8) 上記実施の形態のように、集電板32、34における端子接続部48(図7)と素子接続部50とを水平方向に変位させているので、レーザ溶接部が水平方向に異なっており、レーザ溶接接続の安定性を向上させることができる。
 (9) 集電板32、34を用いて電池素子4と正極端子28、負極端子30を接続しているので、端子接続のシンプル化が図られ、接続を容易化できる。
 (10) 外装ケース8の空間部内に端子接続構造の占める割合を低減でき、体積当たりの電池素子の占める割合を大きくできる。
 (11) 外装部材である封口板18には、電池素子4が強固に支持されている。すなわち、電池素子4は、正極端子28および負極端子30に集電板32、34を用いてレーザ溶接や電子ビーム溶接により、強固に固定されるので、電池素子4の支持強度が高められている(堅牢化)。この結果、機械的に堅牢な支持構造が構成され、製品の耐震性を高めることができる。
 (12) 集電板32により正極側の集電体120、集電板34により負極側の集電体140がレーザ溶接により並列化されているので、電池素子4および電池2の低抵抗化を図ることができ、内部抵抗の低い製品を提供できる。
 (13) 集電板32、34を用いたので、電池素子4にタブを接続する必要がない。
 (14) 既述の製造工程によれば、電池2などの蓄電デバイスを容易に製造でき、端子接続工程の簡略化を図ることができる。
〔第2の実施の形態〕
 第2の実施の形態は、外部端子と集電板との間に端子部材として接続板を備える構成を含んでいる。
 第2の実施の形態について、図10および図11を参照する。図10は接続板を含む電池を分解して示し、図11は接続板を備えた接続構成例を示している。図10および図11において、図2と同一部分には同一符号を付してある。
 この第2の実施の形態では、図10に示すように、端子部材として正極側および負極側の接続板72、74が備えられている。接続板72、74のそれぞれには正極端子28、負極端子30を接続する接続凹部76が形成され、側面には第3の溶接面部78が形成されている。この実施の形態では、封口板18の下面側に突出する正極端子28および負極端子30は円柱状であり、その端面に合致するように接続凹部76が形成されているが、円形に限定されない。また、各溶接面部78はたとえば、フラット面であり、集電板32、34の溶接面部52は第1の実施の形態と異なり、溶接面部78と一致する位置に形成されている。その他の構成は第1の実施の形態と同様である。
 正極端子28にレーザ溶接により接続された接続板72、同様に負極端子30にレーザ溶接により接続される接続板74は、図11に示すように、電池素子4に接続された集電板32、34に重ねられ、一致させた溶接面部52、78間をレーザ溶接により接続する構成としてもよい。
 このような接続板72、74を用いた構成では外部端子である正極端子28、負極端子30と、電池素子4側に接続された集電板32、34との接続範囲が拡大されるので、接続抵抗を低減できるとともに、接続強度が高められる。
〔第3の実施の形態〕
 第3の実施の形態は、集電板と接続される電極部の範囲を第1の実施の形態と異ならせた構成を含んでいる。
 第3の実施の形態について、図12を参照する。図12は集電板、電池素子の正極部および負極部の一例を示している。図12において、図2と同一部分には同一符号を付してある。
 第1の実施の形態(図2)では、集電板32、34の背面側を平坦にして素子接続部50を形成したが、図12のAに示すように、電池素子4の外部端子側にたとえば、60度範囲で突出する平坦面を持つ突出面部80と、この突出面部80を挟んで後退した凹面部82とを備えてもよい。
 電池素子4側の素子端面10には、図12のBに示すように、正極部12、負極部14にたとえば、60度範囲で窪ませた凹部84と、この凹部84を挟んで突出させた突部86とを備え、凹部84は、負極部14または正極部12が形成されていない部位、突部86は、電池素子4の中心方向に向かって圧縮成形される部位としてもよい。突部86は、図12のCに示すように、電池素子4の中心方向に向かって圧縮成形される。そして、上記実施の形態と同様に、正極部12と集電板32、負極部14と集電板34とをレーザ溶接により接続し、合体させてもよい。
〔第4の実施の形態〕
 第4の実施の形態は、外部端子側に突出させた端子接続部を備える集電板と、素子端面から所定幅を折目にして、蓄電素子の一例である電池素子の素子端面上に折り曲げられて重ねられた単一または複数の電極張出し部を備える構成を含んでいる。
 第4の実施の形態に係る電池について、図13を参照する。図13は電池の各部材の一例を示している。図13において、図2と同一部分には同一符号を付してある。
 図13に示すように、各集電板32、34は正極端子28、負極端子30に接続する端子接続部48が扇形状であって、集電板の背面側より突出させている。電池素子4の同一の素子端面10には正極部12、負極部14が絶縁間隔16を設けて形成されている。
 次に、電池素子4、正極部12および負極部14の形成について、図14、図15を参照する。図14は集電体の一例を示し、図15は電池素子を示している。図14、図15において、図2と同一部分には同一符号を付してある。
 正極部12は正極側の集電体120、負極部14は負極側の集電体140の電極張出し部である未塗工部88によって形成される。
 正極部12および負極部14には、ベース材90にたとえば、アルミニウム箔が用いられる。ベース材90は、同一幅の帯状体であって、図14のAに示すように、ベース材90の両面に活性炭等の活物質および結着剤等を含む分極性電極92を形成する。この分極性電極92の形成の際、ベース材90には、一方の縁部側に一定幅の未塗工部88が形成され、この未塗工部88は分極性電極92の非形成部分である。この未塗工部88が既述の電極張出し部であり、この未塗工部88で正極部12または負極部14が形成される。
 未塗工部88に対し、図14のBに示すように、縁部を形成する一定幅の折目60を形成する。この折目60は、キズではなくケガキ線(折目線)であって、正極部12および負極部14の折り曲げ時の座屈を防止することができる。この折目60は、溝であり、断面形状は、三角、四角であってもよいし、湾曲していてもよい。また、この折目60の形成方法としては、たとえばプレス、レーザ、切削等があげられる。折り目60は図14のBに示すように、1本で構成することもできるが、未塗工部88の寸法を考慮し、複数本で形成してもよく、また、折目60は片面または両面であってもよい。
 この電極部の形成において、図14のCに示すように、集電体120には幅の異なる複数の正極部12(88)が形成され、図14のDに示すように、集電体140には幅の異なる複数の負極部14(88)が形成される。各正極部12は電池素子4の素子端面10に半周毎に引き出されるように異なる間隔で形成する。また、各負極部14も電池素子4の素子端面10に半周毎に引き出され、しかも、正極部12と負極部14との間には既述の絶縁間隔16が設定されている。そして、各正極部12および各負極部14には折目60が形成されている。
 そして、電池素子4は、図示しない巻軸を用いることにより、図15に示すように、各集電体120、140が、これらの間にセパレータ56、58を介在させて巻回され、巻回素子である電池素子4が形成される。この電池素子4の一方の素子端面10には、半周毎に正極部12と負極部14とが形成される。
 正極部12または負極部14は、絶縁手段であるセパレータ56、58の幅W1より突出する形態であって、各正極部12または負極部14の円弧長に対応する長さL1に形成されている。また、各正極部12または負極部14は、素子端面10から所定の幅W2の位置に折目60が形成されている。素子端面10は、電池素子4の端面に露出するセパレータ56、58の縁部によって形成される。折目60は、素子端面10の素子中心40に対向する面が谷折りになるように形成されている。素子端面10から所定の幅W2の寸法は、0.5〔mm〕以上が好ましく、このように素子端面10のセパレータの端部位置より所定の幅W2分離間した位置に折目60を形成することで、正極部12または負極部14の折り曲げ時にセパレータ56、58に加わる機械的ストレスが減少し、各集電体120、140の接触によるショートを防止している。また、素子端面10からの正極部12および負極部14の張出し長寸法は3〔mm〕~10〔mm〕とすることが好ましい。
 次に、各電極部の成形について、図16および図17を参照する。図16は成形前後の各電極部を示し、図17は電極部の成形状態を示している。図16、図17において、図6と同一部分には同一符号を付してある。
 図16のAに示すように、電池素子4の素子端面10に導出された正極部12または負極部14は、集電板32または集電板34との接続前に、図16のBに示すように、電池素子4の素子端面10上で密着状態に成形加工される。
 電池素子4の素子端面10には図16のAに示すように、電極張出し部を構成する正極部12と負極部14とが折目60によって傾斜状態に立設され、これら正極部12と負極部14との間には所定幅の絶縁間隔16が設定されている。絶縁間隔16および素子中心40を中心にY軸、このY軸と直交方向にX軸を取り、X軸を中心に左右に角度θ1 、θ2 (>θ1 )を設定して区画する。角度θ1 で電池素子4の素子中心(巻芯部)40を中心に放射状方向に複数の切込み94を入れ、各切込み94で区画された複数の区画部12A、12B、12Cが正極部12側に形成されている。同様に、負極部14側にも複数の区画部14A、14B、14Cが形成されている。角度θ1をたとえば、30〔°〕に設定すれば、区画部12A、14Aは、2θ1 =60〔°〕となり、区画部12Aを挟んで形成された区画部12B、12Cまたは区画部14Aを挟んで形成された区画部14B、14Cの角度θ2 はたとえば、θ2 =60〔°〕に設定されている。
 切込み94の深さはたとえば、張出し長を正極部12と負極部14の高さh1に設定され、正極部12の区画部12A、12B、12C、負極部14の区画部14A、14B、14Cを中途部にある既述の折目60で屈曲させ、電池素子4の巻芯方向に押し倒して圧縮成形することにより、図16のBに示すように、各区画部12A、12B、12C、負極部14の区画部14A、14B、14Cに成形される。この実施の形態では、各区画部12B、12Cおよび区画部14B、14Cが集電板32、34との溶接部分に設定されている。そこで、区画部12A、14Aの突出高さh2が各区画部12B、12C、14B、14Cの高さh3より高く設定され、区画部12A、12B、12Cおよび負極部8の区画部14A、14B、14Cの高さを集電板32、34の屈曲形状に対応させている。なお、電池素子4の正極部12および負極部14は、このように電池素子4の中心方向に向かって正極部12および負極部14の全体を圧縮成形することで、高さ寸法を抑制している。この実施の形態では、正極部12の区画部12B、12Cを圧縮形成して、安定した平坦状の接続面を形成し、その後、非接続面である区画部12Aを圧縮成形し、各区画部間12A-12B、12A-12Cの重なりによって生じる境界部の高さ寸法を抑制している。この境界部の高さ寸法の抑制については負極部14においても同様である。
 各正極部12および各負極部14の成形工程において、電池素子4の巻回後、素子端面10に露出する正極部12、負極部14は、図17のAに示すように、折目60により素子中心40を中心にして対向方向に折り曲げられた状態で対向している。そこで、図17のBに示すように、集電板32、34との接続を図るために素子中心40側に折目60を用いて折り曲げ、既述の区画部12B、12C、14B、14Cを形成する。
 また、図17のCに示すように、折目60を用いて区画部12A、14Aを素子端面10側に更に折り曲げる。
 次に、集電板32、34について、図18を参照する。図18は集電板の一例を示している。図18において、図6と同一部分には同一符号を付してある。
 この実施の形態の集電板32、34は、図18に示すように、電極材料と同一のたとえば、アルミニウム板で形成され、既述の正極部12の区画部12A、12B、12C(図16)を覆い、区画部12B、12Cとのレーザ溶接面積を持ち、且つ正極端子28とのレーザ溶接面積を持つ形状および面積を備えている。この実施の形態では、電池素子4の素子端面10の2分の1の大きさであって、絶縁間隔36を確保する形状として、ほぼ半円形板である。
 集電板32、34には、図18のAに示すように、弦側中心部に電池素子4の素子中心40に対応して円弧状の切欠部44が形成され、その弧側には、X軸を中心にX軸と直交方向に直線状に切り落とされた溶接面部52が形成されている。また、この集電板32または集電板34には、図18のBに示すように、切欠部44を中心すなわち、X軸を中心に左右に角度θ1 を持って直角に屈曲させた段部96を以て円弧状の端子接続部48と、端子接続部48を挟んで素子接続部50が形成されている。各端子接続部48および素子接続部50は、端子接続部48を突出させ、段部96を挟んで平行面を構成している。
 この集電板32、34において、端子接続部48の高さをh4、集電板32、34の厚さをt、端子接続部48の内側の高さをh5とすると、
        h5 =h4-t≧h2 -h3                     ・・・(1) 
に設定されている。従って、端子接続部48の内側の高さをh5は、区画部12A、14Aの突出高さh2と各区画部12B、12C、14B、14Cの高さh3との差分Δh(≧h2-h3)を吸収し、集電板32が各区画部12B、12Cに密着し、且つ区画部12Aを収納して設置される。
 次に、集電板32、34と電池素子4との接続について、図19を参照する。図19は、集電板および電池素子の接続を示している。
 図19に示すように、電池素子4の素子端面10の素子中心40に切欠部44を合わせて配置され、正極部12と負極部14との間の絶縁間隔16に対応して絶縁間隔36が設定されている。集電板32には、端子接続部48の下面側に電池素子4の正極部12の区画部12A、集電板32の素子接続部50の下面側に電池素子4の正極部12の区画部12B、12Cが位置決めされて密着させられる。そして、レーザ照射部位68では、電池素子4の周縁方向から巻芯方向に向かうレーザ照射により、区画部12B、12Cおよび素子接続部50を部分的または全面的に溶融させ、接続する。このような接続は集電板34側でも同様である。溶接処理は、第1の実施の形態と同様であるので、図19に同一符号を付し、その説明を省略する。
 次に、電池素子4上の集電板32、34と外部端子との接続について、図20を参照する。図20は電池素子上の集電板と外部端子の接続を示している。
 図20のAに示すように、封口板18の正極端子28、負極端子30が集電板32、34の接続位置に位置決めされる。正極端子28および負極端子30には溶接面部54が形成され、この溶接面部54は、集電板32、34側にある溶接面部52と同一面を形成する側壁面である。そこで、図20のBに示すように、溶接面部52、54を合致させ、既述のレーザ照射装置64(図8)を用いてレーザ照射66を行えば、溶接面部52、54間がレーザ溶着され、集電板32、34に対応する正極端子28、負極端子30を接続することができる。この溶接処理には、たとえば電子ビーム溶接を利用してもよい。
 従って、電池素子4の正極部12および負極部14には、集電板32、34がレーザ照射部68を以て接続される。そして、電池素子4の正極部12には、集電板32を介在させて正極端子28が溶接接続部38(図9)を以て接続され、また、電池素子4の負極部8には、集電板34を介して負極端子30が溶接接続部38(図9)を以て接続される。これにより電池素子4に外部端子が形成される。
 ここで、電池素子4と封口板18との間隔(距離)を長く取ると、その分抵抗が増えてしまうとともに、電池2の高さ寸法が大きくなってしまうため、電池素子4と封口板18との間隔(距離)を極力短くしている。このような小スペースにおいて、正極端子28および負極端子30と、集電板32、34とを接続するために、一致させた溶接面部52、54間に局所的に溶接可能なレーザ照射66を行えばよく、この処理により、溶接の簡易化および強化が図られている。ここで、集電板32、34、正極端子28および負極端子30の厚みは、それぞれ0.5〔mm〕~5〔mm〕の範囲で設定されており、これによると、レーザ溶接が可能な寸法でかつ内部抵抗が増大され難く、また、電池2の高さ寸法を短くすることができる。
 また、溶接面部52、54は、この実施の形態においても、レーザ照射66の際に他の部材(正極部12や負極部14)への過剰なストレスを防ぐためにも電池素子4の外周面近傍に設置されることが好ましく、具体的には、電池素子4の外周面より、たとえば、10〔mm〕以内とすることが好ましい。
 また、集電板32、34において、電池素子4の正極部12および負極部14との接続領域と、正極端子28と負極端子30との接続領域とが異なる位置に設定されているので、各電極部12、14と集電板32、34、各外部端子28、30と集電板32、34との接続を安定化させることができ、電池素子4の低抵抗化、接続の強化等、電気的特性を高めることができる。
 なお、この実施の形態においても、第2の実施の形態(図10)に示したように、集電板32、34と正極端子28、負極端子30との間に接続板72、74を備える構成としてもよい。
〔第5の実施の形態〕
 第5の実施の形態はレーザ照射部位(溶接ライン)に対するレーザ出力制御を含んでいる。
 第5の実施の形態について、図21を参照する。図21はレーザ出力の制御形態を示している。
 このレーザ照射66による溶接について、図21に示すように、図21のAは集電板32、34上の既述の溶接ラインの一例であるレーザ照射部位68を示している。このレーザ照射部位68の溶接始点68Sと溶接終点68Eとの間を区間a、b、cと設定し、溶接終点68E外に区間dを設定している。
 このレーザ溶接には、ビーム照射手段の一例としてレーザ照射装置64が用いられ、レーザ照射部部位68はレーザ照射66による溶接部である。この場合、アルゴンガスまたはヘリウムガス等のシールドガスが使用され、溶接処理が行われる。
 このレーザ照射装置64のレーザ照射66では、一定の照射速度で、レーザ照射部位68にビーム出力を段階的および連続的に異ならせている。この実施の形態では、図21のBに示すように、レーザ出力Pが区間aではレーザ出力Pa、区間bではレーザ出力Pb(<Pa)の一定値に設定され、区間cではレーザ出力Pbからレーザ出力Pc(<Pb)に減衰させている。区間aのレーザ出力Paは最も高い値に設定され、一例として50W~3000〔W〕である。区間bのレーザ出力Pbはレーザ出力Paより小さく、レーザ出力Paの90%以下のレーザ出力としている。また、区間cのレーザ出力Pcはレーザ出力Pbより小さい値であって、レーザ出力Paの80%以下のレーザ出力としている。この場合、図21のBは横軸を距離〔mm〕で表している。
 溶接開始点68Sで照射するレーザ出力Paが最も高い値に設定され、その照射区間aは区間bより短い時間に設定されている。区間aの後、レーザ出力Pbのレーザ照射の区間bは最も長く設定されている。また、区間cは区間bより短い区間に設定され、この区間cにおいて、レーザ出力Pbをレーザ出力Pcに直線的に減衰させている。このように溶接始点68Sおよび溶接終点68E近傍において、レーザ出力を減衰させるとよい。つまり少なくともレーザ出力の減衰が2区間以上あることが好ましい。
 レーザ照射部位68に対するレーザ走査の速度は、一定速度であって、たとえば、300〔mm/秒〕~3,000〔mm/秒〕から選択される一定速度とすればよいが、区間に応じて走査速度を変更してもよい。
 このようにレーザ出力をレーザ照射部位68によって制御すれば、次のような効果が得られる。
 (1) 集電板32、34と電池素子4の正極部12または負極部14とのレーザ溶接の溶接始点68Sから溶接終点68Eに至る溶接ラインに対するレーザ出力の段階的および連続的に制御としてたとえば、レーザ出力を減衰させたので、集電板32または34および電極張出し部である正極部12または負極部14に加えられる溶接エネルギーを均一化でき、接続性を向上させることができる。
 (2) レーザ照射の溶接始点68Sではレーザ出力を高く設定し、高いレーザ出力エネルギーでレーザ照射を行う。レーザ照射66を受けた集電板32、34および正極部12または負極部14の溶接ラインおよびその近傍部が加熱される。すなわち、レーザ照射66を溶接ラインに沿って行えば、レーザ照射66の走査に応じた加熱部分がその走査とともに連鎖状態で移動するので、レーザ出力を同一に設定しなくても、連鎖的に溶融状態となる。このため、レーザ出力を段階的および連続的(上記実施の形態)、段階的または連続的に減衰させても、溶接部に加わるレーザ照射66による熱エネルギーは均一化する。このため、集電板32、34と正極部12または負極部14との接続性を向上させることができる。
 (3) 仮に、レーザ出力を一定に維持した場合には、熱エネルギーが過度となる場所が生じ、電極張出し部を形成している電極が薄いことから、過度の熱エネルギーの集中で溶融ムラを生じ、集電板と電極張出し部との接続性が不安定化するが、斯かる不都合をレーザ出力の制御(たとえば、減衰)によって回避することができる。
 (4) レーザ照射部位68を複数ラインに設定した場合にも、同様の制御を行うことができる。既述のレーザ照射の〔I〕ないし〔IV〕の連続動作について、同一箇所を連続してレーザ照射するのではなく、レーザ溶接を〔I〕から〔IV〕で行い、その後、異なる箇所にレーザ照射すれば、同一箇所のレーザ照射に時間間隔を設けることができ、この結果、レーザ照射箇所の冷却化を図ることができ、レーザ溶接による接続の安定化が図られる。
 (5) レーザ照射部位68は2本の平行な溶接ラインとしてレーザ照射部位681、682を設定してもよい。この場合、図22のAに示すように、各レーザ照射部位681、682のレーザ溶接において、冷却間隔を設けてレーザ照射66を行う。この場合、レーザ照射部位681、682のライン間隔をW9とすれば、ライン間隔W9はたとえば、3〔mm〕以内に設定されてもよい。またレーザ照射部位681、682は一部重複させてもよい。各レーザ照射部位681、682は、レーザ照射装置64により個別に溶接されることは既述の通りであり、それぞれ始点681S、682S、終点681E、682Eが設定され、溶接走査方向に応じて既述の区間a、b、c、dが設定されている。レーザ照射部位681とレーザ照射部位682とでは溶接走査方向が反対方向である。このようなレーザ照射66についても、各区間a、b、cに対するレーザ出力は図22のBに示すように設定すればよい。斯かる構成によっても既述の効果が得られる。
〔第6の実施の形態〕
 第6の実施の形態は、固定された集電板と電池素子とを押圧状態でレーザ溶接する構成を含んでいる。
 第6の実施の形態について、図23を参照する。図23は集電板の固定状態および位置決め治具を示している。図23において、図2と同一部分には同一符号を付してある。
 図23のAに示すように、集電板32、34は電池素子4の素子端面10側に水平に位置決めされる。この位置決めには、複数のチャック機構98および一対の間隔保持機構100とともに、位置決め治具102が用いられる。チャック機構98は、保持対象である集電板32、34のそれぞれの複数箇所すなわち、放射状に配置された複数のチャック982が備えられている。各チャック982は圧縮状態にあるスプリング984の復元力を作用させている。この場合、張力を作用させる構成であってもよい。
 間隔保持機構100には、位置決め治具102を挟んで集電板32、34の絶縁間隔36内に設置される一対のスペーサ103が備えられている。各スペーサ103は集電板32、34の対向面間に配置されている。スペーサ103が持つ一定幅により、各スペーサ103が平行に維持されるとともに、集電板32、34の絶縁間隔36が設定される。
 各スペーサ103の間隔内には既述の位置決め治具102が設置され、この位置決め治具102に集電板32、34の切欠部44を嵌合させ、集電板32、34の中心位置が決定される。
 位置決め治具102は、図23のBに示すように、中心部に集電板32、34の円弧状切欠部44を係合させる円柱部1021を備え、この円柱部1021の側壁に平板状の一対のアーム部1022、1023を備えている。各アーム部1022、1023は円柱部1021の軸方向および直径方向に形成されている。各アーム部1022、1023は図23のAに示すように、集電板32、34の対向面間内に設置されるとともに、各スペーサ103に把持され、円柱部1021を集電板32、34の切欠部44に嵌合させる。従って、円柱部1021の直径およびその円弧面は、切欠部44の内径に一致している。
 そして、図24のAに示すように、集電板32、34とともに電池素子4を配置し、この配置状態では、電池素子4の素子端面10にある正極部12および負極部14は、既述の折目60で折り曲げられた状態で集電板32、34の下面に接触し、水平に位置決めされている。この状態において、矢印に示すように、電池素子4および集電板32、34には、支持部材104の下側から圧力106を付与する。すなわち、位置決めされて固定されている集電番32、34に対して電池素子4を上昇させ、正極部12および負極部14を集電板32、34の下面側に押し当てる。
 電池素子4の下面側からの圧力106に対して電池素子4を上方で支持するチャック機構98のチャック982には、集電板32、34の上面側を覆って支持する支持突部980が設けられている。各支持突部980には電池素子4側にある集電板32、34の縁部上面が当てられ、電池素子4上の集電板32、34が水平に維持されるとともに、電池素子4の素子端面10との平行度が維持される。
 このように電池素子4は、図24のBに示す上限位置まで押し上げられて維持され、レーザ溶接が行われる。この場合、次のような固定状態に維持される。
 a)支持部材104と集電板32、34とは高精度に平行度が保たれるので、同一面に固定された集電板32、34と素子端面10の平行度が維持されている。
 b)正極部12および負極部14の各集電体は、鈍角(90度未満の角度)に折り曲げられた状態で、集電板32、34の下面側に押し当てられ、平行度が維持された集電板32、34と素子端面10との間で正極部12および負極部14が屈曲状態に制御される。
 c)集電板32、34の中心部にある切欠部44を位置決め治具102の円柱部1021に対応させ、集電板32、34の切欠部44の中心部を円柱部1021に合致させる。集電板32、34の切欠部44で包囲された円柱部1021は押当ての際に、電池素子4の素子中心(巻回素子の場合には巻回中心)40に配置する。これにより、集電板32、34の切欠部44の中心を電池素子4の素子中心40に位置決めする。このように位置決めされた集電板32、34の上方にはレーザ照射装置64が配置される。
 このような位置決めと正極部12および負極部14の押圧状態について、図25(図25のBは作図上、正極部12、負極部14の中間部分を省略して示しています。)を参照する。
 図25のAに示す状態では、電池素子4の素子端面10にある正極部12を集電板32に接触させ、負極部14を集電板34に接触させた状態である。この状態は、電池素子4に対する押圧前またはその初期段階である。なお、図25のAは、正極部12の区画部12B、12C、負極部14の区画部14B、14Cを示すものである。
 また、図25のBに示す状態では、電池素子4に対する加圧状態(図24)が進み、正極部12は加圧状態で集電板32に接触しており、既述の鈍角状態である。同様に、負極部14は加圧状態で集電板34に接触しており、既述の鈍角状態である。すなわち、正極部12の各集電体が集電板32に密着して隙間無く接触し、同様に負極部14の各集電体も集電板34に密着して隙間無く接触させることができ、レーザ溶接の熱エネルギーを効率良く溶接部に作用させることができる。
〔第7の実施の形態〕
 第7の実施の形態は、電池素子の素子中心を基準に円弧状の溶接面部を形成した集電板を用いた構成を含んでいる。
 第7の実施の形態について、図26を参照する。図26は集電板および電池素子の電極部を示している。図26において、図6と同一部分には同一符号を付してある。
 この実施の形態の集電板32、34には、図26に示すように、各素子接続部50の間にたとえば、90度の扇型状の端子接続部48が形成され、この端子接続部48には、端子設置面部110、第1の溶接面部112および素子覆い部114が形成されている。
 端子設置面部110は外部端子を設置する面部であり、その形態はたとえば、平坦面部であって、正極端子28または負極端子30が載置される。正極端子28または負極端子30の面部を平坦面とし、各正極端子28または負極端子30を端子設置面部110に密着させる。この端子設置面部110の背面側には電池素子4側の正極部12の区画部12Aまたは負極部14の区画部14Aを挿入する凹部116が形成されている。
 接続面部112は、電池素子4の側面側に向かう円弧状の面部である。素子覆い部114は、端子設置面部110との間で接続面部112を段差として立ち下がり、電池素子4の素子端面10を覆う平坦面部である。すなわち、各集電板32、34に平坦な端子設置面部110を残し、円弧状に素子覆い部114を切削または成形することにより、接続面部112が端子設置面部110と素子覆い部114との段差で形成された円弧面である。接続面部112の円弧面は、電池素子4の素子中心40を中心とする電池素子4と同一または近似の同心円面である。電池素子4については、各部に上記実施の形態と同一符号を付し、その説明を割愛する。
 次に、集電板32、34と外部端子の溶接について、図27を参照する。図27は集電板32、34と外部端子の溶接例を示している。
 図27に示すように、電池素子4の素子端面10の正極部12には正極側の集電板32が設置されて溶接され、負極部14には負極側の集電板34が設置されて溶接される。この場合、集電板32の端子設置面部110には正極端子28、集電板34の端子設置面部110には負極端子30が設置されている。正極端子28の溶接面部54は集電板32の溶接面部112に位置決めされ、一様な面部を形成している。同様に、負極端子30の溶接面部54は集電板34の溶接面部112に位置決めされ、一様な面部を形成している。
 このように2つの面部を一致させて一様な面部に設定し、レーザ照射66を行い、溶接面部54、112間を溶着させる。集電板32の端子設置面部110には正極端子28が接続され、集電板34の端子設置面部110には負極端子30が接続される。つまり、正極端子28には電池素子4の正極部12、負極端子30には負極部14が接続される。
 このように、各溶接面部54、112を同一の曲率半径を持つ円弧面とするので、レーザ照射66による溶着部を広範囲化することができるが、これに限らず、各溶接面部54、112を同一の直線状の面部とすることもできる。
 次に、レーザ溶接について、図28を参照する。図28はレーザ照射角度および溶接面の一例を示している。
 各集電板32、34は、電池素子4の素子端面10の素子中心40を基準に設置され、電池素子4の正極部12または負極部14に接続されている。そこで、図28に示すように、端子設置面部110に設置された正極端子28または負極端子30は、溶接面部54を溶接面部112に一致させる。レーザ照射装置64のレーザ出射部118を溶接面部54、112に向けて設置する。
 レーザ出射部118と、溶接面部54、112のレーザ照射点119との距離をLpとすれば、素子中心40を回動中心にしてレーザ照射装置64を矢印Nの方向に回転しても、距離Lpを維持することができる。そして、レーザ照射点119を中心に電池素子4の回動角度θとし、この回動角度θを溶接範囲に設定すれば、溶接面部54、112に同一の距離Lpで一様にレーザ照射66を行い、溶接をすることができる。レーザ照射66の距離Lpが同一であるとともに、安定したレーザ照射66を連続して行え、均一な溶接処理を行うことができる。接続の信頼性を高めることができる。
 なお、この実施の形態では、レーザ照射装置64を回転しているが、このレーザ照射装置64を固定し、電池素子4側を所定角度θだけ回動させて、レーザ照射66の走査を行ってもよい。
〔第8の実施の形態〕
 第8の実施の形態は、集電板の熱容量を増大させてレーザ溶接を行うことを含んでいる。
 既述のように蓄電デバイスの一例である電池2は、蓄電素子を構成する電池素子4の素子端面10に集電板32、34を備える。一例である電池素子4は巻回型素子であるが、巻回型素子以外の素子、たとえば、積層素子であってもよい。素子端面10に接続される集電板32、34間には、電池2の製造時、図23および図24に示す集電板32、34の位置決め治具102を放熱治具およびスペーサとして用いる。
 電池素子4の構成は、上記の実施の形態と同一であるので、同一符号を付し、その説明を割愛する。
 各集電板32、34は、電池素子4と図示しない外部端子との間に介在させる端子部材であって、図27に示すように集電板32は正極部12B、12C(図26)に溶接により接続され、集電板34は負極部14B、14Cに同様に接続される。各集電板32、34には、切欠部44を中心に端子接続部48、この端子接続部48を挟んで素子接続部50が形成されている。端子接続部48は外部端子(図1の正極端子28または負極端子30)側に接続する部分であって、素子接続部50との間に段差を設けて高く設定されている。
 集電板32、34の各素子接続部50には、図26に示すように、直方体状の突部122が形成され、各突部122が、各集電板32、34の対向縁面部124の縁端部に肉厚部を形成している。各突部122によって形成された肉厚部が集電板32、34の熱容量を増大させるとともに、集電板32、34が把持手段(たとえば、チャック)で把持される被把持部を構成している。被把持部を突部122と別個に形成してもよい。
 各集電板32、34は、電池素子4の素子中心40を基準に電池素子4の素子端面10に位置決めされ、既述の絶縁間隔16と同様に絶縁間隔36が設定される。そこで、電池2の製造には、既述の位置決め治具102(図23)が用いられる。この位置決め治具102は放熱手段の一例である。この位置決め治具102は熱吸収性、放熱性のよい金属材料たとえば、鋼材で形成され、中心保持部として円柱部1021とともに、この円柱部1021を中心に直径方向に間隔保持部として既述のアーム部1022、1023を備えている。
 円柱部1021は、位置決め対象である各集電板32、34の切欠部44を素子中心部40に位置決めする柱状部である。この柱状部の高さは、切欠部44の高さと一致または同等または高く形成されている。円柱部1021の外周の半径は、切欠部44の内周面の半径と同等に形成すればよい。
 アーム部1022、1023は、対向配置される集電板32、34の各対向縁面部124に当接され、円柱部1021で切欠部44を中心に、集電板32、34の間隔を平行に絶縁間隔36に保持する平行部である。アーム部1022、1023の形状は、偏平な直方体からなる板状体であって、表裏面を以て平行な基準面102A、102Bが形成されている。
 この位置決め治具102によれば、電池素子4の中心に配置された円柱部1021の周面部に切欠部44を当て、アーム部1022、1023の基準面102A、102Bに対向縁面部124を密着させれば、各集電板32、34が絶縁間隔36を設けて電池素子4の素子端面10の適正な位置に位置決めされる。しかも、各集電板32、34に位置決め治具102が放熱部材として接触させることができる。
 電池素子4に載置した集電板32、34は、既述のようにレーザ照射装置64から集電板32、34のレーザ照射部位68に対してレーザ照射66を行い、溶接を行う。このレーザ照射66は4箇所同時に行ってもよく、各部を交互に選択して行ってもよい。
 突部122を形成したことにより、各集電板32、34の熱容量は突部122の容積分だけ増加している。そして、レーザ照射部位68にレーザ照射66を行った場合、溶接箇所に生じた熱は、たとえば突部122を通じて放熱される。また、レーザ照射部位68の熱は、位置決め治具102にも流れ、各スペーサ103(図23)を通じて放熱される。このような放熱形態は他のレーザ照射部位68で生じた熱も同様に放熱される。
 このように各集電板32、34の熱容量が肉圧部の一例である突部122の形成によって増加したことにより、既述の放熱機能が高められ、その結果、レーザ溶接の際にレーザ照射装置64から各レーザ照射部位68に付与する溶接エネルギを高めることができる。この結果、従前のレーザ溶接の際にレーザ出力を高めると、集電板32、34や電極張出し部である正極部12、負極部14を構成している電極箔が薄いために生じていた欠落部やムラを抑制できる。しかも、レーザ出力を弱めた場合に未接続部が生じていた不都合はレーザ出力を高めることにより改善することができる。そして、集電板32、34の熱容量の向上と相俟って放熱効率が向上したことにより、集電板32、34や正極部12または負極部14に加えられる溶接エネルギを吸収でき、溶接精度を高め、接続の信頼性を向上させることができる。
 また、集電板32、34の突部122による熱容量の増加は、集電板32、34に多様な放熱ルートが確保されたことによる、溶接時の溶融熱量変化を抑制でき、溶接状態の安定化を図ることができ、溶接精度を向上させることができる。
〔第9の実施の形態〕
 第9の実施の形態は、集電板と端子の溶接について開示している。
 第9の実施の形態に係る、正極集電板132と正極端子130(又は負極集電板136と負極端子134)の溶接について図29を参照する。図29は正極集電板132および正極端子130の溶接部分を拡大して示している。
 正極集電板132は例えば、アルミニウム板をヘッダ加工され、その接続面部152は正極集電板132の上面又は下面に対して傾斜面を成している。一例として接続面部152は鉛直面に対して時計方向に傾斜する傾斜面であり、接触面165側の縁部は湾曲面となっている。また、正極端子130も例えば、アルミニウム板をヘッダ加工され、その端子側接続面164は正極集電板132に向かって傾斜面を成し、一例としての端子側接続面164は鉛直面に対して反時計方向に傾斜する傾斜面であり、接触面165側の縁部は正極集電板132と同様に湾曲面となっている。このため、正極端子130および正極集電板132は、接触面165側には互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167とを備えている。このような正極集電板132と正極端子130の形態は、負極集電板136と負極端子134との関係においても同様である。
 このような正極集電板132と正極端子130との側面側の接触位置(接触面165)と異なった位置にレーザビーム169(図30)の照射の中心位置(照射位置171、173)が設定されている。照射位置171は、図中接触面165より上方向にずれた位置であり、照射位置173は、図中接触面165より下方向にずれた位置である。これら照射位置171、173は、接触面165と異なる位置であって、レーザビーム169により形成されるナゲット138(図31)の範囲(溶接部)内に接触面165を包含し得る位置であればよい。
 このレーザビーム169の溶接形態について図30を参照する。レーザビーム169の溶接形態には、図30のAに示すように、熱伝導溶接と、図30のBに示すように、キーホール溶接とがある。金属間の溶接には何れの溶接形態を用いてもよいが、キーホール溶接では、図30のBに示すように、レーザビーム169の先鋭なフォーカス175を溶接面に当てるため、先鋭で長大なナゲット138を生じ、ナゲット138の成長に応じて多数のスパッタ177が形成される場合がある。
 これに対し、熱伝導溶接では、図30のAに示すように、レーザビーム169の照射位置171、173の手前にフォーカス175があるデフォーカスとし、照射位置171、173には口径の大きい照射部179が形成される。この照射部179では、先鋭なフォーカス175に比較し、緩やかに熱伝導を生じ、緩慢なナゲット138が形成される。即ち、熱伝導溶接では、照射部179の半径方向に広がりを持つナゲット138が生成される。この溶接処理では、レーザビーム169をデフォーカスすることによりナゲット径を拡大し、キーホール溶接を熱伝導溶接に移行させている。
 なお、既述した照射位置171、173と溶接エネルギーに関し、照射位置171、173は、レーザビーム169の中心位置を示している。また、レーザビーム169の照射範囲は、ナゲット138のナゲット径(図31)と同一となる。そこで、この中心位置を異ならせれば(つまり非接触部167ではなく、照射位置を平坦面とする)、レーザビーム169の最大エネルギーとなる中心位置による溶接エネルギーを溶接部分に低減させることなく、効率的に付与することができ、所望のナゲット深さ(溶接範囲)を得ることができる。
 このような熱伝導溶接によって形成されたナゲット138について図31を参照する。図31のAは照射位置171にレーザビーム169の照射の中心位置を設定して照射し、その照射形態はデフォーカスによりナゲット径を拡大させ、図31のBは照射位置173にレーザビーム169の照射の中心位置を設定して照射し、その照射形態はデフォーカスによりナゲット径を拡大させている。即ち、図31のAでは、ナゲット中心Oを接触面165より図中上方に設定し、図31のBでは、ナゲット中心Oを接触面165より図中下方に設定している。
 このような熱伝導溶接では、照射位置171または照射位置173を接触面165より上方向又は下方向にずらしても、ナゲット径が拡大されたナゲット138には接触面165が取り込まれ、正極集電板132と正極端子130が溶接されている。この図31において、φはナゲット径、Ndはナゲット深さ、Wdは溶接深さである。ナゲット径φが大きく、ナゲット138がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度及び溶接強度が高められる。なお、ナゲット深さNdと溶接深さWdとの寸法差を0.5〔mm〕以内に設定することで所望の溶接強度が得られる。
 また、ナゲット138の外面部には、溶接前、接触面165側に互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167が溶融によって一体化されることにより、緩やかな面部181が生成されている。
 ナゲット138は、正極集電板132と正極端子130との接触面165、または負極集電板136と負極端子134との接触面165と平行方向(接続面部152および端子側接続面164に沿って平行方向)に連続または非連続にて形成される。
 なお、この実施の形態では、レーザビーム169または電子ビームの照射位置171、173が接触面165と直交方向に異ならせているが、交差方向に異ならせてもよい。
 この第9の実施の形態によれば、次の効果が得られる。
 (1) 上記実施の形態では、レーザビーム169を用いているが、レーザビーム169に代えて電子ビームを用いてもよい。この実施の形態では、レーザビーム169または電子ビームを正極集電板132または負極集電板136と正極端子130または負極端子134との接触面165と異なる位置に照射するので、集電板と外部端子部材との接触面の状態に無関係に両者を溶接することができる。
 (2) レーザビーム169は、正極端子130(または負極端子134)側の照射位置171、正極集電板132(または負極集電板136)側の照射位置173の何れを選択してもよく、何れかの平坦面を選択してレーザビーム169または電子ビームを照射できる。このようなレーザビーム169または電子ビームの照射形態では、正極集電板132(または負極集電板136)と正極端子130(または負極端子134)との接触面165の加工精度が低く、たとえば隙間などがある場合でも、最適な溶接範囲を得ることができ、集電板と外部端子部材との間の溶接精度や溶接強度を高めることができる。
 (3)  正極集電板132(または負極集電板136)や正極端子130(または負極端子134)にはアルミニウムなどの比較的低い硬度の金属材料が使用され、ヘッダ加工などにより加工される場合には加工精度に限界がある。正極集電板132(又は負極集電板136)と正極端子130(または負極端子134)との間の接触面間に生じる隙間を避けることができない。このような場合に、既述のレーザビーム169や電子ビームの照射位置171、173を接触面165と異ならせることにより、溶接精度を高めることができる。
 (4)  レーザビーム169または電子ビームの照射位置171、173が接触面165と交差方向に異なればよいが、その多寡およびその範囲は、たとえば±0.1~±0.5〔mm〕であることが好ましい。この範囲に設定することでレーザビーム169または電子ビームによる溶接範囲に接触面165を含めることができる。
 レーザ溶接又は電子ビーム溶接のナゲット138の深さは溶接が可能であればよく、たとえば1.2〔mm〕以下が好ましい。この範囲に設定すれば、レーザビーム169または電子ビームの照射範囲を適正化でき、集電板及び外部端子部材の厚み寸法を増加させることがなく、蓄電デバイスの大型化を回避できる。
〔第10の実施の形態〕
 第10の実施の形態は、集電板と端子の溶接について開示している。
 第10の実施の形態に係る、正極集電板132と正極端子130(または負極集電板136と負極端子134)の溶接について図32を参照する。図32は正極集電板132および正極端子130の溶接部を拡大して示している。
 正極集電板132はたとえば、アルミニウム板をヘッダ加工され、一例として接続面部152には、覆い部として断面三角形状のカバー部153が形成されている。正極端子130も同様に例えば、アルミニウム板をヘッダ加工され、テーパ面163が形成されている。このテーパ面163の角度をカバー部153の内側壁面の傾斜角度と一致させれば、両者を合致させることができる。この場合、接触面165には加工精度に応じて隙間等が生じている。つまり、接触面165側には互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167とを備えている。このような正極集電板132と正極端子130の形態は、負極集電板136と負極端子134との関係においても同様である。
 このような正極集電板132と正極端子130の接触面165に一致した位置にレーザビーム169の照射の中心位置(照射位置171)が設定されている。照射位置171は、図中接触面165に一致してもよく、また、異なった位置でもよい。
 このレーザビーム169の溶接形態については、第9の実施の形態で説明した通りであるから、その説明を割愛する。
 熱伝導溶接によって形成されたナゲット138について図33を参照する。図33は照射位置171にレーザビーム169を照射し、その照射形態はデフォーカスによりナゲット径φを拡大させている。即ち、図33では、ナゲット中心Oを接触面165に一致するよう設定しているが、図中上方または下方(接触面165に対して交差方向を異ならせる)に設定してもよい。
 このような熱伝導溶接では、照射位置171が接触面165と一致しているため、ナゲット径φが拡大されたナゲット138には接触面165が取り込まれ、正極集電板132と正極端子130が溶接されている。ナゲット径φが大きく、ナゲット138がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度および溶接強度が高められる。
 また、ナゲット138の外面部には、溶接前、接触面165側のカバー部153(図32)と互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167とが溶融によって一体化されることにより、緩やかな面部181が生成されている。
 なお、レーザビーム169の照射位置171を図34のAに示すように、カバー部153(図32)またはカバー部153を設けた正極集電板132または負極集電板136の側面の範囲において、接触面165より上方向に異ならせ、又は図34のBに示すように、下方向に異ならせてもよい。この場合においても、ナゲット径が拡大されたナゲット138には接触面165が取り込まれ、正極集電板132と正極端子130が溶接される。この図34において、φはナゲット径、Ndはナゲット深さ、Wdは溶接深さである。ナゲット径φが大きく、ナゲット138がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度および溶接強度が高められる。なお、ナゲット深さNdと溶接深さWdとの寸法差を0.5〔mm〕以内に設定することで所望の溶接強度が得られる。
 ナゲット138は、正極集電板132と正極端子130との接触面165、または負極集電板136と負極端子134との接触面165と平行方向(接続面部152および端子側接続面164に沿って平行方向)に連続または非連続にて形成される。
 この第10の実施の形態によれば、第9の実施の形態と同様の効果が得られる。
 以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
 本発明の蓄電デバイスおよびその製造方法は、端子接続構造や接続工程の簡略化などに寄与し、生産性や信頼性を高めることができ、有益である。
 2 電池
 4 電池素子
 8 外装ケース
 10 素子端面
 12 正極部
 14 負極部
 16 絶縁間隔
 18 封口板
 28、130 正極端子
 30、134 負極端子
 32 正極側の集電板
 34 負極側の集電板
 36 絶縁間隔
 38 溶接接続部
 40 素子中心
 44 切欠部
 46 凹部
 48 端子接続部
 50 素子接続部
 52 第1の溶接面部
 54 第2の溶接面部
 120 正極側の集電体
 140 負極側の集電体
 56、58 セパレータ
 60 折目
 62 仕切り線
 12A、12B、12C、12D 区分
 14A、14B、14C、14D 区分
 64 レーザ照射装置
 66 レーザ照射
 68 レーザ照射部位
 72、74 接続板
 76 接続凹部
 78 溶接面部
 80 突出面部
 84 凹部
 86 突部
 90 ベース材
 92 分極性電極
 94 切込み
 96 段部
 98 チャック機構
 112 溶接面部
 114 素子覆い部
 116 凹部
 118 レーザ出射部
 119 レーザ照射点
 122 突部
 132 正極集電板
 136 負極集電板
 138 ナゲット
 153 カバー部
 163 テーパ面
 164 端子側接続面
 165 接触面
 169 レーザビーム
 171、173 照射位置
 177 スパッタ
                                                                                
 

Claims (19)

  1.  セパレータを挟んで正極側の電極体と負極側の電極体とを対向させた蓄電素子と、
     前記蓄電素子が収容されるケース部材を封口する封口部材と、
     前記蓄電素子の素子端面に前記電極体を取り出させた単一または複数の電極張出し部と、
     前記電極張出し部に接続された単一または複数の集電板と、
     前記封口部材に設置され、前記集電板と側面間で接続された端子部材と、
     を備えたことを特徴とする、蓄電デバイス。
  2.  正極側の電極張出し部と負極側の電極張出し部を前記蓄電素子の同一の素子端面に備えることを特徴とする、請求項1に記載の蓄電デバイス。
  3.  前記集電板と前記端子部材がレーザ溶接または電子ビーム溶接されていることを特徴とする、請求項1または2に記載の蓄電デバイス。
  4.  前記電極張出し部は折目を設けて前記素子端面上に折り曲げられていることを特徴とする、請求項1ないし3の何れかに記載の蓄電デバイス。
  5.  前記端子部材は、前記集電板に接続される外部端子と、該外部端子と前記集電板との間に設置された接続板とを含むことを特徴とする、請求項1ないし4の何れかに記載の蓄電デバイス。
  6.  前記蓄電素子の前記素子端面に張り出させた前記正極側の電極張出し部と前記負極側の電極張出し部との間に第1の絶縁間隔を設定し、
     前記蓄電素子の前記正極側の電極張出し部に設置された正極側の集電板と、前記負極側の電極張出し部に設置された負極側の集電板との間に第2の絶縁間隔を設定したことを特徴とする、請求項2ないし請求項5のいずれかに記載の蓄電デバイス。
  7.  前記集電板は、前記端子部材と接続する接続領域と、前記電極張出し部と接続する接続領域とを有し、これら接続領域を異なる位置に設定したことを特徴とする、請求項1ないし6の何れかに記載の蓄電デバイス。
  8.  前記集電板と前記端子部材は、前記蓄電素子の素子中心を基準とする円弧面とした接続面部を備えることを特徴とする、請求項1ないし7の何れかに記載の蓄電デバイス。
  9.  前記集電板は、肉厚部を備え、該肉厚部で前記集電板が持つ熱容量を増大させたことを特徴とする、請求項1ないし8の何れかに記載の蓄電デバイス。
  10.  前記集電板と前記端子部材との接触面に対してレーザビームまたは電子ビームによる溶接部をずらすことを特徴とする、請求項3ないし請求項9の何れかに記載の蓄電デバイス。
  11.  前記集電板または前記端子部材に形成された覆い部で前記集電板と前記端子部材との接触面を覆い、前記覆い部にレーザビームまたは電子ビームの照射により前記集電板および前記端子部材とを溶接した溶接部を備えることを特徴とする、請求項1ないし請求項10の何れかに記載の蓄電デバイス。
  12.  前記レーザビームまたは前記電子ビームの前記照射位置は、前記集電板と前記端子部材との接触面に一致させ、または前記接触面に対して交差方向に異ならせたことを特徴とする、請求項3ないし請求項11の何れかに記載の蓄電デバイス。
  13.  前記レーザ溶接または前記電子ビーム溶接のナゲット深さは1.2〔mm〕以下であることを特徴とする、請求項3ないし請求項12の何れかに記載の蓄電デバイス。
  14.  セパレータを介在させた正極体と負極体とを備える蓄電素子を形成する工程と、
     前記蓄電素子の正極側および負極側の前記電極体の何れか一方または双方を素子端面に引き出させた単一または複数の電極張出し部を形成する工程と、
     前記蓄電素子を収容するケース部材を封口する封口部材に設置された端子部材と、前記電極張出し部とを集電板を介在させて接続する工程と、
     を含むことを特徴とする、蓄電デバイスの製造方法。
  15.  前記電極張出し部および前記集電板を側面間で溶接により接続する工程と、
     前記集電板と前記端子部材とをレーザ溶接または電子ビーム溶接により接続する工程と、
     を含むことを特徴とする、請求項14に記載の蓄電デバイスの製造方法。
  16.  前記集電板を固定するとともに、前記集電板に前記蓄電素子を押し当てた状態で前記集電板と前記電極張出し部とをレーザ溶接により接続する工程を含むことを特徴とする、請求項14または15に記載の蓄電デバイスの製造方法。
  17.  前記集電板の上面に溶接ラインを設定し、該溶接ラインでレーザ照射を行い、前記集電板と前記蓄電素子の電極張出し部とを溶接する工程を含むことを特徴とする、請求項14ないし16の何れかに記載の蓄電デバイスの製造方法。
  18.  前記集電板に設定された溶接ライン上で照射するレーザ出力を変化させる工程を含むことを特徴とする、請求項14ないし17のいずれかに記載の蓄電デバイスの製造方法。
  19.  前記集電板と前記端子部材との接触面と異なる位置にレーザビームまたは電子ビームの照射位置を設定し、この照射位置にレーザビームまたは電子ビームを照射させることを特徴とする、請求項15ないし請求項18の何れかに記載の蓄電デバイス。

                                                                                    
PCT/JP2012/004198 2011-06-28 2012-06-28 蓄電デバイスおよび蓄電デバイスの製造方法 WO2013001821A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12805322.0A EP2728647B1 (en) 2011-06-28 2012-06-28 Battery and method for manufacturing the same
JP2013522451A JP6070552B2 (ja) 2011-06-28 2012-06-28 蓄電デバイスの製造方法
CN201280031675.1A CN103620824B (zh) 2011-06-28 2012-06-28 蓄电器件以及蓄电器件的制造方法
KR1020147001939A KR101943675B1 (ko) 2011-06-28 2012-06-28 축전 디바이스 및 축전 디바이스의 제조 방법
US14/135,810 US10777802B2 (en) 2011-06-28 2013-12-20 Electricity storage device and method for manufacturing electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-143558 2011-06-28
JP2011143558 2011-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/135,810 Continuation US10777802B2 (en) 2011-06-28 2013-12-20 Electricity storage device and method for manufacturing electricity storage device

Publications (1)

Publication Number Publication Date
WO2013001821A1 true WO2013001821A1 (ja) 2013-01-03

Family

ID=47423739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004198 WO2013001821A1 (ja) 2011-06-28 2012-06-28 蓄電デバイスおよび蓄電デバイスの製造方法

Country Status (6)

Country Link
US (1) US10777802B2 (ja)
EP (1) EP2728647B1 (ja)
JP (2) JP6070552B2 (ja)
KR (1) KR101943675B1 (ja)
CN (1) CN103620824B (ja)
WO (1) WO2013001821A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505532A (zh) * 2014-12-30 2015-04-08 天津力神电池股份有限公司 叠片式动力型锂离子电池及其装配方法
CN105830254A (zh) * 2013-08-14 2016-08-03 杜拉塞尔美国经营公司 蓄电池制造
JP2019523975A (ja) * 2016-06-15 2019-08-29 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 金属イオン蓄電池又はスーパーキャパシタの電気化学バンドル用の電極、関連するバンドルの製造方法及び蓄電池
JP2019526921A (ja) * 2016-09-07 2019-09-19 コミッサリアット ア ル’エネルギエ アトミク エト アウクス エネルギーズ オルタナティブス 電気化学金属イオンバッテリ及び関連するバッテリ用の端子を形成するフィードスルー
WO2021020119A1 (ja) * 2019-07-30 2021-02-04 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
JPWO2021020117A1 (ja) * 2019-07-30 2021-02-04
WO2021020139A1 (ja) * 2019-07-30 2021-02-04 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021024734A1 (ja) * 2019-08-08 2021-02-11 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具及び電動車両
CN112570917A (zh) * 2020-11-30 2021-03-30 深圳睿蚁科技有限公司 一种锂电池组自动焊接工艺
WO2021192664A1 (ja) * 2020-03-26 2021-09-30 三洋電機株式会社 二次電池
WO2022085561A1 (ja) * 2020-10-23 2022-04-28 株式会社村田製作所 二次電池、電子機器及び電動工具
WO2023286600A1 (ja) * 2021-07-14 2023-01-19 三洋電機株式会社 円筒形電池及び円筒形電池の製造方法
WO2023032454A1 (ja) * 2021-08-30 2023-03-09 パナソニックホールディングス株式会社 電池および接合方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207026A (ja) * 2012-03-28 2013-10-07 Panasonic Corp キャパシタ及びこれを用いたキャパシタモジュール
JP6244855B2 (ja) * 2013-11-26 2017-12-13 日本ケミコン株式会社 蓄電デバイスおよびその製造方法
CN105849840B (zh) * 2013-12-26 2018-12-18 日立化成株式会社 电容器
KR102257679B1 (ko) * 2014-09-17 2021-05-28 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
DE102015209045A1 (de) * 2015-05-18 2016-11-24 Robert Bosch Gmbh Akkumulatorzelle und Verfahren zur Herstellung desselben
JP6668628B2 (ja) * 2015-07-27 2020-03-18 日本ケミコン株式会社 コンデンサおよびコンデンサの製造方法
US10490842B2 (en) * 2016-05-12 2019-11-26 Bosch Battery Systems Llc Prismatic electrochemical cell having an improved electrical connection between the electrode assembly and the terminal
JP6787009B2 (ja) * 2016-09-30 2020-11-18 日本ケミコン株式会社 蓄電デバイス、蓄電デバイスの製造方法および集電板の製造方法
KR102155029B1 (ko) * 2017-06-27 2020-09-11 주식회사 엘지화학 전극 탭의 용접 방법 및 이에 따라 용접된 전극을 포함하는 케이블형 이차전지
KR102012674B1 (ko) * 2017-10-25 2019-08-23 주식회사 한국배터리검사서비스 일방향 단자부를 구비한 중공형 이차전지
GB2575981B (en) * 2018-07-30 2022-09-07 Gp Batteries International Ltd A battery
EP3878029A1 (en) * 2018-11-05 2021-09-15 Tesla, Inc. A cell with a tabless electrode
CN114865053A (zh) * 2021-01-19 2022-08-05 株式会社Lg新能源 电池及应用于其的集电体、包括该电池的电池组及汽车
US20220271344A1 (en) * 2021-02-19 2022-08-25 Lg Energy Solution, Ltd. Battery and current collector applied thereto, and battery pack and vehicle including the same
EP4322318A1 (en) * 2021-04-09 2024-02-14 LG Energy Solution, Ltd. Electrode assembly, battery cell, battery cell processing apparatus, and battery pack and vehicle including same
WO2022237807A1 (zh) * 2021-05-14 2022-11-17 陕西奥林波斯电力能源有限责任公司 大容量电池的导电连接片、极柱、集流盘及导电连接结构
EP4350822A1 (en) * 2021-05-27 2024-04-10 Panasonic Intellectual Property Management Co., Ltd. Joining method
DE102021113876A1 (de) * 2021-05-28 2022-12-01 Bayerische Motoren Werke Aktiengesellschaft Batteriezelle
JP2022189051A (ja) * 2021-06-10 2022-12-22 株式会社小松製作所 接合方法及び蓄電デバイス
CN116073038A (zh) * 2021-10-29 2023-05-05 株式会社Lg新能源 圆柱形电池单元、电池组、车辆和集流板
WO2023108509A1 (zh) * 2021-12-15 2023-06-22 宁德时代新能源科技股份有限公司 集流构件、电池单体、电池及用电设备
WO2023206192A1 (zh) * 2022-04-28 2023-11-02 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备、电极组件及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263977A (ja) 2002-03-11 2003-09-19 Sanyo Electric Co Ltd 二次電池
JP2004071267A (ja) * 2002-08-05 2004-03-04 Sanyo Electric Co Ltd 電池
JP2007066599A (ja) * 2005-08-30 2007-03-15 Matsushita Electric Ind Co Ltd 蓄電池および電池パック
JP2007335156A (ja) * 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP2008192321A (ja) * 2007-01-31 2008-08-21 Sanyo Electric Co Ltd 円筒型蓄電池およびその製造方法

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560575B2 (ja) 1991-08-20 1996-12-04 株式会社ユアサコーポレーション 蓄電池の製造法
JP3525450B2 (ja) 1993-03-17 2004-05-10 日本ケミコン株式会社 積層型電解コンデンサ
JP3468847B2 (ja) 1994-06-22 2003-11-17 三菱電機株式会社 電池用電極装置
JPH0822818A (ja) * 1994-07-05 1996-01-23 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPH08287954A (ja) 1995-04-18 1996-11-01 Sumitomo Bakelite Co Ltd 非水電解液箱形二次電池
JPH09129519A (ja) 1995-10-30 1997-05-16 Matsushita Electric Ind Co Ltd 安全機構付き電解コンデンサ
JPH1083833A (ja) 1996-09-06 1998-03-31 Japan Storage Battery Co Ltd 二次電池
JPH11219857A (ja) 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
US6222720B1 (en) 1997-12-22 2001-04-24 Asahi Glass Company Ltd. Electric double layer capacitor
JPH11251190A (ja) 1997-12-22 1999-09-17 Asahi Glass Co Ltd 電気二重層キャパシタ
JPH11307075A (ja) * 1998-04-17 1999-11-05 Furukawa Battery Co Ltd:The 樹脂モールド型極柱とストラップとの接続方法
JP2000040641A (ja) 1998-07-24 2000-02-08 Asahi Glass Co Ltd 電気二重層キャパシタ
JP3713978B2 (ja) * 1998-09-25 2005-11-09 松下電器産業株式会社 巻回型電池
JP4866496B2 (ja) 1999-04-08 2012-02-01 パナソニック株式会社 二次電池の製造方法
JP2001068379A (ja) * 1999-08-24 2001-03-16 Honda Motor Co Ltd 電気二重層コンデンサ
US6456484B1 (en) 1999-08-23 2002-09-24 Honda Giken Kogyo Kabushiki Kaisha Electric double layer capacitor
JP2001102031A (ja) 1999-09-30 2001-04-13 Sanyo Electric Co Ltd 電気エネルギー蓄積デバイス及びその製造方法
JP4681181B2 (ja) 1999-09-30 2011-05-11 旭硝子株式会社 蓄電素子
US6534212B1 (en) * 2000-05-05 2003-03-18 Hawker Energy Products, Inc. High performance battery and current collector therefor
US6292348B1 (en) 2000-08-22 2001-09-18 Chieh-Fu Lin Surface mounted capacitor
JP2003001452A (ja) 2001-06-15 2003-01-08 Furukawa Electric Co Ltd:The レーザ溶接方法およびその方法を用いて製造された半導体レーザモジュール
JP2003059765A (ja) 2001-08-17 2003-02-28 Nec Tokin Ceramics Corp 集電体
JP2002164259A (ja) 2001-10-03 2002-06-07 Nippon Chemicon Corp 電解コンデンサの外部端子固定方法
CN1701402A (zh) 2003-03-19 2005-11-23 松下电器产业株式会社 电容器和连接电容器的方法
WO2004084246A1 (ja) 2003-03-19 2004-09-30 Matsushita Electric Industrial Co., Ltd. コンデンサおよびその接続方法
KR100516108B1 (ko) * 2003-04-11 2005-09-21 주식회사 네스캡 전기에너지 저장장치 및 이의 제조 방법
KR100542187B1 (ko) * 2003-08-21 2006-01-10 삼성에스디아이 주식회사 이차 전지 및 이의 제조 방법
EP1677322A1 (en) 2003-10-21 2006-07-05 Asahi Glass Company Ltd. Electric double layer capacitor
JP2005340610A (ja) 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd コンデンサ及びその製造方法
JP2006004729A (ja) 2004-06-17 2006-01-05 Matsushita Electric Ind Co Ltd 電気化学素子
JP4616052B2 (ja) 2005-04-08 2011-01-19 パナソニック株式会社 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ
JP2006313818A (ja) * 2005-05-09 2006-11-16 Kohoku Kogyo Kk 外部端子付き封口板およびその製造方法
US8088516B2 (en) * 2005-11-18 2012-01-03 Acme Aerospace, Inc. Storage battery electrodes with integral conductors
US7830647B2 (en) 2005-12-13 2010-11-09 Panasonic Corporation Capacitor
JP5073947B2 (ja) 2006-01-12 2012-11-14 ニチコン株式会社 巻回型コンデンサおよびその製造方法
JP2007326140A (ja) 2006-06-09 2007-12-20 Phoeton Corp レーザ溶接方法
JP5086566B2 (ja) 2006-06-13 2012-11-28 本田技研工業株式会社 蓄電素子
US7916454B2 (en) 2006-10-16 2011-03-29 Panasonic Corporation Capacitor
WO2008099578A1 (ja) 2007-02-14 2008-08-21 Panasonic Corporation コンデンサ
JP5121279B2 (ja) * 2007-03-30 2013-01-16 三洋電機株式会社 密閉型電池の製造方法
US7983021B2 (en) 2007-10-31 2011-07-19 Corning Incorporated Oblong electrochemical double layer capacitor
JP2009188095A (ja) 2008-02-05 2009-08-20 Honda Motor Co Ltd 蓄電体接続構造
US8492675B2 (en) * 2008-04-21 2013-07-23 Honda Motor Co., Ltd. Laser welding Al and Fe members with Zn filler
JP2010010166A (ja) 2008-06-24 2010-01-14 Panasonic Corp コンデンサの製造方法
JP5380985B2 (ja) 2008-09-30 2014-01-08 パナソニック株式会社 キャパシタの製造方法及びキャパシタ
WO2010041461A1 (ja) 2008-10-10 2010-04-15 パナソニック株式会社 蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法
JP2010093178A (ja) 2008-10-10 2010-04-22 Panasonic Corp 電気化学キャパシタ及びその製造方法
JP2010114240A (ja) 2008-11-06 2010-05-20 Panasonic Corp キャパシタ及びこれを用いたキャパシタユニット
JP2010118374A (ja) 2008-11-11 2010-05-27 Panasonic Corp キャパシタ
EP2347461B1 (en) * 2008-11-21 2016-04-06 Johnson Controls Saft Advanced Power Solutions LLC Current collector for an electrochemical cell
JP2010135651A (ja) 2008-12-05 2010-06-17 Chiba Inst Of Technology 金属箔の接続構造及びその接続方法及びコンデンサ
US20100155378A1 (en) * 2008-12-18 2010-06-24 Hans-Herbert Fuchs Battery Manufacturing
KR101049282B1 (ko) * 2009-03-03 2011-07-13 주식회사 네스캡 전기에너지 저장장치
US20120055909A1 (en) * 2009-05-15 2012-03-08 Hideaki Miyake Method of laser-welding and method of manufacturing battery including the same
JP5866772B2 (ja) 2011-02-22 2016-02-17 日本ケミコン株式会社 コンデンサ及びその端子接続方法
JP5764912B2 (ja) 2010-11-09 2015-08-19 日本ケミコン株式会社 コンデンサ及びその製造方法
JP2012104620A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
WO2012023289A1 (ja) * 2010-08-18 2012-02-23 日本ケミコン株式会社 コンデンサ、その製造方法及び製造プログラム
JP2012104618A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
JP5482565B2 (ja) 2010-08-18 2014-05-07 日本ケミコン株式会社 コンデンサ及びその製造方法
JP6069818B2 (ja) 2011-06-30 2017-02-01 日本ケミコン株式会社 コンデンサの製造方法および製造プログラム
JP5866753B2 (ja) 2010-11-09 2016-02-17 日本ケミコン株式会社 コンデンサ及びその製造方法
JP5928993B2 (ja) 2010-11-09 2016-06-01 日本ケミコン株式会社 コンデンサの製造方法
JP2012104621A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
JP2012104622A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
US8309246B2 (en) * 2010-10-25 2012-11-13 Sb Limotive Co., Ltd. Terminal of rechargeable battery and method of manufacturing the same
CN103210459B (zh) 2010-11-09 2016-08-10 日本贵弥功株式会社 电容器及其制造方法
JP5961940B2 (ja) 2011-07-21 2016-08-03 日本ケミコン株式会社 コンデンサの製造方法
JP5961939B2 (ja) 2011-07-21 2016-08-03 日本ケミコン株式会社 コンデンサの製造方法
US8780528B2 (en) 2011-06-27 2014-07-15 Panasonic Corporation Electrolyte and electric double-layer capacitor using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263977A (ja) 2002-03-11 2003-09-19 Sanyo Electric Co Ltd 二次電池
JP2004071267A (ja) * 2002-08-05 2004-03-04 Sanyo Electric Co Ltd 電池
JP2007066599A (ja) * 2005-08-30 2007-03-15 Matsushita Electric Ind Co Ltd 蓄電池および電池パック
JP2007335156A (ja) * 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP2008192321A (ja) * 2007-01-31 2008-08-21 Sanyo Electric Co Ltd 円筒型蓄電池およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728647A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830254A (zh) * 2013-08-14 2016-08-03 杜拉塞尔美国经营公司 蓄电池制造
JP2016533013A (ja) * 2013-08-14 2016-10-20 デュラセル、ユーエス、オペレーションズ、インコーポレーテッド バッテリの製造
CN104505532A (zh) * 2014-12-30 2015-04-08 天津力神电池股份有限公司 叠片式动力型锂离子电池及其装配方法
JP2019523975A (ja) * 2016-06-15 2019-08-29 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 金属イオン蓄電池又はスーパーキャパシタの電気化学バンドル用の電極、関連するバンドルの製造方法及び蓄電池
JP2019526921A (ja) * 2016-09-07 2019-09-19 コミッサリアット ア ル’エネルギエ アトミク エト アウクス エネルギーズ オルタナティブス 電気化学金属イオンバッテリ及び関連するバッテリ用の端子を形成するフィードスルー
JP7074263B2 (ja) 2019-07-30 2022-05-24 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021020119A1 (ja) * 2019-07-30 2021-02-04 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021020117A1 (ja) * 2019-07-30 2021-02-04 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021020139A1 (ja) * 2019-07-30 2021-02-04 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
JPWO2021020139A1 (ja) * 2019-07-30 2021-02-04
CN114207870B (zh) * 2019-07-30 2024-03-29 株式会社村田制作所 二次电池、电池组、电子设备、电动工具、电动式航空器以及电动车辆
JP7298691B2 (ja) 2019-07-30 2023-06-27 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
JPWO2021020117A1 (ja) * 2019-07-30 2021-02-04
CN114207870A (zh) * 2019-07-30 2022-03-18 株式会社村田制作所 二次电池、电池组、电子设备、电动工具、电动式航空器以及电动车辆
CN114080709A (zh) * 2019-07-30 2022-02-22 株式会社村田制作所 二次电池、电池包、电子设备、电动工具、电动式航空器以及电动车辆
JP7047978B2 (ja) 2019-08-08 2022-04-05 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具及び電動車両
JPWO2021024734A1 (ja) * 2019-08-08 2021-02-11
WO2021024734A1 (ja) * 2019-08-08 2021-02-11 株式会社村田製作所 二次電池、電池パック、電子機器、電動工具及び電動車両
WO2021192664A1 (ja) * 2020-03-26 2021-09-30 三洋電機株式会社 二次電池
CN115280589A (zh) * 2020-03-26 2022-11-01 三洋电机株式会社 二次电池
WO2022085561A1 (ja) * 2020-10-23 2022-04-28 株式会社村田製作所 二次電池、電子機器及び電動工具
CN112570917A (zh) * 2020-11-30 2021-03-30 深圳睿蚁科技有限公司 一种锂电池组自动焊接工艺
WO2023286600A1 (ja) * 2021-07-14 2023-01-19 三洋電機株式会社 円筒形電池及び円筒形電池の製造方法
WO2023032454A1 (ja) * 2021-08-30 2023-03-09 パナソニックホールディングス株式会社 電池および接合方法

Also Published As

Publication number Publication date
JP6070552B2 (ja) 2017-02-01
US20140113185A1 (en) 2014-04-24
JPWO2013001821A1 (ja) 2015-02-23
US10777802B2 (en) 2020-09-15
KR101943675B1 (ko) 2019-01-29
CN103620824B (zh) 2017-07-04
EP2728647B1 (en) 2018-10-10
JP6264431B2 (ja) 2018-01-24
EP2728647A4 (en) 2015-03-04
EP2728647A1 (en) 2014-05-07
JP2017063044A (ja) 2017-03-30
CN103620824A (zh) 2014-03-05
KR20140047091A (ko) 2014-04-21

Similar Documents

Publication Publication Date Title
JP6264431B2 (ja) 蓄電デバイス
JP6505859B2 (ja) 非水電解液二次電池
WO2012063486A1 (ja) コンデンサ及びその製造方法
JP6853762B2 (ja) 二次電池
US20180287124A1 (en) Energy storage device, method of manufacturing energy storage device, current collector, and cover member
KR20200053463A (ko) 전기화학적 셀을 위한 적층된 각기둥형 아키텍처
US10516152B2 (en) Energy storage device
JP5961940B2 (ja) コンデンサの製造方法
JP5961939B2 (ja) コンデンサの製造方法
CN108808011B (zh) 二次电池和集电端子
JP5928993B2 (ja) コンデンサの製造方法
JP2015026522A (ja) 電極収納セパレータ及び蓄電装置
JP2007213948A (ja) 角型電池用電極群の製造方法および角形電池用電極群
JP2012104622A (ja) コンデンサ及びその製造方法
JP5764912B2 (ja) コンデンサ及びその製造方法
JP2012104618A (ja) コンデンサ及びその製造方法
JP2007207677A (ja) 角形電池用電極群の製造方法および角形電池用電極群
JP6641978B2 (ja) 電極組立体の製造方法及び電極組立体
JP7216061B2 (ja) 二次電池の製造方法
WO2023157229A1 (ja) 二次電池
WO2022259952A1 (ja) 接合方法及び蓄電デバイス
JP6112144B2 (ja) コンデンサ及びその製造方法
JP2015153455A (ja) 蓄電装置及びその製造方法
JP2019046803A (ja) 蓄電素子及び蓄電装置
JPWO2019116914A1 (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012805322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147001939

Country of ref document: KR

Kind code of ref document: A