WO2012063486A1 - コンデンサ及びその製造方法 - Google Patents

コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2012063486A1
WO2012063486A1 PCT/JP2011/006266 JP2011006266W WO2012063486A1 WO 2012063486 A1 WO2012063486 A1 WO 2012063486A1 JP 2011006266 W JP2011006266 W JP 2011006266W WO 2012063486 A1 WO2012063486 A1 WO 2012063486A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
welding
collector plate
capacitor
anode
Prior art date
Application number
PCT/JP2011/006266
Other languages
English (en)
French (fr)
Inventor
正行 森
久保内 達郎
晃弘 古澤
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010251352A external-priority patent/JP5764912B2/ja
Priority claimed from JP2010251355A external-priority patent/JP2012104620A/ja
Priority claimed from JP2010251356A external-priority patent/JP2012104621A/ja
Priority claimed from JP2011035484A external-priority patent/JP5866772B2/ja
Priority claimed from JP2011160247A external-priority patent/JP5961939B2/ja
Priority claimed from JP2011160248A external-priority patent/JP5961940B2/ja
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to CN201180053897.9A priority Critical patent/CN103210459B/zh
Publication of WO2012063486A1 publication Critical patent/WO2012063486A1/ja
Priority to US13/890,426 priority patent/US9672985B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/01Form of self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Definitions

  • Patent Document 5 a multilayer capacitor element having a connection terminal on the element end face side is known (for example, Patent Document 5).
  • connection there is a slight space between the capacitor element and the sealing member, but when this space is increased and the interval required for the connection member and connection is increased, the resistance is increased accordingly. Furthermore, the height dimension of the capacitor increases. If this distance (distance) is shortened, the size of the capacitor can be reduced by reducing the space, but the connection interval between the capacitor element and the sealing member is shortened, and it takes time to connect or incomplete connection. There are challenges.
  • the current collector plate and the external terminal member are connected by welding.
  • laser welding or electron beam welding is used.
  • the welded portion is irradiated with a laser beam or electron beam to melt and integrate the metal in the welded portion.
  • contact between the current collector plate and the external terminal is required, and the contact portion is required to have processing accuracy necessary for welding.
  • the processing accuracy is low, such as variations in the shape accuracy of the current collector plate and the external terminal member, a gap is generated between the contact surfaces between the current collector plate and the external terminal member.
  • the object of the present invention is to provide a capacitor with improved welding accuracy and connection strength between the current collector plate and the external terminal member without being affected by the processing accuracy of the current collector plate and the external terminal member. Is to provide.
  • a capacitor according to the present invention includes a capacitor element that is a winding element or a non-winding element including an electrode body on the anode side and a cathode side, and a separator interposed between the electrode bodies, and the capacitor A sealing member that seals an opening of a case member that accommodates the element; a single or a plurality of electrode projecting portions projecting from one or both of the electrode bodies on the element end surface of the capacitor element; and the electrode projecting A single or a plurality of current collector plates connected to the portion, and a terminal member that is installed on the sealing member, overlapped with the current collector plate, and has a side surface welded thereto.
  • the electrode protruding portion includes an anode protruding portion protruding from the electrode body on the anode side of the capacitor element to an element end surface, and the electrode on the cathode side of the capacitor element. Either one or both of the cathode overhanging portions that protrude from the body to the same element end face as the element end face or a different element end face may be used.
  • the current collector plate may be provided with a flat portion protruding in an outer peripheral direction from a side surface portion welded to the terminal member.
  • the terminal member is welded to the current collector plate by laser welding or electron beam welding, and a laser beam or electron beam is applied to the contact surface between the current collector plate and the terminal member.
  • the irradiation position of may be different.
  • a method for manufacturing a capacitor according to the present invention includes a capacitor element that is a wound element or a non-winding element including anode-side and cathode-side electrode bodies and a separator interposed between the electrode bodies.
  • the electrode body is projected on the element end surface of the element, and a step of forming a single or a plurality of electrode projecting portions on the element end surface, and a sealing member that seals the opening of the case member accommodating the capacitor element
  • the method of manufacturing a capacitor further includes a step of positioning a side surface portion of the current collector plate on the side surface portion of the terminal member, and the space between the side surface portions is defined as the common surface portion. Welding may be performed.
  • the step of stacking the terminal member and the current collector plate, contacting the terminal member and the current collector plate, the current collector plate and the terminal There may be included a step of welding the current collector plate and the terminal member by changing the irradiation position of the laser or electron beam with respect to the contact surface with the member.
  • the terminal member or the current collector plate connected to the electrode overhanging portion is provided with a cover portion, and the cover member includes the terminal member. And a step of covering the contact surface between the current collector plate and the current collector plate, and a step of setting a laser beam or electron beam irradiation position on the cover portion and welding the current collector plate and the external terminal member.
  • the irradiation position of the laser beam or the electron beam is coincident with a contact surface between the current collector plate and the terminal member, or on the contact surface. On the other hand, it may be different in the crossing direction.
  • the current collector plate is further stacked on the electrode overhanging portion, and a welding line is set on the current collector plate in a direction intersecting with the electrode body of the capacitor element.
  • a step of welding along the welding line may be included.
  • two or more welding lines are set adjacently to a plurality of locations of the current collector plates facing each other with an insulation interval, and straddle the element center of the capacitor element. After continuously welding the two or more welding lines adjacent to each other at a specific location, the two or more welding lines other than the specific location are continuously welded, and the current collector plate and the capacitor element You may weld the said electrode overhang
  • the current collector plate is further installed in the electrode overhanging portion, and a welding line from the welding start point to the welding end point is set on the current collector plate.
  • the method may include a step of connecting the current collector plate to the electrode projecting portion by beam irradiation in which the beam output continuously irradiated to the welding line is changed stepwise or continuously.
  • the current collector plate installed on the element end face of the capacitor element and connected to the anode side or the cathode side has a circular shape in the lateral direction of the capacitor element.
  • the connecting surface is aligned with the second connecting surface, and the capacitor element or a welding means for irradiating a beam to the first connecting surface and the second connecting surface is used to rotate the capacitor element or the welding means.
  • a step of welding the first connection surface and the second connection surface to connect the current collector plate and the terminal member.
  • the first connection surface and the second connection surface are formed concentrically on the basis of the element center of the capacitor element, and the element center is defined.
  • the capacitor element or the welding means may be rotated about the rotation center.
  • a current collector plate connected to one or a plurality of electrode extending portions drawn from one or both of the anode-side and cathode-side electrode bodies of the capacitor element to the element end face, and a terminal member on the exterior member , And welded between the side parts, the space for the connection can be narrowed, and the resistance of the capacitor element can be reduced with enhanced connection and improved connection reliability. Low ESR can be achieved.
  • each of the anode side electrode bodies is connected with the current collector plate or the cathode side electrode body Since each is connected by the current collecting plate, the resistance of the capacitor element can be reduced.
  • the terminal member is provided with a second connection surface that matches the first connection surface of the current collector plate connected to the capacitor element, and the first and second connection surfaces are welded, The connection between the plate and the terminal member can be facilitated, and the connection reliability can be improved.
  • the outer case 20 is a molded body made of a moldable metal material such as aluminum.
  • the sealing plate 22 is a means for closing the opening 30 of the outer case 20 and maintaining the airtightness of the space 24, and is a fixing member for fixing the anode terminal 10 and the cathode terminal 14, and a support member for the capacitor element 4. Is configured.
  • the sealing plate 22 is provided with a base portion 26 and a sealing portion 28.
  • the base portion 26 is formed of an insulating material, for example, synthetic resin, and the anode terminal 10 and the cathode terminal 14 are fixed and insulated.
  • the sealing portion 28 is made of a material having high airtightness, for example, a rubber ring.
  • the sealing plate 22 is inserted into the opening 30 of the outer case 20 and is positioned at a caulking step 32 formed in the middle of the opening 30 side.
  • the open end 34 of the outer case 20 is crimped by a curling process and is bitten into the sealing portion 28. As a result, the outer case 20 is firmly sealed.
  • the base portion 26 of the sealing plate 22 is formed with a through hole 36 and a pressure release mechanism 38 made of thin rubber.
  • the anode part 6 or the cathode part 8 of the capacitor element 4 is processed into a capacitor as shown in FIG. 2 (or B in FIG. 4) before being connected to the anode current collector plate 12 or the cathode current collector plate 16. It is formed in close contact with the element end face of the element 4.
  • FIG. 4 is referred to for the anode part 6 and the cathode part 8 of the capacitor element 4.
  • FIG. 4 shows an example of the anode part and the cathode part of the capacitor element.
  • A shows the anode part and the cathode part before molding
  • B shows the anode part and the cathode part after molding. 4
  • the same parts as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals.
  • the thickness t of the anode current collector plate 12 can be changed at the portions of the element connection portions 56B and 56C and the terminal connection portion 56A.
  • the thickness of the terminal connection portion 56A can be set thicker (1.2 times or more) than the element connection portions 56B and 56C, and according to this, the element connection portion 56B, The heat generated in 56C is absorbed by terminal connecting portion 56A having a predetermined thickness, and the connection accuracy of laser welding is improved.
  • the partition portions 6B and 6C and the element connection portions 56B and 56C are partially or entirely melted and connected by laser irradiation from the peripheral direction of the capacitor element 4 toward the element center portion direction. ing. Such connection is the same on the cathode current collector plate 16 side.
  • the welding line (laser irradiation connection part 66) of the anode current collector plate 12 or the cathode current collector plate 16 and the anode part 6 or the cathode part 8 which has been irradiated with the laser and the vicinity thereof are heated, and the laser irradiation is made into the welding line. If this is done, the heating moves in a chained state along with the scanning of the laser irradiation, so that even if the laser output is not set to the same, the molten state is chained. For this reason, even if the laser output is attenuated stepwise and continuously, the thermal energy by the laser irradiation applied to the welded portion becomes uniform. For this reason, the connectivity between the anode current collector plate 12 or the cathode current collector plate 16 and the anode portion 6 or the cathode portion 8 is improved.
  • the thicknesses of the anode current collector plate 12, the cathode current collector plate 16, the anode terminal 10 and the cathode terminal 14 are 0.5 [mm] to 5 mm, respectively.
  • the range is set in the range of [mm]. According to this, it is possible to perform laser welding, the internal resistance is hardly increased, and the height of the electric double layer capacitor 2 can be shortened.
  • connection surface part 52 and the terminal side connection surface 64 are comprised as a plane by a notch, it is not restricted to this, A curved surface may be sufficient and it should just be the surface part which corresponded.
  • connection surface portion 52 and the terminal side connection surface 64 may be inclined surfaces (taper surfaces), and a gap may be formed between the connection surface portion 52 and the terminal side connection surface 64 depending on the processing accuracy. .
  • the second embodiment discloses a method for manufacturing a capacitor as described above.
  • This manufacturing process is an example of a method of manufacturing a capacitor according to the present invention.
  • a crease line 43 may be provided in advance in the anode part 6 or the cathode part 8 before the anode part 6 or the cathode part 8 is bent and molded.
  • the crease line 43 is formed at a position having a certain width (0.5 mm or more) from the element end face 5, and is thereby added to the part of the separator 40, 42 at the element end face position when the anode portion 6 or the cathode portion 8 is bent. Mechanical stress is reduced, and a short circuit due to contact between the anode body 60 and the cathode body 80 can be prevented.
  • the crease line 43 is not a flaw but a marking line, and can prevent buckling of the anode part 6 and the cathode part 8 during bending.
  • connection step (step S14) as shown in FIG. 7, the connection surface portion 52 of the anode current collector plate 12 connected to the anode portion 6 and the terminal side connection surface 64 of the anode terminal 10 on the sealing plate 22 are formed. Connect to the same surface by laser welding. Similarly, the cathode terminal 14 of the sealing plate 22 is connected to the cathode current collector plate 16 connected to the cathode portion 8 by laser welding. Also in this laser welding, by using an inert gas such as argon gas or helium gas as a shield gas, the capacitor element 4 is shielded, and the capacitor element 4 is separated from laser heat or flying spatter.
  • an inert gas such as argon gas or helium gas
  • the capacitor element 4 is impregnated with an electrolytic solution, and then accommodated in the outer case 20 and sealed by curling the open end 34 of the outer case 20 (step S15), and the electric double layer capacitor 2 (FIG. 1) as a product. ) Is completed.
  • the terminal connection portion 56A of the anode current collector plate 12 and the cathode current collector plate 16 is used for the anode terminal 10, the cathode terminal 14, and the terminal side connection surface 64.
  • 58A is formed with a recess 70 which is retracted toward the winding center 46 side.
  • the connection surface portion 52 described above is formed corresponding to the terminal side connection surface 64 of the anode terminal 10 or the cathode terminal 14.
  • FIG. 12 is referred to for the fourth embodiment.
  • FIG. 12 shows the current collector plate according to the fourth embodiment, the connection between the current collector plate and the external terminal, A is a current collector plate before connection with the capacitor element, B is before connection with the external terminal, C Indicates laser irradiation during connection.
  • the concave portions 73 and 75 constitute a flat portion that protrudes in the outer peripheral direction of the capacitor element 4 from a connection portion with the anode terminal 10 or the cathode terminal 14 that is an external terminal.
  • the protrusion 71 is formed with a notch 77 on the peripheral side, and a peripheral surface facing the notch 77 is formed in an arc shape to form a connection surface 79 with the anode terminal 10 or the cathode terminal 14.
  • a rectangular parallelepiped protrusion 81 is formed on the recesses 73 and 75 side as means for simultaneously gripping (chucking) the current collector plates 12 and 16.
  • the current collector plates 12 and 16 of this embodiment are installed so as to cover the element end face 5 of the capacitor element 4, and the anode portion 6 and the concave portions 73 and 75 of the anode current collector plate 12 Are connected by laser welding, and similarly, the cathode portion 8 and the recesses 73 and 75 of the cathode current collector plate 16 are connected by laser welding.
  • connection surface 79 having the same curved surface as the terminal side connection surface 64 is matched, and similarly, the connection surface 79 having the same curved surface as the terminal side connection surface 64 of the cathode terminal 14 is aligned and positioned. In this positioning state, the current collector plates 12 and 16 are connected to the anode terminal 10 or the cathode terminal 14 by performing laser irradiation 68.
  • a positioning convex portion 72 made of an insulating material is formed in a space portion between the anode terminal 10 and the cathode terminal 14, This positioning projection 72 is projected toward the winding center 46 of the capacitor element 4 (FIG. 1).
  • the positioning convex portion 72 includes a columnar portion 74 and a pair of flat plate-like standing wall portions 76.
  • the columnar part 74 is a columnar part corresponding to the arc of each arcuate notch 50 of the anode current collector plate 12 and the cathode current collector plate 16.
  • the columnar portion 74 includes a flat plate-like standing wall portion 76, and plate-like standing wall portions 76 that maintain the distance 61 between the anode current collector plate 12 and the cathode current collector plate 16 around the columnar portion 74.
  • the sixth embodiment discloses that a connection plate is provided separately from the current collector plate.
  • FIG. 14 is referred to for the sixth embodiment.
  • FIG. 14 shows an electric double layer capacitor according to a sixth embodiment.
  • the anode connection plate 88 is provided together with the anode terminal 10 as the anode terminal member
  • the cathode connection plate 90 is provided together with the cathode terminal 14 as the cathode terminal member.
  • the anode connecting plate 88 is connected to the anode terminal 10 by laser welding and then connected to the anode current collecting plate 12 on the capacitor element 4 side.
  • the cathode connection plate 90 is connected to the cathode terminal 14 by laser welding and then connected to the cathode current collector plate 16 on the capacitor element 4 side.
  • the anode connection plate 88 is formed with a connection recess 92 for positioning and connecting the anode terminal 10
  • the cathode connection plate 90 is formed with a connection recess 94 for positioning and connecting the cathode terminal 14.
  • a connection surface portion 96 corresponding to the connection surface portion 52 of the anode current collector plate 12 or the cathode current collector plate 16 is formed on a part of the peripheral surface of the anode connection plate 88 and the cathode connection plate 90.
  • the connecting surface portion 52 forms the same surface and is electrically connected by laser welding.
  • the seventh embodiment discloses welding of current collector plates and terminals.
  • FIG. 15 is referred with respect to welding of the anode current collector 112 and the anode terminal 110 (or the cathode current collector 116 and the cathode terminal 114) according to the seventh embodiment.
  • FIG. 15 shows an enlarged view of the welded portion of the anode current collector 112 and the anode terminal 110.
  • the inclined surface is inclined in the counterclockwise direction, and the edge portion on the contact surface 165 side is a curved surface like the anode current collector plate 112. For this reason, the contact surface 165 side includes a portion that is in close contact with each other and a non-contact portion 167 that curves and expands in the vertical direction.
  • the forms of the anode current collector 112 and the anode terminal 110 are the same in the relationship between the cathode current collector 116 and the cathode terminal 114.
  • the irradiation center positions (irradiation positions 171 and 173) of the laser beam 169 are set at positions different from the contact surface 165 between the anode current collector 112 and the anode terminal 110.
  • the irradiation position 171 is a position shifted upward from the contact surface 165 in the drawing
  • the irradiation position 173 is a position shifted downward from the contact surface 165 in the drawing.
  • the irradiation positions 171 and 173 may be positions that are different from the contact surface 165 and can include the contact surface 165 within the range of the nugget 118 (FIG. 17) formed by the laser beam 169.
  • the welding mode of the laser beam 169 includes heat conduction welding as shown in FIG. 16A and keyhole welding as shown in FIG. 16B. Any type of welding may be used for welding between metals, but in keyhole welding, the sharp focus 175 of the laser beam 169 is applied to the welding surface, so that a sharp and long nugget 118 is generated, and the growth of the nugget 118 is generated. Depending on the case, a large number of spatters 177 may be formed.
  • the focus 175 is defocused in front of the irradiation positions 171 and 173 of the laser beam 169, and an irradiation portion 179 having a large aperture is formed at the irradiation positions 171 and 173.
  • the irradiation unit 179 causes heat conduction more gently, and a slow nugget 118 is formed. That is, in heat conduction welding, a nugget 118 having a spread in the radial direction of the irradiation part 179 is generated.
  • the laser beam 169 is defocused to increase the nugget diameter, and the keyhole welding is shifted to the heat conduction welding.
  • the irradiation positions 171 and 173 indicate the center positions of the laser beam 169.
  • the irradiation range of the laser beam 169 is the same as the nugget diameter of the nugget 118 (FIG. 17). Therefore, if the center position is made different (that is, the irradiation position is not a non-contact portion 167 but a flat surface), the efficiency of the laser beam 169 is reduced without reducing the welding energy at the center position that is the maximum energy of the laser beam 169 to the welded portion. Therefore, a desired nugget depth (welding range) can be obtained.
  • FIG. 17 refers to the nugget 118 formed by such heat conduction welding.
  • 17A sets the irradiation center position of the laser beam 169 at the irradiation position 171, and the irradiation form enlarges the nugget diameter by defocusing.
  • FIG. 17B shows the laser beam 169 at the irradiation position 173. Irradiation is performed by setting the center position of irradiation, and the irradiation form increases the nugget diameter by defocusing. That is, in FIG. 17A, the nugget center O is set above the contact surface 165 in the drawing, and in FIG. 17B, the nugget center O is set below the contact surface 165 in the drawing.
  • is the nugget diameter
  • Nd is the nugget depth
  • Wd is the welding depth. Since the nugget diameter ⁇ is large and the nugget 118 approaches a flat shape as compared with the keyhole welding, a welding depth Wd ( ⁇ Nd) equivalent to the nugget depth Nd can be obtained. That is, this improves the welding accuracy and welding strength.
  • the desired welding strength can be obtained by setting the dimensional difference between the nugget depth Nd and the welding depth Wd within 0.5 [mm].
  • the outer surface portion of the nugget 118 is integrated by fusion with a portion that is in close contact with the contact surface 165 side before welding and a non-contact portion 167 that is curved and expanded in the vertical direction. A gentle surface portion 181 is generated.
  • the nugget 118 is parallel to the contact surface 165 between the anode current collector plate 112 and the anode terminal 110 or the contact surface 165 between the cathode current collector plate 116 and the cathode terminal 114 (along the connection surface portion 152 and the terminal side connection surface 164). (Parallel direction) is formed continuously or discontinuously.
  • the irradiation positions 171 and 173 of the laser beam 169 or the electron beam are varied in the direction orthogonal to the contact surface 165, but may be varied in the intersecting direction.
  • the laser beam 169 is used, but an electron beam may be used instead of the laser beam 169.
  • the laser beam 169 or the electron beam is irradiated to a position different from the contact surface 165 between the anode current collector 112 or the cathode current collector 116 and the external terminal member. Both can be welded regardless of the state of the contact surface.
  • either the irradiation position 171 on the external terminal side or the irradiation position 173 on the anode current collector 112 (or cathode current collector 116) side may be selected, and any flat surface is selected.
  • a laser beam or an electron beam can be irradiated.
  • a wide welding range can be obtained, and the welding accuracy and welding strength between the current collector plate and the external terminal member can be increased.
  • a relatively low hardness metal material such as aluminum is used for the anode current collector 112 (or cathode current collector 116) and the external terminal member, and the processing accuracy is limited when processed by header processing. There is. A gap generated between the contact surfaces between the anode current collector 112 (or the cathode current collector 116) and the external terminal member cannot be avoided. In such a case, welding accuracy can be improved by making the laser beam or electron beam irradiation positions 171 and 173 different from the contact surface 165 described above.
  • Irradiation positions 171 and 173 of the laser beam 169 or electron beam only need to be different from the contact surface 165 in the intersecting direction, but the number and range thereof are, for example, ⁇ 0.1 to ⁇ 0.5 [mm]. It is preferable. By setting this range, the contact surface 165 can be included in the welding range by the laser beam 169 or the electron beam.
  • the depth of the nugget 118 for laser welding or electron beam welding is only required to be able to be welded. If it is set within this range, the irradiation range of the laser beam 169 or the electron beam can be optimized, the thickness of the current collector plate and the external terminal member is not increased, and the enlargement of the capacitor can be avoided.
  • the eighth embodiment discloses welding of current collector plates and terminals.
  • FIG. 18 is referred with respect to welding of the anode current collector 112 and the anode terminal 110 (or the cathode current collector 116 and the cathode terminal 114) according to the eighth embodiment.
  • FIG. 18 is an enlarged view of the welded portion of the anode current collector plate 112 and the anode terminal 110.
  • the anode current collector 112 is formed by header processing an aluminum plate, and as an example, the connection surface portion 152 has a cover portion 153 having a triangular cross section.
  • the anode terminal 110 is formed by header processing an aluminum plate, for example, and a tapered surface 163 is formed. If the angle of the taper surface 163 is matched with the inclination angle of the inner wall surface of the cover portion 153, both can be matched. In this case, a gap or the like is generated on the contact surface 165 according to the processing accuracy.
  • the contact surface 165 side includes a portion that is in close contact with each other and a non-contact portion 167 that curves and expands in the vertical direction.
  • the forms of the anode current collector 112 and the anode terminal 110 are the same in the relationship between the cathode current collector 116 and the cathode terminal 114.
  • the irradiation center position (irradiation position 171) of the laser beam 169 is set at a position coinciding with the contact surface 165 between the anode current collector 112 and the anode terminal 110.
  • the irradiation position 171 may coincide with the contact surface 165 in the drawing or may be a different position.
  • FIG. 19 is referred to for the nugget 118 formed by heat conduction welding.
  • the irradiation position 171 is irradiated with a laser beam 169, and the irradiation form is such that the nugget diameter is expanded by defocusing. That is, in FIG. 19, the nugget center O is set so as to coincide with the contact surface 165, but may be set above or below in the figure (the crossing direction is different from the contact surface 165).
  • a portion that is in close contact with the cover portion 153 on the contact surface 165 side and a non-contact portion 167 that is curved and expands in the vertical direction are integrated by fusion. As a result, a gentle surface portion 181 is generated.
  • the irradiation position 171 of the laser beam 169 is varied upward from the contact surface 165 in the range of the side surface of the current collector plate provided with the cover portion 153 or the cover portion 153. As indicated by 20 B, it may be varied downward. Also in this case, the contact surface 165 is taken into the nugget 118 whose nugget diameter is enlarged, and the anode current collector 112 and the anode terminal 110 are welded.
  • is the nugget diameter
  • Nd is the nugget depth
  • Wd is the welding depth.
  • a welding depth Wd ( ⁇ Nd) equivalent to the nugget depth Nd can be obtained. That is, this improves the welding accuracy and welding strength.
  • the desired welding strength can be obtained by setting the dimensional difference between the nugget depth Nd and the welding depth Wd within 0.5 [mm].
  • the nugget 118 is parallel to the contact surface 165 between the anode current collector plate 112 and the anode terminal 110 or the contact surface 165 between the cathode current collector plate 116 and the cathode terminal 114 (along the connection surface portion 152 and the terminal side connection surface 164). (Parallel direction) is formed continuously or discontinuously.
  • Ninth Embodiment discloses laser irradiation output control for a welding line.
  • the anode portion 6 and the cathode portion 8 are formed on the element end surface 5 of the capacitor element 4, the anode current collector plate 12 is formed on the anode portion 6, and the cathode current collector is formed on the cathode portion 8.
  • a welding line from the welding start point to the welding end point is set on the current collector plate, and beam irradiation is performed by changing the beam output irradiated to the welding line stepwise and continuously.
  • FIG. 21 shows the welding line and laser output according to the ninth embodiment.
  • a in FIG. 21 is a welding line 218 on the anode current collector plate 12 or the cathode current collector plate 16.
  • a section d is set between the welding start point 218S and the welding end point 218E of the welding line 218 and outside the sections a, b, c and the welding end point 218E.
  • a fiber laser irradiation device 264 is used as an example of beam irradiation means, and the welding line 218 is a welded portion by laser irradiation.
  • a shielding gas such as argon gas or helium gas is used, and a welding process is performed.
  • the beam output is varied stepwise and continuously at the welding line 218 at a constant irradiation speed.
  • the laser output P is set to a constant value of the laser output Pa in the section a, the laser output Pb ( ⁇ Pa) in the section b, and from the laser output Pb in the section c.
  • the laser output is attenuated to Pc ( ⁇ Pb).
  • the laser output Pa in the section a is set to the highest value, and is 50 [W] to 3000 [W] as an example.
  • the laser output Pb in the section b is smaller than the laser output Pa and is set to 90% or less of the laser output Pa.
  • the laser output Pc in the section c is a value smaller than the laser output Pb, and the laser output is 80% or less of the laser output Pa.
  • the horizontal axis represents the distance [mm].
  • the laser output Pa irradiated at the welding start point 218S is set to the highest value, and the irradiation section a is set to be shorter than the section b.
  • the laser irradiation section b of the laser output Pb is set to be the longest.
  • the section c is set to a shorter time than the section b, and in this section c, the laser output Pb is linearly attenuated to the laser output Pc.
  • the laser output may be attenuated in the vicinity of the welding start point 218S and the welding end point 218E. That is, it is preferable that at least the attenuation of the laser output is two or more.
  • the laser scanning speed with respect to the welding line 218 may be a constant speed, for example, a constant speed selected from 300 [mm / sec] to 3000 [mm / sec]. It may be changed.
  • a plurality of welding lines may be set at each welding location of the anode current collector plate 12 with respect to the anode portion 6 and each welding location of the cathode current collector plate 16 with respect to the cathode portion 8 to multiplex the welding. .
  • the laser output is set high, and laser irradiation is performed with high laser output energy.
  • the anode current collector plate 12 or the cathode current collector plate 16 that has been irradiated with the laser and the welding line 218 of the anode portion 6 or the cathode portion 8 and the vicinity thereof are heated. That is, if the laser irradiation is performed along the welding line 218, the heating moves in a chained state along with the scanning of the laser irradiation, so that even if the laser output is not set to the same, the molten state is chained. Become.
  • the thermal energy by laser irradiation applied to the welded portion is made uniform.
  • the connectivity between the anode current collector plate 12 or the cathode current collector plate 16 and the anode portion 6 or the cathode portion 8 is improved.
  • the tenth embodiment discloses control of the irradiation angle of laser welding.
  • FIG. 22 shows an example of the laser irradiation angle and the welding surface according to the tenth embodiment.
  • the current collector plates 314A and 314B are installed with reference to the element center 321 of the element end surface 306 of the capacitor element 304, and are connected to the anode part 308 or the cathode part 310 of the capacitor element 304. Therefore, the connection surface 324 of each terminal welded portion 320 of each of the current collector plates 314A and 314B forms an arc surface based on the element center 321.
  • the anode terminal 330 ⁇ / b> A or the cathode terminal 330 ⁇ / b> B installed on the terminal installation surface portion 322 causes the connection surface 340 to coincide with the connection surface 324.
  • the laser emitting part 346 of the laser irradiation device 344 is installed toward the welding surfaces 324 and 340.
  • the distance between the laser emitting portion 346 and the laser irradiation point 348 of the connection surfaces 324 and 340 is Ld, the distance can be obtained even if the laser irradiation device 344 is rotated in the direction of arrow N with the element center 321 as the rotation center. Ld can be maintained.
  • the rotation angle ⁇ of the laser irradiation device 344 is set around the laser irradiation point 348 and this rotation angle ⁇ is set in the welding range, the laser irradiation 342 is uniformly applied to the connection surfaces 324 and 340 at the same distance Ld. Can be welded.
  • the distance Ld of the laser irradiation 342 is the same, stable laser irradiation 342 can be performed continuously, uniform welding processing can be performed, and connection reliability can be improved.
  • the capacitor element 304 may be rotated and welded with the element center 321 as the rotation center.
  • the laser irradiation device 344 is rotated about the element center 321 of the capacitor element 304 by a predetermined angle ⁇ to perform laser irradiation 342, and the anode terminal 330A and the current collector plate 314A are welded. Then, the capacitor element 304 is reversed (half rotation) and directed to the laser irradiation point 348, and the cathode terminals 330B facing the laser irradiation device 344 and the connection surfaces 324 and 340 of the current collector plate 314B are disposed. In this state, the laser irradiation device 344 is directed toward the element center 321, and the laser irradiation 342 is performed by rotating the laser irradiation device 344 by the predetermined angle ⁇ described above, and welding is performed.
  • connection surfaces 324 and 340 are uniformly welded, and the anode terminal 330A (cathode terminal 330B) and the current collector plate 314A (314B) are connected by the welded portion 350. Yes.
  • laser irradiation 342 is performed on the laser irradiation point 348. This laser irradiation 342 is performed in an atmosphere of an inert gas such as argon gas.
  • anode portion 308 (cathode portion 310) on the capacitor element 304 side is covered with the element covering portion 326 on the current collector plates 314A and 314B, the anode portion 308 (from the flying object generated by laser irradiation 342 or laser welding) The cathode part 310) and the capacitor element 304 can be protected.
  • the terminal member is provided with the second connection surface 340 that matches the first connection surface 324 of the current collector plate connected to the capacitor element, and the first and second connection surfaces are welded, The connection between the current collector plate and the terminal member can be facilitated, and the connection reliability can be improved.
  • the winding element is exemplified as the capacitor element.
  • the capacitor element is not limited to the winding element.
  • a multilayer element or a solid element may be used.
  • the electric double layer capacitor 2 is exemplified, but the present invention is not limited to this.
  • the same structure and method can be similarly applied to an electrolytic capacitor, and the same effect can be obtained.
  • connection surface portion 52 is a flat surface, it may be a curved surface as a shape that matches the shape of the external terminal. Also about the position of this connection surface part 52, either in the surface of a current collecting plate or a surrounding surface may be sufficient, and the convex part for a connection may be provided.
  • an insulation interval is provided between the anode portion and the cathode portion, but an insulation member may be provided at this insulation interval.
  • connection surface portion 52 may be formed by projecting the outer peripheral surface side of the current collector plate, and the connection surface portion 52 and the terminal side connection surface 64 may be arc-welded.
  • the anode 6 and the cathode 8 are formed in a semicircular shape, but the present invention is not limited to this.
  • the partition section 6B connected to the anode current collector plate 12 and the cathode current collector plate 16 Only 6C, 8B, and 8C are formed so as to project, and the partition 6A of the anode 6 and the partition 8A of the cathode 8 do not need to project.
  • the element connection portions 56B, 56C or 58B, 58C which are element connection regions between the anode portion 6 and the cathode portion 8, are divided into terminals by dividing into three parts as different positions of the current collector plate,
  • the terminal connection portions 56A and 58A which are connection regions, are set on the front and back surfaces of the current collector plate, and are set at different positions in the horizontal direction.
  • the element connection region (laser irradiation connection portion 66) may be set in a part of the current collector plate, and the terminal connection region (weld connection portion 18) may be set in other portions.
  • the element connection region and the terminal connection region may be close to each other as long as the welding positions are different on the front and back surfaces of the current collector plate. That is, the welding connection portion 18 may be set at a portion where the welding position does not overlap between the laser irradiation connection portion 66 and the front and back surfaces of the current collector plate in the element connection portion 56B which is an element connection region.
  • the capacitor and the method for manufacturing the same according to the present invention contribute to simplification of the terminal connection structure and the connection process, and can increase productivity and reliability, which is beneficial.

Abstract

 陽極側及び陰極側の電極体と、これら電極体間に介在されたセパレータ(40、42)を備えるコンデンサ素子(4、304)と、コンデンサ素子を収容するケース部材の開口部を封口する封口部材(封口板22)と、コンデンサ素子の素子端面に電極体から張り出させた電極張出し部(陽極部6、308、陰極部8、310)と、電極張出し部に接続された集電板(陽極集電板12、112、陰極集電板16、116)と、封口部材に設置され、集電板に重ねられるとともに側面部が溶接された端子部材(陽極端子10、110、330A、陰極端子14、114、330B)とを備えることにより、コンデンサの低抵抗化、接続構造の簡略化及び堅牢化とともに、接続の容易化を図っている。

Description

コンデンサ及びその製造方法
 本発明は、コンデンサ素子と、コンデンサ素子の外装部材を封口する封口部材にある外部端子との間の接続に関し、その接続にレーザ溶接を用いた例えば、電解コンデンサ、電気二重層コンデンサ等のコンデンサ及びその製造方法に関する。
 電気二重層コンデンサ又は電解コンデンサでは、コンデンサ素子と外部端子とを電気的に接続することが必要である。この電気的な接続により、素子側の内部抵抗の低減や、接続部分の接触抵抗を低減させる対策が施されている。
 このような電気的接続に関し、素子の端面に集電端子を設けること(例えば、特許文献1)、巻回素子の一方の端面に陽極集電板、他方の端面に陰極集電板を設けること(例えば、特許文献2)、巻回素子の端面に露出した集電箔を覆って集電板を備え、集電板と集電箔とを溶接接続すること(例えば、特許文献3)、また、集電板を外装ケースと素子との接続や外部端子との接続に用いること(例えば、特許文献4)が知られている。
 また、積層型のコンデンサ素子では、素子端面側に接続端子を備えるものが知られている(例えば、特許文献5)。
特開平11-219857号公報 特開2001-068379号公報 特開2007-335156号公報 特開2010-093178号公報 特開平6-275476号公報
 ところで、巻回型素子の各端面に集電板を備える構成では、巻回素子を外装する外装部材に陽極側及び陰極側の外部端子を隣接して設置した場合には、各外部端子と集電板との間に接続距離を確保する必要がある。また、巻回型素子では、内側部分と外側部分との間で内部抵抗の分布が異なるため、その対策が必要となり、素子と集電板との接続に注意を払う必要がある。また、集電板を用いた構造では素子の内部抵抗を低減できるが、外部端子と素子との間に介在する集電板に製造途上で加わる応力によっては接続の信頼性低下や接続抵抗が大きくなる場合がある。
 このような接続に関し、コンデンサ素子と封口部材との間には僅かなスペースが存在するが、このスペースを大きくし、接続部材や接続に要する間隔を増加させると、その分だけ抵抗を増加させ、更にはコンデンサの高さ寸法が増大する。この間隔(距離)を短くすれば、小スペース化によりコンデンサの小型化を図ることができるが、コンデンサ素子と封口部材との接続間隔が短くなり、接続に手間取ったり、接続が不完全になるという課題がある。
 また、コンデンサ素子の素子端面に集電板を備えて外部端子等の外部端子部材と接続する構成では、集電板と外部端子部材とを溶接によって接続する。この接続にはレーザ溶接や電子ビーム溶接が用いられ、これらの溶接ではレーザビームや電子ビームを溶接箇所に照射することにより、溶接部の金属が溶融して一体化される。このような溶接にあっては、溶接箇所にレーザビームや電子ビームを照射するので、集電板と外部端子との接触が必要であり、その接触部分には溶接に必要な加工精度が求められる。しかし、集電板や、外部端子部材の形状精度にばらつきがあるなど、これらの加工精度が低い場合には、集電板と外部端子部材との間の接触面間に隙間を生じる。
 このような隙間を生じた接触面間にレーザビームや電子ビームを照射すると、その隙間によって溶接領域が変動し、溶接精度が低下するという課題がある。また、接触面間の隙間が大きい場合には溶接範囲が狭小化したり、集電板と外部端子部材との間の接続強度が低下したり、接続抵抗が大きくなってしまうなどの課題がある。
 斯かる要求や課題について、特許文献1~5にはその開示や示唆はなく、それを解決する構成等についての開示や示唆はない。
 そこで、本発明の目的は、上記課題に鑑み、コンデンサの低抵抗化、接続構造の簡略化及び堅牢化とともに、接続の容易化を図ることにある。
 また、本発明の目的は、上記課題に鑑み、集電板や外部端子部材の加工精度に影響を受けることなく、集電板と外部端子部材との間の溶接精度や接続強度を高めたコンデンサを提供することにある。
 上記目的を達成するため、本発明のコンデンサは、陽極側及び陰極側の電極体と、これら電極体間に介在されたセパレータを備える巻回素子又は非巻回素子であるコンデンサ素子と、前記コンデンサ素子を収容するケース部材の開口部を封口する封口部材と、前記コンデンサ素子の素子端面に前記電極体の何れか一方又は双方から張り出させた単一又は複数の電極張出し部と、前記電極張出し部に接続された単一又は複数の集電板と、前記封口部材に設置され、前記集電板に重ねられるとともに側面部が溶接された端子部材とを備える。
 上記目的を達成するためには、上記コンデンサにおいて、前記電極張出し部は、前記電極体の一部で形成された集合体であって、前記コンデンサ素子の素子中心部に向けて前記素子端面上に屈曲成形されて前記集電板に接合させてもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記電極張出し部は、前記コンデンサ素子の陽極側の前記電極体から素子端面に張り出させた陽極張出し部、前記コンデンサ素子の陰極側の前記電極体から前記素子端面と同一の素子端面又は異なる素子端面に張り出させた陰極張出し部のいずれか一方又は双方であってもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記陽極張出し部及び前記陰極張出し部が前記コンデンサ素子の共通の前記素子端面に設置された場合、前記陽極張出し部と前記陰極張出し部との間を絶縁間隔又は絶縁部材の設置により絶縁してもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記集電板は、前記コンデンサ素子の前記素子端面に形成された単一又は複数の電極張出し部の一部又は全部に形成された単一又は複数の溶接面部と溶接される単一又は複数の第1の溶接面部と、前記第1の溶接面部と交差する側面部に設けられ、前記端子部材と溶接される第2の溶接面部と備えてもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記電極張出し部は、前記素子端面の素子中心部を中心にして所定角度で区画され、同一又は異なった曲げ角度を以て前記素子端面の中心方向に屈曲された複数の区画部と、前記素子端面上に前記区画部を以て形成された単一又は複数の溶接面部とを備てもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記集電板には、前記端子部材と溶接された側面部より、外周方向に突出する平坦部を備えてもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記端子部材は前記集電板にレーザ溶接又は電子ビーム溶接により溶接され、前記集電板と前記端子部材との接触面に対するレーザビーム又は電子ビームの照射位置を異ならせてもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記集電板又は前記端子部材に形成された覆い部で前記集電板と前記端子部材との接触面を覆い、前記覆い部にレーザビーム又は電子ビームの照射により前記集電板及び前記端子部材とを溶接した溶接部を備えてもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記端子部材との接触面に一致させ、又は前記接触面に対して交差方向に異ならせてもよい。
 上記目的を達成するためには、上記コンデンサにおいて、前記レーザ溶接又は前記電子ビーム溶接のナゲット深さが1.2〔mm〕以下であってもよい。
 上記目的を達成するため、本発明のコンデンサの製造方法は、陽極側及び陰極側の電極体と、これら電極体間に介在されたセパレータとを備える巻回素子又は非巻回素子であるコンデンサ素子の素子端面に前記電極体を張り出させ、前記素子端面に単一又は複数の電極張出し部を形成する工程と、前記コンデンサ素子を収容するケース部材の開口部を封口する封口部材に設置された端子部材と、前記電極張出し部に接続されている単一又は複数の集電板とを重ね、前記端子部材の側面部と前記集電板の側面部とを溶接する工程とを含んでいる。
 上記目的を達成するためには、上記コンデンサの製造方法において、更に、前記端子部材の前記側面部に前記集電板の側面部を位置決めする工程とを含み、前記側面部間を共通面部として前記溶接を施してもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において、前記端子部材と前記集電板とを重ね、前記端子部材と前記集電板とを接触する工程と、前記集電板と前記端子部材との接触面に対しレーザ又は電子ビームの照射位置を異ならせて前記集電板と前記端子部材とを溶接する工程とを含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において、前記端子部材、又は前記電極張出し部に接続される前記集電板の何れか一方に覆い部を備え、この覆い部で前記端子部材と前記集電板との接触面を覆う工程と、前記覆い部にレーザビーム又は電子ビームの照射位置が設定され、前記集電板と前記外部端子部材とを溶接する工程とを含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において、前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記端子部材との接触面に一致させ、又は前記接触面に対して交差方向に異ならせてもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において、更に、前記電極張出し部に前記集電板を重ね、この集電板に前記コンデンサ素子の電極体と交差方向に溶接ラインを設定し、この溶接ラインに沿って溶接する工程を含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において、絶縁間隔を以て対向する前記集電板の複数箇所に2以上の前記溶接ラインを隣接して設定し、コンデンサ素子の素子中心部に跨がる特定箇所で隣接する2以上の前記溶接ラインを連続して溶接した後、前記特定箇所以外の箇所の2以上の前記溶接ラインを連続して溶接し、前記集電板と前記コンデンサ素子の前記電極張出し部とを複数箇所で隣接する2以上の前記溶接ラインにより溶接してもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において、更に、前記電極張出し部に前記集電板を設置し、該集電板に溶接始点から溶接終点に至る溶接ラインを設定し、この溶接ラインに連続照射されるビーム出力を段階的又は連続的に異ならせたビーム照射により前記電極張出し部に前記集電板を接続する工程を含んでもよい。
 上記目的を達成するため、本発明のコンデンサの製造方法において、前記コンデンサ素子の前記素子端面に設置されて陽極側又は陰極側に接続される前記集電板に、前記コンデンサ素子の側面方向に円弧状の第1の接続面を形成する工程と、前記集電板に接続する前記端子部材に前記集電板の前記接続面と同心円状の第2の接続面を形成する工程と、前記第1の接続面と前記第2の接続面とを揃え、前記コンデンサ素子、又は前記第1の接続面と前記第2の接続面にビームを照射する溶接手段を用い、前記コンデンサ素子又は溶接手段を回動させる工程と、前記第1の接続面と前記第2の接続面とを溶接して前記集電板と前記端子部材とを接続する工程とを含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において、前記コンデンサ素子の素子中心を基準に、前記第1の接続面及び前記第2の接続面を同心円面に形成し、前記素子中心を回動中心にして前記コンデンサ素子又は前記溶接手段を回動させてもよい。
 上記目的を達成するためには、上記コンデンサ、コンデンサの製造方法において、前記ビームは、ファイバーレーザビームであってもよい。
 本発明のコンデンサ又はその製造方法によれば、次の何れかの効果が得られる。
 (1) コンデンサ素子の陽極側又は陰極側の電極体の何れか一方又は双方から素子端面に引き出された単一又は複数の電極張出し部に接続された集電板と、外装部材にある端子部材とを重ね、側面部間で溶接接続しているので、接続のための空間部を狭小化でき、しかも接続の強化、接続の信頼性向上とともに、コンデンサ素子の低抵抗化を図ることができ、低ESR化を図ることができる。
 (2) コンデンサ素子の同一の又は異なる素子端面に張り出させた電極張出し部に集電板を接続したので、陽極側の電極体のそれぞれを集電板で接続し又は陰極側の電極体のそれぞれを集電板で接続したので、コンデンサ素子の低抵抗化を図ることができる。
 (3) コンデンサ素子の電極体から張り出させた電極張出し部と、封口部材側の端子部材との間に集電板を介在させた接続構造であるから、接続の簡略化とともに、接続構造の堅牢化を図ることができる。
 (4) 上記構造により、集電板を介在させて電極張出し部と端子部材との接続が容易化でき、接続工程の簡略化とともに、接続処理を短時間で行うことができ、製造コストの低減を図ることができる。
 (5) 封口部材、外部端子又は集電板の何れかに位置決め手段を設け、位置決め手段で外部端子と集電板との接続位置を決めることができ、レーザ照射面を画一的に同一化でき、接続の安定化を図り、信頼性の高い接続を実現できる。
 (6) レーザビーム又は電子ビームを集電板と端子部材との接触面と異なる位置に照射するので、集電板と端子部材との接触面の状態に無関係に両者を溶接することができる。
 (7) 集電板又は端子部材、もしくは集電板と端子部材との接触面を覆う集電板側の平坦面を選択してレーザビーム又は電子ビームを照射できるので、集電板と端子部材との接触面の加工精度が低い場合でも、隙間があっても、最適な溶接範囲が得られ、集電板と端子部材との間の溶接精度や溶接強度を高めることができる。
 (8) 集電板と端子部材との接触面を集電板又は端子部材にある覆い部で覆い、この覆い部にレーザビーム又は電子ビームを照射するので、集電板と端子部材との接触面の状態に無関係に両者を溶接することができる。
 (9) 電極張出し部に集電板を重ね、この集電板に前記コンデンサ素子の周縁方向に向かう溶接ラインを設定して溶接するので、電極張出し部と集電板との接続のための溶接の時間短縮を図ることができ、製造工程の簡略化を図ることができる。
 (10) 集電板とコンデンサ素子の電極張出し部とのビーム溶接の始点から終点に至る溶接ラインに対するビーム出力を段階的又は連続的に減衰させたので、集電板及び電極張出し部に加えられる溶接エネルギーを均一化でき、接続性を向上させることができ、安定した溶接接続を実現できる。
 (11) コンデンサ素子に接続された集電板の第1の接続面と整合する第2の接続面を端子部材に備え、これら第1及び第2の接続面を溶接しているので、集電板と端子部材との接続を容易化でき、接続の信頼性を高めることができる。
 そして、本発明の他の目的、特徴及び利点は、添付図面及び各実施の形態を参照することにより、一層明確になるであろう。
第1の実施の形態に係る電気二重層コンデンサの一例を示す断面図である。 電気二重層コンデンサの各部材を示す分解斜視図である。 一部を分解したコンデンサ素子の一例を示す斜視図である。 コンデンサ素子の電極部の成形前後の一例を示す図である。 集電板の一例を示す図である。 レーザ溶接された集電板を備えるコンデンサ素子を示す図である。 コンデンサ素子上の集電板と外部端子との接続を示す図である。 第2の実施の形態に係る電気二重層コンデンサの製造工程の一例を示すフローチャートである。 コンデンサ素子の陽極部及び陰極部の成形状態を示す図である。 コンデンサ素子と集電板の接続工程を示す図である。 第3の実施の形態に係る集電板と外部端子との接続を示す図である。 第4の実施の形態に係る集電板、その接続を示す図である。 第5の実施の形態に係る集電板と外部端子との接続及び位置決めを示す図である。 端子接続板を備える電気二重層コンデンサの他の実施の形態を示す分解斜視図である。 陽極集電板及び陽極端子の溶接部分を拡大して示した図である。 レーザビームの溶接形態を示す図である。 熱伝導溶接によって形成されたナゲットを示す図である。 陽極集電板及び陽極端子の溶接部分を拡大して示した図である。 熱伝導溶接によって形成されたナゲットを示す図である。 熱伝導溶接によって形成された他のナゲットを示す図である。 溶接ライン、レーザ出力及び出力波形を示す図である。 第10の実施の形態に係る集電板及び外部端子に対するレーザ照射の一例を示す図である。 集電板及び外部端子の溶接例を示す図である。
〔第1の実施の形態〕
 第1の実施の形態は、コンデンサ素子の素子端面に接続された集電板に外部端子を接続し、コンデンサ素子に外部端子を形成する構成である。
 第1の実施の形態について、図1及び図2を参照する。図1は電気二重層コンデンサの一例を示す縦断面を示し、図2は一部を分解した電気二重層コンデンサの一例を示している。
 この電気二重層コンデンサ2は本発明のコンデンサの一例である。この電気二重層コンデンサ2には、図1に示すように、コンデンサ素子4の同一の素子端面に陽極部6と陰極部8が形成されている。陽極部6及び陰極部8は、電極張出し部の一例であって、コンデンサ素子4の素子端面5から引き出された電極体(陽極体60及び陰極体80:図3)の一部で構成される。陽極部6と陽極端子10との接続には両者間に介在させた陽極集電板12が用いられ、また、陰極部8と陰極端子14との接続には両者間に介在させた陰極集電板16が用いられている。これらの接続には例えば、レーザ溶接や電子ビーム溶接が用いられ、18は溶接接続部の一例である。また、陽極端子10及び陰極端子14は外部接続のための端子部材であって、陽極端子10は陽極端子部材の一例、陰極端子14は陰極端子部材の一例である。この実施の形態では、陽極集電板12と接続された陽極部6及び陰極集電板16と接続された陰極部8の外周面には、絶縁手段17が設置されている。この絶縁手段17によってコンデンサ素子4と外装ケース20との絶縁が図られる。この絶縁手段17は例えば、絶縁紙や絶縁テープ等の絶縁材料を用いればよい。
 コンデンサ素子4は円筒体であって、一方の素子端面に陽極体60(図3、図4)を引き出して陽極部6が形成されているとともに、陰極体80(図3)を引き出して陰極部8が形成されている。コンデンサ素子4の周囲には保持テープ19が巻回され、陽極体60や陰極体80の巻き戻りが防止されている。
 コンデンサ素子4の外装部材として外装ケース20及び封口板22が備えられる。外装ケース20は例えばアルミニウム等の成形性のある金属材料からなる成形体である。封口板22は外装ケース20の開口部30を閉止し、空間部24の気密性を保持する手段であるとともに、陽極端子10及び陰極端子14を固定する固定部材であり、コンデンサ素子4の支持部材を構成している。この実施の形態では、封口板22にベース部26と、封止部28とが備えられる。ベース部26は絶縁材料である例えば、合成樹脂で形成され、陽極端子10及び陰極端子14が固定されるとともに、絶縁されている。封止部28は密閉性の高い材料例えば、ゴム環で構成されている。
 この封口板22は、外装ケース20の開口部30に挿入されるとともに、開口部30側の中途部に形成された加締め段部32に位置決めされている。外装ケース20の開口端部34は、カーリング処理により加締められ、封止部28に食い込ませられている。これらにより、外装ケース20が強固に封止されている。そして、封口板22のベース部26には、透孔36が形成されるとともに、薄ゴムからなる圧力開放機構38が形成されている。
 次に、コンデンサ素子4について、図3を参照する。図3は一部を分解して示したコンデンサ素子を示している。
 このコンデンサ素子4は、図3に示すように、陽極体60と、陰極体80と、セパレータ40、42とを備え、陽極体60と陰極体80との間には両者間を絶縁するセパレータ40、42のそれぞれが挟み込まれて巻回され、円筒状の巻回素子を構成している。陽極体60及び陰極体80にはベース材に例えば、アルミニウム箔が用いられ、このアルミニウム箔の両面に活性炭等の活物質及び結着剤等を含む分極性電極が形成されている。
 また、このコンデンサ素子4では、同一端面側に形成された陽極部6と陰極部8との間には一定幅の絶縁間隔44が設けられている。陽極部6は例えば、陽極体60の基材で形成され、同様に陰極部8も陰極体80の基材で形成されている。陽極体60及び陰極体80がアルミニウムで形成される場合、陽極部6及び陰極部8は、分極性電極を形成していないアルミニウム面を露出させた基材部である。
 陽極部6又は陰極部8の形成部は、絶縁手段であるセパレータ40、42の幅Wより突出する形態とし、各陽極部6又は陰極部8の円弧長に対応する長さLに形成されている。長さLを以て突出する各陽極部6及び陰極部8には、折り曲げ加工の準備加工として、素子端面5と平行で素子端面5から僅かに露出する位置に折り目線43が形成されている。この折り目線43は、各陽極部6及び陰極部8に対し、折り曲げ方向部を谷折りとする屈曲部である。
 そして、コンデンサ素子4の陽極部6又は陰極部8は、陽極集電板12又は陰極集電板16との接続前に、図2(又は図4のB)に示すように、加工してコンデンサ素子4の素子端面に密着状態に形成される。
 次に、コンデンサ素子4の陽極部6及び陰極部8について、図4を参照する。図4はコンデンサ素子の陽極部及び陰極部の一例を示し、Aは陽極部及び陰極部の成形前、Bは陽極部及び陰極部の成形後を示している。図4において、図1、図2及び図3と同一部分には同一符号を付してある。
 コンデンサ素子4の素子端面5には図4のAに示すように、電極張出し部を構成する陽極部6と陰極部8とが立設され、これら陽極部6と陰極部8との間には所定幅の絶縁間隔44が設定されている。絶縁間隔44の中心にY軸、このY軸と直交方向にX軸を取り、X軸を中心に左右に角度θ、θ(>θ)を設定して区画する。角度θでコンデンサ素子4の巻回中心部(巻芯部)46を中心に放射状方向に複数の切込み48を入れ、各切込み48で区画された複数の区画部6A、6B、6Cが陽極部6側に形成されている。同様に、陰極部8側にも複数の区画部8A、8B、8Cが形成されている。角度θを例えば、33〔°〕に設定すれば、区画部6A、8Aは2θ=66〔°〕となり、区画部6Aを挟んで形成された区画部6B、6C又は区画部8Aを挟んで形成された区画部8B、8Cの角度θは、θ=57〔°〕に設定されている。
 切込み48の深さは例えば、張出し長を陽極部6と陰極部8の高さhに設定され、陽極部6の区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cを中途部で屈曲させ、コンデンサ素子4の素子中心部側に押し倒して圧縮成形することにより、図4のBに示すように、各区画部6A、6B、6Cと区画部8A、8B、8Cに成形される。この実施の形態では、各区画部6B、6C及び区画部8B、8Cが溶接部分に設定されている。そこで、区画部6A、8Aの突出高さhが各区画部6B、6C、8B、8Cの高さhより高く設定され、区画部6A、6B、6Cと区画部8A、8B、8Cの高さを陽極集電板12及び陰極集電板16の屈曲形状に対応させている。
 なお、コンデンサ素子4の陽極部6及び陰極部8は、このように素子中心方向に向かって陽極部6及び陰極部8全体を圧縮成形することで、高さ寸法を抑制できる。この実施の形態では、陽極部6の区画部6B、6Cを圧縮形成して、安定した平坦状の接続面を形成し、その後、非接続面である区画部6Aを圧縮成形し、各区画部間6A-6B、6A-6Cの重なりによって生じる境界部の高さ寸法を抑制している。この境界部の高さ寸法の抑制については陰極部8においても同様である。
 次に、陽極集電板12(又は陰極集電板16)について、図5を参照する。図5は陽極集電板(又は陰極集電板)の一例を示し、Aはその平面、Bは陽極集電板(又は陰極集電板)を溶接接続部側から見た側面を示している。
 この陽極集電板12は電極材料と同一の例えば、アルミニウム板で形成され、既述の陽極部6の区画部6A、6B、6C(図4)を覆い、区画部6B、6Cとのレーザ溶接面積を持ち、且つ陽極端子10とのレーザ溶接面積を持つ形状及び面積を備えている。この実施の形態では、コンデンサ素子4の素子端面5の2分の1の大きさであって、絶縁間隔44が確保される形状として、ほぼ半円形板である。
 陽極集電板12には、図5のAに示すように、弦側中心部にコンデンサ素子4の巻回中心部46に対応して円弧状切欠部50が形成され、その弧側には、X軸を中心にX軸と直交方向に直線状に切り落とされた接続面部52が形成されている。また、この陽極集電板12には、図5のBに示すように、円弧状切欠部50を中心即ち、X軸を中心に左右に角度θを持って直角に屈曲させた段部54を以て円弧状の端子接続部56A及び素子接続部56B、56Cが形成されている。各端子接続部56A及び素子接続部56B、56Cは、それぞれ平坦面に形成され、段部54を挟んで平行面を構成している。
 この陽極集電板12において、端子接続部56Aの高さをh、陽極集電板12の厚さをt、端子接続部56Aの内側の高さをhとすると、
          h=h-t≧h-h        ・・・(1) 
に設定されている。従って、端子接続部56Aの内側の高さhは、区画部6A、8Aの突出高さhと各区画部6B、6C、8B、8Cの高さhとの差分Δh(≧h-h)を吸収し、陽極集電板12が各区画部6B、6Cに密着し、且つ区画部6Aを収納して設置される。なお、陽極集電板12の厚さtは、素子接続部56B、56Cと端子接続部56Aの部位で厚さを変更することもできる。例えば、端子接続部56Aの厚みを素子接続部56B、56Cに比べて厚く設定(1.2倍以上)することができ、これによると陽極部6とのレーザ溶接の際に素子接続部56B、56Cに生じる発熱が所定厚みを有する端子接続部56Aによって吸収され、レーザ溶接の接続精度が向上する。
 このような構成及び他の部材との関係については、陰極集電板16についても同様である。
 次に、陽極集電板12及び陰極集電板16と、コンデンサ素子4の陽極部6及び陰極部8との接続について、図6を参照する。図6はコンデンサ素子の素子端面上の陽極集電板及び陰極集電板の配置及び接続状態の一例を示している。
 陽極集電板12及び陰極集電板16は図6に示すように、コンデンサ素子4の一端面に巻回中心部46を中心にし、且つ巻回中心部46に円弧状切欠部50を合わせて配置され、陽極部6と陰極部8との間の絶縁間隔44に対応して間隔61が設定されている。陽極集電板12には、端子接続部56Aの下面側にコンデンサ素子4の陽極部6の区画部6A、素子接続部56B、56Cの下面側にコンデンサ素子4の陽極部6の区画部6B、6Cが位置決めされて密着させられる。そして、レーザ照射接続部66では、コンデンサ素子4の周縁方向から素子中心部方向に向かうレーザ照射により、区画部6B、6C及び素子接続部56B、56Cを部分的又は全面的に溶融させ、接続している。このような接続は陰極集電板16側でも同様である。
 レーザ照射の部位は、この実施の形態では、図6に示すように、陽極集電板12及び陰極集電板16の段部54で隔てた素子接続部56B、56Cの各2箇所即ち、レーザ照射接続部66である。この場合、レーザ照射接続部66に付した矢印〔1〕、〔2〕、〔3〕及び〔4〕で示すように、レーザ照射を行う。このレーザ照射は、シールドガスにアルゴンガス、ヘリウムガス等の不活性ガスを用いてコンデンサ素子4をシールドし、コンデンサ素子4に対するレーザ熱やスパッタの影響を回避する。
 〔1〕このレーザ照射は、コンデンサ素子4の外周側より、素子中心方向に向かって直線状に一方の陽極集電板12の素子接続部56Bに照射する。
 〔2〕次に、巻回中心部46を隔てて対向する他方の陰極集電板16の素子接続部58Bに素子中心側より、素子外周方向に向かって直線上にレーザ照射することにより、一連の動作にて溶接される。
 〔3〕また、同じく、レーザ照射は、コンデンサ素子4の外周側より、素子中心方向に向かって直線状に一方の陽極集電板12の素子接続部56Cに照射する。
 〔4〕そして、巻回中心部46を隔てて対向する他方の陰極集電板16の素子接続部58Cに素子中心側より素子外周側に向かって直線上にレーザを照射する一連の動作にて溶接される。
 このように、巻回中心部46を隔てて直線状にレーザ照射する一連の動作にて、陽極部6と陽極集電板12、陰極部8と陰極集電板16とが接続される。つまり、陽極部6及び陰極部8と各集電板12、16とを巻回中心部46を隔ててコンデンサ素子4の直径方向に向かう溶接ライン(レーザ照射接続部66)を設定して溶接するので、陽極部6及び陰極部8と各集電板12、16との接続のための溶接の時間短縮を図ることができ、製造工程の簡略化を図ることができる。なお、レーザ照射の〔1〕及び〔2〕の一連の動作を2回繰り返す。又は、レーザ照射の〔1〕ないし〔4〕の一連の動作を2回繰り返し、近傍に溶接部を配することで接続抵抗を更に低減することも可能である。レーザ照射の〔1〕及び〔2〕の一連の動作にて接続することも可能であるが、陽極集電板12、陰極集電板16の各素子接続部56B、56C、58B、58Cを、それぞれ素子中心側より素子外周側に向かって直線上に照射する等、個別に接続することもできる。
 また、レーザ照射の〔1〕ないし〔4〕の連続動作について、同一箇所を連続してレーザ照射するのではなく、レーザ溶接を〔1〕から〔4〕で行い、その後、再び〔1〕から〔4〕にレーザ照射すれば、同一箇所のレーザ照射に時間間隔を設けることができ、この結果、レーザ照射箇所の冷却化を図ることができ、レーザ溶接による接続の安定化が図られる。また、同一箇所に時間間隔を設けて複数回のレーザ照射を行うことも可能であるが、1回目のレーザ溶接を〔1〕から〔4〕で行い、再びレーザ溶接を〔1〕から〔4〕で行うので、冷却間隔を取りながら、レーザ照射を連続的に行うことができ、レーザ照射による溶接時間の短縮化を図ることができる。
 このレーザ照射の〔1〕ないし〔4〕の連続動作について、各レーザ照射の始点から終点に至る溶接ラインに対するレーザ出力を段階的又は連続的に減衰させるとよい。具体的には、レーザ出力を始点から終点にかけて3区間を設け、始点区間のレーザ出力Pa、中間区間のレーザ出力Pb、終点区間のレーザ出力Pcとし、レーザ出力をPa>Pb、Pb>Pcに減衰させている。始点区間のレーザ出力Paは最も高い値に設定され、一例として50〔W〕~3000〔W〕である。レーザ出力Pbはレーザ出力Paの90〔%〕以下のレーザ出力とし、またレーザ出力Pcはレーザ出力Paの80%以下のレーザ出力としている。このように、各レーザ照射の始点から終点に至る溶接ラインに対するレーザ出力を段階的又は連続的に減衰させることで、集電板12、16、陽極部6及び陰極部8に加えられる溶接エネルギーを均一化でき、接続性を向上させることができ、安定した溶接接続を実現できる。即ち、レーザ照射を受けた陽極集電板12又は陰極集電板16及び陽極部6又は陰極部8の溶接ライン(レーザ照射接続部66)及びその近傍部が加熱され、レーザ照射を溶接ラインに沿って行えば、レーザ照射の走査に応じて加熱がその走査とともに連鎖状態で移動するので、レーザ出力を同一に設定しなくても、連鎖的に溶融状態となる。このため、レーザ出力を段階的及び連続的に減衰させても、溶接部に加わるレーザ照射による熱エネルギーは均一化する。このため、陽極集電板12又は陰極集電板16と陽極部6又は陰極部8との接続性が向上する。
 なお、図4に示すように、コンデンサ素子4の素子端面5には陽極部6及び陰極部8が形成されている。陽極部6及び陰極部8には、中心方向に向かって圧縮成形した際に、陽極部6及び陰極部8が接触しない絶縁間隔44を設定しており、このため、コンデンサ素子4の巻回中心部46近傍(素子中心部から2mm以内)では、陽極部6及び陰極部8が形成されていない。また、陽極部6及び陰極部8は、その形成部位が多いほど(又は面積が大きいほど)、抵抗の低減につながるため、陽極部6及び陰極部8が接触せず、また、低抵抗化が図れる絶縁間隔44として、例えば、3〔mm〕~15〔mm〕を設定している。また、コンデンサ素子4の最外周では、陽極部6及び陰極部8の圧縮成形時にずれ等が生じても陽極部6及び陰極部8が外装ケース20に接触しないように、陽極集電板12と接続された陽極部6及び陰極集電板16と接続された陰極部8の外周面に絶縁紙や絶縁テープ等の絶縁手段17(図1)を設置すればよい。この絶縁手段17を、該陽極部6及び陰極部8に加え、陽極端子10、陰極端子14、陽極集電板12、陰極集電板16を覆うように外周に沿って設置すれば、外装ケース20との絶縁が図られる。
 次に、陽極端子10と陽極集電板12の接続、陰極端子14と陰極集電板16の接続について、図7を参照する。図7は陽極端子と陽極集電板、陰極端子と陽極集電板の接続を示し、Aは陽極端子と陽極集電板、陰極端子と陽極集電板の接続前の状態、Bはレーザ照射を示す図である。
 陽極集電板12及び陰極集電板16が接続されたコンデンサ素子4には、図7に示すように、封口板22にある陽極端子10、陰極端子14が位置決めされる。陽極端子10及び陰極端子14には側面部に端子側接続面64が形成され、この端子側接続面64は、陽極集電板12及び陰極集電板16にある接続面部52と同一面を形成する側壁面である。そこで、これら接続面部52及び端子側接続面64を合致させ、レーザ照射68を行えば、既述の溶接接続部18がレーザ溶着され、接続面部52及び端子側接続面64間を溶着させることができる。
 従って、コンデンサ素子4の陽極部6には陽極集電板12を介して外部端子である陽極端子10がレーザ照射68による溶接接続部18を以て接続され、また、コンデンサ素子4の陰極部8には陰極集電板16を介して外部端子である陰極端子14がレーザ照射68による溶接接続部18を以て接続され、コンデンサ素子4に外部端子が形成される。
 ここで、コンデンサ素子4と封口板22との間隔(距離)を長く取ると、その分抵抗が増えてしまうとともに、電気二重層コンデンサ2の高さ寸法が大きくなってしまうため、コンデンサ素子4と封口板22との間隔(距離)を極力短くしている。このような小スペースにおいて、陽極端子10及び陰極端子14と、陽極集電板12及び陰極集電板16とを接続するために、既述の通り、接続面部52及び端子側接続面64を一致した共通の面部とし、この部位に局所的に溶接可能なレーザ照射68にて溶接することで溶接の簡易化及び強化が図られている。ここで、陽極集電板12及び陰極集電板16、陽極端子10及び陰極端子14の厚み(接続面部52及び端子側接続面64の高さ寸法)は、それぞれ0.5〔mm〕~5〔mm〕の範囲で設定されており、これによると、レーザ溶接が可能な寸法で且つ内部抵抗が増大され難く、また、電気二重層コンデンサ2の高さ寸法を短くすることができる。
 なお、接続面部52及び端子側接続面64は切欠きによって平面として構成しているが、これに限ることはなく、曲面でもよく、一致した面部とすればよい。また、接続面部52及び端子側接続面64は、それぞれ傾斜面(テーパ面)であってもよく、また接続面部52及び端子側接続面64の間には加工精度によっては隙間が生じる場合もある。
 また、接続面部52及び端子側接続面64は、レーザ照射の際に他の部材(陽極部6や陰極部8)への過剰なストレスを防ぐためにも、コンデンサ素子4の外周面近傍に設置されることが好ましく、具体的には、コンデンサ素子4の外周面より、例えば、10〔mm〕以内とすることが好ましい。
 以上説明した第1の実施の形態の電気二重層コンデンサ2の特徴事項や利点を列挙すれば以下の通りである。
 (1) 陽極集電板12、陰極集電板16において、コンデンサ素子4の陽極部6及び陰極部8との接続領域と、陽極端子10及び陰極端子14との接続領域とが異なる位置に設定されているので、各電極部と集電板、各外部端子と集電板との接続を安定化させることができ、コンデンサ素子の低抵抗化とともに接続の強化を図ることができる。
 (2) コンデンサ素子4の一端面側に陽極体60の基材で陽極部6、陰極体80の基材で陰極部8が形成され、陽極部6と陽極端子10とが陽極集電板12を介して接続され、陰極部8と陰極端子14とが陰極集電板16を介して接続されるので、端子接続のシンプル化が図られている。しかも、接続を容易化することができる。
 (3) 外装ケース20の空間部24内に接続部の占める空間専有率が極めて低い。
 (4) 外装部材である封口板22には、コンデンサ素子4が強固に支持されている。即ち、陽極端子10及び陰極端子14に陽極集電板12、陰極集電板16を介してコンデンサ素子4の陽極部6及び陰極部8がレーザ溶接により、強固に固定されるので、コンデンサ素子4の支持強度が高められている。この結果、機械的に堅牢な支持構造が構成され、製品の耐震性を高めることができる。
 (5) 巻回素子であるコンデンサ素子4に巻回されている陽極体60から複数の側縁部を集合させて陽極部6が形成され、この陽極部6を陽極集電板12にレーザ溶接し、同様に、陰極体80から複数の側縁部を集合させて陰極部8が形成され、この陰極部8を陰極集電板16にレーザ溶接しているので、コンデンサ素子4及び電気二重層コンデンサ2の低抵抗化を図ることができ、等価直列抵抗の低い製品を提供できる。
 (6) 陽極集電板12及び陰極集電板16を用いたので、コンデンサ素子4にタブを接続する必要がない。
 (7) 陽極集電板12又は陰極集電板16と外部端子(陽極端子10又は陰極端子14)との側面を同一面化しているので、両者に対するレーザ照射が安定し、接続の完全化及び信頼性を高めることができる。
 (8) レーザ照射時にシールドガスを用いるので、レーザ熱や、飛翔するスパッタからコンデンサ素子4を防護でき、コンデンサ素子4及び製品である電気二重層コンデンサ2の特性劣化を防止でき、信頼性を向上させることができる。
〔第2の実施の形態〕
 第2の実施の形態は、既述のコンデンサの製造方法について開示している。
 第2の実施の形態について、図8、図9及び図10を参照する。図8は、第2の実施の形態に係る電気二重層コンデンサの製造工程の一例を示すフローチャート、図9は陽極部及び陰極部の成形状態、図10は集電板とコンデンサ素子とのレーザ溶接工程を示している。
 この製造工程は、本発明のコンデンサの製造方法の一例であって、図8に示すように、コンデンサ素子4及び電極部(電極張出し部)の形成工程(ステップS11)、陽極部6及び陰極部8の成形工程(ステップS12)、第1の接続工程(ステップS13)、第2の接続工程(ステップS14)、電解液の含浸及び封止工程(ステップS15)を含んでいる。
 (1) コンデンサ素子4及び電極部(電極張出し部)の形成工程(ステップS11)
 図3に示すように、陽極体60及び陰極体80の間にセパレータ40、42を挟み込み、巻回中心部46を中心に円筒状に巻回することにより、コンデンサ素子4が形成される。このコンデンサ素子4には、素子端面5側に陽極体60及び陰極体80の一部を張り出させ、電極張出し部としての陽極部6及び陰極部8が形成される。陽極部6及び陰極部8には絶縁間隔44が設定されている。
 (2) 陽極部6及び陰極部8の成形工程(ステップS12)
 この成形工程では、電極張出し部としての陽極部6及び陰極部8を図4のAに示すように、既述の区画部6A、6B、6C、8A、8B、8Cに区画し、図4のBに示すように、それぞれを巻回中心部46の方向に折曲げ、成形する(ステップS12)。その成形は、図9に示すように、陽極集電板12、陰極集電板16の屈曲形状に対応し、密着可能な高さに成形される。図9において、A及びBは陽極集電板12に接続される陽極部6の区画部6B、6C、陰極集電板16に接続される陰極部8の区画部8B、8Cの折曲げ状態(成形状態)を示し、Aは、後述する陽極集電板12及び陰極集電板16を設置する前の成形状態を示し、Bは陽極集電板12及び陰極集電板16の設置後の成形状態を示す。つまり、陽極集電板12及び陰極集電板16を陽極部6及び陰極部8に押し付けて、又は陽極部6及び陰極部8を陽極集電板12及び陰極集電板16に押し付けて圧縮することで、陽極部6の区画部6B、6C及び陰極部8の区画部8B、8Cが平坦状となり、陽極集電板12、陰極集電板16に密着することになる。また、図3に示すように、陽極部6又は陰極部8を折り曲げ、成形する前に陽極部6又は陰極部8に予め折り目線43を設けても良い。折り目線43は、素子端面5から一定の幅(0.5mm以上)の位置に形成されており、これにより陽極部6又は陰極部8の折り曲げ時に素子端面位置のセパレータ40、42の部位に加わる機械的ストレスが減少し、陽極体60、陰極体80の接触によるショート等を防止可能となる。なお、この折り目線43はキズではなくケガキ線であって、陽極部6及び陰極部8の折り曲げ時の座屈を防止することができる。この折り目線43は溝であり、断面形状は三角、四角又は湾曲(R)であってもよい。この折り目線43の形成には例えば、プレス、レーザ、切削等の方法を用いればよい。折り目線43は図3に示すように1本であってもよいが、陽極部6又は陰極部8の幅に応じて複数本としてもよい。折り目線43の形成面部は、陽極部6又は陰極部8の片面でもよいが、両面であってもよい。一例としての折り目線43は、素子端面5の巻回中心部46に対向する面が谷折りになるように形成されている。
 (3) 第1の接続工程(ステップS13)
 この接続工程(ステップS13)では、図10のAに示すように、コンデンサ素子4の陽極部6に陽極集電板12、コンデンサ素子4の陰極部8に陰極集電板16を位置決めし、図10のBに示すように、陽極部6に陽極集電板12をまた、陰極部8に陰極集電板16をそれぞれレーザ溶接により接続する。このレーザ溶接では、アルゴンガス、ヘリウムガス等の不活性ガスをシールドガスに用いることにより、コンデンサ素子4をシールドし、レーザ熱や飛翔するスパッタからコンデンサ素子4を分離させる。
 (4) 第2の接続工程(ステップS14)
 この接続工程(ステップS14)では、図7に示すように、陽極部6に接続された陽極集電板12の接続面部52と、封口板22にある陽極端子10の端子側接続面64とを同一面に合わせ、レーザ溶接により接続する。同様に、陰極部8に接続された陰極集電板16に封口板22の陰極端子14をレーザ溶接により接続する。このレーザ溶接においても、アルゴンガス、ヘリウムガス等の不活性ガスをシールドガスに用いることにより、コンデンサ素子4をシールドし、レーザ熱や飛翔するスパッタからコンデンサ素子4を分離させる。
 この実施の形態では、図7のAに示すように、コンデンサ素子4の陽極部6に接続された陽極集電板12に対して封口板22の陽極端子10を位置決めし、同時にコンデンサ素子4の陰極部8に接続された陰極集電板16に対して封口板22の陰極端子14を位置決めすることにより、図7のBに示すように、それぞれをレーザ溶接する。18は既述の溶接接続部である。
 なお、封口板22は陽極端子10及び陰極端子14のインサートにより合成樹脂を成形(インサート成形)し、これによりベース部26及び封止部28が形成される。
 (5) 電解液含浸及び封止工程(ステップS15)
 コンデンサ素子4は、電解液を含浸した後、外装ケース20に収容し、外装ケース20の開口端部34のカーリング処理により封止し(ステップS15)、製品である電気二重層コンデンサ2(図1)を完成する。
 このような製造工程によれば、既述の電気二重層コンデンサ2を容易に製造でき、端子接続工程の簡略化を図ることができ、第1の実施の形態で述べた通りの効果を有するコンデンサを実現できる。
〔第3の実施の形態〕
 第3の実施の形態では、外装端子の配置及び集電板の形態について開示する。
 第3の実施の形態について、図11を参照する。図11は第3の実施の形態に係る集電板と外部端子との接続を示し、Aは接続前、Bは接続中のレーザ照射を示している。
 この実施の形態の封口板22に設置された陽極端子10及び陰極端子14は、図11のAに示すように、コンデンサ素子4の素子端面5の巻回中心部46に近接して配置されている。そして、陽極端子10及び陰極端子14の端子側接続面64は、コンデンサ素子4の外周面より巻回中心部46側に後退している。
 このような陽極端子10、陰極端子14及び端子側接続面64に対し、この実施の形態では、図11のAに示すように、陽極集電板12及び陰極集電板16の端子接続部56A、58Aに巻回中心部46側に後退した凹部70が形成されている。この凹部70には陽極端子10又は陰極端子14の端子側接続面64に対応して既述の接続面部52が形成されている。この場合、陽極集電板12又は陰極集電板16では、端子側接続面64の側面部に対し素子接続部56B、56Cは、コンデンサ素子4の外周方向に突出する平坦部を構成している。
 このような構成とすれば、図11のAに示すように、コンデンサ素子4の素子端面5の巻回中心部46に近接して陽極端子10や陰極端子14が配置されていても、端子側接続面64及び接続面部52を同一面に維持し、上記実施の形態と同様のレーザ照射68による接続を行うことができる。
 なお、この実施の形態では、陽極集電板12及び陰極集電板16に凹部70を形成しているが、凸部を以て接続面部52を形成してもよい。
〔第4の実施の形態〕
 第4の実施の形態では、集電板の他の形態について開示する。
 第4の実施の形態について、図12を参照する。図12は第4の実施の形態に係る集電板、集電板と外部端子との接続を示し、Aはコンデンサ素子との接続前の集電板、Bは外部端子との接続前、Cは接続中のレーザ照射を示している。
 この実施の形態の集電板12、16は、図12のAに示すように、間隔61を設けてコンデンサ素子4の素子端面5を覆う形態であり、裏面側には区画部6A、8Aを収納させる凹部69が形成されている。この集電板12、16の表面部には、コンデンサ素子4の区画部6A、8Aとの接続部分を扇形の突部71とし、この突部71を挟んで、コンデンサ素子4の区画部6B、6C、8B、8Cに対応する凹部73、75が形成されている。凹部73、75が外部端子である陽極端子10又は陰極端子14との接続部よりコンデンサ素子4の外周方向に突出する平坦部を構成する。突部71には、周縁側に切欠部77が形成され、この切欠部77に臨む周縁部を円弧状に形成して陽極端子10又は陰極端子14との接続面79が形成されている。凹部73、75側には集電板12、16を同時に把持(チャッキング)する手段として、直方体状の突起部81が形成されている。
 この実施の形態の集電板12、16は、図12のBに示すように、コンデンサ素子4の素子端面5を覆って設置され、陽極部6と陽極集電板12の凹部73、75とがレーザ溶接により接続され、同様に陰極部8と陰極集電板16の凹部73、75とがレーザ溶接により接続される。
 そして、図12のCに示すように、コンデンサ素子4に接続された陽極集電板12には陽極端子10が重ねられ、陰極集電板16には陰極端子14が重ねられ、陽極端子10の端子側接続面64と同一曲面を持つ接続面79を合致させ、同様に陰極端子14の端子側接続面64と同一曲面を持つ接続面79を合致させて位置決めする。この位置決め状態により、レーザ照射68を行うことにより各集電板12、16と陽極端子10又は陰極端子14とを接続する。凹部73、75は、突部71にある、陽極端子10又は陰極端子14に接続される接続面79即ち、端子部材と溶接された側面部より集電板12、16の外周方向に突出する平坦部を構成している。この平坦部でコンデンサ素子4の素子端面5を被覆することができる。
 斯かる構成では、コンデンサ素子4の素子端面5が集電板12、16で覆われており、接続面79側のレーザ照射68によるスパッタの飛翔からコンデンサ素子4の素子端面5を防護できる。しかも、接続面79は、陽極端子10、陰極端子14の曲面に合致した曲面としているので、接続面79を陽極端子10、陰極端子14の端子側接続面64に合致させて溶接を行うことができる。つまり、良好なレーザ溶接が行える。
〔第5の実施の形態〕
 第5の実施の形態は、封口板、外部端子又は集電板の何れかに位置決め手段を設け、位置決め手段で外部端子と集電板との接続位置を決定することを開示している。
 第5の実施の形態について、図13を参照する。図13は第5の実施の形態に係る封口板を示し、Aは背面側から見た封口板、Bは封口板で位置決めされた陽極集電板及び陰極集電板を示している。
 この実施の形態の封口板22の背面側には、図13のAに示すように、陽極端子10及び陰極端子14との間にある空間部に絶縁材料からなる位置決め凸部72が形成され、この位置決め凸部72をコンデンサ素子4(図1)の巻回中心部46に向けて突出させている。この位置決め凸部72は、円柱状部74と、一対の平板状立壁部76とを備えている。円柱状部74は、陽極集電板12と陰極集電板16のそれぞれの円弧状切欠部50の円弧に対応する柱体部である。円柱状部74は、平板状立壁部76を備え、この円柱状部74を中心に陽極集電板12及び陰極集電板16の間隔61を維持する平板状立壁部76を左右に備えている。
 このような位置決め凸部72を備えた封口板22を備えれば、位置決め凸部72で陽極集電板12及び陰極集電板16を所定位置に位置決めし、間隔61を所定幅wに維持することができる。即ち、位置決め凸部72の円柱状部74では陽極集電板12及び陰極集電板16の円弧状切欠部50を嵌合させ、各平板状立壁部76の側面に各陽極集電板12及び陰極集電板16を接することにより、陽極集電板12及び陰極集電板16が所定位置に位置決めされる。この位置決めにより、陽極端子10の端子側接続面64と陽極集電板12の接続面部52、陰極端子14の端子側接続面64と陰極集電板16の接続面部52をそれぞれ一致させることができ、レーザ照射による接続の安定化を図り、接続精度を高めることができるとともに、位置決め凸部72によって、陽極部6及び陰極部8が確実に絶縁隔離される。
 なお、この実施の形態では、封口板22側に位置決め凸部72を形成したが、外部端子(陽極端子10、陰極端子14)又は集電板(陽極集電板12及び陰極集電板16)の何れかに位置決め手段を設けてもよい。斯かる構成によっても、位置決め手段で外部端子と集電板との接続位置を決めることができ、レーザ照射面を画一的に同一化でき、接続の安定化を図り、信頼性の高い接続を実現できる。
〔第6の実施の形態〕
 第6の実施の形態は、集電板とは別に接続板を備えることを開示している。
 第6の実施の形態について、図14を参照する。図14は第6の実施の形態に係る電気二重層コンデンサを示している。
 この第6の実施の形態では、図14に示すように、陽極端子部材として陽極端子10とともに陽極接続板88、陰極端子部材として陰極端子14とともに陰極接続板90を備えた構成である。陽極接続板88は陽極端子10にレーザ溶接により接続された後、コンデンサ素子4側の陽極集電板12に接続される。同様に、陰極接続板90は陰極端子14にレーザ溶接により接続された後、コンデンサ素子4側の陰極集電板16に接続される。陽極接続板88には陽極端子10を位置決めして接続する接続用凹部92、陰極接続板90には陰極端子14を位置決めして接続する接続用凹部94が形成されている。また、陽極接続板88及び陰極接続板90の周面の一部には、陽極集電板12又は陰極集電板16の接続面部52に対応する接続面部96が形成され、この接続面部96と接続面部52とが同一面をなし、レーザ溶接が施されて電気的に接続される。
 このような陽極接続板88及び陰極接続板90を用いた構成では、外部端子である陽極端子10、陰極端子14と、コンデンサ素子4側に接続された陽極集電板12、陰極集電板16との接続が広範囲に行われ、接続抵抗を低減でき、しかも接続強度を高めることができる。
〔第7の実施の形態〕
 第7の実施の形態は、集電板と端子の溶接について開示している。
 第7の実施の形態に係る、陽極集電板112と陽極端子110(又は陰極集電板116と陰極端子114)の溶接について図15を参照する。図15は陽極集電板112及び陽極端子110の溶接部分を拡大して示している。
 陽極集電板112は例えば、アルミニウム板をヘッダ加工され、その接続面部152は陽極集電板112の上面又は下面に対して傾斜面を成している。一例として接続面部152は鉛直面に対して時計方向に傾斜する傾斜面であり、接触面165側の縁部は湾曲面となっている。また、陽極端子110も例えば、アルミニウム板をヘッダ加工され、その端子側接続面164は陽極集電板112に向かって傾斜面を成し、一例としての端子側接続面164は鉛直面に対して反時計方向に傾斜する傾斜面であり、接触面165側の縁部は陽極集電板112と同様に湾曲面となっている。このため、接触面165側には互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167とを備えている。このような陽極集電板112と陽極端子110の形態は、陰極集電板116と陰極端子114との関係においても同様である。
 このような陽極集電板112と陽極端子110の接触面165と異なった位置にレーザビーム169の照射の中心位置(照射位置171、173)が設定されている。照射位置171は、図中接触面165より上方向にずれた位置であり、照射位置173は、図中接触面165より下方向にずれた位置である。この照射位置171、173は、接触面165と異なる位置であって、レーザビーム169により形成されるナゲット118(図17)の範囲内に接触面165を包含し得る位置であればよい。
 このレーザビーム169の溶接形態について図16を参照する。レーザビーム169の溶接形態には、図16のAに示すように、熱伝導溶接と、図16のBに示すように、キーホール溶接とがある。金属間の溶接には何れの溶接形態を用いてもよいが、キーホール溶接では、レーザビーム169の先鋭なフォーカス175を溶接面に当てるため、先鋭で長大なナゲット118を生じ、ナゲット118の成長に応じて多数のスパッタ177が形成される場合がある。
 これに対し、熱伝導溶接では、レーザビーム169の照射位置171、173の手前にフォーカス175があるデフォーカスとし、照射位置171、173には口径の大きい照射部179が形成される。この照射部179では、先鋭なフォーカス175に比較し、緩やかに熱伝導を生じ、緩慢なナゲット118が形成される。即ち、熱伝導溶接では、照射部179の半径方向に広がりを持つナゲット118が生成される。この溶接処理では、レーザビーム169をデフォーカスすることによりナゲット径を拡大し、キーホール溶接を熱伝導溶接に移行させている。
 なお、既述した照射位置171、173と溶接エネルギーに関し、照射位置171、173は、レーザビーム169の中心位置を示している。また、レーザビーム169の照射範囲は、ナゲット118のナゲット径(図17)と同一となる。そこで、この中心位置を異ならせれば(つまり非接触部167ではなく、照射位置を平坦面とする)、レーザビーム169の最大エネルギーとなる中心位置による溶接エネルギーを溶接部分に低減させることなく、効率的に付与することができ、所望のナゲット深さ(溶接範囲)を得ることができる。
 このような熱伝導溶接によって形成されたナゲット118について図17を参照する。図17のAは照射位置171にレーザビーム169の照射の中心位置を設定して照射し、その照射形態はデフォーカスによりナゲット径を拡大させ、図17のBは照射位置173にレーザビーム169の照射の中心位置を設定して照射し、その照射形態はデフォーカスによりナゲット径を拡大させている。即ち、図17のAでは、ナゲット中心Oを接触面165より図中上方に設定し、図17のBでは、ナゲット中心Oを接触面165より図中下方に設定している。
 このような熱伝導溶接では、照射位置171又は照射位置173が接触面165より上方向又は下方向にずれても、ナゲット径が拡大されたナゲット118には接触面165が取り込まれ、陽極集電板112と陽極端子110が溶接されている。この図17において、φはナゲット径、Ndはナゲット深さ、Wdは溶接深さである。ナゲット径φが大きく、ナゲット118がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度及び溶接強度が高められる。なお、ナゲット深さNdと溶接深さWdとの寸法差を0.5〔mm〕以内に設定することで所望の溶接強度が得られる。
 また、ナゲット118の外面部には、溶接前、接触面165側に互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167が溶融によって一体化されることにより、緩やかな面部181が生成されている。
 ナゲット118は、陽極集電板112と陽極端子110との接触面165、又は陰極集電板116と陰極端子114との接触面165と平行方向(接続面部152及び端子側接続面164に沿って平行方向)に連続又は非連続にて形成される。
 なお、この実施の形態では、レーザビーム169又は電子ビームの照射位置171、173が接触面165と直交方向に異ならせているが、交差方向に異ならせてもよい。
 この第7の実施の形態によれば、次の効果が得られる。
 (1) 上記実施の形態では、レーザビーム169を用いているが、レーザビーム169に変えて電子ビームを用いてもよい。この実施の形態では、レーザビーム169又は電子ビームを陽極集電板112又は陰極集電板116と外部端子部材との接触面165と異なる位置に照射するので、集電板と外部端子部材との接触面の状態に無関係に両者を溶接することができる。
 (2) レーザビーム169は、外部端子側の照射位置171、陽極集電板112(又は陰極集電板116)側の照射位置173の何れを選択してもよく、何れかの平坦面を選択してレーザビーム又は電子ビームを照射できる。このようなレーザビーム169又は電子ビームの照射形態では、陽極集電板112(又は陰極集電板116)と外部端子部材との接触面の加工精度が低い場合でも、隙間があっても、最適な溶接範囲を得ることができ、集電板と外部端子部材との間の溶接精度や溶接強度を高めることができる。
 (3)  陽極集電板112(又は陰極集電板116)や外部端子部材にはアルミニウムなどの比較的低い硬度の金属材料が使用され、ヘッダ加工などにより加工される場合には加工精度に限界がある。陽極集電板112(又は陰極集電板116)と外部端子部材との間の接触面間に生じる隙間を避けることができない。このような場合に、既述のレーザビームや電子ビームの照射位置171、173を接触面165と異ならせることにより、溶接精度を高めることができる。
 (4)  レーザビーム169又は電子ビームの照射位置171、173が接触面165と交差方向に異なればよいが、その多寡及びその範囲は例えば、±0.1~±0.5〔mm〕であることが好ましい。この範囲に設定することでレーザビーム169又は電子ビームによる溶接範囲に接触面165を含めることができる。
 レーザ溶接又は電子ビーム溶接のナゲット118の深さは溶接が可能であればよく、例えば、1.2〔mm〕以下が好ましい。この範囲に設定すれば、レーザビーム169又は電子ビームの照射範囲を適正化でき、集電板及び外部端子部材の厚み寸法を増加させることがなく、コンデンサの大型化を回避できる。
〔第8の実施の形態〕
 第8の実施の形態は、集電板と端子の溶接について開示している。
 第8の実施の形態に係る、陽極集電板112と陽極端子110(又は陰極集電板116と陰極端子114)の溶接について図18を参照する。図18は陽極集電板112及び陽極端子110の溶接部を拡大して示している。
 陽極集電板112は例えば、アルミニウム板をヘッダ加工され、一例として接続面部152には断面三角形状のカバー部153が形成されている。陽極端子110も同様に例えば、アルミニウム板をヘッダ加工され、テーパ面163が形成されている。このテーパ面163の角度をカバー部153の内側壁面の傾斜角度と一致させれば、両者を合致させることができる。この場合、接触面165には加工精度に応じて隙間等が生じている。つまり、接触面165側には互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167とを備えている。このような陽極集電板112と陽極端子110の形態は、陰極集電板116と陰極端子114との関係においても同様である。
 このような陽極集電板112と陽極端子110の接触面165に一致した位置にレーザビーム169の照射の中心位置(照射位置171)が設定されている。照射位置171は、図中接触面165に一致してもよく、また、異なった位置でもよい。
 このレーザビーム169の溶接形態については、第7の実施の形態で説明した通りであるから、その説明を割愛する。
 熱伝導溶接によって形成されたナゲット118について図19を参照する。図19は照射位置171にレーザビーム169を照射し、その照射形態はデフォーカスによりナゲット径を拡大させている。即ち、図19では、ナゲット中心Oを接触面165に一致するよう設定しているが、図中上方又は下方(接触面165に対して交差方向を異ならせる)に設定してもよい。
 このような熱伝導溶接では、照射位置171が接触面165と一致しているため、ナゲット径が拡大されたナゲット118には接触面165が取り込まれ、陽極集電板112と陽極端子110が溶接されている。この図19において、φはナゲット径、Ndはナゲット深さ、Wdは溶接深さである。ナゲット径φが大きく、ナゲット118がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度及び溶接強度が高められる。
 また、ナゲット118の外面部には、溶接前、接触面165側のカバー部153と互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部167とが溶融によって一体化されることにより、緩やかな面部181が生成されている。
 なお、レーザビーム169の照射位置171を図20のAに示すように、カバー部153又はカバー部153を設けた集電板の側面の範囲において、接触面165より上方向に異ならせ、又は図20のBに示すように、下方向に異ならせてもよい。この場合においても、ナゲット径が拡大されたナゲット118には接触面165が取り込まれ、陽極集電板112と陽極端子110が溶接される。この図20において、φはナゲット径、Ndはナゲット深さ、Wdは溶接深さである。ナゲット径φが大きく、ナゲット118がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度及び溶接強度が高められる。なお、ナゲット深さNdと溶接深さWdとの寸法差を0.5〔mm〕以内に設定することで所望の溶接強度が得られる。
 ナゲット118は、陽極集電板112と陽極端子110との接触面165、又は陰極集電板116と陰極端子114との接触面165と平行方向(接続面部152及び端子側接続面164に沿って平行方向)に連続又は非連続にて形成される。
 この第8の実施の形態によれば、第7の実施の形態で述べたのと同様の効果が得られる。
〔第9の実施の形態〕
 第9の実施の形態は、溶接ラインに対するレーザ照射出力制御を開示している。既述のように、コンデンサの製造方法には、コンデンサ素子4の素子端面5に陽極部6と陰極部8を形成し、陽極部6に陽極集電板12を、陰極部8に陰極集電板16をそれぞれ溶接して接続する工程を含む。この接続工程では、集電板に溶接始点から溶接終点に至る溶接ラインを設定し、この溶接ラインに照射されるビーム出力を段階的及び連続的に異ならせてビーム照射を行う。
 図21は第9の実施の形態に係る溶接ライン及びレーザ出力を示している。
 このレーザ照射による溶接について、図21を参照すると、図21のAは、陽極集電板12又は陰極集電板16上の溶接ライン218である。この溶接ライン218の溶接始点218Sと溶接終点218Eとの間を区間a、b、c及び溶接終点218E外に区間dを設定している。
 このレーザ溶接には、ビーム照射手段の一例としてファイバーレーザ照射装置264が用いられ、溶接ライン218はレーザ照射による溶接部である。この場合、アルゴンガス又はヘリウムガス等のシールドガスが使用され、溶接処理が行われる。
 このファイバーレーザ照射装置264のレーザ照射では、一定の照射速度で、溶接ライン218にビーム出力を段階的及び連続的に異ならせている。この実施の形態では、図21のBに示すように、レーザ出力Pが区間aではレーザ出力Pa、区間bではレーザ出力Pb(<Pa)の一定値に設定され、区間cではレーザ出力Pbからレーザ出力Pc(<Pb)に減衰させている。区間aのレーザ出力Paは最も高い値に設定され、一例として50〔W〕~3000〔W〕である。区間bのレーザ出力Pbはレーザ出力Paより小さく、レーザ出力Paの90%以下のレーザ出力としている。また、区間cのレーザ出力Pcはレーザ出力Pbより小さい値であって、レーザ出力Paの80%以下のレーザ出力としている。この場合、図21のBは横軸を距離〔mm〕で表している。
 溶接始点218Sで照射するレーザ出力Paが最も高い値に設定され、その照射区間aは区間bより短い時間に設定されている。区間aの後、レーザ出力Pbのレーザ照射の区間bは最も長く設定されている。また、区間cは区間bより短い時間に設定され、この区間cにおいて、レーザ出力Pbをレーザ出力Pcに直線的に減衰させている。このように溶接始点218S及び溶接終点218E近傍において、レーザ出力を減衰させるとよい。つまり少なくともレーザ出力の減衰が2区間以上あることが好ましい。
 溶接ライン218に対するレーザ走査の速度は、一定速度であって、例えば、300〔mm/秒〕~3000〔mm/秒〕から選択される一定速度とすればよいが、区間に応じて走査速度を変更してもよい。
 溶接ラインに関し、陽極部6に対する陽極集電板12の各溶接箇所、陰極部8に対する陰極集電板16の各溶接箇所の隣接箇所に複数の溶接ラインを設定し、溶接を多重化してもよい。
 この第9の実施の形態によれば、次の効果が得られる。
 (1)  陽極集電板12又は陰極集電板16とコンデンサ素子4の陽極部6又は陰極部8とのレーザ溶接の始点218Sから終点218Eに至る溶接ライン218に対するレーザ出力を段階的及び連続的に減衰させたので、集電板及び電極張出し部に加えられる溶接エネルギーを均一化でき、接続性を向上させることができる。
 (2)  レーザ照射の始点218Sではレーザ出力を高く設定し、高いレーザ出力エネルギーでレーザ照射を行う。レーザ照射を受けた陽極集電板12又は陰極集電板16及び陽極部6又は陰極部8の溶接ライン218及びその近傍部が加熱される。即ち、レーザ照射を溶接ライン218に沿って行えば、レーザ照射の走査に応じて加熱がその走査とともに連鎖状態で移動するので、レーザ出力を同一に設定しなくても、連鎖的に溶融状態となる。このため、レーザ出力を段階的及び連続的(上記実施の形態)、段階的又は連続的に減衰させても、溶接部に加わるレーザ照射による熱エネルギーは均一化する。このため、陽極集電板12又は陰極集電板16と陽極部6又は陰極部8との接続性が向上する。
 (3)  仮に、レーザ出力を一定に維持した場合には、熱エネルギーが過度となる場所が生じ、電極張出し部を形成している電極が薄いことから、過度の熱エネルギーの集中で溶融ムラを生じ、集電板と電極張出し部との接続性が不安定化するが、斯かる不都合をレーザ出力の減衰によって回避できる。
〔第10の実施の形態〕
 第10の実施の形態は、レーザ溶接の照射角度の制御を開示している。
 図22は、第10の実施の形態に係るレーザ照射角度及び溶接面の一例を示している。
 各集電板314A、314Bは、コンデンサ素子304の素子端面306の素子中心321を基準に設置され、コンデンサ素子304の陽極部308又は陰極部310に接続されている。そこで、各集電板314A、314Bの各端子溶接部320の接続面324は、素子中心321を基準にした円弧面を構成している。
 これに対し、図22に示すように、端子設置面部322に設置された陽極端子330A又は陰極端子330Bは、接続面340を接続面324に一致させる。レーザ照射装置344のレーザ出射部346を溶接面324、340に向けて設置する。
 レーザ出射部346と、接続面324、340のレーザ照射点348との距離をLdとすれば、素子中心321を回動中心にしてレーザ照射装置344を矢印Nの方向に回転しても、距離Ldを維持することができる。そして、レーザ照射点348を中心にレーザ照射装置344の回動角度θとし、この回動角度θを溶接範囲に設定すれば、接続面324、340に同一の距離Ldで一様にレーザ照射342を行い、溶接をすることができる。レーザ照射342の距離Ldが同一であるとともに、安定したレーザ照射342を連続して行え、均一な溶接処理を行うことができ、接続の信頼性を高めることができる。なお、レーザ照射装置344の回動に代え、コンデンサ素子304を素子中心321を回動中心にして回転して溶接する構成としてもよい。
 この端子接続工程の一例として、レーザ照射装置344をコンデンサ素子304の素子中心321を中心に所定角度θだけ回転させてレーザ照射342を行い、陽極端子330A及び集電板314Aの溶接を行う。そして、コンデンサ素子304を反転(半回転)させてレーザ照射点348に向け、レーザ照射装置344に対向する陰極端子330B及び集電板314Bの接続面324、340を配置する。この状態でレーザ照射装置344を素子中心321に向け、既述の所定角度θだけ回転させてレーザ照射342を行い、溶接を行う。
 このレーザ溶接処理について、図23に示すように、接続面324、340は一様に溶接され、溶接部350によって陽極端子330A(陰極端子330B)と集電板314A(314B)とが接続されている。この溶接の際、レーザ照射点348に対してレーザ照射342が行われるが、このレーザ照射342はアルゴンガスなどの不活性ガスの雰囲気中で行われる。
 また、集電板314A、314Bにある素子覆い部326でコンデンサ素子304側の陽極部308(陰極部310)が覆われるので、レーザ照射342やレーザ溶接で生成される飛翔物から陽極部308(陰極部310)及びコンデンサ素子304を防護することができる。
 この第10の実施の形態によれば、次の効果が得られる。
 (1) コンデンサ素子に接続された集電板の第1の接続面324と整合する第2の接続面340を端子部材に備え、これら第1及び第2の接続面を溶接しているので、集電板と端子部材との接続を容易化でき、接続の信頼性を高めることができる。
 (2) レーザ溶接又は電子ビーム溶接の溶接精度を高めることができる。
 (3) 溶接工程を簡略化でき、接続処理の迅速化を図ることができる。
〔他の実施の形態〕
 (1) 上記実施の形態では、コンデンサ素子として巻回素子を例示したが、巻回素子に限定されない。積層型素子や固体素子であってもよい。
 (2) 上記実施の形態では、コンデンサ素子の素子端面の一方(同一面)に陽極部6及び陰極部8を備えて外部端子に接続する構成を開示しているが、一方の素子端面に陽極部、他方の素子端面に陰極部を備える構成としてもよい。
 (3) 上記実施の形態では、電気二重層コンデンサ2を例示したが、本発明はこれに限定されない。同一の構造及び方法は、電解コンデンサにも同様に適用でき、同様の効果が得られる。
 (4) 上記実施の形態では、集電板として陽極集電板12、陰極集電板16を例示したが、本発明は上記実施の形態に限定されない。接続面部52は、フラット面としたが、外部端子の形状に合致する形状として、曲面であってもよい。この接続面部52の位置についても、集電板の面内又は周面の何れでもよいし、接続用凸部を設けてもよい。
 (5) 上記実施の形態では、陽極部と陰極部との間に絶縁間隔を設置しているが、この絶縁間隔に絶縁部材を設置してもよい。
 (6) 上記実施の形態では、溶接手段として、レーザ溶接や電子ビーム溶接を例示したが、本発明はこれに限定されない。アーク溶接等を用いることもできる。この場合は、集電板の外周面側を凸状として接続面部52を形成し、該接続面部52と端子側接続面64をアーク溶接すればよい。
 (7) 上記実施の形態では、陽極部6及び陰極部8を半円形状に形成したが、本発明はこれに限定されない。実施の形態で示した陽極部6の区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cのうち、陽極集電板12及び陰極集電板16と接続する区画部6B、6C及び8B、8Cのみ張り出して形成し、陽極部6の区画部6A及び陰極部8の区画部8Aは張り出さなくてもよい。
 (8) 上記実施の形態では、集電板の異なる位置として3分割された区分により、陽極部6及び陰極部8との素子接続領域である素子接続部56B、56C又は58B、58Cと、端子接続領域である端子接続部56A、58Aとが集電板の表裏面に設定され、水平方向に異なる位置に設定しているが、これに限定されない。集電板の一部に素子接続領域(レーザ照射接続部66)を設定し、その他の部位に端子接続領域(溶接接続部18)を設定してもよい。即ち、集電板の表裏面で溶接位置が異なれば、素子接続領域と端子接続領域が近接していてもよい。つまり、素子接続領域である素子接続部56Bにおいてレーザ照射接続部66と集電板の表裏面で溶接位置が重ならない部位に溶接接続部18を設定してもよい。
 以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
 本発明のコンデンサ及びその製造方法は、端子接続構造や接続工程の簡略化に寄与し、生産性や信頼性を高めることができ、有益である。
 2 電気二重層コンデンサ
 4、304コンデンサ素子
 5、306 素子端面
 6、308 陽極部
 60 陽極体
 8、310 陰極部
 80 陰極体
 10、110、330A 陽極端子
 12、112 陽極集電板
 14、114、330B 陰極端子
 16、116 陰極集電板
 18 溶接接続部
 19 保持テープ
 20 外装ケース
 22 封口板
 24 空間部
 26 ベース部
 28 封止部
 32 加締め段部
 34 開口端部
 36 透孔
 38 圧力開放機構
 44 絶縁間隔
 52、152 接続面部
 64、164 端子側接続面
 118 ナゲット
 165 接触面
 218 溶接ライン
 314A、314B 集電板
 326 素子覆い部

                                                                                    

Claims (22)

  1.  陽極側及び陰極側の電極体と、これら電極体間に介在されたセパレータを備える巻回素子又は非巻回素子であるコンデンサ素子と、
     前記コンデンサ素子を収容するケース部材の開口部を封口する封口部材と、
     前記コンデンサ素子の素子端面に前記電極体の何れか一方又は双方から張り出させた単一又は複数の電極張出し部と、
     前記電極張出し部に接続された単一又は複数の集電板と、
     前記封口部材に設置され、前記集電板に重ねられるとともに側面部が溶接された端子部材と、
     を備えたことを特徴とするコンデンサ。
  2.  前記電極張出し部は、前記電極体の一部で形成された集合体であって、前記コンデンサ素子の素子中心部に向けて前記素子端面上に屈曲成形されて前記集電板に接合させたことを特徴とする、請求項1に記載のコンデンサ。
  3.  前記電極張出し部は、前記コンデンサ素子の陽極側の前記電極体から素子端面に張り出させた陽極張出し部、前記コンデンサ素子の陰極側の前記電極体から前記素子端面と同一の素子端面又は異なる素子端面に張り出させた陰極張出し部のいずれか一方又は双方であることを特徴とする、請求項1又は2の何れかに記載のコンデンサ。
  4.  前記陽極張出し部及び前記陰極張出し部が前記コンデンサ素子の共通の前記素子端面に設置された場合、前記陽極張出し部と前記陰極張出し部との間を絶縁間隔又は絶縁部材の設置により絶縁したことを特徴とする、請求項3に記載のコンデンサ。
  5.  前記集電板は、
     前記コンデンサ素子の前記素子端面に形成された単一又は複数の電極張出し部の一部又は全部に形成された単一又は複数の溶接面部と溶接される単一又は複数の第1の溶接面部と、
     前記第1の溶接面部と交差する側面部に設けられ、前記端子部材と溶接される第2の溶接面部と、
     を備えることを特徴とする、請求項1、2、3又は4の何れかに記載のコンデンサ。
  6.  前記電極張出し部は、前記素子端面の素子中心部を中心にして所定角度で区画され、同一又は異なった曲げ角度を以て前記素子端面の中心方向に屈曲された複数の区画部と、
     前記素子端面上に前記区画部を以て形成された単一又は複数の溶接面部と、
     を備えることを特徴とする、請求項1、2、3、4又は5の何れかに記載のコンデンサ。
  7.  前記集電板には、前記端子部材と溶接された側面部より、外周方向に突出する平坦部を備えることを特徴とする、請求項1、2、3、4、5又は6の何れかに記載のコンデンサ。
  8.  前記端子部材は前記集電板にレーザ溶接又は電子ビーム溶接により溶接され、前記集電板と前記端子部材との接触面に対するレーザビーム又は電子ビームの照射位置を異ならせていることを特徴とする、請求項1、2、3、4、5、6又は7の何れかに記載のコンデンサ。
  9.  前記集電板又は前記端子部材に形成された覆い部で前記集電板と前記端子部材との接触面を覆い、前記覆い部にレーザビーム又は電子ビームの照射により前記集電板及び前記端子部材とを溶接した溶接部を備えることを特徴とする、請求項1、2、3、4、5、6、7又は8の何れかに記載のコンデンサ。
  10.  前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記端子部材との接触面に一致させ、又は前記接触面に対して交差方向に異ならせたことを特徴とする、請求項1、2、3、4、5、6、7、8又は9の何れかに記載のコンデンサ。
  11.  前記レーザ溶接又は前記電子ビーム溶接のナゲット深さが1.2〔mm〕以下であることを特徴とする、請求項8、9又は10の何れかに記載のコンデンサ。
  12.  陽極側及び陰極側の電極体と、これら電極体間に介在されたセパレータとを備える巻回素子又は非巻回素子であるコンデンサ素子の素子端面に前記電極体を張り出させ、前記素子端面に単一又は複数の電極張出し部を形成する工程と、
     前記コンデンサ素子を収容するケース部材の開口部を封口する封口部材に設置された端子部材と、前記電極張出し部に接続されている単一又は複数の集電板とを重ね、前記端子部材の側面部と前記集電板の側面部とを溶接する工程と、
     を含むことを特徴とするコンデンサの製造方法。
  13.  更に、前記端子部材の前記側面部に前記集電板の側面部を位置決めする工程と、
    を含み、前記側面部間を共通面部として前記溶接を施すことを特徴とする、請求項12に記載のコンデンサの製造方法。
  14.  前記端子部材と前記集電板とを重ね、前記端子部材と前記集電板とを接触する工程と、
     前記集電板と前記端子部材との接触面に対しレーザ又は電子ビームの照射位置を異ならせて前記集電板と前記端子部材とを溶接する工程と、
     を含むことを特徴とする、請求項12又は13の何れかに記載のコンデンサの製造方法。
  15.  前記端子部材、又は前記電極張出し部に接続される前記集電板の何れか一方に覆い部を備え、この覆い部で前記端子部材と前記集電板との接触面を覆う工程と、
     前記覆い部にレーザビーム又は電子ビームの照射位置が設定され、前記集電板と前記外部端子部材とを溶接する工程と、
     を含むことを特徴とする、請求項12、13又は14の何れかに記載のコンデンサの製造方法。
  16.  前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記端子部材との接触面に一致させ、又は前記接触面に対して交差方向に異ならせたことを特徴とする、請求項14又は15の何れかに記載のコンデンサの製造方法。
  17.  更に、前記電極張出し部に前記集電板を重ね、この集電板に前記コンデンサ素子の電極体と交差方向に溶接ラインを設定し、この溶接ラインに沿って溶接する工程を含むことを特徴とする、請求項12、13、14、15又は16の何れかに記載のコンデンサの製造方法。
  18.  絶縁間隔を以て対向する前記集電板の複数箇所に2以上の前記溶接ラインを隣接して設定し、コンデンサ素子の素子中心部に跨がる特定箇所で隣接する2以上の前記溶接ラインを連続して溶接した後、前記特定箇所以外の箇所の2以上の前記溶接ラインを連続して溶接し、前記集電板と前記コンデンサ素子の前記電極張出し部とを複数箇所で隣接する2以上の前記溶接ラインにより溶接することを特徴とする、請求項17に記載のコンデンサの製造方法。
  19.  更に、前記電極張出し部に前記集電板を設置し、該集電板に溶接始点から溶接終点に至る溶接ラインを設定し、この溶接ラインに連続照射されるビーム出力を段階的又は連続的に異ならせたビーム照射により前記電極張出し部に前記集電板を接続する工程を含む、請求項12、13、14、15、16、17又は18の何れかに記載のコンデンサの製造方法。
  20.  前記コンデンサ素子の前記素子端面に設置されて陽極側又は陰極側に接続される前記集電板に、前記コンデンサ素子の側面方向に円弧状の第1の接続面を形成する工程と、
     前記集電板に接続する前記端子部材に前記集電板の前記接続面と同心円状の第2の接続面を形成する工程と、
     前記第1の接続面と前記第2の接続面とを揃え、前記コンデンサ素子、又は前記第1の接続面と前記第2の接続面にビームを照射する溶接手段を用い、前記コンデンサ素子又は溶接手段を回動させる工程と、
     前記第1の接続面と前記第2の接続面とを溶接して前記集電板と前記端子部材とを接続する工程と、
     を含むことを特徴とする、請求項12、13、14、15、16、17、18又は19に記載のコンデンサの製造方法。
  21.  前記コンデンサ素子の素子中心を基準に、前記第1の接続面及び前記第2の接続面を同心円面に形成し、
     前記素子中心を回動中心にして前記コンデンサ素子又は前記溶接手段を回動させる、
     ことを特徴とする、請求項20に記載のコンデンサの製造方法。
  22.  前記ビームは、ファイバーレーザビームであることを特徴とする、請求項8、9、10又は11の何れかに記載のコンデンサ、請求項14、15、16、19又は20の何れかに記載のコンデンサの製造方法。

                                                                                        
PCT/JP2011/006266 2010-11-09 2011-11-09 コンデンサ及びその製造方法 WO2012063486A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180053897.9A CN103210459B (zh) 2010-11-09 2011-11-09 电容器及其制造方法
US13/890,426 US9672985B2 (en) 2010-11-09 2013-05-09 Capacitor and method for manufacturing the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2010-251352 2010-11-09
JP2010-251356 2010-11-09
JP2010251352A JP5764912B2 (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010-251355 2010-11-09
JP2010251355A JP2012104620A (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010251356A JP2012104621A (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2011035484A JP5866772B2 (ja) 2011-02-22 2011-02-22 コンデンサ及びその端子接続方法
JP2011-035484 2011-02-22
JP2011-160248 2011-07-21
JP2011160247A JP5961939B2 (ja) 2011-07-21 2011-07-21 コンデンサの製造方法
JP2011160248A JP5961940B2 (ja) 2011-07-21 2011-07-21 コンデンサの製造方法
JP2011-160247 2011-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/890,426 Continuation US9672985B2 (en) 2010-11-09 2013-05-09 Capacitor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012063486A1 true WO2012063486A1 (ja) 2012-05-18

Family

ID=46050651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006266 WO2012063486A1 (ja) 2010-11-09 2011-11-09 コンデンサ及びその製造方法

Country Status (3)

Country Link
US (1) US9672985B2 (ja)
CN (1) CN103210459B (ja)
WO (1) WO2012063486A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620824A (zh) * 2011-06-28 2014-03-05 日本贵弥功株式会社 蓄电器件以及蓄电器件的制造方法
US9053858B2 (en) 2010-08-18 2015-06-09 Nippon Chemi-Con Corporation Capacitor, and manufacturing method and manufacturing program thereof
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same
US9875856B2 (en) 2013-06-14 2018-01-23 Nippon Chemi-Con Corporation Capacitor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707729B1 (ko) * 2015-03-09 2017-02-17 성균관대학교산학협력단 적층 커패시터 패키지
JP6668628B2 (ja) * 2015-07-27 2020-03-18 日本ケミコン株式会社 コンデンサおよびコンデンサの製造方法
US10692662B2 (en) * 2016-01-07 2020-06-23 Nesscap Co., Ltd. Electric double layer device
US10201876B2 (en) * 2016-03-09 2019-02-12 Ngk Spark Plug Co., Ltd. Laser welding method, method for manufacturing welded body, method for manufacturing electrode for spark plug, and method for manufacturing spark plug
MX2019001404A (es) * 2016-08-03 2019-07-04 Shiloh Ind Inc Junta de soldadura hibrida y metodo para formarla.
JP6915485B2 (ja) * 2016-09-28 2021-08-04 日本ケミコン株式会社 コンデンサおよびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219857A (ja) * 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JPH11251190A (ja) * 1997-12-22 1999-09-17 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2001068379A (ja) * 1999-08-24 2001-03-16 Honda Motor Co Ltd 電気二重層コンデンサ
WO2004084246A1 (ja) * 2003-03-19 2004-09-30 Matsushita Electric Industrial Co., Ltd. コンデンサおよびその接続方法
JP2010093178A (ja) * 2008-10-10 2010-04-22 Panasonic Corp 電気化学キャパシタ及びその製造方法
JP2010135651A (ja) * 2008-12-05 2010-06-17 Chiba Inst Of Technology 金属箔の接続構造及びその接続方法及びコンデンサ

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560575B2 (ja) 1991-08-20 1996-12-04 株式会社ユアサコーポレーション 蓄電池の製造法
JP3525450B2 (ja) 1993-03-17 2004-05-10 日本ケミコン株式会社 積層型電解コンデンサ
JPH0822818A (ja) 1994-07-05 1996-01-23 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPH1083833A (ja) 1996-09-06 1998-03-31 Japan Storage Battery Co Ltd 二次電池
DE69834706T2 (de) 1997-12-22 2007-06-06 Asahi Glass Co., Ltd. Elektrischer Doppelschichtkondensator
JP2000040641A (ja) * 1998-07-24 2000-02-08 Asahi Glass Co Ltd 電気二重層キャパシタ
JP4866496B2 (ja) 1999-04-08 2012-02-01 パナソニック株式会社 二次電池の製造方法
US6456484B1 (en) * 1999-08-23 2002-09-24 Honda Giken Kogyo Kabushiki Kaisha Electric double layer capacitor
JP2001102031A (ja) 1999-09-30 2001-04-13 Sanyo Electric Co Ltd 電気エネルギー蓄積デバイス及びその製造方法
JP2003001452A (ja) 2001-06-15 2003-01-08 Furukawa Electric Co Ltd:The レーザ溶接方法およびその方法を用いて製造された半導体レーザモジュール
JP2002164259A (ja) 2001-10-03 2002-06-07 Nippon Chemicon Corp 電解コンデンサの外部端子固定方法
JP3825706B2 (ja) 2002-03-11 2006-09-27 三洋電機株式会社 二次電池
JP3960877B2 (ja) 2002-08-05 2007-08-15 三洋電機株式会社 電池の製造方法
CN1701402A (zh) 2003-03-19 2005-11-23 松下电器产业株式会社 电容器和连接电容器的方法
KR100542187B1 (ko) 2003-08-21 2006-01-10 삼성에스디아이 주식회사 이차 전지 및 이의 제조 방법
WO2005038837A1 (ja) * 2003-10-21 2005-04-28 Asahi Glass Company, Limited 電気二重層キャパシタ
JP2006004729A (ja) 2004-06-17 2006-01-05 Matsushita Electric Ind Co Ltd 電気化学素子
JP4872274B2 (ja) 2005-08-30 2012-02-08 パナソニック株式会社 蓄電池および電池パック
JP2007326140A (ja) 2006-06-09 2007-12-20 Phoeton Corp レーザ溶接方法
JP2007335156A (ja) 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP5127250B2 (ja) 2007-01-31 2013-01-23 三洋電機株式会社 円筒型蓄電池およびその製造方法
US7983021B2 (en) * 2007-10-31 2011-07-19 Corning Incorporated Oblong electrochemical double layer capacitor
JP2009188095A (ja) 2008-02-05 2009-08-20 Honda Motor Co Ltd 蓄電体接続構造
EP2478992B1 (en) 2008-04-21 2016-06-01 Honda Motor Co., Ltd. Method for joining metallic members
JP2010010166A (ja) 2008-06-24 2010-01-14 Panasonic Corp コンデンサの製造方法
JP2010114240A (ja) * 2008-11-06 2010-05-20 Panasonic Corp キャパシタ及びこれを用いたキャパシタユニット
WO2010041461A1 (ja) 2008-10-10 2010-04-15 パナソニック株式会社 蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法
WO2010059957A2 (en) 2008-11-21 2010-05-27 Johnson Controls - Saft Advanced Power Solutions Llc Current collector for an electrochemical cell
US20100155378A1 (en) 2008-12-18 2010-06-24 Hans-Herbert Fuchs Battery Manufacturing
KR101049282B1 (ko) 2009-03-03 2011-07-13 주식회사 네스캡 전기에너지 저장장치
WO2010131298A1 (ja) 2009-05-15 2010-11-18 トヨタ自動車株式会社 レーザ溶接方法及びそれを含む電池の製造方法
JP5866772B2 (ja) 2011-02-22 2016-02-17 日本ケミコン株式会社 コンデンサ及びその端子接続方法
JP5866753B2 (ja) 2010-11-09 2016-02-17 日本ケミコン株式会社 コンデンサ及びその製造方法
JP2012104621A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
JP2012104620A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
WO2012023289A1 (ja) 2010-08-18 2012-02-23 日本ケミコン株式会社 コンデンサ、その製造方法及び製造プログラム
JP6069818B2 (ja) 2011-06-30 2017-02-01 日本ケミコン株式会社 コンデンサの製造方法および製造プログラム
JP2012104618A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
JP5764912B2 (ja) 2010-11-09 2015-08-19 日本ケミコン株式会社 コンデンサ及びその製造方法
JP5482565B2 (ja) 2010-08-18 2014-05-07 日本ケミコン株式会社 コンデンサ及びその製造方法
JP5928993B2 (ja) 2010-11-09 2016-06-01 日本ケミコン株式会社 コンデンサの製造方法
JP2012104622A (ja) 2010-11-09 2012-05-31 Nippon Chemicon Corp コンデンサ及びその製造方法
US8309246B2 (en) 2010-10-25 2012-11-13 Sb Limotive Co., Ltd. Terminal of rechargeable battery and method of manufacturing the same
WO2012063486A1 (ja) 2010-11-09 2012-05-18 日本ケミコン株式会社 コンデンサ及びその製造方法
JP5961939B2 (ja) 2011-07-21 2016-08-03 日本ケミコン株式会社 コンデンサの製造方法
JP5961940B2 (ja) 2011-07-21 2016-08-03 日本ケミコン株式会社 コンデンサの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219857A (ja) * 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JPH11251190A (ja) * 1997-12-22 1999-09-17 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2001068379A (ja) * 1999-08-24 2001-03-16 Honda Motor Co Ltd 電気二重層コンデンサ
WO2004084246A1 (ja) * 2003-03-19 2004-09-30 Matsushita Electric Industrial Co., Ltd. コンデンサおよびその接続方法
JP2010093178A (ja) * 2008-10-10 2010-04-22 Panasonic Corp 電気化学キャパシタ及びその製造方法
JP2010135651A (ja) * 2008-12-05 2010-06-17 Chiba Inst Of Technology 金属箔の接続構造及びその接続方法及びコンデンサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053858B2 (en) 2010-08-18 2015-06-09 Nippon Chemi-Con Corporation Capacitor, and manufacturing method and manufacturing program thereof
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same
CN103620824A (zh) * 2011-06-28 2014-03-05 日本贵弥功株式会社 蓄电器件以及蓄电器件的制造方法
US10777802B2 (en) 2011-06-28 2020-09-15 Nippon Chemi-Con Corporation Electricity storage device and method for manufacturing electricity storage device
US9875856B2 (en) 2013-06-14 2018-01-23 Nippon Chemi-Con Corporation Capacitor

Also Published As

Publication number Publication date
CN103210459A (zh) 2013-07-17
CN103210459B (zh) 2016-08-10
US20130250475A1 (en) 2013-09-26
US9672985B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2012063486A1 (ja) コンデンサ及びその製造方法
JP6264431B2 (ja) 蓄電デバイス
JP5935580B2 (ja) 蓄電装置の製造方法及び二次電池の製造方法
JP5961940B2 (ja) コンデンサの製造方法
WO2018074135A1 (ja) 蓄電装置及び蓄電装置の製造方法
JP5961939B2 (ja) コンデンサの製造方法
JP5979273B2 (ja) コンデンサの製造方法
JP5482565B2 (ja) コンデンサ及びその製造方法
JP2012160658A (ja) コンデンサの製造方法
JP5764912B2 (ja) コンデンサ及びその製造方法
JP5928993B2 (ja) コンデンサの製造方法
JP2012104622A (ja) コンデンサ及びその製造方法
JP2012104618A (ja) コンデンサ及びその製造方法
JP5866753B2 (ja) コンデンサ及びその製造方法
JP6112144B2 (ja) コンデンサ及びその製造方法
JP2012104620A (ja) コンデンサ及びその製造方法
JP2012104621A (ja) コンデンサ及びその製造方法
JP2012174886A (ja) コンデンサ及びその端子接続方法
JP6641978B2 (ja) 電極組立体の製造方法及び電極組立体
CN105960722B (zh) 蓄电装置和蓄电装置制造方法
JP5716851B2 (ja) コンデンサの製造方法
JP5834617B2 (ja) コンデンサの製造方法
JP2013191842A (ja) コンデンサおよびその製造方法
JP5724599B2 (ja) コンデンサの製造方法
JP5878307B2 (ja) 電池及び電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839667

Country of ref document: EP

Kind code of ref document: A1