WO2012023289A1 - コンデンサ、その製造方法及び製造プログラム - Google Patents

コンデンサ、その製造方法及び製造プログラム Download PDF

Info

Publication number
WO2012023289A1
WO2012023289A1 PCT/JP2011/004623 JP2011004623W WO2012023289A1 WO 2012023289 A1 WO2012023289 A1 WO 2012023289A1 JP 2011004623 W JP2011004623 W JP 2011004623W WO 2012023289 A1 WO2012023289 A1 WO 2012023289A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
current collector
capacitor
collector plate
Prior art date
Application number
PCT/JP2011/004623
Other languages
English (en)
French (fr)
Inventor
正行 森
久保内 達郎
孝司 縄野
晃弘 古澤
准一郎 迎田
靖 小玉
滋 飯澤
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010183486A external-priority patent/JP5482565B2/ja
Priority claimed from JP2010251356A external-priority patent/JP2012104621A/ja
Priority claimed from JP2010251355A external-priority patent/JP2012104620A/ja
Priority claimed from JP2010251354A external-priority patent/JP5928993B2/ja
Priority claimed from JP2010251357A external-priority patent/JP2012104622A/ja
Priority claimed from JP2010251353A external-priority patent/JP2012104618A/ja
Priority claimed from JP2010251358A external-priority patent/JP5866753B2/ja
Priority claimed from JP2010251352A external-priority patent/JP5764912B2/ja
Priority claimed from JP2011035484A external-priority patent/JP5866772B2/ja
Priority claimed from JP2011145400A external-priority patent/JP6069818B2/ja
Priority to EP11817938.1A priority Critical patent/EP2608230B1/en
Priority to CN201180039963.7A priority patent/CN103081047B/zh
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to KR1020137006759A priority patent/KR101930095B1/ko
Publication of WO2012023289A1 publication Critical patent/WO2012023289A1/ja
Priority to US13/768,851 priority patent/US9053858B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a connection between a capacitor element and an external terminal, for example, a capacitor such as an electrolytic capacitor and an electric double layer capacitor, a manufacturing method thereof, and a manufacturing program.
  • a current collecting terminal is provided on the end face of the element (for example, Patent Document 1), an anode current collecting plate is provided on one end face of the winding element, and a cathode current collecting plate is provided on the other end face.
  • Patent Document 2 including a current collector foil that covers the current collector foil exposed on the end face of the winding element, and welding and connecting the current collector plate and the current collector foil (for example, Patent Document 3); It is known that a current collector plate is used for connection between an exterior case and an element or connection with an external terminal (for example, Patent Document 4).
  • the current collector is provided on each end face of the wound element, when external terminals on the anode side and the cathode side are installed adjacent to the exterior member that encloses the wound element, It is necessary to secure a connection distance between the electric body. Further, in the wound type element, the distribution of the internal resistance is different between the inner part and the outer part. Therefore, countermeasures are required, and attention must be paid to the connection between the element and the current collector. Further, the structure using the current collector can reduce the internal resistance of the element. In some cases, the stress applied during the manufacturing process on the current collector interposed between the external terminal and the element affects the connection, and the connection reliability may be lowered and the connection resistance may be increased.
  • an object of the present invention is to reduce the resistance of the capacitor, to strengthen the connection structure, and to simplify the connection process.
  • Another object of the present invention is to automate the connection between the current collecting member and the element end face in view of the above problems.
  • Another object of the present invention is to automate the polarity discrimination between the current collecting member and the element end face in view of the above problems.
  • Another object of the present invention is to automate the determination of defective capacitor elements in view of the above problems.
  • a capacitor of the present invention includes a capacitor element in which an anode body and a cathode body are wound via a separator, a sealing member that seals a case member that accommodates the capacitor element, and the capacitor element.
  • the anode current collector plate is welded along a welding line in a peripheral direction of the anode portion and the capacitor element, or the cathode current collector plate is the cathode. It may be welded along the welding line which goes to the peripheral direction of a part and the said capacitor
  • the anode terminal member is provided with a connection portion adjacent to the anode current collector plate, and the connection between the connection portion and the anode current collector plate, or the cathode
  • the terminal member may be provided with a connection portion close to the cathode current collector plate, and weld connection may be used for either or both of the connection between the connection portion and the cathode current collector plate.
  • the anode part and the cathode part are formed on the same end face of the capacitor element, and the insulating interval for insulating the anode part and the cathode part is provided. May be set.
  • the anode part or the cathode part is compression-molded on an element end surface toward a winding center part of the capacitor element, and is disposed at the compression-molded portion.
  • the anode current collector plate or the cathode current collector plate may be welded.
  • the anode part or the cathode part is drawn out from one or both of the electrode bodies to an element end face of the capacitor element, and has a predetermined width from the element end face.
  • the capacitor is preferably installed between the anode current collector plate and the anode terminal member, or between the cathode current collector plate and the cathode terminal member, A connection plate connected to the anode terminal member or the cathode terminal member and connected to the anode current collector plate or the cathode current collector plate may be provided.
  • the anode part or the cathode part is formed on the element end face by drawing a part of an electrode body to the element end face of the capacitor element with a predetermined overhanging width.
  • the insulating interval set between the different electrodes may be set larger than the overhang width of the electrode body.
  • the insulation interval set between the different poles of the current collector plate may be set smaller than the insulation gap set between the different poles of the electrode overhanging portion. Good.
  • the anode part or the cathode part has a width narrower than the arc length of the half circumference for each half circumference of the capacitor element.
  • the electrode body may be exposed from the element end face of the capacitor element.
  • the anode current collector plate or the cathode current collector plate is provided between the anode portion and the anode terminal member or between the cathode portion and the cathode terminal member.
  • the first connection region and the second connection region are installed at different positions, the anode part or the cathode part is connected to the first connection region, and the anode is connected to the second connection region.
  • a terminal member or the cathode terminal member may be connected.
  • the current collector plate is installed on the element end surface of the capacitor element and connected to the anode part or the cathode part, and is circular in the side surface direction of the capacitor element.
  • the current collector plate may include a cover portion covering an element end surface of the capacitor element along the first connection surface.
  • the capacitor of the present invention is provided by an electrode overhanging portion on the anode side or the cathode side which is derived from the element end face and has different end face shapes or end face areas on the anode side and the cathode side, or the element end face.
  • the current collector plate has a shape or an area that is different between an anode side and a cathode side, and the anode side or the cathode side is specified by the shape or the area, It may be connected to an external terminal.
  • a method of manufacturing a capacitor according to the present invention includes a step of forming a capacitor element in which an anode body and a cathode body are wound through a separator, and the capacitor element is drawn out from the anode body and formed on the element end face.
  • the anode current collector plate and the anode part, or the cathode current collector plate and the cathode part are connected by laser welding, and the anode current collector is connected.
  • a step of connecting the electric plate and the anode terminal member or the cathode current collector plate and the cathode terminal member by laser welding may be included.
  • a step of setting a connecting portion adjacent to the anode terminal member and the anode current collector and connecting by laser welding, or the cathode terminal A step of setting a connecting portion close to the member and the cathode current collector plate and connecting them by laser welding may be included.
  • the anode terminal member is further overlapped with the anode current collector plate, or the cathode terminal member is overlapped with the cathode current collector plate, You may include the process of welding these side parts.
  • the side surface portion of the anode terminal member may be the side surface portion of the anode current collector plate or the side surface portion of the cathode terminal member may be the cathode.
  • a step of positioning the side surface portion of the current collector plate may be included, and the welding may be performed with a common surface portion between the side surface portions.
  • one or a plurality of electrode protruding portions drawn from either one or both of the anode body and the cathode body on the element end face of the capacitor element May be included by folding and stacking on the element end face of the capacitor element by a crease provided at a predetermined width from the element end face.
  • the anode current collector plate is connected to the anode portion of the element end face of the capacitor element or the cathode current collector plate is connected to the cathode portion. And connecting a connecting plate to the anode terminal member or the cathode terminal member, and connecting the connecting plate to the anode current collector plate or the cathode current collector plate.
  • a single or a plurality of electrode projecting portions drawn from one or both of the electrode bodies on the element end surface of the capacitor element are preferably provided.
  • a step of stacking a plurality of current collecting plates, setting a welding line on the current collecting plate in a direction intersecting with the electrode body of the capacitor element, and welding along the welding line may be included.
  • two or more welding lines are set adjacent to each other on the current collector plates facing each other with an insulation interval, and the element center of the capacitor element is set. After continuously welding the two or more adjacent welding lines at a specific location across the part, continuously welding the two or more welding lines at locations other than the specific location, the current collector plate and the You may weld the said electrode overhang
  • a welding line from a welding start point to a welding end point is set on the anode current collector plate or the cathode current collector plate, and the welding line is continuously irradiated.
  • the beam output is set stepwise from the welding start point to the welding end point by setting the welding start point of the welding line higher than the welding end point. It may be attenuated continuously.
  • a capacitor manufacturing method includes a current collector plate disposed on an element end face of a capacitor element and connected to an anode side or a cathode side. 1 is formed, a second connection surface concentric with the connection surface of the current collector plate is formed on the terminal member connected to the current collector plate, and the first connection surface and the second connection surface are formed.
  • the first connection surface and the second connection surface are formed concentrically on the basis of the element center of the capacitor element, and the element
  • the capacitor element or the welding means may be rotated with the center as the rotation center.
  • the capacitor manufacturing method of the present invention includes forming an electrode overhanging portion on the element end surface, or an electrode overhanging portion formed on the element end surface, having different end face shapes or end face areas. Whether the anode side or cathode side electrode part having a different end face shape or end face area is formed, and whether the electrode overhang part or the end face shape or end face area of the electrode part is the anode side or the cathode side as identification information.
  • an external terminal on the anode side or the cathode side is connected to a current collector plate that is connected to the electrode overhanging portion or the electrode portion and that is identified as the anode side or the cathode side by the identification information.
  • a reference line is set on the element end face by recognizing the electrode overhanging part or the electrode part, and is parallel to the reference line and in the element.
  • a reference range having a constant width including the center line is set around the center line, and the electrode projecting portion or the electrode is set in the reference range.
  • determines whether the part protrudes may be sufficient.
  • a capacitor manufacturing program of the present invention is a capacitor manufacturing program executed by a computer, obtains image data of an element end face of a capacitor element, and outputs an electrode overhanging portion or the electrode overhanging portion.
  • the end face shape or the end face area of the electrode part formed in the above is used as identification information to determine whether it is the anode side or the cathode side, and is connected to the electrode extension part or the current collector plate connected to the electrode part Information specifying the external terminal on the anode side or the cathode side is generated.
  • a reference line is generated based on the position of the electrode overhanging part or the electrode part on the image data, and is parallel to the reference line and A center line passing through the element center may be generated, a displacement angle of the element end face may be detected with reference to the element center and the center line, and correction information on the angular position of the capacitor element may be generated based on the displacement angle.
  • a reference range having a certain width including the center line is set around the center line, and the electrode overhanging portion or It may be determined whether or not the electrode portion is protruding, and the determination information may be generated.
  • connection structure Since it is a connection structure provided with a current collector plate between the anode part and the cathode part drawn out on the same end face of the winding capacitor element, and the anode terminal member and the cathode terminal member in the exterior member,
  • the connection structure between the anode terminal member and the anode portion and between the cathode terminal member and the cathode portion can be strengthened.
  • connection between the anode terminal member and the anode part or the cathode terminal member and the cathode part can be simplified with the current collector plate interposed, and the connection process can be simplified.
  • the first embodiment discloses a configuration in which a current collector plate is provided for connection between a terminal member for external connection and a capacitor element.
  • FIG. 1 shows a longitudinal section showing an example of an electric double layer capacitor
  • FIG. 2 shows an example of an exploded electric double layer capacitor.
  • This electric double layer capacitor (hereinafter simply referred to as “capacitor”) 2 is an example of the capacitor of the present invention and a method for manufacturing the same.
  • An anode portion 6 and a cathode portion 8 are formed on the element end face.
  • An anode terminal 10 is connected to the anode portion 6 via an anode current collector plate 12, and a cathode terminal 14 is connected to the cathode portion 8 via a cathode current collector plate 16.
  • laser welding or electron beam welding is used, and 18 is an example of a weld connection.
  • the weld connection 18 is set to the anode terminal 10 or the cathode terminal 14 in the vicinity of the anode current collector plate 12 or the cathode current collector plate 16.
  • the anode terminal 10 and the cathode terminal 14 are terminal members for external connection.
  • the anode terminal 10 is an example of an anode terminal member
  • the cathode terminal 14 is an example of a cathode terminal member.
  • Capacitor element 4 is a cylindrical body. From one element end face, anode body 60 (FIG. 3) is pulled out to form anode portion 6, and cathode body 80 (FIG. 3) is pulled out to form cathode portion 8. Yes.
  • the holding tape 19 is wound around the capacitor element 4 to prevent the anode body 60 and the cathode body 80 from being unwound.
  • An exterior case 20 and a sealing plate 22 are provided as exterior members of the capacitor element 4, and the exterior case 20 is a molded body made of a metal material having moldability such as aluminum.
  • the sealing plate 22 is a means for closing the opening of the outer case 20 and maintaining the airtightness of the space 24, and is a fixing member for fixing the anode terminal 10 and the cathode terminal 14, and a support member for the capacitor element 4.
  • the sealing plate 22 is provided with a base portion 26 and a sealing portion 28.
  • the base portion 26 is formed of an insulating material such as synthetic resin, and the anode terminal 10 and the cathode terminal 14 are fixed and insulated.
  • the sealing portion 28 is made of a material having high airtightness, for example, a rubber ring.
  • the sealing plate 22 is inserted into the opening 30 (FIG. 2) of the outer case 20 and is positioned at a caulking step 32 formed in the middle of the opening 30.
  • the open end 34 of the outer case 20 is crimped by a curling process and is bitten into the sealing portion 28. Thereby, the outer case 20 is firmly sealed.
  • the base portion 26 of the sealing plate 22 is formed with a through hole 36 and a pressure release mechanism 38 made of thin rubber.
  • FIG. 3 shows a capacitor element partially disassembled.
  • the capacitor element 4 includes an anode body 60, a cathode body 80, and separators 40 and 42 as shown in FIG. Between the anode body 60 and the cathode body 80, the separators 40 and 42 that insulate them are sandwiched and wound to form a cylindrical winding element.
  • an aluminum foil is used as a base material for the anode body 60 and the cathode body 80, and polarizable electrodes including an active material such as activated carbon, a binder, and the like are formed on both surfaces of the aluminum foil.
  • an insulating interval 44 having a constant width is provided between the anode portion 6 and the cathode portion 8 formed on the same end face side.
  • the anode portion 6 is formed of, for example, a base material of the anode body 60, and similarly, the cathode portion 8 is also formed of a base material of the cathode body 80.
  • the anode section 6 and the cathode section 8 are base material sections that expose an aluminum surface on which a polarizable electrode is not formed.
  • the formation part of the anode part 6 or the cathode part 8 is set to be larger than the width W of the separators 40 and 42 which are insulating means, and is formed to a length L corresponding to the arc length of each anode part 6 or cathode part 8. .
  • the anode portion 6 or the cathode portion 8 of the capacitor element 4 is processed and adhered to the element end face of the capacitor element 4 as shown in FIG. 2 before connection to the anode current collector plate 12 or the cathode current collector plate 16. Formed into a state.
  • FIG. 4 shows the arrangement of the anode current collector plate and the cathode current collector plate on the element end face of the capacitor element.
  • the anode current collector plate 12 and the cathode current collector plate 16 are arranged on one end face of the capacitor element 4, and are provided with an interval 46 corresponding to the insulation interval 44 between the anode portion 6 and the cathode portion 8. Arranged.
  • the anode current collector plate 12 and the cathode current collector plate 16 have a semicircular shape that bisects the element end face of the capacitor element 4, and the anode current collector plates 12 and the cathode current collector plates 16 in the upper side of the figure.
  • a terminal connection portion 48 is formed, and an element connection portion 50 for connecting the anode portion 6 or the cathode portion 8 is formed on the back side thereof.
  • the element connection portion 50 is a flat surface, and a plurality of groove portions 52 are formed radially from the center. Each groove 52 forms a space for accommodating the protrusion 54 in the anode 6 or the cathode 8.
  • Each protrusion 54 is a linear protrusion generated by the overlap of each anode 6 or cathode 8 at the cut when the anode 6 or the cathode 8 of the capacitor element 4 is cut and compression molded. It is.
  • the anode part 6 and the cathode part 8 of the capacitor element 4 can suppress the height dimension by compression-molding the anode part 6 and the cathode part 8 as a whole toward the center of the capacitor element 4 in this way.
  • the anode portion 6 and the cathode portion 8 are compression-molded from the center portion divided into three parts by cutting, and the rear end side is sequentially compression-molded, thereby causing linear protrusions generated by overlapping.
  • the height dimension of the part 54 is suppressed.
  • Each protrusion 54 is accommodated in the groove 52 formed in the element connection portion 50 of the anode current collector plate 12 or the cathode current collector plate 16. Thereby, the anode part 6 or the cathode part 8 can be made to contact
  • the connection between the anode 6 and the anode current collector 12 or between the cathode 8 and the cathode current collector 16 will be described in detail.
  • the anode current collector 12 and the cathode current collector 16 are compressed. It arrange
  • the groove portions 52 of the anode current collector plate 12 or the cathode current collector plate 16 accommodate the protruding portions 54 of the anode portion 6 and the cathode portion 8, and the element connection portion 50 is brought into close contact therewith.
  • the laser is irradiated from the upper surface side corresponding to the element connecting portion 50 of the anode current collector plate 12 or the cathode current collector plate 16.
  • the element connection part 50, the anode part 6, and the cathode part 8 are melted and connected.
  • the laser irradiation sites are at two locations on each of the element connecting portions 50 on both end sides separated from the groove portions 52 of the anode current collecting plate 12 and the cathode current collecting plate 16 as shown in FIG.
  • the laser irradiation connection part 59 is a welding connection part by laser irradiation, and constitutes a welding line by laser irradiation. In this case, laser irradiation is performed as indicated by arrows [I], [II], [III] and [IV] attached to the laser irradiation connection portion 59 in FIG.
  • the other current collector plate 16 opposed across the element center is welded by a series of operations of irradiating a laser linearly from the element center side toward the element outer peripheral side.
  • the anode section 6 and the anode current collector plate 12, and the cathode section 8 and the cathode current collector plate 16 are connected by a series of operations in which laser irradiation is performed linearly across the element center.
  • the series of operations [I] and [II] of laser irradiation is repeated twice.
  • it is possible to further reduce the connection resistance by repeating the series of operations [I] to [IV] of laser irradiation twice and arranging a weld in the vicinity.
  • each element connecting portion 50 of the anode current collector plate 12 and the cathode current collector plate 16 is connected to the element center side from the element center side. It is also possible to connect individually such as irradiating on the straight line toward the outer peripheral side.
  • laser welding is performed from [I] to [IV] instead of continuously irradiating the same portion with laser, and then from [I] again.
  • a time interval can be provided for laser irradiation at the same location, and as a result, the laser irradiation location can be cooled and the connection by laser welding can be stabilized.
  • the anode portion 6 and the cathode portion 8 are led out from the end face of the capacitor element 4 with a predetermined insulation interval 44.
  • the anode portion 6 and the cathode portion 8 have an insulating interval 44 at which the anode portion 6 and the cathode portion 8 do not come into contact with each other when compression-molded toward the center direction. Then, the anode part 6 and the cathode part 8 are not formed.
  • the anode part 6 and the cathode part 8 lead to reduction of resistance, so that there are many formation parts (or an area is large). Therefore, for example, 3 [mm] to 10 [mm] is set as the insulating interval 44 in which the anode portion 6 and the cathode portion 8 are not in contact with each other and the resistance can be reduced.
  • a deviation or the like may occur on the outermost periphery of the capacitor element 4 during the compression molding of the anode portion 6 and the cathode portion 8. In this case, it is necessary to prevent the anode portion 6 and the cathode portion 8 from contacting the outer case 20.
  • insulating means such as an insulating tape may be provided on the outer peripheral surface of the anode portion 6 connected to the anode current collector plate 12 and the cathode portion 8 connected to the cathode current collector plate 16.
  • a flat connection surface portion 55 for laser welding is formed on the outer wall portions of the anode terminal 10 and the cathode terminal 14, and flat connection is also made to the anode current collector plate 12 and the cathode current collector plate 16.
  • the surface portion 57 is formed by a notch.
  • These flat connection surface portions 55 and 57 constitute a coincident surface portion, and a laser is irradiated near the boundary to weld the flat connection surface portions 55 and 57 to form the weld connection portion 18 as shown in FIG. .
  • the capacitor element 4 and the sealing plate 22 The distance (distance) is made as short as possible.
  • the common connection surfaces 55 and 57 coincide with each other.
  • Simplification and strengthening of welding are achieved by using a laser that can be locally welded to this portion as a surface portion.
  • the thicknesses of the anode current collector plate 12, the cathode current collector plate 16, the anode terminal 10 and the cathode terminal 14 are 0.5 [mm] to 5 [mm], respectively. According to this, the dimensions are such that laser welding is possible and the internal resistance is hardly increased, and the height dimension of the capacitor 2 can be shortened.
  • the flat connection surface parts 55 and 57 are comprised as a plane by a notch, it is not restricted to this, A curved surface may be sufficient and what is necessary is just to be a coincident surface part.
  • the flat connection surface portions 55 and 57 may be inclined surfaces (tapered surfaces), and a gap may be formed between the flat connection surface portions 55 and 57 depending on the processing accuracy of the flat connection surface portions 55 and 57. is there.
  • the flat connection surface portions 55 and 57 are preferably installed in the vicinity of the outer peripheral surface of the capacitor element 4. This is also effective for preventing excessive stress on other members (anode portion 6 and cathode portion 8) during laser irradiation. Specifically, for example, it is preferably within 10 mm from the outer peripheral surface of the capacitor element 4.
  • a bottomed cylindrical outer case 20 made of a metal material such as aluminum is used for the capacitor 2.
  • a sealing plate 22 is inserted into the outer case 20 together with the capacitor element 4, and the sealing plate 22 is fixed to a step portion 32 of the outer case 20 that has been drawn.
  • the opening end portion 34 of the outer case 20 is bitten into the sealing portion 28 by a curling process, and the outer case 20 is sealed.
  • a holding tape 19 that has been processed at the end of winding of the capacitor element 4 is wound around the periphery of the capacitor element 4.
  • an anode part 6 is formed by the base material of the anode body 60, and a cathode part 8 is formed by the base material of the cathode body 80.
  • the anode part 6 and the anode terminal 10 are connected via an anode current collector plate 12.
  • the cathode portion 8 and the cathode terminal 14 are connected via the cathode current collector plate 16.
  • Capacitor element 4 is firmly supported by sealing plate 22 which is an outer casing member. That is, the anode portion 6 and the cathode portion 8 of the capacitor element 4 are firmly fixed to the anode terminal 10 and the cathode terminal 14 by laser welding via the anode current collector plate 12 and the cathode current collector plate 16. Therefore, the support strength of the capacitor element 4 is increased. As a result, a mechanically robust support structure is formed, and the seismic resistance of the product can be improved.
  • the anode portion 6 is formed by collecting a plurality of side edges from the anode body 60 wound around the capacitor element 4 which is a winding element.
  • the anode portion 6 is laser welded to the anode current collector plate 12, and similarly, a plurality of side edge portions are gathered from the cathode body 80 to form the cathode portion 8. Since the cathode portion 8 is laser welded to the cathode current collector plate 16, the resistance of the capacitor element 4 and the capacitor 2 can be reduced. That is, a product with a low equivalent series resistance can be provided.
  • the continuous operation of laser irradiation [I] to [IV] is not limited to continuous laser irradiation at the same location.
  • Laser welding may be performed from [I] to [IV], and then laser irradiation may be performed again from [I] to [IV]. If the welding parts are arranged as a plurality of lines in the vicinity of the welding line, the connection resistance can be further reduced.
  • a time interval can be provided for laser irradiation at the same location. As a result, the laser irradiation spot can be cooled, and the connection by laser welding can be stabilized.
  • the second embodiment discloses the above-described method for manufacturing a capacitor.
  • FIG. 5 is a flowchart showing an example of a manufacturing process of the capacitor according to the second embodiment.
  • This manufacturing process is an example of the method for manufacturing a capacitor of the present invention.
  • the capacitor element 4 is formed (step S11), and the anode portion 6 and the cathode portion 8 of the capacitor element 4 are formed as shown in FIG. As shown in FIG. 4, molding is performed (step S12).
  • the anode current collector plate 12 is inserted into the anode portion 6 of the capacitor element 4, the cathode current collector plate 16 is inserted into the cathode portion 8 of the capacitor element 4, and the protrusion 54 is inserted into each groove portion 52. Then, the anode current collector 12 is connected to the anode 6 and the cathode current collector 16 is connected to the cathode 8 by laser welding (step S13).
  • reference numeral 56 denotes a weld connection portion by laser welding similar to the weld connection portion 18 described above. As shown by the arrow, the laser beam 53 is irradiated to the weld connection portion.
  • the anode terminal 10 on the sealing plate 22 is connected to the anode current collector plate 12 connected to the anode portion 6 by laser welding with the flat connection surface portions 55 and 57 (FIG. 4) matched, and similarly to the cathode portion 8.
  • the cathode terminal 14 of the sealing plate 22 is connected to the connected cathode current collector plate 16 by laser welding (step S14).
  • the anode terminal 10 of the sealing plate 22 is positioned with respect to the anode current collector plate 12 connected to the anode portion 6 of the capacitor element 4, and at the same time, the cathode portion of the capacitor element 4.
  • the cathode terminal 14 of the sealing plate 22 With respect to the cathode current collector plate 16 connected to 8, each of them is laser welded.
  • Reference numerals 18 and 56 (FIG. 6) denote welding connections.
  • the sealing plate 22 is formed of synthetic resin (insert molding) by inserts of the anode terminal 10 and the cathode terminal 14, thereby forming the base portion 26 and the sealing portion 28.
  • the capacitor element 4 is impregnated with the electrolytic solution, and then accommodated in the outer case 20 and sealed by curling the open end 34 of the outer case 20 (step S15), thereby completing the capacitor 2 as a product.
  • the above-described capacitor 2 can be easily manufactured, and the terminal connection process can be simplified.
  • the third embodiment discloses a connection structure in which a connection plate is interposed between a current collector plate and an external terminal member, and a manufacturing method thereof.
  • FIG. 8 will be referred to for the third embodiment.
  • FIG. 8 shows a capacitor according to the third embodiment.
  • the anode terminal plate 62 is provided together with the anode terminal 10 as the anode terminal member
  • the cathode connection plate 64 is provided together with the cathode terminal 14 as the cathode terminal member.
  • the anode connecting plate 62 is connected to the anode terminal 10 by laser welding and then connected to the anode current collecting plate 12 on the capacitor element 4 side.
  • the cathode connection plate 64 is connected to the cathode terminal 14 by laser welding and then connected to the cathode current collector plate 16 on the capacitor element 4 side.
  • the anode connection plate 62 is formed with a connection recess 66 for positioning and connecting the anode terminal 10
  • the cathode connection plate 64 is formed with a connection recess 68 for positioning and connecting the cathode terminal 14.
  • the process includes a step of connecting the anode current collecting plate 12 (cathode current collecting plate 16) and the anode connecting plate 62 (cathode connecting plate 64).
  • connection step of the current collector plates an electrode overhang portion (leaded to the element end face of the capacitor element 4 from the electrodes (anode body 60, cathode body 80) of the capacitor element 4)
  • a current collector plate anode current collector plate 12, cathode current collector plate 16
  • connection step of the connection plates anode connection plate 62, cathode connection plate 64
  • external terminals anode terminals installed on the sealing body (sealing plate 22) of the outer case 20 that houses the capacitor element 4 are used.
  • connection plates 10 and the cathode terminal 14 are connected to the connection plates (the anode connection plate 62 and the cathode connection plate 64). And in the connection process of a current collector plate (anode current collector plate 12, cathode current collector plate 16) and a connection plate (anode connection plate 62, cathode connection plate 64), a current collector plate (anode current collector plate 12, cathode current collector).
  • the plate 16) and the connection plates (the anode connection plate 62 and the cathode connection plate 64) are connected by the flat connection surface portions (55, 57).
  • the fourth embodiment discloses a modification of the anode current collector (or cathode current collector) described above and side welding.
  • FIG. 10 is an exploded view showing the connection structure of the anode current collector (or cathode current collector) according to the fourth embodiment.
  • the anode current collector 112 is formed of the same electrode material, for example, aluminum.
  • the anode current collector plate 112 covers the partition portions 106A, 106B, and 106C of the anode portion 106, has a laser welding area with the partition portions 106B and 106C, and has a shape with a laser welding area with the anode terminal 110. And an area.
  • the size is one half of the element end face of the capacitor element 104. That is, it is a substantially semicircular plate as a shape in which the insulation interval 144 is ensured.
  • the anode current collector 112 has an arc-shaped notch 150 corresponding to the winding center 146 of the capacitor element 104 at the center on the string side, and an X-axis (for example, shown in FIG. 15) on the arc side.
  • a connection surface portion 152 that is cut off linearly in a direction orthogonal to the X axis with respect to the X axis) is formed.
  • the anode current collector plate 112 has a terminal connection as an arc-shaped connection region with a step portion 154 bent at a right angle with an angle ⁇ 1 left and right around the X-axis, ie, the X-axis as a center.
  • a portion 156A and element connecting portions 156B and 156C are formed.
  • Each of the terminal connection portions 156A and the element connection portions 156B and 156C is formed on a flat surface, and forms a parallel surface with the step portion 154 interposed therebetween. Such a configuration is the same on the cathode current collector plate 114 side.
  • FIG. 10 shows the connection between the anode terminal 110 and the anode current collector plate 112, and the connection between the cathode terminal 114 and the cathode current collector plate 116.
  • A is the anode terminal and the anode current collector plate, and the cathode terminal and the cathode current collector plate.
  • B is a diagram showing laser irradiation before connection.
  • the anode terminal 110 and the cathode terminal 114 on the sealing plate 122 are positioned on the capacitor element 104 to which the anode current collector 112 and the cathode current collector 116 are connected.
  • a terminal-side connection surface 164 is formed on the side surfaces of the anode terminal 110 and the cathode terminal 114, and the terminal-side connection surface 164 forms the same surface as the connection surface portion 152 on the anode current collector plate 112 and the cathode current collector plate 116. It is a side wall surface.
  • connection surface portions 152 and terminal-side connection surfaces 164 are made to coincide with each other and laser irradiation 168 is performed, the welding connection portion 118 is laser-welded, and the connection surface portion 152 and the terminal-side connection surface 164 can be welded.
  • an anode terminal 110 which is an external terminal is connected to the anode portion 106 of the capacitor element 104 via the anode current collector 112 through a welding connection portion 118 by laser irradiation 168, and to the cathode portion 108 of the capacitor element 104.
  • a cathode terminal 114 which is an external terminal, is connected via a cathode current collector plate 116 by a welding connection portion 118 by laser irradiation 168, and an external terminal is formed on the capacitor element 104.
  • connection region between the anode portion 106 and the cathode portion 108 of the capacitor element 104 that is, the anode side element connecting portion 156B and the element connecting portion 156C, the cathode side element.
  • the connection portion 158B and the element connection portion 158C) and the connection region between the anode terminal 110 and the cathode terminal 114 are set at different positions. .
  • the connection between each electrode portion and the current collector plate and between each external terminal and the current collector plate can be stabilized, and the connection can be strengthened as well as the resistance of the capacitor element is reduced.
  • the side surfaces of the anode current collector 112 or the cathode current collector 116 and the external terminal (the anode terminal 110 or the cathode terminal 114) coincide with each other. I am letting. Thereby, the laser irradiation with respect to both can be stabilized, and the perfection and reliability of a connection can be improved.
  • the fifth embodiment discloses the processing of the electrode overhanging portion formed by crease processing on the electrode body drawn out to the element end face of the capacitor element.
  • 11 and 12 show the processing of the electrode overhanging portion of the capacitor element according to the fifth embodiment.
  • the processing of the electrode projecting portion of the capacitor element shown in FIGS. 11 and 12 includes an electrode body forming step, a crease forming step, and an electrode portion forming step.
  • an anode-side or cathode-side electrode body is formed.
  • an electrode overhanging portion for collecting the end face of the capacitor element 204 is used.
  • a certain uncoated portion 244 is formed.
  • an aluminum foil is used for the base material 240.
  • the base material 240 is a strip having the same width, and the polarizable electrode 242 including an active material such as activated carbon and a binder is formed on both surfaces of the base material 240.
  • the polarizable electrode 242 is formed, the base material 240 is formed with an uncoated portion 244 having a constant width on one edge side, and the uncoated portion 244 is a non-formed portion of the polarizable electrode 242. is there.
  • This uncoated portion 244 is the electrode overhang portion described above, and the anode portion 206 or the cathode portion 208 is formed by this uncoated portion 244.
  • a crease line 246 having a constant width is formed from the edge portion of the above-mentioned uncoated portion 244 as shown in FIG.
  • the crease line 246 is a line for facilitating the bending process. That is, the crease line 246 is not a scratch but a marking-off line, and can prevent buckling of the anode portion 206 and the cathode portion 208 when bent.
  • the crease line 246 is a groove, and the cross-sectional shape may be a triangle, a square, or a curve (R). Examples of the method of forming the crease line 246 include pressing, laser, cutting, and the like.
  • the crease line 246 can be composed of a single line. However, the crease line 246 may be formed of a plurality of lines in consideration of the size of the uncoated portion 244. Or both sides may be sufficient.
  • a plurality of anode portions 206 having different widths are formed on the anode body 260 as shown in FIG. 11C, and the cathode body 280 has a width as shown in FIG. 11D.
  • a plurality of different cathode portions 208 are formed.
  • the anode portions 206 are formed at different intervals so as to be drawn out from the element end face of the capacitor element 204 every half circumference.
  • each cathode portion 208 is also drawn out to the element end face of the capacitor element 204 every half circumference, and an insulating interval 221 is set between the anode portion 206 and the cathode portion 208.
  • the fold lines 246 described above are formed in each anode portion 206 and each cathode portion 208.
  • each anode part 206 and each cathode part 208 In the forming process of each anode part 206 and each cathode part 208, the anode part 206 and the cathode part 208 exposed to the element end face 205 after winding of the capacitor element 204 are formed by a crease line 246, as shown in FIG. It faces in a state where it is bent in the facing direction with the winding center part 252 as the center. Therefore, as shown in FIG. 12B, in order to connect the anode current collector plate 212 and the cathode current collector plate 216, the winding center portion 252 is folded using a crease line 246, and the partition portions 206B, 206C, 208B and 208C are formed.
  • the partition portions 206A and 208A are further bent toward the element end face 205 using the crease line 246.
  • the sixth embodiment discloses control of laser irradiation output to the welding line.
  • the anode portion 6 and the cathode portion 8 are formed on the element end face of the capacitor element 4
  • the anode current collector plate 12 is formed on the anode portion 6
  • the cathode current collector is formed on the cathode portion 8.
  • FIG 13 and 14 show the welding line and laser output according to the sixth embodiment.
  • a welding line 318 on the anode current collector plate 12 or the cathode current collector plate 16 is set as shown in FIG.
  • a section d is set between the welding start point 318S and the welding end point 318E of the welding line 318 and outside the sections a, b, c and the welding end point 318E.
  • a fiber laser irradiation device 364 is used as an example of a beam irradiation means, and the welding line 318 is a welded portion by laser irradiation.
  • a shielding gas such as argon gas or helium gas is used, and a welding process is performed.
  • the beam output is varied stepwise and continuously at the welding line 318 at a constant irradiation speed.
  • the laser output P is set to a constant value of the laser output Pa in the section a, the laser output Pb ( ⁇ Pa) in the section b, and from the laser output Pb in the section c.
  • the laser output is attenuated to Pc ( ⁇ Pb).
  • the laser output Pa in the section a is set to the highest value, and is 50 W to 3000 [W] as an example.
  • the laser output Pb in the section b is smaller than the laser output Pa and is set to 90% or less of the laser output Pa.
  • the laser output Pc in the section c is a value smaller than the laser output Pb, and the laser output is 80% or less of the laser output Pa.
  • B in FIG. 13 represents the horizontal axis as a distance [mm].
  • the laser output Pa irradiated at the welding start point 318S is set to the highest value, and the irradiation section a is set to be shorter than the section b.
  • the laser irradiation section b of the laser output Pb is set to be the longest.
  • the section c is set to a shorter time than the section b, and in this section c, the laser output Pb is linearly attenuated to the laser output Pc. In this way, the laser output may be attenuated in the vicinity of the welding start point and the welding end point. It is preferable that at least the attenuation of the laser output is two or more.
  • the laser scanning speed for the welding line 318 may be a constant speed, for example, a constant speed selected from 300 [mm / sec] to 3000 [mm / sec]. It may be changed.
  • a plurality of welding lines may be set at each welding location of the anode current collector plate 12 with respect to the anode portion 6 and each welding location of the cathode current collector plate 16 with respect to the cathode portion 8 to multiplex the welding.
  • a welding line from the welding start point to the welding end point is set on the current collector plate. Beam irradiation may be performed by changing the beam output irradiated to the welding line stepwise and continuously.
  • FIG. 14A shows a case where welding lines 3181 and 3182, which are examples of a plurality of welding lines, are set adjacent to each welding location. If the interval between the welding lines 3181 and 3182 is W 9 , the interval W 9 may be set within 3 mm, for example, and the welding lines 3181 and 3182 may partially overlap.
  • the welding lines 3181 and 3182 are individually welded by the fiber laser irradiation device 364 described above.
  • a start point 318S and an end point 318E are set, respectively, and the aforementioned sections a, b, c, and d are set according to the welding scanning direction.
  • the welding scanning direction is opposite between the welding line 3181 and the welding line 3182.
  • the laser output for each section a, b and c is set to B in FIG.
  • the laser output is set high at the starting point 318S of the laser irradiation, and laser irradiation is performed with high laser output energy.
  • the anode current collector plate 12 or the cathode current collector plate 16 and the welding line 318 of the anode part 6 or the cathode part 8 and the vicinity thereof are heated. That is, if laser irradiation is performed along the welding line 318, heating moves in a chained state with the scanning in accordance with the scanning of the laser irradiation, so that the molten state is chained. In this case, it is not necessary to set the same laser output.
  • the thermal energy generated by laser irradiation applied to the welded portion is made uniform. Therefore, the connectivity between the anode current collector plate 12 or the cathode current collector plate 16 and the anode portion 6 or the cathode portion 8 can be improved.
  • the seventh embodiment discloses the insulation interval of the electrode part formed on the element end face of the capacitor element and the adjustment thereof.
  • FIG. 15 shows the electrode overhanging portion and the electrode portion after the processing.
  • the capacitor element 404 is molded into a close contact state on the element end surface 405.
  • the element end surface 405 of the capacitor element 404 is provided with an anode part 406 and a cathode part 408 that constitute an electrode extension part, and between these anode part 406 and cathode part 408.
  • An insulation interval 427 for forming an insulation interval 421 having a predetermined width is set. Assuming that the width of the insulating interval 427 is Wa and the width of the insulating interval 421 is Wb, Wa> Wb is set so that the insulating interval 421 is secured even by bending an anode portion 406 and a cathode portion 408 described later.
  • Wa is set larger than the protruding width of the electrode body, that is, the anode part 406 or the cathode part 408 before bending. Further, when the width of the insulating interval 427 is Wa and the folding width of the above-described anode portion 406 and cathode portion 408 is W 8 , the magnitude relationship between them is Wa> W 8 .
  • the insulating interval 427 is divided by setting the Y axis at the center, the X axis in the direction orthogonal to the Y axis, and setting the angles ⁇ 1 and ⁇ 2 (> ⁇ 1 ) to the left and right around the X axis.
  • a plurality of cuts 454 are made in a radial direction around the winding center portion (core portion) 452 of the capacitor element 404 at an angle ⁇ 1 , and a plurality of partition portions 406A, 406B, 406C partitioned by each cut 454 are anode portions. It is formed on the 406 side.
  • a plurality of partition portions 408A, 408B, and 408C are also formed on the plurality of cathode portions 408 side.
  • the angle ⁇ 1 is set to 33 °
  • the partition portions 406B and 406C formed between the partition portions 406A or the partition portion 8A are sandwiched.
  • the depth of the notch 454 is set such that the overhang length is the height h 1 of the anode part 406 and the cathode part 408.
  • the relationship between the height h 1 and the width Wa of the above-described insulation interval 427 is Wa> h 1. It is.
  • the partition portions 406A, 406B, and 406C of the anode portion 406 set to the height h 1 and the partition portions 408A, 408B, and 408C of the cathode portion 408 are bent in the middle, and the winding center portion 452 of the capacitor element 404 is bent.
  • the partition portions 406A, 406B, 406C and the partition portions 408A, 408B, 408C of the cathode portion 408 are formed as shown in FIG.
  • the partition portions 406B and 406C and the partition portions 408B and 408C are set as weld portions.
  • the protruding height h 2 of the partition portions 406A and 408A is set to be higher than the height h 3 of each partition portion 406B, 406C, 408B, and 408C, and the partition portions 408A, 406B, 406C and the partition portions 408A of the cathode portion 408,
  • the heights of 408B and 408C correspond to the bent shapes of the anode current collector plate 412 and the cathode current collector plate 416.
  • the anode portion 406 and the cathode portion 408 of the capacitor element 404 are suppressed in height by compression-molding the anode portion 406 and the cathode portion 408 as a whole toward the center of the capacitor element 404 in this way. .
  • the partition portions 406B and 406C of the anode portion 406 are compression-formed to form a stable flat connection surface (that is, a welding surface), and then the partition portion 406A that is a non-connection surface is compression-molded.
  • the height of the boundary portion caused by the overlap between the partition portions 406A and 406B and between the partition portions 406A and 406C is suppressed.
  • each anode part 406 and each cathode part 408 after winding the capacitor element 404, the anode part 406 and the cathode part 408 exposed to the element end face 405 are wound around the winding center part 452 by the crease line as described above. Is bent in the opposite direction around the center. Therefore, in order to connect the anode current collector plate 412 and the cathode current collector plate 416, the partition portions 406B, 406C, 408B, and 408C are bent using the crease line 246 (FIG. 11) on the winding center portion 452 side.
  • the partition portion 406A and the partition portion 408A may be bent on the element end surface 405 using a crease line.
  • insulation interval 427 is adjusted in this way, a short circuit between the electrodes can be prevented in combination with a reduction in resistance, and a highly reliable capacitor can be realized.
  • region of a current collector plate is taken on the front and back, the welding area
  • These welding regions have different region positions on the front and back surfaces to facilitate the welding procedure.
  • An element connection region is set on the current collector plate with the terminal connection region interposed therebetween. That is, although three areas are set, the area division may be other than three divisions, or may be two divisions or four or more divisions.
  • the ninth embodiment discloses control of the irradiation angle of laser welding.
  • FIG. 16 shows an example of the laser irradiation angle and the welding surface according to the ninth embodiment.
  • the current collector plates 514A and 514B are installed with reference to the element center 521 of the element end surface 506 of the capacitor element 504, and are connected to the anode part 508 or the cathode part 510 of the capacitor element 504. Therefore, the connection surface 524 of each terminal welding portion 520 of each current collector plate 514A, 514B constitutes an arc surface with reference to the element center 521. Therefore, as illustrated in FIG. 16, the anode terminal 530 ⁇ / b> A or the cathode terminal 530 ⁇ / b> B installed on the terminal installation surface portion 522 causes the connection surface 540 to coincide with the connection surface 524.
  • the laser emission part 546 of the laser irradiation apparatus 544 is installed toward the welding surfaces 524 and 540.
  • the distance between the laser emitting portion 546 and the laser irradiation point 548 of the connection surfaces 524 and 540 is Ld, the distance can be obtained even if the laser irradiation device 544 is rotated in the direction of the arrow N with the element center 521 as the rotation center. L can be maintained.
  • the rotation angle ⁇ of the laser irradiation device 544 is set around the laser irradiation point 548 and this rotation angle ⁇ is set in the welding range, the laser irradiation 542 is uniformly applied to the connection surfaces 524 and 540 at the same distance Ld. Can be welded.
  • the distance L of the laser irradiation 542 is the same, stable laser irradiation 542 can be performed continuously, uniform welding processing can be performed, and connection reliability can be improved.
  • the capacitor element 504 may be welded by rotating around the element center 521 as the rotation center.
  • the laser irradiation device 544 is rotated about the element center 521 of the capacitor element 504 by a predetermined angle ⁇ to perform laser irradiation 542, and the anode terminal 530A and the current collector plate 514A are welded. Then, the capacitor element 504 is reversed (half-turned) and directed toward the laser irradiation point 548, and the cathode terminals 530B and the connection surfaces 524 and 540 of the current collector plate 514B facing the laser irradiation device 544 are disposed. In this state, the laser irradiation device 544 is directed toward the element center 521, rotated by the predetermined angle ⁇ described above, laser irradiation 542 is performed, and welding is performed.
  • connection surfaces 524 and 540 are uniformly welded, and the anode terminal 530A (cathode terminal 530B) and the current collector plate 514A (514B) are connected by the welded portion 550. It is connected.
  • laser irradiation 542 is performed on the laser irradiation point 548, and this laser irradiation 542 is performed in an inert gas atmosphere such as argon gas.
  • anode portion 508 (cathode portion 510) on the capacitor element 504 side is covered with the element covering portion 526 on the current collector plates 514A and 514B, the anode portion 508 (from the flying object generated by laser irradiation 542 or laser welding) The cathode part 510) and the capacitor element 504 can be protected.
  • the terminal member is provided with a second connection surface that matches the first connection surface of the current collector plate connected to the capacitor element, and the first and second connection surfaces are welded, The connection between the plate and the terminal member can be facilitated, and the connection reliability can be improved.
  • the tenth embodiment shows processing including polarity determination of the electrode overhanging portion of the capacitor element.
  • FIG. 18 shows image data and its processing.
  • the configuration illustrated in FIG. 18 is an example, and the present invention is not limited to such a configuration.
  • An image 602 shown in FIG. 18 is image data obtained by photographing the element end surface 606 of the capacitor element 604.
  • image data a display image generated from the image data (hereinafter simply referred to as “image”), and a real image thereof are denoted by common reference numerals.
  • a pair of electrode projecting portions 608A and 608B are displayed on the element end surface 606 displayed in the image 602 with an insulation interval 610 interposed therebetween.
  • a part of the anode-side and cathode-side electrode foils of the capacitor element 604 protrudes from the element end surface 606 with different widths depending on the winding diameter, and the arc-shaped area and shape are different.
  • Electrode overhang portions 608A and 608B are formed.
  • projection part 608A, 608B is an aggregate
  • the element end surface 606 is covered with the edge of the separator set wider than the width in the center direction of the electrode foil in order to insulate between the electrode foils, and has a higher brightness than the electrode overhang portions 608A and 608B. It is. For this reason, the electrode overhanging portions 608A and 608B have low brightness on the element end surface 606, and the other portions have high lightness. The area and shape are clearly displayed due to the difference in contrast. In addition, when the display is colored, a color image with different brightness is obtained as the image 602.
  • electrode projecting portions 608A and 608B having different end face shapes and areas are displayed.
  • the shape of the electrode overhang portions 608A and 608B can be specified by a contour line that partitions the electrode overhang portions 608A and 608B from the other portions by the brightness difference.
  • the area of the electrode overhang portions 608A and 608B is a low-lightness portion in the contour line that partitions the electrode overhang portions 608A and 608B and other portions by a lightness difference, and this portion constitutes the image 602. It can be calculated using the distribution number of pixels (dot map).
  • the electrode overhanging portions 608A and 608B can be determined from either one or both of the area and shape of the electrode overhanging portions 608A and 608B from the image 602. That is, it is possible to determine which polarity is set to the electrode extension portions 608A and 608B by determining the electrode extension portions 608A and 608B from either one or both of the area and the shape.
  • the area of the end face is used as the identification information of the electrode overhang portions 608A and 608B for this polarity determination, and this identification information is acquired from the image 602.
  • the position of the reference line Lf is calculated by data processing on the image, the reference line Lf is generated at the calculated position, and the center line Lo is determined based on the reference line Lf.
  • a position is calculated, and a center line Lo is generated at the calculated position.
  • the edge on the element center 612 side of the electrode extension 608A is recognized, and based on this recognition, a reference line Lf is generated on an image 602 as shown in FIG.
  • the position of the reference line Lf is generated in the vicinity of the boundary between the electrode extension 608A and the insulation interval 610, but may be within the insulation interval 610.
  • the center line Lo that passes through the element center 612 is generated in parallel with the reference line Lf on the basis of the reference line Lf. That is, the center line Lo passes through the element center 612 and is formed within the insulation interval 610. Further, an orthogonal line Lh that is orthogonal to the reference line Lf and the center line Lo and passes through the element center 612 may be calculated, generated, and displayed.
  • a deviation angle that is, a displacement angle ⁇ between the center line Lo and the actual alignment angle of the capacitor element 604 is calculated, and this angle ⁇ is a correction of the angular position of the capacitor element 604.
  • Information Based on this correction information, that is, using the image processing acquired from the capacitor element 604 as a medium, the angular position of the capacitor element 604 can be adjusted. Thereby, the adjustment of the angular position can be automated.
  • the eleventh embodiment shows a capacitor manufacturing process including an image representing an element end face and its processing (tenth embodiment).
  • FIG. 19 shows an example of a capacitor manufacturing process.
  • the manufacturing process shown in FIG. 19 is an example of the capacitor of the present invention, its manufacturing program, or its manufacturing method.
  • the capacitor element 604 is formed (step S611).
  • the anode-side and cathode-side electrode foils are projected from the element end face 606 toward the element end face 606, and the electrode overhanging portion 608A is formed by each electrode foil. 608B are formed (FIGS. 21 and 22).
  • the element end surface 606 of the capacitor element 604 is photographed (step S612).
  • An image 602 of the element end surface 606 is acquired by the control unit 616 of the capacitor manufacturing system 614 (FIG. 20).
  • the control unit 616 determines the polarity from the image 602 using the areas of the end surfaces of the electrode overhanging portions 608A and 608B as identification information (step S613).
  • the electrode overhang portions 608A and 608B and their shapes (contour lines) are recognized from the contrast on the image 602 (FIG. 18) of the element end surface 606 of the capacitor element 604, and the area of the end surface surrounded by the contour line Is calculated.
  • the areas of the electrode overhang portions 608A and the electrode overhang portions 608B are compared, and the polarity is determined from the comparison result of the areas (step S613).
  • the case where the end face area is large is defined as the anode side, for example.
  • a reference line Lf and a center line Lo are generated on the image 602 (step S614).
  • the edge of the electrode overhanging portion 608A (the edge facing the electrode overhanging portion 608B) is recognized.
  • the position of the reference line Lf is calculated based on this edge, and the reference line Lf is generated at that position.
  • a center line Lo that passes through the element center 612 in parallel with the reference line Lf is generated.
  • the deviation angle ⁇ from the alignment angle of the capacitor element 604 is calculated by generating the center line Lo (step S615).
  • a deviation angle ⁇ from the alignment angle of the capacitor element 604 connected to the current collector plates 618A and 618B can be calculated. This angle ⁇ is output as correction information.
  • step S616 positioning is performed after correcting the position of the capacitor element 604 (step S616), and the electrode overhang portions 608A and 608B are formed (step S617).
  • step S617 By forming the electrode overhang portions 608A and 608B, anode-side and cathode-side electrode portions 620A and 620B to be connected to the current collector plates 618A and 618B are formed.
  • This pass / fail determination is a process for eliminating defective products such as a short circuit between the electrode portions 620A and 620B.
  • the electrode portions 620A and 620B are positioned on the current collector plates 618A and 618B, and the two are connected by welding (step S619). Then, external terminals on the sealing plate 622 are connected to the current collector plates 618A and 618B according to the polarity identified by the identification information described above (step S620). In this case, the anode terminal 624A is connected to the anode current collector 618A, and the cathode terminal 624B is connected to the cathode current collector 618B.
  • the capacitor is assembled (step S621).
  • the area of the end surfaces of the electrode extension portions 608A and 608B is specified from the image of the element end surface 606 of the capacitor element 604 before molding, and the polarity is determined using the end surface area as identification information. Identification can be automated. Further, based on the reference line Lf and the center line Lo generated on the image of the element end face 606, detection of the shift angle ⁇ of the capacitor element 604 can be used as correction information to automate position correction.
  • manufacturing includes acquisition of the image 602, calculation of the reference line Lf and the center line Lo, the shift angle ⁇ between the element angle and the alignment angle, and the position adjustment of the capacitor element 604 based on the shift angle. This can contribute to the manufacture of capacitors with high product accuracy, such as rapid manufacturing and polarity accuracy.
  • FIG. 20 shows an example of a capacitor manufacturing system.
  • the capacitor manufacturing system 614 is an example of a capacitor manufacturing method and a manufacturing program, and executes control including acquisition of the image 602 of the element end surface 606 and processing (the tenth embodiment) described above. As shown in FIG. 20, the capacitor manufacturing system 614 includes the control unit 616, the photographing unit 628, the input unit 630, the display unit 632, and various drive mechanisms 634.
  • the control unit 616 includes a computer, and in this embodiment, includes a processor 636, a program storage unit 638, a data storage unit 639, and a RAM (Random-Access Memory) 640.
  • the processor 636 is composed of, for example, a CPU (Central Processing Unit) and executes various programs such as an OS (Operating System) and a capacitor manufacturing program stored in the program storage unit 638. For execution of this program, an image is captured, information on the image is generated, a deviation angle is calculated, the position of the capacitor element 604 is corrected, control information is output, and drive outputs to various drive mechanisms 634 are generated.
  • the program storage unit 638 and the data storage unit 639 are configured by a recording medium such as a hard disk, and the program storage unit 638 stores the OS and the program described above.
  • the data storage unit 639 stores image data and reference data.
  • image data captured from the imaging unit 628 various data such as reference lines and center lines on the image generated by the control, and angle ⁇ are stored. To do.
  • the RAM 640 is used as a work area for storing data in the middle of calculation and for executing the program described above.
  • the imaging unit 628 is an example of an imaging unit, and is configured by, for example, a digital still camera.
  • the imaging unit 628 captures the element end surface 606 of the capacitor element 604 and outputs image data to the control unit 616 under the control of the processor 636.
  • the input unit 630 is composed of input devices such as a keyboard, a touch panel, and a mouse.
  • the display unit 632 is composed of, for example, a liquid crystal display (LCD) and constitutes display means such as the above-described image 602 (FIG. 18).
  • LCD liquid crystal display
  • the various drive mechanisms 634 described above include a winding machine (DLW) 642, an electrode extension portion forming portion 644, an element holding portion 646, an electrode forming portion 648, a current collector holding portion 650, a laser irradiation device 652, and the like. .
  • DLW winding machine
  • electrode extension portion forming portion 644 an electrode extension portion forming portion 644, an element holding portion 646, an electrode forming portion 648, a current collector holding portion 650, a laser irradiation device 652, and the like.
  • the DLW 642 forms a capacitor element 604 by winding the anode-side electrode foil and the cathode-side electrode foil with a separator interposed therebetween.
  • the electrode overhanging portion forming portion 644 is attached to the DLW 642 and forms the electrode overhanging portions 608A and 608B by shaping the edge portions of the wound anode side and cathode side electrode foils at a predetermined interval.
  • the element holding portion 646 holds the wound capacitor element 604, and the electrode forming portion 648 is formed into electrode portions 620A and 620B by bending the electrode overhang portions 608A and 608B on the element end surface 606 of the capacitor element 604 to the element end surface 606. To do.
  • the current collector plate holding portion 650 holds the current collector plates 618A and 618B connected to the electrode portions 620A and 620B of the element end surface 606 at predetermined positions.
  • the element holding unit 646 holding the capacitor element 604 corrects the angular position based on the correction information described above.
  • the laser irradiation device 652 performs electrical connection by welding the current collector plates 618A and 618B held by the current collector plate holding portion 650 and the electrode portions 620A and 620B of the capacitor element 604 by laser irradiation.
  • FIG. 21 will be referred to regarding the formation of the capacitor element 604 and the electrode overhang portions 608A and 608B.
  • FIG. 21 shows an electrode foil. In FIG. 21, the same parts as those in FIG.
  • electrode foils 654A and 654B which are electrode bodies on the anode side and the cathode side shown in FIG. 21A are used.
  • each of the electrode foils 654A and 654B for example, an aluminum foil is used as a base material.
  • Each of the electrode foils 654A and 654B is a band having the same width, and polarizable electrodes including an active material such as activated carbon and a binder are formed on both sides thereof.
  • an uncoated portion 656 for forming the electrode overhang portions 608A, 608B is formed with a constant width. This uncoated part 656 is a non-formation part of a polarizable electrode.
  • a fold line 658 having a constant width is formed from the edge of the uncoated portion 656 of each electrode foil 654A, 654B.
  • This crease 658 is the aforementioned marking line, and the crease 658 prevents buckling during folding.
  • the fold line 658 may be a groove, and the cross-sectional shape may be triangular, square, or curved (R).
  • a method such as pressing, laser, or cutting may be used to form the crease 658.
  • the number of the creases 658 may be one as shown in FIG. 21A, the number of the folds 658 may be plural according to the width of the unfinished portion 656.
  • the formation surface portion of the crease 658 may be one surface of the uncoated portion 656, but may be both surfaces.
  • the fold line 658 is formed so that the surface of the element end surface 606 that faces the element center 612 (the winding center in the case of a winding element, FIG. 18) is a valley fold.
  • a plurality of electrode overhang portions 608A having different widths Wd in the longitudinal direction of the electrode foil 654A are formed.
  • a plurality of electrode overhang portions 608B having different widths We in the longitudinal direction of the electrode foil 654B are formed.
  • the formation position is set so that the electrode overhang portions 608A and 608B face the element center 612 in the diameter direction with the insulating interval 610 (FIG. 22) interposed therebetween,
  • the width Wd and the width We are set to widths that increase linearly with an increase in the orbiting radius.
  • the electrode overhang portions 608A and 608B are set to areas where the end faces are different and the polarity can be discriminated. Each area is set such that the width We of the electrode overhanging portion on the electrode overhanging portion 608B is smaller than the width Wd of the electrode overhanging portion 608A. Accordingly, as shown between B and C in FIG. 21, the interval widths Wg and Wf are made different.
  • electrode projecting portions 608A and 608B are formed on the element end surface 606 of the capacitor element 604 every half circumference, and electrode projecting portions 608A and 608B having different end surface areas are formed.
  • the insulating interval 610 is the same between one edge surfaces, and the other can be continuously expanded in the outer peripheral direction of the capacitor element 604.
  • the electrode overhang portions 608A and 608B can be bent toward the element center 612 side by a fold line 658.
  • FIG. 23 schematically shows the element end face and each electrode projection shown in FIG.
  • the electrode extension parts 608A and 608B are bent, Mold flat.
  • This molding range is defined as partition portions 608Aa and 608Ba, and the angle of each partition portion 608Aa and 608Ba is defined as ⁇ 1 .
  • ⁇ 1 is, for example, 40 [°].
  • This ⁇ 2 is, for example, 70 [°].
  • a molding pressure F2 is applied to the partition portions 608Ab and 608Ac from the periphery of the capacitor element 604 toward the element center 612. Thus, the partition portions 608Ab and 608Ac are bent and formed flat.
  • the partition portions 608Bb and 608Bc are bent and formed flat by applying molding pressures F2 and F3 from the periphery of the capacitor element 604 toward the element center 612 with respect to the partition portions 608Bb and 608Bc.
  • the partition portions 608Aa and 608Ba have molding pressure F1 in the opposite direction on the same straight line
  • the partition portions 608Ab and 608Bb have molding pressure F2 in the opposite direction on the same straight line
  • the partition portion 608Ac has molding pressure F2
  • the partition portion 608Bc has Since the molding pressure F3 is applied, as shown in FIG. 24, electrode portions 620A and 620B having a balanced and flat molding surface can be formed on the element end surface 606 of the capacitor element 604.
  • FIG. 24 shows holding of the current collector plate and positioning of the current collector plate.
  • the current collector plates 618A and 618B have the same shape, and are formed in a substantially semicircular shape that bisects the element end face 606 with an insulation interval 610 interposed therebetween.
  • Each of the current collector plates 618A and 618B is formed with a terminal connection portion 660 that protrudes upward in the figure, and element connection portions 662 are formed on the back surfaces of both sides of the terminal connection portion 660.
  • the capacitor element 604 is held by the holding table 668 of the element holding unit 646.
  • the element center 612 of the capacitor element 604 and the holding center axis of each of the current collector plates 618A and 618B are aligned to adjust the angular position of the capacitor element 604.
  • the reference line Lf and the center line Lo are obtained by the control unit 616 from the image 602 obtained by photographing the element end face 606 of the capacitor element 604, and a preset current collector is obtained.
  • the deviation angle ⁇ is determined between the alignment angles of the plates 618A and 618B.
  • the center line of the capacitor element 604 is made to coincide with the alignment angle position L ⁇ (FIG. 18), that is, the angle difference is corrected. To complete the position setting.
  • the current collector plate 618A and the electrode portion 620A thus positioned are connected by laser welding, and the current collector plate 618B and the electrode portion 620B are connected by laser welding.
  • laser welding laser irradiation is performed from the upper surface of the element connection portion 662 of the current collector plates 618A and 618B, and welding is performed by a welding line 670 (FIG. 25) extending radially from the element center 612 side toward the periphery of the capacitor element 604.
  • FIG. 25 is referred for the connection between the current collector plates 618A and 618B and the external terminals.
  • FIG. 25 shows a sealing plate and a capacitor element.
  • current collector plates 618A and 618B are connected to the element end surface 606 of the capacitor element 604 by welding as described above.
  • the above-mentioned laser welding or electron beam welding is used for the connection, and the electrode connecting portion 662 of the capacitor element 604 is connected to the element connecting portion 662 of the current collecting plate 618A, and the element connecting portion 662 of the current collecting plate 618B.
  • the electrode portion 620B on the cathode side of the capacitor element 604 is connected to the.
  • the shapes of the current collector plates 618A and 618B are made common.
  • the identification information indicating which polarity the electrode overhang portions 608A and 608B are based on the area of the end face is used for connection to the external terminal. That is, the identification information recognized at the connection stage with the capacitor element 604 may be used as the polarity of the current collector plates 618A and 618B in the capacitor element 604 installed on the holding table 668 of the element holding unit 646.
  • the external terminals on the sealing plate 622 are differentiated into an anode terminal 624A and a cathode terminal 624B and are individualized. Therefore, the anode terminal 624A needs to be connected to the anode side electrode foil 654A, that is, the electrode overhanging portion 608A side, and the cathode terminal 624B needs to be connected to the cathode side electrode foil 654B, that is, the electrode overhanging portion 608B side.
  • the current collector plates 618A and 618B have anode terminals 624A and cathode terminals 624B on the sealing plate 622, respectively.
  • the laser of the laser irradiation device 652 is between the welding surface 674 formed on the side surface of the terminal connection portion 660 of the current collector plates 618A and 618B and the welding surface 676 formed on the side wall of the anode terminal 624A or the cathode terminal 624B. Weld by irradiation.
  • the anode terminal 624A or the cathode terminal 624B and the capacitor element 604 are integrated into a single component, and a configuration in which the polarity on the capacitor element 604 side matches the polarity on the sealing plate 622 side is realized.
  • identification information for polarity discrimination obtained using the image 602 of the element end face 606 is used. This eliminates the need for visual polarity discrimination until the anode terminal 624A and the cathode terminal 624B on the sealing plate 622 are connected. If the above-described identification information is used, polarity discrimination can be automated. Thereby, a highly reliable polarity setting without misidentification can be realized.
  • the anode terminal 624A and the cathode terminal 624B are fixed by insert molding of the main body portion 678 made of a hard resin plate.
  • a sealing portion 680 made of an airtight elastic material such as rubber is installed on the upper edge of the sealing plate 622.
  • the anode terminal 624 ⁇ / b> A and the cathode terminal 624 ⁇ / b> B are distinguished from the anode side and the cathode side by shapes and signs.
  • the twelfth embodiment discloses a winding deviation detection process for a capacitor element.
  • FIG. 26 shows an example of the winding deviation detection process of the capacitor element.
  • the image 602 acquired in the tenth embodiment is used.
  • reference regions 690A and 690B are generated.
  • the reference areas 690A and 690B may be stored in advance in the data storage unit 639 and read out from the data storage unit 639 for use.
  • the reference regions 690A and 690B may be contour data representing a shape or area data.
  • the detection areas detected from the end faces of the electrode extension portions 608A and 608B on the acquired image 602 are compared with the reference areas 690A and 690B, and the detection areas of the end faces of the electrode extension portions 608A and 608B are within the reference areas 690A and 690B. It is determined whether or not. If it deviates from the inside of the reference regions 690A and 690B, it can be seen that the capacitor element 604 is unwound and is defective.
  • polarity determination is indispensable for the connection between the current collector and the capacitor element, and the connection between the current collector and the external terminal, and it takes time to determine the polarity in manufacturing. Although it is possible to visually discriminate the polarity, it is impossible to eliminate any discrimination mistakes, and it is difficult to realize a production amount that meets demand. If the polarity is incorrectly connected, a defective product is obtained. Such a problem is the same even if the shape of the current collecting member is different between the anode side and the cathode side.
  • the thirteenth embodiment is a defect detection process for the electrode portion of the capacitor element.
  • FIG. 27 shows an example of defect detection of the electrode part.
  • the defect detection after the forming process of the electrode overhang portions 608A and 608B is performed.
  • the electrode overhang portions 608A and 608B may contact each other depending on the forming.
  • reference lines 692A and 692B having a constant width Wh are generated in the insulation interval 610 on the element end face 606 as shown in FIG. To do.
  • the reference lines 692A and 692B may be generated with reference to the center line Lo calculated in the tenth embodiment, or parallel lines with a constant width Wh including the element center 612 as a reference and the element center 612 as a reference. May be generated.
  • the electrode overhang portions 608A and 608B protrude within the width Wh of the reference lines 692A and 692B.
  • the electrode overhangs 608A and 608B protrude within the width Wh of the reference lines 692A and 692B by utilizing the contrast between the high lightness portion made of the separator and the low lightness portions of the electrode overhang portions 608A and 608B made of metal color. It can be detected whether or not. That is, it is determined whether or not one or both of the electrode overhang portions 608A and 608B exist within the width Wh. If one or both of the electrode overhang portions 608A and 608B are present in the width Wh, the electrode overhang portions 608A and 608B may be defectively folded. In this case, the capacitor element 604 may be excluded from the production line as a defective product. Thereby, the reliability of a product can be improved.
  • the flat element connecting portion 50 is formed on the anode current collecting plate 12 and the cathode current collecting plate 16, but as shown in FIG. You may provide the protrusion surface part 70 with the flat surface which protrudes in the range, and the concave surface part 72 which went back on both sides of this protrusion surface part 70.
  • the end face on the capacitor element 4 side is protruded with the concave portion 74 recessed in the anode portion 6 and the cathode portion 8 within a range of 60 degrees, for example, and the concave portion 74 interposed therebetween.
  • the protrusion 74 may be set to a portion where the cathode portion or the anode portion is not formed, and the protrusion 76 may be set to a portion that is compression-molded toward the center direction of the capacitor element 4.
  • the protrusion 76 is compression-molded toward the center direction of the capacitor element 4 as shown in FIG. 9C.
  • the anode part 6 and the cathode part 8 are flattened by compression-molding only the part corresponding to the laser welded part (welded connection part 56) with the current collector plates 12 and 16 from the capacitor element 4.
  • the anode portion 6 and the cathode portion 8 may not be formed in the portion of the capacitor element 4 corresponding to the connection portion with the external terminal (the anode terminal 10 or the cathode terminal 14).
  • the entire surfaces of the anode portion 6 and the cathode portion 8 are compression-molded, but a current collector plate (anode terminal 10 or cathode terminal 14) connected to an external terminal (anode terminal 10 or cathode terminal 14).
  • the anode current collecting plate 12 or the cathode current collecting plate 16 makes the current collecting plate and the external terminal contact with each other without any gap, and does not perform laser welding of the anode portion 6, the cathode portion 8 and the current collecting plates 12 and 16. A site may be interposed.
  • the capacitor 2 is exemplified, but the present invention is not limited to this.
  • the same structure and method can be similarly applied to an electrolytic capacitor, and the same effect can be obtained.
  • anode terminal 10 and the cathode terminal 14 are illustrated as the terminal members in the first embodiment, the present invention is not limited to this.
  • the anode connection plate 62 may be used for the anode terminal 10 and the cathode connection plate 64 may be used for the cathode terminal 14.
  • the winding element is used for the capacitor element 604, but the present invention is not limited to this.
  • a laminated element may be used.
  • the polarity determination is performed based on the end face shape or end face area of the electrode protrusions 608A and 608B derived from the capacitor element 604, but the present invention is not limited to this.
  • the polarity determination may be performed based on the end surface shape or the end surface area of the electrode portions 620A and 620B, which are formed surfaces formed by applying the forming pressure to the electrode overhang portions 608A and 608B derived from the capacitor element 604.
  • the electrode overhang portions 608A and 608B derived from the capacitor element 604 are applied with a molding pressure to form the electrode portions 620A and 620B on the molding surface, but the present invention is not limited to this.
  • the current collector plates 618A and 618B may be directly connected to the electrode projecting portions 608A and 608B.
  • the current collector plates 618A and 618B having the same shape are used on the anode side and the cathode side, but the present invention is not limited to this.
  • the shape or area may be different between the anode side and the cathode side.
  • the anode side or the cathode side may be specified by the shape or the area and connected to the external terminal.
  • the capacitor, the manufacturing method and the manufacturing program of the present invention are useful because simplification of the terminal connection structure and connection process or automation of polarity determination contributes to production, and productivity and reliability can be improved.

Abstract

 コンデンサ素子(4)の陽極体で素子端面に形成された陽極部(6)と、コンデンサ素子の陰極体で素子端面に形成された陰極部(8)と、陽極端子(10)又は該陽極端子を含む陽極端子部材(陽極接続板62)と、陰極端子(14)又は該陰極端子を含む陰極端子部材(陰極接続板64)と、陽極部及び陽極端子又は陽極端子部材に接続される陽極集電板(12)と、陰極部及び陰極端子又は陰極端子部材に接続された陰極集電板(16)とを備えることにより、コンデンサの低抵抗化、接続構造の堅牢化とともに、接続工程の簡略化を図っている。また、陽極部又は陰極部の端面形状を識別情報に用いることにより、陽極側か陰極側かを判別する。

Description

コンデンサ、その製造方法及び製造プログラム
 本発明は、コンデンサ素子と外部端子との間の接続に関し、例えば、電解コンデンサ、電気二重層コンデンサ等のコンデンサ、その製造方法及び製造プログラムに関する。
 電気二重層コンデンサ又は電解コンデンサでは、素子と外部端子とを電気的に接続することが必要である。この電気的な接続により、素子側の内部抵抗の低減や、接続部分の接触抵抗を低減させる対策が施されている。
 このような電気的接続に関し、素子の端面に集電端子を設けること(例えば、特許文献1)、巻回素子の一方の端面に陽極集電板、他方の端面に陰極集電板を設けること(例えば、特許文献2)、巻回素子の端面に露出した集電箔を覆って集電板を備え、集電板と集電箔とを溶接接続すること(例えば、特許文献3)、また、集電板を外装ケースと素子との接続や外部端子との接続に用いること(例えば、特許文献4)が知られている。
特開平11-219857公報 特開2001-068379公報 特開2007-335156公報 特開2010-093178公報
 ところで、巻回型素子の各端面に集電体を備える構成では、巻回素子を外装する外装部材に陽極側及び陰極側の外部端子を隣接して設置した場合には、各外部端子と集電体との間に接続距離を確保する必要がある。また、巻回型素子では、内側部分と外側部分との間で内部抵抗の分布が異なるため、その対策が必要となり、素子と集電体との接続に注意を払う必要がある。また、集電体を用いた構造では素子の内部抵抗を低減できる。外部端子と素子との間に介在する集電体に製造途上で加わる応力が接続に影響し、接続の信頼性低下や接続抵抗が大きくなる場合がある。
 また、集電体とコンデンサ素子との接続や、集電体と外部端子の接続には、極性を合わせることが必要である。極性の判別を目視で行なうことは製造上、手数を要し、生産性が低い。
 斯かる要求や課題について、特許文献1~4にはその開示や示唆はなく、それを解決する構成等についての開示や示唆はない。
 そこで、本発明の目的は、上記課題に鑑み、コンデンサの低抵抗化、接続構造の堅牢化とともに、接続工程の簡略化を図ることにある。
 また、本発明の他の目的は、上記課題に鑑み、集電部材と素子端面との接続の自動化を図ることにある。
 また、本発明の他の目的は、上記課題に鑑み、集電部材と素子端面との極性判別を自動化することにある。
 また、本発明の他の目的は、上記課題に鑑み、コンデンサ素子の不良品判別を自動化することにある。
 上記目的を達成するため、本発明のコンデンサは、陽極体と陰極体とをセパレータを介して巻回したコンデンサ素子と、前記コンデンサ素子を収容するケース部材を封口する封口部材と、前記コンデンサ素子の陽極体から素子端面に引き出され、該素子端面に形成された陽極部と、前記コンデンサ素子の陰極体から前記素子端面に引き出され、前記素子端面に形成された陰極部と、前記封口部材に設置された陽極端子部材と、前記封口部材に設置された陰極端子部材と、前記陽極部に接続されるとともに前記陽極端子部材に接続された陽極集電板と、前記陰極部に接続されるとともに前記陰極端子部材に接続された陰極集電板とを備える。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記陽極集電板が前記陽極部と前記コンデンサ素子の周縁方向に向かう溶接ラインに沿って溶接され、又は前記陰極集電板が前記陰極部と前記コンデンサ素子の周縁方向に向かう溶接ラインに沿って溶接されてもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記陽極端子部材に前記陽極集電板と近接する接続部を備えて該接続部と前記陽極集電板との接続、又は、前記陰極端子部材に前記陰極集電板と近接する接続部を備えて該接続部と前記陰極集電板との接続の何れか一方又は双方に溶接接続を用いてもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記コンデンサ素子の前記同一端面上に前記陽極部と前記陰極部とが形成され、且つ前記陽極部と前記陰極部とを絶縁する絶縁間隔を設定してもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記陽極部又は前記陰極部は、前記コンデンサ素子の巻回中心部に向けて素子端面上に圧縮成形され、その圧縮成形部位に配置された前記陽極集電板又は前記陰極集電板と溶接してもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記陽極部又は前記陰極部は、前記コンデンサ素子の素子端面に前記電極体の何れか一方又は双方から引き出され、前記素子端面から所定幅を折目にして前記コンデンサ素子の素子端面上に折り曲げられて重ねられた単一又は複数の電極張出し部で構成してもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、更に、前記陽極集電板と前記陽極端子部材との間、又は前記陰極集電板と前記陰極端子部材との間に設置され、前記陽極端子部材又は前記陰極端子部材に接続されるとともに、前記陽極集電板又は前記陰極集電板に接続された接続板を備えてもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記陽極部又は前記陰極部は、前記コンデンサ素子の前記素子端面に電極体の一部を所定の張出し幅を以て引き出して前記素子端面上に折曲して配置されるとともに、異極間に設定された絶縁間隔が前記電極体の前記張出し幅より大きく設定されてもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記集電板の異極間に設定された絶縁間隔が電極張出し部の異極間に設定された前記絶縁間隔より小さく設定してもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記コンデンサ素子が巻回素子である場合、前記陽極部又は前記陰極部は、前記コンデンサ素子が半周毎に、半周の円弧長より狭い幅で前記コンデンサ素子の素子端面から露出させた電極体であってもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記陽極集電板又は前記陰極集電板は、前記陽極部と前記陽極端子部材との間又は前記陰極部と前記陰極端子部材との間に設置されて第1の接続領域と第2の接続領域が異なる位置に設定され、前記第1の接続領域に前記陽極部又は前記陰極部が接続され、前記第2の接続領域に前記陽極端子部材又は前記陰極端子部材が接続されてもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記集電板が前記コンデンサ素子の前記素子端面に設置されて前記陽極部又は前記陰極部に接続され、前記コンデンサ素子の側面方向に円弧状の第1の接続面を有し、前記陽極端子部材又は前記陰極端子部材が前記集電板の前記第1の接続面と同心円状の第2の接続面を有し、前記第1の接続面と前記第2の接続面を溶接し、前記集電板と前記陽極端子部材又は前記陰極端子部材とを接続してもよい。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記集電板に、前記第1の接続面に沿う前記コンデンサ素子の素子端面を覆う覆い部を備えてもよい。
 上記目的を達成するため、本発明のコンデンサは、素子端面より導出されて陽極側と陰極側とで端面形状又は端面面積を異ならせた陽極側又は陰極側の電極張出し部、又は前記素子端面により導出された電極張出し部により成形形成されて陽極側と陰極側とで端面形状又は端面面積を異ならせた陽極部又は陰極部と、前記電極張出し部又は前記電極部の端面に接続された陽極側又は陰極側の集電板と、前記電極張出し部又は前記電極部の前記端面形状又は前記端面面積により陽極側又は陰極側が特定され、前記集電板と接続された陽極側又は陰極側の外部端子とを含んでいる。
 上記目的を達成するためには、上記コンデンサにおいて好ましくは、前記集電板は、陽極側と陰極側とで形状又は面積を異ならせ、該形状又は該面積により陽極側又は陰極側が特定されて前記外部端子と接続されてもよい。
 上記目的を達成するため、本発明のコンデンサの製造方法は、陽極体と陰極体とをセパレータを介して巻回したコンデンサ素子を形成する工程と、前記コンデンサ素子の陽極体から引き出し、素子端面に陽極部を形成する工程と、前記コンデンサ素子の陰極体から引き出し、前記素子端面に陰極部を形成する工程と、前記コンデンサ素子を収容するケース部材を封口する封口部材に設置された陽極端子部材と前記陽極部とを陽極集電板を介在させて接続する工程と、前記封口部材に設置された陰極端子部材と前記陰極部とを陰極集電板を介在させて接続する工程とを含んでいる。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記陽極集電板と前記陽極部、又は前記陰極集電板と前記陰極部をレーザ溶接により接続する工程と、前記陽極集電板と前記陽極端子部材、又は前記陰極集電板と前記陰極端子部材をレーザ溶接により接続する工程とを含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記陽極端子部材と前記陽極集電板とに近接する接続部を設定してレーザ溶接により接続する工程、又は、前記陰極端子部材と前記陰極集電板とに近接する接続部を設定してレーザ溶接により接続する工程を含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、更に、前記陽極端子部材が前記陽極集電板に重ねられ、又は前記陰極端子部材が前記陰極集電板に重ねられるとともに、これらの側面部を溶接する工程を含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、更に、前記陽極端子部材の前記側面部に前記陽極集電板の前記側面部又は前記陰極端子部材の前記側面部に前記陰極集電板の前記側面部を位置決めする工程を含み、前記側面部間を共通面部として前記溶接を施してもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記コンデンサ素子の素子端面に前記陽極体又は前記陰極体の何れか一方又は双方から引き出された単一又は複数の電極張出し部を、前記素子端面から所定幅に設けた折目により前記コンデンサ素子の素子端面上に折り曲げて重ねる工程を含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記コンデンサ素子の前記素子端面の前記陽極部に前記陽極集電板を接続し又は前記陰極部に前記陰極集電板を接続し、前記陽極端子部材又は前記陰極端子部材に接続板を接続し、該接続板と前記陽極集電板又は前記陰極集電板を接続する工程を含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記コンデンサ素子の前記素子端面に前記電極体の何れか一方又は双方から引き出された単一又は複数の電極張出し部に単一又は複数の集電板を重ね、この集電板に前記コンデンサ素子の電極体と交差方向に溶接ラインを設定し、この溶接ラインに沿って溶接する工程を含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、絶縁間隔を以て対向する前記集電板の複数箇所に2以上の前記溶接ラインを隣接して設定し、前記コンデンサ素子の素子中心部に跨がる特定箇所で隣接する2以上の前記溶接ラインを連続して溶接した後、前記特定箇所以外の箇所の2以上の前記溶接ラインを連続して溶接し、前記集電板と前記コンデンサ素子の前記電極張出し部とを複数箇所で隣接する2以上の前記溶接ラインにより溶接してもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記陽極集電板又は前記陰極集電板に溶接始点から溶接終点に至る溶接ラインを設定し、この溶接ラインに連続照射されるビーム出力を段階的又は連続的に異ならせたビーム照射により前記陽極部又は前記陰極部に前記陽極集電板又は前記陰極集電板を接続する工程を含んでもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記ビーム出力は、前記溶接ラインの前記溶接始点を前記溶接終点より高く設定し、前記溶接始点から前記溶接終点に段階的又は連続的に減衰させてもよい。
 上記目的を達成するため、本発明のコンデンサの製造方法は、コンデンサ素子の素子端面に設置されて陽極側又は陰極側に接続される集電板に、前記コンデンサ素子の側面方向に円弧状の第1の接続面を形成し、前記集電板に接続する端子部材に前記集電板の前記接続面と同心円状の第2の接続面を形成し、前記第1の接続面と前記第2の接続面とを揃え、前記コンデンサ素子、又は前記第1の接続面と前記第2の接続面にビームを照射する溶接手段を用い、前記コンデンサ素子又は溶接手段を回動させ、前記第1の接続面と前記第2の接続面とを溶接して前記集電板と前記端子部材とを接続する工程を含んでいる。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記コンデンサ素子の素子中心を基準に、前記第1の接続面及び前記第2の接続面を同心円面に形成し、前記素子中心を回動中心にして前記コンデンサ素子又は前記溶接手段を回動させてもよい。
 上記目的を達成するため、本発明のコンデンサの製造方法は、端面形状又は端面面積が異なる陽極側又は陰極側の電極張出し部を素子端面に形成し、又は前記素子端面に形成した電極張出し部を成形して端面形状又は端面面積が異なる陽極側又は陰極側の電極部を形成し、前記電極張出し部又は前記電極部の端面形状又は端面面積を識別情報として陽極側であるか陰極側であるかの判別を行い、前記電極張出し部又は前記電極部に接続され、かつ前記識別情報により陽極側か陰極側かを特定した集電板に陽極側又は陰極側の外部端子を接続する構成である。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、更に、前記電極張出し部又は前記電極部を認識して前記素子端面に基準線を設定し、前記基準線と平行でかつ素子中心を通過する中心線を設定し、前記素子中心及び前記中心線を基準に前記素子端面の変位角度を検出し、前記変位角度によって生成された補正情報により前記コンデンサ素子の角度位置を補正する構成でもよい。
 上記目的を達成するためには、上記コンデンサの製造方法において好ましくは、前記中心線を中心に前記中心線を包含する一定幅の基準範囲を設定し、該基準範囲に前記電極張出し部又は前記電極部が突出しているか否かを判別する構成でもよい。
 また、上記目的を達成するため、本発明のコンデンサの製造プログラムは、コンピュータによって実行するコンデンサの製造プログラムであって、コンデンサ素子の素子端面の画像データを取得し、電極張出し部又は該電極張出し部で形成された電極部の端面形状又は端面面積を識別情報として陽極側であるか陰極側であるかの判別を行い、前記電極張出し部又は前記電極部に接続された集電板と接続される陽極側又は陰極側の外部端子を特定する情報を生成する。
 上記目的を達成するためには、上記コンデンサの製造プログラムにおいて、より好ましくは、前記画像データ上の前記電極張出し部又は前記電極部の位置に基づき基準線を生成し、前記基準線と平行でかつ素子中心を通過する中心線を生成し、前記素子中心及び前記中心線を基準に前記素子端面の変位角度を検出し、前記変位角度によって前記コンデンサ素子の角度位置の補正情報を生成してもよい。
 上記目的を達成するためには、上記コンデンサの製造プログラムにおいて、より好ましくは、前記中心線を中心に前記中心線を包含する一定幅の基準範囲を設定し、該基準範囲に前記電極張出し部又は前記電極部が突出しているか否かの判別をし、この判別情報を生成してもよい。
 本発明のコンデンサ、その製造方法又はその製造プログラムによれば、次の何れかの効果が得られる。
 (1) 巻回コンデンサ素子の同一端面に引き出された陽極部及び陰極部と、外装部材にある陽極端子部材及び陰極端子部材との間に個別に集電板を備えて接続したので、コンデンサ素子の低抵抗化を図ることができる。
 (2) 巻回コンデンサ素子の同一端面に引き出された陽極部及び陰極部と、外装部材にある陽極端子部材及び陰極端子部材との間に個別に集電板を備えた接続構造であるから、陽極端子部材と陽極部、陰極端子部材と陰極部との接続構造を堅牢化できる。
 (3) 上記構造により、集電板を介在させて陽極端子部材と陽極部又は陰極端子部材と陰極部との接続が簡易化でき、接続工程の簡略化を図ることができる。
 (4) コンデンサ素子の素子端面にある電極張出し部又は該電極張出し部で形成された電極部の端面の形状又は面積を陽極側と陰極側とで異ならせたので、その端面の形状又は面積を識別情報として極性判別を行うことができ、極性に関する接続を迅速かつ高精度に行うことができる。
 (5) この極性判別に基づいて集電板接続、外部端子接続を行うので、これらの極性の誤接続を防止でき、接続の自動化を図ることができる。
 (6) 極性判別の精度を高めることができるとともに、極性判別と同時に特定される基準線、中心線及び素子中心に基づき、コンデンサ素子及び集電板の位置合わせを高精度にしかも自動化することができる。
 (7) 中心線を基準に素子端面に設定された基準範囲に電極張出し部が突出しているか否かを判別でき、製造段階でコンデンサ素子の不良品を排除及びその自動化を図ることができ、製造の高速化及び低コスト化を図ることができる。
 そして、本発明の他の目的、特徴及び利点は、添付図面及び各実施の形態を参照することにより、一層明確になるであろう。
第1の実施の形態に係る電気二重層コンデンサの一例を示す平面図である。 電気二重層コンデンサを示す分解斜視図である。 一部を分解したコンデンサ素子の一例を示す斜視図である。 コンデンサ素子上の集電板の配置例を示す図である。 第2の実施の形態に係る電気二重層コンデンサの製造工程の一例を示すフローチャートである。 コンデンサ素子と集電板の接続工程を示す図である。 外装端子と集電板の接続工程を示す図である。 第3の実施の形態に係る電気二重層コンデンサの一例を示す図である。 他の実施の形態に係るコンデンサ素子の陽極部及び陰極部と集電板の一例を示す図である。 第4の実施の形態に係るコンデンサ素子上の集電板と外部端子との接続を示す図である。 第5の実施の形態に係る陽極体及び陰極体の一例を示す図である。 コンデンサ素子の陽極部及び陰極部の成形工程の一例を示す図である。 第6の実施の形態に係る溶接ライン、レーザ出力及び出力波形を示す図である。 溶接ライン、レーザ出力及び出力波形を示す図である。 第7の実施の形態に係るコンデンサ素子の陽極部及び陰極部の成形前後の一例を示す図である。 第9の実施の形態に係る集電板及び外部端子に対するレーザ照射の一例を示す図である。 集電板及び外部端子の溶接例を示す図である。 第10の実施の形態に係る素子端面を表す画像及びその処理を示す図である。 第11の実施の形態に係るコンデンサの製造工程の一例を示すフローチャートである。 コンデンサ製造システムの一例を示す図である。 電極箔及びその加工の一例を示す図である。 電極張出し部を形成した素子端面の一例を示す図である。 電極張出し部の加工手順を示す図である。 集電板に対するコンデンサ素子の位置調整の一例を示す斜視図である。 外部端子と集電板の接続の一例を示す斜視図である。 第12の実施の形態に係る巻きずれ検出を示す図である。 第13の実施の形態に係る電極部不良検出の一例を示す図である。
〔第1の実施の形態〕
 第1の実施の形態は、外部接続のための端子部材とコンデンサ素子との接続に集電板を備える構成を開示している。
 第1の実施の形態について、図1及び図2を参照する。図1は電気二重層コンデンサの一例を示す縦断面を示し、図2は分解した電気二重層コンデンサの一例を示している。
 この電気二重層コンデンサ(以下、単に「コンデンサ」と称する)2は、本発明のコンデンサ及びその製造方法の一例であって、図1に示すように、このコンデンサ2には、コンデンサ素子4の同一の素子端面に陽極部6と陰極部8が形成されている。陽極部6には陽極端子10が陽極集電板12を介在させて接続され、また、陰極部8には陰極端子14が陰極集電板16を介在させて接続されている。これらの接続には例えば、レーザ溶接や電子ビーム溶接が用いられ、18は溶接接続部の一例である。この溶接接続部18は陽極集電板12又は陰極集電板16に近接して陽極端子10又は陰極端子14に設定されている。また、陽極端子10及び陰極端子14は外部接続のための端子部材であって、陽極端子10は陽極端子部材の一例、陰極端子14は陰極端子部材の一例である。
 コンデンサ素子4は円筒体であって、一方の素子端面より、陽極体60(図3)を引き出して陽極部6が形成され、陰極体80(図3)を引き出して陰極部8が形成されている。また、コンデンサ素子4の周囲には保持テープ19が巻回され、陽極体60や陰極体80の巻き戻りが防止されている。
 コンデンサ素子4の外装部材として外装ケース20及び封口板22が備えられ、外装ケース20は例えばアルミニウム等の成形性のある金属材料からなる成形体である。封口板22は外装ケース20の開口部を閉止し、空間部24の気密性を保持する手段であるとともに、陽極端子10及び陰極端子14を固定する固定部材であり、しかもコンデンサ素子4の支持部材を構成する。この実施の形態では、封口板22にベース部26と、封止部28とが備えられる。ベース部26は絶縁材料である例えば、合成樹脂で形成され、陽極端子10及び陰極端子14が固定され、且つ絶縁されている。封止部28は密閉性の高い材料例えば、ゴム環で構成されている。
 この封口板22は、外装ケース20の開口部30(図2)に挿入されるとともに、開口部30側の中途部に形成された加締め段部32に位置決めされている。外装ケース20の開口端部34は、カーリング処理により加締められ、封止部28に食い込ませられている。これにより、外装ケース20が強固に封止されている。そして、封口板22のベース部26には、図2に示すように、透孔36が形成されるとともに、薄ゴムからなる圧力開放機構38が形成されている。
 次に、コンデンサ素子4について、図3を参照する。図3は一部を分解して示したコンデンサ素子を示している。
 このコンデンサ素子4は、図3に示すように、陽極体60と、陰極体80と、セパレータ40、42とを備える。陽極体60と陰極体80との間には、これら両者間を絶縁するセパレータ40、42のそれぞれが挟み込まれて巻回され、円筒状の巻回素子を構成している。陽極体60及び陰極体80にはベース材に例えば、アルミニウム箔が用いられ、このアルミニウム箔の両面に活性炭等の活物質及び結着剤等を含む分極性電極が形成されている。
 また、このコンデンサ素子4では、同一端面側に形成された陽極部6と陰極部8との間には一定幅の絶縁間隔44が設けられている。陽極部6は例えば、陽極体60の基材で形成され、同様に陰極部8も陰極体80の基材で形成されている。陽極体60及び陰極体80がアルミニウムで形成される場合、陽極部6及び陰極部8は、分極性電極を形成していないアルミニウム面を露出させた基材部である。
 陽極部6又は陰極部8の形成部は、絶縁手段であるセパレータ40、42の幅Wより大きく設定され、各陽極部6又は陰極部8の円弧長に対応する長さLに形成されている。
 そして、コンデンサ素子4の陽極部6又は陰極部8は、陽極集電板12又は陰極集電板16との接続前に、図2に示すように、加工してコンデンサ素子4の素子端面に密着状態に形成される。
 次に、陽極集電板12、陰極集電板16、コンデンサ素子4の陽極部6及び陰極部8について、図2及び図4を参照する。図4はコンデンサ素子の素子端面上の陽極集電板及び陰極集電板の配置を示している。
 陽極集電板12及び陰極集電板16は図4に示すように、コンデンサ素子4の一端面に配置され、陽極部6と陰極部8との間の絶縁間隔44に対応した間隔46を設けて配置される。
 陽極集電板12及び陰極集電板16は図2に示すように、コンデンサ素子4の素子端面を二分する半円形状であり、各陽極集電板12及び陰極集電板16の図中上側には、端子接続部48が形成され、その背面側には陽極部6又は陰極部8を接続するための素子接続部50が形成されている。素子接続部50は平坦面であるとともに、複数の溝部52が中心から放射状に形成されている。各溝部52は陽極部6又は陰極部8にある突条部54を収容する空間部を形成している。
 各突条部54は、コンデンサ素子4の陽極部6又は陰極部8に切込みを入れ、圧縮成形した際に、切込み部分に各陽極部6又は陰極部8の重なりによって生じた線状の突部である。コンデンサ素子4の陽極部6及び陰極部8は、このようにコンデンサ素子4の中心方向に向かって陽極部6及び陰極部8全体を圧縮成形することで、高さ寸法を抑制できる。この実施の形態では、陽極部6及び陰極部8は切込みにより、各3分割された中央部より圧縮成形し、その後端部側を順次圧縮成形することで、重なりによって生じた線状の突条部54の高さ寸法を抑制している。そして、陽極集電板12又は陰極集電板16の素子接続部50に形成された溝部52には各突条部54が収容される。これにより、素子接続部50に陽極部6又は陰極部8を密着させ、両者を密着状態で溶接し、電気的に接続することができる。
 陽極部6と陽極集電板12、又は陰極部8と陰極集電板16との各接続について詳述すると、図2に示すように、陽極集電板12及び陰極集電板16が、圧縮成形された陽極部6及び陰極部8に配置され、図4に示すように、押圧されて密着される。既述の通り、陽極集電板12又は陰極集電板16の溝部52には陽極部6及び陰極部8の各突条部54が収納されて、素子接続部50が密着される。この状態で、陽極集電板12又は陰極集電板16の素子接続部50に対応する上面側からレーザを照射する。これにより、素子接続部50及び陽極部6、陰極部8を溶融させて接続する。
 レーザ照射の部位は、この実施の形態では、図4に示すように、陽極集電板12及び陰極集電板16の溝部52と隔てた両端側の素子接続部50の各2箇所である。レーザ照射接続部59は、レーザ照射による溶接接続部であって、レーザ照射による溶接ラインを構成している。この場合、レーザ照射は、図4のレーザ照射接続部59に付した矢印〔I〕、〔II〕、〔III 〕及び〔IV〕で示すように、
 〔I〕コンデンサ素子4の外周側より、素子中心に向かって直線状に一方の集電板12に照射し、
 〔II〕次に、素子中心を隔てて対向する他方の集電板16に素子中心側より、素子外周側に向かって直線上にレーザ照射することにより、一連の動作にて溶接される。
 また、同じく、レーザ照射は、
 〔III 〕コンデンサ素子4の外周側より、素子中心に向かって直線状に一方の集電板12に照射し、
 〔IV〕そして、素子中心を隔てて対向する他方の集電板16に素子中心側より、素子外周側に向かって直線上にレーザを照射する一連の動作にて溶接される。
 このように、素子中心を隔てて直線状にレーザ照射する一連の動作にて、陽極部6と陽極集電板12、陰極部8と陰極集電板16とが接続される。なお、レーザ照射の〔I〕及び〔II〕の一連の動作を2回繰り返す。又は、レーザ照射の〔I〕ないし〔IV〕の一連の動作を2回繰り返し、近傍に溶接部を配することで接続抵抗を更に低減することも可能である。レーザ照射の〔I〕及び〔II〕の一連の動作にて接続することも可能であるが、陽極集電板12、陰極集電板16の各素子接続部50を、それぞれ素子中心側より素子外周側に向かって直線上に照射する等、個別に接続することもできる。
 また、レーザ照射の〔I〕ないし〔IV〕の連続動作について、同一箇所を連続してレーザ照射するのではなく、レーザ溶接を〔I〕から〔IV〕で行い、その後、再び〔I〕から〔IV〕にレーザ照射すれば、同一箇所のレーザ照射に時間間隔を設けることができ、この結果、レーザ照射箇所の冷却化を図ることができ、レーザ溶接による接続の安定化が図られる。また、同一箇所に時間間隔を設けて複数回のレーザ照射を行うことも可能であるが、1回目のレーザ溶接を〔I〕から〔IV〕で行い、再びレーザ溶接を〔I〕から〔IV〕で行うので、冷却間隔を取りながら、レーザ照射を連続的に行うことができ、レーザ照射溶接時間の短縮化を図ることができる。
 ここで、図2に示すように、陽極部6及び陰極部8は、所定の絶縁間隔44を設けてコンデンサ素子4の端面から導出している。陽極部6及び陰極部8には、中心方向に向かって圧縮成形した際に、陽極部6及び陰極部8が接触しない絶縁間隔44を設定しており、このため、コンデンサ素子4の中心部近傍では、陽極部6及び陰極部8を形成しない。また、陽極部6及び陰極部8は、その形成部位が多いほど(又は面積が大きいほど)、抵抗の低減につながる。そこで、陽極部6及び陰極部8が接触せず、また、低抵抗化が図れる絶縁間隔44として、例えば、3〔mm〕~10〔mm〕を設定している。
 また、コンデンサ素子4の最外周に、陽極部6及び陰極部8の圧縮成形時にずれ等が生じる場合がある。この場合、陽極部6及び陰極部8が外装ケース20に接触しないようにすることが必要である。その一例として、陽極集電板12と接続された陽極部6及び陰極集電板16と接続された陰極部8の外周面に、絶縁テープ等の絶縁手段を設置するとよい。
 そして、この実施の形態では、陽極端子10及び陰極端子14の外壁部にはレーザ溶接のための平坦接続面部55が形成されるとともに、陽極集電板12及び陰極集電板16にも平坦接続面部57が切欠きによって形成されている。これら平坦接続面部55、57は一致した面部を構成し、この境界近傍にレーザを照射し、平坦接続面部55、57を溶接し、図1に示すように溶接接続部18を形成することになる。ここで、コンデンサ素子4と封口板22との間には僅かなスペースしかない。つまり、コンデンサ素子4と封口板22との間隔(距離)を長く取ると、その分抵抗が増えてしまうとともに、コンデンサ2の高さ寸法が大きくなってしまうため、コンデンサ素子4と封口板22との間隔(距離)を極力短くしている。このような小スペースにおいて、陽極端子10及び陰極端子14と、陽極集電板12及び陰極集電板16とを接続するために、既述の通り、平坦接続面部55、57を一致した共通の面部とし、この部位に局所的に溶接可能なレーザにて溶接することで溶接の簡易化及び強化が図られている。ここで、陽極集電板12及び陰極集電板16、陽極端子10及び陰極端子14の厚み(平坦接続面部55、57の高さ寸法)は、それぞれ0.5〔mm〕~5〔mm〕の範囲で設定されており、これによると、レーザ溶接が可能な寸法でかつ内部抵抗を増大され難く、また、コンデンサ2の高さ寸法を短くすることができる。
 なお、平坦接続面部55、57は切欠きによって平面として構成しているが、これに限ることはなく、曲面でもよく、一致した面部とすればよい。また、平坦接続面部55、57は、それぞれ傾斜面(テーパ面)であってもよく、また平坦接続面部55、57の間には平坦接続面部55、57の加工精度によっては隙間が生じる場合もある。また、平坦接続面部55、57は、コンデンサ素子4の外周面近傍に設置されることが好ましい。これは、レーザ照射の際に他の部材(陽極部6や陰極部8)への過剰なストレスを防ぐためにも有効である。具体的には、コンデンサ素子4の外周面より、例えば、10〔mm〕以内とすることが好ましい。
 このように、コンデンサ素子4の陽極部6及び陰極部8と陽極集電板12及び陰極集電板16との接続部位と、陽極端子10及び陰極端子14と陽極集電板12及び陰極集電板16との接続部位を、別途設定することで、レーザ溶接時の接続の安定性が向上する。
 このコンデンサ2の組立て及びそのコンデンサ2は、既述した通りである。すなわち、このコンデンサ2には、アルミニウムなどの金属材料で形成された有底筒状の外装ケース20が用いられている。この外装ケース20にはコンデンサ素子4とともに、封口板22が挿入され、この封口板22は絞り加工された外装ケース20の段部32に固定されている。外装ケース20の開口端部34をカーリング処理によって封止部28内に食い込ませ、外装ケース20が封止されている。コンデンサ素子4の周囲部には既述のコンデンサ素子4の巻回終了時に処理された保持テープ19が巻き付けられている。
 以上説明した第1の実施の形態のコンデンサ2の特徴事項や利点を列挙すれば以下の通りである。
 (1) コンデンサ素子4の一端面側に陽極体60の基材で陽極部6、陰極体80の基材で陰極部8が形成されている。陽極部6と陽極端子10とが陽極集電板12を介して接続されている。しかも、陰極部8と陰極端子14とが陰極集電板16を介して接続されている。これらにより、端子接続のシンプル化が図られている。しかも、接続を容易化することができる。
 (2) 外装ケース20の空間部24内に接続部の占める空間専有率が極めて低い。
 (3) 外装部材である封口板22には、コンデンサ素子4が強固に支持されている。即ち、陽極端子10及び陰極端子14に陽極集電板12、陰極集電板16を介してコンデンサ素子4の陽極部6及び陰極部8がレーザ溶接により、強固に固定されている。よって、コンデンサ素子4の支持強度が高められている。この結果、機械的に堅牢な支持構造が構成され、製品の耐震性を高めることができる。
 (4) 巻回素子であるコンデンサ素子4に巻回されている陽極体60から複数の側縁部を集合させて陽極部6が形成されている。この陽極部6を陽極集電板12にレーザ溶接し、同様に、陰極体80から複数の側縁部を集合させて陰極部8が形成されている。この陰極部8を陰極集電板16にレーザ溶接しているので、コンデンサ素子4及びコンデンサ2の低抵抗化を図ることができる。つまり、等価直列抵抗の低い製品を提供できる。
 (5) 陽極集電板12及び陰極集電板16を用いたので、コンデンサ素子4にタブを接続する必要がない。
 (6) 既述のとおり、レーザ照射の〔I〕ないし〔IV〕の連続動作について、同一箇所を連続してレーザ照射することに限定されない。レーザ溶接を〔I〕から〔IV〕で行い、その後、再び〔I〕から〔IV〕にレーザ照射を行ってもよい。溶接ラインによる近傍に溶接部分を複数ラインとして配すれば、接続抵抗を更に低減することができる。しかも、同一箇所のレーザ照射に時間間隔を設けることができる。この結果、レーザ照射箇所の冷却化を図ることができ、レーザ溶接による接続の安定化が図られる。
 (7) また、同一箇所に時間間隔を設けて複数回のレーザ照射を行うことも可能であるが、1回目のレーザ溶接を〔I〕から〔IV〕で行い、再び隣接してレーザ溶接を行えば、冷却間隔を取りながら、レーザ照射を連続的に行うことができ、レーザ照射による溶接時間の短縮化を図ることができる。
〔第2の実施の形態〕
 第2の実施の形態は、既述のコンデンサの製造方法を開示している。
 第2の実施の形態について、図5を参照する。図5は、第2の実施の形態に係るコンデンサの製造工程の一例を示すフローチャートである。
 この製造工程は、本発明のコンデンサの製造方法の一例であって、図6に示すように、コンデンサ素子4を形成し(ステップS11)、コンデンサ素子4の陽極部6及び陰極部8を図2に示すように、成形する(ステップS12)。
 図6のAに示すように、コンデンサ素子4の陽極部6に陽極集電板12、コンデンサ素子4の陰極部8に陰極集電板16を各溝部52に突条部54が挿入されるように位置決めし、陽極部6に陽極集電板12をまた、陰極部8に陰極集電板16をそれぞれレーザ溶接により接続する(ステップS13)。図6のBにおいて、56は既述の溶接接続部分18と同様のレーザ溶接による溶接接続部分である。溶接接続部分には矢印で示すように、レーザービーム53が照射される。
 陽極部6に接続された陽極集電板12に封口板22にある陽極端子10を各平坦接続面部55、57(図4)を一致させてレーザ溶接により接続し、同様に、陰極部8に接続された陰極集電板16に封口板22の陰極端子14をレーザ溶接により接続する(ステップS14)。
 この実施の形態では、図7に示すように、コンデンサ素子4の陽極部6に接続された陽極集電板12に対して封口板22の陽極端子10を位置決めし、同時にコンデンサ素子4の陰極部8に接続された陰極集電板16に対して封口板22の陰極端子14を位置決めすることにより、それぞれをレーザ溶接する。18、56(図6)は溶接接続部である。
 なお、封口板22は陽極端子10及び陰極端子14のインサートにより合成樹脂を成形(インサート成形)し、これによりベース部26及び封止部28が形成される。
 そして、コンデンサ素子4は、電解液を含浸した後、外装ケース20に収容し、外装ケース20の開口端部34のカーリング処理により封止し(ステップS15)、製品であるコンデンサ2を完成する。
 このような製造工程によれば、既述のコンデンサ2を容易に製造でき、端子接続工程の簡略化を図ることができる。
〔第3の実施の形態〕
 第3の実施の形態は、集電板と外部端子部材との間に接続板を介在させた接続構造及びその製造方法を開示している。
 第3の実施の形態について、図8を参照する。図8は第3の実施の形態に係るコンデンサを示している。
 この第3の実施の形態では、図8に示すように、陽極端子部材として陽極端子10とともに陽極接続板62、陰極端子部材として陰極端子14とともに陰極接続板64を備えた構成である。陽極接続板62は陽極端子10にレーザ溶接により接続された後、コンデンサ素子4側の陽極集電板12に接続される。同様に、陰極接続板64は陰極端子14にレーザ溶接により接続された後、コンデンサ素子4側の陰極集電板16に接続される。陽極接続板62には陽極端子10を位置決めして接続する接続用凹部66、陰極接続板64には陰極端子14を位置決めして接続する接続用凹部68が形成されている。
 このような陽極接続板62(陰極接続板64)を備えたコンデンサの製造方法では、陽極集電板12(陰極集電板16)の接続工程、陽極接続板62(陰極接続板64)の接続工程、陽極集電板12(陰極集電板16)及び陽極接続板62(陰極接続板64)の接続工程が含まれる。集電板(陽極集電板12、陰極集電板16)の接続工程では、コンデンサ素子4の電極(陽極体60、陰極体80)からコンデンサ素子4の素子端面に導出された電極張出し部(陽極部6、陰極部8)に集電板(陽極集電板12、陰極集電板16)を接続する。この接続工程の後、接続板(陽極接続板62、陰極接続板64)の接続工程では、コンデンサ素子4を収容する外装ケース20の封口体(封口板22)に設置された外部端子(陽極端子10、陰極端子14)に接続板(陽極接続板62、陰極接続板64)を接続する。そして、集電板(陽極集電板12、陰極集電板16)と接続板(陽極接続板62、陰極接続板64)の接続工程では、集電板(陽極集電板12、陰極集電板16)と接続板(陽極接続板62、陰極接続板64)とをその平坦接続面部(55,57)にて接続する。
 このような陽極接続板62及び陰極接続板64を用いた構成では、外部端子である陽極端子10、陰極端子14と、コンデンサ素子4側に接続された陽極集電板12、陰極集電板16との接続が広範囲に行われる。これにより、接続抵抗を低減でき、しかも接続強度を高めることができる。
〔第4の実施の形態〕
 第4の実施の形態は、既述の陽極集電板(又は陰極集電板)の変形例及び側面溶接を開示している。
 図10は第4の実施の形態に係る陽極集電板(又は陰極集電板)の接続構造を分解して示している。
 この第4の実施の形態に係る陽極集電板112は、電極材料と同一の例えば、アルミニウムで形成される。この陽極集電板112は陽極部106の区画部106A、106B、106Cを覆っており、区画部106B、106Cとのレーザ溶接面積を備えているとともに、陽極端子110とのレーザ溶接面積を持つ形状及び面積を備えている。この実施の形態では、コンデンサ素子104の素子端面の2分の1の大きさである。つまり、絶縁間隔144が確保される形状として、ほぼ半円形板である。
 陽極集電板112には、弦側中心部にコンデンサ素子104の巻回中心部146に対応して円弧状切欠部150が形成され、その弧側には、X軸(例えば、図15に示すX軸)を中心にX軸と直交方向に直線状に切り落とされた接続面部152が形成されている。また、この陽極集電板112には、円弧状切欠部150を中心即ち、X軸を中心に左右に角度θを持って直角に屈曲させた段部154を以て円弧状の接続領域として端子接続部156A及び素子接続部156B、156Cが形成されている。各端子接続部156A及び素子接続部156B、156Cは、それぞれ平坦面に形成され、段部154を挟んで平行面を構成している。このような構成は陰極集電板114側も同様である。
 次に、図10は、陽極端子110と陽極集電板112の接続、陰極端子114と陰極集電板116の接続を示し、Aは陽極端子と陽極集電板、陰極端子と陰極集電板の接続前の状態、Bはレーザ照射を示す図である。
 陽極集電板112及び陰極集電板116が接続されたコンデンサ素子104には、封口板122にある陽極端子110、陰極端子114が位置決めされる。陽極端子110及び陰極端子114には側面部に端子側接続面164が形成され、この端子側接続面164は、陽極集電板112及び陰極集電板116にある接続面部152と同一面を形成する側壁面である。これら接続面部152及び端子側接続面164を合致させ、レーザ照射168を行えば、溶接接続部118がレーザ溶着され、接続面部152及び端子側接続面164間を溶着させることができる。
 従って、コンデンサ素子104の陽極部106には陽極集電板112を介して外部端子である陽極端子110がレーザ照射168による溶接接続部118を以て接続され、また、コンデンサ素子104の陰極部108には陰極集電板116を介して外部端子である陰極端子114がレーザ照射168による溶接接続部118を以て接続され、コンデンサ素子104に外部端子が形成される。
 また、陽極集電板112、陰極集電板116において、コンデンサ素子104の陽極部106及び陰極部108との接続領域(つまり、陽極側の素子接続部156B及び素子接続部156C、陰極側の素子接続部158B及び素子接続部158C)と、陽極端子110と陰極端子114との接続領域(つまり、陽極側の端子接続部156A及び陰極側の端子接続部158A)とが異なる位置に設定されている。これにより、各電極部と集電板、各外部端子と集電板との接続を安定化させることができ、コンデンサ素子の低抵抗化とともに接続の強化を図ることができる。
 以上説明した第4の実施の形態のコンデンサ(電気二重層コンデンサ)102によれば、陽極集電板112又は陰極集電板116と外部端子(陽極端子110又は陰極端子114)との側面を一致させている。これにより、両者に対するレーザ照射を安定でき、接続の完全化及び信頼性を高めることができる。
〔第5の実施の形態〕
 第5の実施の形態は、コンデンサ素子の素子端面に引き出される電極体に折り目加工をし、折り目により成形された電極張出し部の処理を開示している。
 図11及び図12は、第5の実施の形態に係るコンデンサ素子の電極張り出し部の加工処理を示している。
 図11及び図12に示すコンデンサ素子の電極張り出し部の加工処理には、電極体の形成工程、折り目形成工程及び電極部の形成工程が含まれる。
 (1) 電極体の形成工程
 この電極体の形成工程では、陽極側又は陰極側の電極体が形成され、この電極体の形成工程では、図11のAに示すように、コンデンサ素子204の端面集電用の電極張出し部である未塗工部244(陽極部206、陰極部208)が形成される。
 陽極体260及び陰極体280には、ベース材240に例えば、アルミニウム箔が用いられる。ベース材240は、同一幅の帯状体であって、このベース材240の両面に活性炭等の活物質及び結着剤等を含む分極性電極242を形成する。この分極性電極242の形成の際、ベース材240には、一方の縁部側に一定幅の未塗工部244が形成され、この未塗工部244は分極性電極242の非形成部分である。この未塗工部244が既述の電極張出し部であり、この未塗工部244で陽極部206又は陰極部208が形成される。
 (2) 折り目形成工程
 この折り目形成工程では、既述の未塗工部244に対し、図11のBに示すように、縁部から一定幅の折り目線246を形成する。この折り目線246は折り曲げ加工を容易化するための線である。つまり、この折り目線246はキズではなくケガキ(marking-off )線であって、陽極部206及び陰極部208の折り曲げ時の座屈を防止することができる。この折り目線246は、溝であり、断面形状は、三角、四角又は湾曲(R)であってもよい。また、この折り目線246の形成方法としては、例えばプレス、レーザ、切削等があげられる。折り目線246は図11のBに示すように、1本で構成することもできるが、未塗工部244の寸法を考慮し、複数本で形成してもよく、また、折り目線246は片面又は両面であってもよい。
 (3) 電極部の形成工程
 この電極部の形成工程において、図11のCに示すように、陽極体260には幅の異なる複数の陽極部206が形成され、図11のDに示すように、陰極体280には幅の異なる複数の陰極部208が形成される。各陽極部206はコンデンサ素子204の素子端面に半周毎に引き出されるように異なる間隔で形成する。また、各陰極部208もコンデンサ素子204の素子端面に半周毎に引き出され、しかも、陽極部206と陰極部208との間には絶縁間隔221が設定されている。そして、各陽極部206及び各陰極部208には、既述の折り目線246が形成されている。
 各陽極部206及び各陰極部208の成形工程において、コンデンサ素子204の巻回後、素子端面205に露出する陽極部206、陰極部208は、図12のAに示すように、折り目線246により巻回中心部252を中心にして対向方向に折り曲げられた状態で対向している。そこで、図12のBに示すように、陽極集電板212、陰極集電板216との接続を図るために巻回中心部252側に折り目線246を用いて折り曲げ、区画部206B、206C、208B、208Cを形成する。
 また、図12のCに示すように、折り目線246を用いて区画部206A、208Aを素子端面205側に更に折り曲げる。
 この第5の実施の形態によれば、次の効果が得られる。
 (1) 電極箔からの張出し部が多いほど内部抵抗が下がる。張出し部を多くすると巻回、積層した際に、張出し部が複数重なるので、精度良く折り曲げるのは困難である。また、巻回素子においては、円周上に連続した張出し部を設けた場合は、折り曲げた際にシワが発生しやすく、集電板との接続が困難となる。これに対し、既述のように、張り出し部を精度良く折り曲げれば、集電板との接続を安定させることができ、低抵抗のコンデンサを提供することができる。即ち、電極張出し部に折り目を付ければ、電極張出し部を精度良く折り曲げることが可能となる。この結果、集電板との接続時のがたつき等がなく、安定した接続を実現できる。
 (2) 折り目位置を素子端面から所定寸法離間させることで、集電板とのレーザ溶接の際に、素子側へのレーザ熱やスパッタが飛ぶことがなく、素子への影響が少なくてすむ。
 (3)  コンデンサ素子を形成する前に予め張り出し部に折り目を形成することで、折り目の形成が容易となる。
 (4)  電極箔(未塗工部)に折り目を付け、その後、電極箔の端部を切り出して、張り出し部とすることで、折り目の位置が張り出し部でずれることがないという効果も得られる。
〔第6の実施の形態〕
 第6の実施の形態は溶接ラインに対するレーザ照射出力の制御を開示している。既述のように、コンデンサ2の製造方法には、コンデンサ素子4の素子端面に陽極部6と陰極部8を形成し、陽極部6に陽極集電板12を、陰極部8に陰極集電板16をそれぞれ溶接して接続する工程を含む。この接続工程では、集電板に溶接始点から溶接終点に至る溶接ラインを設定し、この溶接ラインに照射されるビーム出力を段階的及び連続的に異ならせてビーム照射を行う。
 図13及び図14は第6の実施の形態に係る溶接ライン及びレーザ出力を示している。
 このレーザ照射による溶接では、図13のAに示すように、陽極集電板12又は陰極集電板16上の溶接ライン318を設定する。この溶接ライン318の溶接始点318Sと溶接終点318Eとの間を区間a、b、c及び溶接終点318E外に区間dを設定している。
 このレーザ溶接には、ビーム照射手段の一例としてファイバーレーザ照射装置364が用いられ、溶接ライン318はレーザ照射による溶接部である。この場合、アルゴンガス又はヘリウムガス等のシールドガスが使用され、溶接処理が行われる。
 このファイバーレーザ照射装置364のレーザ照射では、一定の照射速度で、溶接ライン318にビーム出力を段階的及び連続的に異ならせている。この実施の形態では、図13のBに示すように、レーザ出力Pが区間aではレーザ出力Pa、区間bではレーザ出力Pb(<Pa)の一定値に設定され、区間cではレーザ出力Pbからレーザ出力Pc(<Pb)に減衰させている。区間aのレーザ出力Paは最も高い値に設定され、一例として50W~3000〔W〕である。区間bのレーザ出力Pbはレーザ出力Paより小さく、レーザ出力Paの90%以下のレーザ出力としている。また、区間cのレーザ出力Pcはレーザ出力Pbより小さい値であって、レーザ出力Paの80%以下のレーザ出力としている。この場合、図13のBは横軸を距離〔mm〕で表している。
 溶接始点318Sで照射するレーザ出力Paが最も高い値に設定され、その照射区間aは区間bより短い時間に設定されている。区間aの後、レーザ出力Pbのレーザ照射の区間bは最も長く設定されている。また、区間cは区間bより短い時間に設定され、この区間cにおいて、レーザ出力Pbをレーザ出力Pcに直線的に減衰させている。このように溶接始点及び溶接終点近傍において、レーザ出力を減衰させるとよい。少なくともレーザ出力の減衰が2区間以上あることが好ましい。
 溶接ライン318に対するレーザ走査の速度は、一定速度であって、例えば、300〔mm/秒〕~3000〔mm/秒〕から選択される一定速度とすればよいが、区間に応じて走査速度を変更してもよい。
 溶接ラインに関し、陽極部6に対する陽極集電板12の各溶接箇所、陰極部8に対する陰極集電板16の各溶接箇所の隣接箇所に複数の溶接ラインを設定し、溶接を多重化してもよい。この場合、接続工程では、集電板に溶接始点から溶接終点に至る溶接ラインを設定する。この溶接ラインに照射するビーム出力を段階的及び連続的に異ならせることにより、ビーム照射を行えばよい。
 図14のAは、各溶接箇所に複数の溶接ラインの一例である溶接ライン3181、3182を隣接して設定した場合を示している。各溶接ライン3181、3182の間隔をW9 とすれば、間隔Wは例えば、3〔mm〕以内に設定され、また溶接ライン3181、3182は一部重複してもよい。
 各溶接ライン3181、3182は、既述のファイバーレーザ照射装置364により個別に溶接されることは既述の通りである。それぞれ始点318S、終点318Eが設定され、溶接走査方向に応じて既述の区間a、b、c、dが設定されている。溶接ライン3181と溶接ライン3182とでは溶接走査方向が反対方向である。このような溶接ライン3181、3182について、各区間a、b、cに対するレーザ出力は図14のBに設定されている。
 この第6の実施の形態によれば、次の効果が得られる。
 (1) 陽極集電板12又は陰極集電板16とコンデンサ素子4の陽極部6又は陰極部8とのレーザ溶接の始点318Sから終点318Eに至る溶接ライン318に対するレーザ出力を段階的及び連続的に減衰させている。これにより、集電板及び電極張出し部に加えられる溶接エネルギーを均一化でき、接続性を向上させることができる。
 (2) レーザ照射の始点318Sではレーザ出力を高く設定し、高いレーザ出力エネルギーでレーザ照射を行う。レーザ照射を受けた陽極集電板12又は陰極集電板16及び陽極部6又は陰極部8の溶接ライン318及びその近傍部が加熱される。即ち、レーザ照射を溶接ライン318に沿って行えば、レーザ照射の走査に応じて加熱がその走査とともに連鎖状態で移動するので、連鎖的に溶融状態となる。この場合、レーザ出力を同一に設定する必要はない。レーザ出力を段階的及び連続的(上記実施の形態)、段階的又は連続的に減衰させても、溶接部に加わるレーザ照射による熱エネルギーは均一化する。従って、陽極集電板12又は陰極集電板16と陽極部6又は陰極部8との接続性を向上させることができる。
 (3) 仮に、レーザ出力を一定に維持した場合には、熱エネルギーが過度となる場所が生じる。電極張出し部を形成している電極が薄い場合には、過度の熱エネルギーの集中で溶融ムラが生じ、集電板と電極張出し部との接続性が不安定化する。斯かる不都合は、既述のレーザ出力の制御つまり、出力減衰で回避することができる。
〔第7の実施の形態〕
 第7の実施の形態は、コンデンサ素子の素子端面に形成される電極部の絶縁間隔及びその調整を開示している。
 図15は、電極張り出し部及びその加工後の電極部を示している。
 この電極部の成形では、図15のAに示すように、コンデンサ素子404の素子端面405に陽極部406又は陰極部408が陽極集電板412又は陰極集電板416との接続前に、図15のBに示すように、コンデンサ素子404の素子端面405上で密着状態に成形加工される。
 コンデンサ素子404の素子端面405には図15のAに示すように、電極張出し部を構成する陽極部406と陰極部408とが立設され、これら陽極部406と陰極部408との間には所定幅の絶縁間隔421を形成するための絶縁間隔427が設定されている。絶縁間隔427の幅をWaとし、絶縁間隔421の幅をWbとすると、後述の陽極部406と陰極部408の折り曲げによっても絶縁間隔421が確保されるように、Wa>Wbに設定され、幅Waは電極体即ち、折曲前の陽極部406又は陰極部408の張出し幅より大きく設定されている。また、絶縁間隔427の幅をWaと前述の陽極部406及び陰極部408の折り幅をWとすると、これらの大小関係はWa>Wである。
 この絶縁間隔427の中心にY軸、このY軸と直交方向にX軸を取り、X軸を中心に左右に角度θ、θ(>θ)を設定して区画する。角度θでコンデンサ素子404の巻回中心部(巻芯部)452を中心に放射状方向に複数の切込み454を入れ、各切込み454で区画された複数の区画部406A、406B、406Cが陽極部406側に形成されている。同様に、複数の陰極部408側にも複数の区画部408A、408B、408Cが形成されている。角度θを例えば、33〔°〕に設定すれば、区画部406A、408Aは2θ=66〔°〕となり、区画部406Aを挟んで形成された区画部406B、406C又は区画部8Aを挟んで形成された区画部408B、408Cの角度θは、θ=57〔°〕に設定されている。
 切込み454の深さは例えば、張出し長を陽極部406と陰極部408の高さhに設定されている。この高さhと、既述の絶縁間隔427の幅Waの大小関係は、Wa>h1  である。この高さhに設定されている陽極部406の区画部406A、406B、406C、陰極部408の区画部408A、408B、408Cを中途部で屈曲させ、コンデンサ素子404の巻回中心部452の方向に押し倒して圧縮成形することにより、図15のBに示すように、各区画部406A、406B、406C、陰極部408の区画部408A、408B、408Cに成形される。この実施の形態では、各区画部406B、406C及び区画部408B、408Cが溶接部分に設定されている。そこで、区画部406A、408Aの突出高さhが各区画部406B、406C、408B、408Cの高さhより高く設定され、区画部406A、406B、406C及び陰極部408の区画部408A、408B、408Cの高さを陽極集電板412及び陰極集電板416の屈曲形状に対応させている。なお、コンデンサ素子404の陽極部406及び陰極部408は、この様にコンデンサ素子404の中心方向に向かって陽極部406及び陰極部408全体を圧縮成形することで、高さ寸法を抑制している。この実施の形態では、陽極部406の区画部406B、406Cを圧縮形成して、安定した平坦状の接続面(即ち、溶接面)を形成し、その後非接続面である区画部406Aを圧縮成形し、区画部406A-406B間、区画部406A-406C間の重なりによって生じる境界部の高さ寸法が抑制されている。
 各陽極部406及び各陰極部408の成形工程において、コンデンサ素子404の巻回後、素子端面405に露出する陽極部406、陰極部408は、既述のように折り目線により巻回中心部452を中心にして対向方向に折り曲げられている。そこで、陽極集電板412、陰極集電板416との接続を図るために巻回中心部452側に折り目線246(図11)を用いて区画部406B、406C、408B、408Cを折り曲げる。
 そして、区画部406B、406C、408B、408Cを折り曲げた後、折り目線を用いて区画部406A、区画部408Aを素子端面405上に折り曲げればよい。
 このように絶縁間隔427を調整すれば、低抵抗化と相まって、電極間の短絡を防止でき、信頼性の高いコンデンサを実現できる。
〔第8の実施の形態〕
 上記実施の形態では、図2及び図4に示すように、集電板の接続領域を表裏面にとり、上面に外部端子の溶接領域、下面にコンデンサ素子の電極部の溶接領域を設定している。これら溶接領域は、表裏面で領域位置を異ならせ、溶接手順の容易化を図っている。そして、集電板には、端子接続領域を挟んで素子接続領域が設定されている。つまり、3つの領域が設定されているが、領域分割は3分割以外でもよく、2分割又は4分割以上でもよい。
〔第9の実施の形態〕
 第9の実施の形態は、レーザ溶接の照射角度の制御を開示している。
 図16は、第9の実施の形態に係るレーザ照射角度及び溶接面の一例を示している。
 各集電板514A、514Bは、コンデンサ素子504の素子端面506の素子中心521を基準に設置され、コンデンサ素子504の陽極部508又は陰極部510に接続されている。そこで、各集電板514A、514Bの各端子溶接部520の接続面524は、素子中心521を基準にした円弧面を構成する。そこで、図16に示すように、端子設置面部522に設置された陽極端子530A又は陰極端子530Bは、接続面540を接続面524に一致させる。レーザ照射装置544のレーザ出射部546を溶接面524、540に向けて設置する。
 レーザ出射部546と、接続面524、540のレーザ照射点548との距離をLdとすれば、素子中心521を回動中心にしてレーザ照射装置544を矢印Nの方向に回転しても、距離Lを維持することができる。そして、レーザ照射点548を中心にレーザ照射装置544の回動角度θとし、この回動角度θを溶接範囲に設定すれば、接続面524、540に同一の距離Ldで一様にレーザ照射542を行い、溶接をすることができる。レーザ照射542の距離Lが同一であるとともに、安定したレーザ照射542を連続して行え、均一な溶接処理を行うことができ、接続の信頼性を高めることができる。なお、レーザ照射装置544の回動に代え、コンデンサ素子504を素子中心521を回動中心にして回転して溶接する構成としてもよい。
 この端子接続工程の一例について、レーザ照射装置544をコンデンサ素子504の素子中心521を中心に所定角度θだけ回転させてレーザ照射542を行い、陽極端子530A及び集電板514Aの溶接を行う。そして、コンデンサ素子504を反転(半回転)させてレーザ照射点548に向け、レーザ照射装置544に対向する陰極端子530B及び集電板514Bの接続面524、540を配置する。この状態でレーザ照射装置544を素子中心521に向け、既述の所定角度θだけ回転させてレーザ照射542を行い、溶接を行う。
 このレーザ溶接処理による溶接部分は、図17に示すように、接続面524、540は一様に溶接され、溶接部550によって陽極端子530A(陰極端子530B)と集電板514A(514B)とが接続されている。この溶接の際、レーザ照射点548に対してレーザ照射542が行われるが、このレーザ照射542はアルゴンガスなどの不活性ガス雰囲気中で行われる。
 また、集電板514A、514Bにある素子覆い部526でコンデンサ素子504側の陽極部508(陰極部510)が覆われるので、レーザ照射542やレーザ溶接で生成される飛翔物から陽極部508(陰極部510)及びコンデンサ素子504を防護することができる。
 この第9の実施の形態によれば、次の効果が得られる。
 (1) コンデンサ素子に接続された集電板の第1の接続面と整合する第2の接続面を端子部材に備え、これら第1及び第2の接続面を溶接しているので、集電板と端子部材との接続を容易化でき、接続の信頼性を高めることができる。
 (2) レーザ溶接又は電子ビーム溶接の溶接精度を高めることができる。
 (3) 溶接工程を簡略化でき、接続処理の迅速化を図ることができる。
〔第10の実施の形態〕
 第10の実施の形態はコンデンサ素子の電極張出し部の極性判別を含む処理を示している。
 この処理手順について、図18を参照する。図18は画像データ及びその処理を示している。図18に示す構成は一例であって、係る構成に本発明が限定されるものではない。
 この処理手順は本発明のコンデンサ、その製造方法又は製造プログラムの一例である。図18に示す画像602は、コンデンサ素子604の素子端面606を撮影して得られた画像データである。説明を容易にするため、画像データ、画像データから生成される表示画像(以下単に「画像」と称する。)、その実像には共通の符号を付している。
 この画像602に表示された素子端面606には絶縁間隔610を挟んで一対の電極張出し部608A、608Bが表示されている。実際のコンデンサ素子604では、素子端面606にコンデンサ素子604の陽極側及び陰極側の電極箔の一部が巻回径に応じて異なる幅で張り出されており、円弧状の面積及び形状の異なった電極張出し部608A、608Bが形成されている。各電極張出し部608A、608Bは各電極箔の縁部の集合体であって、電極箔つまり金属体である。そして、素子端面606は、電極箔の間を絶縁するため、電極箔の中心方向の幅より広く設定されたセパレータの縁部で覆われ、電極張出し部608A、608Bより明度の高い部分たとえば、白色である。このため、素子端面606には電極張出し部608A、608Bは明度が低く、これ以外の部分は明度が高く、素子端面606を表す画像602には素子端面606の形状、電極張出し部608A、608Bの面積及び形状がコントラストの相違により、明確に表示される。また、着色表示とすれば、画像602には明度の異なるカラー画像が得られる。
 この画像602には、端面の形状及び面積が異なった電極張出し部608A、608Bが表示されている。電極張出し部608A、608Bの形状は電極張出し部608A、608Bとそれ以外の部分とを明度差で仕切る輪郭線によって特定することができる。また、電極張出し部608A、608Bの面積は電極張出し部608A、608Bとそれ以外の部分とを明度差で仕切る輪郭線内の明度の低い部分であって、この部分は画像602を構成するたとえば、画素(ドットマップ)の分布数を用いて算出することができる。
 このように画像602から電極張出し部608A、608Bの面積又は形状の何れか一方又は双方から電極張出し部608A、608Bを判別することができる。つまり、電極張出し部608A、608Bに設定されている極性が、面積又は形状の何れか一方又は双方から電極張出し部608A、608Bを判別することで、いずれの極性かを判別できる。この実施形態では、この極性判別に電極張出し部608A、608Bの識別情報として端面の面積を利用し、この識別情報を画像602から取得している。
 この電極張出し部608Aの識別に続いて、画像上のデータ処理で基準線Lfの位置を算出し、算出された位置に基準線Lfを生成させ、この基準線Lfを基準にして中心線Loの位置を算出し、算出された位置に中心線Loを生成させている。この実施の形態では電極張出し部608Aの素子中心612側のエッジが認識され、この認識に基づき、図18に示すように、画像602上に基準線Lfを生成させる。この基準線Lfの位置は、電極張出し部608Aと絶縁間隔610との境界の近傍に生成させているが、絶縁間隔610内でもよい。
 この基準線Lfを基準に、基準線Lfと平行に、素子中心612を通過する中心線Loを生成させる。つまり、中心線Loは素子中心612を通過しかつ絶縁間隔610内に形成されている。また、これら基準線Lf及び中心線Loと直交し、素子中心612を通過する直交線Lhを算出し、生成させて表示してもよい。
 これら基準線Lf及び中心線Loの生成に続き、中心線Loと実際のコンデンサ素子604の位置合わせ角度とのずれ角度つまり変位角度θを算出し、この角度θがコンデンサ素子604の角度位置の補正情報である。この補正情報に基づき、つまりコンデンサ素子604から取得される画像処理を媒体としてコンデンサ素子604の角度位置を調整することができる。これにより、角度位置の調整を自動化できる。
〔第11の実施の形態〕
 第11の実施の形態は、素子端面を表す画像及びその処理(第10の実施の形態)を含むコンデンサの製造工程を示している。
 このコンデンサの製造工程について、図19を参照する。図19はコンデンサの製造工程の一例を示している。
 図19に示す製造工程は、本発明のコンデンサ、その製造プログラム又はその製造方法の一例である。この製造工程では、コンデンサ素子604を形成し(ステップS611)、この形成工程において、素子端面606に陽極側及び陰極側の電極箔を素子端面606側に突出させ、各電極箔によって電極張出し部608A、608Bが形成される(図21及び図22)。
 コンデンサ素子604の素子端面606を撮影する(ステップS612)。素子端面606の画像602がコンデンサ製造システム614(図20)の制御部616に取得される。
 制御部616では、画像602から電極張出し部608A、608Bの端面の面積を識別情報として極性を判別する(ステップS613)。この極性判別では、コンデンサ素子604の素子端面606の画像602(図18)上のコントラストから電極張出し部608A、608B及びその形状(輪郭線)を認識し、輪郭線で包囲されている端面の面積を算出する。各電極張出し部608Aと電極張出し部608Bの面積が比較され、面積の比較結果から極性が判別される(ステップS613)。この場合、端面面積が大きい場合をたとえば、陽極側とする。
 この極性判別の後、画像602上に基準線Lf及び中心線Loを生成する(ステップS614)。基準線Lfの生成に先立ち、電極張出し部608Aのエッジ(電極張出し部608Bとの対向エッジ)を認識する。このエッジを基準に基準線Lfの位置を算出し、その位置に基準線Lfを生成する。この基準線Lfと平行で素子中心612を通過する中心線Loを生成させる。
 この中心線Loの生成により、コンデンサ素子604の位置合わせ角度とのずれ角度θを算出する(ステップS615)。検出されたコンデンサ素子604の素子端面606の中心線Loが確定すると、集電板618A、618B(図24)に接続するコンデンサ素子604の位置合わせ角度とのずれ角度θが算出できる。この角度θを補正情報として出力する。
 この補正情報を用いることにより、コンデンサ素子604の位置補正を経て位置決めを行い(ステップS616)、電極張出し部608A、608Bの成形を行う(ステップS617)。この電極張出し部608A、608Bの成形により、集電板618A、618Bに接続すべき陽極側及び陰極側の電極部620A、620Bが形成される。
 これら電極部620A、620B(図24)の良否判定を行う(ステップS618)。この良否判定は、電極部620A、620B間の短絡などの不良品を排除するための処理である。
 各電極部620A、620Bは集電板618A、618Bに位置決めされ、溶接により両者の接続が行われる(ステップS619)。そして、集電板618A、618Bには既述の識別情報により識別された極性に応じて封口板622にある外部端子が接続される(ステップS620)。この場合、陽極側の集電板618Aに陽極端子624A、陰極側の集電板618Bに陰極端子624Bが接続される。
 このようにして、コンデンサ素子604と封口板622が一体化された後、コンデンサが組み立てられる(ステップS621)。
 斯かる構成によれば、成形前のコンデンサ素子604の素子端面606の画像から電極張出し部608A、608Bの端面の面積を特定し、端面の面積を識別情報に用いて極性判別を行うので、極性判別を自動化できる。また、素子端面606の画像上に生成した基準線Lf及び中心線Loに基づき、コンデンサ素子604のずれ角度θの検出により、これを補正情報として位置補正の自動化を図ることができる。
 このような製造工程によれば、画像602の取得、基準線Lf及び中心線Lo、素子角度と位置合わせ角度とのずれ角度θの算出、このずれ角度に基づくコンデンサ素子604の位置調整を含む製造の自動化を図ることができ、製造の迅速化、極性精度など、製品精度の高いコンデンサの製造に寄与することができる。
 つぎに、このコンデンサ製造システムについて、図20を参照する。図20はコンデンサ製造システムの一例を示している。
 コンデンサ製造システム614は、コンデンサの製造方法及び製造プログラムの一例であって、既述の素子端面606の画像602の取得及びその処理(第10の実施の形態)を含む制御を実行する。このコンデンサ製造システム614には図20に示すように、既述の制御部616、撮影部628、入力部630、表示部632、各種駆動機構634が含まれている。
 制御部616はコンピュータで構成されており、この実施の形態では、プロセッサ636と、プログラム記憶部638と、データ記憶部639と、RAM(Random-Access Memory)640とを備えている。
 プロセッサ636はたとえば、CPU(Central Processing Unit )で構成され、プログラム記憶部638に格納されているOS(Operating System)やコンデンサ製造プログラムなどの各種のプログラムを実行する。このプログラムの実行には、画像の取り込み、画像上の情報生成、ずれ角度の算出、コンデンサ素子604の位置補正、制御情報の出力、各種駆動機構634に対する駆動出力を生成する。プログラム記憶部638及びデータ記憶部639はハードディスクなどの記録媒体で構成され、プログラム記憶部638にはOSや既述のプログラムを格納する。またデータ記憶部639には画像データや基準データを格納し、たとえば、撮影部628から取り込まれた画像データ、制御によって生成された画像上の基準線や中心線、角度θなどの各種データを格納する。RAM640は演算途上のデータの保存や、既述のプログラムを実行するワークエリアとして用いられる。
 撮影部628は撮像手段の一例であってたとえば、ディジタルスチールカメラで構成し、プロセッサ636の制御によりコンデンサ素子604の素子端面606の撮影、画像データを制御部616に出力する。
 入力部630はたとえば、キーボード、タッチパネル、マウスなどの入力装置で構成される。
 表示部632はたとえば、液晶表示器(Liquid Crystal Display:LCD)で構成され、既述の画像602(図18)などの表示手段を構成する。
 既述の各種駆動機構634には、巻回機(DLW)642、電極張出し部形成部644、素子保持部646、電極成形部648、集電板保持部650及びレーザ照射装置652などが含まれる。
 DLW642は、セパレータを挟み込んで陽極側の電極箔と陰極側の電極箔とを巻回し、コンデンサ素子604を形成する。電極張出し部形成部644はDLW642に付随し、巻回される陽極側及び陰極側の電極箔の縁部側を所定間隔で成形し、電極張出し部608A、608Bを形成する。
 素子保持部646は巻回されたコンデンサ素子604を保持し、電極成形部648はコンデンサ素子604の素子端面606にある電極張出し部608A、608Bを素子端面606に折り曲げて電極部620A、620Bに成形する。
 集電板保持部650は素子端面606の電極部620A、620Bに接続する集電板618A、618Bを所定位置に保持する。コンデンサ素子604を保持している素子保持部646は、既述の補正情報により角度位置を修正する。
 レーザ照射装置652は、集電板保持部650によって保持された集電板618A、618Bと、コンデンサ素子604の電極部620A、620Bとをレーザ照射により溶接し、電気的な接続を行う。
 つぎに、コンデンサ素子604及び電極張出し部608A、608Bの形成について、図21を参照する。図21は電極箔を示している。図21において、図18と共通部分は同一符号を付してある。
 コンデンサ素子604には図21のAに示す陽極側及び陰極側の電極体である電極箔654A、654Bが用いられる。各電極箔654A、654Bにはベース材としてたとえば、アルミニウム箔が用いられる。各電極箔654A、654Bは同一幅の帯状体であり、その両面部に活性炭などの活物質及び結着剤を含む分極性電極が形成されている。各電極箔654A、654B一方の縁部には、電極張出し部608A、608Bを形成するための未塗工部656が一定幅で形成されている。この未塗工部656は分極性電極の非形成部分である。
 各電極箔654A、654Bの未塗工部656には縁部から一定幅の折り目658を形成する。この折り目658は既述のケガキ線であって、この折り目658により折り曲げ時の座屈が防止される。この折り目658は溝で構成し、断面形状は三角、四角又は湾曲(R)であってもよい。この折り目658の形成には例えば、プレス、レーザ、切削等の方法を用いればよい。折り目658は図21のAに示すように1本であってもよいが、未途工部656の幅に応じて複数本としてもよい。折り目658の形成面部は、未塗工部656の片面でもよいが、両面であってもよい。一例としての折り目658は、素子端面606の素子中心612(巻回素子であれば巻回中心、図18)に対向する面が谷折りになるように形成する。
 電極箔654Aの未塗工部656には図21のBに示すように、電極箔654Aの長手方向に異なる幅Wdを持つ複数の電極張出し部608Aを形成する。同様に、電極箔654Bの未塗工部656には図21のCに示すように、電極箔654Bの長手方向に異なる幅Weを持つ複数の電極張出し部608Bを形成する。
 コンデンサ素子604のように巻回素子にあっては、各電極張出し部608A、608Bが絶縁間隔610(図22)を挟んで直径方向に素子中心612に対向するように、形成位置が設定され、幅Wd、幅Weは、周回半径の増加に応じて直線的に増加する幅に設定されている。また、電極張出し部608A、608Bは端面を異ならせ、極性判別が可能な面積に設定されている。各面積の設定は、電極張出し部608B側の電極張出し部の幅Weを電極張出し部608Aの幅Wdより小さく設定している。したがって、図21のB、C間に示すように、間隔幅WgとWfとを異ならせている。
 斯かる構成とすれば、図22に示すように、コンデンサ素子604の素子端面606には半周毎に電極張出し部608A、608Bが形成され、その端面の面積を異ならせた電極張出し部608A、608Bが形成され、絶縁間隔610が一方の縁面間で同一、他方で連続的にコンデンサ素子604の外周方向に拡開させることができる。また、各電極張出し部608A、608Bは、折り目658によって素子中心612側に向かって屈曲させることができる。
 つぎに、電極張出し部及びその成形について、図23を参照する。図23は、図22に示す素子端面及び各電極張出し部を模式的に示している。
 電極張出し部608A、608Bの図中垂直方向の中心軸(Y軸)方向にコンデンサ素子604の周縁から素子中心612に向かって成形圧力F1を作用させることにより、電極張出し部608A、608Bを折り曲げ、平坦に成形する。この成形範囲を区画部608Aa、608Baとし、各区画部608Aa、608Baの角度をθとする。θはたとえば、40〔°〕である。
 この成形の後、電極張出し部8Aの全角度をたとえば、180〔°〕とすると、残りの区画部608Ab、608Acの角度θはθ={(180-θ)÷2}となる。このθはたとえば、70〔°〕である。これら区画部608Ab、608Acに対し、コンデンサ素子604の周縁から素子中心612に向かって成形圧力F2を作用させる。これにより、区画部608Ab、608Acを折り曲げ、平坦に成形する。
 また、電極張出し部608Bの全角度を一例として180〔°〕-θx=170〔°〕とすれば、残りの区画部608Bbの角度θを電極張出し部608A側の区画部608Abと同様に、θ={(180-θ)÷2}とする。つまり、θは、70〔°〕である。区画部608Bcの角度θ={170-θ-40}とすれば、電極張出し部608Bの面積を小さくした分だけ狭くなっている。この場合、一例としての角度θは60〔°〕である。
 このような区画部608Bb、608Bcに対し、コンデンサ素子604の周縁から素子中心612に向かって成形圧力F2、F3を作用させることにより、区画部608Bb、608Bcを折り曲げ、平坦に成形する。
 区画部608Aa、608Baには同一直線上の対向方向に成形圧力F1、区画部608Ab、608Bbには同一直線上の対向方向に成形圧力F2、区画部608Acには成形圧力F2、区画部608Bcには成形圧力F3を作用させるので、図24に示すように、コンデンサ素子604の素子端面606にはバランスの取れた平坦な成形面を成す電極部620A、620Bを形成することができる。
 つぎに、電極部、集電板の位置決め及び接続について、図24を参照する。図24は集電板の保持、集電板の位置決めを示している。
 集電板618A、618Bは、図24に示すように、同一形状であって、素子端面606を絶縁間隔610を挟んで二分するほぼ半円形状に形成されている。各集電板618A、618Bには図中上方に突出させた端子接続部660が中央に形成され、この端子接続部660の両側の背面には素子接続部662が形成されている。各集電板618A、618Bの対向部間に既述の絶縁間隔610と同様に絶縁間隔664を設定することにより、各集電板618A、618Bが集電板保持部650のチャッキング部666A、666Bで所定位置に位置決めされている。
 これに対し、コンデンサ素子604は素子保持部646の保持テーブル668に保持されている。コンデンサ素子604の素子中心612と、各集電板618A、618Bの保持中心軸を一致させ、コンデンサ素子604の角度位置を調整する構成である。
 そこで、第10の実施の形態で述べたように、コンデンサ素子604の素子端面606の撮影により得た画像602から基準線Lf、中心線Loが制御部616によって求められ、予め設定された集電板618A、618Bの位置合わせ角度との間にずれ角度θが求められている。このずれ角度θを補正情報に用いて素子保持部646の保持テーブル668を回転させることにより、コンデンサ素子604の中心線を位置合わせ角度位置Lθ(図18)に合致させ、つまり、角度差を補正し、位置設定を完了する。
 このように位置設定された集電板618Aと電極部620Aとをレーザ溶接により接続するとともに、集電板618Bと電極部620Bとをレーザ溶接により接続する。レーザ溶接は集電板618A、618Bの素子接続部662の上面からレーザ照射を行い、素子中心612側からコンデンサ素子604の周辺方向に放射状に延びる溶接ライン670(図25)で溶接されている。
 つぎに、集電板618A、618Bと外部端子との接続について、図25を参照する。図25は封口板及びコンデンサ素子を示している。
 コンデンサ素子604の素子端面606には図25に示すように、既述の処理によって集電板618A、618Bが溶接によって接続されている。接続には既述のレーザ溶接や電子ビーム溶接が用いられ、集電板618Aの素子接続部662にはコンデンサ素子604の陽極側の電極部620Aが接続され、集電板618Bの素子接続部662にはコンデンサ素子604の陰極側の電極部620Bが接続されている。このように集電板618A、618Bが接続されたコンデンサ素子604では、集電板618A、618Bの形状が共通化されている。この状態で集電板618A、618B上から極性を視認することは困難である。このため、コンデンサ素子604の電極張出し部608A、608Bの画像認識により、端面の面積により電極張出し部608A、608Bがいずれの極性であるかを表す識別情報が外部端子との接続に用いられる。つまり、素子保持部646の保持テーブル668に設置されているコンデンサ素子604における集電板618A、618Bの極性はコンデンサ素子604との接続段階で認識されている識別情報を用いればよい。
 これに対し、封口板622にある外部端子は陽極端子624Aと陰極端子624Bに区別され、個性化されている。このため、陽極端子624Aは陽極側の電極箔654Aつまり、電極張出し部608A側に接続し、陰極端子624Bは陰極側の電極箔654Bつまり、電極張出し部608B側に接続することが必要である。
 位置決めされたコンデンサ素子604にある集電板618Aは陽極側であり、集電板618Bは陰極側であるから、これら集電板618A、618Bに封口板622にある陽極端子624A、陰極端子624Bが位置決めされる。そして、集電板618A、618Bの端子接続部660の側面に形成された溶接面674と、陽極端子624A又は陰極端子624Bの側壁に形成された溶接面676との間をレーザ照射装置652のレーザ照射により溶接する。これにより、陽極端子624A又は陰極端子624Bとコンデンサ素子604とが一体化されて単一の部品化が行われ、しかもコンデンサ素子604側の極性と封口板622側の極性が合致した構成が実現される。
 このように、素子端面606の画像602を用いて得られた極性判別のための識別情報を用いる。これにより、封口板622にある陽極端子624A、陰極端子624Bとの接続に至るまで、目視による極性判別は不要となる。既述の識別情報を用いれば、極性判別を自動化できる。これにより、誤認の無い信頼性の高い極性設定を実現できる。
 この実施の形態の封口板622にあっては、硬質樹脂板からなる本体部678のインサート成形により、陽極端子624A及び陰極端子624Bを固定されている。この封口板622の上部縁部にはゴムなどの気密性のある弾性材料で形成された封止部680が設置されている。図示しないが陽極端子624A及び陰極端子624Bは、形状や標識により陽極側と陰極側とが区別されている。
 この実施の形態のコンデンサの組立て及びコンデンサについても第1の実施の形態で既述した通り、同様の組み立て工程により組み立てられるので、その説明を割愛する。
〔第12の実施の形態〕
 第12の実施の形態は、コンデンサ素子の巻きずれ検出処理を開示している。
 この巻きずれ検出について、図26を参照する。図26はコンデンサ素子の巻きずれ検出処理の一例を示している。
 この実施の形態では、第10の実施の形態で取得した画像602を用いる。この画像602に表示された素子端面606にある電極張出し部608A、608Bの端面の形状領域(検出領域)に対応し、基準領域690A、690Bを生成する。基準領域690A、690Bは予めデータ記憶部639に記憶しておき、このデータ記憶部639から読み出して用いればよい。基準領域690A、690Bは、形状を表す輪郭データでもよいし、面積データであってもよい。
 取得した画像602上の電極張出し部608A、608Bの端面から検出された検出領域と、基準領域690A、690Bとを対比し、電極張出し部608A、608Bの端面の検出領域が基準領域690A、690B内にあるか否かを判定する。基準領域690A、690B内から逸脱していれば、コンデンサ素子604に巻きずれが生じており、不良品であることが分かる。
 斯かる構成とすれば、成形処理前の電極張出し部608A、608Bの段階で不良品の摘出が可能となり、製品の信頼性を高めることができる。
〔第13の実施の形態〕
 また、集電体とコンデンサ素子との接続や、集電体と外部端子の接続には、極性判別が不可欠であり、製造上、極性の判別作業に手数を要する。極性判別を目視で行うことは可能であるが、判別ミスを皆無にすることはできないし、需要に見合った生産量を実現することが困難である。仮に、極性判別を誤って接続すれば、不良品となる。このような課題は、集電部材を陽極側と陰極側で形態を異ならせても同様である。
 第13の実施の形態は、コンデンサ素子の電極部の不良検出処理である。
 この電極部620A、620Bの不良検出について、図27を参照する。図27は電極部の不良検出の一例を示している。
 この実施の形態では、電極張出し部608A、608Bの成形処理後の不良検出を行う。電極張出し部608A、608Bが成形された際、その成形によっては電極張出し部608A、608B間が接触する場合がある。
 そこで、電極部620A、620Bに成形されたコンデンサ素子604の素子端面606を撮影し、この素子端面606にある絶縁間隔610に図27に示すように、一定幅Whの基準線692A、692Bを生成する。この基準線692A、692Bは、第10の実施の形態で算出した中心線Loを基準にして生成させてもよいし、素子中心612を基準に素子中心612を中心に含む一定幅Whの平行線を生成させてもよい。
 これら基準線692A、692Bの幅Wh内に電極張出し部608A、608Bがはみ出しているか否かを判定する。セパレータからなる明度の高い部分と、金属色からなる電極張出し部608A、608Bの明度の低い部分とのコントラストを利用し、基準線692A、692Bの幅Wh内に電極張出し部608A、608Bがはみ出しているか否かを検出できる。つまり、幅Wh内に電極張出し部608A、608Bのいずれか一方又は双方が存在するか否かを判定する。幅Wh内に電極張出し部608A、608Bのいずれか一方又は双方が存在すれば、電極張出し部608A、608Bの折込み不良とすればよい。この場合、コンデンサ素子604を不良品として製造ラインから排除すればよい。これにより製品の信頼性を高めることができる。
〔他の実施の形態〕
 (1) 上記実施の形態では、陽極集電板12、陰極集電板16に平坦な素子接続部50を形成したが、図9のAに示すように、コンデンサ素子4側に例えば、60度範囲で突出する平坦面を持つ突出面部70と、この突出面部70を挟んで後退した凹面部72とを備えてもよい。
 また、コンデンサ素子4側の端面には、図9のBに示すように、陽極部6、陰極部8に例えば、60度範囲で窪ませた凹部74と、この凹部74を挟んで突出させた突部76とを備え、凹部74は、陰極部又は陽極部が形成されていない部位、突部76は、コンデンサ素子4の中心方向に向かって圧縮成形される部位に設定してもよい。突部76は、図9のCに示すように、コンデンサ素子4の中心方向に向かって圧縮成形される。そして、上記実施の形態と同様に、陽極部6と陽極集電板12、陰極8と陰極集電板16とをレーザ溶接により接続し、合体させてもよい。
 (2) 陽極部6や陰極部8は、各集電板12、16とのレーザ溶接部(溶接接続部分56)に対応する部位のみ、コンデンサ素子4から張り出させて圧縮成形して平坦化し、外部端子(陽極端子10又は陰極端子14)との接続部位に対応するコンデンサ素子4の部位には陽極部6や陰極部8を形成しない構成としてもよい。第1の実施の形態では、図2に示すように、陽極部6、陰極部8の全面を圧縮成形しているが、外部端子(陽極端子10又は陰極端子14)と接続する集電板(陽極集電板12又は陰極集電板16)は、集電板と外部端子とを隙間なく当接させ、陽極部6、陰極部8と、集電板12、16とのレーザ溶接を行わない部位を介在させてもよい。
 (3) 上記実施の形態では、コンデンサ2を例示したが、本発明はこれに限定されない。同一の構造及び方法は、電解コンデンサにも同様に適用でき、同様の効果が得られる。
 (4) 第1の実施の形態では端子部材として、陽極端子10及び陰極端子14を例示しているが、これに限定されない。第4の実施の形態に例示したように、陽極端子10に陽極接続板62、陰極端子14に陰極接続板64を併用してもよい。
 (5) 上記実施の形態では、コンデンサ素子604に巻回素子を用いているが、これに限定されない。積層素子であってもよい。
 (6) 上記実施の形態では、コンデンサ素子604より導出された電極張り出し部608A、608Bの端面形状又は端面面積に基づき、極性判別を行っているが、これに限定されない。コンデンサ素子604より導出された電極張り出し部608A、608Bを成形圧力を作用させて形成した成形面である電極部620A、620Bの端面形状又は端面面積に基づき、極性判別を行ってもよい。また、コンデンサ素子604より導出された電極張り出し部608A、608Bを成形圧力を作用させて電極部620A、620Bを成形面に形成しているが、これに限定されない。電極張り出し部608A、608Bに直接集電板618A、618Bを接続してもよい。
 (7) 上記実施の形態では、陽極側及び陰極側に同一形状の集電板618A、618Bを用いているが、これに限定されない。陽極側と陰極側とで形状又は面積を異ならせてもよい。また、該形状又は該面積により陽極側又は陰極側が特定されて外部端子と接続される構成であってもよい。
 以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
 本発明のコンデンサ、その製造方法及び製造プログラムは、端子接続構造や接続工程の簡略化又は、極性判別の自動化が生産に寄与し、生産性や信頼性を高めることができ、有益である。
 2 コンデンサ
 4、104、204、404、604 コンデンサ素子
 6、206、406 陽極部
 60 陽極体
 8、108、208、408 陰極部
 80 陰極体
 10、110、530A、624A 陽極端子
 12、112、212、412 陽極集電板
 14、114、530B、624B 陰極端子
 16、116、216、416 陰極集電板
 18、56 溶接接続部
 19 保持テープ
 20 外装ケース
 22 封口板
 24 空間部
 26 ベース部
 28 封止部
 32 加締め段部
 34 開口端部
 36 透孔
 38 圧力開放機構
 44、144、421、427、610、664 絶縁間隔
 46 間隔
 48、660 端子接続部
 50、662 素子接続部
 55、57 平坦接続面部
 62 陽極接続板
 64 陰極接続板
 244 未塗工部
 318 溶接ライン
 405、606 素子端面
 526 素子覆い部
 602 画像
 608A、608B 電極張出し部
 612 素子中心
 616 制御部
 618A、618B 集電板
 620A、620B 電極部
 622 封口板
 628 撮影部
 632 表示部
 634 各種駆動機構
 636 プロセッサ
 638 プログラム記憶部
 640 RAM
 642 巻回機
 644 電極張出し部形成部
 646 素子保持部
 648 電極成形部
 650 集電板保持部
 652 レーザ照射装置
 654A、654B 電極箔
                                                                                

Claims (34)

  1.  ケース部材とコンデンサ素子を備えるコンデンサであって、
     陽極体と陰極体とをセパレータを介して巻回したコンデンサ素子と、
     前記コンデンサ素子を収容するケース部材を封口する封口部材と、
     前記コンデンサ素子の陽極体から素子端面に引き出され、該素子端面に形成された陽極部と、
     前記コンデンサ素子の陰極体から前記素子端面に引き出され、前記素子端面に形成された陰極部と、
     前記封口部材に設置された陽極端子部材と、
     前記封口部材に設置された陰極端子部材と、
     前記陽極部に接続されるとともに前記陽極端子部材に接続された陽極集電板と、
     前記陰極部に接続されるとともに前記陰極端子部材に接続された陰極集電板と、
     を備えたことを特徴とする、コンデンサ。
  2.  前記陽極端子部材が前記陽極集電板に重ねられ、又は前記陰極端子部材が前記陰極集電板に重ねられるとともに、これらの側面部が溶接されたことを特徴とする、請求項1に記載のコンデンサ。
  3.  前記陽極端子部材に前記陽極集電板と近接する接続部を備えて該接続部と前記陽極集電板との接続、又は、前記陰極端子部材に前記陰極集電板と近接する接続部を備えて該接続部と前記陰極集電板との接続の何れか一方又は双方に溶接接続を用いたことを特徴とする、請求項1又は2に記載のコンデンサ。
  4.  前記コンデンサ素子の同一端面上に前記陽極部と前記陰極部とが形成され、且つ前記陽極部と前記陰極部とを絶縁する絶縁間隔を設定したことを特徴とする、請求項1、2又は3のいずれかに記載のコンデンサ。
  5.  前記陽極部又は前記陰極部は、前記コンデンサ素子の巻回中心部に向けて素子端面上に圧縮成形され、その圧縮成形部位に配置された前記陽極集電板又は前記陰極集電板と溶接されたことを特徴とする、請求項1、2、3又は4のいずれかに記載のコンデンサ。
  6.  前記陽極部又は前記陰極部は、前記コンデンサ素子の素子端面に前記電極体の何れか一方又は双方から引き出され、前記素子端面から所定幅を折目にして前記コンデンサ素子の素子端面上に折り曲げられて重ねられた単一又は複数の電極張出し部で構成したことを特徴とする、請求項1、2、3、4又は5のいずれかに記載のコンデンサ。
  7.  更に、前記陽極集電板と前記陽極端子部材との間、又は前記陰極集電板と前記陰極端子部材との間に設置され、前記陽極端子部材又は前記陰極端子部材に接続されるとともに、前記陽極集電板又は前記陰極集電板に接続された接続板を備えたことを特徴とする、請求項1、2、3、4、5又は6のいずれかに記載のコンデンサ。
  8.  前記陽極部又は前記陰極部は、前記コンデンサ素子の前記素子端面に電極体の一部を所定の張出し幅を以て引き出して前記素子端面上に折曲して配置されるとともに、異極間に設定された絶縁間隔が前記電極体の前記張出し幅より大きく設定されていることを特徴とする、請求項1、2、3、4、5、6又は7のいずれかに記載のコンデンサ。
  9.  前記集電板の異極間に設定された絶縁間隔が電極張出し部の異極間に設定された前記絶縁間隔より小さいことを特徴とする、請求項1、2、3、4、5、6、7又は8のいずれかに記載のコンデンサ。
  10.  前記コンデンサ素子が巻回素子である場合、前記陽極部又は前記陰極部は、前記コンデンサ素子が半周毎に、半周の円弧長より狭い幅で前記コンデンサ素子の素子端面から露出させた電極体であることを特徴とする、請求項1、2、3、4、5、6、7、8又は9のいずれかに記載のコンデンサ。
  11.  前記陽極集電板又は前記陰極集電板は、前記陽極部と前記陽極端子部材との間又は前記陰極部と前記陰極端子部材との間に設置されて第1の接続領域と第2の接続領域が異なる位置に設定され、前記第1の接続領域に前記陽極部又は前記陰極部が接続され、前記第2の接続領域に前記陽極端子部材又は前記陰極端子部材が接続されていることを特徴とする、請求項1、2、3、4、5、6、7、8、9又は10のいずれかに記載のコンデンサ。
  12.  前記集電板が前記コンデンサ素子の前記素子端面に設置されて前記陽極部又は前記陰極部に接続され、前記コンデンサ素子の側面方向に円弧状の第1の接続面を有し、
     前記陽極端子部材又は前記陰極端子部材が前記集電板の前記第1の接続面と同心円状の第2の接続面を有し、
     前記第1の接続面と前記第2の接続面を溶接し、前記集電板と前記陽極端子部材又は前記陰極端子部材とを接続したことを特徴とする、請求項1、2、3、4、5、6、7、8、9、10又は11のいずれかに記載のコンデンサ。
  13.  前記集電板に、前記第1の接続面に沿う前記コンデンサ素子の素子端面を覆う覆い部を備えることを特徴とする、請求項1、2、3、4、5、6、7、8、9、10、11又は12のいずれかに記載のコンデンサ。
  14.  素子端面より導出されて陽極側と陰極側とで端面形状又は端面面積を異ならせた陽極側又は陰極側の電極張出し部、又は前記素子端面により導出された電極張出し部により成形形成されて陽極側と陰極側とで端面形状又は端面面積を異ならせた陽極部又は陰極部と、
     前記電極張出し部又は前記電極部の端面に接続された陽極側又は陰極側の集電板と、
     前記電極張出し部又は前記電極部の前記端面形状又は前記端面面積により陽極側又は陰極側が特定され、前記集電板と接続された陽極側又は陰極側の外部端子と、
     を含むことを特徴とする、コンデンサ。
  15.  前記集電板は、陽極側と陰極側とで形状又は面積を異ならせ、該形状又は該面積により陽極側又は陰極側が特定されて前記外部端子と接続されていることを特徴とする、請求項14に記載のコンデンサ。
  16.  陽極体と陰極体とをセパレータを介して巻回したコンデンサ素子を形成する工程と、
     前記コンデンサ素子の陽極体から引き出し、素子端面に陽極部を形成する工程と、
     前記コンデンサ素子の陰極体から引き出し、前記素子端面に陰極部を形成する工程と、
     前記コンデンサ素子を収容するケース部材を封口する封口部材に設置された陽極端子部材と前記陽極部とを陽極集電板を介在させて接続する工程と、
     前記封口部材に設置された陰極端子部材と前記陰極部とを陰極集電板を介在させて接続する工程と、
     を含むことを特徴とする、コンデンサの製造方法。
  17.  前記陽極集電板と前記陽極部、又は前記陰極集電板と前記陰極部をレーザ溶接により接続する工程と、
     前記陽極集電板と前記陽極端子部材、又は前記陰極集電板と前記陰極端子部材をレーザ溶接により接続する工程と、
     を含むことを特徴とする、請求項16に記載のコンデンサの製造方法。
  18.  前記陽極端子部材と前記陽極集電板とに近接する接続部を設定してレーザ溶接により接続する工程、又は、前記陰極端子部材と前記陰極集電板とに近接する接続部を設定してレーザ溶接により接続する工程を含むことを特徴とする請求項16又は17に記載のコンデンサの製造方法。
  19.  更に、前記陽極端子部材が前記陽極集電板に重ねられ、又は前記陰極端子部材が前記陰極集電板に重ねられるとともに、これらの側面部を溶接する工程を含むことを特徴とする、請求項16、17又は18のいずれかに記載のコンデンサの製造方法。
  20.  更に、前記陽極端子部材の前記側面部に前記陽極集電板の前記面部又は前記陰極端子部材の前記側面部に前記陰極集電板の前記側面部を位置決めする工程を含み、前記側面部間を共通面部として前記溶接を施すことを特徴とする、請求項19に記載のコンデンサの製造方法。
  21.  前記コンデンサ素子の前記素子端面に前記陽極体又は前記陰極体の何れか一方又は双方から引き出された単一又は複数の電極張出し部を、前記素子端面から所定幅に設けた折目により前記コンデンサ素子の素子端面上に折り曲げて重ねる工程を含むことを特徴とする、請求項16、17、18、19又は20のいずれかに記載のコンデンサの製造方法。
  22.  前記コンデンサ素子の前記素子端面の前記陽極部に前記陽極集電板を接続し又は前記陰極部に前記陰極集電板を接続し、前記陽極端子部材又は前記陰極端子部材に接続板を接続し、該接続板と前記陽極集電板又は前記陰極集電板を接続する工程を含むことを特徴とする、請求項16、17、18、19、20又は21のいずれかに記載のコンデンサの製造方法。
  23.  前記コンデンサ素子の前記素子端面に前記電極体の何れか一方又は双方から引き出された単一又は複数の電極張出し部に単一又は複数の集電板を重ね、この集電板に前記コンデンサ素子の電極体と交差方向に溶接ラインを設定し、この溶接ラインに沿って溶接する工程を含むことを特徴とする、請求項16、17、18、19、20、21又は22のいずれかに記載のコンデンサの製造方法。
  24.  絶縁間隔を以て対向する前記集電板の複数箇所に2以上の前記溶接ラインを隣接して設定し、前記コンデンサ素子の素子中心部に跨がる特定箇所で隣接する2以上の前記溶接ラインを連続して溶接した後、前記特定箇所以外の箇所の2以上の前記溶接ラインを連続して溶接し、前記集電板と前記コンデンサ素子の前記電極張出し部とを複数箇所で隣接する2以上の前記溶接ラインにより溶接することを特徴とする、請求項16、17、18、19、20、21、22又は23のいずれかに記載のコンデンサの製造方法。
  25.  前記陽極集電板又は前記陰極集電板に溶接始点から溶接終点に至る溶接ラインを設定し、この溶接ラインに連続照射されるビーム出力を段階的又は連続的に異ならせたビーム照射により前記陽極部又は前記陰極部に前記陽極集電板又は前記陰極集電板を接続する工程を含むことを特徴とする、請求項16、17、18、19、20、21、22、23又は24のいずれかに記載のコンデンサの製造方法。
  26.  前記ビーム出力は、前記溶接ラインの前記溶接始点を前記溶接終点より高く設定し、前記溶接始点から前記溶接終点に段階的又は連続的に減衰させることを特徴とする、請求項25に記載のコンデンサの製造方法。
  27.  コンデンサ素子の素子端面に設置されて陽極側又は陰極側に接続される集電板に、前記コンデンサ素子の側面方向に円弧状の第1の接続面を形成し、
     前記集電板に接続する端子部材に前記集電板の前記接続面と同心円状の第2の接続面を形成し、
     前記第1の接続面と前記第2の接続面とを揃え、前記コンデンサ素子、又は前記第1の接続面と前記第2の接続面にビームを照射する溶接手段を用い、前記コンデンサ素子又は溶接手段を回動させ、
     前記第1の接続面と前記第2の接続面とを溶接して前記集電板と前記端子部材とを接続する、
     工程を含むこと特徴とするコンデンサの製造方法。
  28.  前記コンデンサ素子の素子中心を基準に、前記第1の接続面及び前記第2の接続面を同心円面に形成し、
     前記素子中心を回動中心にして前記コンデンサ素子又は前記溶接手段を回動させる
     ことを特徴とする請求項27に記載のコンデンサの製造方法。
  29.  端面形状又は端面面積が異なる陽極側又は陰極側の電極張出し部を素子端面に形成し、又は前記素子端面に形成した電極張出し部を成形して端面形状又は端面面積が異なる陽極側又は陰極側の電極部を形成し、
     前記電極張出し部又は前記電極部の端面形状又は端面面積を識別情報として陽極側であるか陰極側であるかの判別を行い、
     前記電極張出し部又は前記電極部に接続され、かつ前記識別情報により陽極側か陰極側かを特定した集電板に陽極側又は陰極側の外部端子を接続する、
     ことを特徴とするコンデンサの製造方法。
  30.  更に、前記電極張出し部又は前記電極部を認識して前記素子端面に基準線を設定し、
     前記基準線と平行でかつ素子中心を通過する中心線を設定し、
     前記素子中心及び前記中心線を基準に前記素子端面の変位角度を検出し、
     前記変位角度によって生成された補正情報により前記コンデンサ素子の角度位置を補正する、
     ことを特徴とする、請求項29に記載のコンデンサの製造方法。
  31.  前記中心線を中心に前記中心線を包含する一定幅の基準範囲を設定し、該基準範囲に前記電極張出し部又は前記電極部が突出しているか否かを判別する、
     ことを特徴とする、請求項30に記載のコンデンサの製造方法。
  32.  コンピュータによって実行するコンデンサの製造プログラムであって、
     コンデンサ素子の素子端面の画像データを取得し、電極張出し部又は該電極張出し部で形成された電極部の端面形状又は端面面積を識別情報として陽極側であるか陰極側であるかの判別を行い、
     前記電極張出し部又は前記電極部に接続された集電板と接続される陽極側又は陰極側の外部端子を特定する情報を生成する
     ことを特徴とする、コンデンサの製造プログラム。
  33.  前記画像データ上の前記電極張出し部又は前記電極部の位置に基づき基準線を生成し、
     前記基準線と平行でかつ素子中心を通過する中心線を生成し、
     前記素子中心及び前記中心線を基準に前記素子端面の変位角度を検出し、
     前記変位角度によって前記コンデンサ素子の角度位置の補正情報を生成する
     ことを特徴とする、請求項32に記載のコンデンサの製造プログラム。
  34.  前記中心線を中心に前記中心線を包含する一定幅の基準範囲を設定し、該基準範囲に前記電極張出し部又は前記電極部が突出しているか否かの判別をし、この判別情報を生成する、
     ことを特徴とする、請求項33に記載のコンデンサの製造プログラム。
                                                                                    
PCT/JP2011/004623 2010-08-18 2011-08-18 コンデンサ、その製造方法及び製造プログラム WO2012023289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180039963.7A CN103081047B (zh) 2010-08-18 2011-08-18 电容器、电容器的制造方法以及制造程序
EP11817938.1A EP2608230B1 (en) 2010-08-18 2011-08-18 Capacitor, and method and program for manufacturing same
KR1020137006759A KR101930095B1 (ko) 2010-08-18 2011-08-18 콘덴서, 그 제조 방법 및 제조 프로그램
US13/768,851 US9053858B2 (en) 2010-08-18 2013-02-15 Capacitor, and manufacturing method and manufacturing program thereof

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2010183486A JP5482565B2 (ja) 2010-08-18 2010-08-18 コンデンサ及びその製造方法
JP2010-183486 2010-08-18
JP2010251358A JP5866753B2 (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010-251357 2010-11-09
JP2010-251353 2010-11-09
JP2010-251356 2010-11-09
JP2010251357A JP2012104622A (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010251352A JP5764912B2 (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010-251355 2010-11-09
JP2010251353A JP2012104618A (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010-251352 2010-11-09
JP2010-251354 2010-11-09
JP2010251355A JP2012104620A (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010251356A JP2012104621A (ja) 2010-11-09 2010-11-09 コンデンサ及びその製造方法
JP2010-251358 2010-11-09
JP2010251354A JP5928993B2 (ja) 2010-11-09 2010-11-09 コンデンサの製造方法
JP2011035484A JP5866772B2 (ja) 2011-02-22 2011-02-22 コンデンサ及びその端子接続方法
JP2011-035484 2011-02-22
JP2011-145400 2011-06-30
JP2011145400A JP6069818B2 (ja) 2011-06-30 2011-06-30 コンデンサの製造方法および製造プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/768,851 Continuation US9053858B2 (en) 2010-08-18 2013-02-15 Capacitor, and manufacturing method and manufacturing program thereof

Publications (1)

Publication Number Publication Date
WO2012023289A1 true WO2012023289A1 (ja) 2012-02-23

Family

ID=45604958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004623 WO2012023289A1 (ja) 2010-08-18 2011-08-18 コンデンサ、その製造方法及び製造プログラム

Country Status (5)

Country Link
US (1) US9053858B2 (ja)
EP (1) EP2608230B1 (ja)
KR (1) KR101930095B1 (ja)
CN (1) CN103081047B (ja)
WO (1) WO2012023289A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042048A (ja) * 2011-08-18 2013-02-28 Nippon Chemicon Corp コンデンサおよびその製造方法
CN103620824A (zh) * 2011-06-28 2014-03-05 日本贵弥功株式会社 蓄电器件以及蓄电器件的制造方法
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207026A (ja) * 2012-03-28 2013-10-07 Panasonic Corp キャパシタ及びこれを用いたキャパシタモジュール
JP6170937B2 (ja) * 2012-11-15 2017-07-26 Jmエナジー株式会社 蓄電デバイスおよび蓄電モジュール
WO2014080638A1 (ja) * 2012-11-26 2014-05-30 日本ケミコン株式会社 蓄電デバイスおよびその製造方法
US10201876B2 (en) * 2016-03-09 2019-02-12 Ngk Spark Plug Co., Ltd. Laser welding method, method for manufacturing welded body, method for manufacturing electrode for spark plug, and method for manufacturing spark plug
JP6845495B2 (ja) * 2016-04-19 2021-03-17 ニチコン株式会社 電子部品
GB2550617A (en) * 2016-05-26 2017-11-29 Ou Skeleton Tech Group Integrated carbon/carbon ultracapacitor of high power density and battery composed from said capacitors
JP6975915B2 (ja) * 2018-04-25 2021-12-01 パナソニックIpマネジメント株式会社 電子部品
DE102019128471A1 (de) * 2019-10-22 2021-04-22 Peter Fischer Kondensator mit einer als Wickel ausgebildeten Kondensatorzelle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275476A (ja) * 1993-03-17 1994-09-30 Nippon Steel Corp 積層型電解コンデンサ
JPH11219857A (ja) 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JPH11251190A (ja) * 1997-12-22 1999-09-17 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2001068379A (ja) 1999-08-24 2001-03-16 Honda Motor Co Ltd 電気二重層コンデンサ
WO2004084246A1 (ja) * 2003-03-19 2004-09-30 Matsushita Electric Industrial Co., Ltd. コンデンサおよびその接続方法
JP2007335156A (ja) 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP2010093178A (ja) 2008-10-10 2010-04-22 Panasonic Corp 電気化学キャパシタ及びその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468847B2 (ja) 1994-06-22 2003-11-17 三菱電機株式会社 電池用電極装置
JPH08287954A (ja) 1995-04-18 1996-11-01 Sumitomo Bakelite Co Ltd 非水電解液箱形二次電池
JPH09129519A (ja) * 1995-10-30 1997-05-16 Matsushita Electric Ind Co Ltd 安全機構付き電解コンデンサ
JPH1083833A (ja) * 1996-09-06 1998-03-31 Japan Storage Battery Co Ltd 二次電池
DE69834706T2 (de) 1997-12-22 2007-06-06 Asahi Glass Co., Ltd. Elektrischer Doppelschichtkondensator
US6456484B1 (en) * 1999-08-23 2002-09-24 Honda Giken Kogyo Kabushiki Kaisha Electric double layer capacitor
JP2001102031A (ja) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd 電気エネルギー蓄積デバイス及びその製造方法
JP4681181B2 (ja) 1999-09-30 2011-05-11 旭硝子株式会社 蓄電素子
US6292348B1 (en) * 2000-08-22 2001-09-18 Chieh-Fu Lin Surface mounted capacitor
JP2003001452A (ja) 2001-06-15 2003-01-08 Furukawa Electric Co Ltd:The レーザ溶接方法およびその方法を用いて製造された半導体レーザモジュール
JP2003059765A (ja) 2001-08-17 2003-02-28 Nec Tokin Ceramics Corp 集電体
JP2002164259A (ja) 2001-10-03 2002-06-07 Nippon Chemicon Corp 電解コンデンサの外部端子固定方法
CN1701402A (zh) 2003-03-19 2005-11-23 松下电器产业株式会社 电容器和连接电容器的方法
WO2005038837A1 (ja) 2003-10-21 2005-04-28 Asahi Glass Company, Limited 電気二重層キャパシタ
JP4616052B2 (ja) * 2005-04-08 2011-01-19 パナソニック株式会社 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ
WO2007069538A1 (ja) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. コンデンサ
JP5073947B2 (ja) * 2006-01-12 2012-11-14 ニチコン株式会社 巻回型コンデンサおよびその製造方法
JP5086566B2 (ja) 2006-06-13 2012-11-28 本田技研工業株式会社 蓄電素子
EP2075809A4 (en) * 2006-10-16 2014-09-17 Panasonic Corp CAPACITOR
JP5083220B2 (ja) * 2007-02-14 2012-11-28 パナソニック株式会社 コンデンサ
US7983021B2 (en) * 2007-10-31 2011-07-19 Corning Incorporated Oblong electrochemical double layer capacitor
JP2009188095A (ja) 2008-02-05 2009-08-20 Honda Motor Co Ltd 蓄電体接続構造
JP5380985B2 (ja) * 2008-09-30 2014-01-08 パナソニック株式会社 キャパシタの製造方法及びキャパシタ
WO2010041461A1 (ja) 2008-10-10 2010-04-15 パナソニック株式会社 蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法
JP2010118374A (ja) 2008-11-11 2010-05-27 Panasonic Corp キャパシタ
WO2012063486A1 (ja) 2010-11-09 2012-05-18 日本ケミコン株式会社 コンデンサ及びその製造方法
WO2013001776A1 (ja) * 2011-06-27 2013-01-03 パナソニック株式会社 電解液とそれを用いた電気二重層キャパシタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275476A (ja) * 1993-03-17 1994-09-30 Nippon Steel Corp 積層型電解コンデンサ
JPH11219857A (ja) 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
JPH11251190A (ja) * 1997-12-22 1999-09-17 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2001068379A (ja) 1999-08-24 2001-03-16 Honda Motor Co Ltd 電気二重層コンデンサ
WO2004084246A1 (ja) * 2003-03-19 2004-09-30 Matsushita Electric Industrial Co., Ltd. コンデンサおよびその接続方法
JP2007335156A (ja) 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP2010093178A (ja) 2008-10-10 2010-04-22 Panasonic Corp 電気化学キャパシタ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2608230A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same
CN103620824A (zh) * 2011-06-28 2014-03-05 日本贵弥功株式会社 蓄电器件以及蓄电器件的制造方法
US10777802B2 (en) 2011-06-28 2020-09-15 Nippon Chemi-Con Corporation Electricity storage device and method for manufacturing electricity storage device
JP2013042048A (ja) * 2011-08-18 2013-02-28 Nippon Chemicon Corp コンデンサおよびその製造方法

Also Published As

Publication number Publication date
US9053858B2 (en) 2015-06-09
US20130155575A1 (en) 2013-06-20
CN103081047A (zh) 2013-05-01
KR101930095B1 (ko) 2018-12-17
EP2608230A1 (en) 2013-06-26
CN103081047B (zh) 2017-07-04
KR20130139875A (ko) 2013-12-23
EP2608230A4 (en) 2018-03-28
EP2608230B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2012023289A1 (ja) コンデンサ、その製造方法及び製造プログラム
JP6264431B2 (ja) 蓄電デバイス
WO2012063486A1 (ja) コンデンサ及びその製造方法
CN103947026B (zh) 具有不同形状的角部的台阶式电极组件以及包括该电极组件的二次电池、电池组和设备
JP5961940B2 (ja) コンデンサの製造方法
JP5979273B2 (ja) コンデンサの製造方法
WO2013125153A1 (ja) 蓄電素子の製造方法
JP5961939B2 (ja) コンデンサの製造方法
JP2012160658A (ja) コンデンサの製造方法
JP6069818B2 (ja) コンデンサの製造方法および製造プログラム
CN112002930A (zh) 高安全性软包电池及基于该软包电池的壳体电池制备方法
JP2012104618A (ja) コンデンサ及びその製造方法
JP6330586B2 (ja) 位置決め構造
JP2012104622A (ja) コンデンサ及びその製造方法
JP5866753B2 (ja) コンデンサ及びその製造方法
JP5928993B2 (ja) コンデンサの製造方法
JP6044082B2 (ja) コンデンサの製造方法
JP5764912B2 (ja) コンデンサ及びその製造方法
US9030805B2 (en) Capacitor and capacitor module using the same
JP2012104621A (ja) コンデンサ及びその製造方法
JP5834617B2 (ja) コンデンサの製造方法
JP6112144B2 (ja) コンデンサ及びその製造方法
JP7216061B2 (ja) 二次電池の製造方法
JP2012174886A (ja) コンデンサ及びその端子接続方法
WO2022259952A1 (ja) 接合方法及び蓄電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039963.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011817938

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137006759

Country of ref document: KR

Kind code of ref document: A