WO2010041461A1 - 蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法 - Google Patents

蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法 Download PDF

Info

Publication number
WO2010041461A1
WO2010041461A1 PCT/JP2009/005266 JP2009005266W WO2010041461A1 WO 2010041461 A1 WO2010041461 A1 WO 2010041461A1 JP 2009005266 W JP2009005266 W JP 2009005266W WO 2010041461 A1 WO2010041461 A1 WO 2010041461A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
storage device
plate
metal case
storage element
Prior art date
Application number
PCT/JP2009/005266
Other languages
English (en)
French (fr)
Inventor
三浦照久
竹内邦宏
野本進
湯淺真一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008263782A external-priority patent/JP2010093178A/ja
Priority claimed from JP2008285124A external-priority patent/JP2010114240A/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010041461A1 publication Critical patent/WO2010041461A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a storage device used for regeneration of various electronic devices and hybrid vehicles or storage of electric power, a storage device unit including the storage device, and a method of manufacturing the storage device.
  • FIGS. 27A, 27B and 27C are respectively a top view, a side sectional view and a bottom view of a conventional capacitor 3008 disclosed in Patent Document 1.
  • FIG. 27A, 27B and 27C are respectively a top view, a side sectional view and a bottom view of a conventional capacitor 3008 disclosed in Patent Document 1.
  • the capacitor element 321 includes a positive electrode, a negative electrode, and a separator provided between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode include a current collector made of an aluminum foil, and a polarizable electrode layer formed on the current collector such that one end of the current collector is exposed. With the exposed end of the current collector of the positive electrode and the exposed end of the current collector of the negative electrode positioned in opposite directions, the current collector of the positive electrode and the current collector of the negative electrode are opposite to each other It is wound by shifting the position in the direction. The exposed end of the current collector of the positive electrode and the exposed end of the current collector of the negative electrode are exposed from both ends of the capacitor element 321 to function as electrodes serving as an anode and a cathode.
  • the metal case 322 made of aluminum has a cylindrical shape having a bottom, and accommodates the capacitor element 321 together with the electrolyte.
  • the outer surface of the bottom of the metal case 322 is provided with a recess 322A.
  • the electrode exposed at one end of the capacitor element 321 is pressed against the portion of the inner surface of the bottom opposite to the recess 322A, and the bottom of the recess 322A is irradiated with laser light to join the electrode to the metal case 322 by laser welding.
  • a weld mark 322B is formed on the bottom of the recess 322A by laser welding.
  • a terminal portion 323A for external connection is provided on a part of the upper surface of the terminal plate 323.
  • the terminal plate 323 is provided with a recess 323B.
  • the surface opposite to the recess 323B of the terminal plate 323 is pressed against the electrode exposed at the other end of the capacitor element 321, and the bottom of the recess 323B is irradiated with laser light to join the electrode to the terminal plate 323 by laser welding.
  • a welding mark 323C is formed at the bottom of the recess 323B by laser welding.
  • the area near the opening of the metal case 322 is drawn to form a drawn portion 322C.
  • the annular insulating member 324 is disposed on the upper portion of the inner peripheral surface of the drawn portion 322C, and the terminal plate 323 is disposed on the insulating member 324.
  • a sealing rubber 325 is disposed on the periphery of the upper surface of the terminal plate 323, and the open end of the metal case 322 is curled to form a curled portion 322D.
  • the sealing rubber 325 is compressed by the curled portion 322D to seal the opening of the metal case 322.
  • a terminal portion 323A for external connection is provided on a part of the upper surface of the terminal plate 323.
  • the terminal portion 323A protrudes from the end of the metal case 322 by a protrusion margin H301.
  • the rubber plug 326 is press-fit so as to close the injection hole 323D.
  • the conventional capacitor 3008 can not sufficiently satisfy the demand for smaller and larger capacity in the market.
  • a pressure control valve for discharging the gas generated from the capacitor element 321 to the outside to prevent the pressure in the metal case 322 from rising.
  • the pressure control valve is coupled to the terminal plate 323 so as to close the injection hole 323D instead of the rubber plug 326. Since the lower end of the injection hole 323D is in close contact with one end of the capacitor element 321, the electrolytic solution impregnated in the capacitor element 321 climbs up the injection hole 323D by capillary action. Therefore, the electrolyte is in constant contact with the pressure control valve, which may adversely affect the operation of the pressure control valve.
  • 28A, 28B and 28C are a top view, a side sectional view and a bottom view of a capacitor unit 3009 using a capacitor 3008, respectively.
  • the capacitor unit 3009 comprises capacitors 327, 328 and connection bars 329 connecting the capacitors 327, 328.
  • Capacitors 327 and 328 are capacitors 3008 shown in FIGS. 27A to 27C.
  • the connection bar 329 is tapered at the center and has a step shape. The high portion of the connection bar 329 is joined to the terminal portion 323A provided on the terminal plate 323 of the capacitor 327 by laser welding. Weld marks 329A are formed on the connection bar 329 by laser welding.
  • connection bar 329 The lower portion of the connection bar 329 is laser welded to the curled portion 322D of the metal case 322 of the capacitor 328. Weld marks 329A are formed on the connection bar 329 by laser welding.
  • the connection bar 329 connects the capacitors 327 and 328 in series.
  • the capacitor 3008 (327, 328) and the capacitor unit 3009, it is not easy to join small and thin members such as the metal case 322, the connection bar 329, and the current collector of the capacitor element 321 by laser welding.
  • the product of pressure and volume of the air is 7.6 times or more.
  • the melted portion of the terminal plate 323 or the metal case 322 scatters or solidifies in a state where air is trapped in the melted portion, so that holes may be opened or voids may occur in the welded portion.
  • FIG. 29A is a top cross-sectional view of another conventional capacitor 6001 described in Patent Document 2. As shown in FIG. FIG. 29B is a front view of the electrode winding unit 600 of the capacitor 6001.
  • the capacitor 6001 is an electrochemical capacitor.
  • the electrode winding unit 600 includes a positive electrode 601, a negative electrode 602, and a separator 603 provided between the positive electrode 601 and the negative electrode 602.
  • the positive electrode 601, the negative electrode 602, and the separator 603 are stacked and wound around a winding axis.
  • a lithium metal (lithium electrode) 604 and a lithium metal (lithium electrode) 605 are disposed around the periphery and center of the electrode winding unit 600, respectively. These are accommodated in an outer case 606 made of aluminum or iron, and the outer case 606 is filled with an electrolytic solution. Lithium metals 604 and 605 supply lithium ions to the electrolyte.
  • the positive electrode 601 and the negative electrode 602 each have a current collector made of a porous material provided with a large number of holes penetrating the front and back surfaces. Since the current collector is made of a porous material, the lithium ions from the lithium metal 604, 605 of the electrode winding unit 600 are disposed even if the lithium metals 604, 605 are disposed at the outer peripheral portion and the central portion of the electrode winding unit 600. It moves freely between the electrodes through the through holes of the current collector. Thereby, all of the negative electrode 602 and / or the positive electrode 601 of the electrode winding unit 600 can be doped with lithium ions.
  • electrode terminals 607 and 608 are connected to current collectors of the positive electrode 601 and the negative electrode 602, respectively.
  • the positive electrode 601 and the negative electrode 602 are drawn out by the electrode terminals 607, 608 extending in mutually opposite directions in parallel with the winding axis of the cylindrical electrode winding unit 600.
  • the tube rod 609 supports the lithium metal 605 located on the winding axis and at the same time supports the electrode winding unit 600.
  • the outermost periphery of the electrode winding unit 600 is fixed by a tape 610 in order to maintain a cylindrical shape.
  • lithium ions are more rapidly doped into the negative electrode 602 by providing lithium metal 604, 605 for supplying lithium ions at two places, the outer peripheral part and the central part of the electrode winding unit 600. Can.
  • FIG. 30 is a cross-sectional view of still another conventional capacitor 6002 described in Patent Document 3. As shown in FIG.
  • the capacitor 6002 is an electrochemical capacitor.
  • Capacitor element 700 includes a separator, a positive electrode, and a negative electrode facing the positive electrode via the separator.
  • the positive electrode, the negative electrode, and the separator are stacked and wound around a winding axis.
  • the positive electrode and the negative electrode each have an extraction electrode portion 701 and an extraction electrode portion 702 exposed from the electrode portion.
  • the lead-out electrode portions 701 and 702 are offset so as to project in opposite directions along the winding axis.
  • the positive electrode lead-out electrode portion 701 is joined to a metal terminal plate 703 by welding or the like, and the positive electrode is drawn from the terminal plate 703 to an external circuit. Further, the negative electrode lead-out electrode portion 702 is joined by welding to the bottom of a cylindrical metal case 704 having a bottom, and the negative electrode is pulled out from the outer surface of the metal case 704 to an external circuit.
  • An insulating member such as an insulating tape is provided between the terminal plate 703 and the metal case 704 so that the terminal plate 703 and the metal case 704 do not contact each other.
  • the outer case 606 of the electrochemical capacitor 6001 shown in FIGS. 29A and 29B is made of aluminum or iron.
  • the outer case 606 of the electrochemical capacitor 6002 shown in FIG. 30 is made of aluminum or iron.
  • FIG. 31 is a schematic side cross-sectional view of a conventional capacitor unit 6003 comprising two electrochemical capacitors 800, 900 connected in series with one another.
  • the electrochemical capacitors 800 and 900 are electrochemical capacitors 6002 shown in FIG.
  • the electrodes of the capacitor elements 810 and 910 inside the capacitors 800 and 900 are arranged to be upside down in polarity.
  • the lead-out electrode portion 811 of the capacitor element 810 is made of copper foil of a negative electrode and is connected to the terminal plate 820 made of copper.
  • the positive electrode extraction electrode portion 812 is made of aluminum foil and is connected to the inner bottom surface of the metal case 830 made of aluminum.
  • the positive electrode lead electrode portion 911 of the capacitor element 910 is connected to the terminal plate 920 made of aluminum, and the negative electrode lead electrode portion 912 is connected to the inner bottom surface of the metal case 930 made of iron.
  • the terminal plates 820 and 920 of the capacitors 800 and 900 are connected by a connecting member 950 made of, for example, aluminum.
  • the capacitors 800 and 900 respectively include pressure control valves 840 and 940 provided with gas permeable sheets so as to close the through holes 820A and 920A formed in the terminal plates 820 and 920, respectively.
  • pressure control valves 840 and 940 provided with gas permeable sheets so as to close the through holes 820A and 920A formed in the terminal plates 820 and 920, respectively.
  • the metal case 930 connected to the lead-out electrode portion 912 of the capacitor 900 is preferably made of copper in consideration of the electrical resistance combined with the electrode portion 912 made of a copper material, but as described above, the metal case 930 is It consists of iron.
  • the metal case made of copper is heavier than the metal case 930 made of iron, and when this capacitor unit is used in a mobile unit such as a vehicle or ship, its weight causes performance degradation such as energy efficiency of the mobile unit. .
  • the capacitor unit 6003 due to the difference in thermal conductivity between the case 930 made of iron and the case 830 made of aluminum, a difference in heat radiation efficiency occurs between the capacitors 800 and 900.
  • the temperature of the capacitor 900 including the case 930 made of iron having a heat radiation efficiency lower than that of aluminum rises rapidly, and the deterioration of the charge / discharge characteristics is faster than the capacitor 800 having the case 830 made of aluminum.
  • the storage device includes a storage element having an electrode portion, an electrolytic solution impregnated in the storage element, a metal case for storing the storage element and the electrolytic solution, and a terminal plate provided in an opening of the metal case.
  • the inner surface of the terminal plate has a joint portion joined to the electrode portion of the storage element.
  • the joint portion is formed with a concave portion which communicates with the outside from between the electrode portion and the joint portion.
  • This power storage device does not generate a void in the joined portion, and has high reliability.
  • FIG. 1A is a top view of a power storage device according to Embodiment 1 of the present invention.
  • FIG. 1B is a side sectional view taken along line 1B-1B of the power storage device shown in FIG. 1A.
  • 1C is a bottom view of the power storage device in Embodiment 1.
  • FIG. 1D is a partially exploded perspective view of the storage element of the storage device in the first embodiment.
  • FIG. 2A is a schematic view of a junction portion of the power storage device in the first embodiment.
  • FIG. 2B is a schematic view of a junction portion of the power storage device in the first embodiment.
  • FIG. 2C is a schematic view of a junction portion of the power storage device in the first embodiment.
  • FIG. 1A is a top view of a power storage device according to Embodiment 1 of the present invention.
  • FIG. 1B is a side sectional view taken along line 1B-1B of the power storage device shown in FIG. 1A.
  • 1C is a bottom view
  • FIG. 2D is a partially enlarged cross-sectional view of the joint shown in FIG. 2C at line 2D-2D.
  • FIG. 2E is a partially enlarged cross-sectional view of the joint shown in FIG. 2D.
  • FIG. 3A is a partially enlarged cross-sectional view of a storage element of the storage device in the first embodiment.
  • FIG. 3B is a partially enlarged cross-sectional view of the storage element of the storage device in the first embodiment.
  • FIG. 3C is a partially enlarged cross-sectional view of the storage element of the storage device in the first embodiment.
  • FIG. 3D is a partially enlarged cross-sectional view of the storage element of the storage device in the first embodiment.
  • FIG. 3E is a partially enlarged cross-sectional view of the storage element of the storage device according to Embodiment 1.
  • FIG. 3F is a partially enlarged cross-sectional view of the storage element of the storage device according to Embodiment 1.
  • FIG. 4 is a cross-sectional view of a storage element of the storage device in the second embodiment of the present invention.
  • FIG. 5A is a top view of a storage battery unit according to Embodiment 3 of the present invention.
  • FIG. 5B is a side view of the power storage device unit in the third embodiment.
  • FIG. 5C is a bottom view of the power storage device unit in the third embodiment.
  • 6A is a plan view of a connection plate of a power storage device unit according to Embodiment 3.
  • FIG. 6B is a cross-sectional view of the connection plate shown in FIG. 6A taken along line 6B-6B.
  • 6C is a bottom view of the laser welded connection plate shown in FIG. 6A.
  • 7A is a plan view of another connection plate of the power storage device unit according to Embodiment 3.
  • FIG. 7B is a cross-sectional view of the connection plate shown in FIG. 7A taken along line 7B-7B.
  • FIG. 8A is a top view of the power storage device in the fourth embodiment of the present invention.
  • FIG. 8B is a side cross-sectional view of the storage device shown in FIG. 8A taken along line 8B-8B.
  • FIG. 8C is a bottom view of the power storage device in the fourth embodiment.
  • FIG. 8D is a partially exploded perspective view of the storage element of the storage device in the fourth embodiment.
  • FIG. 9 is a cross-sectional view of a pressure control valve of the power storage device in the fourth embodiment.
  • FIG. 10 is an exploded cross-sectional view of a pressure control valve of the power storage device in the fourth embodiment.
  • FIG. 11 is a side cross-sectional view of another power storage device in the fourth embodiment.
  • FIG. 12 is a cross-sectional view of the storage element of the storage device in the fifth embodiment of the present invention.
  • FIG. 13A is a top view of the storage battery in the sixth embodiment of the present invention.
  • FIG. 13B is a side sectional view taken along line 13B-13B of the power storage device shown in FIG. 13A.
  • FIG. 13C is a bottom view of the power storage device in the sixth embodiment.
  • FIG. 13D is a partial exploded perspective view of the storage element of the storage device in the sixth embodiment.
  • FIG. 14A is a top view of the power storage device in the sixth embodiment.
  • FIG. 14B is a partially enlarged side cross-sectional view of the power storage device in the sixth embodiment.
  • FIG. 15 shows the relationship between the wavelength of light and the reflectance.
  • FIG. 16A is a partial schematic cross-sectional view of the storage element of the storage device according to the sixth embodiment.
  • FIG. 16B is a partial schematic cross-sectional view of the storage element of the storage device according to the sixth embodiment.
  • FIG. 16C is a schematic cross-sectional view of a storage element of the storage device in the sixth embodiment.
  • FIG. 16A is a partial schematic cross-sectional view of the storage element of the storage device according to the sixth embodiment.
  • FIG. 16B is a partial schematic cross-sectional view of the storage element of the
  • FIG. 17 is a partially enlarged side cross-sectional view of another power storage device in the sixth embodiment.
  • FIG. 18A is an exploded perspective view of a power storage device according to a seventh embodiment of the present invention.
  • FIG. 18B is an exploded perspective view of another power storage device in the seventh embodiment.
  • FIG. 19A is a top view of a terminal board of a power storage device according to a seventh embodiment.
  • FIG. 19B is a top view of the current collector plate of the power storage device in the seventh embodiment.
  • FIG. 19C is a bottom view of the current collector plate of the power storage device in the seventh embodiment.
  • FIG. 19D is a bottom view of the metal case of the power storage device in the seventh embodiment.
  • FIG. 20 is a schematic side sectional view of the power storage device in the seventh embodiment.
  • FIG. 21 shows the evaluation result of the power storage device in the sixth embodiment.
  • FIG. 22A is a top view of a storage battery unit according to Embodiment 8 of the present invention.
  • FIG. 22B is a side cross-sectional view of the power storage device unit in the eighth embodiment.
  • FIG. 22C is a bottom view of the power storage device unit according to the eighth embodiment.
  • FIG. 22D is a partially exploded perspective view of the storage element of the storage device in the eighth embodiment.
  • FIG. 23A is a top view of a power storage device of a power storage device unit according to an eighth embodiment.
  • FIG. 23B is a side cross-sectional view of the storage device shown in FIG. 23A, taken along line 23B-23B.
  • FIG. 23C is a bottom view of the power storage device in the eighth embodiment.
  • FIG. 24A is a partial enlarged cross sectional view of a power storage device unit according to an eighth embodiment.
  • FIG. 24B is a partial enlarged cross sectional view of another power storage device unit according to the eighth embodiment.
  • FIG. 25 is a side sectional view of still another power storage device unit according to the eighth embodiment.
  • FIG. 26 is a top view of a power storage device unit according to a ninth embodiment of the present invention.
  • FIG. 27A is a top view of a conventional capacitor.
  • FIG. 27B is a side cross-sectional view of a conventional capacitor.
  • FIG. 27C is a bottom view of the conventional capacitor.
  • FIG. 28A is a top view of a conventional capacitor unit.
  • FIG. 28B is a side view of a conventional capacitor unit.
  • FIG. 28C is a bottom view of the conventional capacitor unit.
  • FIG. 29A is a cross-sectional view of a conventional capacitor.
  • FIG. 29B is a side view of the capacitor element of the conventional capacitor.
  • FIG. 30 is a side sectional view of a conventional capacitor.
  • FIG. 31 is a schematic side sectional view of a conventional capacitor unit.
  • FIG. 1A is a top view of capacitor 3001 which is a power storage device according to the first embodiment of the present invention.
  • FIG. 1B is a side cross-sectional view of capacitor 3001 at line 1B-1B shown in FIG. 1A.
  • FIG. 1C is a bottom view of the capacitor 3001.
  • FIG. 1D is a partial exploded perspective view of a capacitor element 301 which is a storage element of the capacitor 3001.
  • the anode electrode 301P has a current collector 301F made of aluminum foil, and a polarizable electrode layer 301H provided on the current collector 301F so as to expose an end 1301F of the current collector 301F.
  • the cathode electrode 301N has a current collector 301G made of aluminum foil, and a polarizable electrode layer 301J provided on the current collector 301G so as to expose an end 1301G of the current collector 301G.
  • the polarizable electrode layers 301H and 301J are opposed via the insulating separator 301K.
  • Capacitor element 301 has a cylindrical shape extending along axis 301C, and has end portions 301A and 301B opposite to each other along axis 301C, and a side surface 301E having a cylindrical shape extending along axis 301C.
  • the end portions 301A and 301B of the capacitor element 301 are opposite end portions in the direction of the axis 301C of the separator 301K.
  • Capacitor element 301 has a hollow portion 301D extending along axis 301C.
  • the end 1301 F of the current collector 301 F of the anode electrode 301 P forms an anode electrode portion 302 exposed from the end 301 A of the capacitor element 301.
  • the end 1301 G of the current collector 301 G of the cathode electrode 301 N forms a cathode electrode portion 303 exposed from the end 301 B of the capacitor element 301.
  • the capacitor element (storage element) 301 is configured to store electricity.
  • the metal case 304 made of metal such as aluminum has a cylindrical side wall 1304A extending along the shaft 301C, a bottom plate 1304B closing the side wall 1304A, and an opening 1304C opposite to the bottom plate 1304B.
  • side wall 1304A has a cylindrical shape.
  • the metal case 304 accommodates the capacitor element 301 and the electrolytic solution 301M.
  • the metal case 304 has a joint 304A projecting from the inner surface of the bottom plate 1304B.
  • a terminal plate 305 made of aluminum is provided in the opening 1304 C of the metal case 304 and has an inner surface facing the inside of the metal case 304 and facing the anode electrode portion 302 of the end portion 301 A of the capacitor element 301.
  • the terminal plate 305 has a bonding portion 305A, and the bonding portion 305A has an inner surface facing and in contact with the anode electrode portion 302.
  • 2A to 2C are schematic views of the junctions 304A, 305A.
  • the inner surface of the bonding portion 304 A faces and abuts the cathode electrode portion 303 of the capacitor element 301.
  • the rough surface part 304B is provided in the inner surface.
  • the bonding portion 304A squeezes the cathode electrode portion 303 of the capacitor element 301 inserted in the metal case 304 so that the rough surface portion 304B abuts the cathode electrode portion 303, and the outer surface of the bonding portion 304A is irradiated with laser light
  • the metal case 304 and the cathode electrode portion 303 are mechanically and electrically joined by welding.
  • the cathode electrode portion 303 and the bonding portion 304A are melted, and a melted portion 304C including the material of the cathode electrode portion 303 and the material of the bonding portion 304A is formed.
  • the area of the rough surface portion 304B is sufficiently larger than the area of the fusion portion 304C.
  • the terminal plate 305 has a bonding portion 305A protruding from the inner surface and a terminal portion 305C for external connection provided on the outer surface.
  • the rough surface portion 305B is provided on the inner surface of the bonding portion 305A.
  • the bonding portion 305A squeezes the anode electrode portion 302 so that the rough surface portion 305B abuts on the anode electrode portion 302, and the outer surface of the bonding portion 305A is irradiated with laser light and laser-welded to form the terminal plate 305 and the anode electrode portion 302. Mechanically and electrically.
  • a fusion zone 305D is formed on the anode electrode portion 302 and the joint portion 305A.
  • the area of the rough surface portion 305B is sufficiently larger than the area of the fusion portion 305D.
  • Sealing rubber 306 is disposed between the outer peripheral surface of terminal plate 305 and the inner peripheral surface of side wall 304E of metal case 304 to seal opening 1304C of metal case 304 and to connect terminal plate 305 and metal case 304 together. Insulate. The sealing rubber 306 is compressed by drawing a portion near the open end 1304D surrounding the opening 1304C of the metal case 304 and curling the open end 1304D.
  • the terminal plate 305 is provided with a through hole 1305A for injecting the electrolytic solution 301M into the metal case 304.
  • the pressure control valve 307 is coupled to the terminal plate 305 so as to close the through hole 1305A.
  • a plurality of bonding portions 304 A protruding radially on the inner surface of the bottom plate 1304 B of the metal case 304 are in contact with the cathode electrode portion 303 of the capacitor element 301.
  • the cathode electrode portion 303 provided at the end portion 301B of the capacitor element 301 is joined by laser welding to the rough surface portion 304B provided on the inner surface of the joint portion 304A.
  • a plurality of bonding portions 305 A protruding on the inner surface of the terminal plate 305 are radially provided, and abut on the anode electrode portion 302 of the capacitor element 301.
  • the anode electrode portion 302 provided at the end portion 301A of the capacitor element 301 is joined by laser welding to the rough surface portion 305B provided at the joint portion 305A.
  • FIG. 2D is a partially enlarged cross-sectional view of junctions 304A and 305A of capacitor 3001 shown in FIG. 2C, taken along line 2D-2D.
  • a plurality of concave portions 304Z are formed in the rough surface portion 304B of the bonding portion 304A in contact with the cathode electrode portion 303 of the capacitor element 301.
  • the rough surface portion 304B has a portion 304Y exposed from the cathode electrode portion 303.
  • the recess 304Z extends from the portion 304X abutting on the cathode electrode portion 303 of the rough surface portion 304B of the joint 304A to the portion 304Y, that is, from the portion 304X to the outside of the portion 304X.
  • a plurality of concave portions 305Z are formed in the rough surface portion 305B of the bonding portion 305A in contact with the anode electrode portion 302 of the capacitor element 301.
  • the rough surface portion 305B has a portion 305Y exposed from the anode electrode portion 302.
  • the recess 305Z extends from the portion 305X abutting on the anode electrode portion 302 of the rough surface portion 305B of the joint 305A to the portion 305Y, that is, from the portion 305X to the outside of the portion 305X.
  • FIG. 2E is a partially enlarged cross-sectional view before bonding the bonding portion 304A (305A) to the cathode electrode portion 303 (anode electrode portion 302).
  • a portion 304V of the outer surface of the bottom plate 1304B of the metal case 304 is irradiated with laser light.
  • the bonding portion 304A is separated from the cathode electrode portion 303 via a gap 303Y.
  • the portion 304V of the outer surface of the bottom plate 1304B is irradiated with laser light
  • the portion 304W of the bottom plate 1304B facing the gap 303Y and the portion 303X of the cathode electrode portion 303 facing the gap 303Y melt together and mix Melted portion 304C is formed.
  • the gap 303Y is eliminated by the fusion zone 304C, and the bottom plate 1304B is joined at the fusion zone 304C.
  • the melted portion 304C contains the material of the bottom plate 1304B and the material of the cathode electrode portion 303.
  • the portion 305V of the outer surface of the terminal plate 305 is irradiated with laser light.
  • the bonding portion 305A is separated from the anode electrode portion 302 via the gap 302Y.
  • the portion 305V of the outer surface of the terminal plate 305 is irradiated with laser light
  • the portion 305W of the terminal plate 305 facing the gap 302Y and the portion 302V of the anode electrode portion 302 facing the gap 302Y melt together Blending forms a fusion zone 305C.
  • the gap 302Y is eliminated by the fusion zone 305C, and the terminal plate 305 is joined in the fusion zone 305C.
  • Melting portion 305 C contains the material of terminal plate 305 and the material of anode electrode portion 302.
  • the surface roughness Ra of the roughened portions 304B and 305B is preferably 10 ⁇ m to 500 ⁇ m. If the surface roughness Ra is smaller than 10 ⁇ m, air may not be easily released and voids may occur. When the surface roughness Ra is larger than 500 ⁇ m, the concave portions 304Z and 305Z may be prevented from being communicated with the outside by being joined to the anode electrode portion 302 and the cathode electrode portion 303 in the concave portions 304Z and 305Z. In addition, the air can be sufficiently released without the need for the surface roughness Ra to exceed 500 ⁇ m.
  • the area of the rough surface portions 304B and 305B be larger than the area of the fusion portions 304C and 305D.
  • the area of the rough surface parts 304B and 305B is smaller than the area of the fusion parts 304C and 305D, voids may be generated without the air being sufficiently removed.
  • An end mill or the like is used to form asperities at the portions corresponding to the bonding portion 304A of the metal case 304 and the bonding portion 305A of the terminal plate 305 of the press die for molding the metal case 304 and the terminal plate 305.
  • Roughened portions 304B and 305B can be formed by molding and pressing a metal plate with these press dies.
  • the anode electrode portion 302 and the cathode electrode portion 303 of the capacitor element 301 are roughened instead of the rough surface portions 304B and 305B provided on the bonding portion 304A on the inner surface of the metal case 304 and the bonding portion 305A on the inner surface of the terminal plate 305.
  • a face may be provided.
  • the anode electrode portion 302 and the cathode electrode portion 303 of the capacitor element 301 are further combined with the rough surface portions 304B and 305B provided on the bonding portion 304A of the inner surface of the metal case 304 and the bonding portion 305A of the inner surface of the terminal plate 305.
  • the rough surface may be provided on the
  • FIGS. 3A to 3C are partially enlarged cross-sectional views of the capacitor element 301 showing the anode electrode portion 302.
  • FIG. An end portion 1301 F of the current collector 301 F of the anode electrode 301 P is exposed from an end portion 301 A of the capacitor element 301 shown in FIG. 1D to constitute an anode electrode portion 302.
  • the cathode electrode 301N and the separator 301K are not exposed from the end portion 301A.
  • the anode electrode portion 302 has a root portion 302B extending from the end portion 301A and an element end 302A extending from the root portion 302B.
  • the root portion 302B is shaped in a tapered shape extending away from the end 301A and towards the axis 301C.
  • the element end 302A extends away from the end 301A and towards the axis 301C at an angle greater than that of the root portion 302B.
  • the root portion 302B and the element end 302A are formed by swaging. At the element end 302A, at least three portions of the anode electrode 301P overlap.
  • the surface roughness Ra of the surface of the element end portion 302A facing outward is 10 ⁇ m to 500 ⁇ m, and constitutes a rough surface portion 302D. As described above, the rough surface portion 302D abuts on the bonding portion 305A of the terminal plate 305 and is bonded by laser welding.
  • the anode electrode portion 302 shown in FIG. 3C has a root portion 302B extending from the end portion 301A and an element end portion 302C extending from the root portion 302B.
  • the root portion 302B is shaped in a tapered shape extending away from the end 301A and towards the axis 301C.
  • Element end 302C extends away from end 301A and away from axis 301C.
  • the root portion 302B and the element end 302A are formed by swaging.
  • At the element end 302A at least three portions of the anode electrode 301P overlap.
  • the surface roughness Ra of the surface of the element end 302C facing outward is 10 ⁇ m to 500 ⁇ m, and constitutes a rough surface portion 302D. As described above, the rough surface portion 302D abuts on the bonding portion 305A of the terminal plate 305 and is bonded by laser welding.
  • the compressive force applied to the anode electrode portion 302 is smaller than that of the device end 302A. Therefore, the number of overlapping portions of the anode electrode 301P from the axis 301C to the outer periphery of the end portion 301A of the capacitor element 301 can be stabilized and equalized, and the length of the element end portion 302C can be stabilized. Thereby, the surface roughness Ra of the rough surface portion 302D can be stably and easily controlled within the range of 10 ⁇ m to 500 ⁇ m.
  • the element end 302C extends in the direction away from the axis 301C, it does not cover the hollow portion 301D extending along the axis 301C of the capacitor element 301. As a result, when welding the anode electrode portion 302, it is not necessary to weld to the vicinity of the center of the end portion 301A, so the working tact becomes short. Further, since it is not necessary to provide the small bonding portion 305A of the terminal plate 305 up to the central portion of the terminal plate 305, it is possible to suppress the deformation of the terminal plate 305 due to the pressure in the case 304. The area of the terminal portion 305C 305 can be increased.
  • FIG. 3D to 3F are enlarged cross-sectional views of capacitor element 301 showing cathode electrode portion 303.
  • FIG. An end portion 1301 G of the current collector 301 G of the cathode electrode 301 N is exposed from an end portion 301 B of the capacitor element 301 shown in FIG. 1D to constitute a cathode electrode portion 303.
  • the anode electrode 301P and the separator 301K are not exposed from the end portion 301B.
  • the cathode electrode portion 303 has a root portion 303B extending from the end portion 301B and an element end portion 303A extending from the root portion 303B.
  • the root portion 303B is formed in a tapered shape extending away from the end portion 301B and toward the shaft 301C.
  • the element end 303A extends away from the end 301B and towards the axis 301C at an angle greater than that of the root portion 303B.
  • the root portion 303B and the element end portion 303A are formed by swaging. At the element end portion 303A, at least three portions of the cathode electrode 301N overlap.
  • the surface roughness Ra of the surface of the element end portion 303A facing the outside is 10 ⁇ m to 500 ⁇ m, and constitutes a rough surface portion 303D. As described above, the rough surface portion 303D abuts on the bonding portion 305A of the terminal plate 305 and is bonded by laser welding.
  • the cathode electrode portion 303 shown in FIG. 3F has a root portion 303B extending from the end portion 301B and an element end portion 303C extending from the root portion 303B.
  • the root portion 303B is formed in a tapered shape extending away from the end portion 301B and toward the shaft 301C.
  • the element end 303C extends away from the end 301B and away from the axis 301C.
  • the root portion 303B and the element end portion 303C are formed by swaging. At the element end 303C, at least three portions of the cathode electrode 301N overlap.
  • the surface roughness Ra of the surface of the element end portion 303C facing outward is 10 ⁇ m to 500 ⁇ m, and constitutes a rough surface portion 303D. As described above, the rough surface portion 303D abuts on the bonding portion 305A of the terminal plate 305 and is bonded by laser welding.
  • the compressive force applied to the cathode electrode portion 303 is smaller than that of the element end portion 303A. Therefore, the number of overlapping portions of the cathode electrode 301N from the axis 301C to the outer periphery of the end portion 301B of the capacitor element 301 can be stabilized and equalized, and the length of the element end portion 303C can be stabilized.
  • the surface roughness Ra of the rough surface portion 303D can be stably and easily controlled within the range of 10 ⁇ m to 500 ⁇ m.
  • the element end 303C extends in the direction away from the axis 301C, it does not cover the hollow portion 301D extending along the axis 301C of the capacitor element 301.
  • the working tact becomes short.
  • FIG. 4 is a cross-sectional view of capacitor element 3002 of the capacitor according to the second embodiment of the present invention.
  • Capacitor element 3002 shown in FIG. 4 is joined to capacitor element 301 according to the first embodiment shown in FIG. 1D, and to anode electrode portion 302 and cathode electrode portion 303 provided at end portion 301A and end portion 301B of capacitor element 301, respectively.
  • the anode current collector plate 311 and the cathode current collector plate 312 are provided.
  • the anode current collector plate 311 and the cathode current collector plate 312 are made of aluminum and have a disk shape.
  • the anode current collector plate 311 and the cathode current collector plate 312 are respectively joined by laser welding to the joint portion 305A of the terminal plate 305 and the joint portion 304A of the metal case 304 shown in FIGS. 1A to 1C.
  • the anode current collector plate 311 has a surface 311 B in contact with the anode electrode portion 302 of the capacitor element 301 and a surface 311 A in contact with the terminal plate 305 on the opposite side of the surface 311 B. Rough surfaces similar to the rough surface portion 305B shown in FIG. 2D in the first embodiment are provided on the surfaces 311A and 311B. As a result, no void is generated at the time of laser welding between the anode current collector plate 311 and the anode electrode portion 302 and between the anode current collector plate 311 and the joint portion 305A of the terminal plate 305, and the anode is highly reliable.
  • the current collector plate 311 and the anode electrode portion 302 can be joined, and the anode current collector plate 311 and the joint portion 305A of the terminal plate 305 can be joined.
  • the cathode current collector plate 312 has a surface 312 B in contact with the cathode electrode portion 303 of the capacitor element 301 and a surface 312 A in contact with the bottom plate 1304 B of the metal case 304 opposite to the surface 312 B. Rough surfaces similar to the rough surface portion 304B shown in FIG. 2D in the first embodiment are provided on the surfaces 312A and 312B. As a result, no void is generated at the time of laser welding between the cathode current collector plate 312 and the cathode electrode portion 303 and between the cathode current collector plate 312 and the joint portion 304A of the bottom plate 1304B, and the cathode collector is highly reliable.
  • the electrode plate 312 and the cathode electrode portion 303 can be joined, and the cathode current collector plate 312 and the joint portion 304A of the bottom plate 1304B can be joined.
  • Third Embodiment 5A to 5C are respectively a top view, a side view and a bottom view of a capacitor unit 3003 which is a power storage unit according to a third embodiment of the present invention.
  • Capacitor unit 3003 includes capacitors 313 and 314, which are power storage devices, and connection plate 315 which arranges and connects capacitor 313 and capacitor 314 so as to be adjacent to each other.
  • Capacitors 313 and 314 are capacitors 3001 which are power storage devices according to the first embodiment.
  • connection plate 315 is joined to the terminal portion 305C of the terminal plate 305 of the capacitor 313 by laser welding to form a molten portion 315A.
  • the end 2315 of the connection plate 315 is laser-welded to the side wall 1304A of the metal case 304 of the capacitor 314 to form a molten portion 315B.
  • capacitors 313 and 314 are electrically connected in series and mechanically joined.
  • the end 1315 of the connection plate 315 has a surface 1315 B which is in contact with and joined to the terminal portion 305 C of the terminal plate 305 of the capacitor 313.
  • Roughened portions similar to the roughened portions 304B and 305B shown in FIGS. 2A to 2D are provided on at least one of the terminal portion 305C and the surface 1315B of the end 1315 of the connection plate 315.
  • connection plate 315 has a surface 2315 B which is in contact with and joined to the side wall 1304 A of the metal case 304 of the capacitor 314.
  • Roughened portions similar to the roughened portions 304B and 305B shown in FIGS. 2A to 2D are provided on at least one of the side wall 1304A and the surface 2315B of the end 2315 of the connection plate 315.
  • the rough surface portion is formed on at least one of the portions joined together.
  • a recess may be provided in one of the parts joined together.
  • FIG. 6A is a top view of the connection plate 316 that couples the metal case 304 of the capacitor 313 of the capacitor unit 3003 and the metal case 304 of the capacitor 314.
  • 6B is a cross-sectional view of connection plate 316 at line 6B-6B shown in FIG. 6A.
  • the metal connection plate 316 has a surface 1316A that abuts the bottom plate 1304B of the metal case 304 of the capacitors 313 and 314 arranged side by side, and a surface 1316B on the opposite side of the surface 1316A.
  • the surface 1316A is provided with a plurality of circular recesses.
  • the surface 1316A is provided with a plurality of recesses 316B located on opposite sides of the plurality of recesses 316A.
  • three concave portions 316A face one metal case 304.
  • FIG. 6C is a bottom view of the welded connection plate 316.
  • the connection plate 316 is disposed such that the recess 316A faces the other portion of the joint 304A of the bottom plate 1304B of the metal case 304 of the capacitors 313 and 314.
  • the bottom of the recess 316B is irradiated with laser light and laser welded to form a molten portion 316C at the bottom of the recess 316B.
  • FIG. 6C is a bottom view of the welded connection plate 316.
  • a capacitor unit is obtained in which the recess 316A of the connection plate 316 and the bottom plate 1304B of the metal case 304 are joined, and the metal cases 304 of the capacitors 313 and 314 are coupled to each other.
  • the recess 316A communicates with the outside from the portion joined to the bottom plate 1304B.
  • the connection plate 316 even if air is interposed between the connection plate 316 and the bottom plate 1304B joined together, the air can move through the recess 316A. Therefore, the air can be released to the outside at the time of welding, which can prevent the occurrence of voids or holes in the portion joined by laser welding, and the bottom plate of the connection plate 316 and the metal case 304 with high reliability. 1304 B can be joined.
  • the first member and the second member are overlapped and laser welded, for example, the first member is directly irradiated with the laser beam, and the second member is not directly irradiated with the laser beam.
  • the second member is susceptible to thermal effects, specifically, when the thickness of the second member is smaller than or equal to half of that of the first member, and when the melting point of the second member is low, the second When the thermal conductivity of the members is small and it is easy to store heat, if the first and second members are in close contact with each other, the heat of the first member directly irradiated with the laser beam and melted is directly transmitted to the second member Propagate to As a result, heat may be locally stored instantaneously in the second member and may be partially vaporized to generate holes.
  • connection plate 316 and the bottom plate 1304B of the metal case 304 are in close contact with each other. Therefore, the heat of the melted portion of the connection plate 316 directly irradiated with the laser light is transmitted to the bottom plate 1304 B to heat the bottom plate 1304 B, thereby improving the wettability.
  • the connection plate 316 and the bottom plate 1304B can be well joined by welding such that a metal diffusion layer is formed. Furthermore, air can be released to the outside through the above-mentioned gap, and generation of voids and holes can be prevented.
  • FIG. 7A is a top view of another connection plate 317 that couples the metal case 304 of the capacitor 313 of the capacitor unit 3003 and the metal case 304 of the capacitor 314.
  • FIG. 7B is a cross-sectional view of connection plate 317 at line 7B-7B shown in FIG. 7A.
  • the metal connection plate 317 has a surface 1317A that abuts against the bottom plate 1304B of the metal case 304 of the capacitors 313 and 314 arranged side by side, and a surface 1317B on the opposite side of the surface 1317A.
  • the surface 1317A is provided with a plurality of recesses having a groove shape.
  • a plurality of recesses 317A are formed in the surface 1317A.
  • One recess 317B is located opposite to the plurality of recesses 317A.
  • connection plate 317 is disposed such that the recess 317A faces the other portion of the joint 304A of the bottom plate 1304B of the metal case 304 of the capacitor 313, 314.
  • laser welding is performed by irradiating the bottom of the recess 317B with a laser.
  • the recess 317A of the connection plate 317 and the bottom plate 1304B of the metal case 304 are joined, and a capacitor unit in which the metal cases 304 of the capacitors 313 and 314 are coupled to each other is obtained.
  • a recess similar to the recess 316A or the recess 317A may be provided in the metal case 304, the terminal plate 305, and the current collectors 311 and 312, and the same effect can be obtained.
  • FIG. 8A is a top plan view of capacitor 2001 which is a power storage device according to Embodiment 4 of the present invention.
  • FIG. 8B is a side cross-sectional view of capacitor 2001 shown in FIG. 8A, taken along line 8B-8B.
  • FIG. 8C is a bottom view of the capacitor 2001.
  • FIG. 8D is a partial exploded perspective view of a capacitor element 201 which is a storage element of the capacitor 2001.
  • the anode electrode 201P has a current collector 201F made of aluminum foil, and a polarizable electrode layer 201H provided on the current collector 201F so as to expose an end 1201F of the current collector 201F.
  • the cathode electrode 201N has a current collector 201G made of aluminum foil, and a polarizable electrode layer 201J provided on the current collector 201G so as to expose an end portion 1201G of the current collector 201G.
  • the polarizable electrode layers 201H and 201J and the separator are arranged such that the end portions 1201F and 1201G opposite to each other in the direction of the axis 201C, with the polarizable electrode layers 201H and 201J facing each other via the insulating separator 201K.
  • the capacitor element 201 is formed by laminating 201K and winding it around an axis 201C.
  • Capacitor element 201 has a cylindrical shape extending along axis 201C, and has end portions 201A and 201B opposite to each other along axis 201C, and a side surface 201E having a cylindrical shape extending along axis 201C.
  • the ends 201A and 201B of the capacitor element 201 are ends on the opposite side of the separator 201K in the direction of the shaft 201C.
  • Capacitor element 201 has a hollow portion 201D extending along axis 201C.
  • the end portion 1201 F of the current collector 201 F of the anode electrode 201 P forms an anode electrode portion 202 exposed from the end portion 201 A of the capacitor element 201.
  • the end 1201 G of the current collector 201 G of the cathode electrode 201 N forms a cathode electrode portion 203 exposed from the end 201 B of the capacitor element 201.
  • the capacitor element (storage element) 201 is configured to store electricity.
  • the metal case 204 made of metal such as aluminum has a cylindrical side wall 1204A extending along the shaft 201C, a bottom plate 1204B closing the side wall 1204A, and an opening 1204C opposite to the bottom plate 1204B.
  • side wall 1204A has a cylindrical shape.
  • the metal case 204 accommodates the capacitor element 201 and the electrolytic solution 201M.
  • the metal case 204 has a plurality of joint portions 204A projecting from the inner surface of the bottom plate 1204B.
  • the plurality of joints 204A radially extend from the shaft 201C.
  • the terminal plate 205 has an inner surface opposed to and in contact with the anode electrode portion 202.
  • the inner surface of the bonding portion 204A faces and abuts the cathode electrode portion 203 of the capacitor element 201.
  • the bonding portion 204A squeezes the cathode electrode portion 203 of the capacitor element 201 inserted into the metal case 204, and the outer surface of the bonding portion 204A is irradiated with laser light and laser welded to weld the metal case 204 and the cathode electrode portion 203. Join mechanically and electrically.
  • a fusion zone 204C is formed in the cathode electrode unit 203 and the joint unit 204A.
  • a terminal plate 205 made of aluminum is provided in the opening 1204 C of the metal case 204 and has an inner surface facing the inside of the metal case 204 and facing the anode electrode 202 of the end 201 A of the capacitor element 201.
  • the terminal plate 205 has a projecting portion 205A projecting from the inner surface along the shaft 201C, and a collar portion 205B having an annular shape projecting from the lower end peripheral edge of the terminal plate 205 in a direction away from the shaft 201C.
  • the inner surface of the terminal plate 205 is provided with concave portions 205L and 205M provided around the projecting portion 205A.
  • the anode electrode portion 202 of the capacitor element 201 is fitted into the concave portions 205L and 205M.
  • the projecting portion 205A is fitted into the hollow portion 201D of the capacitor element 201.
  • a through hole 205C for injecting the electrolyte solution 201M into the case 204 is provided at the center of the projecting portion 205A.
  • the terminal plate 205 has a plurality of bonding portions 205D projecting on the inner surface.
  • the plurality of joint portions 205D are provided radially from the shaft 201C.
  • the terminal plate 205 further includes an external connection terminal portion 205E provided in a portion excluding the bonding portion 205D.
  • the joint portion 205D squeezes the anode electrode portion 202 of the capacitor element 201 fitted into the recess 205M, and the outer surface of the joint portion 205D is irradiated with laser light and laser welded to machine the terminal plate 205 and the anode electrode portion 202 Bond electrically and electrically.
  • a fusion zone 205F is formed on the anode electrode section 202 and the joint section 205D.
  • the inner side surface 205G of the recess 205L has a tapered shape that narrows toward the bottom of the recess 205L.
  • the inner side surface 205H of the recess 205M has a tapered shape that narrows toward the bottom of the recess 205M.
  • the insulating member 206 is made of an insulating material and has an annular shape.
  • the insulating member 206 is disposed between the outer peripheral surface of the flange portion 205B of the terminal plate 205 and the inner peripheral surface of the metal case 204, and insulates the terminal plate 205 and the metal case 204 from each other.
  • the sealing rubber 207 is disposed on the top of the flange portion 205B provided on the terminal plate 205. Sealing rubber 207 is disposed between the outer peripheral surface of terminal plate 205 and the inner peripheral surface of side wall 204E of metal case 204 to seal opening 1204C of metal case 204 and to seal terminal plate 205 and metal case 204 together. Insulate. The sealing rubber 207 is compressed by drawing a portion near the opening end 1204D surrounding the opening 1204C of the metal case 204 and curling the opening end 1204D.
  • the pressure control valve 208 is coupled to the outer surface of the terminal plate 205 so as to close the through hole 205C provided in the projecting portion 205A of the terminal plate 205.
  • the cap 209 made of stainless steel has a side wall 209E having a cylindrical shape, a bottom plate 209D closing the side wall 209E, and an opening 209F opening toward the terminal plate 205 on the opposite side of the bottom plate 209D.
  • the cap 209 has a collar portion 209A that protrudes outward from an open end 209G surrounding the opening 209F of the side wall 209E.
  • the cap 209 is provided with a through hole 209B communicating with the outside.
  • the silicon rubber valve body 210 is provided with a recess 210 ⁇ / b> C opening toward the bottom plate 209 ⁇ / b> D of the cap 209.
  • the packing 211 is made of butyl rubber.
  • the washer 212 is made of aluminum and has an annular shape having a through hole 212A provided in the center.
  • the washer 212 has an annular wall 212B projecting from the periphery toward the bottom plate 209D of the cap 209. With the packing 211 and the valve body 210 stacked and mounted on the washer 212, the washer 212 is press-fit into the cap 209 from the opening 209 F of the cap 209. Thereby, the valve body 210 and the packing 211 are compressed and held, and the cap 209, the valve body 210, the packing 211 and the washer 212 constitute a valve unit 213.
  • the press-fit dimension can be managed with high accuracy.
  • a cut and raised portion 209C that protrudes into the cap 209 is provided.
  • the cut and raised portion 209C penetrates the washer 212, and the cap 209 and the washer 212 can be coupled with high bonding strength.
  • the aluminum washer 214 has a ring shape having a through hole 214A provided at the center.
  • the gas permeable sheet 215 having a circular shape is made of a porous film such as polytetrafluoroethylene (PTFE).
  • the gas permeable sheet 215 and the washer 214 are thermally fused through a modified polypropylene (PP) film 216 to form a circular filter holder 217.
  • the terminal plate 205 has a recess 205J provided on the outer surface of the through hole 205C.
  • the filter holder 217 is disposed in the recess 205 J of the terminal plate 205.
  • the holding rubber 218 made of butyl rubber includes a cylindrical side wall 218B and a bottom plate 218C that closes the side wall 218B.
  • the pressing rubber 218 has an opening 218D opening toward the washer 212 on the opposite side of the bottom plate 218C.
  • a through hole 218A is provided at the center of the bottom plate 218C.
  • the pressing rubber 218 is disposed in the recess 205 J of the terminal plate 205, and the filter holder 217 is disposed in the opening 218 D of the pressing rubber 218. Thereafter, the valve unit 213 is disposed so as to cover the recessed portion 205J, and the projection 205K provided on the terminal plate 205 is crimped to the flange portion 209A of the cap 209 by caulking processing to cap the cap 209 to the metal case 204 Combine. As a result, the pressing rubber 218 is compressed and held to press the gas permeable sheet 215 of the filter holder 217.
  • the operation of the pressure control valve 208 will be described.
  • the gas permeable sheet 215 does not permeate the electrolytic solution 204M, but transmits only the gas.
  • the pressure of the gas in the metal case 204 rises and exceeds a predetermined pressure
  • the gas pushes up the packing 211 and the valve body 210 and escapes from between the packing 211 and the washer 212 into the cap 209 and is provided in the cap 209 It is discharged to the outside of the cap 209 through the through hole 209B.
  • the valve body 210 presses the packing 211 against the washer 212 to prevent the gas from passing between the packing 211 and the washer 212.
  • the pressure control valve 208 operates as a self-resetting pressure control valve.
  • valve unit 213 can be assembled with high accuracy by the jig, the operation variation of the pressure control valve 208 is reduced, and the pressure control valve 208 operates stably. Moreover, it becomes possible to perform operation confirmation as the pressure control valve 208 by the valve unit 213 alone. Furthermore, the pressure control valve 208 having excellent heat resistance can be obtained by stacking and placing the silicon rubber valve body 210 on the butyl rubber packing 211.
  • the anode electrode portion 202 of the capacitor element 201 is disposed and joined to the concave portions 205L and 205M provided on the inner surface of the terminal plate 205, the height of the capacitor 2001 can be reduced. It is possible to reduce the size and the capacity.
  • the projecting portion 205A protrudes from the inner surface of the terminal plate 205 higher than the joint portion 205D of the terminal plate 205 joined to the anode electrode portion 202 of the capacitor element 201, and fits into the hollow portion 201D of the capacitor element 201. That is, the through hole 205C provided in the projecting portion 205A and injecting the electrolyte solution 201M into the metal case 204 does not face the anode electrode portion 202 of the capacitor element 201. Therefore, the pressure control valve 208 disposed in the recess 205J on the outer surface of the terminal plate 205 so as to close the through hole 205C does not face the anode electrode portion 202 and does not adhere closely thereto. As a result, the pressure control valve 208 does not come in contact with the electrolytic solution 201M, so the system operates with stable performance without being affected by the electrolytic solution 201M.
  • FIG. 11 is a side sectional view of capacitor 2002 which is another storage element according to the fourth embodiment.
  • the terminal plate 205 of the capacitor 2002 further includes a tube portion 1205N which extends from the tip of the projecting portion 205A and is inserted into the hollow portion 201D of the capacitor element 201.
  • the tube portion 1205N has a root end 2205N joined to the tip of the projecting portion 205A of the terminal plate 205, and a tip 3205N opposite to the root end 2205N.
  • the pipe portion 1205N communicates with the through hole 205C provided in the terminal plate 205 at the root end 2205N. That is, the electrolytic solution 201M is injected into the case 204 through the through hole 205C and the pipe portion 1205N.
  • the protruding portion 205A protrudes higher than the bonding portion 205D of the terminal plate 205.
  • the pipe portion 1205N protrudes into the case 204 from the protruding portion 205A.
  • the tube portion 1205N protrudes beyond the end portion 201A from which the anode electrode portion 202 protrudes, that is, the end facing the terminal plate 205 of the separator 201K shown in FIG. 8D.
  • the position of the tip 3205N of the tube portion 1205N is preferably between the center of the capacitor element 201 in the direction of the axis 201C and the end 201A of the capacitor element 201, that is, the end of the separator 201K opposite to the terminal plate 205.
  • the length of the tube portion 1205N is larger than the length in the direction of the axis 201C of the end portion 1201F of the current collector 201F of the capacitor element 201 shown in FIG. 8D and of the length in the direction of the axis 201C of the capacitor element 201. It is preferable that it is half or less.
  • the tube portion 1205N extends into the hollow portion 301D beyond the end portion 201A from which the anode electrode portion 202 protrudes.
  • the tube portion 1205N abuts against the separator 201K in the hollow portion 201D of the capacitor element 201, and the separator 201K surrounds the tube portion 1205N.
  • a part of the electrolyte solution 201M flowing in the metal case 204 can be prevented from leaking out of the metal case 204 from the through hole 205C through the tip 3205N of the pipe portion 1201N by the separator 201K surrounding the tip 3205N of the pipe portion 1205N in particular.
  • the tip end 3205N of the tube portion 1205N is above the liquid level of a part of the flowing electrolyte 201M.
  • the length of the tube portion 1205N is set to be positioned.
  • the length of the tube portion 1205A is preferably 2.5% or more of the length of the capacitor element 201 in the direction of the shaft 201C.
  • the capacitor element 2002 When the capacitor element 2002 receives mechanical impact, or by applying an electrical load such as charge / discharge to the capacitor element 2002, gas is generated on the surface of the electrode, and at the same time, the electrolyte solution 201M in the electrode exudes. In this case, a part of the liquid level flowing in the metal case 204 of the electrolytic solution 201M instantaneously rises.
  • the tube portion 1205N exceeds 50% of the length of the capacitor element 201 in the direction of the shaft 201C, the tube portion 1205N may come into contact with the instantaneously increased liquid surface. In this case, the electrolyte solution 201M may leak from the through hole 205C to the outside of the case 204.
  • the length of the tube portion 1205N of the capacitor element 2002 according to the fourth embodiment to 50% or less of the length in the direction of the axis 201C of the capacitor element 201, the above-mentioned leakage of the electrolytic solution 201M can be prevented.
  • the length of the tube portion 1205N is accommodated in the metal case 204 by defining the length of the tip 3205N beyond the end portion 201A and to the center of the length of the capacitor element 201 in the direction of the shaft 201C. Regardless of the amount of the electrolyte solution 201M, the electrolyte solution 201M can be prevented from leaking out of the case 204 from the through hole 205C, and the function deterioration of the pressure control valve 208 due to the adhesion of the electrolyte solution 201M can be suppressed.
  • the length of the tube portion 1205N is preferably 2.5% or more and 50% or less of the length of the capacitor element 201 in the direction of the axis 201C.
  • the terminal portion 205E for external connection protrudes higher than the pressure control valve 208.
  • the plurality of capacitors 2001 (2002) can be easily connected to each other by the connection bar.
  • the anode electrode portion 202 including the end portion 1201F of the current collector 201F is accommodated.
  • the inner side surfaces 205G and 205H of the recesses 205L and 205M have a tapered shape so that the recesses 205L and 205M narrow toward their bottoms, so that the end portions 1201F of the current collector 201F constituting the anode electrode portion 202 are densely packed. It can be done. Therefore, the anode electrode portion 202 can be easily and reliably joined to the terminal plate 205 by laser welding.
  • FIG. 12 is a cross-sectional view of capacitor element 2003 of the capacitor in accordance with the fifth embodiment of the present invention. 12, the same reference numerals as in capacitor element 201 according to the fourth embodiment shown in FIG. 8D denote the same parts.
  • Capacitor element 3003 shown in FIG. 12 is joined to capacitor element 201 according to the fourth embodiment shown in FIG. 8D, and anode electrode portion 202 and cathode electrode portion 203 provided at end portion 201A and end portion 201B of capacitor element 201, respectively.
  • the anode current collector 219 and the cathode current collector 220 are provided.
  • the anode current collector plate 219 is made of aluminum and has a disk shape, and is joined to the anode electrode portion 202 by laser welding.
  • the cathode current collector plate 220 is made of aluminum and has a disk shape, and is joined to the cathode electrode portion 203 by laser welding.
  • the anode current collector 219 and the cathode current collector 220 are respectively joined by laser welding to the joint 205D of the terminal plate 205 and the joint 204A of the metal case 204 shown in FIG. 8B.
  • the capacitor including the capacitor element 2003 according to the fifth embodiment has the same effect as the capacitor 2001 according to the fourth embodiment. Further, the state of bonding by laser welding between the anode electrode portion 202 and the anode current collector plate 219 and the state of bonding by laser welding of the cathode electrode portion 203 and the cathode current collector plate 220 can be visually confirmed.
  • FIG. 13A is a top view of an electrochemical capacitor 1001 which is a power storage device according to a sixth embodiment of the present invention.
  • FIG. 13B is a side cross-sectional view of capacitor 1001 at line 13B-13B shown in FIG. 13A.
  • 13C is a bottom view of the capacitor 1001.
  • FIG. 13D is a partial exploded perspective view of a capacitor element 101 which is a storage element of the capacitor 1001.
  • the capacitor 1001 is an electrochemical capacitor.
  • the cathode electrode 101N has a current collector 101F made of copper foil, and a carbon electrode layer 101H provided on the current collector 101F so as to expose an end 1101F of the current collector 101F.
  • the anode electrode 101P has a current collector 101G made of aluminum foil, and a polarizable electrode layer 101J provided on the current collector 101G so as to expose an end 1101G of the current collector 101G.
  • the electrode layers 101H and 101J face each other via the insulating separator 101K.
  • the electrode layers 101H and 101J and the separator 101K are stacked so that the end portions 1101F and 1101G are opposite to each other in the direction of the axis 1101C, and the capacitor element 101 is configured by being wound around the axis 1101C.
  • Capacitor element 101 has a cylindrical shape extending along axis 1101C, and has opposite ends 1101A and 1101B along axis 1101C and a side surface 1101E having a cylindrical shape extending along axis 1101C.
  • the ends 1101A and 1101B of the capacitor element 101 are opposite ends of the separator 101K in the direction of the axis 1101C.
  • Capacitor element 101 has a hollow portion 1101D extending along axis 1101C.
  • the end 1101 F of the current collector 101 F of the cathode electrode 101 N forms a cathode electrode portion 101 A exposed from the end 1101 A of the capacitor element 101.
  • the end 1101 G of the current collector 101 G of the anode 101 P forms an anode electrode portion 101 B exposed from the end 1101 B of the capacitor element 101.
  • Capacitor element (storage element) 101 is configured to store electricity.
  • the carbon electrode layer 101H of the cathode electrode 101N is made of a carbon material such as graphite and graphitizable carbon.
  • the polarizable electrode layer 101J of the anode electrode portion 101B is made of a conductive porous material such as activated carbon.
  • the metal case 103 made of metal such as aluminum has a cylindrical side wall 1103A extending along the shaft 1101C, a bottom plate 1103B closing the side wall 1103A, and an opening 1103C opposite to the shaft 1101C.
  • the side wall 1103A has a cylindrical shape.
  • the metal case 103 accommodates the capacitor element 101 and the electrolytic solution 101M.
  • the metal terminal plate 102 is provided in the opening 1103 C of the metal case 103 and has an inner surface facing the inside of the metal case 103 and facing the cathode electrode portion 101 A of the end 1101 A of the capacitor element 101.
  • the metal case 103 has an open end 1103D surrounding the opening 1103C.
  • the electrolytic solution 101M contains lithium ions.
  • the sealing rubber 104 is interposed between the terminal plate 102 and the open end 1103 D of the metal case 103 to seal the opening 1103 C of the metal case 103 together with the terminal plate 102.
  • the terminal plate 102 has a disc portion 102A having a disc shape conforming to the shape of the capacitor element 101, and a cylindrical portion 102B provided on the outer surface of the disc portion 102A and having a diameter smaller than that of the disc portion 102A. .
  • the disk portion 102A and the cylindrical portion 102B are integrally formed.
  • the inner surface of the disk portion 102A is the inner surface of the terminal plate 102 and faces the inside of the case 103 to be in contact with the cathode electrode portion 101A of the capacitor element 101.
  • the inner surface of the disc portion 102A and the cathode electrode portion 101A are joined by welding.
  • the terminal plate 102 is made of copper in order to firmly bond with the end portion 1101F of the current collector 101F that constitutes the cathode electrode portion 101A made of copper foil.
  • a recess 102C is formed on the outer surface of the cylindrical portion 102B in order to join the terminal plate 102 and the element 101 by welding. As shown in FIG.
  • a convex portion 102D is formed on the outer surface of the terminal plate 102 at a position different from that of the concave portion 102C.
  • the cathode electrode portion 101A of the capacitor element 101 is electrically connected to an external circuit by bonding a metal bonding member such as a lead to the upper surface of the convex portion 102D.
  • a recess 103A is formed on the outer surface of the metal case 103. A portion of the bottom of the recess 103A is melted by irradiating laser light of wavelength 1064 nm to the bottom of the recess 103A, and the anode electrode portion 101B of the capacitor element 101 and the bottom plate 1103B are joined by welding. Portion 107B is formed.
  • the sealing rubber 104 made of an elastic member such as butyl rubber has a ring shape, and is interposed between the terminal plate 102 for sealing the opening 1103 C of the metal case 103 and the metal case 103, and the terminal plate 102 and the metal case 103. And are isolated from each other.
  • the outer surface and the inner surface of the sealing rubber 104 are respectively crimped to the open end 1103 D of the metal case 103 and the terminal plate 102 to seal the opening 1103 C of the metal case 103.
  • drawing processing is performed from the outer surface to the inner surface of the metal case 103 to form a drawn portion 103B.
  • the open end 1103D of the metal case 103 is bent inward and subjected to a curling process to form a curled portion 103C.
  • the sealing rubber 104 is pressure-bonded to the opening end 1103D of the metal case 103 from the drawing portion 103B and the curling portion 103C, and the opening 1103C of the metal case 103 can be sealed with high strength.
  • a through hole 105 communicating with the inside of the metal case 103 is formed in order to inject the electrolytic solution 101M into the metal case 103 when the capacitor 1001 is manufactured.
  • a pressure control valve 106 is disposed on the outer surface of the terminal plate 102 so as to close the through hole 105. The pressure regulating valve 106 regulates the pressure so that the pressure of the gas in the metal case 103 does not exceed a predetermined pressure.
  • the 14A and 14B are a top view and a partially enlarged side cross-sectional view, respectively, of the capacitor 1001.
  • the low reflection material 102E is disposed at the bottom of the recess 102C of the terminal plate 102 to which the laser beam is irradiated in order to bond to the cathode electrode portion 101A of the capacitor element 101.
  • the low reflective material 102E has a lower reflectance of laser light emitted during welding than the terminal plate 102 made of copper.
  • the low reflection material 102E may be provided on the entire outer surface of the terminal plate 102, whereby the low reflection material 102E can be efficiently disposed.
  • the material of the terminal plate 102 and the material of the low reflection material 102E melt and mix in welding, and are solidified again to form a melted portion 107A (FIG. 13A). .
  • the fusion zone 107A is made of the material of the terminal plate 102 and the low reflection material 102E.
  • the melted portion 107A contains the material of the low reflection material 102E at a higher concentration than the portion of the terminal plate 102 which has not been melted around the melted portion 107A.
  • YAG yttrium aluminum garnet
  • a YAG laser is a laser beam generated by being excited by a diode laser (LD) or a lamp in a medium such as a rod or a disc in which a YAG crystal is doped with Nd ions or the like, and has a wavelength of 1064 nm.
  • LD diode laser
  • Nd ions Nd ions
  • FIG. 15 shows the wavelength and reflectance of light of copper and nickel.
  • the reflectance R is represented by the following equation with a light flux ⁇ incident on a certain surface and a light flux rr reflected on this surface.
  • R ⁇ r / ⁇
  • the reflectance R when light is incident perpendicularly to the surface is expressed by the following equation.
  • R (n 0 -n 1 ) 2 / (n 0 + n 1 ) 2
  • Copper has a high reflectivity for light longer than 400 nm and a reflectivity of about 98.5% for a 1064 nm YAG laser. Therefore, it is difficult to weld copper with laser light of wavelength 1064 nm.
  • Aluminum has a reflectance of about 93.5% for light of wavelength 1064 nm.
  • pulse seam irradiation is performed with a fiber diameter of ⁇ 0.6 and one pulse of 10 ms.
  • the plate and the end of the current collector can be stably welded by irradiating a laser beam with a wavelength of 1064 nm with an energy of about 20 J.
  • a layer having a reflectance of less than about 94% is provided at the bottom of the recess 102C of the terminal plate 102 as the low reflection material 102E.
  • Nickel has a reflectivity of about 72% for light at a wavelength of 1064 nm.
  • a welding test is carried out with a copper plate on which a matte nickel layer is formed as the low reflection material 102E and a copper plate on which a bright nickel layer is formed as the low reflection material 102E, and the copper plate having the matte nickel layer welds better It could be implemented.
  • the thickness of the low reflection material 102E was 3 ⁇ m.
  • the low reflection material 102E can be formed by plating.
  • the low reflection material 102E can be formed, for example, by applying a dispersion liquid in which an inorganic pigment containing cobalt or the like is dispersed in a solvent to the recess 102C, and then drying and removing the solvent.
  • the dispersion can be applied with a thickness of 0.5 ⁇ m to 50 ⁇ m, and the reflectance of the laser beam is reduced to securely join the terminal plate 102 made of copper to the current collector 101 F made of copper by welding. be able to.
  • the low reflective material 102E can be formed by applying an inorganic pigment containing titanium instead of nickel, and the effect of improving the reliability of welding can be expected.
  • the standard electrode potential of titanium is ⁇ 1.63 V
  • corrosion may occur when titanium reaches the inner surface of the terminal plate 102 in diffusion during welding. Therefore, when titanium is used as the low reflection material 102E, the thickness of the titanium-containing pigment applied is reduced to 15 ⁇ m or less, so the titanium reaches the inner surface of the terminal plate 102 even if it is melted and diffused. do not do.
  • the low reflective material 102E provided at the bottom of the recess 102C of the terminal plate 102 absorbs the laser light with a wavelength of 1064 nm irradiated to the bottom of the recess 102C, whereby the energy of the laser beam is absorbed by the terminal plate 102.
  • the terminal plate 102 and the cathode electrode portion 101A both made of copper can be joined by laser welding with high reliability.
  • the low reflective material 102E which covers the bottom of the recessed part 102C to which the laser beam of the terminal board 102 is irradiated is further demonstrated.
  • the low reflection material 102 E is preferably formed of non-bright nickel plating, tin plating, chrome plating, non-bright silver plating, non-bright gold plating, or an inorganic pigment such as cobalt oxide or titanium oxide.
  • Nickel plating is generally classified into matte plating and gloss plating.
  • a brightening agent such as non-ionic polyacrylamide is contained in an electrolytic solution (plating bath) used when performing plating (electrolytic plating). Since the bright plating reflects the laser beam with high reflectance, it is difficult to transmit the energy of the laser beam to the terminal board 102 to melt the terminal board 102. By forming the low reflection material 102 E by matte plating, energy of laser light can be transmitted to the terminal plate 102, and the terminal plate 102 can be melted.
  • the terminal plate 102 is impregnated in a plating bath. Therefore, it is more efficient and less costly to apply the low reflective material 102E at a lower cost if the matte plating is applied to one surface or the entire surface of the terminal plate 102 rather than applying the matte plating only to the portion where the fusion zone 107A is formed. It can be formed.
  • matte plating has lower surface hardness and is softer than bright plating.
  • the hardness of matte nickel plating is about 150 to 250 Hv, while the hardness of bright nickel plating is 300 to 600 Hv.
  • the hardness of the low reflection material 102E is 250 Hv or less.
  • Matte plating with metals other than nickel also has a smaller surface hardness and is softer than gloss plating with that metal.
  • the hardness of matte silver plating is 70 to 90 Hk, and the hardness of bright silver plating is 80 to 100 Hk.
  • the hardness of the matte gold plating is 50 to 80 Hk, and the hardness of the bright gold plating is 180 to 220 Hk.
  • the hardness of the matte tin plating is 3 to 10 Hv, and the hardness of the bright tin plating is 30 to 50 Hk.
  • the low reflector 102E preferably has a lower surface hardness.
  • low-reflecting material 102E shown in FIG. 14A is formed by matte nickel plating on the bottom of concave portion 102C of terminal plate 102 and welded by laser light irradiation, nickel is mainly contained in the melted portion of terminal plate 102. It dissolves in high concentration.
  • the capacitor 1001 after completion, a part of the low reflection material formed on the inner surface of the terminal plate 102 reacts with the electrolytic solution 101M when a voltage is applied, and produces elution or a reactant.
  • the eluted material or the reactant may increase the internal resistance of the capacitor 1001 or promote self-discharge.
  • FIGS. 16A to 16C are partial schematic cross sectional views showing a cathode electrode portion 101A of a capacitor element 101 according to the sixth embodiment. As shown in FIGS. 16A to 16C, from the end 1101A of the capacitor element 101, a cathode electrode portion 101A including the end 1101F of the current collector 101F shown in FIG. 13D protrudes. The current collector 101G constituting the separator 101K and the anode electrode 101P does not protrude from the end 1101A.
  • the cathode electrode portion 101A has a root portion 101C extending from the end portion 1101A and an element end portion 101D extending from the root portion 101C.
  • the root portion 101C is formed in a tapered shape extending away from the end 1101A and toward the shaft 1101C.
  • the element end 101D extends away from the end 1101A and towards the axis 1101C at an angle greater than that of the root portion 101C.
  • the root portion 101C and the element end portion 101D are formed by swaging.
  • At the element end 101D at least three portions of the cathode electrode 101N overlap.
  • the element end portion 101D has a surface facing the terminal plate 102, and the surface is roughened by swaging, whereby the reliability of the weld joint of the cathode electrode portion 101A and the terminal plate 102 can be enhanced.
  • the cathode electrode portion 101A shown in FIG. 16C has a root portion 101C extending from the end portion 1101A and an element end portion 101E extending from the root portion 101C.
  • the root portion 101C is formed in a tapered shape extending away from the end 1101A and toward the shaft 1101C.
  • the element end 101E extends away from the end 1101A and away from the axis 1101C.
  • the root portion 101C and the element end 101E are formed by swaging.
  • At the element end 101E at least three portions of the cathode electrode 101N overlap.
  • the element end portion 101E has a surface facing the terminal plate 102, and the surface is roughened by swaging so that the reliability of the weld joint of the cathode electrode portion 101A and the terminal plate 102 can be enhanced.
  • the compressive force applied to the cathode electrode portion 101A is smaller than that of the element end portion 101D. Therefore, the number of overlapping portions of the cathode electrode 101N from the axis 1101C to the outer periphery of the end 1101A of the capacitor element 101 can be stabilized and equalized, and the length of the element end 101E can be stabilized.
  • the element end 101E can stabilize the surface roughness of the surface facing the terminal plate 102. Similar to the capacitor element 301 according to the third embodiment shown in FIGS. 3D to 3E, the same root portion and element end portion as the cathode electrode portion 101A may be formed in the anode electrode portion 101B.
  • FIG. 17 is a partial enlarged side sectional view of capacitor 1002 which is another power storage device in the sixth embodiment.
  • the same reference numerals as in the capacitor 1001 shown in FIGS. 13A to 14B denote the same parts.
  • the capacitor 1002 is, like the capacitor 1001, an electrochemical capacitor.
  • the cathode electrode portion 101A of the end portion 1101A of the capacitor element 101 is joined to the inner surface of the bottom plate 1103B of the metal case 103 by laser welding.
  • the metal case 103 (at least the bottom plate 1103B) is made of copper in order to be bonded to the end portion 1101F of the current collector 101F of the cathode electrode portion 101A made of copper.
  • the bottom plate 1103B and the cathode electrode portion 101A are welded and joined by irradiating the bottom of the recess 103A provided in the bottom plate 1103B of the metal case 103 with a laser beam.
  • the capacitor 1002 further includes a low reflection material 103Z provided in the recess 103A of the bottom plate 1103B.
  • the low reflective material 103Z has a lower reflectance to laser light than the bottom plate 1103B.
  • the low reflective material 103Z can be formed by the same material and method as the low reflective material 102E of the capacitor 1001.
  • the energy of the laser beam is efficiently transmitted to the bottom plate 1103B and the bottom plate 1103B (with high reliability).
  • the metal case 103) and the cathode electrode portion 101A can be joined by welding.
  • FIG. 18A is an exploded perspective view of capacitor 1003 which is a power storage device in the seventh embodiment.
  • the capacitor 1003 is an electrochemical capacitor.
  • Capacitor 1003 includes metal terminal plate 109 instead of terminal plate 102 of capacitor 1001 according to the sixth embodiment, and further includes cathode current collector plate 108A and anode current collector plate 108B.
  • a cathode current collector plate 108A and an anode are provided for the cathode electrode portion 101A provided at the end 1101A of the capacitor element 101, which is a storage element, and the anode electrode portion 101B provided at the end 1101B.
  • the current collector plates 108B are respectively joined by laser welding.
  • the inner surface of the terminal plate 109 of the cathode current collector plate 108A is joined by welding.
  • the anode current collector plate 108B is joined to the inner surface of the bottom plate 1103B of the metal case 103 by welding.
  • a through hole 108C communicating with the hollow portion 1101D of the capacitor element 101 is provided on the shaft 1101C of the current collector plate 108A.
  • the electrolytic solution 101M is injected into the metal case 103 through the through hole 108C.
  • a through hole 110 for injecting the electrolyte solution 101M is formed at the center of the cylindrical portion 109B of the terminal plate 109.
  • a pressure control valve 106 is provided on the outer surface of the terminal plate 109 so as to cover the through hole 110.
  • capacitor element 101 Before capacitor element 101 is joined to terminal plate 109 or metal case 103, cathode electrode portion 101A and anode electrode portion 101B of capacitor element 101 are joined by welding to cathode current collector plate 108A and anode current collector plate 108B, respectively. . Therefore, capacitor element 101 can be joined to terminal plate 109 and metal case 103 by welding with high reliability.
  • the terminal plate 109 has a disk portion 109A and a cylindrical portion 109B integrally formed.
  • the cathode current collector plate 108A is joined to the disk portion 109A of the terminal plate 109 by laser welding by irradiation of laser light of wavelength 1064 nm
  • the anode current collector plate 108B is laser light of wavelength 1064 nm on the inner surface of the bottom plate 1103B of the metal case 103. It joins by the laser welding by irradiation.
  • the current collectors 108A and 108B may have another shape having a disk shape in accordance with the wound capacitor element 101.
  • the terminal plate 109 coupled to the end portion 1101F of the current collector 101F made of copper of the cathode electrode portion 101A of the capacitor element 101 via the cathode current collector plate 108A is made of copper, iron, or stainless steel.
  • the negative electrode current collector plate 108A is made of copper.
  • the metal case 103 (bottom plate 1103B) coupled to the end 1101F of the current collector 101F made of aluminum of the cathode electrode portion 101A of the capacitor element 101 via the cathode current collector plate 108A is made of aluminum.
  • FIG. 18B is an exploded perspective view of capacitor 1004, which is another power storage device in the seventh embodiment.
  • the capacitor 1004, like the capacitor 1003, is an electrochemical capacitor.
  • FIG. 18B the same parts as those of capacitor 1003 shown in FIG. 18A are denoted by the same reference numerals.
  • the capacitor element 101 to which the current collectors 108A and 108B are joined is accommodated in the metal case 103 upside down.
  • the cathode current collector plate 108A joined to the cathode electrode portion 101A is joined to the bottom plate 1103B of the metal case 103 by laser welding by irradiation of laser light of wavelength 1064 nm
  • the anode current collector plate 108B joined to the anode electrode portion 101B has a terminal It joins to the board 109 by the laser welding by irradiation of the laser beam of wavelength 1064 nm.
  • the metal case 103 (bottom plate 1103B) coupled to the end portion 1101F of the current collector 101F made of copper of the cathode electrode portion 101A of the capacitor element 101 via the cathode current collector plate 108A is copper, iron or stainless steel. It consists of either.
  • the terminal plate 109 coupled to the end portion 1101F of the current collector 101F made of aluminum of the cathode electrode portion 101A of the capacitor element 101 via the cathode current collector plate 108A is made of aluminum.
  • FIG. 19A is a top view of the terminal plate 109 of the capacitor 1003.
  • FIG. 19B is a top view of the cathode current collector plate 108A of the capacitor 1003.
  • FIG. 19C is a bottom view of the anode current collector plate 108B of the capacitor 1003.
  • 19D is a bottom view of the metal case 103.
  • a fusion zone 111A, a fusion zone 111B, a fusion zone 111C, and a fusion zone 111D formed by laser light on the terminal plate 109, the cathode current collector plate 108A, the anode current collector plate 108B and the bottom plate 1103B of the metal case 103 are shown.
  • the fusion zone 111A is formed at a portion of the disc portion 109A around the cylindrical portion 109B of the terminal plate 109.
  • the fusion zone 111B is radially formed around the through hole 108C of the cathode current collector plate 108A.
  • the fusion zone 111C is radially formed around the shaft 1101C on the anode current collector plate 108B.
  • the fusion zone 111D is formed radially along the recess 103A. Since the terminal plate 109 and the cathode current collector plate 108 are made of copper, the cathode electrode can be stably provided with the same low reflection material 108E as the low reflection material 102E according to the sixth embodiment at least in the portion where the molten portion 111B is formed. The portion 101A and the cathode current collector plate 108A can be joined. In addition, when the terminal plate 109 joined to the cathode current collector plate 108A is also made of copper, the low reflection material 109E similar to the low reflection material 102E according to the sixth embodiment is formed in advance on the disc portion 109A where the fusion zone 111A is formed. Form
  • FIG. 20 is a side sectional view of the capacitor 1003.
  • the material of the low reflection material is melted into the melted portion of the cathode current collector plate 108A.
  • the melted portion penetrates the cathode current collector plate 108A.
  • the melted portion (melted portion 111B) of the cathode current collector plate 108A is the same as that of the cathode current collector plate 108A around the melted portion 111B. It contains a high concentration of low reflective material compared to the part.
  • the low reflection material contained in the portion where the cathode current collection plate 108A is melted Compare the amount of low reflection material contained in the unmelted part.
  • the cathode current collector plate 108A is welded to the terminal plate 109, the through holes 108C provided at the center of the cathode current collector plate 108A and in communication with the through holes 110 make metal more efficient at the time of manufacture.
  • the electrolyte solution 101 M can be injected into the case 103.
  • matte plating is applied to the junction surface of the cathode current collector plate 108A with the cathode electrode portion 101A. It is preferable not to provide the low reflection material of the above. Thereby, the reliability of the capacitor 1003 can be improved.
  • a performance evaluation test of capacitor 1001 in the sixth embodiment was conducted.
  • the edge 1101F of the current collector 101F made of copper foil of the cathode electrode portion 101A of the capacitor element 101 is swaged to form a root portion 101C and an element end 101E shown in FIG. 16C.
  • a 0.8 mm thick copper plate with different surface treatment conditions is brought into contact with the outer surface of the element end 101E, and the irradiation time of one pulse is 10 ms with a fiber diameter ⁇ 0.6 to a wavelength of 57.3 J to 58.3 J irradiation energy
  • the element end 101E of the cathode electrode portion 101A was joined to a copper plate by pulse seam irradiation of YAG laser light of 1064 nm.
  • connection state was confirmed by visual observation and peeling test.
  • Example 1 the low reflective material was formed by applying matte nickel plating of about 3 ⁇ m thickness to the copper plate.
  • Comparative Example 101 a copper plate was subjected to bright nickel plating of about 3 ⁇ m thickness.
  • Comparative Example 102 the surface of the copper plate was directly irradiated with laser light.
  • the state of bonding between the copper plate and the cathode electrode portion 101A was determined based on whether or not the melted portion remains in the portion irradiated with the laser beam.
  • the state of bonding between the copper plate and the cathode electrode portion 101A was determined based on whether or not cohesive peeling of the copper plate or cohesive separation of the copper foil occurred.
  • FIG. 21 shows the results of the appearance observation and the peeling test of Example 1 and Comparative Examples 101 and 102.
  • Example 1 the low reflective material formed by matte nickel plating on the surface of the copper plate absorbs the laser light to transmit the energy of the laser light from the copper plate to the copper foil, and melts the portion irradiated with the laser light. As a result, the copper plate and the cathode electrode portion 101A were successfully joined.
  • capacitors 1001 to 1004 which are power storage devices according to the sixth and seventh embodiments, apply to portions of the cathode electrode portion 101A made of copper and members made of copper such as the terminal plate 109 and the metal case 103 to be irradiated with laser light.
  • a low reflective material has a reflectance of less than 94% for laser light having a wavelength of 1064 nm.
  • the low reflective material is irradiated with laser light to weld and join the cathode electrode portion 101A.
  • the low reflective material can temporarily absorb the laser light emitted to the low reflective material, and can transmit the energy of the laser light to a member made of copper to be joined. Therefore, the copper material can be melted sufficiently, the member can be welded with high reliability using a laser beam with a wavelength of 1064 nm, and highly reliable storage devices, ie, capacitors 1001 to 1004 can be obtained. .
  • Eighth Embodiment 22A, 22B and 22C are respectively a top view, a side sectional view and a bottom view of a capacitor unit 4001 which is a power storage device unit according to an eighth embodiment of the present invention.
  • Capacitor unit 4001 includes capacitors 401 and 410, which are power storage devices, and connection member 413 connecting capacitors 401 and 410.
  • the capacitors 401 and 410 are electrochemical capacitors.
  • the capacitors 401 and 410 include a capacitor element 402 which is a storage element.
  • FIG. 22D is a partially exploded perspective view of capacitor element 402.
  • the cathode electrode 402N has a current collector 402F made of copper foil, and a carbon electrode layer 402H provided on the current collector 402F so as to expose the end portion 1402F of the current collector 402F.
  • the anode electrode 402P has a current collector 402G made of aluminum foil, and a polarizable electrode layer 402J provided on the current collector 402G so as to expose an end portion 1402G of the current collector 402G.
  • the electrode layers 402H and 402J face each other via the insulating separator 402K.
  • Capacitor element 402 has a cylindrical shape extending along axis 1402C, and has opposite ends 1402A and 1402B along axis 1402C and a side surface 402E having a cylindrical shape extending along axis 1402C.
  • the ends 1402A and 1402B of the capacitor element 402 are opposite ends of the separator 402K in the direction of the axis 1402C.
  • Capacitor element 402 has a hollow portion 1402D extending along axis 1402C.
  • the end 1402 F of the current collector 402 F of the cathode electrode 402 N forms a cathode electrode portion 402 A exposed from the end 1402 A of the capacitor element 402.
  • an end 1402 G of the current collector 402 G of the anode electrode 402 P forms an anode electrode portion 402 B exposed from the end 1402 B of the capacitor element 402.
  • the capacitor element (storage element) 402 is configured to store electricity.
  • the carbon electrode layer 402H of the cathode electrode 402N is made of a carbon material such as graphite and graphitizable carbon and occludes lithium ions.
  • the polarizable electrode layer 402J of the anode electrode portion 402B is made of a conductive porous material such as activated carbon.
  • the capacitor 410 includes a metal case 412, a terminal plate 411, and a pressure control valve 406.
  • the metal case 412 made of metal such as aluminum has a cylindrical side wall 1412A extending along the shaft 1402C, a bottom plate 1412B closing the side wall 1412A, and an opening 1412C opposite to the bottom plate 1412B.
  • the side wall 1412A has a cylindrical shape.
  • the metal case 412 accommodates the capacitor element 402 and the electrolytic solution 402M.
  • a metal terminal plate 411 is provided in the opening 1412 C of the metal case 412 and has an inner surface facing the inside of the metal case 412 and facing the cathode electrode portion 402 A of the end 1402 A of the capacitor element 402.
  • the metal case 412 has an open end 1412D surrounding the opening 1412C.
  • the terminal plate 411 is provided with a through hole 411A.
  • a pressure control valve 406 is provided on the outer surface of the terminal plate 411 so as to seal the through hole 411A.
  • FIG. 23A is a top view of the capacitor 401.
  • FIG. 23B is a side cross-sectional view of capacitor 401 at line 23B-23B shown in FIG. 23A.
  • 23C is a bottom view of the capacitor 401.
  • a cathode electrode portion 402A composed of an end portion 1402F of the current collector 402F is densely projected from an end portion 1402A of a capacitor element 402 manufactured by winding the cathode electrode 402N, the anode electrode 402P, and the separator 402K. From the end portion 1402B, the anode electrode portion 402B composed of the end portion 1402G of the current collector 402G is densely projected.
  • the terminal plate 403 made of copper is opposed to the cathode electrode portion 402 A of the capacitor element 402.
  • the inner surface of the terminal plate 403 opposite to the capacitor element 402 and the cathode electrode portion 402A are joined by welding and electrically connected to each other.
  • a fusion zone 403A is formed on the terminal plate 403 by welding.
  • the metal case 404 made of metal such as aluminum has a cylindrical side wall 1404A extending along the shaft 1402C, a bottom plate 1404B closing the side wall 1404A, and an opening 1404C opposite to the bottom plate 1404B.
  • the side wall 1404A has a cylindrical shape.
  • Metal case 404 accommodates capacitor element 402 and electrolytic solution 402M.
  • a metal terminal plate 403 is provided at the opening 1404 C of the metal case 404, and has an inner surface facing the inside of the metal case 404 and facing the cathode electrode portion 402 A of the end 1402 A of the capacitor element 402.
  • the metal case 404 has an open end 1404D surrounding the opening 1404C.
  • the anode electrode portion 402B and the inner surface of the bottom plate 1404B of the metal case 404 are joined by welding and electrically connected to each other.
  • a melting portion 404A is formed on the outer surface of the bottom plate 1404B of the metal case 404.
  • the metal case 404 may be made of an aluminum alloy other than aluminum.
  • a sealing rubber 405 made of an elastic member such as butyl rubber has a ring shape and is interposed between the terminal plate 411 for sealing the opening 1404 C of the metal case 404 and the metal case 404, and the terminal plate 411 and the metal case 404 And are isolated from each other.
  • the outside surface and the inside surface of the sealing rubber 405 are respectively crimped to the open end 1404 D of the metal case 404 and the terminal plate 411 to seal the opening 1404 C of the metal case 404.
  • drawing processing is performed from the outer surface to the inner surface of the metal case 404 to form a drawn portion 404B.
  • the open end 1404D of the metal case 404 is bent inward and curled to form a curled portion 404C.
  • the sealing rubber 405 is pressure-bonded to the open end 1404D of the metal case 404 from the drawn portion 404B and the curled portion 404C, and the opening 1404C of the metal case 404 can be sealed with high strength.
  • the pressure control valve 406 is provided on the outer surface of the bottom plate 1404 B so as to seal the through hole 404 D formed in the bottom plate 1404 B of the metal case 404.
  • the pressure control valve 406 it is possible to attach the pressure control valve 406 to the bottom plate 1404 B by sandwiching the flange portion of the pressure control valve 406 by bending the arc-shaped projection 404 F provided on the metal case 404.
  • the through hole 404D is provided in a recess 404E formed substantially at the center of the bottom plate 1404B.
  • the pressure control valve 406 is attached to the bottom plate 1404B after the driving electrolyte is injected from the through hole 404D.
  • the pressure control valve 406 has the same structure as the pressure control valve 208 according to the fourth embodiment shown in FIGS. 9 and 10.
  • An elastic valve body is sealed by pressing the air passage in the pressure control valve 406 in a pressurized state.
  • the gas whose pressure is higher than the force at which the valve body seals the air passage pushes back the valve body, whereby the gas is discharged from the pressure control valve 406 and the pressure of the gas in the metal case 404 is reduced.
  • the pressure control valve 406 is a self-resetting pressure control valve.
  • the terminal plate 403 of the capacitor 401 is made of copper but may be made of iron or stainless steel, in which case the cost can be reduced.
  • terminal plate 403 is made of copper, at the time of mass production, a copper material is formed by cutting or forging, and then nickel plating is applied to the surface to remove plating of the portion of capacitor element 402 in contact with cathode electrode portion 402A.
  • the terminal plate 403 can be manufactured. Copper materials have good heat dissipation and low resistance, but are expensive.
  • the terminal plate 403 When the terminal plate 403 is made of iron or stainless steel, the terminal plate 403 can be manufactured by pressing a nickel-plated steel plate or stainless steel plate in mass production. Iron and stainless steel are low in material cost, and can be greatly reduced by processing method.
  • the shape of the terminal plate 403 is slightly different between when it is made of copper and when it is made of iron or stainless steel.
  • the forming method in the press processing is superior in mass production because the forming speed in the current equipment is superior to the cutting and forging processing.
  • the iron or stainless steel terminal plate 403 be disposed on the terminal plate 403 by a method different from the bending of the protrusion 404F.
  • the pressure control valve 406 can be attached to the terminal plate 403 by lap welding a portion of the flange portion of the pressure control valve 406 and a portion of the terminal plate 403.
  • the capacitor 410 is the same as the electrochemical capacitor 401 except that the through hole 404D of the capacitor 401 and the pressure control valve 406 are provided not on the metal case 404 but on the terminal plate 411.
  • the cathode electrode portion 402A of the capacitor element 402 is connected to the terminal plate 403 and 411, and the anode electrode portion 402B is joined to the inner surface of the bottom plates 1404B and 1412B of the metal cases 404 and 412. ing.
  • the terminal plate 403 of the capacitor 401 and the outer surface of the bottom plate 1412B of the metal case 412 of the capacitor 410 are connected using a plate-like connecting member 413 made of, for example, aluminum, and the capacitors 401 and 410 are connected in series.
  • the metal cases 404 and 412 of the capacitors 401 and 410 can both be formed of aluminum, and can be made lighter than a conventional capacitor unit composed of two types of capacitors using aluminum and iron as metal cases respectively. .
  • pressure regulating valves 406 provided in the capacitors 401 and 410 are provided in the same direction. Therefore, since the gas generated in the capacitors 401 and 410 is exhausted from one side, air permeability can be easily secured when designing a case for mounting the capacitor unit 4001.
  • the terminal plates 820 and 920 are provided with pressure control valves 840 and 940, and the metal cases 830 and 930 are both made of aluminum.
  • the terminal plates 820 and 920 of the capacitors 800 and 900 face in the opposite direction.
  • the pressure control valves 840 and 940 on the terminal plates 820 and 920 are kept in the same direction as shown in FIG. 31, since at least one metal case 830 or 930 becomes a cathode electrode, lithium ions and There is a risk of reaction. Therefore, it is difficult to configure a capacitor unit in which the terminal plates 820 and 920 face in the same direction. Therefore, in this case, half of the plurality of capacitors constituting the capacitor unit are provided with pressure control valves 840 and 940 at the bottom, and exhaust from the bottom side of the capacitors.
  • the gas permeable sheet allows only gas to pass without passing through the liquid. If gas is allowed to permeate while the gas-permeable sheet is in a wet state, there is a risk that the liquid as well as the permeated gas may permeate, and the electrolyte may leak from the capacitor. In addition, even if the electrolytic solution does not leak, the capacitor whose pressure control valve 940 is directed downward is exhausted through the electrolytic solution, so the exhaust efficiency is very bad.
  • the capacitor unit 4001 since both of the capacitors 401 and 410 can be evacuated from one direction from the same direction, the capacitor unit 4001 has high reliability by overcoming the above-mentioned problem.
  • the metal case 930 of the capacitor 900 is difficult to form from aluminum for weight reduction because of the following reasons.
  • the anode electrodes and the cathode electrodes of the capacitor elements 810 and 910 are accommodated in the metal cases 830 and 930 so that they face in the opposite direction. Therefore, even if both terminals are provided with the pressure control valves 840 and 940 on the terminal plates 820 and 920, exhaust can be performed uniformly from one direction.
  • the metal cases 830 and 930 are both made of aluminum
  • the capacitor 900 is electrically connected by welding the electrode case of the negative electrode made of copper and the metal case 930 made of aluminum.
  • the aluminum constituting the metal case 930 While aluminum is active in reactivity, the aluminum constituting the metal case 930 has a negative polarity of the capacitor element 910, and the positive polarity lithium ions in the electrolyte react with the aluminum of the metal case 930 to form an alloy. There is a risk of generating Aluminum that has reacted with lithium ions may elute from the metal case 930 and cause an increase in connection resistance or a decrease in the thickness of the case, which may cause a decrease in reliability.
  • terminal plate 403 metal case 404 is joined to cathode electrode portion 402A of capacitor element 402 by providing pressure control valve 406 on the outer surface of bottom plate 1404B of metal case 404. Since it is possible to use aluminum for the metal case 404 connected to the anode electrode portion 402B without using an aluminum material, the capacitor unit 4001 excellent in high productivity and weight reduction can be configured.
  • the directions of the elements 810 and 910 in the metal cases 830 and 930 are opposite to each other, and series connection is performed.
  • the metal cases 404 and 412 are both made of aluminum, the heat dissipation characteristics of the capacitors 401 and 410 are lower than those of the conventional capacitor unit 6003 having metal cases 830 and 930 made of different metals. Can be aligned. Therefore, variation in characteristic deterioration of capacitor element 402 due to heat generated by charging and discharging of capacitors 401 and 410 can be suppressed.
  • the openings of the metal cases 830 and 930 are sealed on the side surfaces of the terminal plates 820 and 920.
  • a sealing rubber is provided to provide insulation. Therefore, comparing the areas of the terminal plates 820 and 920 in contact with the capacitor elements 810 and 910 and the inner bottom surfaces of the metal cases 830 and 930, the surfaces of the terminal plates 820 and 920 become smaller by the space of the sealing rubber. .
  • the current collectors in the vicinity of the outer periphery of the lead-out electrode portions 811 and 911 connected to the terminal plates 820 and 920 must be brought closer to the center of the capacitor element and joined to the terminal plates 820 and 920. Therefore, the width of the lead-out electrode portions 811 and 911 formed of the exposed current collector is longer than the width of the lead-out electrode portions 812 and 912.
  • the capacitor unit 6003 is not only inefficient in terms of productivity but also uses different capacitors, which makes it difficult to control characteristics.
  • the capacitor unit 4001 since the electrodes connected to the terminal plate 403 and the metal case 404 are the same for the capacitors 401 and 410, they are efficient in productivity, and capacitor elements having the same configuration Since 402 is used together, the capacitor unit 4001 can obtain stable characteristics.
  • connection member 950 located on the outside is irradiated with laser light and welded.
  • the connection member 950 located on the outside is irradiated with laser light and welded.
  • FeAl 2 and FeAl 3 having large crystal grains are generated, and there is a possibility that the joint portion becomes brittle.
  • the metal case 404 is not formed of iron, so the above problem does not occur.
  • FIG. 24A is a partially enlarged cross-sectional view of the capacitor unit 4001.
  • a connection auxiliary member 414 is disposed between the connection member 413 and the terminal plate 403.
  • the connection member 413 is made of an aluminum material.
  • the terminal plate 403 is made of iron or stainless steel.
  • the connection auxiliary member 414 is made of a steel plate or a stainless steel plate.
  • connection auxiliary member 414 By disposing the connection auxiliary member 414 in advance at the portion to be irradiated with the laser light, it is possible to further suppress the possibility of the improvement of the welding strength and the occurrence of the perforation due to the irradiation of the laser light.
  • FeAl 2 and FeAl 3 having large crystal grains are generated in weld marks formed by the welding, which may result in brittle joints.
  • the output of laser light is increased to avoid formation of a brittle composition to generate a composition of FeAl, the laser light may penetrate the iron material.
  • connection auxiliary member 414 opposite to the inner surface in contact with the terminal plate 403 is irradiated with laser light to join the terminal plate 403 and the connection auxiliary member 414, and the connection is made with the terminal plate 403
  • the material of the auxiliary member 414 melts and forms a melted portion 414A.
  • the connection member 413 is superimposed on the connection auxiliary member 414, and laser light is irradiated to the portion of the outer surface of the connection member 413 facing the recess 403K formed in the terminal plate 403 of the connection auxiliary member 414.
  • the material of 414 and the connection member 413 melts and mixes, and it forms the fusion
  • the terminal plate 403 of the capacitor 401 has a surface made of an iron material or a stainless steel which is welded and connected to the connection auxiliary member 414 at the melting portion 414A.
  • the connection auxiliary member 414 has a portion separated from the surface of the terminal plate 403, that is, a portion facing the recess 403K.
  • the connection member 413 is welded by a fusion portion 414 B located on the opposite side of that portion of the connection auxiliary member 414.
  • connection auxiliary member 414 is disposed between the connection member 413 and the terminal plate 403 to form a melting portion 414A in which the iron material melts and mixes together. Further, a composition of FeAl having high welding strength with a laser beam of larger output is generated at a portion where a hole may be generated by laser welding to form a welded portion 414B where iron material and aluminum melt and mix. Thereby, the laser can be irradiated in a wider energy condition range. As a result, it is possible to suppress the occurrence of perforation of the exterior member used for the capacitor, and it is possible to increase the bonding strength between the connection member 413 and the terminal plate 403.
  • a current collector plate made of metal is joined to each of the cathode electrode portion 402A and the anode electrode portion 402B, and after confirming the joining condition and smoothness of the current collector plate and the capacitor element 402, the terminal plates 403 and 411 and metal
  • the capacitor element 402 may be joined through the cases 404 and 412 and the current collector plate.
  • the capacitor element 402 can be bonded to the metal cases 404 and 412 and the terminal plates 403 and 411 after visually recognizing the bonding condition of the cathode electrode portion 402A and the anode electrode portion 402B.
  • the reliability of the capacitors 401 and 410 is obtained. Improve.
  • FIG. 24B is a partially enlarged cross-sectional view of capacitor unit 4002 which is another power storage unit according to the eighth embodiment.
  • the capacitor unit 4002 includes a terminal plate 1403 made of aluminum and a connecting member 1413 made of copper instead of the terminal plate 403 and the connecting member 413 of the capacitor unit 4001 shown in FIG. 24A.
  • a recess 1403 K similar to the recess 403 K is formed on the outer surface of the terminal plate 1403.
  • connection assisting member 414 made of iron or stainless steel is disposed between the terminal plate 1403 and the connecting member 1413. That is, the connection assisting member 414 is abutted against the terminal plate 1403, and the connection assisting member 414 is abutted against the connection member.
  • connection member 1413 opposite to the portion in contact with the terminal plate 1403 of the connection auxiliary member 414 is irradiated with a laser beam, and the terminal plate 1403 and the connection auxiliary member 414 and the connection member 1413 are joined by the melting portion 414C. Do.
  • the melted portion 414 C reaches the terminal plate 1403 of the capacitor 403 from the connection member 1413. As a result, these can be joined with high strength, and furthermore, the generation of a local cell due to the contact between the terminal plate 1403 and the connection member 1413 can be prevented.
  • the bonding strength is Increase.
  • the breaking strength was measured by a tensile test using a sample having a welding diameter of 0.6, the breaking strength was 30 N / mm 2 when the terminal plate 1403 and the connection member 1413 were joined.
  • connection auxiliary member 414 and connection member 1413 are overlapped and welded, the breaking strength between connection member 1413 and connection auxiliary member 414 is 75 N / mm 2 , and connection auxiliary member 414 and terminal plate 1403 The breaking strength in between was 220 N / mm 2 , and the bonding strength was greatly improved.
  • positioned by the outer side consists of copper materials, it is preferable to form a low reflection material in the outer surface, and to weld.
  • FIG. 25 is a side cross-sectional view of a capacitor unit 4003 which is another power storage unit in the eighth embodiment.
  • the capacitor unit 4003 includes capacitors 2401 and 2410 instead of the capacitors 401 and 410 of the capacitor unit 4001.
  • the capacitor 2401 further includes a pipe portion 1401N that communicates with the through hole 404D of the bottom plate 1404B of the metal case 404 of the capacitor 2401 and extends to the hollow portion 1402D of the capacitor element 402. Similar to the tube 1205N of the capacitor 2002 according to the fourth embodiment shown in FIG. 11, the tube 1401N has a root end 2401N connected to the through hole 404D and a tip 3401N opposite to the root end 2401N. The position of the tip 3401N of the tube portion 1401N is from the end 1402B where the anode electrode portion 402B of the capacitor element 402 projects to the center of the direction of the axis 1402C of the capacitor element 402, as in the capacitor 2002 shown in FIG. is there. Thereby, the same effect as that of the tube portion 1205N of the capacitor 2002 according to the fourth embodiment shown in FIG. 11 is obtained.
  • the capacitor 2410 further includes a pipe portion 1410 N that communicates with the through hole 411 A of the terminal plate 411 of the capacitor 24 10 and extends to the hollow portion 1402 D of the capacitor element 402. Similar to the tube portion 1205N of the capacitor 2002 according to the fourth embodiment shown in FIG. 11, the tube portion 1410N has a root end 2410N connected to the through hole 411A and a tip 3410N opposite to the root end 2410N. The position of the tip 3410N of the tube portion 1410N is the center in the direction of the axis 1402C of the capacitor element 402 from the end portion 1402A from which the cathode electrode portion 402A of the capacitor element 402 protrudes, as in the tube portion 1205N of the capacitor 2002 shown in FIG. It is up to. Thereby, the same effect as that of the tube portion 1205N of the capacitor 2002 according to the fourth embodiment shown in FIG. 11 is obtained.
  • FIG. 26 is a top view of capacitor unit 4004 which is a power storage device unit according to the ninth embodiment.
  • Capacitor unit 4004 includes a plurality of capacitor units 4001 according to the eighth embodiment connected in series, a casing 415 accommodating the plurality of capacitor units 4001, and a connection member 413A connecting the plurality of capacitor units 4001. .
  • the housing 415 is made of resin.
  • the connecting member 413A connects the outer surface of the bottom plate 1412B of the metal case 412 of the capacitor 401 of the capacitor unit 4001 to the outer surface of the terminal plate 411 of the capacitor 410.
  • the connecting member 413A is provided with a through hole 1413A for exposing the pressure adjusting valve 406. The gas exhausted through the pressure control valve 406 is output to the outside of the capacitor unit 4004 through the through hole 1413A.
  • the housing 415 has a bottom plate 415 B opposite to the pressure control valve 406.
  • the pressure control valve 406 of the capacitors 401 and 410 is provided in one direction, exhaust can be performed from that direction. Therefore, the bottom plate 415A of the housing 415 can be brought into contact with the electronic device on which the capacitor unit 4004 is mounted, so that the accommodation efficiency of the electronic device can be improved.
  • capacitor unit 4004 In capacitor unit 4004 according to the ninth embodiment, metal cases 404 and 412 of all capacitors 401 and 410 are made of aluminum for weight reduction. The same effect can be obtained by using at least one capacitor unit of the capacitor units 4001 constituting the capacitor unit 4004 as the capacitor unit 4001 according to the eighth embodiment.
  • the storage device according to the present invention is particularly useful in the field of automobiles for which high reliability is required, since voids are not generated in the welded portion and the reliability is high.

Abstract

 蓄電装置は、電極部を有する蓄電素子と、蓄電素子に含浸された電解液と、蓄電素子と電解液とを収容する金属ケースと、金属ケースの開口部に設けられた端子板とを備える。端子板の内面は、蓄電素子の電極部に接合された接合部を有する。接合部には電極部と接合部との間から外に連通する凹部が形成されている。この蓄電装置は、接合した部分にボイドが発生せず、高い信頼性を有する。

Description

蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法
 本発明は各種電子機器やハイブリッド自動車の回生用、あるいは電力貯蔵用に使用される蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法に関する。
 図27Aと図27Bと図27Cはそれぞれ特許文献1に開示されている従来のキャパシタ3008の上面図と側面断面図と底面図である。
 キャパシタ素子321は、正電極と、負電極と、正電極と負電極との間に設けられたセパレータとを備える。正電極と負電極は、アルミニウム箔からなる集電体と、集電体の一端が露出するように集電体上に形成された分極性電極層とを備える。正電極の集電体の露出する一端と負電極の集電体の露出する一端とが互いに反対の方向に位置する状態で、正電極の集電体と負電極の集電体が互いに逆の方向に位置をずらして巻回されている。正電極の集電体の露出する一端と負電極の集電体の露出する一端とは、キャパシタ素子321の両端部からそれぞれ露出して陽極と陰極となる電極として機能する。
 アルミニウム製の金属ケース322は底を有する円筒形状を有し、キャパシタ素子321を電解液と共に収容する。金属ケース322の底の外面には凹部322Aが設けられている。凹部322Aの反対側の底の内面の部分にはキャパシタ素子321の一方の端部に露出する電極を押し当て、凹部322Aの底にレーザー光を照射して電極を金属ケース322にレーザー溶接で接合して機械的かつ電気的に接続する。レーザー溶接により凹部322Aの底には溶接痕322Bが形成される。
 端子板323の上面の一部に外部接続用の端子部323Aが設けられている。端子板323には凹部323Bが設けられている。端子板323の凹部323Bの反対側の面がキャパシタ素子321の他方の端部に露出した電極に押し当て、凹部323Bの底にレーザー光を照射して電極を端子板323にレーザー溶接で接合して機械的かつ電気的に接続する。レーザー溶接により凹部323Bの底には溶接痕323Cが形成される。
 金属ケース322の開口部の近傍は絞り加工されて絞り加工部322Cが形成されている。環状の絶縁部材324は絞り加工部322Cの内周面の上部に配設され、絶縁部材324の上に端子板323が配設されている。
 封止用ゴム325が端子板323の上面の周縁に配設されて、金属ケース322の開口端がカーリング加工されてカーリング加工部322Dが形成される。封止用ゴム325はカーリング加工部322Dで圧縮されて金属ケース322の開口部を封止する。端子板323の上面の一部に外部接続用の端子部323Aが設けられている。端子部323Aは金属ケース322の端より突出代H301だけ突出している。
 端子板323に設けられた注入孔323Dから金属ケース322内に電解液を注入した後、ゴム栓326が注入孔323Dを塞ぐように圧入される。
 従来のキャパシタ3008は、市場で要望されている小型大容量化に対して十分に満足できない。小型大容量化を実現するために、キャパシタ素子321から発生したガスを外部へ放出して金属ケース322内の圧力の上昇を防ぐための圧力調整弁を装着する必要がある。圧力調整弁は、ゴム栓326の代わりに注入孔323Dを塞ぐように端子板323に結合する。注入孔323Dの下端がキャパシタ素子321の一方の端部と密着しているので、キャパシタ素子321に含浸された電解液が毛細管現象によって注入孔323Dを這い上がる。したがって、電解液は圧力調整弁と常時接触するので、圧力調整弁の動作に悪影響を与える場合がある。
 図28Aと図28Bと図28Cはそれぞれキャパシタ3008を用いたキャパシタユニット3009の上面図と側面断面図と底面図である。キャパシタユニット3009はキャパシタ327、328と、キャパシタ327、328を接続する接続バー329を備える。キャパシタ327、328は図27Aから図27Cに示すキャパシタ3008である。接続バー329は中央にテーパが設けられており階段形状を有する。接続バー329の高い部分がキャパシタ327の端子板323に設けられた端子部323Aとレーザー溶接で接合される。レーザー溶接により接続バー329には溶接痕329Aが形成される。接続バー329の低い部分がキャパシタ328の金属ケース322のカーリング加工部322Dとレーザー溶接で接合される。レーザー溶接により接続バー329には溶接痕329Aが形成される。接続バー329によりキャパシタ327、328が直列接続される。
 従来のキャパシタユニット3009では、キャパシタ素子321の両端部に露出した電極が端子板323と金属ケース322にレーザー溶接でそれぞれ接合され、キャパシタ327、328が接続バー329にレーザー溶接で接合される。したがって、レーザー溶接による接合の信頼性がキャパシタ3008(327、328)やキャパシタユニット3009の信頼性に極めて大きく影響する。
 キャパシタ3008(327、328)やキャパシタユニット3009では、金属ケース322や接続バー329、キャパシタ素子321の集電体等の小型で薄い部材どうしをレーザー溶接で接合することは容易ではない。
 また、溶接される2つの部材の当接面にエアーが閉じ込められた場合には、このエアーが溶接時の熱によって膨張し、これによってボイドが発生する恐れがある。このようなボイドが発生した場合には、溶接部に孔が空き溶接の強度を低下させたり、電解液漏れを起こしたりして信頼性を低下させる。
 例えば、端子板323または金属ケース322に対するレーザー光の照射により、閉じ込められたエアーの温度が2000℃に上昇した場合には、そのエアーの圧力と体積の積は7.6倍以上となる。これにより、端子板323または金属ケース322の溶融した部分が飛散する、または溶融部分にエアーが閉じ込められた状態で凝固するので、溶接した部分に孔が空き、またはボイドが発生する場合がある。
 図29Aは、特許文献2に記載されている他の従来のキャパシタ6001の上面断面図である。図29Bはキャパシタ6001の電極巻回ユニット600の正面図である。キャパシタ6001は電気化学キャパシタである。
 図29Aに示すように、電極巻回ユニット600は、正極601と、負極602と、正極601と負極602との間に設けられたセパレータ603とを備える。正極601と負極602とセパレータ603は積層されて巻回軸を中心に巻回されている。電極巻回ユニット600の外周と中心には、リチウム金属(リチウム極)604とリチウム金属(リチウム極)605がそれぞれ配置されている。これらはアルミニウムや鉄から成る外装容器606内に収容され、外装容器606内には電解液が充填されている。リチウム金属604、605は電解液にリチウムイオンを供給する。
 正極601及び負極602は、表裏面を貫通する多数の孔が設けられた多孔材からなる集電体を有する。集電体が多孔材よりなることによって、リチウム金属604、605が電極巻回ユニット600の外周部と中心部に配置されていても、リチウムイオンがリチウム金属604、605から電極巻回ユニット600の集電体の貫通孔を通って自由に各電極間を移動する。これにより、電極巻回ユニット600の負極602及び/又は正極601の全てにリチウムイオンをドーピングできる。
 図29Bに示すように、正極601と負極602の集電体に電極端子607、608がそれぞれ接続されている。電極端子607、608が円筒形状の電極巻回ユニット600の巻回軸に平行に互いに逆方向に延びることで、正極601と負極602が引き出されている。管棒609は巻回軸に位置するリチウム金属605を支持し、同時に電極巻回ユニット600を支持する。
 電極巻回ユニット600の最外周は円筒形状を保持するためにテープ610により固定されている。
 電気化学キャパシタ6001では、リチウムイオンを供給するリチウム金属604、605が電極巻回ユニット600の外周部と中心部の2箇所に設けられていることにより、より早くリチウムイオンを負極602へドーピングさせることができる。
 図30は特許文献3に記載されているさらに他の従来のキャパシタ6002の断面図である。キャパシタ6002は電気化学キャパシタである。
 キャパシタ素子700はセパレータと、正極と、セパレータを介して正極に対向する負極とを備える。正極と負極とセパレータは積層され、巻回軸を中心に巻回されている。正極と負極は、電極部から露出する引き出し電極部701と引き出し電極部702をそれぞれ有する。引き出し電極部701、702が巻回軸に沿って互いに反対の方向に突出するようにずれている。
 正極の引き出し電極部701は金属製の端子板703と溶接などにより接合され、端子板703から外部回路へと正極が引き出される。また、負極の引き出し電極部702は、底を有する筒状の金属ケース704の底に溶接で接合され、金属ケース704の外表面から負極が外部回路へと引き出される。端子板703と金属ケース704が互いに接触しないように、絶縁テープ等の絶縁部材が端子板703と金属ケース704の間に設けられている。
 図29Aと図29Bに示す電気化学キャパシタ6001の外装容器606はアルミニウムや鉄よりなる。図30に示す電気化学キャパシタ6002の外装容器606はアルミニウムや鉄よりなる。
 図31は、互いに直列に接続された2つの電気化学キャパシタ800、900を備えた従来のキャパシタユニット6003の概略側面断面図である。電気化学キャパシタ800、900は図30に示す電気化学キャパシタ6002である。
 キャパシタ800、900を互いに直列接続させるために、キャパシタ800、900内部のキャパシタ素子810、910の電極の極性を上下逆になるように配置されている。
 キャパシタ800では、キャパシタ素子810の引き出し電極部811は負極の銅箔からなり、銅から成る端子板820に接続されている。正極である引き出し電極部812はアルミニウム箔から成り、アルミニウムから成る金属ケース830内底面に接続されている。
 キャパシタ900では、キャパシタ素子910の正極の引き出し電極部911はアルミニウムから成る端子板920と接続され、負極の引き出し電極部912は鉄からなる金属ケース930の内底面に接続されている。
 キャパシタ800、900の端子板820、920は、例えばアルミニウムから成る接続部材950で接続されている。
 キャパシタ800、900は、端子板820、920に形成された貫通孔820A、920Aを塞ぐように、ガス透過シートを備えた圧力調整弁840、940をそれぞれ備える。キャパシタ800、900の内圧が上昇した際に圧力調整弁840、940からガスが抜け、キャパシタ800、900の内圧を下げてキャパシタ800、900の破裂を防止する。
 キャパシタ900の引き出し電極部912と接続されている金属ケース930は、銅材で構成された電極部912と合わせた電気抵抗を考慮すると銅製であることが好ましいが、上記のように金属ケース930は鉄から成る。
 銅から成る金属ケースは、鉄から成る金属ケース930より重く、このキャパシタユニットが、車両や船などの移動体で用いられる際に、その重さが移動体のエネルギー効率などの性能低下を生じさせる。
 キャパシタユニット6003では、鉄よりなるケース930とアルミニウムよりなるケース830の熱伝導率の違いから、キャパシタ800.900間で放熱効率の差が生じる。アルミニウムより放熱効率の低い鉄よりなるケース930を備えたキャパシタ900は早く温度上昇し、アルミよりなるケース830を備えたキャパシタ800より充放電特性の劣化が早くすすむ。
 また、キャパシタ800、900から構成されるキャパシタユニット6003では更なる軽量化が求められている。
特開2007-189188号公報 特開2007-067105号公報 特開2007-258414号公報
 蓄電装置は、電極部を有する蓄電素子と、蓄電素子に含浸された電解液と、蓄電素子と電解液とを収容する金属ケースと、金属ケースの開口部に設けられた端子板とを備える。端子板の内面は、蓄電素子の電極部に接合された接合部を有する。接合部には電極部と接合部との間から外に連通する凹部が形成されている。
 この蓄電装置は、接合した部分にボイドが発生せず、高い信頼性を有する。
図1Aは本発明の実施の形態1における蓄電装置の上面図である。 図1Bは図1Aに示す蓄電装置の線1B-1Bにおける側面断面図である。 図1Cは実施の形態1における蓄電装置の底面図である。 図1Dは実施の形態1における蓄電装置の蓄電素子の部分分解斜視図である。 図2Aは実施の形態1における蓄電装置の接合部の概略図である。 図2Bは実施の形態1における蓄電装置の接合部の概略図である。 図2Cは実施の形態1における蓄電装置の接合部の概略図である。 図2Dは図2Cに示す接合部の線2D-2Dにおける部分拡大断面図である。 図2Eは図2Dに示す接合部の部分拡大断面図である。 図3Aは実施の形態1における蓄電装置の蓄電素子の部分拡大断面図である。 図3Bは実施の形態1における蓄電装置の蓄電素子の部分拡大断面図である。 図3Cは実施の形態1における蓄電装置の蓄電素子の部分拡大断面図である。 図3Dは実施の形態1における蓄電装置の蓄電素子の部分拡大断面図である。 図3Eは実施の形態1における蓄電装置の蓄電素子の部分拡大断面図である。 図3Fは実施の形態1における蓄電装置の蓄電素子の部分拡大断面図である。 図4は本発明の実施の形態2における蓄電装置の蓄電素子の断面図である。 図5Aは本発明の実施の形態3における蓄電装置ユニットの上面図である。 図5Bは実施の形態3における蓄電装置ユニットの側面図である。 図5Cは実施の形態3における蓄電装置ユニットの底面図である。 図6Aは実施の形態3における蓄電装置ユニットの接続板の平面図である。 図6Bは図6Aに示す接続板の線6B-6Bにおける断面図である。 図6Cはレーザー溶接された図6Aに示す接続板の底面図である。 図7Aは実施の形態3における蓄電装置ユニットの他の接続板の平面図である。 図7Bは図7Aに示す接続板の線7B-7Bにおける断面図である。 図8Aは本発明の実施の形態4における蓄電装置の上面図である。 図8Bは図8Aに示す蓄電装置の線8B-8Bにおける側面断面図である。 図8Cは実施の形態4における蓄電装置の底面図である。 図8Dは実施の形態4における蓄電装置の蓄電素子の部分分解斜視図である。 図9は実施の形態4における蓄電装置の圧力調整弁の断面図である。 図10は実施の形態4における蓄電装置の圧力調整弁の分解断面図である。 図11は実施の形態4における他の蓄電装置の側面断面図である。 図12は本発明の実施の形態5における蓄電装置の蓄電素子の断面図である。 図13Aは本発明の実施の形態6における蓄電装置の上面図である。 図13Bは図13Aに示す蓄電装置の線13B-13Bにおける側面断面図である。 図13Cは実施の形態6における蓄電装置の底面図である。 図13Dは実施の形態6における蓄電装置の蓄電素子の部分分解斜視図である。 図14Aは実施の形態6における蓄電装置の上面図である。 図14Bは実施の形態6における蓄電装置の部分拡大側面断面図である。 図15は光の波長と反射率との関係を示す。 図16Aは実施の形態6における蓄電装置の蓄電素子の部分概略断面図である。 図16Bは実施の形態6における蓄電装置の蓄電素子の部分概略断面図である。 図16Cは実施の形態6における蓄電装置の蓄電素子の概略断面図である。 図17は実施の形態6における他の蓄電装置の部分拡大側面断面図である。 図18Aは本発明の実施の形態7における蓄電装置の分解斜視図である。 図18Bは実施の形態7における他の蓄電装置の分解斜視図である。 図19Aは実施の形態7における蓄電装置の端子板の上面図である。 図19Bは実施の形態7における蓄電装置の集電板の上面図である。 図19Cは実施の形態7における蓄電装置の集電板の下面図である。 図19Dは実施の形態7における蓄電装置の金属ケースの下面図である。 図20は実施の形態7における蓄電装置の概略側面断面図である。 図21は実施の形態6における蓄電装置の評価結果を示す。 図22Aは本発明における実施の形態8における蓄電装置ユニットの上面図である。 図22Bは実施の形態8における蓄電装置ユニットの側面断面図である。 図22Cは実施の形態8における蓄電装置ユニットの底面図である。 図22Dは実施の形態8における蓄電装置の蓄電素子の部分分解斜視図である。 図23Aは実施の形態8における蓄電装置ユニットの蓄電装置の上面図である。 図23Bは図23Aに示す蓄電装置の線23B-23Bにおける側面断面図である。 図23Cは実施の形態8における蓄電装置の底面図である。 図24Aは実施の形態8における蓄電装置ユニットの部分拡大断面図である。 図24Bは実施の形態8における他の蓄電装置ユニットの部分拡大断面図である。 図25は実施の形態8におけるさらに他の蓄電装置ユニットの側面断面図である。 図26は本発明の実施の形態9における蓄電装置ユニットの上面図である。 図27Aは従来のキャパシタの上面図である。 図27Bは従来のキャパシタの側面断面図である。 図27Cは従来のキャパシタの底面図である。 図28Aは従来のキャパシタユニットの上面図である。 図28Bは従来のキャパシタユニットの側面図である。 図28Cは従来のキャパシタユニットの底面図である。 図29Aは従来のキャパシタの断面図である。 図29Bは従来のキャパシタのキャパシタ素子の側面図である。 図30は従来のキャパシタの側面断面図である。 図31は従来のキャパシタユニットの概略側面断面図である。
 (実施の形態1)
 図1Aは本発明の実施の形態1における蓄電装置であるキャパシタ3001の上面図である。図1Bは図1Aに示すキャパシタ3001の線1B-1Bにおける側面断面図である。図1Cはキャパシタ3001の底面図である。図1Dはキャパシタ3001の蓄電素子であるキャパシタ素子301の部分分解斜視図である。
 陽極電極301Pはアルミニウム箔からなる集電体301Fと、集電体301Fの端部1301Fを露出するように集電体301F上に設けられた分極性電極層301Hとを有する。陰極電極301Nはアルミニウム箔からなる集電体301Gと、集電体301Gの端部1301Gを露出するように集電体301G上に設けられた分極性電極層301Jとを有する。分極性電極層301H、301Jが絶縁性のセパレータ301Kを介して対向している。端部1301F、1301Gが軸301Cの方向で互いに反対側に位置するように、分極性電極層301H、301Jとセパレータ301Kが積層され、軸301Cを中心に巻回されてキャパシタ素子301が構成されている。キャパシタ素子301は、軸301Cに沿って延びる円筒形状を有し、軸301Cに沿って互いに反対側に位置する端部301A、301Bと、軸301Cに沿って延びる円筒形状を有する側面301Eと有する。キャパシタ素子301の端部301A、301Bはセパレータ301Kの軸301Cの方向の互いに反対側の端部である。キャパシタ素子301は、軸301Cに沿って延びる中空部301Dを有する。陽極電極301Pの集電体301Fの端部1301Fは、キャパシタ素子301の端部301Aから露出する陽極電極部302を形成する。同様に、陰極電極301Nの集電体301Gの端部1301Gは、キャパシタ素子301の端部301Bから露出する陰極電極部303を形成する。キャパシタ素子(蓄電素子)301は電気を蓄積するように構成されている。
 アルミニウム等の金属よりなる金属ケース304は、軸301Cに沿って延びる筒状の側壁1304Aと、側壁1304Aを塞ぐ底板1304Bとを有し、底板1304Bの反対側に位置する開口部1304Cを有する。実施の形態1では、側壁1304Aは円筒形状を有する。金属ケース304は、キャパシタ素子301と、電解液301Mとを収容する。金属ケース304は、底板1304Bの内面から突出する接合部304Aを有する。アルミニウム製の端子板305は金属ケース304の開口部1304Cに設けられて、金属ケース304の内部に面してキャパシタ素子301の端部301Aの陽極電極部302に対向する内面を有する。端子板305は接合部305Aを有し、接合部305Aは陽極電極部302に対向して当接する内面を有する。
 図2Aから図2Cは接合部304A、305Aの概略図である。接合部304Aの内面はキャパシタ素子301の陰極電極部303に対向して当接する。その内面には粗面部304Bが設けられている。粗面部304Bが陰極電極部303に当接するように接合部304Aは金属ケース304内に挿入されたキャパシタ素子301の陰極電極部303を押し潰し、接合部304Aの外面にレーザー光を照射してレーザー溶接することによって金属ケース304と陰極電極部303を機械的、かつ電気的に接合する。これにより陰極電極部303と接合部304Aが溶融して、陰極電極部303の材料と接合部304Aの材料とを含む溶融部304Cが形成される。なお、粗面部304Bの面積は溶融部304Cの面積よりも十分に大きい。
 端子板305は、内面から突出する接合部305Aと、外面に設けられた外部接続用の端子部305Cとを有する。接合部305Aの内面には粗面部305Bが設けられている。粗面部305Bが陽極電極部302に当接するように接合部305Aは陽極電極部302を押し潰し、接合部305Aの外面にレーザー光を照射してレーザー溶接することによって端子板305と陽極電極部302を機械的、かつ電気的に接合する。これにより陽極電極部302と接合部305Aには溶融部305Dが形成される。粗面部305Bの面積は溶融部305Dの面積よりも十分に大きい。
 封口ゴム306は端子板305の外周面と金属ケース304の側壁304Eの内周面の間に配設されて、金属ケース304の開口部1304Cを封止しかつ端子板305と金属ケース304とを絶縁する。金属ケース304の開口部1304Cを囲む開口端1304Dの近傍の部分を絞り加工すると共に、開口端1304Dをカーリング加工することにより封口ゴム306は圧縮されている。
 端子板305には電解液301Mを金属ケース304内に注入する貫通孔1305Aが設けられている。圧力調整弁307は貫通孔1305Aを塞ぐようにして端子板305に結合する。
 金属ケース304の底板1304Bの内面に突出する複数の接合部304Aが放射状に設けられており、キャパシタ素子301の陰極電極部303に当接する。接合部304Aの内面に設けられた粗面部304Bにキャパシタ素子301の端部301Bに設けられた陰極電極部303をレーザー溶接で接合する。また、端子板305の内面に突出する複数の接合部305Aが放射状に設けられており、キャパシタ素子301の陽極電極部302に当接する。接合部305Aに設けられた粗面部305Bにキャパシタ素子301の端部301Aに設けられた陽極電極部302をレーザー溶接で接合する。
 図2Dは図2Cに示すキャパシタ3001の接合部304A、305Aの線2D-2Dにおける部分拡大断面図である。キャパシタ素子301の陰極電極部303に当接する接合部304Aの粗面部304Bには複数の凹部304Zが形成されている。粗面部304Bは陰極電極部303から露呈する部分304Yを有する。凹部304Zは、接合部304Aの粗面部304Bの陰極電極部303に当接する部分304Xから部分304Yまで延びており、すなわち部分304Xから部分304Xの外部に連通している。したがって、粗面部304Bの部分304Xと陰極電極部303との間にエアーが介在していても、このエアーは粗面部304Bの凹部304Zを介して粗面部304Bに沿って移動することができる。したがって、粗面部304Bと陰極電極部303とを溶接する際にこのエアーを溶融部304C外へ逃がすことができ、粗面部304Bと陰極電極部303が溶接された部分(溶融部304C)にボイドが発生せず、粗面部304Bと陰極電極部303の接合の信頼性を大きく向上させることができる。同様に、キャパシタ素子301の陽極電極部302に当接する接合部305Aの粗面部305Bには複数の凹部305Zが形成されている。粗面部305Bは陽極電極部302から露呈する部分305Yを有する。凹部305Zは、接合部305Aの粗面部305Bの陽極電極部302に当接する部分305Xから部分305Yまで延びており、すなわち部分305Xから部分305Xの外部に連通している。したがって、粗面部305Bの部分305Xと陽極電極部302との間にエアーが介在していても、このエアーは粗面部305Bの凹部305Zを介して粗面部305Bに沿って移動することができる。したがって、粗面部305Bと陽極電極部302とを溶接する際にこのエアーを溶融部305D外へ逃がすことができ、粗面部305Bと陽極電極部302が溶接された部分(溶融部305D)にボイドが発生せず、粗面部305Bと陽極電極部302の接合の信頼性を大きく向上させることができる。
 図2Eは、接合部304A(305A)を陰極電極部303(陽極電極部302)に接合する前の部分拡大断面図である。金属ケース304の底板1304Bの外面の部分304Vにレーザー光を照射する。接合前において、接合部304Aは陰極電極部303から間隙303Yを介して離れている。底板1304Bの外面の部分304Vにレーザー光を照射すると、間隙303Yに面している底板1304Bの部分304Wと、間隙303Yに面している陰極電極部303の部分303Xとは共に溶融して混ざり合い溶融部304Cが形成される。溶融部304Cにより間隙303Yは無くなり、溶融部304Cにおいて底板1304Bは接合されている。溶融部304Cは、底板1304Bの材料と陰極電極部303の材料を含有する。同様に、端子板305の外面の部分305Vにレーザー光を照射する。接合前において、接合部305Aは陽極電極部302から間隙302Yを介して離れている。端子板305の外面の部分305Vにレーザー光を照射すると、間隙302Yに面している端子板305の部分305Wと、間隙302Yに面している陽極電極部302の部分302Vとが共に溶融して混ざり合い、溶融部305Cが形成される。溶融部305Cにより間隙302Yは無くなり、溶融部305Cにおいて端子板305は接合されている。溶融部305Cは、端子板305の材料と陽極電極部302の材料を含有する。
 粗面部304B、305Bの表面粗さRaは10μm~500μmとするのが好ましい。表面粗さRaが10μmよりも小さい場合にはエアーが抜け難くなってボイドが発生する可能性がある。表面粗さRaが500μmより大きい場合には、凹部304Z、305Z内で陽極電極部302や陰極電極部303と接合されて凹部304Z、305Zが外部と連通することが妨げられる場合がある。また表面粗さRaが500μmを超える必要なく、エアーを十分逃がすことができる。
 粗面部304B、305Bの面積は、溶融部304C、305Dの面積よりも大きくすることが重要である。粗面部304B、305Bの面積は、溶融部304C、305Dの面積よりも小さい場合にはエアーが十分に抜けずにボイドが発生する場合がある。
 金属ケース304や端子板305を成型するプレス金型の、金属ケース304の接合部304A、端子板305の接合部305Aに対応する部分にエンドミル等を用いて凹凸を設ける。これらのプレス金型で金属板を成型プレスすることで粗面部304B、305Bを形成することができる。
 なお、金属ケース304の内面の接合部304Aと端子板305の内面の接合部305Aとに設けられた粗面部304B、305Bの代わりに、キャパシタ素子301の陽極電極部302と陰極電極部303に粗面部を設けてもよい。また、金属ケース304の内面の接合部304Aと端子板305の内面の接合部305Aとに設けられた粗面部304B、305Bに併せて、さらに、キャパシタ素子301の陽極電極部302と陰極電極部303に粗面部を設けてもよい。
 図3A~図3Cは陽極電極部302を示すキャパシタ素子301の部分拡大断面図である。図1Dに示すキャパシタ素子301の端部301Aから陽極電極301Pの集電体301Fの端部1301Fが露出して陽極電極部302を構成している。図3Aに示すように、端部301Aから陰極電極301Nやセパレータ301Kは露出していない。
 図3Bに示すように、陽極電極部302は、端部301Aから延びる根元部分302Bと、根元部分302Bから延びる素子端部302Aとを有する。根元部分302Bは端部301Aから離れてかつ軸301Cに向かって延びるテーパ形状に成形されている。素子端部302Aは、端部301Aから離れてかつ根元部分302Bよりも大きい角度で軸301Cに向かう方向に延びる。根元部分302Bと素子端部302Aはスェージ加工により成形される。素子端部302Aでは、陽極電極301Pの少なくとも3つの部分が重なり合う。外側に面する素子端部302Aの面の表面粗さRaは10μm~500μmであり、粗面部302Dを構成している。前述のように粗面部302Dは端子板305の接合部305Aに当接してレーザー溶接により接合される。
 図3Cに示す陽極電極部302は、端部301Aから延びる根元部分302Bと、根元部分302Bから延びる素子端部302Cとを有する。根元部分302Bは端部301Aから離れてかつ軸301Cに向かって延びるテーパ形状に成形されている。素子端部302Cは、端部301Aから離れてかつ軸301Cから離れる方向に延びる。根元部分302Bと素子端部302Aはスェージ加工により成形される。素子端部302Aでは、陽極電極301Pの少なくとも3つの部分が重なり合う。外側に面する素子端部302Cの面の表面粗さRaは10μm~500μmであり、粗面部302Dを構成している。前述のように粗面部302Dは端子板305の接合部305Aに当接してレーザー溶接により接合される。
 図3Bに示す素子端部302Aを形成する際には、陽極電極部302の径を狭めて圧縮する方向の力を陽極電極部302に加える。図3Cに示す素子端部302Cでは、素子端部302Aに比べて陽極電極部302に加わる圧縮する力が小さい。したがって、キャパシタ素子301の端部301Aの軸301Cから外周にかけての陽極電極301Pの重なる部分の数を安定にかつ均等にし、かつ素子端部302Cの長さを安定化させることができる。これにより、粗面部302Dの表面粗さRaを安定に10μm~500μmの範囲内に容易に制御することができる。
 素子端部302Cは軸301Cから離れる方向に延びているので、キャパシタ素子301の軸301Cに沿って延びる中空部301Dを覆わない。これにより、陽極電極部302を溶接する際に、端部301Aの中心付近まで溶接する必要がないために作業タクトが短くなる。また、端子板305のうちで厚みの小さい接合部305Aを端子板305の中心部まで設ける必要がないので、ケース304内の圧力による端子板305の変形を抑制することができ、さらに、端子板305の端子部305Cの面積を大きくすることができる。
 図3D~図3Fは陰極電極部303を示すキャパシタ素子301の拡大断面図である。図1Dに示すキャパシタ素子301の端部301Bから陰極電極301Nの集電体301Gの端部1301Gが露出して陰極電極部303を構成している。図3Dに示すように、端部301Bから陽極電極301Pやセパレータ301Kは露出していない。
 図3Eに示すように、陰極電極部303は、端部301Bから延びる根元部分303Bと、根元部分303Bから延びる素子端部303Aとを有する。根元部分303Bは端部301Bから離れてかつ軸301Cに向かって延びるテーパ形状に成形されている。素子端部303Aは、端部301Bから離れてかつ根元部分303Bよりも大きい角度で軸301Cに向かう方向に延びる。根元部分303Bと素子端部303Aはスェージ加工により成形される。素子端部303Aでは、陰極電極301Nの少なくとも3つの部分が重なり合う。外側に面する素子端部303Aの面の表面粗さRaは10μm~500μmであり、粗面部303Dを構成している。前述のように粗面部303Dは端子板305の接合部305Aに当接してレーザー溶接により接合される。
 図3Fに示す陰極電極部303は、端部301Bから延びる根元部分303Bと、根元部分303Bから延びる素子端部303Cとを有する。根元部分303Bは端部301Bから離れてかつ軸301Cに向かって延びるテーパ形状に成形されている。素子端部303Cは、端部301Bから離れてかつ軸301Cから離れる方向に延びる。根元部分303Bと素子端部303Cはスェージ加工により成形される。素子端部303Cでは、陰極電極301Nの少なくとも3つの部分が重なり合う。外側に面する素子端部303Cの面の表面粗さRaは10μm~500μmであり、粗面部303Dを構成している。前述のように粗面部303Dは端子板305の接合部305Aに当接してレーザー溶接により接合される。
 図3Eに示す素子端部303Aを形成する際には、陰極電極部303の径を狭める圧縮する方向の力を陰極電極部303に加える。図3Fに示す素子端部303Cでは、素子端部303Aに比べて陰極電極部303に加わる圧縮する力が小さい。したがって、キャパシタ素子301の端部301Bの軸301Cから外周にかけての陰極電極301Nの重なる部分の数を安定にかつ均等にし、かつ素子端部303Cの長さを安定化させることができる。これにより、粗面部303Dの表面粗さRaを安定に10μm~500μmの範囲内に容易に制御することができる。
 素子端部303Cは軸301Cから離れる方向に延びているので、キャパシタ素子301の軸301Cに沿って延びる中空部301Dを覆わない。これにより、陰極電極部303を溶接する際に、端部301Bの中心付近まで溶接する必要がないために作業タクトが短くなる。また、底板1304Bのうちで厚みの小さい接合部304Aを底板1304Bの中心部まで設ける必要がないので、ケース304内の圧力による底板1304Bの変形を抑制することができる。
 (実施の形態2)
 図4は本発明の実施の形態2によるキャパシタのキャパシタ素子3002の断面図である。図4において、図1Dに示す実施の形態1によるキャパシタ素子301と同じ部分には同じ参照番号を付す。図4に示すキャパシタ素子3002は、図1Dに示す実施の形態1によるキャパシタ素子301と、キャパシタ素子301の端部301Aと端部301Bに設けられた陽極電極部302と陰極電極部303にそれぞれ接合された陽極集電板311と陰極集電板312とを備える。
 陽極集電板311と陰極集電板312はアルミニウムよりなり円板形状を有する。陽極集電板311と陰極集電板312は、図1Aから図1Cに示す端子板305の接合部305Aと金属ケース304の接合部304Aにそれぞれレーザー溶接によって接合される。
 陽極集電板311はキャパシタ素子301の陽極電極部302に当接する面311Bと、面311Bの反対側で端子板305に当接する面311Aとを有する。面311A、311Bには実施の形態1における図2Dに示す粗面部305Bと同様の粗面部が設けられている。これにより、陽極集電板311と陽極電極部302との間と、陽極集電板311と端子板305の接合部305Aとの間にはレーザー溶接時にボイドが発生せず、高い信頼性で陽極集電板311と陽極電極部302とを接合し、陽極集電板311と端子板305の接合部305Aとを接合することができる。
 同様に、陰極集電板312はキャパシタ素子301の陰極電極部303に当接する面312Bと、面312Bの反対側で金属ケース304の底板1304Bに当接する面312Aとを有する。面312A、312Bには実施の形態1における図2Dに示す粗面部304Bと同様の粗面部が設けられている。これにより、陰極集電板312と陰極電極部303との間と、陰極集電板312と底板1304Bの接合部304Aとの間にはレーザー溶接時にボイドが発生せず、高い信頼性で陰極集電板312と陰極電極部303とを接合し、陰極集電板312と底板1304Bの接合部304Aとを接合することができる。
 なお、陽極集電板311と陰極集電板312に設けられた粗面部の代わりに、端子板305と金属ケース304にそれぞれ粗面部を設けても同様の効果が得られる。また、陽極集電板311と陰極集電板312と端子板305と金属ケース304の全てに粗面部を設けても同様の効果が得られる。
 (実施の形態3)
 図5Aから図5Cはそれぞれ本発明の実施の形態3による蓄電装置ユニットであるキャパシタユニット3003の上面図と側面図と底面図である。図5Aから図5Cにおいて、図1Aから図1Dに示す実施の形態1による蓄電装置であるキャパシタ3001と同じ部分には同じ参照番号を付す。キャパシタユニット3003は蓄電装置であるキャパシタ313、314と、キャパシタ313とキャパシタ314とを隣り合うように配置して連結する接続板315とを備える。キャパシタ313、314は実施の形態1による蓄電装置であるキャパシタ3001である。接続板315の端1315はキャパシタ313の端子板305の端子部305Cにレーザー溶接で接合されて溶融部315Aが形成される。接続板315の端2315はキャパシタ314の金属ケース304の側壁1304Aにレーザー溶接で接合されて溶融部315Bを形成している。これにより、キャパシタ313、314は電気的に直列に接続され、かつ機械的に接合される。
 接続板315の端1315はキャパシタ313の端子板305の端子部305Cに当接して接合される面1315Bを有する。端子部305Cと接続板315の端1315の面1315Bのうちの少なくとも1つには図2Aから図2Dに示す粗面部304B、305Bと同様の粗面部が設けられている。これにより、接続板315をキャパシタ313の端子板305の端子部305Cにレーザー溶接する際に発生するボイドを防ぐことができ、高信頼性で接続板315をキャパシタ313の端子板305の端子部305Cに接合することができる。
 また接続板315の端2315はキャパシタ314の金属ケース304の側壁1304Aに当接して接合される面2315Bを有する。側壁1304Aと接続板315の端2315の面2315Bのうちの少なくとも1つには図2Aから図2Dに示す粗面部304B、305Bと同様の粗面部が設けられている。これにより、接続板315をキャパシタ314の金属ケース304の側壁1304Aにレーザー溶接する際に発生するボイドを防ぐことができ、高信頼性で接続板315をキャパシタ314の金属ケース304の側壁1304Aに接合することができる。
 実施の形態1~3においては、互いに接合する部分の少なくとも一方に粗面部が形成されている。粗面部の代わりに、互いに接合する部分のうちの一方に凹部が設けられていてもよい。
 図6Aは、キャパシタユニット3003のキャパシタ313の金属ケース304とキャパシタ314の金属ケース304を結合する接続板316の上面図である。図6Bは図6Aに示す接続板316の線6B-6Bにおける断面図である。
 金属製の接続板316は、並べて配置されたキャパシタ313、314の金属ケース304の底板1304Bに当接する面1316Aと、面1316Aの反対側の面1316Bとを有する。面1316Aには円形状を有する複数の凹部が設けられている。面1316Aには、複数の凹部316Aのそれぞれ反対側に位置する複数の凹部316Bが設けられている。実施の形態3では、1つの金属ケース304に3つの凹部316Aが面している。
 図6Cは溶接された接続板316の底面図である。凹部316Aがキャパシタ313、314の金属ケース304の底板1304Bの接合部304Aの他の部分に面するように接続板316を配設する。この状態で、凹部316Bの底にレーザー光を照射してレーザー溶接し、凹部316Bの底に溶融部316Cを形成する。図6Cは溶接された接続板316の底面図である。これにより、接続板316の凹部316Aと金属ケース304の底板1304Bが接合され、キャパシタ313、314の金属ケース304が互いに結合するキャパシタユニットが得られる。
 凹部316Aは底板1304Bと接合する部分から外部に連通する。接続板316では、互いに接合される接続板316と底板1304Bとの間にエアーが介在していても、このエアーは凹部316Aを通って移動することができる。したがって、溶接時にそのエアーを外部に逃がすことができ、これにより、レーザー溶接で接合した部分にボイドや孔開きの発生を防止することができ、高信頼性で接続板316と金属ケース304の底板1304Bを接合することができる。
 第1の部材と第2の部材を重ね合わせてレーザー溶接する際には、例えば第1の部材にレーザー光が直接照射され、第2の部材にはレーザー光が直接照射されない。第2の部材が熱的な影響を受け易い場合、具体的には、第2の部材の厚みが第1の部材の半分以下で小さい場合、第2の部材の融点が低い場合、第2の部材の熱伝導性が小さく蓄熱され易い場合に、第1と第2の部材が互いに密着していると、レーザー光を直接照射されて溶融した第1の部材の熱が第2の部材にダイレクトに伝播する。これにより第2の部材に局部的に瞬時に蓄熱して部分的に気化して孔が発生する場合がある。
 第1と第2の部材間に隙間を設けた状態でレーザー光を第1の部材に照射すると、溶融した第1の部材が第2の部材に接触してもすぐにその温度が低下する。したがって、溶融した第1の部材を十分に加熱できずに第2の部材の濡れ性が悪く、互いに拡散している2つの部材の金属材料よりなる金属拡散層が形成されず、良好な溶接を行うことが困難になる。
 図6に示す凹部316Aにより、接続板316と金属ケース304の底板1304Bとの間に隙間ができ、かつ接続板316と底板1304Bとが部分的に密着している。したがって、レーザー光が直接照射された接続板316の溶融した部分の熱が底板1304Bに伝播して底板1304Bを加熱するので濡れ性が向上する。これにより、接続板316と底板1304Bを金属拡散層が形成されるように良好に溶接で接合することができる。さらに、上記の隙間を介してエアーを外部へ逃がし、ボイドや孔の発生を防止できる。
 図7Aは、キャパシタユニット3003のキャパシタ313の金属ケース304とキャパシタ314の金属ケース304を結合する他の接続板317の上面図である。図7Bは図7Aに示す接続板317の線7B-7Bにおける断面図である。
 金属製の接続板317は、並べて配置されたキャパシタ313、314の金属ケース304の底板1304Bに当接する面1317Aと、面1317Aの反対側の面1317Bとを有する。面1317Aには溝形状を有する複数の凹部が設けられている。面1317Aには複数の凹部317Aが形成されている。複数の凹部317Aの反対側に1つの凹部317Bが位置している。
 凹部317Aがキャパシタ313、314の金属ケース304の底板1304Bの接合部304Aの他の部分に面するように接続板317を配設する。この状態で、凹部317Bの底にレーザーを照射してレーザー溶接する。これにより、接続板317の凹部317Aと金属ケース304の底板1304Bが接合され、キャパシタ313、314の金属ケース304が互いに結合するキャパシタユニットが得られる。
 凹部316Aまたは凹部317Aと同様の凹部を金属ケース304、端子板305、集電板311、312に設けてよく、同様の効果が得られる。
 (実施の形態4)
 図8Aは本発明の実施の形態4による蓄電装置であるキャパシタ2001の上平面図である。図8Bは図8Aに示すキャパシタ2001の線8B-8Bにおける側面断面図である。図8Cはキャパシタ2001の底面図である。図8Dはキャパシタ2001の蓄電素子であるキャパシタ素子201の部分分解斜視図である。
 陽極電極201Pはアルミニウム箔からなる集電体201Fと、集電体201Fの端部1201Fを露出するように集電体201F上に設けられた分極性電極層201Hとを有する。陰極電極201Nはアルミニウム箔からなる集電体201Gと、集電体201Gの端部1201Gを露出するように集電体201G上に設けられた分極性電極層201Jとを有する。分極性電極層201H、201Jが絶縁性のセパレータ201Kを介して対向している、端部1201F、1201Gが軸201Cの方向で互いに反対側に位置するように、分極性電極層201H、201Jとセパレータ201Kが積層され、軸201Cを中心に巻回されてキャパシタ素子201が構成されている。キャパシタ素子201は、軸201Cに沿って延びる円筒形状を有し、軸201Cに沿って互いに反対側に位置する端部201A、201Bと、軸201Cに沿って延びる円筒形状を有する側面201Eと有する。キャパシタ素子201の端部201A、201Bはセパレータ201Kの軸201Cの方向の互いに反対側の端部である。キャパシタ素子201は、軸201Cに沿って延びる中空部201Dを有する。陽極電極201Pの集電体201Fの端部1201Fは、キャパシタ素子201の端部201Aから露出する陽極電極部202を形成する。同様に、陰極電極201Nの集電体201Gの端部1201Gは、キャパシタ素子201の端部201Bから露出する陰極電極部203を形成する。キャパシタ素子(蓄電素子)201は電気を蓄積するように構成されている。
 アルミニウム等の金属よりなる金属ケース204は、軸201Cに沿って延びる筒状の側壁1204Aと、側壁1204Aを塞ぐ底板1204Bとを有し、底板1204Bの反対側に位置する開口部1204Cを有する。実施の形態4では、側壁1204Aは円筒形状を有する。金属ケース204は、キャパシタ素子201と、電解液201Mとを収容する。金属ケース204は、底板1204Bの内面から突出する複数の接合部204Aを有する。複数の接合部204Aは軸201Cから放射状に延びている。端子板205は陽極電極部202に対向して当接する内面を有する。接合部204Aの内面はキャパシタ素子201の陰極電極部203に対向して当接する。接合部204Aは金属ケース204内に挿入されたキャパシタ素子201の陰極電極部203を押し潰し、接合部204Aの外面にレーザー光を照射してレーザー溶接することによって金属ケース204と陰極電極部203を機械的、かつ電気的に接合する。これにより陰極電極部203と接合部204Aには溶融部204Cが形成される。アルミニウム製の端子板205は金属ケース204の開口部1204Cに設けられて、金属ケース204の内部に面してキャパシタ素子201の端部201Aの陽極電極部202に対向する内面を有する。
 端子板205は、その内面から軸201Cに沿って突出する突出部205Aと、軸201Cから離れる方向に端子板205の下端周縁から突出する環形状を有する鍔部205Bとを有する。端子板205の内面には突出部205Aの周囲に設けられた凹部205L、205Mが設けられている。凹部205L、205Mにはキャパシタ素子201の陽極電極部202が嵌まり込む。突出部205Aはキャパシタ素子201の中空部201D内に嵌まり込む。
 突出部205Aの中心には電解液201Mをケース204内に注入するための貫通孔205Cが設けられている。端子板205は、内面に突出する複数の接合部205Dを有する。複数の接合部205Dは軸201Cから放射状に設けられている。端子板205は、接合部205Dを除く部分に設けられた外部接続用の端子部205Eをさらに有する。接合部205Dは凹部205Mに嵌まり込んだキャパシタ素子201の陽極電極部202を押し潰し、接合部205Dの外面にレーザー光を照射してレーザー溶接することによって端子板205と陽極電極部202を機械的、かつ電気的に接合する。これにより陽極電極部202と接合部205Dには溶融部205Fが形成される。
 凹部205Lの内側面205Gは凹部205Lの底に向かって狭まっているテーパ形状を有する。凹部205Mの内側面205Hは凹部205Mの底に向かって狭まっているテーパ形状を有する。
 絶縁部材206は絶縁材料からなり環形状を有する。絶縁部材206は、端子板205の鍔部205Bの外周面と金属ケース204の内周面の間に配設され、端子板205と金属ケース204とを互いに絶縁する。
 封口ゴム207は端子板205に設けた鍔部205Bの上部に配設されている。封口ゴム207は端子板205の外周面と金属ケース204の側壁204Eの内周面の間に配設されて、金属ケース204の開口部1204Cを封止しかつ端子板205と金属ケース204とを絶縁する。金属ケース204の開口部1204Cを囲む開口端1204Dの近傍の部分を絞り加工すると共に、開口端1204Dをカーリング加工することにより封口ゴム207は圧縮されている。
 圧力調整弁208は端子板205の突出部205Aに設けられた貫通孔205Cを塞ぐように端子板205の外面に結合する。
 図9と図10はそれぞれ圧力調整弁208の断面図と分解断面図である。ステンレス製のキャップ209は、円筒形状を有する側壁209Eと、側壁209Eを塞ぐ底板209Dとを有し、底板209Dの反対側で端子板205に向かって開口する開口部209Fを有する。キャップ209は、側壁209Eの開口部209Fを囲む開口端209Gから外方に突出する鍔部209Aを有する。キャップ209には外部と連通する貫通孔209Bが設けられている。シリコンゴム製の弁体210は、キャップ209の底板209Dに向かって開口する凹部210Cが設けられている。パッキン211はブチルゴムよりなる。ワッシャ212はアルミニウムよりなり、中央部に設けられた貫通孔212Aを有する円環形状を有する。ワッシャ212は周縁からキャップ209の底板209Dに向かって突出する円環状の壁部212Bを有する。ワッシャ212上にパッキン211と弁体210を重ね合わせて載置した状態で、ワッシャ212をキャップ209の開口部209Fからキャップ209内に圧入する。これにより、弁体210ならびにパッキン211が圧縮されて保持され、キャップ209と弁体210とパッキン211とワッシャ212は弁ユニット213を構成する。
 ワッシャ212をキャップ209内へ治具を用いて圧入することにより、圧入寸法を高精度に管理することができる。キャップ209の側壁209Eに切り欠きを設けてキャップ209内に折り曲げることで、キャップ209内に突出する切り起こし部209Cが設けられている。キャップ209にワッシャ212を圧入する際に切り起こし部209Cがワッシャ212に喰い込み、高い結合強度でキャップ209とワッシャ212を結合させることができる。
 アルミニウム製のワッシャ214は中央部に設けられた貫通孔214Aを有するリング形状を有する。円形状を有するガス透過性シート215はポリテトラフルオロエチレン(PTFE)等の多孔質フィルムよりなる。ガス透過性シート215とワッシャ214を変性ポリプロピレン(PP)フィルム216を介して熱融着することによって結合させ、円形状を有するフィルタホルダ217を形成する。端子板205は貫通孔205Cの外面に設けられた凹部205Jを有する。フィルタホルダ217は端子板205の凹部205J内に配設される。
 ブチルゴム製の押さえゴム218は、円筒形状を有する側壁218Bと、側壁218Bを塞ぐ底板218Cとを備える。押さえゴム218は底板218Cの反対側でワッシャ212に向かって開口する開口部218Dを有する。底板218Cの中央部に貫通孔218Aが設けられている。
 押さえゴム218を端子板205の凹部205J内に配置し、押さえゴム218の開口部218D内にフィルタホルダ217を配設する。その後、凹部205Jを覆うように弁ユニット213を配設して、端子板205に設けられた突起205Kをカシメ加工することによってキャップ209の鍔部209Aに圧接させてキャップ209を金属ケース204に機械的に結合させる。これにより、押さえゴム218は圧縮されて保持されて、フィルタホルダ217のガス透過性シート215を押圧する。
 圧力調整弁208の動作を説明する。ガス透過性シート215は電解液204Mを透過せず、ガスのみを透過させる。金属ケース204内のガスの圧力が上昇して所定の圧力を超えると、そのガスはパッキン211ならびに弁体210を押し上げてパッキン211とワッシャ212との間からキャップ209内に抜け、キャップ209に設けられた貫通孔209Bを通してキャップ209の外部に放出される。金属ケース204内のガスの圧力が所定の圧力以下になると、弁体210はパッキン211をワッシャ212に押し付けてパッキン211とワッシャ212との間にガスを通過させない。このように圧力調整弁208は自己復帰型の圧力調整弁として動作する。
 治具により弁ユニット213を高精度に組み立てることができるので、圧力調整弁208の動作バラツキを低減し、圧力調整弁208は安定して動作する。また、弁ユニット213単体で圧力調整弁208としての動作確認を行うことが可能になる。更に、シリコンゴム製の弁体210をブチルゴム製のパッキン211上に重ね合わせて載置することにより、優れた耐熱性を有する圧力調整弁208が得られる。
 実施の形態4によるキャパシタ2001では、端子板205の内面に設けられた凹部205L、205Mにキャパシタ素子201の陽極電極部202を配設して接合されるので、キャパシタ2001を低背化することができ、小型大容量化を図ることができる。
 突出部205Aが、キャパシタ素子201の陽極電極部202と接合する端子板205の接合部205Dより高く端子板205の内面から突出して、キャパシタ素子201の中空部201D内に嵌まり込む。すなわち、突出部205Aに設けられて電解液201Mを金属ケース204内に注入する貫通孔205Cはキャパシタ素子201の陽極電極部202に面していない。したがって、貫通孔205Cを塞ぐように端子板205の外面の凹部205Jに配設された圧力調整弁208は陽極電極部202に対向せずかつ密着しない。これにより、圧力調整弁208が電解液201Mと接触しないので、電解液201Mからの影響を受けずに常に安定した性能で動作する。
 図11は実施の形態4による他の蓄電素子であるキャパシタ2002の側面断面図である。図11において、図8Aから図8Dに示すキャパシタ2001と同じ部分には同じ参照番号を付す。キャパシタ2002の端子板205は、突出部205Aの先端から延びてキャパシタ素子201の中空部201D内に挿入された管部1205Nをさらに有する。管部1205Nは、端子板205の突出部205Aの先端に接合する根元端2205Nと、根元端2205Nの反対側の先端3205Nとを有する。管部1205Nは根元端2205Nで端子板205に設けられた貫通孔205Cに連通している。すなわち、電解液201Mは貫通孔205Cと管部1205Nを通してケース204内に注入される。
 図8Bに示すキャパシタ2001と同様に、図11に示すキャパシタ2002では、突出部205Aは端子板205の接合部205Dより高く突出する。管部1205Nは突出部205Aからケース204内に突出する。管部1205Nは、陽極電極部202が突出する端部201Aすなわち図8Dに示すセパレータ201Kの端子板205に対向する端を超えて突出する。管部1205Nの先端3205Nの位置は、キャパシタ素子201の軸201Cの方向の中央と、キャパシタ素子201の端部201Aすなわちセパレータ201Kの端子板205に対向する端との間であることが好ましい。
 すなわち、管部1205Nの長さは、図8Dに示すキャパシタ素子201の集電体201Fの端部1201Fの軸201Cの方向の長さより大きく、かつ、キャパシタ素子201の軸201Cの方向の長さの半分以下であることが好ましい。
 キャパシタ素子201に含浸されている電解液201Mの一部が金属ケース204内を流動する少量の液体として貯留されている場合がある。管部1205Nは、陽極電極部202が突出する端部201Aを超えて中空部301D内に延びている。管部1205Nはキャパシタ素子201の中空部201D内でセパレータ201Kに当接し、セパレータ201Kは管部1205Nを囲む。管部1205Nの特に先端3205Nを囲むセパレータ201Kにより、電解液201Mの金属ケース204内を流動する一部が管部1201Nの先端3205Nを通って貫通孔205Cから金属ケース204外に漏れることを防止する。キャパシタ2002を図11に示す向きと上下逆に保持して端子板205が下側に位置する場合には、管部1205Nの先端3205Nは、流動する電解液201Mの一部の液面より上側に位置するように管部1205Nの長さを設定する。これにより、上下逆にキャパシタ2002が保持されても、電解液201Mが貫通孔205Cから金属ケース204の外に漏れることを防止できる。上記の効果を得るために、実施の形態2では管部1205Aの長さはキャパシタ素子201の軸201Cの方向の長さの2.5%以上であることが好ましい。
 キャパシタ素子2002が機械的な衝撃を受けた場合、あるいはキャパシタ素子2002に充放電などの電気的負荷をかけることにより電極の表面においてガスが発生し、かつ、同時に電極内の電解液201Mが滲み出た場合、電解液201Mの金属ケース204内を流動する一部の液面が瞬間的に高くなる。管部1205Nの長さがキャパシタ素子201の軸201Cの方向の長さの50%を超えた場合には、この瞬間的に高くなった液面に管部1205Nが接触する可能性がある。この場合には、電解液201Mを貫通孔205Cからケース204の外部に漏れさせることがある。実施の形態4によるキャパシタ素子2002の管部1205Nの長さをキャパシタ素子201の軸201Cの方向の長さの50%以下とすることにより、上記の電解液201Mの漏れを防ぐことができる。
 このように、管部1205Nの長さを、先端3205Nが端部201Aを超えて、かつキャパシタ素子201の軸201Cの方向の長さの中央までと規定することにより、金属ケース204に収容される電解液201Mの量にかかわらず、貫通孔205Cから電解液201Mがケース204外に漏れることを防止でき、電解液201Mの付着による圧力調整弁208の機能低下を抑制することができる。実施の形態4では、管部1205Nの長さは、キャパシタ素子201の軸201Cの方向の長さの2.5%以上で50%以下が好ましい。
 実施の形態4によるキャパシタ2001(2002)では、外部接続用の端子部205Eが、圧力調整弁208より高く突出している。これにより、複数のキャパシタ2001(2002)を接続バーで互いに容易に接続することができる。
 また、端子板205の内面に設けられた凹部205L、205Mには、集電体201Fの端部1201Fよりなる陽極電極部202が収容される。凹部205L、205Mがそれらの底に向かって狭くなるように凹部205L、205Mの内側面205G、205Hがテーパ形状を有することにより、陽極電極部202を構成する集電体201Fの端部1201Fを密集させることができる。したがって、陽極電極部202を端子板205に容易にかつ高い信頼性でレーザー溶接によって接合することができる。
 (実施の形態5)
 図12は本発明の実施の形態5によるキャパシタのキャパシタ素子2003の断面図である。図12において、図8Dに示す実施の形態4によるキャパシタ素子201と同じ部分には同じ参照番号を付す。図12に示すキャパシタ素子3003は、図8Dに示す実施の形態4によるキャパシタ素子201と、キャパシタ素子201の端部201Aと端部201Bに設けられた陽極電極部202と陰極電極部203にそれぞれ接合された陽極集電板219と陰極集電板220とを備える。
 陽極集電板219はアルミニウム製で円板形状を有し、陽極電極部202にレーザー溶接によって接合されている。陰極集電板220はアルミニウム製で円板形状を有し、陰極電極部203にレーザー溶接によって接合されている。陽極集電板219と陰極集電板220は、図8Bに示す端子板205の接合部205Dと金属ケース204の接合部204Aとにレーザー溶接によってそれぞれ接合される。
 実施の形態5によるキャパシタ素子2003を備えたキャパシタは、実施の形態4によるキャパシタ2001と同じ効果を有する。また、陽極電極部202と陽極集電板219とのレーザー溶接による接合の状態と、陰極電極部203と陰極集電板220のレーザー溶接による接合の状態とを目視で確認することができる。
 (実施の形態6)
 図13Aは本発明の実施の形態6における蓄電装置である電気化学キャパシタ1001の上面図である。図13Bは図13Aに示すキャパシタ1001の線13B-13Bにおける側面断面図である。図13Cはキャパシタ1001の底面図である。図13Dはキャパシタ1001の蓄電素子であるキャパシタ素子101の部分分解斜視図である。キャパシタ1001は電気化学キャパシタである。
 陰極電極101Nは銅箔からなる集電体101Fと、集電体101Fの端部1101Fを露出するように集電体101F上に設けられた炭素電極層101Hとを有する。陽極電極101Pはアルミニウム箔からなる集電体101Gと、集電体101Gの端部1101Gを露出するように集電体101G上に設けられた分極性電極層101Jとを有する。電極層101H、101Jが絶縁性のセパレータ101Kを介して対向している。端部1101F、1101Gが軸1101Cに方向で互いに反対側に位置するように、電極層101H、101Jとセパレータ101Kが積層され、軸1101Cを中心に巻回されてキャパシタ素子101が構成されている。キャパシタ素子101は、軸1101Cに沿って延びる円筒形状を有し、軸1101Cに沿って互いに反対側に位置する端部1101A、1101Bと、軸1101Cに沿って延びる円筒形状を有する側面1101Eと有する。キャパシタ素子101の端部1101A、1101Bはセパレータ101Kの軸1101Cの方向の互いに反対側の端部である。キャパシタ素子101は、軸1101Cに沿って延びる中空部1101Dを有する。陰極電極101Nの集電体101Fの端部1101Fは、キャパシタ素子101の端部1101Aから露出する陰極電極部101Aを形成する。同様に、陽極電極101Pの集電体101Gの端部1101Gは、キャパシタ素子101の端部1101Bから露出する陽極電極部101Bを形成する。キャパシタ素子(蓄電素子)101は電気を蓄積するように構成されている。
 陰極電極101Nの炭素電極層101Hは黒鉛、易黒鉛化炭素などの炭素材料よりなる。陽極電極部101Bの分極性電極層101Jは活性炭などの導電多孔性材料よりなる。
 アルミニウム等の金属よりなる金属ケース103は、軸1101Cに沿って延びる筒状の側壁1103Aと、側壁1103Aを塞ぐ底板1103Bとを有し、軸1101Cに反対側に位置する開口部1103Cを有する。実施の形態1では、側壁1103Aは円筒形状を有する。金属ケース103は、キャパシタ素子101と、電解液101Mとを収容する。金属製の端子板102は金属ケース103の開口部1103Cに設けられて、金属ケース103の内部に面してキャパシタ素子101の端部1101Aの陰極電極部101Aに対向する内面を有する。金属ケース103は開口部1103Cを囲む開口端1103Dを有する。電解液101Mはリチウムイオンを含有する。
 封口ゴム104は端子板102と金属ケース103の開口端1103Dとの間に介在して端子板102と共に金属ケース103の開口部1103Cを封止する。
 端子板102は、キャパシタ素子101の形状に則して円板形状を有する円板部102Aと、円板部102Aの外面上に設けられて円板部102Aより径の小さい円柱部102Bとを有する。円板部102Aと円柱部102Bとは一体で形成されている。円板部102Aの内面は端子板102の内面であり、ケース103の内部に面してキャパシタ素子101の陰極電極部101Aに対向して当接する。実施の形態6では円板部102Aの内面と陰極電極部101Aとが溶接により接合されている。実施の形態6では、銅箔よりなる陰極電極部101Aを構成する集電体101Fの端部1101Fと強固に接合するために、端子板102は銅よりなる。円柱部102Bの外面には端子板102と素子101を溶接で接合させるために凹部102Cが形成されている。図13Aに示すように、端子板102において局部的に板厚が小さい凹部102Cの底へ波長1064nmのレーザー光を照射すると、凹部102Cの底の一部が溶融し、端子板102とキャパシタ素子101の陰極電極部101Aとが溶接で接合され、凹部102Cの底に溶融部107Aが形成される。
 図13Aと図13Bに示すように、端子板102の外面には凸部102Dが凹部102Cと異なる位置に形成されている。凸部102Dの上面にリードなどの金属製の接合部材を接合させることによりキャパシタ素子101の陰極電極部101Aは外部回路と電気的に接続される。
 金属ケース103の底板1103Bの内面とキャパシタ素子101の陽極電極部101Bとが溶接により接合される。金属ケース103の外面には凹部103Aが形成されている。凹部103Aの底に波長1064nmのレーザー光を照射することにより凹部103Aの底の一部を溶融させ、キャパシタ素子101の陽極電極部101Bと底板1103Bを溶接で接合し、凹部103Aの底には溶融部107Bが形成される。
 ブチルゴムなどの弾性部材よりなる封口ゴム104はリング形状を有して、金属ケース103の開口部1103Cを封止する端子板102と金属ケース103との間に介在し、端子板102と金属ケース103とを互いに絶縁する。封口ゴム104の外側面と内側面は金属ケース103の開口端1103Dと端子板102とにそれぞれ圧着されて、金属ケース103の開口部1103Cを封止している。
 金属ケース103の側壁1103Aの封口ゴム104に当接する部分には、金属ケース103の外面から内面に向かって絞り加工が施されて絞り加工部103Bが形成されている。金属ケース103の開口端1103Dは内側に曲げられてカーリング加工が施されてカーリング加工部103Cが形成されている。絞り加工部103Bとカーリング加工部103Cより、封口ゴム104が金属ケース103の開口端1103Dに圧着され、大きい強度で金属ケース103の開口部1103Cを封止することができる。
 端子板102にはキャパシタ1001の製造時に金属ケース103内へ電解液101Mを注入するために金属ケース103内部と連通した貫通孔105が形成されている。貫通孔105を塞ぐように、端子板102の外面に圧力調整弁106が配設されている。圧力調整弁106は、金属ケース103内のガスの圧力が所定の圧力を超えないように圧力を調整する。
 図14Aと図14Bはそれぞれキャパシタ1001の上面図と部分拡大側面断面図である。キャパシタ素子101の陰極電極部101Aに接合するためにレーザー光が照射される端子板102の凹部102Cの底に低反射材102Eが配設されている。低反射材102Eは、銅よりなる端子板102に比べて、溶接の際に照射されるレーザー光の反射率がより低い。低反射材102Eは端子板102の外面全体に設けられていてもよく、これにより効率よく低反射材102Eを配設することができる。
 レーザー光が凹部102Cの底に照射されることによって、端子板102の材料と低反射材102Eの材料が溶接の際に溶融して混ざり、再度凝固して溶融部107A(図13A)を形成する。
 したがって、溶融部107Aは端子板102と低反射材102Eの材料がよりなる。溶融部107Aは、溶融部107Aの周囲の溶融しなかった端子板102の部分よりも高い濃度で低反射材102Eの材料を含有する。
 X線マイクロアナリシスを用いて溶融部107Aの断面を解析することにより、溶融部107Aに拡散する低反射材102Eの材料を確認することができる。
 一般的に共に銅よりなる部材を接合する方法として、容易に照射でき、かつ大きな出力が得られるのでイットリウム・アルミニウム・ガーネット(YAG)レーザーによる溶接を選択した。
 YAGレーザーは、YAG結晶にNdイオンなどがドープされたロッドやディスク等の媒質にダイオードレーザー(LD)やランプにより励起して作り出したレーザー光であり、1064nmの波長を有する。
 一般に、銅よりなる2つの部材をYAGレーザー等の短い波長を有するレーザー光を照射しての溶接で接合する場合、銅の表面のレーザーに対する反射率が高いので、溶接する部材にレーザーのエネルギーをほとんど伝えることができない。したがって、レーザーが照射された部材はほとんど溶融しないので、銅よりなる部材はレーザー溶接では高信頼性で接合できない。
 図15は銅とニッケルの光の波長と反射率を示す。反射率Rは、ある面に入射する光束Φと、この面で反射する光束Φrとで以下の式で表される。
R=Φr/Φ
 また、媒質の屈折率をn、反射する面の屈折率をnとすると、光がその面に対して垂直に入射するときの反射率Rは以下の式で表される。
R=(n-n/(n+n
 銅は400nmより長い波長の光に対しては高い反射率を有し、波長1064nmのYAGレーザーに対しては約98.5%の反射率を有する。したがって、銅は波長1064nmのレーザー光で溶接することは困難である。
 アルミニウムは波長1064nmの光に対して約93.5%の反射率を有する。0.8mm厚の板をアルミニウム箔よりなる集電体の端部が突出するキャパシタ素子の端部に当設させた状態で、ファイバー径φ0.6にて、1パルスを10msとしたパルスシーム照射にて約20Jのエネルギーで波長1064nmのレーザー光を照射して、安定に板と集電体の端部とを溶接できた。実施の形態6では、低反射材102Eとして反射率が約94%未満の層を端子板102の凹部102Cの底に設ける。
 ニッケルは、波長が1064nmの光に対して約72%の反射率を有する。低反射材102Eとして無光沢ニッケル層が形成された銅板と、低反射材102Eとして光沢ニッケル層が形成された銅板とで溶接試験を実施し、無光沢ニッケル層を有する銅板がより良好に溶接を実施できた。低反射材102Eの厚みは共に3μmであった。低反射材102Eはメッキで形成することができる。低反射材102Eは、例えばコバルトなどを含有する無機系顔料を溶媒中に分散させた分散液を凹部102Cに塗工し、その後に溶媒を乾燥させて除去することにより形成することができる。この場合には、0.5μm~50μmの厚みで分散液を塗工でき、レーザー光の反射率を低減させて確実に銅よりなる端子板102を銅よりなる集電体101Fに溶接で接合することができる。
 ニッケルの代わりにチタンを含有する無機系顔料を塗布することで低反射材102Eを形成することができ、溶接の信頼性の向上の効果は期待できる。しかし、チタンの標準電極電位は-1.63Vであるので、溶接の際の拡散において端子板102の内面までチタンが到達した際には腐食を生じる可能性がある。すたがって、低反射材102Eにチタンを用いる場合には、チタンを含有する顔料を塗布する厚みを15μm以下と薄くすることで、チタンが溶融して拡散しても端子板102の内面に達しない。
 上記のように、端子板102の凹部102Cの底に設けられた低反射材102Eが凹部102Cの底に照射された波長が1064nmのレーザー光を吸収することによって、レーザー光のエネルギーを端子板102に効率よく伝えることができ、共に銅よりなる端子板102と陰極電極部101Aを高信頼性でレーザー溶接により接合することができる。
 端子板102のレーザー光が照射される凹部102Cの底を覆う低反射材102Eについてさらに説明する。
 低反射材102Eは、無光沢ニッケルメッキ、スズメッキ、クロムメッキ、無光沢銀メッキ、無光沢金メッキ、もしくは酸化コバルト、酸化チタンなどの無機系顔料より形成することが好ましい。
 一般的にニッケルメッキは、無光沢メッキと、光沢メッキに分類される。
 光沢メッキでは、メッキ処理(電解メッキ)を行う際に用いられる電解液(メッキ浴)中に非イオン性ポリアクリルアミドなどの光沢剤が含まれている。光沢メッキはレーザー光を高い反射率で反射するのでレーザー光のエネルギーを端子板102に伝えて端子板102を溶融させることが困難である。低反射材102Eを無光沢メッキで形成することでレーザー光のエネルギーを端子板102に伝えて端子板102を溶融させることができる。
 また、上記のように低反射材102Eを無光沢メッキで端子板102に設けるには、メッキ浴に端子板102を含浸する。したがって、溶融部107Aが形成される部分にのみに部分的に無光沢メッキを施すより、端子板102の一面あるいは表面全面に無光沢メッキを施した方が効率よく低コストで低反射材102Eを形成することができる。
 また、無光沢メッキの方が光沢メッキより表面硬度が低く軟らかい。例えば、無光沢ニッケルメッキの硬度は約150~250Hvであるが、光沢ニッケルメッキの硬度は300~600Hvである。実施の形態6における低反射材102Eとして無光沢ニッケルメッキを施した場合、低反射材102Eの硬度は250Hv以下となる。なおニッケル以外の金属による無光沢メッキも、その金属による光沢メッキより表面硬度が小さくて柔らかい。無光沢銀メッキの硬度は70~90Hkであり、光沢銀メッキの硬度は80~100Hkである。無光沢金メッキの硬度は50~80Hkであり、光沢金メッキの硬度は180~220Hkである。無光沢すずメッキの硬度は3~10Hvであり、光沢すずメッキの硬度は30~50Hkである。低反射材102Eはより低い表面硬度であることが好ましい。
 図14Aに示す低反射材102Eを無光沢ニッケルメッキで端子板102の凹部102Cの底に形成し、レーザー光を照射して溶接接合した場合、端子板102の溶融部分内には主にニッケルが高濃度で溶け込んでいる。
 陰極電極部101Aに当接して接合する端子板102の内面には低反射材を設けず銅が表出していることが好ましい。完成後のキャパシタ1001において端子板102の内面に形成されている低反射材の一部が電圧印加時に電解液101Mと反応し溶出あるいは反応物を生成する。溶出した材料やこの反応物によってキャパシタ1001の内部抵抗が増加しまたは自己放電を促進させる場合がある。
 図16Aから図16Cは実施の形態6におけるキャパシタ素子101の陰極電極部101Aを示す部分概略断面図である。図16Aから図16Cに示すように、キャパシタ素子101の端部1101Aから、図13Dに示す集電体101Fの端部1101Fよりなる陰極電極部101Aが突出している。セパレータ101Kや陽極電極101Pを構成する集電体101Gは端部1101Aから突出していない。
 図16Bに示すように、陰極電極部101Aは、端部1101Aから延びる根元部分101Cと、根元部分101Cから延びる素子端部101Dとを有する。根元部分101Cは端部1101Aから離れてかつ軸1101Cに向かって延びるテーパ形状に成形されている。素子端部101Dは、端部1101Aから離れてかつ根元部分101Cよりも大きい角度で軸1101Cに向かう方向に延びる。根元部分101Cと素子端部101Dはスェージ加工により成形される。素子端部101Dでは、陰極電極101Nの少なくとも3つの部分が重なり合う。素子端部101Dは端子板102と対向する面を有し、その面はスェージ加工により粗面化され、これにより陰極電極部101Aと端子板102の溶接接合の信頼性を高めることができる。
 図16Cに示す陰極電極部101Aは、端部1101Aから延びる根元部分101Cと、根元部分101Cから延びる素子端部101Eとを有する。根元部分101Cは端部1101Aから離れてかつ軸1101Cに向かって延びるテーパ形状に成形されている。素子端部101Eは、端部1101Aから離れてかつ軸1101Cから離れる方向に延びる。根元部分101Cと素子端部101Eはスェージ加工により成形される。素子端部101Eでは、陰極電極101Nの少なくとも3つの部分が重なり合う。素子端部101Eは端子板102と対向する面を有し、その面はスェージ加工により粗面化され、これにより陰極電極部101Aと端子板102の溶接接合の信頼性を高めることができる。
 図16Bに示す素子端部101Dを形成する際には、陰極電極部101Aの径を狭めて圧縮する方向の力を陰極電極部101Aに加える。図16Cに示す素子端部101Eでは、素子端部101Dに比べて陰極電極部101Aに加わる圧縮する力が小さい。したがって、キャパシタ素子101の端部1101Aの軸1101Cから外周にかけての陰極電極101Nの重なる部分の数を安定にかつ均等にし、かつ素子端部101Eの長さを安定化させることができる。さらに、素子端部101Dに比べて、素子端部101Eは端子板102に対向する面の表面粗さを安定化させることができる。図3Dから図3Eに示す実施の形態3によるキャパシタ素子301と同様に、陽極電極部101Bに陰極電極部101Aと同じ根元部分と素子端部を形成してもよい。
 図17は実施の形態6における他の蓄電装置であるキャパシタ1002の部分拡大側面断面図である。図13Aから図14Bに示すキャパシタ1001と同じ部分には同じ参照番号を付す。キャパシタ1002は、キャパシタ1001と同様に、電気化学キャパシタである。図17に示すキャパシタ1002では、キャパシタ素子101の端部1101Aの陰極電極部101Aが金属ケース103の底板1103Bの内面にレーザー溶接により接合されている。キャパシタ1002では、銅よりなる陰極電極部101Aの集電体101Fの端部1101Fに接合するために、金属ケース103(少なくとも底板1103B)は銅よりなる。金属ケース103の底板1103Bに設けられた凹部103Aの底にレーザー光を照射することによって底板1103Bと陰極電極部101Aを溶接して接合する。キャパシタ1002は、底板1103Bの凹部103Aに設けられた低反射材103Zをさらに備える。低反射材103Zは底板1103Bに比べてレーザー光に対して低い反射率を有する。低反射材103Zはキャパシタ1001の低反射材102Eと同様の材料と方法で形成することができる。キャパシタ1002の金属ケース103の底板1103Bの凹部103Aの底に設けられた低反射材103Zにレーザー光を照射することによって、レーザー光のエネルギーが効率よく底板1103Bに伝わり、高い信頼性で底板1103B(金属ケース103)と陰極電極部101Aとを溶接で接合することができる。
 (実施の形態7)
 図18Aは実施の形態7における蓄電装置であるキャパシタ1003の分解斜視図である。キャパシタ1003は電気化学キャパシタである。図18Aにおいて、図13Aから図16Cに示す実施の形態6によるキャパシタ1001と同じ部分には同じ参照番号を付す。キャパシタ1003は実施の形態6によるキャパシタ1001の端子板102の代わりに金属製の端子板109を備え、陰極集電板108Aと陽極集電板108Bをさらに備える。
 実施の形態7におけるキャパシタ1003では蓄電素子であるキャパシタ素子101の端部1101Aに設けられた陰極電極部101Aと、端部1101Bに設けられた陽極電極部101Bとに、陰極集電板108Aと陽極集電板108Bとがレーザー溶接によりそれぞれ接合されている。キャパシタ素子101の反対側で陰極集電板108Aは端子板109の内面が溶接で接合されている。また、キャパシタ素子101の反対側で陽極集電板108Bは金属ケース103の底板1103Bの内面に溶接で接合されている。集電板108Aの軸1101C上には、キャパシタ素子101の中空部1101Dに連通する貫通孔108Cが設けられている。貫通孔108Cを通して電解液101Mを金属ケース103内に注入する。
 端子板109の円柱部109Bの中心には電解液101Mを注入するための貫通孔110が形成されている。貫通孔110を蔽うように、圧力調整弁106が端子板109の外面に設けられている。
 キャパシタ素子101が端子板109や金属ケース103と接合される前に、キャパシタ素子101の陰極電極部101Aおよび陽極電極部101Bが陰極集電板108Aおよび陽極集電板108Bにそれぞれ溶接で接合される。したがって、キャパシタ素子101と端子板109および金属ケース103とを高信頼性で溶接により接合することができる。
 端子板109は実施の形態6による端子板102と同様に、一体に形成された円板部109Aと円柱部109Bとを有する。
 陰極集電板108Aは端子板109の円板部109Aと波長1064nmのレーザー光の照射によるレーザー溶接で接合され、陽極集電板108Bは金属ケース103の底板1103Bの内面に波長1064nmのレーザー光の照射によるレーザー溶接で接合される。なお、集電板108A、108Bは巻回されたキャパシタ素子101に則して円板形状を有する、他の形状を有してもよい。
 キャパシタ素子101の陰極電極部101Aの銅よりなる集電体101Fの端部1101Fに陰極集電板108Aを介して結合する端子板109は銅もしくは、鉄、ステンレスのいずれかからなる。陰極集電板108Aは銅よりなる。キャパシタ素子101の陰極電極部101Aのアルミニウムよりなる集電体101Fの端部1101Fに陰極集電板108Aを介して結合する金属ケース103(底板1103B)はアルミニウムよりなる。
 図18Bは実施の形態7における他の蓄電装置であるキャパシタ1004の分解斜視図である。キャパシタ1004はキャパシタ1003と同様、電気化学キャパシタである。図18Bにおいて、図18Aに示すキャパシタ1003と同じ部分には同じ参照番号を付す。キャパシタ1004では、集電板108A、108Bが接合されたキャパシタ素子101が上下逆に金属ケース103に収容されている。すなわち、陰極電極部101Aに接合する陰極集電板108Aが金属ケース103の底板1103Bに波長1064nmのレーザー光の照射によるレーザー溶接で接合し、陽極電極部101Bに接合する陽極集電板108Bが端子板109に波長1064nmのレーザー光の照射によるレーザー溶接で接合する。キャパシタ1004では、キャパシタ素子101の陰極電極部101Aの銅よりなる集電体101Fの端部1101Fに陰極集電板108Aを介して結合する金属ケース103(底板1103B)は銅もしくは、鉄、ステンレスのいずれかからなる。キャパシタ素子101の陰極電極部101Aのアルミニウムよりなる集電体101Fの端部1101Fに陰極集電板108Aを介して結合する端子板109はアルミニウムよりなる。
 図19Aはキャパシタ1003の端子板109の上面図である。図19Bはキャパシタ1003の陰極集電板108Aの上面図である。図19Cはキャパシタ1003の陽極集電板108Bの底面図である。図19Dは金属ケース103の底面図である。
 端子板109と陰極集電板108Aと陽極集電板108Bと金属ケース103の底板1103Bにそれぞれレーザー光により形成された溶融部111A、溶融部111B、溶融部111C、溶融部111Dを示す。溶融部111Aは端子板109の円柱部109Bの周囲の円板部109Aの部分に形成される。溶融部111Bは陰極集電板108Aの貫通孔108Cを中心に放射状に形成されている。溶融部111Cは陽極集電板108Bに軸1101Cを中心に放射状に形成されている。溶融部111Dは凹部103Aに沿って放射状に形成されている。端子板109、陰極集電板108Aは銅よりなるので、実施の形態6による低反射材102Eと同様の低反射材108Eを少なくとも溶融部111Bが形成される部分に設けることで、安定に陰極電極部101Aと陰極集電板108Aを接合することができる。また、陰極集電板108Aと接合される端子板109も銅からなる場合は、溶融部111Aが形成される円板部109Aに予め実施の形態6による低反射材102Eと同様の低反射材109Eを形成する。
 図20はキャパシタ1003の側面断面図である。
 実施の形態7におけるキャパシタ1003では、実施の形態6によるキャパシタ1001と同様に、陰極集電板108Aの溶融した部分に低反射材の材料が溶け込む。溶融した部分は陰極集電板108Aを貫通する。陰極集電板108Aの溶融した部分の周囲に低反射材が残留している場合、陰極集電板108Aの溶融した部分(溶融部111B)は、溶融部111Bの周囲の陰極集電板108Aの部分に比べて高濃度の低反射材の材料を含む。また、陰極集電板108Aを溶接した後に陰極集電板108Aの表面に低反射材が残留していない場合は、陰極集電板108Aが溶融している部分に含まれている低反射材と溶融していない部分に含まれている低反射材の量を比較する。
 実施の形態7では陰極集電板108Aが端子板109と溶接接合されるので、陰極集電板108Aの中心に設けられて貫通孔110に連通する貫通孔108Cにより、製造時により効率的に金属ケース103内に電解液101Mを注入することができる。
 実施の形態6と同様に、キャパシタ素子101の陰極電極部101Aと陰極集電板108Aとをレーザー光によって溶接接合するために陰極集電板108Aの陰極電極部101Aとの接合面に無光沢メッキの低反射材を設けない方が好ましい。これによりキャパシタ1003の信頼性を向上させることができる。
 実施の形態6におけるキャパシタ1001の性能評価試験を行った。キャパシタ素子101の陰極電極部101Aの銅箔よりなる集電体101Fの端部1101Fにスェージ加工を施して、図16Cに示す根元部分101Cと素子端部101Eを形成した。素子端部101Eの外面に、表面処理条件の異なる0.8mm厚の銅板を当接させ、ファイバー径φ0.6から1パルスの照射時間を10msとして57.3J~58.3Jの照射エネルギーで波長が1064nmのYAGレーザー光をパルスシーム照射して、陰極電極部101Aの素子端部101Eを銅板に接合した。接続状態を外観観察と引き剥がしテストにて確認した。実施例1では、銅板に約3μm厚の無光沢ニッケルメッキを施して低反射材を形成した。比較例101では、銅板に約3μm厚の光沢ニッケルメッキを施した。比較例102では、銅板の表面に直接レーザー光を照射した。外観観察では、レーザー光を照射した部分に溶融部が残っているか否かで銅板と陰極電極部101Aとの接合の状態を判定した。また、引き剥がしテストでは、銅板の凝集剥離もしくは銅箔の凝集隔離が発生したか否かで銅板と陰極電極部101Aとの接合の状態を判定した。図21に実施例1と比較例101、102の外観観察と引き剥がしテストの結果を示す。
 図21に示すように、比較例101、102ではどの条件においてもレーザー光が銅板の表面で反射し、集電板および端子板の表面へ溶融部を残すことができなかった。実施例1では、銅板の表面に無光沢ニッケルメッキで形成された低反射材がレーザーの光を吸収することによって銅板から銅箔へレーザー光のエネルギーを伝え、レーザー光が照射された部分を溶融させて、良好に銅板と陰極電極部101Aとを接合できた。
 波長が1064nmのレーザー光を照射して陰極電極部、集電板、端子板等の銅よりなる部材を溶接する場合、それらの部材の表面に無光沢ニッケルメッキで低反射材を形成することによって、レーザー光を照射して安定にそれらの部材を溶接接合することができた。
 以上、実施の形態6、7による蓄電装置であるキャパシタ1001~1004では、銅よりなる陰極電極部101Aと、端子板109や金属ケース103等の銅よりなる部材のうちレーザー光を照射する部分に低反射材を設ける。低反射材は、波長が1064nmであるレーザー光の反射率が94%未満である。その低反射材にレーザー光を照射して陰極電極部101Aを溶接接合する。低反射材に照射されたレーザー光を低反射材が一旦吸収し、レーザー光のエネルギーを接合したい銅よりなる部材に伝えることができる。したがって、銅材を十分溶融させることができ、波長が1064nmのレーザー光を用いて高信頼性でその部材を溶接することができ、信頼性の高い蓄電装置すなわちキャパシタ1001~1004を得ることができる。
 (実施の形態8)
 図22Aと図22Bと図22Cはそれぞれ本発明の実施の形態8における蓄電装置ユニットであるキャパシタユニット4001の上面図、側面断面図、底面図である。キャパシタユニット4001は、蓄電装置であるキャパシタ401、410と、キャパシタ401、410を接続する接続部材413とを備える。実施の形態8ではキャパシタ401、410は電気化学キャパシタである。キャパシタ401、410は蓄電素子であるキャパシタ素子402を備える。
 図22Dはキャパシタ素子402の部分分解斜視図である。陰極電極402Nは銅箔からなる集電体402Fと、集電体402Fの端部1402Fを露出するように集電体402F上に設けられた炭素電極層402Hとを有する。陽極電極402Pはアルミニウム箔からなる集電体402Gと、集電体402Gの端部1402Gを露出するように集電体402G上に設けられた分極性電極層402Jとを有する。電極層402H、402Jが絶縁性のセパレータ402Kを介して対向している。端部1402F、1402Gが軸1402Cに方向で互いに反対側に位置するように、電極層402H、402Jとセパレータ402Kが積層され、軸1402Cを中心に巻回されてキャパシタ素子402が構成されている。キャパシタ素子402は、軸1402Cに沿って延びる円筒形状を有し、軸1402Cに沿って互いに反対側に位置する端部1402A、1402Bと、軸1402Cに沿って延びる円筒形状を有する側面402Eと有する。キャパシタ素子402の端部1402A、1402Bはセパレータ402Kの軸1402Cの方向の互いに反対側の端部である。キャパシタ素子402は、軸1402Cに沿って延びる中空部1402Dを有する。陰極電極402Nの集電体402Fの端部1402Fは、キャパシタ素子402の端部1402Aから露出する陰極電極部402Aを形成する。同様に、陽極電極402Pの集電体402Gの端部1402Gは、キャパシタ素子402の端部1402Bから露出する陽極電極部402Bを形成する。キャパシタ素子(蓄電素子)402は電気を蓄積するように構成されている。
 陰極電極402Nの炭素電極層402Hは黒鉛、易黒鉛化炭素などの炭素材料よりなり、リチウムイオンを吸蔵している。陽極電極部402Bの分極性電極層402Jは活性炭などの導電多孔性材料よりなる。
 キャパシタ410は、金属ケース412と端子板411と圧力調整弁406を備える。アルミニウム等の金属よりなる金属ケース412は、軸1402Cに沿って延びる筒状の側壁1412Aと、側壁1412Aを塞ぐ底板1412Bとを有し、底板1412Bの反対側に位置する開口部1412Cを有する。実施の形態8では、側壁1412Aは円筒形状を有する。金属ケース412は、キャパシタ素子402と、電解液402Mとを収容する。金属製の端子板411は金属ケース412の開口部1412Cに設けられて、金属ケース412の内部に面してキャパシタ素子402の端部1402Aの陰極電極部402Aに対向する内面を有する。金属ケース412は開口部1412Cを囲む開口端1412Dを有する。
 端子板411には貫通孔411Aが設けられている。貫通孔411Aを封止するように、圧力調整弁406が端子板411の外面に設けられている。
 図23Aはキャパシタ401の上面図である。図23Bは図23Aに示すキャパシタ401の線23B-23Bにおける側面断面図である。図23Cはキャパシタ401の底面図である。
 陰極電極402Nと陽極電極402Pとセパレータ402Kを巻回して作製されたキャパシタ素子402の端部1402Aから集電体402Fの端部1402Fよりなる陰極電極部402Aが密集して突出する。端部1402Bからは集電体402Gの端部1402Gよりなる陽極電極部402Bが密集して突出する。
 銅よりなる端子板403はキャパシタ素子402の陰極電極部402Aと対向している。端子板403のキャパシタ素子402と対向する内面と陰極電極部402Aとが溶接により接合されて互いに電気的に接続されている。端子板403には溶接により溶融部403Aが形成される。
 アルミニウム等の金属よりなる金属ケース404は、軸1402Cに沿って延びる筒状の側壁1404Aと、側壁1404Aを塞ぐ底板1404Bとを有し、底板1404Bの反対側に位置する開口部1404Cを有する。実施の形態8では、側壁1404Aは円筒形状を有する。金属ケース404は、キャパシタ素子402と、電解液402Mとを収容する。金属製の端子板403は金属ケース404の開口部1404Cに設けられて、金属ケース404の内部に面してキャパシタ素子402の端部1402Aの陰極電極部402Aに対向する内面を有する。金属ケース404は開口部1404Cを囲む開口端1404Dを有する。陽極電極部402Bと金属ケース404の底板1404Bの内面とが溶接で接合されて互いに電気的に接続されている。金属ケース404の底板1404Bの外面には溶融部404Aが形成されている。
 金属ケース404はアルミニウムの他にアルミニウム合金よりなっていてもよい。
 ブチルゴムなどの弾性部材よりなる封口ゴム405はリング形状を有して、金属ケース404の開口部1404Cを封止する端子板411と金属ケース404との間に介在し、端子板411と金属ケース404とを互いに絶縁する。封口ゴム405の外側面と内側面は金属ケース404の開口端1404Dと端子板411とにそれぞれ圧着されて、金属ケース404の開口部1404Cを封止している。
 金属ケース404の側壁1404Aの封口ゴム405に当接する部分には、金属ケース404の外面から内面に向かって絞り加工が施されて絞り加工部404Bが形成されている。金属ケース404の開口端1404Dは内側に曲げられてカーリング加工が施されてカーリング加工部404Cが形成されている。絞り加工部404Bとカーリング加工部404Cより、封口ゴム405が金属ケース404の開口端1404Dに圧着され、大きい強度で金属ケース404の開口部1404Cを封止することができる。
 圧力調整弁406は金属ケース404の底板1404Bに形成された貫通孔404Dを封止するように、底板1404Bの外面に設けられている。
 実施の形態8では、金属ケース404に設けられた円弧状の突起404Fを折り曲げることにより圧力調整弁406のフランジ部を挟み、圧力調整弁406を底板1404Bに取り付けることができる。
 貫通孔404Dは、底板1404Bの略中心に形成された凹部404Eに設けられている。キャパシタ401を組み立て時に、キャパシタ素子402を金属ケース404内部へ収容し、開口部1404Cを封止した後に、貫通孔404Dを通して電解液402Mを金属ケース404内へ注入する。
 圧力調整弁406は駆動用電解液を貫通孔404Dから注入した後に底板1404Bに取り付けられる。
 圧力調整弁406は、図9と図10に示す実施の形態4による圧力調整弁208と同様の構造を有する。弾性を有する弁体が圧力調整弁406内の通気路を加圧された状態で圧着することにより封止している。この弁体が通気路を封止する力より圧力の高いガスが弁体を押し返すことにより、ガスが圧力調整弁406から排出され、金属ケース404内のガスの圧力を下げる。そして、金属ケース404内の圧力が弁体の圧着力より弱まった時、弁体が再び圧力調整弁406の通気路を封止する。このように、圧力調整弁406は自己復帰型の圧力調整弁である。
 キャパシタ401の端子板403は銅よりなるが、鉄もしくはステンレスよりなっていてもよく、この場合にはコストを下げることができる。
 端子板403が銅よりなる場合には、量産時には、銅材を切削加工もしくは鍛造加工で成形した後、表面にニッケルめっきを施し、キャパシタ素子402の陰極電極部402Aに当接する部分のめっきを除去することで端子板403を作製することができる。銅材は、良好な放熱性と小さい抵抗を有するが、コストが高い。
 端子板403が鉄もしくはステンレスよりなる場合には、量産時には、ニッケルめっき鋼板もしくはステンレス板をプレス加工することにより端子板403を作製することができる。鉄やステンレスは、材料コストが低く、かつ加工工法でも大きなコスト低減が可能である。
 端子板403が銅よりなる場合と鉄もしくはステンレスよりなる場合とではその形状が若干異なる。
 端子板403が鉄もしくはステンレス製である場合、上記のようにプレス加工での成形方法が現行の設備では切削加工や鍛造加工より形成速度が優れているため、量産面では優れている。
 この場合、図23Bに示す圧力調整弁406を取り付けるために形成される円弧状の突起404Fの成形が困難であるという面を有する。したがって、鉄もしくはステンレス製の端子板403は突起404Fの折り曲げとは異なる方法により端子板403に配設することが好ましい。例えば、圧力調整弁406のフランジ部の一部分と端子板403の一部分を重ね溶接することにより圧力調整弁406を端子板403に取り付けることができる。
 次に、キャパシタ401、410を備えたキャパシタユニット4001の構造を説明する。
 キャパシタ410は、キャパシタ401の貫通孔404Dと圧力調整弁406が金属ケース404ではなく端子板411に設けられていること以外は電気化学キャパシタ401と同様である。
 図22Bに示すように、キャパシタ401、410においてキャパシタ素子402の陰極電極部402Aが端子板403、411と接続され、陽極電極部402Bが金属ケース404、412の底板1404B、1412Bの内面に接合されている。キャパシタ401の端子板403とキャパシタ410の金属ケース412の底板1412Bの外面とが、例えばアルミニウムから成る板状の接続部材413を用いて接続され、キャパシタ401、410は直列接続されている。
 キャパシタ401、410の金属ケース404、412は共にアルミニウムから形成することができ、アルミニウムと鉄を夫々金属ケースに用いた2種類のキャパシタから構成される従来のキャパシタユニットより軽量化を図ることができる。
 さらに、キャパシタ401、410に設けられている圧力調整弁406が同じ方向に設けられている。したがって、キャパシタ401、410内で生じたガスが一方から排気されるので、キャパシタユニット4001を実装するケースを設計する際に、容易に通気性を確保できる。
 図31に示す従来のキャパシタユニット6003では、端子板820、920に圧力調整弁840、940が設けられるとともに、金属ケース830、930はどちらもアルミニウムよりなる。この場合には、キャパシタ800、900の端子板820、920が逆方向に向く。図31に示すように端子板820、920上の圧力調整弁840、940が同一方向に向いた状態を維持しようとしても、少なくとも一方の金属ケース830または930が陰極電極となるので、リチウムイオンと反応する恐れがある。したがって、端子板820、920が同一の方向を向いたキャパシタユニットを構成することは困難である。したがって、この場合、キャパシタユニットを構成する複数のキャパシタのうちの半分のキャパシタは底に圧力調整弁840、940が設けられ、キャパシタの底側から排気する。
 キャパシタ900の端子板920が下側に向いている場合は、金属ケース930内部に収容されている電解液はキャパシタの底、つまり、端子板920内面側に溜まる。したがって、この電解液が、圧力調整弁940の通気路途中に設けられているガス透過シート全面を積極的に濡らしてしまう。
 ガス透過シートは液体を透過させずに気体だけを透過させる。ガス透過シートが濡れた状態で気体を透過させると、透過する気体とともに液体も一緒に透過する危険性があり、キャパシタから電解液が漏れる可能性がある。また、電解液が漏れなくても、圧力調整弁940が下方に向くキャパシタは電解液を通って排気されていくので、非常に排気効率が悪い。
 実施の形態8におけるキャパシタユニット4001では、キャパシタ401、410の双方とも同じ方向からも一方から排気することが可能なので、上記の課題を克服して、キャパシタユニット4001は高い信頼性を有する。
 図31に示す従来のキャパシタユニット6003において、キャパシタ900の金属ケース930を軽量化のためにアルミニウムから形成することは以下の理由で困難である。キャパシタユニット6003では、キャパシタ素子810、910の陽極電極と陰極電極が互いに逆方向に向くように金属ケース830、930へ収容されている。したがって、どちらのキャパシタも端子板820、920に圧力調整弁840、940が設けられていても一方方向から統一して排気を行うことができる。金属ケース830、930がどちらもアルミニウム製である場合、キャパシタ900は、銅から成る負極の取り出し電極部とアルミニウムから成る金属ケース930とが溶接などで接合され、電気的に接続される。
 アルミニウムが反応性において活性であるとともに、金属ケース930を構成するアルミニウムがキャパシタ素子910の極性は負となり、電解液中の正の極性を帯びたリチウムイオンと金属ケース930のアルミニウムが反応して合金を生成してしまう恐れがある。リチウムイオンと反応したアルミニウムは金属ケース930から溶出して接続抵抗の上昇や、ケースの肉厚が部分的に薄化する可能性があるので、信頼性の低下を引き起こす可能性がある。
 従って、図31に示す従来のキャパシタユニット6003ではどちらの金属ケース830、930もアルミニウム製にしてキャパシタユニットを構成することは信頼性の観点から困難である。
 これに対して、実施の形態8におけるキャパシタユニット4001では金属ケース404の底板1404Bの外面に圧力調整弁406を設けることによって、キャパシタ素子402の陰極電極部402Aに接合された端子板403金属ケース404にアルミニウム材を用いる必要なく、陽極電極部402Bに接続された金属ケース404にアルミニウムを使用できるので、高生産性や軽量化において優れたキャパシタユニット4001を構成することができる。
 図31に示す従来のキャパシタユニット6003では金属ケース830、930の中で、素子810、910の方向を互いに逆方向にし、直列接続を行っている。
 実施の形態8におけるキャパシタユニット4001では、金属ケース404、412は共にアルミニウムよりなるので、異なる金属よりなる金属ケース830、930を備えた従来のキャパシタユニット6003に比べ、キャパシタ401、410における放熱特性を揃えることができる。したがって、キャパシタ401、410の充放電で生じる熱によるキャパシタ素子402の特性劣化のばらつきを抑えることができる。
 図31に示す従来のキャパシタ6003では、キャパシタ素子810、910と端子板820、920とを電気的に接続させる場合、端子板820、920の側面には金属ケース830、930の開口部を封止および絶縁を行うために封口ゴムが設けられている。したがって、端子板820、920のキャパシタ素子810、910と接合する面と金属ケース830、930の内底面の面積を比べると、封口ゴムのスペース分だけ端子板820、920の面の方が小さくなる。
 したがって、端子板820、920と接続する引き出し電極部811、911の外周近傍の集電体をキャパシタ素子の中心に向かって寄せて端子板820、920と接合させなければならない。そのために、露出した集電体で構成されている引き出し電極部811、911の幅は引き出し電極部812、912の幅より長く構成されている。
 このように、正極および負極について2種類ずつ用意し、従来のキャパシタユニット6003を構成するためには異なる2種類のキャパシタ素子810、910を用意する必要が生じる。したがって、キャパシタユニット6003は、生産性の面で非効率であるだけでなく、異なるキャパシタを用いているので、特性の制御が困難である。
 これに対して、実施の形態8によるキャパシタユニット4001では、端子板403、金属ケース404とそれぞれ接続される電極がキャパシタ401、410で同じなので、生産性において効率的であり、同じ構成のキャパシタ素子402を共に使用しているのでキャパシタユニット4001は安定な特性が得られる。
 また、従来のキャパシタユニット6003の鉄から成る金属ケース930とアルミニウムから成る接続部材950とを溶接などにより接合した場合、外側にある接続部材950にレーザー光を照射して溶接する。その溶接により形成される溶融部には結晶粒が大きいFeAl、FeAlが生成され、接合箇所が脆くなる恐れがある。
 実施の形態8におけるキャパシタユニット4001では金属ケース404は鉄で形成されていないので、上記課題を生じない。
 図24Aはキャパシタユニット4001の部分拡大断面図である。接続部材413と端子板403の間に接続補助部材414が配設されている。接続部材413はアルミニウム材料よりなる。端子板403は鉄材もしくはステンレス材よりなる。接続補助部材414は鋼板やステンレス板よりなる。
 レーザー光を照射する部分に接続補助部材414を予め配設することにより、溶接強度向上と、レーザー光の照射による孔あきの発生の可能性をさらに抑制できる。
 アルミニウム材にレーザー光を照射した場合、その溶接により形成される溶接痕には結晶粒が大きいFeAl、FeAlが生成され、接合箇所が脆くなる場合がある。また脆い組成の生成を避けFeAlの組成を生成させるためにレーザー光の出力を上げると、レーザー光が鉄材を貫通する場合がある。
 これらを回避するために、端子板403と当接している内面と反対の接続補助部材414の外面にレーザー光を照射して端子板403と接続補助部材414を接合して、端子板403と接続補助部材414の材料が溶けて混合している溶融部414Aを形成する。続いて、接続補助部材414に接続部材413を重ね、接続補助部材414の端子板403に形成された凹部403Kと対向する、接続部材413の外面の部分にレーザー光を照射して、接続補助部材414と接続部材413の材料が溶けて混合しの接続補助部材414と接続部材413を接合する溶融部414Bを形成する。
 すなわち、キャパシタ401の端子板403は接続補助部材414と溶融部414Aで溶接接合されている鉄材またはステンレス材よりなる面を有する。接続補助部材414は端子板403の面から離れている部分、すなわち凹部403Kに面する部分を有する。接続部材413は、接続補助部材414のその部分の反対側に位置する溶融部414Bで溶接接合されている。
 接続補助部材414を接続部材413と端子板403の間に配設し、鉄材が共に溶けて混合している溶融部414Aを形成する。さらに、より大きい出力のレーザー光で溶接強度の高いFeAlの組成を、レーザー溶接による孔が発生してもよい部分に生成して鉄材とアルミニウムが溶けて混合した溶接部414Bを形成する。これにより、より広いエネルギー条件範囲でレーザーを照射することができる。これにより、キャパシタに用いられる外装部材の孔あき発生を抑制でき、かつ、接続部材413と端子板403との接合強度を高めることができる。
 実施の形態6による低反射材102Eと同様に、銅から成る端子板403、411と陰極電極部402Aとを接合するために、直接レーザーが照射される端子板403、411の表面にニッケルめっきや顔料など、銅よりもレーザー光の反射率が低い材料の層を形成することが好ましい。
 また、陰極電極部402A、陽極電極部402Bへ金属よりなる集電板をそれぞれ接合し、この集電板とキャパシタ素子402との接合具合や平滑性を確認した後に、端子板403、411や金属ケース404、412と集電板を介してキャパシタ素子402とを接合してもよい。これにより、陰極電極部402A、陽極電極部402Bの接合具合を視認した後に、キャパシタ素子402を金属ケース404、412や端子板403、411と接合することができるので、キャパシタ401、410の信頼性が向上する。
 図24Bは実施の形態8による他の蓄電装置ユニットであるキャパシタユニット4002の部分拡大断面図である。図24Bにおいて、図24Aに示すキャパシタユニット4001と同じ部分には同じ参照番号を付す。キャパシタユニット4002は、図24Aに示すキャパシタユニット4001の端子板403と接続部材413の代わりにアルミニウムよりなる端子板1403と銅よりなる接続部材1413を備える。端子板1403の外面には凹部403Kと同様の凹部1403Kが形成されている。アルミニウムよりなる端子板1403に銅よりなる接続部材1413を直接当接させてレーザー溶接で接合すると、大きな強度で接合できず、さらにアルミニウムと銅とが接触することで局部電池が生じやすくなる。端子板1403と接続部材1413との間に鉄やステンレスよりなる接続補助部材414を配設する。すなわち端子板1403に接続補助部材414を当接させ、接続補助部材414に接続部材を当接させる。接続補助部材414の端子板1403に当接している部分の反対側の接続部材1413の部分にレーザー光を照射して、端子板1403と接続補助部材414と接続部材1413とを溶融部414Cで接合する。溶融部414Cは接続部材1413からキャパシタ403の端子板1403に達している。これにより、これらを大きい強度で接合でき、さらに、端子板1403と接続部材1413が接触することによる局部電池の発生を防ぐことができる。
 このようにアルミニウムから成る端子板1403とそれに当接する鉄材あるいはステンレス材から成る接続補助部材414と、接続補助部材414に当接される銅材からなる接続部材1413を同じ箇所で溶接することによって、アルミニウム材から成る端子板1403とこの端子板1403に当接する銅材から成る接続部材1413とを溶接した構成と比較して、溶融部に形成される合金の組成が非常に丈夫なので、接合強度が高まる。溶接径0.6のサンプルを用いて、引っ張り試験による破断強度を測定すると、端子板1403と接続部材1413を接合した場合の破断強度は30N/mmであった。端子板1403と接続補助部材414と接続部材1413とを重ねて溶接した場合、接続部材1413と接続補助部材414の間における破断強度は75N/mmであり、接続補助部材414と端子板1403の間における破断強度は220N/mmであり、非常に接合強度が向上していた。なお、外側に配設される接続部材1413は銅材からなるので、その外表面に低反射材を形成して溶接することが好ましい。
 図25は実施の形態8におけるさらに他の蓄電装置ユニットであるキャパシタユニット4003の側面断面図である。図25において、図22Aから図22Dに示すキャパシタユニット4001と同じ部分には同じ参照番号を付す。キャパシタユニット4003は、キャパシタユニット4001のキャパシタ401、410の代わりにキャパシタ2401、2410を備える。
 キャパシタ2401は、キャパシタ2401の金属ケース404の底板1404Bの貫通孔404Dに連通して、キャパシタ素子402の中空部1402Dに延びる管部1401Nをさらに備える。管部1401Nは、図11に示す実施の形態4によるキャパシタ2002の管部1205Nと同様に、貫通孔404Dに接続された根元端2401Nと、根元端2401Nの反対側の先端3401Nとを有する。管部1401Nの先端3401Nの位置は、図11に示すキャパシタ2002と同様に、キャパシタ素子402の陽極電極部402Bが突出する端部1402Bから、キャパシタ素子402の軸1402Cの方向の中央までの間である。これにより、図11に示す実施の形態4によるキャパシタ2002の管部1205Nと同様の効果が得られる。
 キャパシタ2410は、キャパシタ2410の端子板411の貫通孔411Aに連通して、キャパシタ素子402の中空部1402Dに延びる管部1410Nをさらに備える。管部1410Nは、図11に示す実施の形態4によるキャパシタ2002の管部1205Nと同様に、貫通孔411Aに接続された根元端2410Nと、根元端2410Nの反対側の先端3410Nとを有する。管部1410Nの先端3410Nの位置は、図11に示すキャパシタ2002の管部1205Nと同様に、キャパシタ素子402の陰極電極部402Aが突出する端部1402Aから、キャパシタ素子402の軸1402Cの方向の中央までの間である。これにより、図11に示す実施の形態4によるキャパシタ2002の管部1205Nと同様の効果が得られる。
 (実施の形態9)
 図26は実施の形態9における蓄電装置ユニットであるキャパシタユニット4004の上面図である。キャパシタユニット4004は、直列に接続された実施の形態8による複数のキャパシタユニット4001と、複数のキャパシタユニット4001を収容する筐体415と、複数のキャパシタユニット4001間を接続する接続部材413Aとを備える。
 筐体415は樹脂からなる。接続部材413Aはキャパシタユニット4001のキャパシタ401の金属ケース412の底板1412Bの外面とキャパシタ410の端子板411の外面とを接続する。接続部材413Aには、圧力調整弁406を露出させる貫通孔1413Aが設けられている。圧力調整弁406を通って排出されたガスは貫通孔1413Aを通してキャパシタユニット4004の外部に輩出される。
 筐体415は圧力調整弁406と反対側の底板415Bを有する。キャパシタユニット4004では、キャパシタ401、410の圧力調整弁406が1つの方向に設けられているので、その方向から排気を行うことができる。したがって、筐体415の底板415Aを、キャパシタユニット4004を搭載する電子機器と当接させることができるので、その電子機器の収容効率を向上させることができる。
 実施の形態9におけるキャパシタユニット4004では、軽量化のために全てのキャパシタ401,410の金属ケース404、412がアルミニウムにより構成されている。キャパシタユニット4004を構成するキャパシタユニット4001のうちの少なくとも1つのキャパシタユニットが実施の形態8によるキャパシタユニット4001にすることで、同様の効果が得られる。
 本発明による蓄電装置は、溶接した部分にボイドが発生せず、高い信頼性を有するので、高い信頼性が要求される自動車用分野に特に有用である。
101  キャパシタ素子(蓄電素子)
101A  陰極電極部(第1の電極部)
101B  陽極電極部(第2の電極部)
101C  根元部分
101E  素子端部
102  端子板
102E  低反射材
103  金属ケース
106  圧力調整弁
108A  陰極集電板(第1の集電板)
108B  陽極集電板(第2の集電板)
109  端子板
201  キャパシタ素子(蓄電素子)
201D  中空部
202  陽極電極部(第1の電極部)
203  陰極電極部(第2の電極部)
204  金属ケース
204A  接合部
205  端子板
205D  接合部
208  圧力調整弁
219  陽極集電板(第1の集電板)
220  陰極集電板(第2の集電板)
301  蓄電素子
301D  中空部
302  陽極電極部(第1の電極部)
302C  素子端部
302B  根元部分
303  陰極電極部(第2の電極部)
304  金属ケース
304B  粗面部
305  端子板
305B  粗面部
305C  端子部
307  圧力調整弁
311  陽極集電板(第1の集電板)
312  陰極集電板(第2の集電板)
313  キャパシタ(第1の蓄電装置)
314  キャパシタ(第2の蓄電装置)
315  接続板
401  キャパシタ(第1の蓄電装置)
401  キャパシタ(第2の蓄電装置)
402  キャパシタ素子(第1の蓄電素子、第2の蓄電素子)
406  圧力調整弁
413  接続部材

Claims (66)

  1.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子と、
    前記蓄電素子に含浸された電解液と、
       筒形状を有する側壁と、
       前記蓄電素子の前記第2の電極部に接続された内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有して前記蓄電素子と前記電解液とを収容する金属ケースと、
    前記金属ケースの開口部に設けられて、前記蓄電素子の前記第1の電極部に接続された内面を有する金属よりなる端子板と、
    を備え、
    前記端子板の前記内面は、前記蓄電素子の前記第1の電極部に接合された第1の接合部を有し、
    前記第1の接合部には前記第1の電極部と前記第1の接合部との間から外に連通する凹部が形成されている、蓄電装置。
  2. 前記端子板の前記内面は前記凹部が形成されて前記第1の接合部を含む第1の粗面部を有する、請求項1に記載の蓄電装置。
  3. 前記第1の粗面部の表面粗さRaは10μm~500μmであり、
    前記第1の粗面部の面積は前記第1の接合部の面積よりも大きい、請求項2に記載の蓄電装置。
  4. 前記蓄電素子は、
       金属箔からなる第1の集電体と、
       前記第1の集電体の端部が露出するように前記第1の集電体の表面に設けられた第1の電極層と、
       前記第1の電極層上に設けられた絶縁材料よりなるセパレータと、
       金属箔からなる第2の集電体と、
       前記セパレータを介して前記第1の電極層に対向して、かつ前記第2の集電体の端部が露出するように前記第2の集電体の表面に設けられた第2の電極層と、
    を有し、
       前記第1の集電体と前記第2の集電体と前記第1の電極層と前記第2の電極層と前記セパレータは軸を中心に巻回されており、
       前記第1の集電体の前記端部は前記第1の端部から露出して前記第1の電極部を構成し、
       前記第2の集電体の前記端部は前記第2の端部から露出して前記第2の電極部を構成し、
       前記第1の集電体の前記端部は、
           前記蓄電素子の前記第1の端部から延びる第1の根元部分と、
           前記第1の端部から離れてかつ前記軸に向かう方向に前記第1の根元部分から延びて、かつ前記端子板の前記内面に接合された第1の素子端部と、
       を有する、請求項2に記載の蓄電装置。
  5. 前記第1の集電体の前記第1の素子端部はスエージ加工で形成されている、請求項4に記載の蓄電装置。
  6. 前記金属ケースの前記底板の前記内面は、前記蓄電素子の前記第2の電極部に接合された第2の接合部を有し、
    前記第2の接合部には前記第2の電極部と前記第2の接合部との間から外に連通する凹部が形成されている、請求項4に記載の蓄電装置。
  7. 前記金属ケースの前記底板の前記内面は前記凹部が形成されて前記第2の接合部を含む第2の粗面部を有する、請求項6に記載の蓄電装置。
  8. 前記第2の粗面部の表面粗さRaは10μm~500μmであり、
    前記第2の粗面部の面積は前記第2の接合部の面積よりも大きい、請求項7に記載の蓄電装置。
  9.    前記第2の集電体の前記端部は、
           前記蓄電素子の前記第2の端部から延びる第2の根元部分と、
           前記第2の端部から離れてかつ前記軸に向かう方向に前記第2の根元部分から延びて、かつ前記底板の前記内面の前記第2の接合部に接合された第2の素子端部と、
       を有する、請求項7に記載の蓄電装置。
  10. 前記第2の集電体の前記第2の素子端部はスエージ加工で形成されている、請求項9に記載の蓄電装置。
  11. 前記第1の接合部の反対側の前記端子板の外面の部分に設けられた低反射材と、
    前記1の接合部に形成されて前記端子板と前記第1の電極部とを接合する溶融部と、
    をさらに備え、
    前記端子板は銅よりなり、
    前記低反射材は波長1064nmの光の反射率が94%未満であり、
    前記溶融部に含まれる前記低反射材の材料の量は前記端子板の前記溶融部以外の部分に含まれる前記低反射材の材料の量より多い、請求項1に記載の蓄電装置。
  12. 前記電解液はリチウムイオンを含有する、請求項11に記載の蓄電装置。
  13. 前記低反射材が、無光沢ニッケルメッキ、無光沢銀メッキ、無光沢金メッキ、スズメッキ、クロムメッキからなるメッキ層、もしくは酸化コバルト、酸化チタンからなる無機系顔料層のうち少なくともいずれかからなる、請求項11に記載の蓄電装置。
  14.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子と、
    前記蓄電素子に含浸された電解液と、
       筒形状を有する側壁と、
       前記蓄電素子の前記第2の電極部に接続された内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有して前記蓄電素子と前記電解液とを収容する金属ケースと、
    前記金属ケースの開口部に設けられて、前記蓄電素子の前記第1の電極部に接続された内面を有する金属よりなる端子板と、
    を備え、
    前記金属ケースの前記底板の前記内面は、前記蓄電素子の前記第2の電極部に接合された接合部を有し、
    前記接合部には前記第2の電極部と前記接合部との間から外に連通する凹部が形成されている、蓄電装置。
  15. 前記金属ケースの前記底板の前記内面は前記凹部が形成されて前記接合部を含む粗面部を有する、請求項14に記載の蓄電装置。
  16. 前記粗面部の表面粗さRaは10μm~500μmであり、
    前記粗面部の面積は前記接合部の面積よりも大きい、請求項15に記載の蓄電装置。
  17. 前記蓄電素子は、
       金属箔からなる第1の集電体と、
       前記第1の集電体の端部が露出するように前記第1の集電体の表面に設けられた第1の電極層と、
       前記第1の電極層上に設けられた絶縁材料よりなるセパレータと、
       金属箔からなる第2の集電体と、
       前記セパレータを介して前記第1の電極層に対向して、かつ前記第2の集電体の端部が露出するように前記第2の集電体の表面に設けられた第2の電極層と、
    を有し、
       前記第1の集電体と前記第2の集電体と前記第1の電極層と前記第2の電極層と前記セパレータは軸を中心に巻回されており、
       前記第1の集電体の前記端部は前記第1の端部から露出して前記第1の電極部を構成し、
       前記第2の集電体の前記端部は前記第2の端部から露出して前記第2の電極部を構成し、
       前記第2の集電体の前記端部は、
           前記蓄電素子の前記第2の端部から延びる根元部分と、
           前記第2の端部から離れてかつ前記軸に向かう方向に前記根元部分から延びて、かつ前記金属板の前記底板の前記内面に接合された素子端部と、
       を有する、請求項15に記載の蓄電装置。
  18. 前記第2の集電体の前記素子端部はスエージ加工で形成されている、請求項17に記載の蓄電装置。
  19. 前記接合部の反対側の前記底板の外面の部分に設けられた低反射材と、
    前記接合部に形成されて前記底板と前記第2の電極部とを接合する溶融部と、
    をさらに備え、
    前記金属ケースは銅よりなり、
    前記低反射材は波長1064nmの光の反射率が94%未満であり、
    前記溶融部に含まれる前記低反射材の材料の量は前記底板の前記溶融部以外の部分に含まれる前記低反射材の材料の量より多い、請求項14に記載の蓄電装置。
  20. 前記電解液はリチウムイオンを含有する、請求項19に記載の蓄電装置。
  21. 前記低反射材が、無光沢ニッケルメッキ、無光沢銀メッキ、無光沢金メッキ、スズメッキ、クロムメッキからなるメッキ層、もしくは酸化コバルト、酸化チタンからなる無機系顔料層のうち少なくともいずれかからなる、請求項19に記載の蓄電装置。
  22.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子と、
    前記蓄電素子の前記第1の電極部に接合された内面を有する金属よりなる集電板と、
    前記蓄電素子に含浸された電解液と、
       筒形状を有する側壁と、
       前記蓄電素子の前記第2の電極部に接続された内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有して前記蓄電素子と前記電解液とを収容する金属ケースと、
    前記金属ケースの開口部に設けられて、前記集電板の外面に接合された内面を有する金属よりなる端子板と、
    を備え、
    前記端子板の前記内面と前記集電板の前記外面のうちの一方は前記端子板の前記内面と前記集電板の前記外面のうちの他方に接合された接合部を有し、
    前記接合部には前記集電板の前記外面と前記接合部との間から外に連通する凹部が形成されている、蓄電装置。
  23. 前記端子板の前記内面と前記集電板の前記外面のうちの前記一方は前記凹部が形成されて前記接合部を含む粗面部を有する、請求項22に記載の蓄電装置。
  24. 前記粗面部の表面粗さRaは10μm~500μmであり、
    前記粗面部の面積は前記接合部の面積よりも大きい、請求項23に記載の蓄電装置。
  25.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子と、
    前記蓄電素子の前記第1の電極部に接合された内面を有する金属よりなる集電板と、
    前記蓄電素子に含浸された電解液と、
       筒形状を有する側壁と、
       前記蓄電素子の前記第2の電極部に接続された内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有して前記蓄電素子と前記電解液とを収容する金属ケースと、
    前記金属ケースの開口部に設けられて、前記集電板の外面に接合された内面を有する金属よりなる端子板と、
    を備え、
    前記第1の電極部と前記集電板の前記内面のうちの一方は前記第1の電極部と前記集電板の前記内面のうちの他方に接合された接合部を有し、
    前記接合部には前記集電板の前記内面と前記接合部との間から外に連通する凹部が形成されている、蓄電装置。
  26. 前記第1の電極部と前記集電板の前記内面のうちの前記一方は前記凹部が形成されて前記接合部を含む粗面部を有する、請求項25に記載の蓄電装置。
  27. 前記粗面部の表面粗さRaは10μm~500μmであり、
    前記粗面部の面積は前記接合部の面積よりも大きい、請求項26に記載の蓄電装置。
  28.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子と、
    前記蓄電素子の前記第2の電極部に接合された内面を有する金属よりなる集電板と、
    前記蓄電素子に含浸された電解液と、
       筒形状を有する側壁と、
       前記集電板の外面に接続された内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有して前記蓄電素子と前記電解液とを収容する金属ケースと、
    前記金属ケースの開口部に設けられて、前記第1の電極部に接続された内面を有する金属よりなる端子板と、
    を備え、
    前記金属ケースの前記底板の前記内面と前記集電板の前記外面のうちの一方は前記金属ケースの前記底板の前記内面と前記集電板の前記外面のうちの他方に接合された接合部を有し、
    前記接合部には前記金属ケースの前記底板の前記内面と前記集電板の前記外面との間から外に連通する凹部が形成されている、蓄電装置。
  29. 前記金属ケースの前記底板の前記内面と前記集電板の前記外面のうちの前記一方は前記凹部が形成されて前記接合部を含む粗面部を有する、請求項28に記載の蓄電装置。
  30. 前記粗面部の表面粗さRaは10μm~500μmであり、
    前記粗面部の面積は前記接合部の面積よりも大きい、請求項29に記載の蓄電装置。
  31.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子と、
    前記蓄電素子の前記第2の電極部に接合された内面を有する金属よりなる集電板と、
    前記蓄電素子に含浸された電解液と、
       筒形状を有する側壁と、
       前記集電板の外面に接続された内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有して前記蓄電素子と前記電解液とを収容する金属ケースと、
    前記金属ケースの開口部に設けられて、前記第1の電極部に接続された内面を有する金属よりなる端子板と、
    を備え、
    前記集電板の前記内面と前記第2の電極部のうちの一方は前記集電板の前記内面と前記第2の電極部のうちの他方に接合された接合部を有し、
    前記接合部には前記集電板の前記内面と前記第2の電極部との間から外に連通する凹部が形成されている、蓄電装置。
  32. 前記集電板の前記内面と前記第2の電極部のうちの前記一方は前記凹部が形成されて前記接合部を含む粗面部を有する、請求項31に記載の蓄電装置。
  33. 前記粗面部の表面粗さRaは10μm~500μmであり、
    前記粗面部の面積は前記接合部の面積よりも大きい、請求項32に記載の蓄電装置。
  34.    軸上に位置する第1の端部と、
       前記軸上で前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有して、前記軸に沿って前記第1の端部から前記第2の端部まで延びる中空部を有する蓄電素子と、
    前記蓄電素子に含浸された電解液と、
       前記軸に沿って延びる筒形状を有する側壁と、
       前記蓄電素子の前記第2の電極部に接合された内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有して前記蓄電素子と前記電解液とを収容する金属ケースと、
    前記金属ケースの開口部に設けられて、前記蓄電素子の前記第1の電極部に接合された内面を有する金属よりなる端子板と、
    前記端子板の外面に設けられた圧力調整弁と、
    を備え、
    前記端子板は前記軸上に位置して前記中空部に向かって突出する突出部を有し、
    前記突出部には前記中空部に連通する貫通孔が設けられており、
    前記圧力調整弁は前記貫通孔を塞ぐように前記端子板の前記外面に取り付けられている、蓄電装置。
  35. 前記突出部から延びて、前記貫通孔に接続された根元端と、前記中空部内に位置する先端とを有する管部をさらに備えた、請求項34に記載の蓄電装置。
  36. 前記管部の前記先端は、前記蓄電素子の前記第1の端部から、前記蓄電素子の前記軸の方向の中央までの間に位置する、請求項35に記載の蓄電装置。
  37. 前記端子板は前記圧力調整弁より高く突出する端子部を有する、請求項34に記載の蓄電装置。
  38. 前記端子板の前記内面には前記突出部の周囲に凹部が形成されており、
    前記端子板の前記内面の前記凹部の底には前記蓄電素子の前記第1の電極部が接合されており、
    前記端子板の前記内面の前記凹部の前記底に向かって狭まるように、前記凹部の内側面はテーパ形状を有する、請求項34に記載の蓄電装置。
  39. 第1の蓄電装置と、
    第2の蓄電装置と、
    前記第1の蓄電装置と前記第2の蓄電装置とを接続する接続部材と、
    を備え、
    前記第1の蓄電装置と前記接続部材のうちの一方は前記第1の蓄電装置と前記接続部材のうちの他方に接合された接合部を有し、
    前記接合部には前記第1の蓄電装置と前記接続部材との間から外に連通する凹部が形成されている、蓄電装置ユニット。
  40. 前記第1の蓄電装置と前記接続部材のうちの前記一方は前記凹部が形成されて前記接合部を含む粗面部を有する、請求項39に記載の蓄電装置ユニット。
  41. 前記粗面部の表面粗さRaは10μm~500μmであり、
    前記粗面部の面積は前記接合部の面積よりも大きい、請求項40に記載の蓄電装置ユニット。
  42. 前記第1の蓄電装置と前記第2の蓄電装置のうちの少なくとも1つは請求項1、14、22、25、28、31、34のいずれか1つに記載の蓄電装置である、請求項39に記載の蓄電装置ユニット。
  43.    第1の陰極電極部が設けられた第1の端部と、第1の陽極電極部が設けられてかつ前記第1の端部の反対側の第2の端部とを有する第1の蓄電素子と、
       前記第1の蓄電素子に含浸された第1の電解液と、
       第1の開口部を有して前記第1の蓄電素子と前記第1の電解液とを収容してかつ前記第1の蓄電素子の前記第1の陽極電極部に電気的に接続された第1の金属ケースと、
       前記第1の開口部に設けられて前記第1の蓄電素子の前記第1の陰極電極部に電気的に接続された第1の端子板と、
       前記第1の金属ケース内に発生するガスの圧力を調整する第1の圧力調整弁と、
    を有する第1の蓄電装置と、
       第2の陰極電極部が設けられた第3の端部と、第2の陽極電極部が設けられてかつ前記第3の端部の反対側の第4の端部とを有する第2の蓄電素子と、
       前記第2の蓄電素子に含浸された第2の電解液と、
       第2の開口部を有して前記第2の蓄電素子と前記第2の電解液とを収容してかつ前記第2の陽極電極部に電気的に接続された第2の金属ケースと、
       前記第2の開口部に設けられて前記第2の蓄電素子の前記第1の陰極電極に電気的に接続された第2の端子板と、
       前記第2の金属ケース内に発生するガスの圧力を調整する第2の圧力調整弁と、
    を有する第2の蓄電装置と、
    前記第1の蓄電装置の前記第1の端子板と前記第2の蓄電装置の前記第2の金属ケースとを接続する接続部材と、
    を備え、
    前記第1と第2の陰極電極部は銅よりなり、
    前記第1と第2の電解液はリチウムイオンを含み、
    前記第1と第2の端子板は前記第1と第2の金属ケースからそれぞれ逆方向に設けられており、
    前記第1と第2の圧力調整弁は前記第1と第2の金属ケースからそれぞれ同じ方向に設けられている、蓄電装置ユニット。
  44. 第1の蓄電装置と、
    第2の蓄電装置と、
    前記第1の蓄電装置と前記第2の蓄電装置を電気的に接続する接続部材と、
    前記第1の蓄電装置に接合する、鉄材またはステンレス材から成る接続補助部材と、
    を備え、
    前記接続部材は前記接続補助部材を介して前記第1の蓄電装置に接合している、蓄電装置ユニット。
  45. 前記第1の蓄電装置は前記接続補助部材と第1の溶融部で溶接接合されている鉄材またはステンレス材よりなる面を有し、
    前記接続部材はアルミニウムよりなり、
    前記接続補助部材は前記第1の蓄電装置の前記面から離れている第1の部分を有し、
    前記接続部材は、前記接続補助部材の前記第1の部分の反対側に位置する第2の溶融部で溶接接合されている、請求項44に記載の蓄電装置ユニット。
  46. 前記第1の蓄電装置は前記接続補助部材と溶接接合されているアルミニウム材よりなる面を有し、
    前記接続部材は銅材よりなり、
    前記第1の蓄電装置の前記面と前記接続補助部材と前記接続部材とは前記接続部材の外面から前記第1の蓄電装置の前記面まで達する溶融部で溶接接合されている、請求項44に記載の蓄電装置ユニット。
  47.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子を作製するステップと、
       筒形状を有する側壁と、
       内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有する金属ケースを準備するステップと、
    前記金属ケースに前記蓄電素子と電解液とを収容するステップと、
    前記金属ケースの前記底板の前記内面に前記蓄電素子の前記第2の電極部を接続するステップと、
    金属よりなる端子板を前記金属ケースの前記開口部に設けて、前記端子板の前記内面の接合部に前記蓄電素子の前記第1の電極部を接合するステップと、
    を含み、
    前記端子板の前記内面の前記接合部には凹部が形成されており、
    前記端子板の前記内面の前記接合部に前記蓄電素子の前記第1の電極部を接合するステップは、前記端子板の前記内面の前記接合部と前記蓄電素子の前記第1の電極部との間から外に前記凹部が連通するように、前記端子板の前記内面の前記接合部に前記蓄電素子の前記第1の電極部を接合するステップを含む、蓄電装置の製造方法。
  48. 前記端子板の前記内面は前記接合部を含む粗面部を有する、請求項47に記載の蓄電装置の製造方法。
  49. 前記端子板の外面の前記接合部の反対側の部分に低反射材を設けるステップをさらに含み、
    前記端子板は銅よりなり、
    前記低反射材の、1064nmの波長の光の反射率は94%未満であり、
    前記端子板の前記内面の前記接合部に前記蓄電素子の前記第1の電極部を接合するステップは、前記低反射材にレーザー光を照射して前記端子板の前記内面の前記接合部に前記蓄電素子の前記第1の電極部を溶接して接合するステップを含む、請求項47に記載の蓄電装置の製造方法。
  50. 前記端子板の前記内面の前記接続部は銅が表出する、請求項49に記載の蓄電装置の製造方法。
  51. 前記低反射材の厚みは0.5μm~50μmである、請求項49に記載の蓄電装置の製造方法。
  52.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子を作製するステップと、
       筒形状を有する側壁と、
       内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有する金属ケースを準備するステップと、
    前記金属ケースに前記蓄電素子と電解液とを収容するステップと、
    前記金属ケースの前記底板の前記内面の接合部に前記蓄電素子の前記第2の電極部を接続するステップと、
    金属よりなる端子板を前記金属ケースの前記開口部に設けて、前記端子板の前記内面に前記蓄電素子の前記第1の電極部を接合するステップと、
    を含み、
    前記金属ケースの前記底板の前記内面の前記接合部には凹部が形成されており、
    前記金属ケースの前記底板の前記内面の前記接合部に前記蓄電素子の前記第2の電極部を接合するステップは、前記金属ケースの前記底板の前記内面の前記接合部と前記蓄電素子の前記第2の電極部との間から外に前記凹部が連通するように、前記金属ケースの前記底板の前記内面の前記接合部に前記蓄電素子の前記第2の電極部を接合するステップを含む、蓄電装置の製造方法。
  53. 前記金属ケースの前記底板の前記内面は前記接合部を含む粗面部を有する、請求項52に記載の蓄電装置の製造方法。
  54. 前記金属ケースの前記底板の外面の前記接合部の反対側の部分に低反射材を設けるステップをさらに含み、
    前記端子板は銅よりなり、
    前記低反射材の、1064nmの波長の光の反射率は94%未満であり、
    前記金属ケースの前記底板の前記内面の前記接合部に前記蓄電素子の前記第2の電極部を接合するステップは、前記低反射材にレーザー光を照射して前記金属ケースの前記底板の前記内面の前記接合部に前記蓄電素子の前記第2の電極部を溶接して接合するステップを含む、請求項52に記載の蓄電装置の製造方法。
  55. 前記金属ケースの前記底板の前記内面の前記接続部は銅が表出する、請求項54に記載の蓄電装置の製造方法。
  56. 前記低反射材の厚みは0.5μm~50μmである、請求項54に記載の蓄電装置の製造方法。
  57.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子を作製するステップと、
    前記蓄電素子の前記第1の電極部と前記第2の電極部に金属よりなる第1の集電板と第2の集電板をそれぞれ接合するステップと、
       筒形状を有する側壁と、
       内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有する金属ケースを準備するステップと、
    前記蓄電素子の前記第1の電極部と前記第2の電極部に前記第1の集電板と前記第2の集電板をそれぞれ接合するステップの後で、前記金属ケースに前記蓄電素子と電解液とを収容するステップと、
    前記金属ケースの前記底板の前記内面に前記第2の集電板を接合するステップと、
    金属よりなる端子板を前記金属ケースの前記開口部に設けて、前記端子板の前記内面に前記第1の集電板を接合するステップと、
    を含み、
    前記端子板の前記内面と前記第1の集電板のうちの一方は、凹部が形成された接合部を有し、
    前記端子板の前記内面に前記第1の集電板を接合するステップは、前記端子板の前記内面と前記第1の集電板のうちの他方と前記接合部との間から外に前記凹部が連通するように、前記端子板の前記内面と前記第1の集電板のうちの前記他方に前記接合部を接合するステップを含む、蓄電装置の製造方法。
  58. 前記端子板の前記内面と前記第1の集電板のうちの前記一方は、前記接合部を含む粗面部を有する、請求項57に記載の蓄電装置の製造方法。
  59. 前記端子板の外面の前記接合部の反対側の部分に低反射材を設けるステップをさらに含み、
    前記端子板と前記第1の集電板の少なくとも一方は銅よりなり、
    前記低反射材の、1064nmの波長の光の反射率は94%未満であり、
    前記端子板の前記内面に前記第1の集電板を接合するステップは、前記低反射材にレーザー光を照射して前記端子板の前記内面に前記第1の集電板を溶接して接合するステップを含む、請求項57に記載の蓄電装置の製造方法。
  60.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子を作製するステップと、
    前記蓄電素子の前記第1の電極部と前記第2の電極部に金属よりなる第1の集電板と第2の集電板をそれぞれ接合するステップと、
       筒形状を有する側壁と、
       内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有する金属ケースを準備するステップと、
    前記蓄電素子の前記第1の電極部と前記第2の電極部に前記第1の集電板と前記第2の集電板をそれぞれ接合するステップの後で、前記金属ケースに前記蓄電素子と電解液とを収容するステップと、
    前記金属ケースの前記底板の前記内面に前記第2の集電板を接合するステップと、
    金属よりなる端子板を前記金属ケースの前記開口部に設けて、前記端子板の前記内面に前記第1の集電板を接合するステップと、
    を含み、
    前記金属ケースの前記底板の前記内面と前記第2の集電板のうちの一方は、凹部が形成された接合部を有し、
    前記金属ケースの前記底板の前記内面に前記第2の集電板を接合するステップは、前記金属ケースの前記底板の前記内面と前記第2の集電板のうちの他方と前記接合部との間から外に前記凹部が連通するように、前記金属ケースの前記底板の前記内面と前記第2の集電板のうちの前記他方に前記接合部を接合するステップを含む、蓄電装置の製造方法。
  61. 前記金属ケースの前記底板の前記内面と前記第2の集電板のうちの前記一方は、前記接合部を含む粗面部を有する、請求項60に記載の蓄電装置の製造方法。
  62. 前記金属ケースの前記底板の外面の前記接合部の反対側の部分に低反射材を設けるステップをさらに含み、
    前記金属ケースと前記第2の集電板の少なくとも一方は銅よりなり、
    前記低反射材の、1064nmの波長の光の反射率は94%未満であり、
    前記金属ケースの前記底板の前記内面に前記第2の集電板を接合するステップは、前記低反射材にレーザー光を照射して前記金属ケースの前記底板の前記内面に前記第2の集電板を溶接して接合するステップを含む、請求項60に記載の蓄電装置の製造方法。
  63.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子を作製するステップと、
    前記蓄電素子の前記第1の電極部に金属よりなる集電板を接合するステップと、
       筒形状を有する側壁と、
       内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有する金属ケースを準備するステップと、
    前記蓄電素子の前記第1の電極部に前記集電板を接合するステップの後で、前記金属ケースに前記蓄電素子と電解液とを収容するステップと、
    金属よりなる端子板を前記金属ケースの前記開口部に設けて、前記端子板の前記内面に前記集電板を接合するステップと、
    を含み、
    前記集電板は、凹部が形成された接合部を有し、
    前記蓄電素子の前記第1の電極部に前記集電板を接合するステップは、前記第1の電極部と前記接合部との間から外に前記凹部が連通するように、前記第1の電極部に前記接合部を接合するステップを含む、蓄電装置の製造方法。
  64. 前記集電板は、前記接合部を含む粗面部を有する、請求項63に記載の蓄電装置の製造方法。
  65.    第1の端部と、
       前記第1の端部の反対側に位置する第2の端部と、
       前記第1の端部と前記第2の端部からそれぞれ突出する第1の電極部と第2の電極部と、
    を有する蓄電素子を作製するステップと、
    前記蓄電素子の前記第1の電極部と前記第2の電極部に金属よりなる第1の集電板と第2の集電板をそれぞれ接合するステップと、
       筒形状を有する側壁と、
       内面を有して前記側壁を塞ぐ底板と、
    を有し、前記底板の反対側に位置する開口部を有する金属ケースを準備するステップと、
    前記蓄電素子の前記第1の電極部と前記第2の電極部に前記第1の集電板と前記第2の集電板をそれぞれ接合するステップの後で、前記金属ケースに前記蓄電素子と電解液とを収容するステップと、
    前記金属ケースの前記底板の前記内面に前記第2の集電板を接合するステップと、
    金属よりなる端子板を前記金属ケースの前記開口部に設けて、前記端子板の前記内面に前記第1の集電板を接合するステップと、
    を含み、
    前記第2の集電板は、凹部が形成された接合部を有し、
    前記蓄電素子の前記第1の電極部と前記第2の電極部に前記第1の集電板と前記第2の集電板をそれぞれ接合するステップは、前記第2の電極部と前記接合部との間から外に前記凹部が連通するように、前記第2の電極部に前記接合部を接合するステップを含む、蓄電装置の製造方法。
  66. 前記第2の集電板は、前記接合部を含む粗面部を有する、請求項65に記載の蓄電装置の製造方法。
PCT/JP2009/005266 2008-10-10 2009-10-09 蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法 WO2010041461A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008263782A JP2010093178A (ja) 2008-10-10 2008-10-10 電気化学キャパシタ及びその製造方法
JP2008-263782 2008-10-10
JP2008-285123 2008-11-06
JP2008-285124 2008-11-06
JP2008285123 2008-11-06
JP2008285124A JP2010114240A (ja) 2008-11-06 2008-11-06 キャパシタ及びこれを用いたキャパシタユニット
JP2009-054535 2009-03-09
JP2009054535 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010041461A1 true WO2010041461A1 (ja) 2010-04-15

Family

ID=42100422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005266 WO2010041461A1 (ja) 2008-10-10 2009-10-09 蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法

Country Status (1)

Country Link
WO (1) WO2010041461A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030212A1 (fr) * 2011-08-29 2013-03-07 Batscap Couvercle de connexion d'ensembles de stockage d'energie
US9053858B2 (en) 2010-08-18 2015-06-09 Nippon Chemi-Con Corporation Capacitor, and manufacturing method and manufacturing program thereof
US9633799B2 (en) 2011-08-29 2017-04-25 Blue Solutions Long-term energy storage assembly comprising an intermediate connection part
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same
EP2618350A4 (en) * 2010-09-16 2018-03-14 Shin-Kobe Electric Machinery Co., Ltd. Method for producing electrode plate group unit for lithium-ion capacitor, and lithium-ion capacitor
US10777802B2 (en) 2011-06-28 2020-09-15 Nippon Chemi-Con Corporation Electricity storage device and method for manufacturing electricity storage device
WO2022137444A1 (ja) * 2020-12-24 2022-06-30 日産自動車株式会社 レーザー溶接用アルミニウム合金部材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569939U (ja) * 1992-02-26 1993-09-21 日本ケミコン株式会社 電解コンデンサ
JPH11226765A (ja) * 1998-02-19 1999-08-24 Isuzu Motors Ltd メッキ鋼板のレーザ溶接構造
JP2002164036A (ja) * 2000-11-27 2002-06-07 Yuasa Corp 密閉形電池
JP2003164991A (ja) * 2001-11-30 2003-06-10 Mitsubishi Heavy Ind Ltd 鉄系ろう材及び鉄系ろう材を使用したろう付け方法
WO2004084246A1 (ja) * 2003-03-19 2004-09-30 Matsushita Electric Industrial Co., Ltd. コンデンサおよびその接続方法
WO2007069559A1 (ja) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. コンデンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569939U (ja) * 1992-02-26 1993-09-21 日本ケミコン株式会社 電解コンデンサ
JPH11226765A (ja) * 1998-02-19 1999-08-24 Isuzu Motors Ltd メッキ鋼板のレーザ溶接構造
JP2002164036A (ja) * 2000-11-27 2002-06-07 Yuasa Corp 密閉形電池
JP2003164991A (ja) * 2001-11-30 2003-06-10 Mitsubishi Heavy Ind Ltd 鉄系ろう材及び鉄系ろう材を使用したろう付け方法
WO2004084246A1 (ja) * 2003-03-19 2004-09-30 Matsushita Electric Industrial Co., Ltd. コンデンサおよびその接続方法
WO2007069559A1 (ja) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. コンデンサ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053858B2 (en) 2010-08-18 2015-06-09 Nippon Chemi-Con Corporation Capacitor, and manufacturing method and manufacturing program thereof
EP2618350A4 (en) * 2010-09-16 2018-03-14 Shin-Kobe Electric Machinery Co., Ltd. Method for producing electrode plate group unit for lithium-ion capacitor, and lithium-ion capacitor
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same
US10777802B2 (en) 2011-06-28 2020-09-15 Nippon Chemi-Con Corporation Electricity storage device and method for manufacturing electricity storage device
WO2013030212A1 (fr) * 2011-08-29 2013-03-07 Batscap Couvercle de connexion d'ensembles de stockage d'energie
US9633799B2 (en) 2011-08-29 2017-04-25 Blue Solutions Long-term energy storage assembly comprising an intermediate connection part
US9748047B2 (en) 2011-08-29 2017-08-29 Blue Solutions Connector arranged between two cylindrical energy storage assemblies
US9831046B2 (en) 2011-08-29 2017-11-28 Blue Solutions Cover for connecting energy storage assemblies
WO2022137444A1 (ja) * 2020-12-24 2022-06-30 日産自動車株式会社 レーザー溶接用アルミニウム合金部材

Similar Documents

Publication Publication Date Title
WO2010041461A1 (ja) 蓄電装置と、蓄電装置を備えた蓄電装置ユニット、及び蓄電装置の製造方法
JP2010093178A (ja) 電気化学キャパシタ及びその製造方法
EP3062370B1 (en) Rectangular secondary battery
JP4297367B2 (ja) 二次電池及びその製造方法
JP5587061B2 (ja) 抵抗溶接用通電ブロック、この通電ブロックを用いた密閉電池の製造方法及び密閉電池
EP1779962A1 (en) Method for welding thin plates of different metal, joined body of thin plates of different metal, electric device, and electric device assembly
CN102959662B (zh) 锂离子电容器用极板群组件的制造方法和锂离子电容器
JP2011210720A (ja) 二次電池及び二次電池モジュール
JPWO2019004039A1 (ja) 電池及びその製造方法
US20120248076A1 (en) Laser welding method and battery made by the same
JP4019722B2 (ja) コイン型電池
CN109768339A (zh) 二次电池
WO2019177081A1 (ja) 密閉電池の製造方法及び密閉電池
CN109768211A (zh) 二次电池
WO2013191218A1 (ja) 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池
JPH11135100A (ja) 巻回電極電池およびその製造方法
JP2007250442A (ja) 非水電解質二次電池
JP5546997B2 (ja) 溶接方法および電池の製造方法および電池
JP7054454B2 (ja) 二次電池の製造方法
EP3540839B1 (en) Separator assembly for fuel cell and method for manufacturing separator assembly for fuel cell
KR102257175B1 (ko) 배터리 셀 및 배터리 셀을 제조하기 위한 방법
JP2010114240A (ja) キャパシタ及びこれを用いたキャパシタユニット
JP2005285514A (ja) 円筒型電池およびその製造方法
WO2023089869A1 (ja) 電池
JP2010239111A (ja) キャパシタおよびそれを用いたキャパシタユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819001

Country of ref document: EP

Kind code of ref document: A1