WO2012108284A1 - フルオロスルホニルイミドアンモニウム塩の製造方法 - Google Patents

フルオロスルホニルイミドアンモニウム塩の製造方法 Download PDF

Info

Publication number
WO2012108284A1
WO2012108284A1 PCT/JP2012/051952 JP2012051952W WO2012108284A1 WO 2012108284 A1 WO2012108284 A1 WO 2012108284A1 JP 2012051952 W JP2012051952 W JP 2012051952W WO 2012108284 A1 WO2012108284 A1 WO 2012108284A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
fluorosulfonyl
cation
imide
compound
Prior art date
Application number
PCT/JP2012/051952
Other languages
English (en)
French (fr)
Inventor
坪倉 史朗
道明 丸山
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to ES12745294.4T priority Critical patent/ES2656857T3/es
Priority to KR1020137020842A priority patent/KR101744373B1/ko
Priority to SG2013058631A priority patent/SG192258A1/en
Priority to EP12745294.4A priority patent/EP2674395B1/en
Priority to US13/984,069 priority patent/US9242862B2/en
Priority to JP2012556830A priority patent/JP5729885B2/ja
Priority to CA2826747A priority patent/CA2826747C/en
Priority to CN201280008148.9A priority patent/CN103347811B/zh
Publication of WO2012108284A1 publication Critical patent/WO2012108284A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/092Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more metal atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a fluorosulfonylimide ammonium salt. More specifically, the present invention relates to a method for efficiently producing a fluorosulfonylimidoammonium salt in which the mixing of metal impurities that degrade electrolyte properties and the like is suppressed to an unlimited extent.
  • This application claims priority based on Japanese Patent Application No. 2011-027563 filed in Japan on February 10, 2011, the contents of which are incorporated herein by reference.
  • Fluorosulfonylimide salt is a compound useful in various fields as an electrolyte, an additive to an electrolyte of a fuel cell, selective absorption, etc. (Patent Document 1).
  • a fluorosulfonylimide alkali metal salt and various fluorosulfonylimide onium salts can be obtained by a reaction using an alkali metal compound or an onium compound.
  • the fluorosulfonylimidoammonium salt is useful as an intermediate for producing a fluorosulfonylimide alkali metal salt or a fluorosulfonylimidoonium salt other than the ammonium salt.
  • Non-Patent Document 1 discloses a method of synthesizing di (fluorosulfonyl) imide ammonium salt from di (fluorosulfonyl) imide and ammonia.
  • Patent Document 2 di (chlorosulfonyl) imide and an onium compound are reacted to obtain a chlorosulfonylimidoonium salt, which is an element of Group 11 to Group 15, Group 4 to Group 6 (provided that A method for synthesizing a bis [di (fluorosulfonyl) imide] onium salt by reacting with a fluoride containing at least one element selected from the group consisting of arsenic and antimony) is disclosed.
  • fluorides used in the production method described in Patent Document 2 zinc fluoride (ZnF 2 ), copper fluoride (CuF 2 ), bismuth fluoride (BiF 2 ), and the like are disclosed. These are all solid materials at room temperature.
  • Non-Patent Document 2 or 3 di (fluorosulfonyl) imide is directly converted from di (chlorosulfonyl) imide using arsenic trifluoride (AsF 3 ) or antimony trifluoride (SbF 3 ) as a fluorinating agent.
  • a method of synthesizing is disclosed.
  • Di (fluorosulfonyl) imide which is a raw material for the synthesis method described in Non-Patent Document 1, can be obtained by treating a di (fluorosulfonyl) imide salt with a strong acid to make it free.
  • di (fluorosulfonyl) imide itself is a strong acid, industrial production is not easy.
  • There is a method of synthesizing di (fluorosulfonyl) imide using an ion exchange resin but the process is complicated and not suitable for industrial production.
  • it is necessary to remove the metal element derived from fluoride because the metal element derived from fluoride deteriorates the characteristics of the electrolyte.
  • Non-Patent Document 2 or 3 In order to completely remove the metal element, a complicated purification operation must be performed. AsF 3 used in the synthesis method described in Non-Patent Document 2 or 3 is relatively expensive. Since As and Sb are both highly toxic elements, workability is difficult. In particular, in the synthesis method using AsF 3 , a compound that is difficult to separate from the target product is by-produced. Therefore, the synthesis method disclosed in Non-Patent Document 2 or 3 is unsuitable for industrial production.
  • An object of the present invention is to provide a method for efficiently producing a fluorosulfonylimidoammonium salt in which the mixing of metal impurities that degrade electrolyte properties and the like is suppressed to a minimum, and includes metal impurities that degrade electrolyte properties and the like It is an object of the present invention to provide a method for producing a non-fluorosulfonylimide salt from a fluorosulfonylimide ammonium salt.
  • the present inventors have made extensive studies to solve the above problems. As a result, it was found that a fluorosulfonylimide ammonium salt can be easily industrially synthesized by reacting a specific chlorosulfonylimide ammonium salt with hydrogen fluoride. Moreover, it discovered that the fluorosulfonyl imide alkali metal salt etc. which do not contain the metal impurity which reduces electrolyte characteristics etc. by making an alkali metal compound etc. react with the fluoro sulfonyl imide ammonium salt obtained by making it like that were obtained. The present invention has been completed based on these findings.
  • the present invention includes the following. (1) A fluorosulfonyl represented by the formula [II], comprising reacting a compound represented by the formula [I] (hereinafter sometimes referred to as the compound [I]) with hydrogen fluoride. A method for producing an imidoammonium salt (hereinafter sometimes referred to as compound [II]). (2) A compound represented by the formula [III] (hereinafter sometimes referred to as the compound [III]) is reacted with ammonia or a salt thereof to obtain a compound represented by the formula [I].
  • the manufacturing method according to (1) further including: (3)
  • the fluorosulfonylimide ammonium salt represented by the formula [II] obtained by the method described in (1) or (2) above is selected from the group consisting of alkali metal compounds, onium compounds and organic amine compounds.
  • a process for producing a fluorosulfonylimide salt represented by the formula [IV] (hereinafter sometimes referred to as compound [IV]), comprising reacting at least one compound.
  • R 1 represents a fluorine atom, a chlorine atom or a fluorinated alkyl group having 1 to 6 carbon atoms.
  • R 2 represents a fluorine atom or a fluorinated alkyl group having 1 to 6 carbon atoms.
  • R 1 represents the same as in formula [I].
  • M n + represents an alkali metal cation or onium cation (excluding NH 4 + )
  • n corresponds to the valence of the alkali metal cation or onium cation (excluding NH 4 + )
  • 1 represents an integer of 1 to 3
  • R 2 represents the same as in formula [II].
  • the compound to be reacted with the fluorosulfonylimide ammonium salt represented by the formula [II] is an alkali metal hydroxide or a tertiary amine compound, and M n + in the formula (IV) is an alkali metal cation or The production method according to the above (3), which shows a tertiary ammonium cation.
  • a fluorosulfonylimidoammonium salt can be produced industrially efficiently.
  • other fluorosulfonylimide salts that do not contain metal impurities that degrade the electrolyte properties and the like can be produced.
  • fluorosulfonylimide means N ((fluorosulfonyl) -N having a fluorosulfonyl group and a fluoroalkylsulfonyl group, and a di (fluorosulfonyl) imide having two fluorosulfonyl groups, unless otherwise specified.
  • fluoroalkyl means an alkyl group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with fluorine atoms, and examples thereof include a fluoromethyl group, a difluoromethyl group, and trifluoromethyl.
  • fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group and the like are included.
  • the process for producing compound [II] according to the present invention comprises reacting compound [I] with hydrogen fluoride.
  • the compound [I] used in the present invention is a compound represented by the formula [I].
  • R 1 represents a fluorine atom, a chlorine atom or a fluorinated alkyl group having 1 to 6 carbon atoms. Of these, R 1 is preferably a chlorine atom.
  • the number of carbon atoms constituting the fluorinated alkyl group in R 1 is 1 to 6, preferably 1 to 4, more preferably 1 to 2.
  • Fluoroalkyl groups include fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 3,3,3- Trifluoropropyl group, perfluoro-n-propyl group, fluoropropyl group, perfluoroisopropyl group, fluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, perfluoro-n-butyl group, perfluoroisobutyl group, Perfluoro-t-butyl group, perfluoro-sec-butyl group, fluoropentyl group, perfluoropentyl group, perfluoroisopentyl group, perfluor
  • a trifluoromethyl group, a pentafluoroethyl group or a perfluoro-n-propyl group is preferable, and a trifluoromethyl group or a pentafluoroethyl group is more preferable.
  • the compound [I] include N- (chlorosulfonyl) -N- (fluorosulfonyl) imidoammonium salt, di (chlorosulfonyl) imidoammonium salt, N- (chlorosulfonyl) -N- (trifluoromethylsulfonyl). ) Imidoammonium salt, N- (chlorosulfonyl) -N- (pentafluoroethylsulfonyl) imidoammonium salt, N- (chlorosulfonyl) -N- (perfluoro-n-propylsulfonyl) imidoammonium salt .
  • Compound [I] is not particularly limited by its production method.
  • a preferred production method of compound [I] is a production method by reacting compound [III] with ammonia or a salt thereof.
  • Examples of the salt of ammonia used for the synthesis reaction of compound [I] include ammonium halides such as ammonium chloride, ammonium bromide, and ammonium iodide.
  • Compound [III] is a compound represented by Formula [III].
  • R 1 in formula [III] can be the same as that in formula [I].
  • the compound [III] include N- (chlorosulfonyl) -N- (fluorosulfonyl) imide, di (chlorosulfonyl) imide, N- (chlorosulfonyl) -N- (trifluoromethylsulfonyl) imide, N And-(chlorosulfonyl) -N- (pentafluoroethylsulfonyl) imide, N- (chlorosulfonyl) -N- (perfluoro-n-propylsulfonyl) imide, and the like.
  • Compound [III] may be a commercially available product, or may be synthesized by the method described in Z. Anorg. Allg. Chem 2005, 631, 55-59, for example.
  • di (chlorosulfonyl) imide which is one of the compounds represented by the formula [III]
  • chlorosulfonyl isocyanate can be obtained by reacting chlorosulfonyl isocyanate with chlorosulfonic acid (Chemisch Berichte 1964, 95, 849- See 850).
  • N- (chlorosulfonyl) -N- (fluoroalkylsulfonyl) imide can be obtained by reaction of chlorosulfonyl isocyanate and fluorinated alkyl sulfonic acid, reaction of fluorinated alkyl sulfonyl isocyanate and chlorosulfonic acid, or the like. it can.
  • the reaction of compound [III] with ammonia or a salt thereof can be carried out by mixing them in a solvent or without solvent (see, for example, J. Inorg. Nucl. Chem. 1978, 40, 2001-2003). ).
  • the reaction temperature is preferably ⁇ 40 ° C. to 200 ° C., more preferably ⁇ 20 ° C. to 100 ° C.
  • the reaction time varies depending on the reaction scale, it is preferably 0.1 to 48 hours, more preferably 0.5 to 24 hours.
  • the amount of ammonia and its salt used in the reaction of compound [III] with ammonia or a salt thereof is preferably from 1 mol to 5 mol, more preferably from 1 mol to 2 mol, relative to 1 mol of compound [III]. is there.
  • solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethoxymethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxane, 4-methyl.
  • -1,3-dioxolane methyl formate, methyl acetate, methyl propionate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, 3-methyl sulfolane, dimethyl sulfoxide, N, N-dimethylformamide, N-methyloxazolidinone , Valeronitrile, benzonitrile, acetonitrile, ethyl acetate, isopropyl acetate, butyl acetate, nitromethane, nitrobenzene, toluene, chlorobenzene, Mention may be made of aprotic solvents such as methylene chloride, carbon tetrachloride and chloroform.
  • aprotic solvents such as methylene chloride, carbon tetrachloride and chloroform.
  • Solvents having such suitable properties include acetonitrile, ethyl acetate, isopropyl acetate, butyl acetate, methylene chloride, carbon tetrachloride or chloroform.
  • the compound [I] thus obtained can be used for the production of the compound [II] according to the present invention without purification after the synthesis reaction as described above, or after-treatment and purification according to a conventional method. Can be used for the production of the compound [II] according to the present invention.
  • Hydrogen fluoride used in the present invention is a compound represented by the molecular formula HF. Since hydrogen fluoride is a colorless gas or liquid, it can be easily transported in the reaction apparatus through piping or the like. Hydrogen fluoride can be produced by mixing and heating fluorite (an ore whose main component is calcium fluoride CaF 2 ) and concentrated sulfuric acid. It can also be obtained by reacting fluorine F 2 with water.
  • the amount of hydrogen fluoride to be used is preferably 1 to 20 mol, more preferably 1 to 10 mol, still more preferably 1 to 5 mol, per 1 mol of compound [I].
  • the reaction between compound [I] and hydrogen fluoride can be carried out in an organic solvent or without a solvent.
  • the organic solvent that can be used in the reaction is not particularly limited as long as it does not inhibit the fluorination reaction.
  • a polar solvent examples include acetonitrile, ethyl acetate, isopropyl acetate or butyl acetate.
  • the organic solvent is preferably used after dehydration. When water is present, di (chlorosulfonyl) imide and di (chlorosulfonyl) imide ammonium salt are likely to be decomposed, and the yield may be reduced.
  • the temperature during the fluorination reaction can be appropriately adjusted according to the progress of the reaction, but is preferably ⁇ 40 ° C. to 200 ° C., more preferably ⁇ 20 ° C. to 100 ° C.
  • the time required for the reaction varies depending on the reaction scale, but is preferably 0.1 hour to 48 hours, more preferably 0.5 hour to 24 hours.
  • Compound [II] can be obtained by the production method according to the present invention.
  • R 2 represents a fluorine atom or a fluorinated alkyl group having 1 to 6 carbon atoms.
  • the fluorinated alkyl group the same groups as those described in the description of R 1 can be mentioned.
  • the compound represented by the formula [II] include di (fluorosulfonyl) imide ammonium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) imide ammonium salt, N- (fluorosulfonyl)- N- (pentafluoroethylsulfonyl) imidoammonium salt, N- (fluorosulfonyl) -N- (perfluoro-n-propylsulfonyl) imidoammonium salt and the like can be mentioned. Of these, di (fluorosulfonyl) imidoammonium salt is preferred.
  • Compound [II] is useful as an intermediate for producing a fluorosulfonylimide salt represented by the formula [IV].
  • the compound [II] obtained in this way is used as a secondary battery such as a primary battery or a lithium (ion) secondary battery, an electrolytic capacitor, an electric double layer capacitor, a fuel cell, a solar cell, an electrochromic device, or the like. It is also useful as an ion conductor material constituting a chemical device.
  • the compound [II] obtained by the production method is reacted with at least one compound selected from the group consisting of alkali metal compounds, onium compounds and organic amine compounds. Is included.
  • This reaction can be carried out by mixing compound [II] with at least one compound selected from the group consisting of an alkali metal compound, an onium compound and an organic amine compound in the presence of a solvent.
  • alkali metal compound used in the reaction examples include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , and Cs 2 CO 3.
  • Carbonates such as LiHCO 3 , NaHCO 3 , KHCO 3 , RbHCO 3 , CsHCO 3 , chlorides such as LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, etc.
  • Bromides fluorides such as LiF, NaF, KF, RbF, CsF, alkoxide compounds such as CH 3 OLi, EtOLi, t-BuOK, t-BuONa, hydride compounds such as NaH, KH, LiH and i-Pr 2 NLi EtLi, BuLi and t-BuLi (where Et is an ethyl group, Pr is a propyl group, An alkyllithium compound such as Bu represents a butyl group.
  • hydroxides are preferred. When a hydroxide is used, ammonia is by-produced in the reaction, so that the equilibrium can be brought into a state where the reaction is promoted by removing the ammonia under reduced pressure.
  • an alkali metal compound is used, the inorganic salt produced as a by-product can be removed by filtration or washing with water, so that it can be easily purified.
  • the amount of the alkali metal compound to be used is preferably 1 mol to 10 mol, more preferably 1 mol to 5 mol, per 1 mol of compound [II].
  • Examples of the onium compound used in the reaction include imidazolium compounds, pyrazolium compounds, pyridinium compounds, pyrrolidinium compounds, piperidinium compounds, morpholinium compounds, quaternary ammonium compounds, and other nitrogen-based onium compounds; quaternary phosphonium compounds, tertiary phosphine compounds, and the like.
  • organic onium compounds such as imidazolium compounds and pyridinium compounds are preferred.
  • an onium compound is a thing which does not contain the metal element which reduces electrolyte characteristics etc.
  • imidazolium compounds include 1,3-dimethylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride.
  • 1-octyl-3-methylimidazolium chloride 1-allyl-3-ethylimidazolium chloride, 1-allyl-3-butylimidazolium chloride, 1,3-diallylimidazolium chloride, 1-ethyl-2,3 -Chlorides such as dimethylimidazolium chloride, 1-butyl-2,3-dimethylimidazolium chloride, 1-hexyl-2,3-dimethylimidazolium chloride; 1,3-dimethylimidazolium bromide, 1-ethyl-3 -Methylimidazolium bromide, 1-buty -3-Methylimidazolium bromide, 1-hexyl-3-methylimidazolium bromide, 1-octyl-3-methylimidazolium bromide, 1-allyl-3-ethylimidazolium bromide, 1-allyl-3-butylimidazolium Bromide, 1,3
  • pyrazolium compound examples include 2-ethyl-1,3,5-trimethylpyrazolium chloride, 2-propyl-1,3,5-trimethylpyrazolium chloride, 2-butyl-1,3,5- Chlorides such as trimethylpyrazolium chloride and 2-hexyl-1,3,5-trimethylpyrazolium chloride; 2-ethyl-1,3,5-trimethylpyrazolium bromide, 2-propyl-1,3, Bromides such as 5-trimethylpyrazolium bromide, 2-butyl-1,3,5-trimethylpyrazolium bromide, 2-hexyl-1,3,5-trimethylpyrazolium bromide; 2-ethyl-1,3 , 5-trimethylpyrazolium hydroxide, 2-propyl-1,3,5-trimethylpyrazolium hydroxide, 2-butyl-1,3,5-to Methyl pyrazolium hydroxide, may be mentioned hydroxides, such as 2-hexyl-1,3,5-trimethylpyr
  • pyridinium compound examples include 1-acetonylpyridinium chloride, 1-aminopyridinium iodide, 2-benzyloxy-1-methylpyridinium trifluoromethanesulfonate, 1,1 ′-[biphenyl-4,4′-diylbis (Methylene)] bis (4,4′-bipyridinium) bis (hexafluorophosphate), 1,1 ′-[biphenyl-4,4′-diylbis (methylene)] bis (4,4′-bipyridinium) dibromide, 1,1′-bis (2,4-dinitrophenyl) -4,4′-bipyridinium dichloride, bis (2,4,6-trimethylpyridine) bromonium hexafluorophosphate, 2-bromo-1-tetrafluoroborate Ethylpyridinium, 4-bromopyridine hydrobromide, 4-bromopyri Hydrochloride
  • N-octadecyl-4-stilbazole bromide 1- (10,12-pentacosadiynyl) pyridinium bromide, 1-phenacylpyridinium bromide, 1,1 ′-[1,4-phenylenebis (methylene)] bis (4,4′-bipyridinium) bis (hexafluorophosphate), 1,1 ′-[1,4-phenylenebis (methylene)] bis (4,4′-bipyridinium) dibromide, N-phenylnicotinamide hydrochloride 1-propylpyridinium chloride, pyridine-2-carbonyl chloride hydrochloride, pyridine-2-carboxylic acid hydrochloride, pyridine hydrobromide, pyridine hydrochloride, pyridinium bromide perbromide, pyridinium chlorochromate, pyridinium dichromate , Pyridinium fluorochromate, pyridin
  • pyrrolidinium compound examples include 1-butyl-1-methylpyrrolidinium bromide, 1-butyl-1-methylpyrrolidinium chloride, 1-butyl-1-propylpyrrolidinium bromide, 1-butyl-1- And propyl pyrrolidinium chloride.
  • piperidinium compound examples include 1-butyl-1-methylpiperidinium bromide.
  • morpholinium compound examples include 4-propyl-4-methylmorpholinium chloride, 4- (2-methoxyethyl) -4-methylmorpholinium chloride, 4-propyl-4-methylmorpholinium bromide, 4 -(2-methoxyethyl) -4-methylmorpholinium bromide, 4-propyl-4-methylmorpholinium hydroxide, 4- (2-methoxyethyl) -4-methylmorpholinium hydroxide, etc. Can do.
  • quaternary ammonium compound examples include fluorine such as propyltrimethylammonium chloride, diethyl-2-methoxyethylmethylammonium fluoride, methyltrioctylammonium fluoride, cyclohexyltrimethylammonium fluoride, and 2-hydroxyethyltrimethylammonium fluoride.
  • fluorine such as propyltrimethylammonium chloride, diethyl-2-methoxyethylmethylammonium fluoride, methyltrioctylammonium fluoride, cyclohexyltrimethylammonium fluoride, and 2-hydroxyethyltrimethylammonium fluoride.
  • Chlorides such as propyltrimethylammonium chloride, diethyl-2-methoxyethylmethylammonium chloride, methyltrioctylammonium chloride, cyclohexyltrimethylammonium chloride, 2-hydroxyethyltrimethylammonium chloride; propyltrimethylammonium bromide, diethyl-2-methoxy Ethylmethylammonium bromide, methyltrioctylan Bromides such as nium bromide, cyclohexyltrimethylammonium bromide, 2-hydroxyethyltrimethylammonium bromide; propyltrimethylammonium iodide, diethyl-2-methoxyethylmethylammonium iodide, methyltrioctylammonium iodide, cyclohexyltrimethylammonium iodide, 2 -Iodides such as hydroxyethyltrimethylammoni
  • phosphonium compounds include acetonyltriphenylphosphonium chloride, allyltriphenylphosphonium bromide, allyltriphenylphosphonium chloride, amyltriphenylphosphonium bromide, 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate, benzyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, (bromomethyl) triphenylphosphonium bromide, 3-bromopropyltriphenylphosphonium bromide, trans-2-butene-1,4-bis (triphenylphosphonium chloride), butyl Riphenylphosphonium bromide, (4-carboxybutyl) triphenylphosphonium bromide, (3
  • Tetraphenylphosphonium bromide tetraphenylphosphonium chloride, tetraphenylphosphonium iodide, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, tributyl (cyanomethyl) phosphonium chloride, tributyl (1,3-dioxolane-2- Ylmethyl) phosphonium bromide, tributyldodecylphosphonium bromide, tributylhexadecylphosphonium bromide, tributylmethylphosphonium iodide, tributyl-n-octylphosphonium bromide, tri-tert-butylphosphonium tetrafluoroborate, tri-tert-butylphosphonium tetraphenylborate Lato, tricyclohexylphosphon
  • sulfonium compound examples include dimethylsulfoniopropionate, trimethylsulfonyl chloride, trimethylsulfonyl bromide, trimethylsulfonyl iodide and the like.
  • guanidinium compound examples include guanidinium chloride, 2-ethyl-1,1,3,3-tetramethylguanidinium chloride, guanidinium bromide, 2-ethyl-1,1,3,3-tetra Examples thereof include methylguanidinium bromide, guanidinium hydroxide, 2-ethyl-1,1,3,3-tetramethylguanidinium hydroxide.
  • isouronium compounds include 2-ethyl-1,1,3,3-tetramethylisouronium chloride, 2-ethyl-1,1,3,3-tetramethylisouronium bromide, 2-ethyl- Examples include 1,1,3,3-tetramethylisouronium hydroxide.
  • isothiouronium compounds include 2-ethyl-1,1,3,3-tetramethylisothiouronium chloride, 2-ethyl-1,1,3,3-tetramethylisothiouronium bromide, 2- And ethyl-1,1,3,3-tetramethylisothiouronium hydroxide.
  • onium hydroxide compounds are preferred.
  • ammonia is produced as a by-product in the reaction. Therefore, the equilibrium can be brought into a state where the reaction is promoted by removing the ammonia under reduced pressure.
  • the inorganic salt produced as a by-product can be removed by filtration or washing with water, so that it can be easily purified.
  • the amount of the onium compound to be used is preferably 0.3 mol to 10 mol, more preferably 0.3 mol to 5 mol, per 1 mol of compound [II].
  • organic amine compound used in the reaction examples include tertiary amines such as trimethylamine, triethylamine, and tributylamine, cyclic amines such as 1,4-diazabicyclo [2.2.2] octane, trimethylamine hydrochloride, triethylamine hydrochloride , Tertiary amine salts such as tributylamine hydrochloride, 1,4-diazabicyclo [2.2.2] octane hydrochloride, trimethylamine hydrobromide, triethylamine hydrobromide, tributylamine hydrobromide And cyclic amine salts such as 1,4-diazabicyclo [2.2.2] octane hydrobromide.
  • tertiary amines such as trimethylamine, triethylamine, and tributylamine
  • cyclic amines such as 1,4-diazabicyclo [2.2.2] octane
  • tertiary amines and cyclic amines are preferred, and tertiary amines are more preferred.
  • a tertiary amine or a cyclic amine ammonia is by-produced in the reaction. Therefore, the equilibrium can be brought into a state where the reaction is promoted by removing the ammonia under reduced pressure.
  • the inorganic salt produced as a by-product can be removed by filtration or washing with water, and thus can be easily purified.
  • the amount of the organic amine compound to be used is preferably 0.3 mol to 10 mol, more preferably 0.3 mol to 5 mol, per 1 mol of compound [II].
  • the organic solvent used for the reaction is not particularly limited.
  • acetonitrile, ethyl acetate, isopropyl acetate or butyl acetate is selected from the group consisting of the reaction of compound [I] with hydrogen fluoride and compound [II] with alkali metal compounds, onium compounds and organic amine compounds. Since it can be used for any of the reactions with at least one kind of compound, it is not necessary to replace the solvent, and the above reaction can be carried out continuously in the same solvent, which is preferable.
  • the temperature during the reaction is not particularly limited, but is preferably 0 ° C. to 200 ° C., more preferably 10 ° C. to 100 ° C.
  • the time required for the reaction varies depending on the reaction scale, but is preferably 0.1 hour to 48 hours, more preferably 0.5 hour to 24 hours.
  • the reaction can be carried out under normal pressure, when a compound having hydroxide ions is used, when it is carried out under reduced pressure, by-product ammonia is removed, the equilibrium is biased, and the target product is easily synthesized.
  • the reaction pressure is not particularly limited, but is preferably from atmospheric pressure to 0.01 torr, and more preferably a degree of pressure reduction such that the solvent is refluxed at 0 ° C. to 100 ° C.
  • Compound [IV] can be obtained by the above reaction.
  • M n + represents an alkali metal cation or onium cation (excluding NH 4 + )
  • n corresponds to the valence of the alkali metal cation or onium cation (excluding NH 4 + )
  • 1 Represents an integer of 1 to 3
  • R 2 represents the same as in formula [II].
  • alkali metal cations examples include lithium cations, sodium cations, potassium cations, rubidium cations, and cesium cations. Of these, lithium cation, sodium cation and potassium cation are preferred.
  • Onium cations include phosphonium cations, oxonium cations, sulfonium cations, fluoronium cations, chloronium cations, bromonium cations, iodonium cations, selenonium cations, telluronium cations, arsonium cations , Stibonium cation, bismuthonium cation;
  • the onium cation is preferably an onium cation having an organic group, that is, an organic onium cation.
  • the organic group include a saturated or unsaturated hydrocarbon group.
  • a saturated or unsaturated hydrocarbon group may be linear, branched or cyclic.
  • the saturated or unsaturated hydrocarbon group preferably has 1 to 18 carbon atoms, more preferably 1 to 8 carbon atoms.
  • the organic group is preferably a hydrogen atom, a fluorine atom, an amino group, an imino group, an amide group, an ether group, a hydroxyl group, an ester group, a hydroxyl group, a carboxyl group, a carbamoyl group, a cyano as an atom or an atomic group constituting the organic group.
  • These atoms or atomic groups may have only one, or may have two or more.
  • the bond may be formed between the main skeleton of the organic group, or between the main skeleton of the organic group and the above-described atomic group, or Or formed between the atomic groups.
  • Examples of the onium cation having an organic group include 1,3-dimethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-propyl-3-methylimidazolium cation, and 1-butyl-3-methylimidazolium cation.
  • Tertiary ammonium cations such as trimethylammonium cation, triethylammonium cation, tributylammonium cation, diethylmethylammonium cation, dimethylethylammonium cation, dibutylmethylammonium cation, 4-aza-1-azoniabicyclo [2.2.2] octane cation; Secondary ammonium cations such as dimethylammonium cation, diethylammonium cation and dibutylammonium cation; primary ammonium cations such as methylammonium cation, ethylammonium cation, butylammonium cation, hexylammonium cation and octylammonium cation;
  • Organic ammonium cations such as N-methoxytrimethylammonium cation, N-ethoxytrimethylammonium cation and N-propoxytrimethylammonium; 1-propyl-1-methylpiperidinium cation, 1- (2-methoxyethyl) -1-methylpi Piperidinium cations such as peridinium cation; 1-propyl-1-methylpyrrolidinium cation, 1-butyl-1-methylpyrrolidinium cation, 1-hexyl-1-methylpyrrolidinium cation, 1-octyl- Pyrrolidinium cations such as 1-methylpyrrolidinium cation; morpholinium cations such as 4-propyl-4-methylmorpholinium cation, 4- (2-methoxyethyl) -4-methylmorpholinium cation; 2 -Echi 1,3-5-trimethylpyrazolium cation, 2-propyl-1,3,5-trimethylpyrazolium c
  • Guanidium cations such as guanidinium and 2-ethyl-1,1,3,3-tetramethylguanidinium cation; sulfonium cations such as trimethylsulfonium cation; phosphonium cations such as trihexyltetradecylphosphonium cation; 2-ethyl- Isouronium cations such as 1,1,3,3-tetramethylisouronium cation; isothiouronium cations such as 2-ethyl-1,1,3,3-tetramethylisothiouronium cation; it can.
  • the onium cation those not containing a metal element that deteriorates the electrolyte characteristics, for example, a tertiary ammonium cation, specifically, a trimethylammonium cation, a triethylammonium cation, and a tributylammonium cation are more preferable.
  • the compound [IV] include di (fluorosulfonyl) imide lithium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) imide lithium salt, N- (fluorosulfonyl) -N- (pentafluoro Ethylsulfonyl) imide lithium salt, N- (fluorosulfonyl) -N- (perfluoro-n-propylsulfonyl) imide lithium salt; di (fluorosulfonyl) imide potassium salt, N- (fluorosulfonyl) -N- (trifluoromethyl) Sulfonyl) imide potassium salt, N- (fluorosulfonyl) -N- (pentafluoroethylsulfonyl) imide potassium salt, N- (fluorosulfonyl) -N- (perfluoro-n-propyls
  • the compound [IV] obtained according to the production method of the present invention has a smaller amount of metal impurities that deteriorate the electrolyte characteristics and the like than those obtained by the conventional method, so that the secondary battery such as a primary battery, a lithium ion, or a secondary battery can be used. It can be suitably used as a material for ion conductors constituting electrochemical devices such as secondary batteries, electrolytic capacitors, electric double layer capacitors, fuel cells, solar cells, and electrochromic elements.
  • Example 1 Synthesis of di (chlorosulfonyl) imidoammonium salt
  • the reaction vessel was charged with 21.4 g (100 mmol) of di (chlorosulfonyl) imide obtained in Synthesis Example 1.
  • 100 ml of acetonitrile and 5.4 g (100 mmol) of ammonium chloride were added and reacted at 23 to 26 ° C. with stirring for 1.5 hours.
  • the solid was filtered off and washed with acetonitrile.
  • the solvent was distilled off from the obtained organic phase under reduced pressure. 25.4 g of a yellow oily substance was obtained.
  • reaction mixture was cooled to room temperature, and hydrogen fluoride was driven off by nitrogen bubbling. Ethyl acetate and water were added thereto, and then neutralized with ammonium hydrogen carbonate. The solid was filtered off. Thereafter, the organic phase was separated. The aqueous phase was extracted 3 times with ethyl acetate. The organic phases obtained in each extraction operation were combined and washed with water. The solvent was then distilled off under reduced pressure. The resulting material was analyzed by 19 F-NMR. The peak area of the analysis chart was measured, and the substitution ratio of chlorine to fluorine was quantified. 10.5 g (53.4 mmol) of di (fluorosulfonyl) imidoammonium salt was obtained.
  • Example 2 Synthesis of di (fluorosulfonyl) imide potassium salt
  • a reaction vessel was charged with a 20% aqueous solution of 6.2 g (23.5 mmol) of di (fluorosulfonyl) imidoammonium salt, 47 ml of butyl acetate, and 16.5 g (58.8 mmol) of potassium hydroxide. Reflux at 1 ° C. for 1 hour. The reaction was cooled to 25 ° C. Thereafter, the solution was separated, and the aqueous phase was extracted three times with 24 ml of butyl acetate. The organic phases obtained in each extraction operation were combined and the solvent was distilled off under reduced pressure.
  • Example 3 Synthesis of di (fluorosulfonyl) imide lithium salt
  • Example 4 Synthesis of di (fluorosulfonyl) imide sodium salt
  • Example 5 Synthesis of di (fluorosulfonyl) imido triethylammonium salt
  • 0.88 g (4.46 mmol) of di (fluorosulfonyl) imidoammonium salt, 10 ml of butyl acetate, 1.38 g (10.00 mmol) of triethylamine hydrochloride and 1 ml of water were added and mixed. Thereafter, the solution was separated, and the organic phase was washed 4 times with 1 ml of water. The solvent was distilled off under reduced pressure to obtain 1.02 g of di (fluorosulfonyl) imide triethylammonium salt. As a result of measuring 1 H-NMR, it was confirmed that a triethylammonium salt was formed.
  • a fluorosulfonylimidoammonium salt can be produced industrially efficiently.
  • other fluorosulfonylimide salts that do not contain metal impurities that degrade the electrolyte properties and the like can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)

Abstract

 N-(クロロスルホニル)-N-(フルオロスルホニル)イミドアンモニウム塩などの化合物〔I〕と、フッ化水素とを反応させることによって、N,N-ジ(フルオロスルホニル)イミドアンモニウム塩などの化合物〔II〕を得る。得られた化合物〔II〕と、アルカリ金属化合物などとを反応させることによってN,N-ジ(フルオロスルホニル)イミドアルカリ金属塩などの化合物〔IV〕を得る。

Description

フルオロスルホニルイミドアンモニウム塩の製造方法
 本発明は、フルオロスルホニルイミドアンモニウム塩の製造方法に関する。より詳細に、本発明は、電解質特性などを低下させる金属不純物の混入が限りなく抑制されたフルオロスルホニルイミドアンモニウム塩を効率良く製造する方法に関する。
 本願は、2011年2月10日に、日本に出願された特願2011-027563号に基づき優先権を主張し、その内容をここに援用する。
 フルオロスルホニルイミド塩は、電解質や、燃料電池の電解液への添加物、選択的吸電子などとして様々な分野において有用な化合物である(特許文献1)。アルカリ金属化合物やオニウム化合物を用いた反応によって、フルオロスルホニルイミドアルカリ金属塩や各種のフルオロスルホニルイミドオニウム塩を得ることができる。フルオロスルホニルイミドアンモニウム塩は、フルオロスルホニルイミドアルカリ金属塩や当該アンモニウム塩以外のフルオロスルホニルイミドオニウム塩の製造中間体として有用である。
 フルオロスルホニルイミドアンモニウム塩の合成法が種々提案されている。例えば、非特許文献1には、ジ(フルオロスルホニル)イミドとアンモニアとからジ(フルオロスルホニル)イミドアンモニウム塩を合成する方法が開示されている。
 特許文献2には、ジ(クロロスルホニル)イミドとオニウム化合物とを反応させてクロロスルホニルイミドオニウム塩を得、これと第11族~第15族、第4周期~第6周期の元素(但し、砒素およびアンチモンは除く)からなる群から選ばれる少なくとも1種の元素を含むフッ化物とを反応させることによってビス[ジ(フルオロスルホニル)イミド]オニウム塩を合成する方法が開示されている。特許文献2に記載の製法で用いられるフッ化物として、フッ化亜鉛(ZnF2)、フッ化銅(CuF2)、フッ化ビスマス(BiF2)などが開示されている。これらはいずれも常温固体の物質である。
 また、非特許文献2または3には、三フッ化ヒ素(AsF3)、三フッ化アンチモン(SbF3)をフッ素化剤として用いてジ(クロロスルホニル)イミドからジ(フルオロスルホニル)イミドを直接に合成する方法が開示されている。
特表平08-511274号 特開2010-168308号
Zeitschrift fuer Chemie(1987),27(6),227-8 John K. RuffおよびMax Lustig、Inorg. Synth. 11, 138-140 (1968年) Jean’ne M. Shreeveら、Inorg. Chem. 1998, 37 (24), 6295-6303
 非特許文献1に記載の合成法の原料であるジ(フルオロスルホニル)イミドは、ジ(フルオロスルホニル)イミド塩を強酸で処理してフリー化することによって得られる。しかし、ジ(フルオロスルホニル)イミド自体が強酸であるため工業的な製造は容易でない。イオン交換樹脂を用いてジ(フルオロスルホニル)イミドを合成する方法があるが、工程が煩雑で、工業的な生産には適していない。
 特許文献2に記載の合成法では、前記フッ化物由来の金属元素が電解質の特性を低下させるので、フッ化物由来の金属元素を取り除くことが必要である。当該金属元素を完全に除去するためには、煩雑な精製操作を行わなければならない。
 非特許文献2または3に記載の合成法に使用されるAsF3は比較的に高価である。AsおよびSbはいずれも高い毒性を有する元素であるので、作業性に難がある。特にAsF3を用いる合成法では、目的生成物との分離が困難な化合物が副生する。そのため、非特許文献2または3に開示される合成法は工業的生産に不適である。
 本発明の課題は、電解質特性などを低下させる金属不純物の混入が限りなく抑制されたフルオロスルホニルイミドアンモニウム塩を効率良く製造する方法を提供すること、および、電解質特性などを低下させる金属不純物を含まないフルオロスルホニルイミド塩をフルオロスルホニルイミドアンモニウム塩から製造する方法を提供することにある。
 本発明者らは上記課題を解決するために鋭意検討を重ねた。その結果、特定のクロロスルホニルイミドアンモニウム塩とフッ化水素とを反応させることによってフルオロスルホニルイミドアンモニウム塩を工業的に容易に合成できることを見出した。また、そのようにして得られたフルオロスルホニルイミドアンモニウム塩にアルカリ金属化合物などを反応させることによって電解質特性などを低下させる金属不純物を含まないフルオロスルホニルイミドアルカリ金属塩などが得られることを見出した。本発明はこれらの知見に基づいて完成するに至ったものである。
 すなわち、本発明は、以下のものを包含する。
(1) 式〔I〕で表される化合物(以下、化合物〔I〕と表記することがある。)と、フッ化水素とを反応させることを含む、式〔II〕で表されるフルオロスルホニルイミドアンモニウム塩(以下、化合物〔II〕と表記することがある。)の製造方法。
(2) 式〔III〕で表される化合物(以下、化合物〔III〕と表記することがある。)と、アンモニアまたはその塩とを反応させて、式〔I〕で表される化合物を得ることをさらに含む、前記(1)に記載の製造方法。
(3) 前記(1)または(2)に記載の方法で得られた式〔II〕で表されるフルオロスルホニルイミドアンモニウム塩に、アルカリ金属化合物、オニウム化合物および有機アミン化合物からなる群から選ばれる少なくとも1種の化合物を反応させることを含む式〔IV〕で表されるフルオロスルホニルイミド塩(以下、化合物〔IV〕と表記することがある。)の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式〔I〕中、R1は、フッ素原子、塩素原子または1~6個の炭素原子を有するフッ化アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000006
(式〔II〕中、R2は、フッ素原子または1~6個の炭素原子を有するフッ化アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000007
(式〔III〕中、R1は、式〔I〕におけるものと同じものを示す。)
Figure JPOXMLDOC01-appb-C000008
(式(IV)中、Mn+はアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)を示し、nはアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)の価数に相当し且つ1~3のいずれかの整数を示し、R2は式〔II〕におけるものと同じものを示す。)
(4)前記式〔II〕で表されるフルオロスルホニルイミドアンモニウム塩に反応させる化合物がアルカリ金属の水酸化物または三級アミン化合物であり、前記式(IV)中のMn+がアルカリ金属カチオンまたは3級アンモニウムカチオンを示す前記(3)に記載の製造方法。
 本発明によれば、フルオロスルホニルイミドアンモニウム塩を工業的に効率よく製造することができる。また、このようにして得られたフルオロスルホニルイミドアンモニウム塩にアルカリ金属化合物などを反応させることによって電解質特性などを低下させる金属不純物を含まない他のフルオロスルホニルイミド塩を製造することができる。
 以下において「フルオロスルホニルイミド」という表現は、特に言及しない限り、フルオロスルホニル基を2つ有するジ(フルオロスルホニル)イミドと、フルオロスルホニル基とフルオロアルキルスルホニル基とを有するN-(フルオロスルホニル)-N-(フルオロアルキルスルホニル)イミドを意味する。また、「クロロスルホニルイミド」についても同様である。上記「フルオロアルキル」とは、1~6個の炭素原子を有するアルキル基において1以上の水素原子がフッ素原子で置換されたものを意味し、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基などが含まれる。
(化合物〔II〕の製造方法)
 本発明に係る化合物〔II〕の製造方法は、化合物〔I〕と、フッ化水素とを反応させることを含むものである。
 本発明に用いられる化合物〔I〕は、式〔I〕で表される化合物である。
Figure JPOXMLDOC01-appb-C000009
 式〔I〕中、R1は、フッ素原子、塩素原子または1~6個の炭素原子を有するフッ化アルキル基を示す。これらのうち、R1は、塩素原子が好ましい。
 R1における、フッ化アルキル基を構成する炭素原子の数は、1~6個、好ましくは1~4個、より好ましくは1~2個である。フッ化アルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、ペルフルオロ-n-プロピル基、フルオロプロピル基、ペルフルオロイソプロピル基、フルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、ペルフルオロ-n-ブチル基、ペルフルオロイソブチル基、ペルフルオロ-t-ブチル基、ペルフルオロ-sec-ブチル基、フルオロペンチル基、ペルフルオロペンチル基、ペルフルオロイソペンチル基、ペルフルオロ-t-ペンチル基、フルオロヘキシル基、ペルフルオロ-n-ヘキシル基、ペルフルオロイソヘキシル基などを挙げることができる。これらの中でも、トリフルオロメチル基、ペンタフルオロエチル基またはペルフルオロ-n-プロピル基が好ましく、トリフルオロメチル基またはペンタフルオロエチル基がより好ましい。
 化合物〔I〕の具体例としては、N-(クロロスルホニル)-N-(フルオロスルホニル)イミドアンモニウム塩、ジ(クロロスルホニル)イミドアンモニウム塩、N-(クロロスルホニル)-N-(トリフルオロメチルスルホニル)イミドアンモニウム塩、N-(クロロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドアンモニウム塩、N-(クロロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドアンモニウム塩などを挙げることができる。
 化合物〔I〕は、その製造方法によって特に制限されない。化合物〔I〕の好適な製法は、化合物〔III〕と、アンモニアまたはその塩とを反応させることによる製造法である。
 化合物〔I〕の合成反応に使用されるアンモニアの塩としては、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウムなどのハロゲン化アンモニウムなどを挙げることができる。
 化合物〔III〕は、式〔III〕で表される化合物である。
Figure JPOXMLDOC01-appb-C000010
 式〔III〕中のR1は、式〔I〕におけるものと同じものを挙げることができる。
 化合物〔III〕の具体例としては、N-(クロロスルホニル)-N-(フルオロスルホニル)イミド、ジ(クロロスルホニル)イミド、N-(クロロスルホニル)-N-(トリフルオロメチルスルホニル)イミド、N-(クロロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド、N-(クロロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドなどを挙げることができる。
 化合物〔III〕は、市販品であってもよいし、例えば、Z. Anorg. Allg. Chem 2005, 631, 55-59に記載の方法で合成したものであってもよい。例えば、式〔III〕で表される化合物の一つであるジ(クロロスルホニル)イミドは、クロロスルホニルイソシアネートとクロロスルホン酸との反応させることによって得ることができる(Chemisch Berichte 1964, 95, 849-850を参照)。
 また、N-(クロロスルホニル)-N-(フルオロアルキルスルホニル)イミドは、クロロスルホニルイソシアネートとフッ化アルキルスルホン酸との反応や、フッ化アルキルスルホニルイソシアネートとクロロスルホン酸との反応などによって得ることができる。
 化合物〔III〕とアンモニアまたはその塩との反応は、それらを溶媒中で若しくは無溶媒で混合することによって行うことができる(例えば、J. Inorg. Nucl. Chem. 1978, 40, 2001-2003参照)。反応温度は、好ましくは-40℃~200℃、より好ましくは-20℃~100℃である。反応時間は、反応規模によって異なるが、好ましくは0.1時間~48時間、より好ましくは0.5時間~24時間である。
 化合物〔III〕とアンモニアまたはその塩との反応における、アンモニアおよびその塩の使用量は、化合物〔III〕1モルに対して、好ましくは1モル~5モル、より好ましくは1モル~2モルである。
 溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメトキシメタン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン、メチルホルメート、メチルアセテート、メチルプロピオネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、3-メチルスルホラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルオキサゾリジノン、バレロニトリル、ベンゾニトリル、アセトニトリル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、ニトロメタン、ニトロベンゼン、トルエン、クロロベンゼン、塩化メチレン、四塩化炭素、クロロホルムなどの非プロトン性溶媒を挙げることができる。精製時の作業性が高いという観点から、低沸点溶媒が好ましい。そのような好適な特性を有する溶媒としては、アセトニトリル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、塩化メチレン、四塩化炭素またはクロロホルムを挙げることができる。
 このようにして得られた化合物〔I〕は、上記のような合成反応後に、精製することなく本発明に係る化合物〔II〕の製法に使用することができ、または常法に従って後処理および精製を行って本発明に係る化合物〔II〕の製法に使用することができる。
 本発明に用いられるフッ化水素は、分子式HFで表される化合物である。フッ化水素は、無色の気体または液体であるので、配管などを通して反応装置内を輸送することが容易にできる。
 フッ化水素は、蛍石(主成分がフッ化カルシウムCaF2の鉱石)と濃硫酸とを混合し加熱することによって製造することができる。またフッ素F2を水と反応させることによっても得ることができる。
 フッ化水素の使用量は、化合物〔I〕1モルに対して、好ましくは1モル~20モル、より好ましくは1モル~10モル、さらに好ましくは1モル~5モルである。
 化合物〔I〕とフッ化水素との反応は、有機溶媒中で若しくは無溶媒で行うことができる。該反応において用いることができる有機溶媒は、フッ素化反応を阻害しないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメトキシメタン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン、メチルホルメート、メチルアセテート、メチルプロピオネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、3-メチルスルホラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルオキサゾリジノン、アセトニトリル、バレロニトリル、ベンゾニトリル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、ニトロメタン、ニトロベンゼン、トルエン、クロロベンゼン、塩化メチレン、四塩化炭素、クロロホルムなどの非プロトン性溶媒を挙げることができる。フッ素化反応を円滑に進行させる観点から極性溶媒を使用することが好ましい。好適な溶媒として、アセトニトリル、酢酸エチル、酢酸イソプロピルまたは酢酸ブチルを挙げることができる。
 当該有機溶媒は脱水して使用することが好ましい。水が存在すると、ジ(クロロスルホニル)イミドやジ(クロロスルホニル)イミドアンモニウ塩が分解しやすくなるので、収率が低下するおそれがある。
 フッ素化反応時の温度は、反応の進行状況に応じて適宜調整することができるが、好ましくは-40℃~200℃、より好ましくは-20℃~100℃である。反応に要する時間は、反応規模によって異なるが、好ましくは0.1時間~48時間、より好ましくは0.5時間~24時間である。
 本発明に係る製造方法によって、化合物〔II〕を得ることができる。
Figure JPOXMLDOC01-appb-C000011
 式〔II〕中、R2は、フッ素原子または1~6個の炭素原子を有するフッ化アルキル基を示す。フッ化アルキル基は、R1の説明において挙げたものと同じものを挙げることができる。
 式〔II〕で表される化合物の具体例としては、ジ(フルオロスルホニル)イミドアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドアンモニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドアンモニウム塩などを挙げることができる。これらのうちジ(フルオロスルホニル)イミドアンモニウム塩が好ましい。
 化合物〔II〕は、式〔IV〕で表されるフルオロスルホニルイミド塩を製造するための中間体として有用である。また、このようにして得られる化合物〔II〕は、一次電池、リチウム(イオン)二次電池などの二次電池、電解コンデンサ、電気二重層キャパシタ、燃料電池、太陽電池、エレクトロクロミック素子などの電気化学デバイスを構成するイオン伝導体の材料としても有用である。
(化合物〔IV〕の製造方法)
 本発明に係る化合物〔IV〕の製造方法は、前記製造方法によって得られる化合物〔II〕に、アルカリ金属化合物、オニウム化合物および有機アミン化合物からなる群から選ばれる少なくとも1種の化合物を反応させることを含むものである。
 この反応は溶媒の存在下で、化合物〔II〕と、アルカリ金属化合物、オニウム化合物および有機アミン化合物からなる群から選ばれる少なくとも1種の化合物とを混合することによって行うことができる。
 当該反応に用いられるアルカリ金属化合物としては、LiOH,NaOH,KOH,RbOH,CsOHなどの水酸化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3などの炭酸塩、LiHCO3、NaHCO3、KHCO3、RbHCO3、CsHCO3などの炭酸水素塩、LiCl、NaCl、KCl、RbCl、CsClなどの塩化物、LiBr、NaBr、KBr、RbBr、CsBrなどの臭化物、LiF、NaF、KF、RbF、CsFなどのフッ化物、CH3OLi、EtOLi、t-BuOK、t-BuONaなどのアルコキシド化合物、NaH、KH,LiHなどのヒドリド化合物および、i-Pr2NLi、EtLi、BuLiおよびt-BuLi(尚、Etはエチル基、Prはプロピル基、Buはブチル基を示す)などのアルキルリチウム化合物などを挙げることができる。これらのうち、水酸化物が好ましい。水酸化物を用いると、当該反応ではアンモニアが副生するので、このアンモニアを減圧除去することによって平衡を反応が促進する状態にすることができる。アルカリ金属化合物を用いると、副生する無機塩を濾過や水洗で除去できるので容易に精製することができる。
 アルカリ金属化合物の使用量は、化合物〔II〕1モルに対して、好ましくは1モル~10モル、より好ましくは1モル~5モルである。
 当該反応に用いられるオニウム化合物としては、イミダゾリウム化合物、ピラゾリウム化合物、ピリジニウム化合物、ピロリジニウム化合物、ピペリジニウム化合物、モルホリニウム化合物、4級アンモニウム化合物などの窒素系オニウム化合物;4級ホスホニウム化合物、3級ホスフィン化合物などのリン系オニウム化合物;スルホニウム化合物などの硫黄系オニウム化合物、グアニジニウム化合物、イソウロニウム化合物、イソチオウロニウム化合物などを挙げることができる。これらのうち、イミダゾリウム化合物やピリジニウム化合物などの有機オニウム化合物が好ましい。また、オニウム化合物は、電解質特性などを低下させる金属元素を含まないものであることが好ましい。
 イミダゾリウム化合物の具体例としては、1,3-ジメチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムクロリド、1-ブチル-3-メチルイミダゾリウムクロリド、1-ヘキシル-3-メチルイミダゾリウムクロリド、1-オクチル-3-メチルイミダゾリウムクロリド、1-アリル-3-エチルイミダゾリウムクロリド、1-アリル-3-ブチルイミダゾリウムクロリド、1,3-ジアリルイミダゾリウムクロリド、1-エチル-2,3-ジメチルイミダゾリウムクロリド、1-ブチル-2,3-ジメチルイミダゾリウムクロリド、1-ヘキシル-2,3-ジメチルイミダゾリウムクロリドなどの塩化物; 1,3-ジメチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムブロミド、1-ヘキシル-3-メチルイミダゾリウムブロミド、1-オクチル-3-メチルイミダゾリウムブロミド、1-アリル-3-エチルイミダゾリウムブロミド、1-アリル-3-ブチルイミダゾリウムブロミド、1,3-ジアリルイミダゾリウムブロミド、1-エチル-2,3-ジメチルイミダゾリウムブロミド、1-ブチル-2,3-ジメチルイミダゾリウムブロミド、1-ヘキシル-2,3-ジメチルイミダゾリウムブロミドなどの臭化物;
 1,3-ジメチルイミダゾリウムヨージド、1-エチル-3-メチルイミダゾリウムヨージド、1-ブチル-3-メチルイミダゾリウムヨージド、1-ヘキシル-3-メチルイミダゾリウムヨージド、1-オクチル-3-メチルイミダゾリウムヨージド、1-アリル-3-エチルイミダゾリウムヨージド、1-アリル-3-ブチルイミダゾリウムヨージド、1,3-ジアリルイミダゾリウムヨージド、1-エチル-2,3-ジメチルイミダゾリウムヨージド、1-ブチル-2,3-ジメチルイミダゾリウムヨージド、1-ヘキシル-2,3-ジメチルイミダゾリウムヨージドなどのヨウ化物; 1,3-ジメチルイミダゾリウムヒドロキシド、1-エチル-3-メチルイミダゾリウムヒドロキシド、1-ブチル-3-メチルイミダゾリウムヒドロキシド、1-ヘキシル-3-メチルイミダゾリウムヒドロキシド、1-オクチル-3-メチルイミダゾリウムヒドロキシド、1-アリル-3-エチルイミダゾリウムヒドロキシド、1-アリル-3-ブチルイミダゾリウムヒドロキシド、1,3-ジアリルイミダゾリウムヒドロキシド、1-エチル-2,3-ジメチルイミダゾリウムヒドロキシド、1-ブチル-2,3-ジメチルイミダゾリウムヒドロキシド、1-ヘキシル-2,3-ジメチルイミダゾリウムヒドロキシドなどの水酸化物を挙げることができる。
 ピラゾリウム化合物の具体例としては、2-エチル-1,3,5-トリメチルピラゾリウムクロリド、2-プロピル-1,3,5-トリメチルピラゾリウムクロリド、2-ブチル-1,3,5-トリメチルピラゾリウムクロリド、2-ヘキシル-1,3,5-トリメチルピラゾリウムクロリドなどの塩化物;2-エチル-1,3,5-トリメチルピラゾリウムブロミド、2-プロピル-1,3,5-トリメチルピラゾリウムブロミド、2-ブチル-1,3,5-トリメチルピラゾリウムブロミド、2-ヘキシル-1,3,5-トリメチルピラゾリウムブロミドなどの臭化物;2-エチル-1,3,5-トリメチルピラゾリウムヒドロキシド、2-プロピル-1,3,5-トリメチルピラゾリウムヒドロキシド、2-ブチル-1,3,5-トリメチルピラゾリウムヒドロキシド、2-ヘキシル-1,3,5-トリメチルピラゾリウムヒドロキシドなどの水酸化物を挙げることができる。
 ピリジニウム化合物の具体例としては、1-アセトニルピリジニウムクロリド、1-アミノピリジニウムヨージド、2-ベンジルオキシ-1-メチルピリジニウムトリフルオロメタンスルホナート、1,1’-[ビフェニル-4,4’-ジイルビス(メチレン)]ビス(4,4’-ビピリジニウム)ビス(ヘキサフルオロホスファート)、1,1’-[ビフェニル-4,4’-ジイルビス(メチレン)]ビス(4,4’-ビピリジニウム)ジブロミド、1,1’-ビス(2,4-ジニトロフェニル)-4,4’-ビピリジニウムジクロリド、ビス(2,4,6-トリメチルピリジン)ブロモニウムヘキサフルオロホスファート、テトラフルオロほう酸2-ブロモ-1-エチルピリジニウム、臭化水素酸4-ブロモピリジン、4-ブロモピリジン塩酸塩、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-3-メチルピリジニウムブロミド、1-ブチル-3-メチルピリジニウムクロリド、1-ブチル-4-メチルピリジニウムクロリド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチルピリジニウムブロミド、1-ブチルピリジニウムクロリド、1-ブチルピリジニウムヘキサフルオロホスファート、1-ブチルピリジニウムテトラフルオロボラート、4-カルバモイル-1-ヘキサデシルピリジニウムクロリド、1-(カルバモイルメチル)ピリジニウムクロリド、3-カルバミル-1-メチルピリジニウムクロリド、4-ピコリルクロリド塩酸塩、2-(クロロメチル)ピリジン塩酸塩、3-(クロロメチル)ピリジン塩酸塩、
 2-クロロ-1-メチルピリジニウムヨージド、2-クロロ-1-メチルピリジニウムp-トルエンスルホナート、4-クロロピリジン塩酸塩、セチルピリジニウムクロリド、1-シアノ-4-(ジメチルアミノ)ピリジニウムテトラフルオロボラート、1-(シアノメチル)ピリジニウムクロリド、シクロビス(パラクアット-1,4-フェニレン)テトラキス(ヘキサフルオロホスファート)、1,1’-ジベンジル-4,4’-ビピリジニウムジクロリド水和物、2,6-ジクロロ-1-フルオロピリジニウムトリフルオロメタンスルホナート、1,1’-ジフルオロ-2,2’-ビピリジニウムビス(テトラフルオロボラート)、1,1’-ジヘプチル-4,4’-ビピリジニウムジブロミド、2,6-ピリジンジオール塩酸塩、4-ジメチルアミノ-1-ネオペンチルピリジニウムクロリド、4-ジメチルアミノピリジニウムブロミドペルブロミド、4-(ジメチルアミノ)-1-(トリフェニルメチル)ピリジニウムクロリド、1,1’-ジメチル-4,4’-ビピリジニウムジクロリド水和物、1,1’-ジメチル-4,4’-ビピリジニウムジクロリド、1-(ジメチルカルバモイル)-4-(2-スルホエチル)ピリジニウムヒドロキシド分子内塩、2,6-ジメチルピリジニウムp-トルエンスルホナート、1,1’-ジ-n-オクチル-4,4’-ビピリジニウムジブロミド、1,1’-ジフェニル-4,4’-ビピリジニウムジクロリド、1-ドデシルピリジニウムクロリド、
 1-エチル-3-(ヒドロキシメチル)ピリジニウムエチルスルファート、1-エチル-4-(メトキシカルボニル)ピリジニウムヨージド、1-エチル-3-メチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルピリジニウムエチルスルファート、1-エチルピリジニウムブロミド、1-エチルピリジニウムクロリド、1-フルオロ-2,6-ジクロロピリジニウムテトラフルオロボラート、2-フルオロ-1-メチルピリジニウムp-トルエンスルホナート、1-フルオロピリジニウムピリジン ヘプタフルオロジボラート、1-フルオロピリジニウムテトラフルオロボラート、1-フルオロピリジニウムトリフルオロメタンスルホナート、1-フルオロ-2,4,6-トリメチルピリジニウムテトラフルオロボラート、1-フルオロ-2,4,6-トリメチルピリジニウムトリフルオロメタンスルホナート、ジラール試薬P、1-ヘキサデシル-4-メチルピリジニウムクロリド水和物、ヘキサデシルピリジニウムブロミド水和物、ヘキサデシルピリジニウムクロリド一水和物、イソニコチノイルクロリド塩酸塩、MDEPAP、1-メチルピリジニウム-2-アルドキシムクロリド、1-メチルピリジニウムクロリド、NDEPAP、1-オクタデシル-4-(4-フェニル-1,3-ブタジエニル)ピリジニウムブロミド、
 N-オクタデシル-4-スチルバゾールブロミド、1-(10,12-ペンタコサジイニル)ピリジニウムブロミド、1-フェナシルピリジニウムブロミド、1,1’-[1,4-フェニレンビス(メチレン)]ビス(4,4’-ビピリジニウム)ビス(ヘキサフルオロホスファート)、1,1’-[1,4-フェニレンビス(メチレン)]ビス(4,4’-ビピリジニウム)ジブロミド、N-フェニルニコチンアミド塩酸塩、1-プロピルピリジニウムクロリド、ピリジン-2-カルボニルクロリド塩酸塩、ピリジン-2-カルボン酸塩酸塩、ピリジン臭化水素酸塩、ピリジン塩酸塩、ピリジニウムブロミドペルブロミド、クロロクロム酸ピリジニウム、重クロム酸ピリジニウム、フルオロクロム酸ピリジニウム、ピリジニウム3-ニトロベンゼンスルホナート、ピリジニウムポリ(ヒドロゲンフルオリド)、ピリジニウムp-トルエンスルホナート、ピリジニウムトリフルオロメタンスルホナート、ピリドスチグミンブロミド、ピリドキサミン二塩酸塩一水和物、ピリドキシン塩酸塩、3-ピリジル酢酸塩酸塩、2-ピリジル酢酸塩酸塩、1-(4-ピリジル)ピリジニウムクロリド塩酸塩水和物、1-(3-スルホプロピル)ピリジニウムヒドロキシド分子内塩、α,β,γ,δ-テトラキス(1-メチルピリジニウム-4-イル)ポルフィリンp-トルエンスルホナート、1-(トリフルオロアセチル)-4-(ジメチルアミノ)ピリジニウムトリフルオロアセタート、1-メチルピリジニウム-3-カルボン酸塩酸塩、2,4,6-トリメチルピリジニウムp-トルエンスルホナートなどを挙げることができる。
 ピロリジニウム化合物の具体例としては、1-ブチル-1-メチルピロリジニウムブロミド、1-ブチル-1-メチルピロリジニウムクロリド、1-ブチル-1-プロピルピロリジニウムブロミド、1-ブチル-1-プロピルピロリジニウムクロリドなどを挙げることができる。
 ピペリジニウム化合物の具体例としては、1-ブチル-1-メチルピペリジニウムブロミドなどを挙げることができる。
 モルホリニウム化合物の具体例としては、4-プロピル-4-メチルモルホリニウムクロリド、4-(2-メトキシエチル)-4-メチルモルホリニウムクロリド、4-プロピル-4-メチルモルホリニウムブロミド、4-(2-メトキシエチル)-4-メチルモルホリニウムブロミド、4-プロピル-4-メチルモルホリニウムヒドロキシド、4-(2-メトキシエチル)-4-メチルモルホリニウムヒドロキシドなどを挙げることができる。
 4級アンモニウム化合物の具体例としては、プロピルトリメチルアンモニウムクロリド、ジエチル-2-メトキシエチルメチルアンモニウムフルオリド、メチルトリオクチルアンモニウムフルオリド、シクロヘキシルトリメチルアンモニウムフルオリド、2-ヒドロキシエチルトリメチルアンモニウムフルオリドなどのフッ化物; プロピルトリメチルアンモニウムクロリド、ジエチル-2-メトキシエチルメチルアンモニウムクロリド、メチルトリオクチルアンモニウムクロリド、シクロヘキシルトリメチルアンモニウムクロリド、2-ヒドロキシエチルトリメチルアンモニウムクロリドなどの塩化物; プロピルトリメチルアンモニウムブロミド、ジエチル-2-メトキシエチルメチルアンモニウムブロミド、メチルトリオクチルアンモニウムブロミド、シクロヘキシルトリメチルアンモニウムブロミド、2-ヒドロキシエチルトリメチルアンモニウムブロミドなどの臭化物; プロピルトリメチルアンモニウムヨージド、ジエチル-2-メトキシエチルメチルアンモニウムヨージド、メチルトリオクチルアンモニウムヨージド、シクロヘキシルトリメチルアンモニウムヨージド、2-ヒドロキシエチルトリメチルアンモニウムヨージドなどのヨウ化物; プロピルトリメチルアンモニウムヒドロキシド、ジエチル-2-メトキシエチルメチルアンモニウムヒドロキシド、メチルトリオクチルアンモニウムヒドロキシド、シクロヘキシルトリメチルアンモニウムヒドロキシド、2-ヒドロキシエチルトリメチルアンモニウムヒドロキシドなどの水酸化物; プロピルトリメチルアンモニウムアセテート、ジエチル-2-メトキシエチルメチルアンモニウムアセテート、メチルトリオクチルアンモニウムアセテート、シクロヘキシルトリメチルアンモニウムアセテート、2-ヒドロキシエチルトリメチルアンモニウムアセテートなどのアセテート; 硫酸水素プロピルトリメチルアンモニウム、硫酸水素ジエチル-2-メトキシエチルメチルアンモニウム、硫酸水素メチルトリオクチルアンモニウム、硫酸水素シクロヘキシルトリメチルアンモニウム、硫酸水素2-ヒドロキシエチルトリメチルアンモニウムなどの硫酸水素塩を挙げることができる。
 ホスホニウム化合物の具体例としては、アセトニルトリフェニルホスホニウムクロリド、アリルトリフェニルホスホニウムブロミド、アリルトリフェニルホスホニウムクロリド、アミルトリフェニルホスホニウムブロミド、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロホスファート、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスファート、ベンジルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、(ブロモメチル)トリフェニルホスホニウムブロミド、3-ブロモプロピルトリフェニルホスホニウムブロミド、trans-2-ブテン-1,4-ビス(トリフェニルホスホニウムクロリド)、ブチルトリフェニルホスホニウムブロミド、(4-カルボキシブチル)トリフェニルホスホニウムブロミド、(3-カルボキシプロピル)トリフェニルホスホニウムブロミド、(4-クロロベンジル)トリフェニルホスホニウムクロリド、(2-クロロベンジル)トリフェニルホスホニウムクロリド、(クロロメチル)トリフェニルホスホニウムクロリド、シンナミルトリフェニルホスホニウムブロミド、(シアノメチル)トリフェニルホスホニウムクロリド、シクロプロピルトリフェニルホスホニウムブロミド、ジ-tert-ブチルメチルホスホニウムテトラフェニルボラート、(2,4-ジクロロベンジル)トリフェニルホスホニウムクロリド、2-ジメチルアミノエチルトリフェニルホスホニウムブロミド、2-(1,3-ジオキサン-2-イル)エチルトリフェニルホスホニウムブロミド、2-(1,3-ジオキソラン-2-イル)エチルトリフェニルホスホニウムブロミド、
 (1,3-ジオキソラン-2-イル)メチルトリフェニルホスホニウムブロミド、4-エトキシベンジルトリフェニルホスホニウムブロミド、エトキシカルボニルメチル(トリフェニル)ホスホニウムブロミド、エチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムヨージド、(ホルミルメチル)トリフェニルホスホニウムクロリド、ヘプチルトリフェニルホスホニウムブロミド、ヘキシルトリフェニルホスホニウムブロミド、(2-ヒドロキシベンジル)トリフェニルホスホニウムブロミド、イソプロピルトリフェニルホスホニウムヨージド、メトキシカルボニルメチル(トリフェニル)ホスホニウムブロミド、(メトキシメチル)トリフェニルホスホニウムクロリド、(N-メチル-N-フェニルアミノ)トリフェニルホスホニウムヨージド、メチルトリフェニルホスホニウムブロミド、メチルトリフェニルホスホニウム ヨージド、(1-ナフチルメチル)トリフェニルホスホニウムクロリド、(4-ニトロベンジル)トリフェニルホスホニウムブロミド、ビス(テトラフルオロほう酸)μ-オキソビス[トリス(ジメチルアミノ)ホスホニウム]、フェナシルトリフェニルホスホニウムブロミド、テトラブチルホスホニウムベンゾトリアゾラート、テトラブチルホスホニウムビス(1,3-ジチオール-2-チオン-4,5-ジチオラト)ニッケル(III) コンプレックス、テトラブチルホスホニウムブロミド、テトラブチルホスホニウムクロリド、テトラブチルホスホニウムヘキサフルオロホスファート、テトラブチルホスホニウムヒドロキシド、テトラブチルホスホニウムテトラフルオロボラート、テトラブチルホスホニウムテトラフェニルボラート、テトラエチルホスホニウムブロミド、テトラエチルホスホニウムヘキサフルオロホスファート、テトラエチルホスホニウムテトラフルオロボラート、テトラキス(ヒドロキシメチル)ホスホニウムクロリド、テトラキス(ヒドロキシメチル)ホスホニウムスルファート、テトラ-n-オクチルホスホニウムブロミド、
 テトラフェニルホスホニウムブロミド、テトラフェニルホスホニウムクロリド、テトラフェニルホスホニウムヨージド、テトラフェニルホスホニウムテトラフェニルボラート、テトラフェニルホスホニウムテトラ-p-トリルボラート、トリブチル(シアノメチル)ホスホニウムクロリド、トリブチル(1,3-ジオキソラン-2-イルメチル)ホスホニウムブロミド、トリブチルドデシルホスホニウムブロミド、トリブチルヘキサデシルホスホニウムブロミド、トリブチルメチルホスホニウムヨージド、トリブチル-n-オクチルホスホニウムブロミド、トリ-tert-ブチルホスホニウムテトラフルオロボラート、トリ-tert-ブチルホスホニウムテトラフェニルボラート、トリシクロヘキシルホスホニウムテトラフルオロボラート、2-(トリメチルシリル)エトキシメチルトリフェニルホスホニウムクロリド、(2-トリメチルシリルエチル)トリフェニルホスホニウムヨージド、(3-トリメチルシリル-2-プロピニル)トリフェニルホスホニウムブロミド、トリフェニルプロパルギルホスホニウムブロミド、トリフェニルプロピルホスホニウムブロミド、トリフェニル(テトラデシル)ホスホニウムブロミド、トリフェニルビニルホスホニウムブロミドなどを挙げることができる。
 また、ホスホニウムカチオンを誘導できる、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィンなどの有機ホスフィン化合物などを挙げることができる。
 スルホニウム化合物の具体例としては、ジメチルスルホニオプロピオナート、トリメチルスルホニルクロリド、トリメチルスルホニルブロミド、トリメチルスルホニルヨージドなどを挙げることができる。
 グアニジニウム化合物の具体例としては、グアニジニウムクロリド、2-エチル-1,1,3,3-テトラメチルグアニジニウムクロリド、グアニジニウムブロミド、2-エチル-1,1,3,3-テトラメチルグアニジニウムブロミド、グアニジニウムヒドロキシド、2-エチル-1,1,3,3-テトラメチルグアニジニウムヒドロキシドなどを挙げることができる。
 イソウロニウム化合物の具体例としては、2-エチル-1,1,3,3-テトラメチルイソウロニウムクロリド、2-エチル-1,1,3,3-テトラメチルイソウロニウムブロミド、2-エチル-1,1,3,3-テトラメチルイソウロニウムヒドロキシドなどを挙げることができる。
 イソチオウロニウム化合物の具体例としては、2-エチル-1,1,3,3-テトラメチルイソチオウロニウムクロリド、2-エチル-1,1,3,3-テトラメチルイソチオウロニウムブロミド、2-エチル-1,1,3,3-テトラメチルイソチオウロニウムヒドロキシドなどを挙げることができる。
 これらのうち、水酸化オニウム化合物が好ましい。水酸化オニウム化合物を用いると、当該反応ではアンモニアが副生するので、このアンモニアを減圧除去することによって平衡を当該反応が促進する状態にすることができる。オニウム化合物を用いると副生する無機塩を濾過や水洗で除去できるので容易に精製することができる。
 オニウム化合物の使用量は、化合物〔II〕1モルに対して、好ましくは0.3モル~10モル、より好ましくは0.3モル~5モルである。
 当該反応に用いられる有機アミン化合物としては、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの三級アミンや、1,4-ジアザビシクロ[2.2.2]オクタンなどの環状アミンや、トリメチルアミン塩酸塩、トリエチルアミン塩酸塩、トリブチルアミン塩酸塩、1,4-ジアザビシクロ[2.2.2]オクタン塩酸塩や、トリメチルアミン臭化水素酸塩、トリエチルアミン臭化水素酸塩、トリブチルアミン臭化水素酸塩などの三級アミン塩や、1,4-ジアザビシクロ[2.2.2]オクタン臭化水素酸塩などの環状アミン塩を挙げることができる。
 これらのうち、三級アミン、環状アミンが好ましく、三級アミンがより好ましい。三級アミン、環状アミンを用いると、当該反応ではアンモニアが副生するので、このアンモニアを減圧除去することによって平衡を当該反応が促進する状態にすることができる。一方、三級アミン塩、環状アミン塩を用いると副生する無機塩を濾過や水洗で除去できるので容易に精製することができる。
 有機アミン化合物の使用量は、化合物〔II〕1モルに対して、好ましくは0.3モル~10モル、より好ましくは0.3モル~5モルである。
 当該反応に用いられる有機溶媒は、特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメトキシメタン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン、メチルホルメート、メチルアセテート、メチルプロピオネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、3-メチルスルホラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルオキサゾリジノン、アセトニトリル、バレロニトリル、ベンゾニトリル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、ニトロメタン、ニトロベンゼンなどの非プロトン性溶媒を好適なものとして挙げることができる。これらの中で、アセトニトリル、酢酸エチル、酢酸イソプロピルまたは酢酸ブチルは、化合物〔I〕とフッ化水素との反応、および化合物〔II〕とアルカリ金属化合物、オニウム化合物および有機アミン化合物からなる群から選ばれる少なくとも1種の化合物との反応のいずれにも用いることができるので、溶媒の入れ替えを要せず、同一の溶媒で上記反応を続けて行うことができるので、好ましい。
 当該反応時の温度は、特に限定されないが、好ましくは0℃~200℃、より好ましくは10℃~100℃である。反応に要する時間は、反応規模によって異なるが、好ましくは0.1時間~48時間、より好ましくは0.5時間~24時間である。
 反応は、常圧下でも実施可能であるが、水酸化物イオンを有する化合物を使用する場合、減圧下で実施すると副生するアンモニアが除去され、平衡が偏り、目的物が合成しやすい。減圧する場合、反応圧力は特に限定されないが、大気圧~0.01torr、が好ましく、0℃~100℃で溶媒が還流する程度の減圧度がより好ましい。
 上記の反応によって化合物〔IV〕を得ることができる。
Figure JPOXMLDOC01-appb-C000012
 式〔IV〕中、Mn+はアルカリ金属カチオン、オニウムカチオン(NH4 +を除く。)を示し、nはアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)の価数に相当し且つ1~3のいずれかの整数を示し、R2は式〔II〕におけるものと同じものを示す。
 アルカリ金属カチオンとしては、リチウムカチオン、ナトリウムカチオン、カリウムカチオン、ルビジウムカチオン、セシウムカチオンを挙げることができる。これらのうちリチウムカチオン、ナトリウムカチオン、カリウムカチオンが好ましい。
 オニウムカチオン(NH4 +カチオンを除く。)としては、ホスホニウムカチオン、オキソニウムカチオン、スルホニウムカチオン、フルオロニウムカチオン、クロロニウムカチオン、ブロモニウムカチオン、ヨードニウムカチオン、セレノニウムカチオン、テルロニウムカチオン、アルソニウムカチオン、スチボニウムカチオン、ビスムトニウムカチオン;
 イミニウムカチオン、ジアゼニウムカチオン、ニトロニウムカチオン、ジアゾニウムカチオン、ニトロソニウムカチオン、ヒドラゾニウムジカチオン、ジアゼニウムジカチオン、ジアゾニウムジカチオン; イミダゾリウムカチオン、ピリジニウムカチオン、4級アンモニウムカチオン、3級アンモニウムカチオン、2級アンモニウムカチオン、1級アンモニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、モルホリニウムカチオン、ピラゾリウムカチオン、グアニジニウムカチオン、イソウロニウムカチオン、イソチオウロニウムカチオン、などを挙げることができる。
 オニウムカチオンは、有機基を有するオニウムカチオン、すなわち有機オニウムカチオンが好ましい。有機基としては、飽和または不飽和炭化水素基などを挙げることができる。飽和または不飽和炭化水素基は、直鎖、分岐鎖または環状のものであってもよい。飽和または不飽和炭化水素基は、それを構成する炭素原子の数が、好ましくは1~18個、より好ましくは1~8個である。有機基は、それを構成する原子または原子団として、好ましくは、水素原子、フッ素原子、アミノ基、イミノ基、アミド基、エーテル基、水酸基、エステル基、ヒドロキシル基、カルボキシル基、カルバモイル基、シアノ基、スルホン基、スルフィド基; 窒素原子、酸素原子、または硫黄原子を、より好ましくは、水素原子、フッ素原子、エーテル基、水酸基、シアノ基およびスルホン基を有するものである。これら原子若しくは原子団は1個だけ有してもよいし、2個以上で有してもよい。なお、2個以上の有機基が結合している場合は、当該結合は、有機基の主骨格間に形成されたものでも、また、有機基の主骨格と上述の原子団との間、あるいは、上記原子団間に形成されたものであっても良い。
 有機基を有するオニウムカチオンとしては、1,3-ジメチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-プロピル-3-メチルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-ペンチル-3-メチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-ヘプチル-3-メチルイミダゾリウムカチオン、1-オクチル-3-メチルイミダゾリウムカチオン、1-デシル-3-メチルイミダゾリウムカチオン、1-テトラデシル-3-メチルイミダゾリウムカチオン、1-ヘキサデシル-3-メチルイミダゾリウムカチオン、1-オクタデシル-3-メチルイミダゾリウムカチオン、1-アリル-3-エチルイミダゾリウムカチオン、1-アリル-3-ブチルイミダゾリウムカチオン、1,3-ジアリルイミダゾリウムカチオン、1-エチル-2,3-ジメチルイミダゾリウムカチオン、1-ブチル-2,3-ジメチルイミダゾリウムカチオン、1-ヘキシル-2,3-メチルイミダゾリウムカチオン、1-ヘキサデシル-2,3-メチルイミダゾリウムカチオンなどのイミダゾリウムカチオン;
 1-エチルピリジニウムカチオン、1-ブチルピリジニウムカチオン、1-ヘキシルピリジニウムカチオン、1-オクチルピリジニウムカチオン、1-エチル-3-メチルピリジニウムカチオン、1-エチル-3-ヒドロキシメチルピリジニウムカチオン、1-ブチル-3-メチルピリジニウムカチオン、1-ブチル-4-メチルピリジニウムカチオン、1-オクチル-4-メチルピリジニウムカチオン、1-ブチル-3,4-ジメチルピリジニウムカチオン、1-ブチル-3,5-ジメチルピリジニウムカチオンなどのピリジニウムカチオン;
 テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラプロピルアンモニウムカチオン、テトラブチルアンモニウムカチオン、テトラヘプチルアンモニウムカチオン、テトラヘキシルアンモニウムカチオン、テトラオクチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、プロピルトリメチルアンモニウムカチオン、ジエチル-2-メトキシエチルメチルアンモニウムカチオン、メチルトリオクチルアンモニウムカチオン、シクロヘキシルトリメチルアンモニウムカチオン、2-ヒドロキシエチルトリメチルアンモニウムカチオン、トリメチルフェニルアンモニウムカチオン、ベンジルトリメチルアンモニウムカチオン、ベンジルトリブチルアンモニウムカチオン、ベンジルトリエチルアンモニウムカチオン、ジメチルジステアリルアンモニウムカチオン、ジアリルジメチルアンモニウムカチオン、2-メトキシエトキシメチルトリメチルアンモニウムカチオン、テトラキス(ペンタフルオロエチル)アンモニウムカチオンなどの4級アンモニウムカチオン;
 トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリブチルアンモニウムカチオン、ジエチルメチルアンモニウムカチオン、ジメチルエチルアンモニウムカチオン、ジブチルメチルアンモニウムカチオン、4-アザ-1-アゾニアビシクロ[2.2.2]オクタンカチオンなどの3級アンモニウムカチオン; ジメチルアンモニウムカチオン、ジエチルアンモニウムカチオン、ジブチルアンモニウムカチオンなどの2級アンモニウムカチオン; メチルアンモニウムカチオン、エチルアンモニウムカチオン、ブチルアンモニウムカチオン、ヘキシルアンモニウムカチオン、オクチルアンモニウムカチオンなどの1級アンモニウムカチオン;
 N-メトキシトリメチルアンモニウムカチオン、N-エトキシトリメチルアンモニウムカチオン、N-プロポキシトリメチルアンモニウムなどの有機アンモニウムカチオン; 1-プロピル-1-メチルピペリジニウムカチオン、1-(2-メトキシエチル)-1-メチルピペリジニウムカチオンなどのピペリジニウムカチオン; 1-プロピル-1-メチルピロリジニウムカチオン、1-ブチル-1-メチルピロリジニウムカチオン、1-ヘキシル-1-メチルピロリジニウムカチオン、1-オクチル-1-メチルピロリジニウムカチオンなどのピロリジニウムカチオン; 4-プロピル-4-メチルモルホリニウムカチオン、4-(2-メトキシエチル)-4-メチルモルホリニウムカチオンなどのモルホリニウムカチオン; 2-エチル-1,3,5-トリメチルピラゾリウムカチオン、2-プロピル-1,3,5-トリメチルピラゾリウムカチオン、2-ブチル-1,3,5-トリメチルピラゾリウムカチオン、2-ヘキシル-1,3,5-トリメチルピラゾリウムカチオンなどのピラゾリウムカチオン;
 グアニジニウム、2-エチル-1,1,3,3-テトラメチルグアニジニウムカチオンなどのグアニジウムカチオン; トリメチルスルホニウムカチオンなどのスルホニウムカチオン; トリヘキシルテトラデシルホスホニウムカチオンなどのホスホニウムカチオン; 2-エチル-1,1,3,3-テトラメチルイソウロニウムカチオンなどのイソウロニウムカチオン; 2-エチル-1,1,3,3-テトラメチルイソチオウロニウムカチオンなどのイソチオウロニウムカチオン;を挙げることができる。
 これらのうち、1,3-ジメチルイミダゾリウムカチオン、1-エチル-3-メチルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-ヘキシル-3-メチルイミダゾリウムカチオン、1-オクチル-3-メチルイミダゾリウムカチオン、1-アリル-3-エチルイミダゾリウムカチオン、1-アリル-3-ブチルイミダゾリウムカチオン、1,3-ジアリルイミダゾリウムカチオン、1-エチル-2,3-ジメチルイミダゾリウムカチオン、1-ブチル-2,3-ジメチルイミダゾリウムカチオン、1-ヘキシル-2,3-ジメチルイミダゾリウムカチオンなどのイミダゾリウムカチオン; プロピルトリメチルアンモニウムカチオン、ジエチル-2-メトキシエチルメチルアンモニウムカチオン、メチルトリオクチルアンモニウムカチオン、シクロヘキシルトリメチルアンモニウムカチオン、2-ヒドロキシエチルトリメチルアンモニウムカチオン、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリブチルアンモニウムカチオン、4-アザ-1-アゾニアビシクロ[2.2.2]オクタンカチオンなどの有機アンモニウムカチオンが好ましい。これらの中でも、オニウムカチオンとして、電解質特性などを低下させる金属元素を含まないもの、例えば、3級アンモニウムカチオン、具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリブチルアンモニウムカチオンがより更に好ましい。
 化合物〔IV〕の具体例としては、ジ(フルオロスルホニル)イミドリチウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドリチウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドリチウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドリチウム塩; ジ(フルオロスルホニル)イミドカリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドカリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドカリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドカリウム塩; ジ(フルオロスルホニル)イミドナトリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドナトリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドナトリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドナトリウム塩;
 ジ(フルオロスルホニル)イミド1,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1,3-ジメチルイミダゾリウム塩; ジ(フルオロスルホニル)イミド1-エチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-エチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-エチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-エチル-3-メチルイミダゾリウム塩; ジ(フルオロスルホニル)イミド1-ブチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ブチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ブチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ブチル-3-メチルイミダゾリウム塩; ジ(フルオロスルホニル)イミド1-ヘキシル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ヘキシル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ヘキシル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ヘキシル-3-メチルイミダゾリウム塩;
 ジ(フルオロスルホニル)イミド1-オクチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-オクチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-オクチル-3-メチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-オクチル-3-メチルイミダゾリウム塩; ジ(フルオロスルホニル)イミド1-アリル-3-エチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-アリル-3-エチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-アリル-3-エチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-アリル-3-エチルイミダゾリウム塩;
 ジ(フルオロスルホニル)イミド1-アリル-3-ブチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-アリル-3-ブチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-アリル-3-ブチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-アリル-3-ブチルイミダゾリウム塩; ジ(フルオロスルホニル)イミド1,3-ジアリルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1,3-ジアリルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド 1,3-ジアリルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1,3-ジアリルイミダゾリウム塩; ジ(フルオロスルホニル)イミド1-エチル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-エチル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-エチル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-エチル-2,3-ジメチルイミダゾリウム塩;
 ジ(フルオロスルホニル)イミド1-ブチル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ブチル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ブチル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ブチル-2,3-ジメチルイミダゾリウム塩; ジ(フルオロスルホニル)イミド1-ヘキシル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ヘキシル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ヘキシル-2,3-ジメチルイミダゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ヘキシル-2,3-ジメチルイミダゾリウム塩;
 ジ(フルオロスルホニル)イミド1-ブチルピリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ブチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ブチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ブチルピリジニウム塩; ジ(フルオロスルホニル)イミド1-ヘキシルピリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ヘキシルピリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ヘキシルピリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ヘキシルピリジニウム塩; ジ(フルオロスルホニル)イミド1-オクチルピリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-オクチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-オクチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-オクチルピリジニウム塩; ジ(フルオロスルホニル)イミド1-エチル-3-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-エチル-3-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-エチル-3-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-エチル-3-メチルピリジニウム塩;
 ジ(フルオロスルホニル)イミド1-ブチル-3-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ブチル-3-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ブチル-3-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ブチル-3-メチルピリジニウム塩; ジ(フルオロスルホニル)イミド1-ブチル-4-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ブチル-4-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-ブチル-4-メチルピリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ブチル-4-メチルピリジニウム塩;
 ジ(フルオロスルホニル)イミドジエチル-2-メトキシエチルメチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドジエチル-2-メトキシエチルメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドジエチル-2-メトキシエチルメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド ジエチル-2-メトキシエチルメチルアンモニウム塩; ジ(フルオロスルホニル)イミドメチルトリオクチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドメチルトリオクチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド メチルトリオクチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド メチルトリオクチルアンモニウム塩; ジ(フルオロスルホニル)イミドシクロヘキシルトリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドシクロヘキシルトリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドシクロヘキシルトリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドシクロヘキシルトリメチルアンモニウム塩;
 ジ(フルオロスルホニル)イミドトリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドトリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドトリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドトリメチルアンモニウム塩; ジ(フルオロスルホニル)イミドトリエチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドトリエチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドトリエチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドトリエチルアンモニウム塩; ジ(フルオロスルホニル)イミドトリブチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドトリブチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドトリブチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドトリブチルアンモニウム塩; ジ(フルオロスルホニル)イミド4-アザ-1-アゾニアビシクロ[2.2.2]オクタン塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド4-アザ-1-アゾニアビシクロ[2.2.2]オクタン塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド4-アザ-1-アゾニアビシクロ[2.2.2]オクタン塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド4-アザ-1-アゾニアビシクロ[2.2.2]オクタン塩;
 ジ(フルオロスルホニル)イミド1-プロピル-1-メチルピペリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-プロピル-1-メチルピペリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-プロピル-1-メチルピペリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-プロピル-1-メチルピペリジニウム塩; ジ(フルオロスルホニル)イミド1-プロピル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-プロピル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド1-プロピル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-プロピル-1-メチルピロリジニウム塩や、ジ(フルオロスルホニル)イミド1-ブチル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド1-ブチル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド 1-ブチル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド1-ブチル-1-メチルピロリジニウム塩;
 ジ(フルオロスルホニル)イミド4-プロピル-4-メチルモルホリニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド4-プロピル-4-メチルモルホリニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド4-プロピル-4-メチルモルホリニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド4-プロピル-4-メチルモルホリニウム塩; ジ(フルオロスルホニル)イミド2-ブチル-1,3,5-トリメチルピラゾリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド2-ブチル-1,3,5-トリメチルピラゾリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド2-ブチル-1,3,5-トリメチルピラゾリウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド2-ブチル-1,3,5-トリメチルピラゾリウム塩;
 ジ(フルオロスルホニル)イミド2-エチル-1,1,3,3-テトラメチルグアニジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド 2-エチル-1,1,3,3-テトラメチルグアニジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルグアニジニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルグアニジニウム塩; ジ(フルオロスルホニル)イミドトリメチルスルホニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドトリメチルスルホニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドトリメチルスルホニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドトリメチルスルホニウム塩; ジ(フルオロスルホニル)イミドトリヘキシルテトラデシルホスホニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミドトリヘキシルテトラデシルホスホニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミドトリヘキシルテトラデシルホスホニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミドトリヘキシルテトラデシルホスホニウム塩;
 ジ(フルオロスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソウロニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソウロニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソウロニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソウロニウム塩; ジ(フルオロスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソチオウロニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソチオウロニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソチオウロニウム塩、N-(フルオロスルホニル)-N-(ペルフルオロ-n-プロピルスルホニル)イミド2-エチル-1,1,3,3-テトラメチルイソチオウロニウム塩を挙げることができる。
 本発明の製造方法に従って得られる化合物〔IV〕は、電解質特性などを低下させる金属不純物の混入量が従来法で得られるものに比べて少ないので、一次電池、リチウムイオン、二次電池などの二次電池、電解コンデンサ、電気二重層キャパシタ、燃料電池、太陽電池、エレクトロクロミック素子などの電気化学デバイスを構成するイオン伝導体の材料として好適に用いることができる。
 以下、実施例を挙げて本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
合成例1
 攪拌器、温度計および還流管を取り付けた500mlの反応容器に、クロロスルホン酸(ClSO3H)123.9g(1.10mol)、クロロスルホニルイソシアネート98.1g(0.70mol)を仕込んだ。この混合液を撹拌下で2.5時間かけて130℃まで昇温し、同温度で9時間反応させた。反応終了後、減圧蒸留を行って98.5℃~101℃/4.2torrの留分を分取した。ジ(クロロスルホニル)イミドが無色透明な液状物として77.9g(0.36mol)得られた。
実施例1
(ジ(クロロスルホニル)イミドアンモニウム塩の合成)
 反応容器に、合成例1で得られたジ(クロロスルホニル)イミド21.4g(100mmol)を仕込んだ。これにアセトニトリル100mlおよび塩化アンモニウム5.4g(100mmol)を添加し、23~26℃で1.5時間撹拌しながら反応させた。反応終了後、固体を濾別し、アセトニトリルで洗浄した。得られた有機相から溶媒を減圧下で留去した。黄色オイル状物質25.4gが得られた。
(ジ(フルオロスルホニル)イミドアンモニウム塩の合成)
 反応容器に、-20℃下で無水フッ化水素5.2ml(240mmol)およびアセトニトリル30mlを仕込んだ。これに前記で合成したジ(クロロスルホニル)イミドアンモニウム塩15.3gのアセトニトリル30ml溶液を6分間かけて添加した。添加終了後、1.5時間かけて80℃まで加熱し、80~84℃で2.5時間還流して反応させた。反応終了後、室温に冷却し、窒素バブリングによってフッ化水素を追い出した。これに酢酸エチルおよび水を添加し、次いで炭酸水素アンモニウムにて中和した。固体を濾別した。その後、有機相を分液した。水相を酢酸エチルで3回抽出した。各抽出操作において得られた有機相を混ぜ合わせ、それを水で洗浄した。次いで、溶媒を減圧下で留去した。得られた物質を19F-NMRで分析した。分析チャートのピークの面積を計測し、塩素からフッ素への置換割合を定量した。ジ(フルオロスルホニル)イミドアンモニウム塩10.5g(53.4mmol)が得られた。
実施例2
(ジ(フルオロスルホニル)イミドカリウム塩の合成)
 反応容器に、ジ(フルオロスルホニル)イミドアンモニウム塩6.2g(23.5mmol)、酢酸ブチル47ml、および水酸化カリウム16.5g(58.8mmol)の20%水溶液を仕込み、65torrの減圧下、37℃で1時間還流した。反応液を25℃に冷却した。その後、分液し、水相を酢酸ブチル24mlで3回抽出した。各抽出操作において得られた有機相を混ぜ合わせ、減圧下で溶媒を留去した。これに塩化メチレン39mlを添加し、室温で30分間撹拌した。その後、結晶を濾別した。得られた結晶を塩化メチレン39mlで洗浄し、室温で減圧乾燥させた。ジ(フルオロスルホニル)イミドカリウム塩4.6gが得られた。陽イオンクロマトで定量分析した結果、生成物のすべては、カリウム塩であり、アンモニウムイオンを含まないものであった。
実施例3
(ジ(フルオロスルホニル)イミドリチウム塩の合成)
 ジ(フルオロスルホニル)イミドアンモニウム塩9.8g(49.6mmol)に、酢酸ブチル99ml、水酸化リチウム・1水和物6.2g(148.8mmol)、および水37mlを添加し、65torr減圧下、37℃で1時間加熱還流した。反応液を25℃に冷却した。その後、分液し、水層を酢酸ブチル50mlで3回抽出した。各抽出操作において得られた有機相を混ぜ合わせ、水3mlで2回洗浄した。その後、減圧下で溶媒を留去した。これに塩化メチレン50mlを添加し、室温で19時間撹拌した。その後、結晶を濾別した。得られた結晶を塩化メチレン50mlで洗浄し、室温で減圧乾燥させた。ジ(フルオロスルホニル)イミドリチウム塩4.5gが得られた。陽イオンクロマトで定量分析した結果、生成物のすべてがリチウム塩であり、アンモニウムイオンを含まないものであった。
実施例4
(ジ(フルオロスルホニル)イミドナトリウム塩の合成)
 ジ(フルオロスルホニル)イミドアンモニウム塩4.9g(24.7mmol)に、酢酸ブチル49ml、および水酸化ナトリウム12.4g(61.8mmol)の20%水溶液を添加し、65torr減圧下、37℃で1時間加熱還流した。反応液を25℃に冷却した。その後、分液し、水層を酢酸ブチル25mlで3回抽出した。各抽出操作において得られた有機相を混ぜ合わせ、減圧下で溶媒を留去した。これに塩化メチレン41mlを添加し、室温で15分間撹拌した。その後、結晶を濾別した。得られた結晶を塩化メチレン20mlで洗浄し、室温で減圧乾燥させた。ジ(フルオロスルホニル)イミドナトリウム塩3.5gが得られた。陽イオンクロマトで定量分析した結果、生成物のすべてがナトリウム塩であり、アンモニウムイオンを含まないものであった。
実施例5
(ジ(フルオロスルホニル)イミドトリエチルアンモニウム塩の合成)
 分液ロートに、ジ(フルオロスルホニル)イミドアンモニウム塩0.88g(4.46mmol)、酢酸ブチル10ml、トリエチルアミン塩酸塩1.38g(10.00mmol)および水1mlを添加し混ぜ合わせた。その後、分液し、有機相を水1mlで4回洗浄した。減圧下で溶媒を留去してジ(フルオロスルホニル)イミドトリエチルアンモニウム塩1.02gを得た。1H-NMRを測定した結果、トリエチルアンモニウム塩が生成していることが確認された。
 本発明によれば、フルオロスルホニルイミドアンモニウム塩を工業的に効率よく製造することができる。また、このようにして得られたフルオロスルホニルイミドアンモニウム塩にアルカリ金属化合物などを反応させることによって電解質特性などを低下させる金属不純物を含まない他のフルオロスルホニルイミド塩を製造することができる。

Claims (4)

  1.  式〔I〕で表される化合物と、フッ化水素とを反応させることを含む、式〔II〕で表されるフルオロスルホニルイミドアンモニウム塩の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式〔I〕中、R1は、フッ素原子、塩素原子または1~6個の炭素原子を有するフッ化アルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
     (式〔II〕中、R2は、フッ素原子または1~6個の炭素原子を有するフッ化アルキル基を示す。)
  2.  式〔III〕で表される化合物と、アンモニアまたはその塩とを反応させて、式〔I〕で表される化合物を得ることをさらに含む、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式〔III〕中、R1は、式〔I〕におけるものと同じものを示す。)
  3.  請求項1または2に記載の方法で得られた式〔II〕で表されるフルオロスルホニルイミドアンモニウム塩に、アルカリ金属化合物、オニウム化合物および有機アミン化合物からなる群から選ばれる少なくとも1種の化合物を反応させることを含む式〔IV〕で表されるフルオロスルホニルイミド塩の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(IV)中、Mn+はアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)を示し、nはアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)の価数に相当し且つ1~3のいずれかの整数を示し、R2は式〔II〕におけるものと同じものを示す。)
  4.  前記式〔II〕で表されるフルオロスルホニルイミドアンモニウム塩に反応させる化合物がアルカリ金属の水酸化物または三級アミン化合物であり、前記式(IV)中のMn+がアルカリ金属カチオンまたは3級アンモニウムカチオンを示す請求項3に記載の製造方法。
PCT/JP2012/051952 2011-02-10 2012-01-30 フルオロスルホニルイミドアンモニウム塩の製造方法 WO2012108284A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES12745294.4T ES2656857T3 (es) 2011-02-10 2012-01-30 Procedimiento para la producción de sal de amonio de fluorosulfonilimida
KR1020137020842A KR101744373B1 (ko) 2011-02-10 2012-01-30 플루오로술포닐이미드암모늄염의 제조 방법
SG2013058631A SG192258A1 (en) 2011-02-10 2012-01-30 Process for production of fluorosulfonylimide ammonium salt
EP12745294.4A EP2674395B1 (en) 2011-02-10 2012-01-30 Process for production of fluorosulfonylimide ammonium salt
US13/984,069 US9242862B2 (en) 2011-02-10 2012-01-30 Process for production of fluorosulfonylimide ammonium salt
JP2012556830A JP5729885B2 (ja) 2011-02-10 2012-01-30 フルオロスルホニルイミド塩の製造方法
CA2826747A CA2826747C (en) 2011-02-10 2012-01-30 Process for production of fluorosulfonylimide ammonium salt
CN201280008148.9A CN103347811B (zh) 2011-02-10 2012-01-30 氟磺酰亚胺铵盐的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-027563 2011-02-10
JP2011027563 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108284A1 true WO2012108284A1 (ja) 2012-08-16

Family

ID=46638500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051952 WO2012108284A1 (ja) 2011-02-10 2012-01-30 フルオロスルホニルイミドアンモニウム塩の製造方法

Country Status (10)

Country Link
US (1) US9242862B2 (ja)
EP (1) EP2674395B1 (ja)
JP (1) JP5729885B2 (ja)
KR (1) KR101744373B1 (ja)
CN (1) CN103347811B (ja)
CA (1) CA2826747C (ja)
ES (1) ES2656857T3 (ja)
SG (1) SG192258A1 (ja)
TW (1) TWI519514B (ja)
WO (1) WO2012108284A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
WO2014148258A1 (ja) 2013-03-18 2014-09-25 日本曹達株式会社 ジスルホニルアミンアルカリ金属塩の製造方法
WO2015056625A1 (ja) * 2013-10-17 2015-04-23 日本曹達株式会社 ジスルホニルアミド塩およびその製造方法
JP2015536898A (ja) * 2012-11-22 2015-12-24 アルケマ フランス フルオロスルホニル基を含むイミド塩を調製するための方法
TWI555724B (zh) * 2013-11-18 2016-11-01 日本曹達股份有限公司 二磺醯基醯胺鹽之顆粒或粉末、及其製造方法
JP2016204218A (ja) * 2015-04-24 2016-12-08 ステラケミファ株式会社 フルオロスルホニルイミド化合物の製造方法
KR20160146796A (ko) * 2014-04-18 2016-12-21 아르끄마 프랑스 플루오로설포닐 기를 함유하는 이미드의 제조 방법
WO2018034145A1 (ja) * 2016-08-19 2018-02-22 日本曹達株式会社 フッ素含有スルホニルアミド化合物の製造方法
JP2018052760A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法
JP2018055882A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法、及びビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料
EP3024779B1 (en) 2013-07-26 2019-07-17 Coorstek Fluorochemicals, Inc. Synthesis of hydrogen bis(fluorosulfonyl)imide
WO2022128381A1 (en) 2020-12-16 2022-06-23 Rhodia Operations Method for producing onium sulfonyl imide salts and alkali metal sulfonyl imide salts
WO2022186160A1 (ja) 2021-03-01 2022-09-09 株式会社日本触媒 電解質成形体の製造方法及び電解質成形体
WO2023276812A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 組成物の製造方法及び非水電解液
WO2023276561A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 非水電解液の製造方法
WO2023276568A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 スルホニルイミド水溶液の精製方法、非水電解液の製造方法及び電解質組成物の製造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG192219A1 (en) 2011-03-03 2013-09-30 Nippon Soda Co Production process for fluorosulfonylimide ammonium salt
WO2012118063A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法
CN104230722A (zh) * 2014-03-31 2014-12-24 深圳新宙邦科技股份有限公司 双氟磺酰亚胺鎓盐的制备方法
WO2016093400A1 (en) * 2014-12-11 2016-06-16 Chun Bo.,Ltd Method for preparing lithium bis(fluorosulfonyl) imide salt and intermediate product obtained from the same
KR102127055B1 (ko) * 2015-09-24 2020-06-26 주식회사 메디포럼제약 레독스흐름전지용 전해액을 위한 알킬기 치환된 이온성 액체 제조방법
JP2018535181A (ja) 2015-11-13 2018-11-29 ロンザ・リミテッド ビス(フルオロスルホニル)−イミド及びこの塩を調製する方法
WO2017126851A1 (ko) * 2016-01-18 2017-07-27 건국대학교 글로컬산학협력단 유기용매를 이용한 리튬플로로술포닐이미드의 제조방법
KR101982602B1 (ko) * 2018-09-11 2019-05-27 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법(1)
KR101982601B1 (ko) * 2018-09-11 2019-05-27 주식회사 천보 알콕시트리알킬실란을 이용한 불소음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR101982603B1 (ko) * 2018-09-11 2019-05-27 주식회사 천보 불소음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법 (2)
WO2020099527A1 (en) 2018-11-16 2020-05-22 Solvay Sa Method for producing alkali sulfonyl imide salts
KR102259985B1 (ko) * 2019-03-28 2021-06-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102259983B1 (ko) * 2019-03-28 2021-06-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102285464B1 (ko) * 2019-03-28 2021-08-03 주식회사 천보 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
CN109941978B (zh) * 2019-04-25 2020-08-18 浙江科峰锂电材料科技有限公司 制备双氟磺酰亚胺铵及双氟磺酰亚胺碱金属盐的方法
FR3096367B1 (fr) * 2019-05-22 2021-04-23 Arkema France Procede de preparation de sel d’ammonium contenant un groupement fluorosulfonyle
PL3990384T3 (pl) 2019-06-26 2024-05-06 Solvay Sa Sposób wytwarzania soli alkalicznych bis(fluorosulfonylo)imidu
KR102181108B1 (ko) * 2019-09-11 2020-11-20 (주)부흥산업사 리튬 비스(플루오로술포닐)이미드와 그 제조방법
US11772967B2 (en) 2021-01-07 2023-10-03 Honeywell International Inc. Integrated processes for treatment of an ammonium fluorosulfate byproduct of the production of bis (fluorosulfonyl) imide
WO2022248215A1 (en) 2021-05-26 2022-12-01 Rhodia Operations Method for producing alkali sulfonyl imide salts
JP2024528739A (ja) * 2021-06-30 2024-07-30 チュンボ カンパニー,リミテッド ビス(フルオロスルホニル)イミドアルカリ金属
EP4151592A1 (en) 2021-09-15 2023-03-22 Rhodia Operations Solvent-free process for preparing a salt of bis(fluorosulfonyl)imide
WO2023202919A1 (en) 2022-04-21 2023-10-26 Specialty Operations France Process for purifying a lithium salt of bis(fluorosulfonyl)imide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2001527505A (ja) * 1998-02-03 2001-12-25 エイシーイーピー インコーポレイテッド 電解溶質として有用な新規な物質
WO2010010613A1 (ja) * 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
JP2010168249A (ja) * 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010168308A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010189372A (ja) * 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2011027563A (ja) 2009-07-27 2011-02-10 Fuji Electric Systems Co Ltd プリント基板に付着した汚損物の分析方法及びプリント基板の洗浄方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039021A1 (de) 1980-10-16 1982-05-13 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von alkalisalzen der imidodisulfonsaeure
DE19607832A1 (de) 1996-03-01 1997-09-04 Merck Patent Gmbh Verfahren zur Herstellung von cyclischen Perfluoralkanbis(sulfonyl)imiden sowie deren Salze
US6508940B1 (en) 2000-10-20 2003-01-21 Sachem, Inc. Process for recovering onium hydroxides from solutions containing onium compounds
US7919629B2 (en) 2005-12-12 2011-04-05 Phostech Lithium Inc. Sulphonyl-1,2,4-triazole salts
WO2009025246A1 (ja) 2007-08-17 2009-02-26 Asahi Glass Company, Limited 精製された含フッ素ビススルホニルイミドのアンモニウム塩の製造方法
US8134027B2 (en) 2008-03-31 2012-03-13 Nippon Shokubai Co., Ltd. Sulfonylimide salt and method for producing the same
CN101503382A (zh) 2009-03-13 2009-08-12 中国科学院上海有机化学研究所 一种氟烷基磺酰亚胺及其氟烷基磺酰亚胺盐、制备方法和用途
EP2476666A4 (en) 2009-09-04 2013-01-23 Asahi Glass Co Ltd PROCESS FOR THE PRODUCTION OF AMMONIUM SALTS OF BIS (SULFONYL) IMIDE, BIS (SULFONYL) IMIDE AND BIS (SULFONYL) IMIDE LITHIUM SALTS
WO2012118063A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2001527505A (ja) * 1998-02-03 2001-12-25 エイシーイーピー インコーポレイテッド 電解溶質として有用な新規な物質
JP2010189372A (ja) * 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2010010613A1 (ja) * 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
JP2010168249A (ja) * 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010168308A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2011027563A (ja) 2009-07-27 2011-02-10 Fuji Electric Systems Co Ltd プリント基板に付着した汚損物の分析方法及びプリント基板の洗浄方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEMISCH BERICHTE, vol. 95, 1964, pages 849 - 850
J. INORG. NUCL. CHEM., vol. 40, 1978, pages 2001 - 2003
JEAN'NE M. SHREEVE ET AL., INORG. CHEM., vol. 37, no. 24, 1998, pages 6295 - 6303
JOHN K. RUFF; MAX LUSTIG, INORG. SYNTH., vol. 11, 1968, pages 138 - 140
See also references of EP2674395A4
Z. ANORG. ALLG. CHEM., vol. 631, 2005, pages 55 - 59
ZEITSCHRIFT FUER CHEMIE, vol. 27, no. 6, 1987, pages 227 - 8

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172274A (ja) * 2012-11-22 2018-11-08 アルケマ フランス フルオロスルホニル基を含むイミド塩を調製するための方法
EP3381889A1 (fr) * 2012-11-22 2018-10-03 Arkema France Procédé de préparation de sel d'imides contenant un groupement fluorosulfonyle
CN108456155A (zh) * 2012-11-22 2018-08-28 阿克马法国公司 用于制备含有氟磺酰基基团的酰亚胺盐的方法
JP2015536898A (ja) * 2012-11-22 2015-12-24 アルケマ フランス フルオロスルホニル基を含むイミド塩を調製するための方法
EP2922785B1 (fr) * 2012-11-22 2018-06-27 Arkema France Procede de preparation de sel d'imides contenant un groupement fluorosulfonyle
US9725318B2 (en) 2012-11-22 2017-08-08 Arkema France Method for preparing imide salts containing a fluorosulphonyl group
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
JPWO2014148258A1 (ja) * 2013-03-18 2017-02-16 日本曹達株式会社 ジスルホニルアミンアルカリ金属塩の製造方法
US9950929B2 (en) 2013-03-18 2018-04-24 Nippon Soda Co., Ltd. Method for producing disulfonylamine alkali metal salt
WO2014148258A1 (ja) 2013-03-18 2014-09-25 日本曹達株式会社 ジスルホニルアミンアルカリ金属塩の製造方法
CN105121335A (zh) * 2013-03-18 2015-12-02 日本曹达株式会社 二磺酰胺碱金属盐的制造方法
KR101741939B1 (ko) * 2013-03-18 2017-05-30 닛뽕소다 가부시키가이샤 디술포닐아민알칼리 금속염의 제조 방법
EP2977349A1 (en) 2013-03-18 2016-01-27 Nippon Soda Co., Ltd. Method for producing disulfonylamine alkali metal salt
EP2977349A4 (en) * 2013-03-18 2016-08-03 Nippon Soda Co METHOD FOR THE PRODUCTION OF A DISULFONYLAMINE ALKALIMETAL SALT
EP3024779B1 (en) 2013-07-26 2019-07-17 Coorstek Fluorochemicals, Inc. Synthesis of hydrogen bis(fluorosulfonyl)imide
WO2015056625A1 (ja) * 2013-10-17 2015-04-23 日本曹達株式会社 ジスルホニルアミド塩およびその製造方法
TWI555724B (zh) * 2013-11-18 2016-11-01 日本曹達股份有限公司 二磺醯基醯胺鹽之顆粒或粉末、及其製造方法
US10214419B2 (en) 2013-11-18 2019-02-26 Nippon Soda Co., Ltd. Granules or powder of disulfonylamide salt and method for producing same
EP3045426B1 (en) 2013-11-18 2018-11-14 Nippon Soda Co., Ltd. Granules or powder of disulfonylamide salt, and method for producing same
KR102537359B1 (ko) * 2014-04-18 2023-05-25 아르끄마 프랑스 플루오로설포닐 기를 함유하는 이미드의 제조 방법
JP2020100548A (ja) * 2014-04-18 2020-07-02 アルケマ フランス フルオロスルホニル基を含むイミドの調製
JP2017514779A (ja) * 2014-04-18 2017-06-08 アルケマ フランス フルオロスルホニル基を含むイミドの調製
KR20160146796A (ko) * 2014-04-18 2016-12-21 아르끄마 프랑스 플루오로설포닐 기를 함유하는 이미드의 제조 방법
JP2016204218A (ja) * 2015-04-24 2016-12-08 ステラケミファ株式会社 フルオロスルホニルイミド化合物の製造方法
TWI644856B (zh) * 2016-08-19 2018-12-21 Nippon Soda Co., Ltd. 含氟磺醯胺化合物之製造方法
JPWO2018034145A1 (ja) * 2016-08-19 2019-06-13 日本曹達株式会社 フッ素含有スルホニルアミド化合物の製造方法
US10717705B2 (en) 2016-08-19 2020-07-21 Nippon Soda Co., Ltd. Method for producing fluorine-containing sulfonylamide compound
WO2018034145A1 (ja) * 2016-08-19 2018-02-22 日本曹達株式会社 フッ素含有スルホニルアミド化合物の製造方法
JP2018055882A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法、及びビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料
JP2018052760A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法
WO2022128381A1 (en) 2020-12-16 2022-06-23 Rhodia Operations Method for producing onium sulfonyl imide salts and alkali metal sulfonyl imide salts
WO2022186160A1 (ja) 2021-03-01 2022-09-09 株式会社日本触媒 電解質成形体の製造方法及び電解質成形体
WO2023276812A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 組成物の製造方法及び非水電解液
WO2023276561A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 非水電解液の製造方法
WO2023276568A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 スルホニルイミド水溶液の精製方法、非水電解液の製造方法及び電解質組成物の製造方法

Also Published As

Publication number Publication date
EP2674395A4 (en) 2014-07-23
ES2656857T3 (es) 2018-02-28
CA2826747A1 (en) 2012-08-16
EP2674395A1 (en) 2013-12-18
US9242862B2 (en) 2016-01-26
TWI519514B (zh) 2016-02-01
SG192258A1 (en) 2013-09-30
KR20130114713A (ko) 2013-10-17
CA2826747C (en) 2016-02-09
US20130323154A1 (en) 2013-12-05
CN103347811B (zh) 2015-08-19
KR101744373B1 (ko) 2017-06-07
JP5729885B2 (ja) 2015-06-03
CN103347811A (zh) 2013-10-09
TW201237018A (en) 2012-09-16
JPWO2012108284A1 (ja) 2014-07-03
EP2674395B1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP5886998B2 (ja) フルオロスルホニルイミド塩の製造方法
JP5729885B2 (ja) フルオロスルホニルイミド塩の製造方法
JP5723439B2 (ja) フッ素含有スルホニルイミド塩の製造方法
JP5208782B2 (ja) フルオロスルホニルイミド類およびその製造方法
EP2257495B1 (en) Sulfonylimide salt and method for producing the same
EP2505551B2 (en) Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
JP6339091B2 (ja) フルオロスルホニル基を含むイミド塩を調製するための方法
JP4660596B2 (ja) フルオロスルホニルイミド類およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556830

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012745294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137020842

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2826747

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13984069

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE