WO2014148258A1 - ジスルホニルアミンアルカリ金属塩の製造方法 - Google Patents

ジスルホニルアミンアルカリ金属塩の製造方法 Download PDF

Info

Publication number
WO2014148258A1
WO2014148258A1 PCT/JP2014/055622 JP2014055622W WO2014148258A1 WO 2014148258 A1 WO2014148258 A1 WO 2014148258A1 JP 2014055622 W JP2014055622 W JP 2014055622W WO 2014148258 A1 WO2014148258 A1 WO 2014148258A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
alkali metal
disulfonylamine
amine
fluorosulfonyl
Prior art date
Application number
PCT/JP2014/055622
Other languages
English (en)
French (fr)
Inventor
秀樹 前川
正道 安原
林 謙一
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to KR1020157025235A priority Critical patent/KR101741939B1/ko
Priority to JP2015506689A priority patent/JP6303177B2/ja
Priority to EP14768419.5A priority patent/EP2977349B1/en
Priority to US14/773,964 priority patent/US9950929B2/en
Priority to CA2904489A priority patent/CA2904489C/en
Priority to CN201480014935.3A priority patent/CN105121335A/zh
Priority to ES14768419.5T priority patent/ES2687897T3/es
Publication of WO2014148258A1 publication Critical patent/WO2014148258A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a disulfonylamine alkali metal salt. More specifically, the present invention relates to a method for producing a high purity disulfonylamine alkali metal salt with a low temperature history and at a low cost.
  • This application claims priority based on Japanese Patent Application No. 2013-055571 filed in Japan on March 18, 2013, the contents of which are incorporated herein by reference.
  • Disulfonylamine alkali metal salt is a compound useful for an electrolyte of a secondary battery, an additive to the electrolyte of a secondary battery, etc. (Patent Document 1).
  • Patent Document 1 Disulfonylamine alkali metal salt is a compound useful for an electrolyte of a secondary battery, an additive to the electrolyte of a secondary battery, etc.
  • Patent Document 1 it is known that the smaller the impurities contained in the electrolyte of the secondary battery, the better the discharge capacity and charge / discharge current efficiency (Non-Patent Document 1). For this reason, development of a method for producing a disulfonylamine alkali metal salt with high purity is in progress.
  • Patent Document 2 proposes a method for producing a high-purity disulfonylamine salt characterized by contacting a reaction solution with an alkaline aqueous solution for removing impurities after fluorination reaction of bis (chlorosulfonyl) amine. Yes.
  • Patent Document 3 a step of concentrating the disulfonylamine alkali metal salt solution while bubbling gas into the reaction solution containing the disulfonylamine alkali metal salt and / or concentrating the disulfonylamine alkali metal salt solution by thin film distillation.
  • a process for producing a disulfonylamine alkali metal salt characterized in that it comprises the step of:
  • Patent Document 4 after a bis (fluorosulfonyl) amine ammonium salt is obtained by reacting a bis (chlorosulfonyl) amine ammonium salt with hydrogen fluoride, an alkali metal is added to the obtained bis (fluorosulfonyl) amine ammonium salt.
  • a method for producing a bis (fluorosulfonyl) amine alkali metal salt characterized by reacting a compound or the like has been proposed.
  • an object of the present invention is to provide a method for producing a high-purity disulfonylamine alkali metal salt with a low temperature history and at a low cost.
  • a disulfonylamine onium salt represented by the formula [I] in an organic solvent is subjected to a cation exchange reaction to form a disulfonylamine alkali metal salt represented by the formula [II] (hereinafter, disulfonylamine alkali metal). Salt [II]), and a step of filtering the organic solvent solution containing the disulfonylamine alkali metal salt with a filter having a retention particle size of 0.1 to 10 ⁇ m to obtain a filtrate.
  • a method for producing a sulfonylamine alkali metal salt is a cation exchange reaction to form a disulfonylamine alkali metal salt represented by the formula [II] (hereinafter, disulfonylamine alkali metal).
  • R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms, or a fluorine atom, and at least one of R 1 or R 2 is a fluorine atom. It is.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxyalkyl group having 1 to 6 carbon atoms; Two groups out of 3 , R 4 , R 5 and R 6 may be combined to form a 5- to 8-membered ring containing a nitrogen atom to which they are bonded as a ring-constituting atom.
  • M + represents an alkali metal cation
  • R 1 and R 2 represent the same as those in formula [I].
  • [2] The production method according to [1], wherein the filter is a membrane filter.
  • [3] The production method according to [1] or [2], wherein the organic solvent is an ester solvent.
  • [4] The production method according to [1] or [2], wherein the organic solvent is isopropyl acetate.
  • [5] The production method according to any one of [1] to [4], further comprising a step of concentrating the filtrate at a temperature of 0 to 70 ° C. after the filtration step.
  • [6] The production method according to [5], wherein the filtrate is concentrated at a temperature of 0 to 50 ° C. after the filtration step.
  • the method further includes the steps of washing the organic solvent solution with water to remove onium cations from the organic solvent solution after the cation exchange reaction step and before the filtration step.
  • the manufacturing method as described in any one of these.
  • a high purity disulfonylamine alkali metal salt [II] can be produced with a low temperature history and at a low cost.
  • the method for producing a disulfonylamine alkali metal salt according to the present invention includes a step of subjecting a disulfonylamine onium salt to a cation exchange reaction in an organic solvent to form a disulfonylamine alkali metal salt [II], and the disulfonylamine
  • the method includes a step of obtaining an filtrate by filtering an organic solvent solution containing an alkali metal salt with a filter.
  • the disulfonylamine onium salt used in the present invention is a compound represented by the formula [I] (hereinafter sometimes referred to as disulfonylamine onium salt [I]).
  • the disulfonylamine onium salt [I] includes a disulfonylamine anion represented by the formula [III] (hereinafter sometimes referred to as disulfonylamine anion [III]) and an onium cation represented by the formula [IV] (hereinafter referred to as “disulfonylamine anion [III]”). , Sometimes referred to as onium cation [IV]).
  • R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms, or a fluorine atom, and at least one of R 1 or R 2 is a fluorine atom. is there.
  • the number of carbon atoms constituting the fluorinated alkyl group in R 1 and R 2 is 1 to 6, preferably 1 to 4, and more preferably 1 to 2.
  • Fluoroalkyl groups include fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 3,3,3- Trifluoropropyl group, perfluoro-n-propyl group, fluoropropyl group, perfluoroisopropyl group, fluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, perfluoro-n-butyl group, perfluoroisobutyl group, Perfluoro-t-butyl group, perfluoro-sec-butyl group, fluoropentyl group, perfluoropentyl group, perfluoropentyl group,
  • a trifluoromethyl group, a pentafluoroethyl group or a perfluoro-n-propyl group is preferable, and a trifluoromethyl group or a pentafluoroethyl group is more preferable.
  • disulfonylamine anion [III] examples include bis (fluorosulfonyl) amine anion, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine anion, N- (fluorosulfonyl) -N- (penta Fluoroethylsulfonyl) amine anion.
  • bis (fluorosulfonyl) amine anions in which R 1 and R 2 are both fluorine atoms are preferred.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. It represents an alkyl group, and two of R 3 , R 4 , R 5 and R 6 may be combined to form a 5- to 8-membered ring containing a nitrogen atom to which they are bonded as a ring-constituting atom.
  • the number of carbon atoms constituting the alkyl group in R 3 , R 4 , R 5 and R 6 is 1 to 6, preferably 1 to 4, more preferably 1 to 2. is there.
  • the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, pentyl group, isopentyl group, t-pentyl group, hexyl group, and isohexyl group. And so on.
  • a methyl group, an ethyl group, and a propyl group are preferable.
  • the number of carbon atoms constituting the alkoxyalkyl group in R 3 , R 4 , R 5 and R 6 is 2 to 6, preferably 2 to 4, more preferably 2 to 3 It is.
  • the alkoxyalkyl group include methoxymethyl group, ethoxymethyl group, isopropoxymethyl group, t-butoxymethyl group, propoxymethyl group, butoxymethyl group, 2-methoxyethyl group, 2-ethoxyethyl group, 2-isopropoxyethyl. Group, 2-methoxypropyl group, 2-t-butoxyethyl group, 2-propoxyethyl group and the like. Among these, a methoxymethyl group, an ethoxymethyl group, and an ethoxyethyl group are preferable.
  • onium cation [IV] examples include ammonium cation, dimethyl ammonium cation, trimethyl ammonium cation, tetramethyl ammonium cation, diethyl ammonium cation, triethyl ammonium cation, tetraethyl ammonium cation, tetrabutyl ammonium cation, pyrrolidinium cation, Peridinium cation, 4-morpholinium cation, 1,1-dimethylpyrrolidinium cation, 1,1-dimethylpiperidinium cation, 1-ethyl-1-methylpyrrolidinium cation, 1-ethyl-1-methyl Piperidinium cation, 1-methyl-1-propylpyrrolidinium cation, 1-methyl-1-propylpiperidinium cation, 1- (methoxymethyl) -1-methyl Lori pyridinium cation, 1-and the like (methoxymethyl) -1
  • the molar ratio of the disulfonylamine anion [III] and the onium cation [IV] is not particularly limited. Since the disulfonylamine anion [III] is a monovalent anion and the onium cation [IV] is a monovalent cation, it is usually a salt having a molar ratio of 1: 1.
  • the disulfonylamine onium salt [I] is not particularly limited by the method of obtaining it.
  • the disulfonylamine onium salt [I] may be a commercially available product, or may be produced by a known method described in JP 2010-168249 A.
  • disulfonylamine onium salt [I] examples include bis (fluorosulfonyl) amine ammonium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine ammonium salt, N- (fluorosulfonyl) -N -(Pentafluoroethylsulfonyl) amine ammonium salt, bis (fluorosulfonyl) amine dimethyl ammonium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine dimethyl ammonium salt, N- (fluorosulfonyl) -N- (Pentafluoroethylsulfonyl) amine dimethyl ammonium salt, bis (fluorosulfonyl) amine trimethyl ammonium salt, N- (fluorosulfonyl) -N- (trifluoromethyl
  • the organic solvent used in the production method of the present invention is not particularly limited, but a solvent capable of dissolving disulfonylamine onium salt and disulfonylamine alkali metal salt is preferable.
  • a solvent capable of dissolving disulfonylamine onium salt and disulfonylamine alkali metal salt is preferable.
  • preferred organic solvents include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethoxymethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxane.
  • ester solvents such as ethyl acetate, isopropyl acetate, and butyl acetate are preferable, and isopropyl acetate is more preferable from the viewpoint that a higher purity disulfonylamine alkali metal salt [II] can be obtained. From the viewpoint of reducing the temperature when the filtrate is concentrated after the filtration step, isopropyl acetate is preferred among the ester solvents.
  • an alkali metal compound is used in the cation exchange reaction.
  • the alkali metal compound include hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH, carbonates such as Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , and Cs 2 CO 3 , Hydrogen carbonate such as LiHCO 3 , NaHCO 3 , KHCO 3 , RbHCO 3 , CsHCO 3 , chloride such as LiCl, NaCl, KCl, RbCl, CsCl, bromide such as LiBr, NaBr, KBr, RbBr, CsBr, LiF, NaF , Fluorides such as KF, RbF, CsF, alkoxide compounds such as CH 3 OLi, EtOLi, t-BuOK, t-BuONa, hydride compounds such as NaH, KH, LiH, and i-Pr
  • the amount of the alkali metal compound used is preferably 1 mol to 10 mol, more preferably 1 mol to 5 mol, relative to 1 mol of the disulfonylamine onium salt [I].
  • the cation exchange reaction can be performed, for example, by mixing disulfonylamine onium salt [I] and an alkali metal compound in an organic solvent.
  • the temperature during the cation exchange reaction is not particularly limited, but is preferably 0 ° C. to 200 ° C., more preferably 10 ° C. to 100 ° C.
  • the time required for the reaction varies depending on the reaction scale, but is preferably 0.1 hour to 48 hours, more preferably 0.5 hour to 24 hours.
  • the disulfonylamine onium salt [I] is converted to the disulfonylamine alkali metal salt represented by the formula [II] by this cation exchange reaction step.
  • M + represents an alkali metal cation
  • R 1 and R 2 represent the same as those in the formula [I].
  • the disulfonylamine alkali metal salt [II] is a salt comprising the disulfonylamine anion [III] and an alkali metal cation M + .
  • alkali metal cation examples include a lithium cation, a sodium cation, a potassium cation, and a cesium cation.
  • the molar ratio of the disulfonylamine anion [III] and the alkali metal cation M + is not particularly limited. Since the disulfonylamine anion [III] is a monovalent anion and the alkali metal cation M + is a monovalent cation, it is usually a salt having a molar ratio of 1: 1.
  • disulfonylamine alkali metal salt [II] include bis (fluorosulfonyl) amine lithium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine lithium salt, N- (fluorosulfonyl)- N- (pentafluoroethylsulfonyl) amine lithium salt bis (fluorosulfonyl) amine sodium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine sodium salt, N- (fluorosulfonyl) -N- (penta Fluoroethylsulfonyl) amine sodium salt bis (fluorosulfonyl) amine potassium salt, N- (fluorosulfonyl) -N- (trifluoromethylsulfonyl) amine potassium salt, N- (fluorosulfononyl
  • an organic solvent solution containing the disulfonylamine alkali metal salt [II] obtained by the cation exchange reaction is washed with water to remove onium from the organic solvent solution. It is preferable to remove cations.
  • the method of washing is not particularly limited. For example, it can be carried out by adding water to an organic solvent solution and stirring well, then leaving the mixture to separate into an organic solvent phase and an aqueous phase, and removing the aqueous phase. This extraction operation may be performed batchwise or continuously.
  • an organic solvent solution containing disulfonylamine alkali metal salt [II] is filtered with a filter.
  • the organic solvent solution may be one obtained immediately after the cation exchange reaction, one obtained after extraction with water, or one prepared by adjusting the concentration to be described later by a known method.
  • filter media such as nonwoven fabric, cellulose, activated carbon and diatomaceous earth were filled.
  • a filter etc. can be mentioned.
  • membrane filters are preferred.
  • the filter media for membrane filters, hollow fiber membrane filters, and pleated membrane filters are made of polyolefin such as polyethylene, ultra-high density polyethylene, and polypropylene, made of fluororesin such as PTFE, nylon, cellulose fiber, glass fiber, stainless steel fiber It is preferably made of silica, silica, polycarbonate, cotton, polyethersulfone or cellulose acetate.
  • these filters may contain an ion exchanger such as a cation exchange resin, or a cation charge control agent that generates a zeta potential in the organic solvent solution to be filtered.
  • the filter used in the production method of the present invention has a retained particle diameter of preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • a filter having a reserved particle diameter in such a range fine impurities can be removed, and high-purity disulfonylamine alkali metal salt [II] can be obtained. Note that if the retained particle diameter is too small, the filter tends to be clogged. Conversely, if the retained particle diameter is too large, the ability to remove fine impurities tends to be low.
  • the filtrate is preferably concentrated at a temperature of 0 to 70 ° C., more preferably 0 to 50 ° C. after the above-described filtration step.
  • the concentration operation is preferably performed under reduced pressure.
  • the disulfonylamine alkali metal salt [II] obtained by carrying out the production method of the present invention has a greatly reduced content of impurities, particularly chloride ions, fluorine ions and sulfate ions.
  • the high-purity disulfonylamine alkali metal salt [II] obtained by the production method of the present invention can be suitably used as an ion conductor material constituting an electrochemical device such as a lithium ion secondary battery.
  • Synthesis Example 1 (Synthesis of di (fluorosulfonyl) amine ammonium salt) 2.14 parts by mass of di (chlorosulfonyl) amine was charged into a fluororesin reaction vessel. 17.6 parts by mass of butyl acetate and 1.78 parts by mass of NH 4 F were added thereto, and the mixture was refluxed at 75 ° C. for 4 hours to be reacted. After completion of the reaction, the mixture was cooled to room temperature, and 2.5 parts by mass of water was added to extract water-soluble components. The aqueous phase was removed and the organic phase was concentrated to give di (fluorosulfonyl) amine ammonium salt.
  • Example 1 Synthesis of di (fluorosulfonyl) amine lithium salt (hereinafter referred to as LFSI) 19.8 g (0.10 mol) of di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1 was added with 60 mL of isopropyl acetate and water. Lithium oxide monohydrate (5.5 g, 0.13 mol) was added, and the mixture was heated to reflux for 1.5 hours at an absolute pressure of 9.333 kPa and a temperature of 27 ° C. to 33 ° C. The resulting liquid was cooled to 25 ° C.
  • LFSI di (fluorosulfonyl) amine lithium salt
  • the organic phases were mixed and the water-soluble component was extracted three times with 5 ml of water, and the obtained organic phase was put in a reaction vessel equipped with a Dean-Stark tube at a temperature of 3 Water was removed by refluxing under reduced pressure while adding 130 ml of isopropyl acetate in the middle at 3.5 ° C.
  • Crystals were precipitated by adding 180 ml of methylene chloride dropwise to the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The crystals separated by filtration were washed with 90 ml of methylene chloride and dried under vacuum at room temperature for 8 hours. 4.41 g of LFSI was obtained. The obtained LFSI had an F ⁇ content of 46 ppm, a Cl ⁇ content of less than 5 ppm, and an SO 4 2 ⁇ content of 10 ppm.
  • Example 2 (Synthesis of LFSI) 100 mL of isopropyl acetate and 5.5 g (0.13 mol) of lithium hydroxide monohydrate were added to 19.8 g (0.10 mol) of the di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1, and absolute pressure was added. The mixture was heated to reflux at 9.333 kPa and a temperature of 27 ° C. to 33 ° C. for 1.5 hours. The obtained liquid was cooled to 25 ° C., and 20 ml of water was added thereto for extraction. Separated into an organic phase and an aqueous phase, 50 mL of isopropyl acetate was added to the aqueous phase to extract water-insoluble components.
  • the organic phases obtained by the extraction operation were combined, and water-soluble components were extracted three times with 5 mL of water.
  • the obtained organic phase was put into a reaction vessel equipped with a Dean-Stark tube and refluxed under reduced pressure at a temperature of 35 ° C. and an absolute pressure of 10.66 to 13.33 kPa for 5 hours to remove moisture.
  • the obtained organic solvent solution was filtered with a filter (Kiriyama No. 5B, retention particle diameter 4 ⁇ m). Of 75.2 g of the obtained LFSI solution, 41.9 g was put in a rotary evaporator, evaporated at 40 ° C., and concentrated to an LFSI concentration of 56.4% by mass.
  • Crystals were precipitated by adding 100 ml of methylene chloride dropwise to the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The crystals separated by filtration were washed with 45 ml of methylene chloride and dried under vacuum at room temperature for 8 hours. 2.69 g of LFSI was obtained. The obtained LFSI had an F ⁇ content of less than 5 ppm, a Cl ⁇ content of 6 ppm, and an SO 4 2 ⁇ content of 6 ppm.
  • Example 3 (Synthesis of LFSI) 100 mL of isopropyl acetate and 5.5 g (0.13 mol) of lithium hydroxide monohydrate were added to 19.8 g (0.10 mol) of the di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1, and absolute pressure was added. The mixture was heated to reflux at 9.333 kPa and a temperature of 27 ° C. to 33 ° C. for 1.5 hours. The obtained liquid was cooled to 25 ° C., and 20 ml of water was added thereto for extraction. Separated into an organic phase and an aqueous phase, 50 mL of isopropyl acetate was added to the aqueous phase to extract water-insoluble components.
  • the organic phases obtained by the extraction operation were combined, and water-soluble components were extracted three times with 5 mL of water.
  • the obtained organic phase was put into a reaction vessel equipped with a Dean-Stark tube and refluxed under reduced pressure at a temperature of 35 ° C. and an absolute pressure of 10.66 to 13.33 kPa for 5 hours to remove moisture.
  • the obtained organic solvent solution was filtered with a filter (Kiriyama No. 5B, retention particle diameter 4 ⁇ m). 33.3 g of 75.2 g of the obtained LFSI solution was placed in a rotary evaporator, evaporated at 60 ° C., and concentrated to an LFSI concentration of 67.4% by mass.
  • Crystals were precipitated by adding 80 ml of methylene chloride dropwise to the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The crystals separated by filtration were washed with 45 ml of methylene chloride and dried under vacuum at room temperature for 8 hours. LFSI 5.00 g was obtained. The obtained LFSI had an F ⁇ content of 66 ppm, a Cl ⁇ content of less than 5 ppm, and an SO 4 2 ⁇ content of 76 ppm.
  • Example 4 (Synthesis of LFSI) Lithium hydroxide monohydrate (15.9 g, 0.36 mol) was added to 153.2 g of a butyl acetate solution containing 41.8 g (0.2 mol) of the di (fluorosulfonyl) amine ammonium salt obtained in Synthesis Example 1. The mixture was added and heated to reflux at an absolute pressure of 5.33 kPa and a temperature of 31 ° C. to 32 ° C. for 4 hours. The obtained liquid was filtered (Kiriyama No. 5B, retained particle diameter 4 ⁇ m) to remove insolubles (LiOH, etc.). The obtained filtrate was extracted by adding 100 ml of butyl acetate and 30 ml of water.
  • the organic phase and the aqueous phase were separated, and the organic phase was extracted twice with 10 ml of water.
  • the organic phase was placed in a rotary evaporator and concentrated at 60 ° C. to a LFSI concentration of 58.8% by mass. Crystals were precipitated by dropping 160 ml of methylene chloride into the concentrated LFSI solution. Thereafter, the crystals were separated by filtration under reduced pressure. The obtained crystals were washed with 320 ml of methylene chloride and dried under vacuum at room temperature for 7 hours. 14.96 g of LFSI was obtained. The obtained LFSI had an F ⁇ content of 11 ppm, a Cl ⁇ content of 11 ppm, and an SO 4 2 ⁇ content of 77 ppm.
  • high-purity disulfonylamine alkali metal salt [II] can be produced with a low temperature history and at a low cost, which is industrially useful.

Abstract

本発明は、有機溶媒中で、式〔I〕(式〔I〕中、R1およびR2は、それぞれ独立して、1~6個の炭素原子を有するフッ化アルキル基などを示し、R1またはR2の少なくとも一方はフッ素原子であり、R3、R4、R5およびR6は、それぞれ独立して、水素原子などを示す)で表されるジスルホニルアミンオニウム塩を、カチオン交換反応させて、式〔II〕(式〔II〕中、M+は、アルカリ金属カチオンを示し、R1およびR2は式〔I〕におけるものと同じものを示す。)で表されるジスルホニルアミンアルカリ金属塩にする工程、および前記ジスルホニルアミンアルカリ金属塩を含有する有機溶媒溶液を保留粒子径0.1~10μmのフィルターでろ過してろ液を得る工程を含むジスルホニルアミンアルカリ金属塩の製造方法を提供する。

Description

ジスルホニルアミンアルカリ金属塩の製造方法
本発明はジスルホニルアミンアルカリ金属塩の製造方法に関する。より詳細に、本発明は、高純度のジスルホニルアミンアルカリ金属塩を低い温度履歴で且つ低コストで製造する方法に関する。
本願は、2013年3月18日に、日本に出願された特願2013-055571号に基づき優先権を主張し、その内容をここに援用する。
 ジスルホニルアミンアルカリ金属塩は、二次電池の電解質や、二次電池の電解質への添加剤などに有用な化合物である(特許文献1)。また、二次電池の電解質に含まれる不純物が少ないほど、放電容量や充放電の電流効率に対して良い影響があることが知られている(非特許文献1)。そのため、ジスルホニルアミンアルカリ金属塩を純度よく製造する方法の開発が進められている。
 例えば、特許文献2では、ビス(クロロスルホニル)アミンのフッ素化反応後に、不純物除去のため、反応溶液をアルカリ水溶液と接触させることを特徴とする高純度ジスルホニルアミン塩の製造方法が提案されている。
 特許文献3では、ジスルホニルアミンアルカリ金属塩を含む反応溶液中にガスをバブリングしながらジスルホニルアミンアルカリ金属塩溶液を濃縮する工程、および/または、薄膜蒸留によりジスルホニルアミンアルカリ金属塩溶液を濃縮する工程を含むことを特徴とするジスルホニルアミンアルカリ金属塩の製造方法が提案されている。
 特許文献4では、ビス(クロロスルホニル)アミンアンモニウム塩とフッ化水素とを反応させることによってビス(フルオロスルホニル)アミンアンモニウム塩を得た後、得られたビス(フルオロスルホニル)アミンアンモニウム塩にアルカリ金属化合物などを反応させることを特徴とするビス(フルオロスルホニル)アミンアルカリ金属塩の製造方法が提案されている。
特表平08-511274号公報 WO2011/065502 WO2011/149095 WO2012/108284
松田義晴ほか、リチウム二次電池の負極充放電特性に及ぼす電解液中のイミド塩純度の影響、電気化学会第68回大会講演要旨集、2001年3月25日、第232頁
 特許文献2や4に記載の方法では高純度のジスルホニルアミンアルカリ金属塩を得られないことがある。特許文献3に記載の方法では特殊な設備を必要とする上に、薄膜蒸留時に高い温度履歴を経るため製造コストが高めである。
 そこで、本発明の課題は高純度のジスルホニルアミンアルカリ金属塩を低い温度履歴で且つ低コストで製造する方法を提供することにある。
 本発明者らは上記課題を解決するために検討を行った結果、以下の形態を包含する本発明を完成するに至った。
〔1〕 有機溶媒中で式〔I〕で表されるジスルホニルアミンオニウム塩を、カチオン交換反応させて、式〔II〕で表されるジスルホニルアミンアルカリ金属塩(以下、ジスルホニルアミンアルカリ金属塩〔II〕ということがある。)にする工程、および
 前記ジスルホニルアミンアルカリ金属塩を含有する有機溶媒溶液を保留粒子径0.1~10μmのフィルターでろ過してろ液を得る工程を含む
 ジスルホニルアミンアルカリ金属塩の製造方法。
Figure JPOXMLDOC01-appb-C000003
 
 
 
(式〔I〕中、R1およびR2は、それぞれ独立して、1~6個の炭素原子を有するフッ化アルキル基、またはフッ素原子を示し、R1またはR2の少なくとも一方はフッ素原子である。
 R3、R4、R5およびR6は、それぞれ独立して、水素原子、1~6個の炭素原子を有するアルキル基、または1~6個の炭素原子を有するアルコキシアルキル基を示し、R3、R4、R5およびR6のうち2つの基が一緒になってそれらが結合する窒素原子を環構成原子として含む5~8員環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000004
 
 
 
(式〔II〕中、M+は、アルカリ金属カチオンを示し、R1およびR2は式〔I〕におけるものと同じものを示す。)
〔2〕 フィルターがメンブレンフィルターである〔1〕に記載の製造方法。
〔3〕 有機溶媒がエステル系溶媒である〔1〕または〔2〕に記載の製造方法。
〔4〕 有機溶媒が酢酸イソプロピルである〔1〕または〔2〕に記載の製造方法。
〔5〕 ろ過工程の後、ろ液を0~70℃の温度で濃縮する工程をさらに含む〔1〕~〔4〕のいずれかひとつに記載の製造方法。
〔6〕 ろ過工程の後、ろ液を0~50℃の温度で濃縮することを特徴とする〔5〕に記載の製造方法。
〔7〕 カチオン交換反応させる工程の後で、ろ過する工程の前に、前記有機溶媒溶液を水で洗浄して該有機溶媒溶液からオニウムカチオンを除去する工程をさらに含む〔1〕~〔6〕のいずれかひとつに記載の製造方法。
〔8〕 濃縮工程の後、ジスルホニルアミンアルカリ金属塩を晶析させる工程をさらに含む〔5〕~〔7〕のいずれかひとつに記載の製造方法。
 本発明によれば、高純度のジスルホニルアミンアルカリ金属塩〔II〕を低い温度履歴で且つ低コストで製造することができる。
 本発明に係るジスルホニルアミンアルカリ金属塩の製造方法は、有機溶媒中でジスルホニルアミンオニウム塩を、カチオン交換反応させて、ジスルホニルアミンアルカリ金属塩〔II〕にする工程、および該ジスルホニルアミンアルカリ金属塩を含有する有機溶媒液をフィルターでろ過してろ液を得る工程を含むものである。
 本発明に用いられるジスルホニルアミンオニウム塩は、式〔I〕で表される化合物(以下、ジスルホニルアミンオニウム塩〔I〕ということがある。)である。
Figure JPOXMLDOC01-appb-C000005
 
 
 ジスルホニルアミンオニウム塩〔I〕は、式〔III〕で表わされるジスルホニルアミンアニオン(以下、ジスルホニルアミンアニオン〔III〕ということがある。)および式〔IV〕で表されるオニウムカチオン(以下、オニウムカチオン〔IV〕ということがある。)からなる塩である。
Figure JPOXMLDOC01-appb-C000006
 
 
Figure JPOXMLDOC01-appb-C000007
 
 
 式〔III〕中、R1およびR2は、それぞれ独立して、1~6個の炭素原子を有するフッ化アルキル基、またはフッ素原子を示し、R1またはR2の少なくとも一方はフッ素原子である。
 式〔III〕中、R1およびR2における、フッ化アルキル基を構成する炭素原子の数は、1~6個、好ましくは1~4個、より好ましくは1~2個である。フッ化アルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、ペルフルオロ-n-プロピル基、フルオロプロピル基、ペルフルオロイソプロピル基、フルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、ペルフルオロ-n-ブチル基、ペルフルオロイソブチル基、ペルフルオロ-t-ブチル基、ペルフルオロ-sec-ブチル基、フルオロペンチル基、ペルフルオロペンチル基、ペルフルオロイソペンチル基、ペルフルオロ-t-ペンチル基、フルオロヘキシル基、ペルフルオロ-n-ヘキシル基、ペルフルオロイソヘキシル基などを挙げることができる。これらの中でも、トリフルオロメチル基、ペンタフルオロエチル基またはペルフルオロ-n-プロピル基が好ましく、トリフルオロメチル基またはペンタフルオロエチル基がより好ましい。
 ジスルホニルアミンアニオン〔III〕の具体例としては、ビス(フルオロスルホニル)アミンアニオン、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンアニオン、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンアニオンなどを挙げることができる。これらのうち、R1およびR2が共にフッ素原子である、ビス(フルオロスルホニル)アミンアニオンが好ましい。
 式〔IV〕中、R3、R4、R5およびR6は、それぞれ独立して、水素原子、1~6個の炭素原子を有するアルキル基、または1~6個の炭素原子を有するアルコキシアルキル基を示し、R3、R4、R5およびR6のうち2つの基が一緒になってそれらが結合する窒素原子を環構成原子として含む5~8員環を形成してもよい。
 式〔IV〕中、R3、R4、R5およびR6における、アルキル基を構成する炭素原子の数は、1~6個、好ましくは1~4個、より好ましくは1~2個である。アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、t-ペンチル基、ヘキシル基、イソヘキシル基などを挙げることができる。これらの中でも、メチル基、エチル基、プロピル基が好ましい。
 式〔IV〕中、R3、R4、R5およびR6における、アルコキシアルキル基を構成する炭素原子の数は、2~6個、好ましくは2~4個、より好ましくは2~3個である。アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、イソプロポキシメチル基、t-ブトキシメチル基、プロポキシメチル基、ブトキシメチル基、2-メトキシエチル基、2-エトキシエチル基、2-イソプロポキシエチル基、2-メトキシプロピル基、2-t-ブトキシエチル基、2-プロポキシエチル基などを挙げることができる。これらの中でも、メトキシメチル基、エトキシメチル基、エトキシエチル基が好ましい。
 オニウムカチオン〔IV〕の具体例としては、アンモニウムカチオン、ジメチルアンモニウムカチオン、トリメチルアンモニウムカチオン、テトラメチルアンモニウムカチオン、ジエチルアンモニウムカチオン、トリエチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラブチルアンモニウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、4-モルホリニウムカチオン、1,1-ジメチルピロリジニウムカチオン、1,1-ジメチルピペリジニウムカチオン、1-エチル-1-メチルピロリジニウムカチオン、1-エチル-1-メチルピペリジニウムカチオン、1-メチル-1-プロピルピロリジニウムカチオン、1-メチル-1-プロピルピペリジニウムカチオン、1-(メトキシメチル)-1-メチルピロリジニウムカチオン、1-(メトキシメチル)-1-メチルピペリジニウムカチオンなどを挙げることができる。これらのうち、R3,R4、R5およびR6がすべて水素原子である、アンモニウムカチオンが好ましい。
 ジスルホニルアミンオニウム塩〔I〕において、ジスルホニルアミンアニオン〔III〕と、オニウムカチオン〔IV〕のモル比は特に制限されない。ジスルホニルアミンアニオン〔III〕は1価のアニオンでありオニウムカチオン〔IV〕は1価のカチオンであるため、通常、モル比が1:1の塩となる。
 ジスルホニルアミンオニウム塩〔I〕は、その入手の方法によって特に制限されない。ジスルホニルアミンオニウム塩〔I〕は市販品であってもよいし、特開2010-168249号公報などの記載の公知の方法によって製造されたものであってもよい。
 ジスルホニルアミンオニウム塩〔I〕の具体例としては、ビス(フルオロスルホニル)アミンアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンアンモニウム塩、ビス(フルオロスルホニル)アミンジメチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンジメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンジメチルアンモニウム塩、ビス(フルオロスルホニル)アミントリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミントリメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミントリメチルアンモニウム塩、ビス(フルオロスルホニル)アミンテトラメチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンテトラメチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンテトラメチルアンモニウム塩、ビス(フルオロスルホニル)アミンジエチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンジエチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンジエチルアンモニウム塩、ビス(フルオロスルホニル)アミントリエチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミントリエチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミントリエチルアンモニウム塩、ビス(フルオロスルホニル)アミンテトラエチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンテトラエチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンテトラエチルアンモニウム塩、ビス(フルオロスルホニル)アミンテトラブチルアンモニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンテトラブチルアンモニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンテトラブチルアンモニウム塩、ビス(フルオロスルホニル)アミンピロリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンピロリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンピロリジニウム塩、ビス(フルオロスルホニル)アミンピペリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンピペリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンピペリジニウム塩、ビス(フルオロスルホニル)アミン4-モルホリニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン4-モルホリニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン4-モルホリニウム塩、ビス(フルオロスルホニル)アミン1,1-ジメチルピロリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1,1-ジメチルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1,1-ジメチルピロリジニウム塩、ビス(フルオロスルホニル)アミン1,1-ジメチルピペリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1,1-ジメチルピペリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1,1-ジメチルピペリジニウム塩、ビス(フルオロスルホニル)アミン1-エチル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1-エチル-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1-エチル-1-メチルピロリジニウム塩、ビス(フルオロスルホニル)アミン1-エチル-1-メチルピペリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1-エチル-1-メチルピペリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1-エチル-1-メチルピペリジニウム塩、ビス(フルオロスルホニル)アミン1-メチル-1-プロピルピロリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1-メチル-1-プロピルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1-メチル-1-プロピルピロリジニウム塩、ビス(フルオロスルホニル)アミン1-メチル-1-プロピルピペリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1-メチル-1-プロピルピペリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1-メチル-1-プロピルピペリジニウム塩、ビス(フルオロスルホニル)アミン1-(メトキシメチル)-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1-(メトキシメチル)-1-メチルピロリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1-(メトキシメチル)-1-メチルピロリジニウム塩、ビス(フルオロスルホニル)アミン1-(メトキシメチル)-1-メチルピペリジニウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミン1-(メトキシメチル)-1-メチルピペリジニウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミン1-(メトキシメチル)-1-メチルピペリジニウム塩などを挙げることができる。これらのうち、ビス(フルオロスルホニル)アミンアンモニウム塩が好ましい。
 本発明の製造方法に用いられる有機溶媒は、特に限定されないが、ジスルホニルアミンオニウム塩およびジスルホニルアミンアルカリ金属塩を溶解できるものが好ましい。そのような好ましい有機溶媒として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメトキシメタン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン、メチルホルメート、メチルアセテート、メチルプロピオネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、3-メチルスルホラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルオキサゾリジノン、アセトニトリル、バレロニトリル、ベンゾニトリル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、ニトロメタン、ニトロベンゼンなどの非プロトン性溶媒を挙げることができる。これらの中で、より高純度のジスルホニルアミンアルカリ金属塩〔II〕が得られるという観点から、酢酸エチル、酢酸イソプロピル、酢酸ブチルなどのエステル系溶媒が好ましく、酢酸イソプロピルがより好ましい。ろ過工程の後、ろ液を濃縮する際の温度を低減できるという観点からは、エステル系溶媒のうち、酢酸イソプロピルが好ましい。
 本発明においては、カチオン交換反応においてアルカリ金属化合物が用いられる。アルカリ金属化合物としては、LiOH、NaOH、KOH、RbOH、CsOHなどの水酸化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3などの炭酸塩、LiHCO3、NaHCO3、KHCO3、RbHCO3、CsHCO3などの炭酸水素塩、LiCl、NaCl、KCl、RbCl、CsClなどの塩化物、LiBr、NaBr、KBr、RbBr、CsBrなどの臭化物、LiF、NaF、KF、RbF、CsFなどのフッ化物、CH3OLi、EtOLi、t-BuOK、t-BuONaなどのアルコキシド化合物、NaH、KH,LiHなどのヒドリド化合物および、i-Pr2NLi、EtLi、BuLiおよびt-BuLi(尚、Etはエチル基、Prはプロピル基、Buはブチル基を示す)などのアルキルリチウム化合物などを挙げることができる。これらのうち、LiOH、NaOH、KOH、RbOH、CsOHなどの水酸化物が好ましい。
 アルカリ金属化合物の使用量は、ジスルホニルアミンオニウム塩〔I〕1モルに対して、好ましくは1モル~10モル、より好ましくは1モル~5モルである。
 カチオン交換の反応は、例えば、有機溶媒中で、ジスルホニルアミンオニウム塩〔I〕と、アルカリ金属化合物とを混合することによって行うことができる。カチオン交換反応時の温度は、特に限定されないが、好ましくは0℃~200℃、より好ましくは10℃~100℃である。反応に要する時間は、反応規模によって異なるが、好ましくは0.1時間~48時間、より好ましくは0.5時間~24時間である。
 本発明においては、このカチオン交換反応させる工程によって、ジスルホニルアミンオニウム塩〔I〕が式〔II〕で表わされるジスルホニルアミンアルカリ金属塩にする。
Figure JPOXMLDOC01-appb-C000008
 
 式〔II〕中、M+は、アルカリ金属カチオンを示し、R1およびR2は式〔I〕におけるものと同じものを示す。ジスルホニルアミンアルカリ金属塩〔II〕は、前記ジスルホニルアミンアニオン〔III〕と、アルカリ金属カチオンM+からなる塩である。
 アルカリ金属カチオンとしては、リチウムカチオン、ナトリウムカチオン、カリウムカチオン、セシウムカチオンなどを挙げることができる。
 ジスルホニルアミンアルカリ金属塩〔II〕において、ジスルホニルアミンアニオン〔III〕と、アルカリ金属カチオンM+のモル比は特に制限されない。ジスルホニルアミンアニオン〔III〕は1価のアニオンでありアルカリ金属カチオンM+は1価のカチオンであるため、通常、モル比が1:1の塩となる。
 ジスルホニルアミンアルカリ金属塩〔II〕の具体例としては、ビス(フルオロスルホニル)アミンリチウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンリチウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンリチウム塩ビス(フルオロスルホニル)アミンナトリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンナトリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンナトリウム塩ビス(フルオロスルホニル)アミンカリウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンカリウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンカリウム塩ビス(フルオロスルホニル)アミンセシウム塩、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミンセシウム塩、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミンセシウム塩などを挙げることができる。
 本発明の製造方法では、後述するろ過工程の前に、前述のカチオン交換反応によって得られるジスルホニルアミンアルカリ金属塩〔II〕を含有する有機溶媒溶液を水で洗浄して該有機溶媒溶液からオニウムカチオンを除去することが好ましい。洗浄の方法は特に限定されない。例えば、有機溶媒溶液に水を添加してよく掻き混ぜ、次いで該混合液を静置して有機溶媒相と水相とに分離し、水相を取り除くことによって行うことができる。この抽出操作はバッチ式で行ってもよいし、連続式で行ってもよい。
 続いて、本発明の製造方法においては、ジスルホニルアミンアルカリ金属塩〔II〕を含有する有機溶媒溶液をフィルターでろ過する。該有機溶媒溶液は、カチオン交換反応の直後において得られるもの、水による抽出を行った後に得られるもの、それらを後述する濃度に公知の方法で調整したものなどのいずれであってよい。
 本発明で使用するフィルターとしては、例えば、平面ろ紙、円筒ろ紙、カートリッジフィルター、カプセルフィルター、メンブレンフィルター、中空糸膜フィルター、プリーツ膜フィルター、並びに不織布、セルロース、活性炭およびケイソウ土などの濾材を充填したフィルターなどを挙げることができる。これらのうち、メンブレンフィルターが好ましい。メンブレンフィルター、中空糸膜フィルター、およびプリーツ膜フィルターのろ材はポリエチレン、超高密度ポリエチレン、およびポリプロピレンなどのポリオレフィン製、PTFEなどのフッ素樹脂製、ナイロン製、セルロース繊維製、ガラス繊維製、ステンレススチール繊維製、シリカ繊維製、ポリカーボネート製、コットン製、ポリエーテルサルホン製、セルロースアセテート製などであることが好ましい。また、それらのフィルターには陽イオン交換樹脂などのイオン交換体や、濾過される有機溶媒溶液にゼータ電位を生じさせるカチオン電荷調節剤などが含まれていてもよい。
 本発明の製造方法で使用するフィルターは、保留粒子径が、好ましくは0.1~10μm、より好ましくは0.1~5μmである。このような範囲の保留粒子径を有するフィルターでろ過することにより、微細な不純物を除去することができ、高純度のジスルホニルアミンアルカリ金属塩〔II〕を得ることができる。なお、保留粒子径が小さすぎるとフィルターが目詰まりする傾向がある。逆に保留粒子径が大きすぎると微細な不純物の除去能が低い傾向がある。
本発明においては、上述の濾過工程の後に、ろ液を0~70℃の温度で濃縮することが好ましく、0~50℃の温度で濃縮することがさらに好ましい。濃縮操作は減圧下で行うのが好ましい。濃縮時の液温度を0~50℃にすることで熱劣化による不純物を含まない高純度のジスルホニルアミンアルカリ金属塩〔II〕の有機溶媒溶液を得ることができる。そして、濃縮工程の後、ジスルホニルアミンアルカリ金属塩〔II〕を晶析させることが好ましい。
 このようにして、本発明の製造方法を行って得られるジスルホニルアミンアルカリ金属塩〔II〕は、不純物、特に、塩化物イオン、フッ素イオン、硫酸イオンの含有量が、大幅に低減されている。本発明の製造方法で得られる高純度ジスルホニルアミンアルカリ金属塩〔II〕は、リチウムイオン二次電池などの電気化学デバイスを構成するイオン伝導体の材料として好適に用いることができる。
 実施例を挙げて、本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
合成例1(ジ(フルオロスルホニル)アミンアンモニウム塩の合成)
 フッ素樹脂製反応容器に、ジ(クロロスルホニル)アミン2.14質量部を仕込んだ。これに酢酸ブチル17.6質量部およびNH4F1.78質量部を添加し、75℃で4時間還流して反応させた。反応終了後、室温に冷却し、水2.5質量部を加えて水溶成分を抽出した。水相を取り除き、有機相を濃縮して、ジ(フルオロスルホニル)アミンアンモニウム塩を得た。
実施例1(ジ(フルオロスルホニル)アミンリチウム塩(以下LFSIと記載する)の合成
 合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル60mLおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~33℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに酢酸イソプロピル50mlと水20mlを添加して抽出した。有機相と水相とを分け、水相に酢酸イソプロピル50mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mlで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力約13.33kPaで3.5時間、途中に酢酸イソプロピル130mlを添加しながら、減圧還流して、水分を除去した。得られた有機溶媒溶液を保留粒子径1.0μmのメンブレンフィルターでろ過した。ろ液をロータリーエバポレーターに入れて40℃で蒸発させて、LFSI濃度57.9質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン160mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン45mLで洗浄し、室温で8時間真空下で乾燥させた。LFSI4.58gが得られた。得られたLFSIは、F-含有量が5ppm未満、Cl-含有量が5ppm未満、SO4 2-含有量が5ppm未満であった。
比較例1(LFSIの合成)
 合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル60mlおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~34℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに酢酸イソプロピル50mlと水26mlを添加して抽出した。有機相と水相とに分け、水相に酢酸イソプロピル50mlを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mlで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力約7.99kPaで5時間、減圧還流して、水分を除去した。得られた有機溶媒溶液をロータリーエバポレーターに入れて40℃で蒸発させて、LFSI濃度54.4質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン180mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン90mlで洗浄し、室温で8時間真空下で乾燥させた。LFSI4.41gが得られた。得られたLFSIは、F-含有量が46ppm、Cl-含有量が5ppm未満、SO4 2-含有量が10ppmであった。
実施例2(LFSIの合成)
 合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル100mLおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~33℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに水20mlを添加して抽出した。有機相と水相とに分け、水相に酢酸イソプロピル50mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mLで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力10.66~13.33kPaで5時間、減圧還流して、水分を除去した。得られた有機溶媒溶液を(桐山No.5B、保留粒子径4μm)のフィルターでろ過した。得られたLFSI溶液75.2gのうち41.9gをロータリーエバポレーターに入れて、40℃で蒸発させて、LFSI濃度56.4質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン100mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン45mlで洗浄し、室温で8時間真空下で乾燥させた。LFSI2.69gが得られた。得られたLFSIはF-含有量が5ppm未満、Cl-含有量が6ppm、SO4 2-含有量が6ppmであった。
実施例3(LFSIの合成)
 合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩19.8g(0.10mol)に酢酸イソプロピル100mLおよび水酸化リチウム・1水和物5.5g(0.13mol)を添加し、絶対圧力9.333kPa、温度27℃~33℃で、1.5時間加熱還流した。得られた液を25℃に冷却し、これに水20mlを添加して抽出した。有機相と水相とに分け、水相に酢酸イソプロピル50mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水5mLで水溶性成分の抽出を3回行った。得られた有機相を、ディーンシュターク管を備え付けた反応容器に入れて、温度35℃、絶対圧力10.66~13.33kPaで5時間、減圧還流して、水分を除去した。得られた有機溶媒溶液を(桐山No.5B、保留粒子径4μm)のフィルターでろ過した。得られたLFSI溶液75.2gのうち33.3gをロータリーエバポレーターに入れて、60℃で蒸発させて、LFSI濃度67.4質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン80mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。濾別された結晶を塩化メチレン45mlで洗浄し、室温で8時間真空下で乾燥させた。LFSI5.00gが得られた。得られたLFSIはF-含有量が66ppm、Cl-含有量が5ppm未満、SO4 2-含有量が76ppmであった。
比較例2(LFSIの合成)
 合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩を356.7g(1.80mol)含有する酢酸ブチル溶液1306.6gに水酸化リチウム・1水和物98.2g(2.34mol)を添加し、絶対圧力8.67kPa、温度31℃~35℃で、4時間加熱還流した。得られた液を25℃に冷却し、水182mLを添加して抽出した。有機相と水相とに分け、水相に酢酸ブチル900mLを添加して非水溶性成分を抽出した。当該抽出操作で得られた有機相を混ぜ合わせ、水20mLで水溶性成分の抽出を4回行った。得られた有機溶媒溶液をロータリーエバポレーターに入れて、60℃で蒸発させて、LFSI濃度56.9質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン1450mLを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。得られた結晶を塩化メチレン600mLで洗浄し、室温で9時間真空下で乾燥させた。LFSI114.8gが得られた。得られたLFSIは、F-含有量が288ppm、Cl-含有量が10ppm、SO4 2-含有量が49ppmであった。
実施例4(LFSIの合成)
 合成例1で得られたジ(フルオロスルホニル)アミンアンモニウム塩を41.8g(0.2mol)含有する酢酸ブチル溶液153.2gに水酸化リチウム・1水和物15.9g(0.36mol)を添加し、絶対圧力5.33kPa、温度31℃~32℃で、4時間加熱還流した。得られた液をろ過(桐山No.5B、保留粒子径4μm)し、不溶分(LiOH等)を除去した。得られたろ液に酢酸ブチル100mlおよび水30mlを添加して抽出した。有機相と水相とに分け、有機相を水10mlで水溶性成分の抽出を2回行った。有機相をロータリーエバポレーターに入れて、60℃でLFSI濃度58.8質量%まで濃縮した。濃縮されたLFSI溶液に塩化メチレン160mlを滴下して結晶を析出させた。その後、減圧ろ過により結晶を濾別した。得られた結晶を塩化メチレン320mlで洗浄し、室温で7時間真空下で乾燥させた。LFSI14.96gが得られた。得られたLFSIは、F-含有量が11ppm、Cl-含有量が11ppm、SO4 2-含有量が77ppmであった。
ろ過工程を含まない比較例1に比べて、ろ過工程を含む実施例1および2では、高い純度のジスルホニルアミンアルカリ金属塩が得られることがわかる。また、実施例2と実施例3の結果から、ろ過工程の後、ろ液を50℃以下の温度で濃縮すると、より高い純度のジスルホニルアミンアルカリ金属塩が得られることがわかる。
 本発明によれば、高純度のジスルホニルアミンアルカリ金属塩〔II〕を低い温度履歴で且つ低コストで製造することができ、産業上有用である。

Claims (8)

  1.  有機溶媒中で式〔I〕
    Figure JPOXMLDOC01-appb-C000001
     
     
    (式〔I〕中、R1およびR2は、それぞれ独立して、1~6個の炭素原子を有するフッ化アルキル基、またはフッ素原子を示し、R1またはR2の少なくとも一方はフッ素原子である。
     R3、R4、R5およびR6は、それぞれ独立して、水素原子、1~6個の炭素原子を有するアルキル基、または1~6個の炭素原子を有するアルコキシアルキル基を示し、R3、R4、R5およびR6のうち2つの基が一緒になってそれらが結合する窒素原子を環構成原子として含む5~8員環を形成してもよい。)で表されるジスルホニルアミンオニウム塩を、カチオン交換反応させて、式〔II〕
    Figure JPOXMLDOC01-appb-C000002
     
     
    (式〔II〕中、M+は、アルカリ金属カチオンを示し、R1およびR2は式〔I〕におけるものと同じものを示す。)で表されるジスルホニルアミンアルカリ金属塩にする工程、および
    前記ジスルホニルアミンアルカリ金属塩を含有する有機溶媒溶液を保留粒子径0.1~10μmのフィルターでろ過してろ液を得る工程を含むジスルホニルアミンアルカリ金属塩の製造方法。
  2.  フィルターがメンブレンフィルターである請求項1に記載の製造方法。
  3.  有機溶媒がエステル系溶媒である請求項1または2に記載の製造方法。
  4.  有機溶媒が酢酸イソプロピルである請求項1または2に記載の製造方法。
  5. ろ過工程の後、ろ液を0~70℃の温度で濃縮する工程をさらに含む請求項1~4のいずれかひとつに記載の製造方法。
  6.  ろ過工程の後、ろ液を0~50℃の温度で濃縮することを特徴とする請求項5に記載の製造方法。
  7.  カチオン交換反応させる工程の後で、ろ過する工程の前に、前記有機溶媒溶液を水で洗浄して該有機溶媒溶液からオニウムカチオンを除去する工程をさらに含む請求項1~6のいずれかひとつに記載の製造方法。
  8.  濃縮工程の後、ジスルホニルアミンアルカリ金属塩を晶析させる工程をさらに含む請求項5~7のいずれかひとつに記載の製造方法。
PCT/JP2014/055622 2013-03-18 2014-03-05 ジスルホニルアミンアルカリ金属塩の製造方法 WO2014148258A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157025235A KR101741939B1 (ko) 2013-03-18 2014-03-05 디술포닐아민알칼리 금속염의 제조 방법
JP2015506689A JP6303177B2 (ja) 2013-03-18 2014-03-05 ジスルホニルアミンアルカリ金属塩の製造方法
EP14768419.5A EP2977349B1 (en) 2013-03-18 2014-03-05 Method for producing disulfonylamine alkali metal salt
US14/773,964 US9950929B2 (en) 2013-03-18 2014-03-05 Method for producing disulfonylamine alkali metal salt
CA2904489A CA2904489C (en) 2013-03-18 2014-03-05 Method for producing disulfonylamine alkali metal salt
CN201480014935.3A CN105121335A (zh) 2013-03-18 2014-03-05 二磺酰胺碱金属盐的制造方法
ES14768419.5T ES2687897T3 (es) 2013-03-18 2014-03-05 Método para producir sal de metal alcalino de disulfonilamina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013055571 2013-03-18
JP2013-055571 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148258A1 true WO2014148258A1 (ja) 2014-09-25

Family

ID=51579947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055622 WO2014148258A1 (ja) 2013-03-18 2014-03-05 ジスルホニルアミンアルカリ金属塩の製造方法

Country Status (9)

Country Link
US (1) US9950929B2 (ja)
EP (1) EP2977349B1 (ja)
JP (1) JP6303177B2 (ja)
KR (1) KR101741939B1 (ja)
CN (1) CN105121335A (ja)
CA (1) CA2904489C (ja)
ES (1) ES2687897T3 (ja)
TW (1) TWI607988B (ja)
WO (1) WO2014148258A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052689A (ja) * 2013-11-18 2017-03-16 日本曹達株式会社 ジスルホニルアミド塩の顆粒または粉末
JP2017514779A (ja) * 2014-04-18 2017-06-08 アルケマ フランス フルオロスルホニル基を含むイミドの調製
JP2017210392A (ja) * 2016-05-27 2017-11-30 株式会社日本触媒 電解液材料の製造方法
CN107710492A (zh) * 2015-06-23 2018-02-16 株式会社日本触媒 导电性材料及其制备方法和精制方法,以及使用了该导电性材料的非水电解液和抗静电剂
JP2018052760A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法
JPWO2018021185A1 (ja) * 2016-07-26 2019-05-16 東ソー・ファインケム株式会社 ハロゲン化物が低減された重合性官能基を有するスルホンイミドの有機溶剤溶液
JP2020500132A (ja) * 2016-12-08 2020-01-09 アルケマ フランス LiFSIを乾燥及び精製するための方法
JP2020500133A (ja) * 2016-12-08 2020-01-09 アルケマ フランス リチウムビス(フルオロスルホニル)イミド塩を乾燥及び精製するための方法
JP2021526500A (ja) * 2018-06-01 2021-10-07 アルケマ フランス リチウム ビス(フルオロスルホニル)イミド塩を精製するための方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020538B2 (en) * 2015-11-13 2018-07-10 Uchicago Argonne, Llc Salts for multivalent ion batteries
KR101718292B1 (ko) * 2015-11-26 2017-03-21 임광민 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법
US10892520B2 (en) * 2017-01-20 2021-01-12 Massachusetts Institute Of Technology Sulfonimide salts for battery applications
CN110520431B (zh) * 2017-04-10 2022-02-18 中央硝子株式会社 磷酰亚胺盐的制造方法、包含该盐的非水电解液的制造方法和非水二次电池的制造方法
FR3081724A1 (fr) * 2018-06-01 2019-12-06 Arkema France Procede de purification du sel de lithium de bis(fluorosulfonyl)imide
FR3081857B1 (fr) * 2018-06-01 2022-05-06 Arkema France Composition de sel de lithium de bis(fluorosulfonyl)imide
FR3081725A1 (fr) * 2018-06-01 2019-12-06 Arkema France Procede de purification d'un sel de lithium du bis(fluorosulfonyl)imide
FR3081722A1 (fr) * 2018-06-01 2019-12-06 Arkema France Composition a base de sel de lithium de bis(fluorosulfonyl)imide
KR102181108B1 (ko) * 2019-09-11 2020-11-20 (주)부흥산업사 리튬 비스(플루오로술포닐)이미드와 그 제조방법
JP2024514889A (ja) * 2021-04-12 2024-04-03 イーピー ケミテック カンパニー,リミテッド セシウムイオンまたはルビジウムイオンを含むビスフルオロスルホニルイミドリチウム塩
WO2023025776A1 (en) 2021-08-27 2023-03-02 Solvay Sa Reactive distillation process for preparing fluorosulfonylimide salts
CN117246982A (zh) * 2022-06-10 2023-12-19 时代思康新材料有限公司 双氟磺酰亚胺锂和提纯双氟磺酰亚胺锂的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2000086617A (ja) * 1998-09-08 2000-03-28 Kanto Denka Kogyo Co Ltd ビスパーフルオロアルキルスルホンイミド化合物の製造方法
JP2003192661A (ja) * 2001-12-17 2003-07-09 Three M Innovative Properties Co 非水溶媒中におけるフルオロアルキルスルホニル基含有アルカリ金属塩の製造方法及びその使用方法
JP2010168249A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2011065502A1 (ja) 2009-11-27 2011-06-03 株式会社日本触媒 フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
WO2012108284A1 (ja) 2011-02-10 2012-08-16 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
WO2012117961A1 (ja) * 2011-03-03 2012-09-07 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003108284A (ja) 2001-09-28 2003-04-11 Victor Co Of Japan Ltd 画像コンテンツ配信システム及び画像表示装置
US20090163586A1 (en) 2007-12-20 2009-06-25 Astrazeneca Ab Bis-(Sulfonylamino) Derivatives in Therapy 205
WO2009123328A1 (en) 2008-03-31 2009-10-08 Nippon Shokubai Co., Ltd. Sulfonylimide salt and method for producing the same
CN103788280B (zh) 2008-04-24 2016-08-17 3M创新有限公司 质子传导材料
TWI406869B (zh) * 2010-09-01 2013-09-01 Nippon Catalytic Chem Ind An alkali metal salt of fluosulfonyl imide and a process for producing the same
JP5723439B2 (ja) * 2011-03-03 2015-05-27 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2000086617A (ja) * 1998-09-08 2000-03-28 Kanto Denka Kogyo Co Ltd ビスパーフルオロアルキルスルホンイミド化合物の製造方法
JP2003192661A (ja) * 2001-12-17 2003-07-09 Three M Innovative Properties Co 非水溶媒中におけるフルオロアルキルスルホニル基含有アルカリ金属塩の製造方法及びその使用方法
JP2010168249A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2011065502A1 (ja) 2009-11-27 2011-06-03 株式会社日本触媒 フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
WO2012108284A1 (ja) 2011-02-10 2012-08-16 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
WO2012117961A1 (ja) * 2011-03-03 2012-09-07 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2977349A1 *
YOSHIHARU MATSUDA ET AL.: "Effects of Electrolyte Imide Salt Purity on Negative Electrode Charge-Discharge Characteristics in Lithium Secondary Cells", PROCEEDINGS OF THE 68TH CONFERENCE OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 25 March 2001 (2001-03-25), pages 232

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214419B2 (en) 2013-11-18 2019-02-26 Nippon Soda Co., Ltd. Granules or powder of disulfonylamide salt and method for producing same
JP2017052689A (ja) * 2013-11-18 2017-03-16 日本曹達株式会社 ジスルホニルアミド塩の顆粒または粉末
JP2017514779A (ja) * 2014-04-18 2017-06-08 アルケマ フランス フルオロスルホニル基を含むイミドの調製
CN107710492A (zh) * 2015-06-23 2018-02-16 株式会社日本触媒 导电性材料及其制备方法和精制方法,以及使用了该导电性材料的非水电解液和抗静电剂
KR20180020135A (ko) 2015-06-23 2018-02-27 가부시기가이샤 닛뽕쇼꾸바이 도전성 재료와 그 제조방법 및 정제방법, 및 이 도전성 재료를 사용한 비수전해액 및 대전방지제
KR102542990B1 (ko) * 2015-06-23 2023-06-12 가부시기가이샤 닛뽕쇼꾸바이 도전성 재료와 그 제조방법 및 정제방법, 및 이 도전성 재료를 사용한 비수전해액 및 대전방지제
EP3316381A4 (en) * 2015-06-23 2019-02-27 Nippon Shokubai Co., Ltd. CONDUCTIVE MATERIAL AND MANUFACTURING METHOD AND CLEANING PROCESS THEREFOR AND WATER-FREE ELECTROLYTE SOLUTION AND ANTISTATIC AGENT USING THE SAID CONDUCTIVE MATERIAL
US10461365B2 (en) 2015-06-23 2019-10-29 Nippon Shokubai Co., Ltd. Conductive material and manufacturing method and purification method for same, and non aqueous electrolyte solution and antistatic agent using said conductive material
JP7042018B2 (ja) 2016-05-27 2022-03-25 株式会社日本触媒 電解液材料の製造方法
JP2017210392A (ja) * 2016-05-27 2017-11-30 株式会社日本触媒 電解液材料の製造方法
JPWO2018021185A1 (ja) * 2016-07-26 2019-05-16 東ソー・ファインケム株式会社 ハロゲン化物が低減された重合性官能基を有するスルホンイミドの有機溶剤溶液
JP2018052760A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法
JP2020500133A (ja) * 2016-12-08 2020-01-09 アルケマ フランス リチウムビス(フルオロスルホニル)イミド塩を乾燥及び精製するための方法
US11084723B2 (en) 2016-12-08 2021-08-10 Arkema France Method for drying and purifying LiFSI
JP2020500132A (ja) * 2016-12-08 2020-01-09 アルケマ フランス LiFSIを乾燥及び精製するための方法
US11316200B2 (en) 2016-12-08 2022-04-26 Arkema France Method for drying and purifying lithium bis(fluorosulfonyl)imide salt
JP2021526500A (ja) * 2018-06-01 2021-10-07 アルケマ フランス リチウム ビス(フルオロスルホニル)イミド塩を精製するための方法

Also Published As

Publication number Publication date
TW201443008A (zh) 2014-11-16
JP6303177B2 (ja) 2018-04-04
CA2904489C (en) 2017-02-14
ES2687897T3 (es) 2018-10-29
CA2904489A1 (en) 2014-09-25
JPWO2014148258A1 (ja) 2017-02-16
EP2977349A4 (en) 2016-08-03
US9950929B2 (en) 2018-04-24
KR101741939B1 (ko) 2017-05-30
KR20150119310A (ko) 2015-10-23
CN105121335A (zh) 2015-12-02
US20160016797A1 (en) 2016-01-21
EP2977349B1 (en) 2018-08-08
EP2977349A1 (en) 2016-01-27
TWI607988B (zh) 2017-12-11

Similar Documents

Publication Publication Date Title
JP6303177B2 (ja) ジスルホニルアミンアルカリ金属塩の製造方法
JP6139944B2 (ja) フルオロスルホニルイミドのアルカリ金属塩の製造方法
JP5074636B2 (ja) フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
KR101345271B1 (ko) 플루오로설포닐이미드염 및 플루오로설포닐이미드염의 제조방법
EP2660196B1 (en) Manufacturing method for fluorosulfonylimide ammonium salt
JP6595104B2 (ja) 非水系電解液の製造方法
JP5208782B2 (ja) フルオロスルホニルイミド類およびその製造方法
JP6370852B2 (ja) ジスルホニルアミド塩の顆粒または粉末
JP4621783B2 (ja) フルオロスルホニルイミド類およびその製造方法
JP6663986B2 (ja) ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法
JP2018535181A (ja) ビス(フルオロスルホニル)−イミド及びこの塩を調製する方法
JP6645855B2 (ja) フルオロスルホニルイミド化合物の製造方法
JP5401336B2 (ja) フルオロスルホニルイミド塩の製造方法
JP5402634B2 (ja) 精製された含フッ素ビススルホニルイミドのアンモニウム塩の製造方法
JP2016088809A (ja) フルオロスルホニルイミド塩の製造方法
JP2017218328A (ja) ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法
JP6718511B2 (ja) フッ素含有スルホニルアミド化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506689

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014768419

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2904489

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14773964

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157025235

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE