WO2015056625A1 - ジスルホニルアミド塩およびその製造方法 - Google Patents
ジスルホニルアミド塩およびその製造方法 Download PDFInfo
- Publication number
- WO2015056625A1 WO2015056625A1 PCT/JP2014/077074 JP2014077074W WO2015056625A1 WO 2015056625 A1 WO2015056625 A1 WO 2015056625A1 JP 2014077074 W JP2014077074 W JP 2014077074W WO 2015056625 A1 WO2015056625 A1 WO 2015056625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cation
- formula
- organic solvent
- ppm
- compound represented
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/087—Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
- C01B21/093—Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
- C01B21/0935—Imidodisulfonic acid; Nitrilotrisulfonic acid; Salts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a disulfonylamide salt and a method for producing the same. More specifically, the present invention relates to a disulfonylamide salt suitable for an electrolyte used for a secondary battery or the like and a method for producing the same.
- This application claims priority based on Japanese Patent Application No. 2013-216848 for which it applied to Japan on October 17, 2013, and uses the content here.
- Disulfonylamide salts such as bis (fluorosulfonyl) amide salts (M + [(FSO 2 ) 2 N] ⁇ ) are useful as ionic conductive materials or as electrolytes and additives used in secondary batteries and the like.
- Patent Document 1 Patent Document 2
- Patent Document 3 discloses that N, N— is obtained by reacting N- (chlorosulfonyl) -N- (fluorosulfonyl) imidoammonium salt with hydrogen fluoride. A bis (fluorosulfonyl) imide ammonium salt is obtained, and then an N, N-bis (fluorosulfonyl) imide ammonium salt is produced by reacting the N, N-bis (fluorosulfonyl) imide ammonium salt with an alkali metal compound. A method is disclosed.
- N, N-bis (fluorosulfonyl) imide ammonium salt is obtained by reacting N, N-di (chlorosulfonyl) imide and NH 4 F (HF) p, and then N, N—
- a method for producing an N, N-bis (fluorosulfonyl) imide alkali metal salt by cation exchange by allowing an alkali metal compound or the like to act on a bis (fluorosulfonyl) imide ammonium salt is disclosed.
- JP 2006-210331 A JP-T-2001-527505 WO2012 / 108284 WO2012 / 117916
- a fluorosulfonylamide salt with few metal impurities can be obtained.
- the fluorosulfonyl amide salts prepared by such the method, and NH 4 + ions derived from disulfonyl amine salt of an intermediate material contains NH 4 + ions produced by the decomposition of the di-sulfonyl amide anion Yes. This NH 4 + ion seems to affect the performance as an electrolyte.
- the subject of this invention is providing the disulfonyl amide salt suitable for the electrolyte used for a secondary battery etc., and its manufacturing method.
- R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms or a fluorine atom, and Y + represents an alkali metal cation or onium cation (NH 4 + Excluding.)
- NH 4 + alkali metal cation or onium cation
- Y + is from lithium cation, sodium cation, potassium cation, N-methyl-N-propylpyrrolidinium cation, 1-ethyl-3-methylimidazolium cation and N-methyl-N-propylpiperidinium cation
- [6] An electrolytic solution containing a compound represented by the formula [I] and having an NH 4 + content of 1000 ppm or less.
- Y + is from lithium cation, sodium cation, potassium cation, N-methyl-N-propylpyrrolidinium cation, 1-ethyl-3-methylimidazolium cation and N-methyl-N-propylpiperidinium cation
- R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms or a fluorine atom.
- R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms or a fluorine atom.
- an alkali metal salt or onium salt (excluding NH 4 + salt) of disulfonylamide having a low NH 4 + content.
- Alkali metal salts or onium salts (except for NH 4 + salts) of disulfonylamide having a low NH 4 + content are suitable for electrolytes used in secondary batteries and the like.
- the disulfonylamide salt of the present invention is a compound represented by the formula [I] (hereinafter sometimes referred to as compound [I]).
- R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms or a fluorine atom, preferably a fluorine atom.
- the fluorinated alkyl group include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2-difluoroethyl group, a 2,2,2-trifluoroethyl group, a pentafluoroethyl group, 3,3,3-trifluoropropyl group, perfluoro n-propyl group, perfluoroisopropyl group, 3,3,4,4,4-pentafluorobutyl group, perfluoro n-butyl group, perfluoroisobutyl group, Examples thereof include perfluoro t-butyl group, perfluoro n-pentyl group, perfluoroisopentyl
- a perfluoroalkyl group is preferable, a trifluoromethyl group, a pentafluoroethyl group, and a perfluoro n-propyl group are more preferable, and a trifluoromethyl group and a pentafluoroethyl group are more preferable.
- specific examples of the anion shown in [] include bis (fluorosulfonyl) amide anion, bis (trifluoromethylsulfonyl) amide anion, bis (pentafluoroethylsulfonyl) amide anion, N- ( Fluorosulfonyl) -N- (trifluoromethylsulfonyl) amide anion, N- (fluorosulfonyl) -N- (pentafluoroethylsulfonyl) amide anion, N- (trifluoromethylsulfonyl) -N- (pentafluoroethylsulfonyl) Examples include amide anions. Of these, bis (fluorosulfonyl) amide anion is preferred.
- Y + represents an alkali metal cation or an onium cation (excluding NH 4 + ).
- Preferred examples of the alkali metal cation include a lithium cation, a sodium cation, and a potassium cation.
- onium cations include imidazolium cation, pyrazolium cation, pyridinium cation, pyrrolidinium cation, piperidinium cation, morpholinium cation, quaternary ammonium cation, quaternary phosphonium cation, tertiary phosphine cation, sulfonium cation, Examples thereof include a guanidinium cation, an isouronium cation, and an isothiouronium cation. Specific examples of other onium cations are described in Patent Documents 3 and 4, and they can be used as onium cations in the present invention.
- the group consisting of lithium cation, sodium cation, potassium cation, N-methyl-N-propylpyrrolidinium cation, 1-ethyl-3-methylimidazolium cation and N-methyl-N-propylpiperidinium cation At least one selected from the group consisting of sodium cation, potassium cation, N-methyl-N-propylpyrrolidinium cation, 1-ethyl-3-methylimidazolium cation and N-methyl-N-propylpiperidinium cation At least one selected from the group is more preferable, and sodium cation or potassium cation is still more preferable.
- the disulfonylamide salt of the present invention has an NH 4 + content of 1000 ppm or less, preferably 0.1 ppm or more and 1000 ppm or less, more preferably 0.1 ppm or more and 500 ppm or less, more preferably 0.1 ppm or more and 200 ppm or less, and even more preferably. Is from 0.1 ppm to 100 ppm, particularly from 0.1 ppm to 60 ppm. When the NH 4 + content increases, the performance as an electrolyte tends to decrease. NH 4 + is contained as an impurity in the disulfonylamide salt of the present invention.
- the disulfonylamide salt of the present invention is not particularly limited by its production method, but a preferred production method is a compound represented by the formula [II] in an organic solvent (hereinafter sometimes referred to as compound [II]). Is subjected to a cation exchange reaction.
- R 1 and R 2 each independently represents a fluorinated alkyl group having 1 to 6 carbon atoms or a fluorine atom.
- R 1 and R 2 in the formula [II] corresponds to R 1 and R 2 in the formula [I].
- Examples of the organic solvent used in the production method of the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethoxymethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1, 3-dioxane, 4-methyl-1,3-dioxolane, methyl formate, methyl acetate, methyl propionate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, 3-methyl sulfolane, dimethyl sulfolane, N, N- Dimethylformamide, N-methyloxazolidinone, acetonitrile, valeronitrile, benzonitrile, ethyl acetate, isopropyl acetate, butyl acetate, nitromethane, nitrobenzene And aprotic solvents
- a preferred cation exchange reaction is carried out by reacting a compound represented by the formula [II] with a compound represented by the formula [III] (hereinafter sometimes referred to as a compound [III]).
- Y + OH - [III] In the formula [III], Y + represents an alkali metal cation or an onium cation (excluding NH 4 + ). In formula [III] Y + corresponds to Y + in the formula [I].
- Compound [III] may be added to the reaction system as it is, but it is preferably added as an aqueous solution.
- the amount of compound [III] to be used is preferably 1 to 10 mol parts, more preferably 1 to 5 mol parts, relative to 1 mol part of compound [II].
- the cation exchange reaction is preferably performed at a temperature of 0 ° C. to 200 ° C., more preferably 10 to 100 ° C., and still more preferably 10 to 20 ° C.
- the cation exchange reaction can be carried out under normal pressure, but is preferably carried out under reduced pressure. By reducing the pressure, ammonia by-produced in the cation exchange reaction is removed, and the reaction is promoted.
- the reaction time can be appropriately set according to the reaction scale or the reaction apparatus.
- an organic solvent solution containing the compound [I] is obtained from the cation exchange reaction solution, concentrated until the mass of the organic solvent solution is 95% by mass or less, and then washed with water or an alkaline aqueous solution. It is more preferable to contain.
- the reaction solution can be directly sent to the next step as an organic solvent solution containing the compound [I].
- organic solvent used in the extraction operation is preferably an ester solvent, more preferably at least one selected from the group consisting of ethyl acetate, isopropyl acetate and butyl acetate, and even more preferably butyl acetate.
- the compound [II] may remain in the aqueous layer obtained by the extraction operation, the residual compound [II] is subjected to a cation exchange reaction as described above, and then contains the compound [I] by an extraction operation or the like.
- An organic solvent solution may be further obtained.
- the organic solvent solutions containing the compound [I] obtained as described above are preferably collected together and sent to the concentration step.
- Concentration of the organic solvent solution containing the compound [I] is not particularly limited under the conditions, but is preferably performed under reduced pressure.
- the concentration operation is performed at a pressure of preferably 30 kPa or less, more preferably 20 kPa or less, and a temperature of preferably 100 ° C. or less, more preferably 50 ° C. or more and 70 ° C. or less to suppress thermal decomposition of the product. Preferred above.
- the organic solvent solution containing the compound [I] is concentrated until the mass after concentration is 95% by mass or less, more preferably 50% by mass to 60% by mass with respect to the mass before concentration. It is preferable.
- the alkaline aqueous solution used for washing the concentrate is not particularly limited, but is preferably an aqueous solution containing the same substance as the active substance used in the cation exchange reaction.
- an aqueous solution containing compound [III] is preferred.
- the concentrated solution is preferably washed by stirring at 5 to 30 ° C., more preferably about 8 ° C. to 25 ° C., for 15 minutes to 2 hours, more preferably about 30 minutes to 1 hour. By performing such concentration and washing, the NH 4 + content can be further reduced.
- the electrolytic solution according to the present invention contains the disulfonylamide salt of the present invention. Further, the electrolytic solution according to the present invention contains the compound [I], and the NH 4 + content is 1000 ppm or less, preferably 0.1 ppm or more and 1000 ppm or less, more preferably 0.1 ppm or more and 500 ppm or less, and still more preferably. Is from 0.1 ppm to 200 ppm, more preferably from 0.1 ppm to 100 ppm, and particularly from 0.1 ppm to 60 ppm.
- Compound [I] is solid or liquid at room temperature.
- the compound [I] that is solid at room temperature can be contained in the electrolyte as a solute.
- a solvent for the electrolytic solution a solvent generally used for a battery electrolytic solution can be used.
- ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like can be mentioned.
- an ionic liquid can be used as a solvent.
- Compound [I] that is liquid at room temperature can be contained in the electrolyte as a solvent. Further, the compound [I] which is liquid at normal temperature can be used as an electrolytic solution as it is.
- the product was evaluated by the following method. (Measurement method of ammonium ion (NH 4 + ) content) Quantitative analysis was performed with ion chromatography DX-320 (column: IonPacCS16, detector: conductivity detector) manufactured by DIONEX using 20 mmol / L methanesulfonic acid as an eluent (flow rate: 1.0 ml / min). .
- Synthesis example 1 (Synthesis of di (chlorosulfonyl) amide) A 500 ml reaction vessel equipped with a stirrer, a thermometer and a reflux tube was charged with 123.9 g (1.10 mol) of chlorosulfonic acid (ClSO 3 H) and 98.1 g (0.70 mol) of chlorosulfonyl isocyanate. While stirring this mixture, the temperature was raised to 130 ° C. over 2.5 hours, and then reacted at 130 ° C. for 9 hours. Thereafter, distillation under reduced pressure was performed to fractionate a fraction of 98.5 ° C. to 101 ° C./4.2 torr. 77.9 g (0.36 mol) of di (chlorosulfonyl) amide was obtained as a colorless and transparent liquid.
- Synthesis example 2 Synthesis of di (fluorosulfonyl) amidoammonium salt
- a fluororesin reaction vessel 1.07 g (5.0 mmol) of di (chlorosulfonyl) amide obtained in Synthesis Example 1 was charged.
- 10 ml of acetonitrile and 0.89 g (24.0 mmol) of NH 4 F were added to this.
- the mixture was refluxed at 80 to 84 ° C. for 4 hours to be reacted. Thereafter, the mixture was cooled to room temperature, insoluble matters were filtered off, and washed with 10 ml of acetonitrile. Subsequently, the solvent was distilled off under reduced pressure to obtain 0.95 g (4.8 mmol) of di (fluorosulfonyl) amidoammonium salt.
- Example 1 17.89 g of di (fluorosulfonyl) amidoammonium salt and 98 ml of butyl acetate were combined and the mixture was cooled to 15 ° C. To this was added 25.21 g of a 29% potassium hydroxide aqueous solution, and the mixture was stirred at 10 to 19 ° C. for 30 minutes for cation exchange reaction. The reaction solution was separated into an organic layer and an aqueous layer. The aqueous layer obtained by the liquid separation operation was extracted twice with 33 ml of butyl acetate. (Concentration process) The organic layers obtained by three separation operations were collected together and washed twice with 2.8 ml of water.
- Example 2 (Reaction process) A mixture of 21.57 g of di (fluorosulfonyl) amidoammonium salt and 98 ml of butyl acetate was cooled to 15 ° C. To this was added 25.21 g of a 29% potassium hydroxide aqueous solution, and the mixture was stirred at 10 to 19 ° C. for 30 minutes for cation exchange reaction. The obtained liquid was separated to obtain 105.60 g of an organic layer, of which 1.34 g was sampled.
- the aqueous layer obtained by the liquid separation operation was extracted twice with 33 ml of butyl acetate, and the organic layers obtained by the three liquid separation operations were collected together to obtain 164.15 g of an organic layer, of which 1.33 g was obtained. Sampling. Subsequently, the remaining organic layer was washed twice with 2.7 ml of water and then separated to obtain 160.97 g of an organic layer, of which 1.30 g was sampled. (Concentration process) 159.67 g of the organic layer washed with water was concentrated under reduced pressure at a bath temperature of 60 ° C. to obtain 90.90 g of a concentrated solution, of which 1.32 g was sampled.
- the obtained concentrated liquid was cooled to 15 ° C., 12.25 g of 5% potassium hydroxide aqueous solution was added, and the mixture was stirred at 8 to 22 ° C. for 30 minutes.
- the obtained liquid was separated into an organic layer and an aqueous layer.
- the aqueous layer obtained by the liquid separation operation was extracted once with 11 ml of butyl acetate, and the organic layers obtained by the two liquid separation operations were collected together to obtain 101.14 g of an organic layer, of which 1.26 g was obtained. Sampling. Subsequently, the remaining organic layer was washed twice with 2.7 ml of water and then separated to obtain 98.76 g of an organic layer, of which 1.24 g was sampled.
- Example 3 (Battery performance evaluation test) 15.00 g of di (fluorosulfonyl) amide sodium salt and 12.72 g of di (fluorosulfonyl) amide potassium salt obtained in Example 2 were mixed and dissolved and mixed at 130 ° C. to prepare a molten salt electrolyte. .
- Table 1 shows the content of ammonium ions in the molten salt electrolyte.
- a mixed paste of active material / conductive agent / binder 85/1/10 (weight ratio) was prepared.
- Active material Carbotron P (Kureha hard carbon)
- Binder NMP diluted solution (N.V.
- Comparative Example 1 Battery performance evaluation test
- the test was conducted in the same manner as in Example 3 except that 0.31 g of the di (fluorosulfonyl) amidoammonium salt obtained in Synthesis Example 2 was further added to the molten salt electrolyte prepared in the same manner as in Example 3.
- Table 1 shows the content of ammonium ions in the molten salt electrolyte. The test results are shown in FIG.
- Comparative Example 2 Battery performance evaluation test
- the test was conducted in the same manner as in Example 3 except that 0.62 g of the di (fluorosulfonyl) amidoammonium salt obtained in Synthesis Example 2 was further added to the molten salt electrolyte prepared in the same manner as in Example 3.
- Table 1 shows the content of ammonium ions in the molten salt electrolyte. The test results are shown in FIG.
- Example 4 A mixture of 19.89 g of di (fluorosulfonyl) amidoammonium salt and 100 ml of ethyl acetate was cooled to 12 ° C. To this was added 42.06 g of a 20% aqueous potassium hydroxide solution, and the mixture was stirred at 13 to 15 ° C. for 15 minutes to cause a cation exchange reaction. The obtained liquid was separated, the aqueous layer was extracted twice with 30 ml of ethyl acetate, and the organic layers obtained by the three liquid separation operations were collected together to obtain 168.42 g of an organic layer (treatment liquid A). ).
- Example 5 The treatment liquid A (84.16 g) obtained in Example 4 was concentrated under reduced pressure at a bath temperature of 60 ° C. to obtain a concentrated liquid (36.11 g). To this, 45 ml of ethyl acetate was added and washed twice with 5 ml of water to obtain 80.08 g of an organic layer. The operation of concentrating 32.04 g of the solution, adding 10 ml of ethyl acetate and concentrating was repeated three times, and concentrated to dryness to obtain 4.36 g (19.9 mmol, 99.5 mol%) of di (fluorosulfonyl) amide potassium salt. (Value after sampling correction). This compound had an NH 4 + content of 550 ppm.
- Comparative Example 3 84.24 g of the treatment liquid A obtained in Example 4 was washed twice with 5 ml of water to obtain 84.89 g of an organic layer. The operation of concentrating 33.96 g of this, then adding 10 ml of ethyl acetate and concentrating was repeated three times, and concentrated to dryness to give 4.29 g (19.6 mmol, 97.8 mol%) of di (fluorosulfonyl) amide potassium salt. (Value after sampling correction). This compound had a content of NH 4 + of 2080 ppm.
- an alkali metal salt or onium salt (excluding NH 4 + salt) of disulfonylamide having a low NH 4 + content can be obtained.
- Alkali metal salts or onium salts (except for NH 4 + salts) of disulfonylamide having a low NH 4 + content are suitable for electrolytes used in secondary batteries and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
電解質に好適なジスルホニルアミド塩を、有機溶媒中にて式[II]で表される化合物のカチオン交換反応を行って得た反応液から式[I]で表わされる化合物を含む有機溶媒溶液を得、該有機溶媒溶液の質量が95質量%以下になるまで濃縮後、水またはアルカリ性水溶液で洗浄することを含む製造方法によって得る。(式中、R1およびR2はそれぞれ独立して1~6個の炭素原子を有するフッ化アルキル基またはフッ素原子を示し、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4
+を除く。)を示す。)
Description
本発明はジスルホニルアミド塩およびその製造方法に関する。より詳細に、本発明は、二次電池などに用いられる電解質に好適なジスルホニルアミド塩およびその製造方法に関する。
本願は、2013年10月17日に日本に出願された特願2013-216848号に基づき優先権を主張し、その内容をここに援用する。
本願は、2013年10月17日に日本に出願された特願2013-216848号に基づき優先権を主張し、その内容をここに援用する。
ビス(フルオロスルホニル)アミド塩(M+[(FSO2)2N]-)などのジスルホニルアミド塩は、イオン性伝導材料として、または二次電池などに用いられる電解質や添加剤として有用である(特許文献1、特許文献2)。この化合物に含まれる水、灰分、SO4
2-などの不純物を減らすほど、二次電池の放電容量や充放電の電流効率に対して良い結果をもたらすことが報告されている(非特許文献1)。
ビス(フルオロスルホニル)アミド塩を製造する方法として、例えば、特許文献3は、N-(クロロスルホニル)-N-(フルオロスルホニル)イミドアンモニウム塩とフッ化水素とを反応させることによってN,N-ビス(フルオロスルホニル)イミドアンモニウム塩を得、次いでN,N-ビス(フルオロスルホニル)イミドアンモニウム塩とアルカリ金属化合物とを反応させることによってN,N-ビス(フルオロスルホニル)イミドアルカリ金属塩を製造する方法を開示している。また、特許文献4はN,N-ジ(クロロスルホニル)イミドとNH4F(HF)pとを反応させることによってN,N-ビス(フルオロスルホニル)イミドアンモニウム塩を得、次いでN,N-ビス(フルオロスルホニル)イミドアンモニウム塩にアルカリ金属化合物などを作用させてカチオン交換することによってN,N-ビス(フルオロスルホニル)イミドアルカリ金属塩を製造する方法を開示している。
松田義晴ほか、リチウム二次電池の負極充放電特性に及ぼす電解液中のイミド塩純度の影響、電気化学会第68回大会講演要旨集、2001年3月25日、第232頁
特許文献3や4に記載の方法によれば金属不純物の少ないフルオロスルホニルアミド塩を得ることができる。ところが、この方法などで製造されたフルオロスルホニルアミド塩には、中間原料のジスルホニルアミンアンモニウム塩に由来するNH4
+イオンや、ジスルホニルアミドアニオンの分解によって生成するNH4
+イオンが含まれている。このNH4
+イオンが電解質としての性能に影響を与えるようである。本発明の課題は、二次電池などに用いられる電解質に好適なジスルホニルアミド塩およびその製造方法を提供することである。
上記課題を解決するために検討した結果、以下の形態を包含する本発明を完成するに至った。
[1]式[I]で表される化合物であり、NH4 +の含有量が1000ppm以下である化合物。
[1]式[I]で表される化合物であり、NH4 +の含有量が1000ppm以下である化合物。
(式[I]中、R1およびR2はそれぞれ独立して1~6個の炭素原子を有するフッ化アルキル基またはフッ素原子を示し、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4
+を除く。)を示す。)
[2]NH4 +の含有量が0.1ppm以上1000ppm以下である[1]に記載の化合物。
[3]R1およびR2がフッ素原子である[1]または[2]に記載の化合物。
[4]Y+がリチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつである[1]~[3]のいずれかひとつに記載の化合物。
[5] 前記[1]~[4]のいずれかひとつに記載の化合物を含有する電解液。
[6] 式[I]で表される化合物を含有し、且つNH4 +の含有量が1000ppm以下である電解液。
[7]NH4 +の含有量が0.1ppm以上1000ppm以下である[6]に記載の電解液。
[8]R1およびR2がフッ素原子である[6]または[7]に記載の電解液。
[9]Y+がリチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつである[6]~[8]のいずれかひとつに記載の電解液。
[10][1]~[4]のいずれかひとつに記載の化合物の製造方法であって、
有機溶媒中で式[II]で表される化合物をカチオン交換反応させることを含む製造方法。
[2]NH4 +の含有量が0.1ppm以上1000ppm以下である[1]に記載の化合物。
[3]R1およびR2がフッ素原子である[1]または[2]に記載の化合物。
[4]Y+がリチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつである[1]~[3]のいずれかひとつに記載の化合物。
[5] 前記[1]~[4]のいずれかひとつに記載の化合物を含有する電解液。
[6] 式[I]で表される化合物を含有し、且つNH4 +の含有量が1000ppm以下である電解液。
[7]NH4 +の含有量が0.1ppm以上1000ppm以下である[6]に記載の電解液。
[8]R1およびR2がフッ素原子である[6]または[7]に記載の電解液。
[9]Y+がリチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつである[6]~[8]のいずれかひとつに記載の電解液。
[10][1]~[4]のいずれかひとつに記載の化合物の製造方法であって、
有機溶媒中で式[II]で表される化合物をカチオン交換反応させることを含む製造方法。
(式[II]中、R1およびR2はそれぞれ独立して1~6個の炭素原子を有するフッ化アルキル基またはフッ素原子を示す。)
[11]カチオン交換反応が、式[II]で表される化合物に式[III]で表される化合物を作用させることによって行われる、[10]に記載の製造方法。
Y+ OH- [III]
(式[III]中、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)を示す。)
[12]有機溶媒がエステル系溶媒である[10]または[11]に記載の製造方法。
[13]エステル系溶媒が酢酸エチル、酢酸イソプロピルおよび酢酸ブチルからなる群から選ばれる少なくともひとつである[12]に記載の製造方法。
[14][1]~[4]のいずれかひとつに記載の化合物の製造方法であって、
有機溶媒中で式[II]で表される化合物をカチオン交換反応させて得た反応液から式[I]で表わされる化合物を含む有機溶媒溶液を得、
該有機溶媒溶液を質量が95質量%以下になるまで濃縮後、水またはアルカリ性水溶液で洗浄することを含む製造方法。
[15]濃縮を減圧下で行う[14]に記載の製造方法。
[16]前記[5]~[9]のいずれかひとつに記載の電解液を備えた電池。
[11]カチオン交換反応が、式[II]で表される化合物に式[III]で表される化合物を作用させることによって行われる、[10]に記載の製造方法。
Y+ OH- [III]
(式[III]中、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)を示す。)
[12]有機溶媒がエステル系溶媒である[10]または[11]に記載の製造方法。
[13]エステル系溶媒が酢酸エチル、酢酸イソプロピルおよび酢酸ブチルからなる群から選ばれる少なくともひとつである[12]に記載の製造方法。
[14][1]~[4]のいずれかひとつに記載の化合物の製造方法であって、
有機溶媒中で式[II]で表される化合物をカチオン交換反応させて得た反応液から式[I]で表わされる化合物を含む有機溶媒溶液を得、
該有機溶媒溶液を質量が95質量%以下になるまで濃縮後、水またはアルカリ性水溶液で洗浄することを含む製造方法。
[15]濃縮を減圧下で行う[14]に記載の製造方法。
[16]前記[5]~[9]のいずれかひとつに記載の電解液を備えた電池。
本発明の製造方法によれば、NH4
+の含有量が少ないジスルホニルアミドのアルカリ金属塩又はオニウム塩(NH4
+塩を除く。)を得ることができる。NH4
+の含有量が少ないジスルホニルアミドのアルカリ金属塩又はオニウム塩(NH4
+塩を除く。)は二次電池などに用いられる電解質に好適である。
本発明のジスルホニルアミド塩は、式[I]で表わされる化合物(以下、化合物[I]ということがある。)である。
式[I]中、R1およびR2はそれぞれ独立して1~6個の炭素原子を有するフッ化アルキル基またはフッ素原子を、好ましくはフッ素原子を示す。
フッ化アルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、パーフルオロn-プロピル基、パーフルオロイソプロピル基、3,3,4,4,4-ペンタフルオロブチル基、パーフルオロn-ブチル基、パーフルオロイソブチル基、パーフルオロt-ブチル基、パーフルオロn-ペンチル基、パーフルオロイソペンチル基、パーフルオロt-ペンチル基、パーフルオロn-ヘキシル基、パーフルオロイソヘキシル基などが挙げられる。これらのうち、パーフルオロアルキル基が好ましく、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロn-プロピル基がより好ましく、トリフルオロメチル基、ペンタフルオロエチル基がさらに好ましい。
フッ化アルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、パーフルオロn-プロピル基、パーフルオロイソプロピル基、3,3,4,4,4-ペンタフルオロブチル基、パーフルオロn-ブチル基、パーフルオロイソブチル基、パーフルオロt-ブチル基、パーフルオロn-ペンチル基、パーフルオロイソペンチル基、パーフルオロt-ペンチル基、パーフルオロn-ヘキシル基、パーフルオロイソヘキシル基などが挙げられる。これらのうち、パーフルオロアルキル基が好ましく、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロn-プロピル基がより好ましく、トリフルオロメチル基、ペンタフルオロエチル基がさらに好ましい。
式[I]中、[ ]内に示されるアニオンの具体例としては、ビス(フルオロスルホニル)アミドアニオン、ビス(トリフルオロメチルスルホニル)アミドアニオン、ビス(ペンタフルオロエチルスルホニル)アミドアニオン、N-(フルオロスルホニル)-N-(トリフルオロメチルスルホニル)アミドアニオン、N-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミドアニオン、N-(トリフルオロメチルスルホニル)-N-(ペンタフルオロエチルスルホニル)アミドアニオンなどが挙げられる。これらのうちビス(フルオロスルホニル)アミドアニオンが好ましい。
式[I]中、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4
+を除く。)を示す。
アルカリ金属カチオンとしては、リチウムカチオン、ナトリウムカチオン、カリウムカチオンなどが好ましく挙げられる。
オニウムカチオンとしては、イミダゾリウムカチオン、ピラゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、モルホリニウムカチオン、4級アンモニウムカチオン、4級ホスホニウムカチオン、3級ホスフィンカチオン、スルホニウムカチオン、グアニジニウムカチオン、イソウロニウムカチオン、イソチオウロニウムカチオンなどが挙げられる。その他のオニウムカチオンの具体例は特許文献3や4に記載されており、本発明においてそれらをオニウムカチオンとして採用できる。これらのうち、リチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつが好ましく、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつがより好ましく、ナトリウムカチオン、またはカリウムカチオンがより更に好ましい。
アルカリ金属カチオンとしては、リチウムカチオン、ナトリウムカチオン、カリウムカチオンなどが好ましく挙げられる。
オニウムカチオンとしては、イミダゾリウムカチオン、ピラゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、モルホリニウムカチオン、4級アンモニウムカチオン、4級ホスホニウムカチオン、3級ホスフィンカチオン、スルホニウムカチオン、グアニジニウムカチオン、イソウロニウムカチオン、イソチオウロニウムカチオンなどが挙げられる。その他のオニウムカチオンの具体例は特許文献3や4に記載されており、本発明においてそれらをオニウムカチオンとして採用できる。これらのうち、リチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつが好ましく、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつがより好ましく、ナトリウムカチオン、またはカリウムカチオンがより更に好ましい。
本発明のジスルホニルアミド塩は、NH4
+の含有量が1000ppm以下、好ましく0.1ppm以上1000ppm以下、より好ましくは0.1ppm以上500ppm以下、さらに好ましくは0.1ppm以上200ppm以下、さらにより好ましくは0.1ppm以上100ppm以下、特には0.1ppm以上60ppm以下である。NH4
+の含有量が多くなると電解質としての性能が低下する傾向がある。NH4
+は不純物として本発明のジスルホニルアミド塩に含まれる。
本発明のジスルホニルアミド塩は、その製造方法によって特に限定されないが、好ましい製造方法は、有機溶媒中で、式[II]で表される化合物(以下、化合物[II]ということがある。)を、カチオン交換反応させることを含む。
式[II]中、R1およびR2はそれぞれ独立して1~6個の炭素原子を有するフッ化アルキル基またはフッ素原子を示す。式[II]中のR1およびR2は式[I]中のR1およびR2に対応する。
本発明の製造方法において用いられる有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメトキシメタン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン、メチルホルメート、メチルアセテート、メチルプロピオネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、3-メチルスルホラン、ジメチルスルホラン、N,N-ジメチルホルムアミド、N-メチルオキサゾリジノン、アセトニトリル、バレロニトリル、ベンゾニトリル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、ニトロメタン、ニトロベンゼンなどの非プロトン性溶媒が挙げられる。これらのうち、エステル系溶媒が好ましく、酢酸エチル、酢酸イソプロピルおよび酢酸ブチルからなる群から選ばれる少なくともひとつがより好ましく、酢酸ブチルがより更に好ましい。
好ましいカチオン交換反応は、式[II]で表される化合物に式[III]で表される化合物(以下、化合物[III]ということがある。)を作用させることによって行われる。
Y+ OH- [III]
式[III]中、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)を示す。式[III]中のY+は式[I]中のY+に対応する。
化合物[III]は、反応系にそのまま添加してもよいが、水溶液にして添加することが好ましい。化合物[III]の使用量は、化合物[II]1モル部に対して、好ましくは1~10モル部、より好ましくは1~5モル部である。
Y+ OH- [III]
式[III]中、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)を示す。式[III]中のY+は式[I]中のY+に対応する。
化合物[III]は、反応系にそのまま添加してもよいが、水溶液にして添加することが好ましい。化合物[III]の使用量は、化合物[II]1モル部に対して、好ましくは1~10モル部、より好ましくは1~5モル部である。
カチオン交換反応は、好ましくは0℃~200℃、より好ましくは10~100℃、より更に好ましくは10~20℃の温度にて行う。カチオン交換反応は常圧下で行うこともできるが、減圧下で行う方が好ましい。減圧にすることによって、カチオン交換反応において副生するアンモニアが除去され、反応が促進される。反応時間は、反応規模または反応装置に応じて適宜設定できる。
本発明の製造方法においては、カチオン交換反応液から化合物[I]を含む有機溶媒溶液を得、該有機溶媒溶液の質量が95質量%以下になるまで濃縮後、水またはアルカリ性水溶液で洗浄することを含むことがより好ましい。
カチオン交換反応において有機溶媒のみを使用している場合には、反応液をそのまま化合物[I]を含む有機溶媒溶液として次工程に送ることができる。カチオン交換反応において有機溶媒以外に水を使用している場合には、有機溶媒による抽出操作を行って、有機溶媒層を化合物[I]を含む有機溶媒溶液として次工程に送ることができる。抽出操作に使用される有機溶媒としては、エステル系溶媒が好ましく、酢酸エチル、酢酸イソプロピルおよび酢酸ブチルからなる群から選ばれる少なくともひとつがより好ましく、酢酸ブチルがより更に好ましい。
抽出操作で得られる水層には、化合物[II]が残っていることがあるので、残留化合物[II]を、前述のごとく、カチオン交換反応させ、次いで抽出操作などによって化合物[I]を含む有機溶媒溶液を更に得てもよい。以上のようにして得られた化合物[I]を含む有機溶媒溶液はひとつに集めて濃縮工程に送ることが好ましい。
化合物[I]を含む有機溶媒溶液の濃縮は、その条件において特に限定されないが、減圧下で行うことが好ましい。濃縮操作は、圧力を好ましくは30kPa以下、より好ましくは20kPa以下にて、温度を好ましくは100℃以下、より好ましくは50℃以上70℃以下にて行うのが、生成物の熱分解を抑制する上で好ましい。本発明においては、化合物[I]を含む有機溶媒溶液の濃縮後の質量が、濃縮前の質量に対して、95質量%以下、より好ましくは50質量%以上60質量%以下になるまで濃縮することが好ましい。
濃縮液の洗浄に用いられるアルカリ性水溶液は、特に限定されないが、カチオン交換反応において用いられた作用物質と同じ物質を含む水溶液であることが好ましい。例えば、化合物[III]を含む水溶液が好ましい。
濃縮液の洗浄は、5~30℃、より好ましくは8℃~25℃程度で、15分間~2時間、より好ましくは30分間~1時間程度撹拌することにより行うことが好ましい。
このような濃縮および洗浄を行うことによってNH4 +の含有量をさらに減らすことができる。
濃縮液の洗浄は、5~30℃、より好ましくは8℃~25℃程度で、15分間~2時間、より好ましくは30分間~1時間程度撹拌することにより行うことが好ましい。
このような濃縮および洗浄を行うことによってNH4 +の含有量をさらに減らすことができる。
前記洗浄工程後、晶析工程を行うことが好ましい。晶析工程を経ることにより、更にNH4
+からなる不純物の含有量が低減された化合物[I]を得ることができる。
本発明に係る電解液は、本発明のジスルホニルアミド塩を含有するものである。また、本発明に係る電解液は、化合物[I]を含有し、且つNH4
+の含有量が1000ppm以下、好ましくは0.1ppm以上1000ppm以下、より好ましくは0.1ppm以上500ppm以下、さらに好ましくは0.1ppm以上200ppm以下、さらにより好ましくは0.1ppm以上100ppm以下、特には0.1ppm以上60ppm以下のものである。化合物[I]は常温で固体または液体である。
常温で固体の化合物[I]は溶質として電解液に含有させることができる。該電解液の溶媒として、電池の電解液に一般に用いられている溶媒を用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどが挙げられる。また、イオン液体を溶媒として用いることができる。
常温で液体の化合物[I]は溶媒として電解液に含有させることができる。また常温で液体の化合物[I]はそのまま電解液として用いることができる。
以下、実施例を挙げて本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
本実施例では以下の方法で生成物の評価を行った。
(アンモニウムイオン(NH4 +)の含有量の測定法)
DIONEX社製のイオンクロマトグラフィーDX-320(カラム:IonPacCS16、検出器:電気伝導度検出器)にて、20mmol/Lメタンスルホン酸を溶離液(流量1.0ml/min)として用い、定量分析した。
(アンモニウムイオン(NH4 +)の含有量の測定法)
DIONEX社製のイオンクロマトグラフィーDX-320(カラム:IonPacCS16、検出器:電気伝導度検出器)にて、20mmol/Lメタンスルホン酸を溶離液(流量1.0ml/min)として用い、定量分析した。
(生成物の同定)
ジ(フルオロスルホニル)アミドアンモニウム塩の同定は19F-NMRによる定量分析で行った。
ジ(フルオロスルホニル)アミドアンモニウム塩の同定は19F-NMRによる定量分析で行った。
合成例1
(ジ(クロロスルホニル)アミドの合成)
攪拌器、温度計および還流管を取り付けた500mlの反応容器に、クロロスルホン酸(ClSO3H)123.9g(1.10mol)、およびクロロスルホニルイソシアネート98.1g(0.70mol)を仕込んだ。この混合液を撹拌しながら、2.5時間かけて130℃まで昇温し、次いで130℃で9時間反応させた。その後、減圧蒸留を行って98.5℃~101℃/4.2torrの留分を分取した。ジ(クロロスルホニル)アミドが無色透明な液状物として77.9g(0.36mol)得られた。
(ジ(クロロスルホニル)アミドの合成)
攪拌器、温度計および還流管を取り付けた500mlの反応容器に、クロロスルホン酸(ClSO3H)123.9g(1.10mol)、およびクロロスルホニルイソシアネート98.1g(0.70mol)を仕込んだ。この混合液を撹拌しながら、2.5時間かけて130℃まで昇温し、次いで130℃で9時間反応させた。その後、減圧蒸留を行って98.5℃~101℃/4.2torrの留分を分取した。ジ(クロロスルホニル)アミドが無色透明な液状物として77.9g(0.36mol)得られた。
合成例2
(ジ(フルオロスルホニル)アミドアンモニウム塩の合成)
フッ素樹脂製反応容器に、合成例1で得られたジ(クロロスルホニル)アミド1.07g(5.0mmol)を仕込んだ。これにアセトニトリル10mlおよびNH4F0.89g(24.0mmol)を添加し、80~84℃で4時間還流して反応させた。その後、室温に冷却し、不溶物を濾し取り、アセトニトリル10mlで洗浄した。次いで、溶媒を減圧下で留去して、ジ(フルオロスルホニル)アミドアンモニウム塩0.95g(4.8mmol)を得た。
(ジ(フルオロスルホニル)アミドアンモニウム塩の合成)
フッ素樹脂製反応容器に、合成例1で得られたジ(クロロスルホニル)アミド1.07g(5.0mmol)を仕込んだ。これにアセトニトリル10mlおよびNH4F0.89g(24.0mmol)を添加し、80~84℃で4時間還流して反応させた。その後、室温に冷却し、不溶物を濾し取り、アセトニトリル10mlで洗浄した。次いで、溶媒を減圧下で留去して、ジ(フルオロスルホニル)アミドアンモニウム塩0.95g(4.8mmol)を得た。
実施例1
ジ(フルオロスルホニル)アミドアンモニウム塩17.89gと酢酸ブチル98mlとを混ぜ合わせ、該混合液を15℃に冷却した。これに29%水酸化カリウム水溶液25.21gを添加し、10~19℃で30分間撹拌してカチオン交換反応させた。反応液を有機層と水層に分液した。分液操作で得られた水層を酢酸ブチル33mlで2回抽出した。
(濃縮工程)
3回の分液操作で得られた有機層をひとつに集め、2.8mlの水で2回洗浄した。水洗浄された有機層164.37gをバス温60℃で93.58gまで減圧濃縮した。
(洗浄工程)
得られた濃縮液を15℃に冷却し、5%水酸化カリウム水溶液12.79gを添加し、8~22℃で30分間撹拌した。得られた液を有機層と水層に分液した。分液操作で得られた水層を酢酸ブチル11mlで1回抽出した。
(晶析工程)
2回の分液操作で得られた有機層をひとつに集め、2.9mlの水で2回洗浄した。水洗浄された有機層104.46gを46.09gまで濃縮して、晶析に適した濃度に調整した。得られた濃縮液を20℃でジクロロメタン97ml中に滴下し、1時間かけて10℃まで冷却し、その後、10℃で30分間保持した。結晶を濾し取り、該結晶をジクロロメタン33mlで洗浄し、減圧乾燥してジ(フルオロスルホニル)アミドカリウム塩17.40g(79.37mmol、収率87.9モル%)を得た。この化合物はNH4 +の含有量が58ppmであった。
ジ(フルオロスルホニル)アミドアンモニウム塩17.89gと酢酸ブチル98mlとを混ぜ合わせ、該混合液を15℃に冷却した。これに29%水酸化カリウム水溶液25.21gを添加し、10~19℃で30分間撹拌してカチオン交換反応させた。反応液を有機層と水層に分液した。分液操作で得られた水層を酢酸ブチル33mlで2回抽出した。
(濃縮工程)
3回の分液操作で得られた有機層をひとつに集め、2.8mlの水で2回洗浄した。水洗浄された有機層164.37gをバス温60℃で93.58gまで減圧濃縮した。
(洗浄工程)
得られた濃縮液を15℃に冷却し、5%水酸化カリウム水溶液12.79gを添加し、8~22℃で30分間撹拌した。得られた液を有機層と水層に分液した。分液操作で得られた水層を酢酸ブチル11mlで1回抽出した。
(晶析工程)
2回の分液操作で得られた有機層をひとつに集め、2.9mlの水で2回洗浄した。水洗浄された有機層104.46gを46.09gまで濃縮して、晶析に適した濃度に調整した。得られた濃縮液を20℃でジクロロメタン97ml中に滴下し、1時間かけて10℃まで冷却し、その後、10℃で30分間保持した。結晶を濾し取り、該結晶をジクロロメタン33mlで洗浄し、減圧乾燥してジ(フルオロスルホニル)アミドカリウム塩17.40g(79.37mmol、収率87.9モル%)を得た。この化合物はNH4 +の含有量が58ppmであった。
実施例2
(反応工程)
ジ(フルオロスルホニル)アミドアンモニウム塩21.57gと酢酸ブチル98mlとの混合液を15℃に冷却した。これに29%水酸化カリウム水溶液25.21gを添加し、10~19℃で30分間撹拌してカチオン交換反応させた。得られた液を分液して有機層105.60gを得、このうち1.34gをサンプリングした。分液操作で得られた水層を酢酸ブチル33mlで2回抽出し、3回の分液操作で得られた有機層をひとつに集めて有機層164.15gを得、このうち1.33gをサンプリングした。続いて残った有機層を2.7mlの水で2回洗浄後、分液して有機層160.97gを得、このうち1.30gをサンプリングした。
(濃縮工程)
水洗浄された有機層159.67gをバス温60℃で減圧濃縮して濃縮液90.90gを得、このうち1.32gをサンプリングした。
(洗浄工程)
得られた濃縮液を15℃に冷却し、5%水酸化カリウム水溶液12.25gを添加し、8~22℃で30分間撹拌した。得られた液を有機層と水層に分液した。分液操作で得られた水層を酢酸ブチル11mlで1回抽出し、2回の分液操作で得られた有機層をひとつに集めて有機層101.14gを得、このうち1.26gをサンプリングした。続いて残った有機層を2.7mlの水で2回洗浄後、分液して有機層98.76gを得、このうち1.24gをサンプリングした。
(晶析工程)
水洗浄された有機層97.52gをバス温60℃で減圧濃縮して晶析に適した濃度に調整して濃縮液43.03gを得、このうち1.28gをサンプリングした。得られた濃縮液を20℃でジクロロメタン87ml中に滴下し、1時間かけて10℃まで冷却し、その後、10℃で30分間保持した。結晶を濾し取り、該結晶をジクロロメタン30mlで洗浄し、減圧乾燥してジ(フルオロスルホニル)アミドカリウム塩15.32g(69.88mmol、70.9モル%(サンプリング補正後の値))を得た。この化合物はNH4 +の含量が58ppmであった。
(反応工程)
ジ(フルオロスルホニル)アミドアンモニウム塩21.57gと酢酸ブチル98mlとの混合液を15℃に冷却した。これに29%水酸化カリウム水溶液25.21gを添加し、10~19℃で30分間撹拌してカチオン交換反応させた。得られた液を分液して有機層105.60gを得、このうち1.34gをサンプリングした。分液操作で得られた水層を酢酸ブチル33mlで2回抽出し、3回の分液操作で得られた有機層をひとつに集めて有機層164.15gを得、このうち1.33gをサンプリングした。続いて残った有機層を2.7mlの水で2回洗浄後、分液して有機層160.97gを得、このうち1.30gをサンプリングした。
(濃縮工程)
水洗浄された有機層159.67gをバス温60℃で減圧濃縮して濃縮液90.90gを得、このうち1.32gをサンプリングした。
(洗浄工程)
得られた濃縮液を15℃に冷却し、5%水酸化カリウム水溶液12.25gを添加し、8~22℃で30分間撹拌した。得られた液を有機層と水層に分液した。分液操作で得られた水層を酢酸ブチル11mlで1回抽出し、2回の分液操作で得られた有機層をひとつに集めて有機層101.14gを得、このうち1.26gをサンプリングした。続いて残った有機層を2.7mlの水で2回洗浄後、分液して有機層98.76gを得、このうち1.24gをサンプリングした。
(晶析工程)
水洗浄された有機層97.52gをバス温60℃で減圧濃縮して晶析に適した濃度に調整して濃縮液43.03gを得、このうち1.28gをサンプリングした。得られた濃縮液を20℃でジクロロメタン87ml中に滴下し、1時間かけて10℃まで冷却し、その後、10℃で30分間保持した。結晶を濾し取り、該結晶をジクロロメタン30mlで洗浄し、減圧乾燥してジ(フルオロスルホニル)アミドカリウム塩15.32g(69.88mmol、70.9モル%(サンプリング補正後の値))を得た。この化合物はNH4 +の含量が58ppmであった。
実施例3(電池性能評価試験)
ジ(フルオロスルホニル)アミドナトリウム塩15.00gと、実施例2で得られたジ(フルオロスルホニル)アミドカリウム塩12.72gとを混合し、130℃で溶解・混合して溶融塩電解質を調製した。溶融塩電解質中のアンモニウムイオンの含量を表1に示す。ついで、活物質/導電剤/結着剤=85/1/10(重量比)の混合ペーストを準備した。
活物質:カーボトロンP(クレハ製ハードカーボン)
導電剤:デンカブラック(デンカ製 アセチレンブラック)
結着剤:KF ポリマー #1100(クレハ製PVdF)のNMP 希釈液(N.V.15wt%)
銅メッシュに該ペーストを塗布後、80℃×2 時間で減圧乾燥して、作用極(WE)を作製した。また、金属ナトリウムを銅メッシュに圧着して、対極(CE)を作製した。さらに、金属ナトリウムの小片を、Niワイヤでクリップして参照極(RE)とした。
上記溶融塩電解質について、サイクリックボルタンメトリー測定装置(スタンダードボルタンメトリツール HSV-100、北斗電工製)を用いて、スキャン速度0.1mV/sec、スキャン範囲 レストポテンシャル(約+3.0V vs. Na/Na+)~-0.3V、環境温度90℃(電気炉内に測定セルを設置)の条件にて試験を行った。試験結果を図1に示す。
ジ(フルオロスルホニル)アミドナトリウム塩15.00gと、実施例2で得られたジ(フルオロスルホニル)アミドカリウム塩12.72gとを混合し、130℃で溶解・混合して溶融塩電解質を調製した。溶融塩電解質中のアンモニウムイオンの含量を表1に示す。ついで、活物質/導電剤/結着剤=85/1/10(重量比)の混合ペーストを準備した。
活物質:カーボトロンP(クレハ製ハードカーボン)
導電剤:デンカブラック(デンカ製 アセチレンブラック)
結着剤:KF ポリマー #1100(クレハ製PVdF)のNMP 希釈液(N.V.15wt%)
銅メッシュに該ペーストを塗布後、80℃×2 時間で減圧乾燥して、作用極(WE)を作製した。また、金属ナトリウムを銅メッシュに圧着して、対極(CE)を作製した。さらに、金属ナトリウムの小片を、Niワイヤでクリップして参照極(RE)とした。
上記溶融塩電解質について、サイクリックボルタンメトリー測定装置(スタンダードボルタンメトリツール HSV-100、北斗電工製)を用いて、スキャン速度0.1mV/sec、スキャン範囲 レストポテンシャル(約+3.0V vs. Na/Na+)~-0.3V、環境温度90℃(電気炉内に測定セルを設置)の条件にて試験を行った。試験結果を図1に示す。
比較例1(電池性能評価試験)
実施例3と同様にして調製した溶融塩電解質に、さらに合成例2で得られたジ(フルオロスルホニル)アミドアンモニウム塩を0.31g添加した以外は、実施例3と同様に試験を実施した。溶融塩電解質中のアンモニウムイオンの含量を表1に示す。また、試験結果を図1に示す。
実施例3と同様にして調製した溶融塩電解質に、さらに合成例2で得られたジ(フルオロスルホニル)アミドアンモニウム塩を0.31g添加した以外は、実施例3と同様に試験を実施した。溶融塩電解質中のアンモニウムイオンの含量を表1に示す。また、試験結果を図1に示す。
比較例2(電池性能評価試験)
実施例3と同様にして調整した溶融塩電解質に、さらに合成例2で得られたジ(フルオロスルホニル)アミドアンモニウム塩を0.62g添加した以外は、実施例3と同様に試験実施した。溶融塩電解質中のアンモニウムイオンの含量を表1に示す。また、試験結果を図1に示す。
実施例3と同様にして調整した溶融塩電解質に、さらに合成例2で得られたジ(フルオロスルホニル)アミドアンモニウム塩を0.62g添加した以外は、実施例3と同様に試験実施した。溶融塩電解質中のアンモニウムイオンの含量を表1に示す。また、試験結果を図1に示す。
約0~1.0V間の還元電流は、NH4
+含有量が増えるに従って顕著に増加した。一般に、ハードカーボンなど炭素材料を二次電池負極材に用いた場合、その表面には初回充電時、電解液の還元的分解反応により被膜(SEI:Solid Electrolyte Interface)を形成すると言われる。この不可逆反応に消費される電荷は、電池容量に寄与しないため不可逆容量として敬遠される。今回の結果から、NH4
+イオンを特定の範囲内にすることによって、この不可逆容量を抑制できることが判明した。
実施例4
ジ(フルオロスルホニル)アミドアンモニウム塩19.89gと酢酸エチル100mlとの混合液を12℃に冷却した。これに20%水酸化カリウム水溶液42.06gを添加し、13~15℃で15分間撹拌してカチオン交換反応させた。得られた液を分液し、水層を酢酸エチル30mlで2回抽出し、3回の分液操作で得られた有機層をひとつに集めて有機層168.42gを得た(処理液A)。
ジ(フルオロスルホニル)アミドアンモニウム塩19.89gと酢酸エチル100mlとの混合液を12℃に冷却した。これに20%水酸化カリウム水溶液42.06gを添加し、13~15℃で15分間撹拌してカチオン交換反応させた。得られた液を分液し、水層を酢酸エチル30mlで2回抽出し、3回の分液操作で得られた有機層をひとつに集めて有機層168.42gを得た(処理液A)。
実施例5
実施例4で得られた処理液A84.16gをバス温60℃で減圧濃縮して濃縮液36.11gを得た。これに酢酸エチル45mlを加え、水5mlで2回洗浄し、有機層80.08gを得た。このうち32.04g分を濃縮後、酢酸エチル10mlを加えて濃縮する操作を3回繰り返し、濃縮乾固してジ(フルオロスルホニル)アミドカリウム塩4.36g(19.9mmol、99.5モル%(サンプリング補正後の値))を得た。この化合物はNH4 +の含量が550ppmであった。
実施例4で得られた処理液A84.16gをバス温60℃で減圧濃縮して濃縮液36.11gを得た。これに酢酸エチル45mlを加え、水5mlで2回洗浄し、有機層80.08gを得た。このうち32.04g分を濃縮後、酢酸エチル10mlを加えて濃縮する操作を3回繰り返し、濃縮乾固してジ(フルオロスルホニル)アミドカリウム塩4.36g(19.9mmol、99.5モル%(サンプリング補正後の値))を得た。この化合物はNH4 +の含量が550ppmであった。
比較例3
実施例4で得られた処理液A84.24gを水5mlで2回洗浄し、有機層84.89gを得た。このうち33.96g分を濃縮後、酢酸エチル10mlを加えて濃縮する操作を3回繰り返し、濃縮乾固してジ(フルオロスルホニル)アミドカリウム塩4.29g(19.6mmol、97.8モル%(サンプリング補正後の値))を得た。この化合物はNH4 +の含量が2080ppmであった。
実施例4で得られた処理液A84.24gを水5mlで2回洗浄し、有機層84.89gを得た。このうち33.96g分を濃縮後、酢酸エチル10mlを加えて濃縮する操作を3回繰り返し、濃縮乾固してジ(フルオロスルホニル)アミドカリウム塩4.29g(19.6mmol、97.8モル%(サンプリング補正後の値))を得た。この化合物はNH4 +の含量が2080ppmであった。
本発明によれば、NH4
+の含有量が少ないジスルホニルアミドのアルカリ金属塩又はオニウム塩(NH4
+塩を除く。)を得ることができる。NH4
+の含有量が少ないジスルホニルアミドのアルカリ金属塩又はオニウム塩(NH4
+塩を除く。)は二次電池などに用いられる電解質に好適である。
Claims (16)
- 前記NH4 +の含有量が0.1ppm以上1000ppm以下である請求項1に記載の化合物。
- R1およびR2がフッ素原子である請求項1または2に記載の化合物。
- Y+がリチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつである請求項1~3のいずれかひとつに記載の化合物。
- 請求項1~4のいずれかひとつに記載の化合物を含有する電解液。
- NH4 +の含有量が0.1ppm以上1000ppm以下である請求項6に記載の電解液。
- R1およびR2がフッ素原子である請求項6または7に記載の電解液。
- Y+がリチウムカチオン、ナトリウムカチオン、カリウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、1-エチル-3-メチルイミダゾリウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンからなる群から選ばれる少なくともひとつである請求項6~8のいずれかひとつに記載の電解液。
- カチオン交換反応が、式[II]で表される化合物に式[III]で表される化合物を作用させることによって行われる、請求項10に記載の製造方法。
Y+ OH- [III]
(式[III]中、Y+はアルカリ金属カチオンまたはオニウムカチオン(NH4 +を除く。)を示す。) - 有機溶媒がエステル系溶媒である請求項10または11に記載の製造方法。
- エステル系溶媒が酢酸エチル、酢酸イソプロピルおよび酢酸ブチルからなる群から選ばれる少なくともひとつである請求項12に記載の製造方法。
- 濃縮を減圧下で行う請求項14に記載の製造方法。
- 請求項5~9のいずれかひとつに記載の電解液を備えた電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-216848 | 2013-10-17 | ||
JP2013216848A JP2016212947A (ja) | 2013-10-17 | 2013-10-17 | ジスルホニルアミド塩およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056625A1 true WO2015056625A1 (ja) | 2015-04-23 |
Family
ID=52828071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077074 WO2015056625A1 (ja) | 2013-10-17 | 2014-10-09 | ジスルホニルアミド塩およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016212947A (ja) |
TW (1) | TW201527267A (ja) |
WO (1) | WO2015056625A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010168249A (ja) * | 2009-01-22 | 2010-08-05 | Nippon Shokubai Co Ltd | フルオロスルホニルイミド類およびその製造方法 |
JP2010189372A (ja) * | 2008-03-31 | 2010-09-02 | Nippon Shokubai Co Ltd | フルオロスルホニルイミド類およびその製造方法 |
WO2012108284A1 (ja) * | 2011-02-10 | 2012-08-16 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
WO2012118063A1 (ja) * | 2011-03-03 | 2012-09-07 | 日本曹達株式会社 | フッ素含有スルホニルイミド塩の製造方法 |
WO2012117961A1 (ja) * | 2011-03-03 | 2012-09-07 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
-
2013
- 2013-10-17 JP JP2013216848A patent/JP2016212947A/ja active Pending
-
2014
- 2014-10-09 WO PCT/JP2014/077074 patent/WO2015056625A1/ja active Application Filing
- 2014-10-13 TW TW103135339A patent/TW201527267A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010189372A (ja) * | 2008-03-31 | 2010-09-02 | Nippon Shokubai Co Ltd | フルオロスルホニルイミド類およびその製造方法 |
JP2010168249A (ja) * | 2009-01-22 | 2010-08-05 | Nippon Shokubai Co Ltd | フルオロスルホニルイミド類およびその製造方法 |
WO2012108284A1 (ja) * | 2011-02-10 | 2012-08-16 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
WO2012118063A1 (ja) * | 2011-03-03 | 2012-09-07 | 日本曹達株式会社 | フッ素含有スルホニルイミド塩の製造方法 |
WO2012117961A1 (ja) * | 2011-03-03 | 2012-09-07 | 日本曹達株式会社 | フルオロスルホニルイミドアンモニウム塩の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201527267A (zh) | 2015-07-16 |
JP2016212947A (ja) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2505551B2 (en) | Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt | |
EP2660196B1 (en) | Manufacturing method for fluorosulfonylimide ammonium salt | |
CN109311669B (zh) | 双氟磺酰亚胺碱金属盐的制造方法和双氟磺酰亚胺碱金属盐组合物 | |
JP5796756B2 (ja) | イオン性化合物及びその製造方法 | |
JP5074636B2 (ja) | フルオロスルホニルイミドのアルカリ金属塩およびその製造方法 | |
CA2826747C (en) | Process for production of fluorosulfonylimide ammonium salt | |
JP6139944B2 (ja) | フルオロスルホニルイミドのアルカリ金属塩の製造方法 | |
JP5208782B2 (ja) | フルオロスルホニルイミド類およびその製造方法 | |
US20110034716A1 (en) | Sulfonylimide salt and method for producing the same | |
US20160016797A1 (en) | Method for producing disulfonylamine alkali metal salt | |
JP6370852B2 (ja) | ジスルホニルアミド塩の顆粒または粉末 | |
JP2006210022A (ja) | 電解質およびその利用 | |
JP5401336B2 (ja) | フルオロスルホニルイミド塩の製造方法 | |
JP2018035059A (ja) | リチウムビス(フルオロスルホニル)イミド組成物 | |
JP2018035060A (ja) | リチウムビス(フルオロスルホニル)イミド組成物 | |
JPWO2005123656A1 (ja) | 新規なメチルカーボネート類、およびその製造方法、非水系電解液 | |
WO2015056625A1 (ja) | ジスルホニルアミド塩およびその製造方法 | |
JP6718511B2 (ja) | フッ素含有スルホニルアミド化合物の製造方法 | |
JP2019099389A (ja) | スルホニルイミド化合物、それを含む電解質組成物、及びスルホニルイミド化合物の製造方法 | |
JP2019099388A (ja) | 溶液、電解液及びそれを含むリチウムイオン電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14854198 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14854198 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |