WO2023276561A1 - 非水電解液の製造方法 - Google Patents

非水電解液の製造方法 Download PDF

Info

Publication number
WO2023276561A1
WO2023276561A1 PCT/JP2022/022741 JP2022022741W WO2023276561A1 WO 2023276561 A1 WO2023276561 A1 WO 2023276561A1 JP 2022022741 W JP2022022741 W JP 2022022741W WO 2023276561 A1 WO2023276561 A1 WO 2023276561A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
electrolyte
sulfonylimide
aqueous
solution
Prior art date
Application number
PCT/JP2022/022741
Other languages
English (en)
French (fr)
Inventor
遼 渡部
貴之 小畠
知恵 大久保
元博 荒川
智大 森田
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020247002947A priority Critical patent/KR20240026207A/ko
Priority to EP22832719.3A priority patent/EP4350836A4/en
Priority to JP2023531735A priority patent/JPWO2023276561A1/ja
Priority to CN202280041755.9A priority patent/CN117480658A/zh
Publication of WO2023276561A1 publication Critical patent/WO2023276561A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for producing a non-aqueous electrolyte.
  • Patent Document 1 proposes a method for producing an electrolyte material containing a specific fluorosulfonylimide salt and an electrolyte solvent.
  • a solution containing a specific fluorosulfonylimide salt and an electrolyte solvent is decompressed and/or heated to volatilize the production solvent of the fluorosulfonylimide salt, so residual solvent that affects the properties of the electrolyte material can be obtained.
  • each battery manufacturer and other users may use different electrolyte solvents. Therefore, if the electrolyte solvent used in the production of the non-aqueous electrolyte can be replaced with another electrolyte solvent specified by the user without going through a complicated process such as an extraction process, it will be possible to provide the user with a non-aqueous electrolyte. There is an advantage that the options for the electrolyte or its material are widened.
  • An object of the present invention is to provide a method for producing a non-aqueous electrolytic solution that can be replaced with an electrolytic solution solvent.
  • the disclosed technique uses two types of electrolyte solvents, prepares a solution containing the first electrolyte solvent in advance, and then replaces it with the second electrolyte solvent, that is, the solvent made to replace.
  • the present disclosure is specifically as follows.
  • the method for producing the non-aqueous electrolyte of the present disclosure is represented by general formula (1): LiN(RSO 2 )(FSO 2 ) (R represents a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 1 to 6 carbon atoms.)
  • R represents a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 1 to 6 carbon atoms.
  • a method for producing a non-aqueous electrolyte containing a sulfonylimide compound represented by the general formula (1) and the electrolyte solvent (B), wherein the sulfonylimide compound represented by the general formula (1) and the electrolyte solvent (B) A preparation step of preparing a sulfonylimide solution containing an electrolyte solvent (A) different from the electrolyte solvent (A) by adding the electrolyte solvent (B) to
  • the boiling point difference between the electrolyte solvent (A) and the electrolyte solvent (B) may be 60°C or higher and 300°C or lower.
  • the electrolyte solvent (A) may be a solvent having a boiling point of 60° C. or higher.
  • the electrolyte solvent (B) may be a solvent having a boiling point of 200° C. or higher.
  • the electrolyte solvent (A) and the electrolyte solvent (B) may be at least one selected from the group consisting of carbonate-based solvents and ester-based solvents.
  • the electrolytic solution solvent (A) may be at least one selected from the group consisting of a chain carbonate-based solvent and a chain ester-based solvent.
  • the electrolytic solution solvent (B) may be at least one selected from the group consisting of cyclic carbonate-based solvents and cyclic ester-based solvents.
  • a water content in the non-aqueous electrolyte may be 10000 ppm by mass or less.
  • dehydration may be performed by adding the electrolyte solvent (A) to the sulfonylimide aqueous solution containing the sulfonylimide compound represented by the general formula (1).
  • a residual amount of the electrolyte solvent (A) in the non-aqueous electrolyte may be 20% by mass or less with respect to 100% by mass of the non-aqueous electrolyte.
  • a non-aqueous electrolyte or a material thereof that can replace the electrolyte solvent used in the production of the non-aqueous electrolyte with another electrolyte solvent without undergoing a complicated process such as an extraction process can provide a manufacturing method of
  • the method for producing a non-aqueous electrolyte uses a sulfonylimide solution containing a specific sulfonylimide compound and an electrolyte solvent (A) described later to replace the electrolyte solvent, thereby producing the sulfonylimide
  • A electrolyte solvent
  • This is a method for producing a non-aqueous electrolytic solution containing a compound and an electrolytic solution solvent (B).
  • the electrolyte solvent (B) is different from the electrolyte solvent (A).
  • This production method comprises at least a preparation step of preparing a sulfonylimide solution and a fractional distillation step of adding the electrolyte solvent (B) to the sulfonylimide solution and replacing the electrolyte solvent (A) with the electrolyte solvent (B).
  • a preparation step of preparing a sulfonylimide solution and a fractional distillation step of adding the electrolyte solvent (B) to the sulfonylimide solution and replacing the electrolyte solvent (A) with the electrolyte solvent (B).
  • the preparation step is a step of preparing a sulfonylimide solution.
  • the sulfonylimide solution has the general formula (1): [Chemical 1] LiN( RSO2 )( FSO2 ) (1) contains a sulfonylimide compound represented by (hereinafter referred to as "sulfonylimide compound (1)", a fluorine-containing sulfonylimide salt).
  • the sulfonylimide compound (1) is the electrolyte of the non-aqueous electrolyte obtained by the production method according to the present embodiment.
  • R represents a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms.
  • alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group and hexyl group.
  • alkyl groups having 1 to 6 carbon atoms linear or branched alkyl groups having 1 to 6 carbon atoms are preferred, and linear alkyl groups having 1 to 6 carbon atoms are more preferred.
  • fluoroalkyl group having 1 to 6 carbon atoms examples include those in which some or all of the hydrogen atoms of an alkyl group having 1 to 6 carbon atoms are substituted with fluorine atoms.
  • the fluoroalkyl group having 1 to 6 carbon atoms includes fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group and the like.
  • the fluoroalkyl group may be a perfluoroalkyl group.
  • the substituent R is preferably a fluorine atom and a perfluoroalkyl group (e.g., a perfluoroalkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, etc.), a fluorine atom, A trifluoromethyl group and a pentafluoroethyl group are more preferred, a fluorine atom and a trifluoromethyl group are even more preferred, and a fluorine atom is even more preferred.
  • a perfluoroalkyl group e.g., a perfluoroalkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, etc.
  • the sulfonylimide compound (1) include lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 , LiFSI), lithium (fluorosulfonyl)(methylsulfonyl)imide, lithium (fluorosulfonyl)(ethylsulfonyl) imide, lithium(fluorosulfonyl)(trifluoromethylsulfonyl)imide, lithium(fluorosulfonyl)(pentafluoroethylsulfonyl)imide, lithium(fluorosulfonyl)(heptafluoropropylsulfonyl)imide and the like.
  • the sulfonylimide compounds may be used alone or in combination of two or more.
  • lithium bis(fluorosulfonyl)imide lithium bis(fluorosulfonyl)imide, lithium (fluorosulfonyl)(trifluoromethylsulfonyl)imide, and lithium (fluorosulfonyl)(pentafluoroethylsulfonyl) ) imide, more preferably lithium bis(fluorosulfonyl)imide.
  • lithium bis(fluorosulfonyl)imide lithium (fluorosulfonyl)(trifluoromethylsulfonyl)imide
  • lithium (fluorosulfonyl)(pentafluoroethylsulfonyl) ) imide more preferably lithium bis(fluorosulfonyl)imide.
  • those in which the sulfonylimide compound (1) contains LiN(FSO 2 ) 2 are preferred.
  • sulfonylimide compound (1) a commercially available product may be used, or one synthesized by a conventionally known method may be used.
  • a method for synthesizing the sulfonylimide compound (1) is not particularly limited, and all conventionally known methods can be employed.
  • a powder (solid) of the sulfonylimide compound (1) is obtained by the conventionally known method described above.
  • the sulfonylimide compound (1) can be used in the production solvent used for the production of the sulfonylimide compound (1) (the sulfonylimide compound (1) obtained by the above-described conventionally known production method) within the range that does not hinder the object of the present invention. contained residual solvent).
  • the residual solvent includes the solvent used in the production reaction of the sulfonylimide compound (1), the solvent used in the purification step, and the like.
  • water For example, water; alcohol solvents such as methanol, ethanol, propanol and butanol; carboxylic acid solvents such as formic acid and acetic acid; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; Nitrile solvents such as nitrile and benzonitrile; Ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; Aliphatic ether solvents such as diethyl ether, diisopropyl ether, t-butyl methyl ether and cyclopentyl methyl ether; Halogen-based solvents; nitro group-containing solvents such as nitromethane and nitrobenzene; nitrogen-containing organic solvents such as ethylformamide and N-methylpyrrolidone; dimethyl sulfoxide; glyme-based solvents, tolu
  • aromatic hydrocarbon solvents pentane, hexane, heptane, octane, decane, dodecane, undecane, tridecane, decalin, 2,2,4,6,6-pentamethylheptane, isoparaffin (e.g., "Marcazol R” (Maruzen 2,2,4,6,6-pentamethylheptane manufactured by Petrochemical Co., Ltd., a mixture of 2,2,4,4,6-pentamethylheptane), "Isopar (registered trademark) G” (manufactured by ExxonMobil C9-C11 mixed isoparaffins), “Isopar (registered trademark) E” (C8-C10 mixed isoparaffins manufactured by ExxonMobil) Chain aliphatic hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane; cyclohexane, methylcyclohexane , 1,2-di
  • the sulfonylimide solution contains electrolyte solution solvent (A) together with sulfonylimide compound (1).
  • the electrolyte solvent (A) is capable of dissolving and dispersing the electrolyte.
  • a non-aqueous solvent having a large dielectric constant, a high solubility of the electrolyte salt, a boiling point at normal pressure of 60° C. or higher, and a wide electrochemical stability range is suitable. More preferably, it is an organic solvent with a low water content.
  • electrolyte solvent (A) examples include chains such as dimethyl carbonate (DMC, boiling point: 90°C), ethyl methyl carbonate (EMC, boiling point: 107°C), diethyl carbonate (DEC, boiling point: 125.8°C), and the like. chain ester solvents such as ethyl propionate (boiling point: 99°C) and propyl propionate (boiling point: 124°C); and the like. These solvents may be used alone or in combination of two or more.
  • the electrolyte solvent (A) from the viewpoint of reducing the residual amount of the electrolyte solvent (A) in the non-aqueous electrolyte, at least one selected from the group consisting of chain carbonate solvents and chain ester solvents
  • chain carbonate solvents and chain ester solvents One is preferred, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl propionate and propyl propionate are more preferred, and dimethyl carbonate, ethyl methyl carbonate and ethyl propionate are even more preferred.
  • the method of preparing the sulfonylimide solution is not particularly limited, and a method of dissolving the powder (solid) of the sulfonylimide compound (1) in the electrolyte solvent (A); 1) (for example, a method of using electrolyte solvent (A) instead of butyl acetate in Production Example 1 described in WO 2016/052752 (Patent Document 1)); electrolyte solvent (A ) in which HFSI [bis(fluorosulfonyl)imide] is reacted with a lithium salt such as LiOH or Li 2 CO 3 .
  • a lithium salt such as LiOH or Li 2 CO 3
  • an aqueous sulfonylimide solution containing the sulfonylimide compound (1) is first prepared, and the resulting aqueous sulfonylimide solution is dehydrated to replace the solvent, thereby obtaining a sulfonylimide solution. may be prepared.
  • the method of preparing the sulfonylimide aqueous solution is not particularly limited, and a method of dissolving the powder (solid) of the sulfonylimide compound ( 1 ) in water; sulfonyl)imide] and reacting (preparation of LiFSI aqueous solution).
  • the concentration of sulfonylimide compound (1) in the aqueous sulfonylimide solution is preferably 40% by mass or more, more preferably 45% by mass or more, and even more preferably 50% by mass or more.
  • the upper limit of the concentration is preferably 70% by mass or less from the viewpoint of dehydration efficiency.
  • the method of dehydrating the sulfonylimide aqueous solution to replace the solvent is not particularly limited. (hereinafter also referred to as "water-containing sulfonylimide solution for dehydration”) is dehydrated.
  • the same amount of electrolyte solvent (A) as the distillate to be removed may be added sequentially; the distillate may be phase separated to remove the aqueous layer while the organic phase is refluxed.
  • the water-containing sulfonylimide solution for dehydration is dehydrated to obtain a sulfonylimide solution containing the electrolyte solvent (A) added.
  • the water in the sulfonylimide aqueous solution is replaced with the electrolyte solvent (A) added, and the water content of the sulfonylimide solution is sufficiently reduced. Since the sulfonylimide solution contains the sulfonylimide compound (1) and the electrolyte solvent (A) as the electrolyte, it may be used as it is as the non-aqueous electrolyte, and the raw material of the non-aqueous electrolyte (electrolyte solution, electrolyte material).
  • the added amount (used amount) of the electrolyte solvent (A) has no particular lower limit, and may be appropriately adjusted depending on the type and amount of the residual solvent in the sulfonylimide compound (1).
  • 100 g of the sulfonylimide compound (1) preferably 10000 g or less, more preferably 1000 g or less, even more preferably 500 g or less, still more preferably 200 g or less, still more preferably 100 g or less, particularly preferably 50 g or less be.
  • the addition amount (use amount) of the electrolytic solution solvent (A) is, for example, preferably 1 to 1000 parts by mass, more preferably 5 to 500 parts by mass, with respect to 100 parts by mass of the sulfonylimide compound (1). More preferably 10 to 300 parts by mass, more preferably 30 to 200 parts by mass, even more preferably 50 to 100 parts by mass.
  • the dehydration step can be carried out under normal pressure or under reduced pressure (the dehydration step may be carried out under a combination of normal pressure and reduced pressure). From the viewpoint of suppressing thermal deterioration of the imide solution, it is preferable to carry out under reduced pressure.
  • the degree of pressure reduction is not particularly limited and may be adjusted appropriately according to the concentration of the sulfonylimide compound (1), the type and amount of the electrolyte solvent (A), and the like. It is preferably 15 kPa or less, particularly preferably 10 kPa or less.
  • the heating temperature in the dehydration step is not particularly limited and may be appropriately adjusted according to the degree of pressure reduction, the type and amount of the electrolyte solvent (A), etc.
  • the sulfonylimide resulting from the decomposition of the sulfonylimide compound (1) by heat A relatively low temperature is preferable from the viewpoint of suppressing thermal deterioration of the aqueous solution.
  • the heating temperature is, for example, preferably 10 to 110°C, more preferably 15 to 100°C.
  • the treatment time in the dehydration step is not particularly limited and may be appropriately adjusted depending on the degree of pressure reduction, heating temperature, type and amount of the electrolyte solvent (A), etc., but for example, preferably 0.1 to 24 hours, more It is preferably 0.5 to 12 hours, more preferably 1 to 8 hours, particularly preferably 2 to 5 hours.
  • the device for decompression and/or heating used in the dehydration process may be appropriately selected according to the amount of solution, degree of decompression, heating temperature, and the like.
  • a tank reactor, a pressure-reduced tank reactor, and the like can be mentioned.
  • a carbonate may be added to the sulfonylimide solution and/or the aqueous sulfonylimide solution to the extent that the object of the present invention is not impaired.
  • a small amount of fluorosulfonic acid (HFSO 3 ) is generated due to moisture in the solution, heat generation during dissolution, and the like.
  • HFSO 3 may be contained in the obtained sulfonylimide compound (1) itself.
  • HFSO 3 causes degradation of the aqueous sulfonylimide solution due to decomposition of the sulfonylimide compound (1)
  • HFSO 3 in the sulfonylimide solution and/or the aqueous sulfonylimide solution can be trapped by carbonate. desirable.
  • Carbonates include lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), and the like.
  • alkali metal carbonates alkaline earth metal carbonates such as beryllium carbonate ( BeCO3 ) , magnesium carbonate ( MgCO3 ), calcium carbonate ( CaCO3 ) , strontium carbonate (SrCO3), barium carbonate (BaCO3); ammonium (NH 4 ) 2 CO 3 ); copper (II) carbonate (CuCO 3 ); iron (II) carbonate (FeCO 3 ); silver carbonate (I) (Ag 2 CO 3 ) and the like.
  • a carbonate may be used independently, respectively, and may use two or more types together.
  • alkali metal carbonates and alkaline earth metal carbonates are preferred, alkali metal carbonates are more preferred, and Li 2 CO 3 , Na 2 CO 3 and K 2 are preferred. More preferred are CO 3 and Cs 2 CO 3 and even more preferred is Li 2 CO 3 .
  • the amount of carbonate to be added to the sulfonylimide aqueous solution may be appropriately determined according to the concentration of the sulfonylimide compound ( 1 ). It is 0.1% by mass or more, more preferably 0.2% by mass or more, and still more preferably 0.3% by mass or more. From the viewpoint of reducing the amount of insoluble carbonate particles remaining in the sulfonylimide aqueous solution, the upper limit of the amount to be added is preferably 1% by mass or less, more preferably 0.8% by mass in 100% by mass of the sulfonylimide aqueous solution. 0.5% by mass or less, more preferably 0.5% by mass or less.
  • the concentration of sulfonylimide compound (1) in the sulfonylimide solution is preferably 30% by mass or more, more preferably 35% by mass or more, and still more preferably 40% by mass or more, from the viewpoint of improving storage stability.
  • the concentration is preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the water content (water concentration) in the sulfonylimide solution is preferably 10000 mass ppm or less, more preferably 1000 mass ppm or less, and still more preferably 100 mass ppm, from the viewpoint of suppressing decomposition of the sulfonylimide compound (1) by water. Below, more preferably 50 mass ppm or less.
  • the water content is preferably as low as possible, and may be below the detection limit or not substantially contained (0 mass ppm).
  • the moisture content can be measured by the method described in Examples below, for example, using a Karl Fischer moisture analyzer or the like.
  • the fractional distillation step is a step of fractionating the electrolytic solution solvent (A) and the electrolytic solution solvent (B) in the mixture obtained by adding the electrolytic solution solvent (B) to the sulfonylimide solution obtained in the preparation step.
  • a mixture containing a sulfonylimide solution and an electrolytic solution solvent (B), that is, a sulfonylimide compound (1), two types of electrolytic solution solvent (A) and an electrolytic solution solvent (B) having different boiling points is heated to vaporize and separate (remove) the electrolytic solution solvent (A) having a low boiling point.
  • the electrolyte solvent (A) in the sulfonylimide solution is replaced with the electrolyte solvent (B) added to the solution.
  • the amount of electrolyte solvent (A) is reduced, and a non-aqueous electrolyte containing more electrolyte solvent (B) than electrolyte solvent (A) is obtained.
  • the electrolyte solvent (B) is capable of dissolving and dispersing the electrolyte.
  • a non-aqueous solvent having a large dielectric constant, a high solubility of the electrolyte salt, a boiling point of 60° C. or higher at normal pressure, and a wide electrochemical stability range is suitable. More preferably, it is an organic solvent with a low water content.
  • the electrolyte solvent (B) is a solvent having a boiling point different from that of the electrolyte solvent (A).
  • a combination in which the electrolyte solvent (B) has a higher boiling point than the electrolyte solvent (A) and the boiling point difference between the two is large is preferable.
  • the boiling point difference between the electrolyte solvent (A) and the electrolyte solvent (B) is preferably 60° C.
  • the upper limit of the boiling point difference is preferably 300°C or less, more preferably 200°C or less, even more preferably 190°C or less, still more preferably 180°C or less, even more preferably 170°C or less, particularly preferably 160°C. It is below.
  • Examples of such an electrolytic solution solvent (B) include solvents having a boiling point of 200°C or higher at normal pressure.
  • Specific examples include ethylene carbonate (EC, boiling point: 244°C), propylene carbonate (PC, boiling point: 242°C), 2,3-dimethylethylene carbonate (boiling point: 313°C), 1,2-butylene carbonate carbonate (boiling point: 250° C.), saturated cyclic carbonate solvents such as erythritan carbonate (boiling point: 345° C.); cyclic ester solvents such as ⁇ -butyrolactone (boiling point: 204° C.). These solvents may be used alone or in combination of two or more.
  • the electrolyte solvent (B) from the viewpoint of reducing the residual amount of the electrolyte solvent (A) in the non-aqueous electrolyte, at least one selected from the group consisting of cyclic carbonate solvents and cyclic ester solvents. are preferred, and ethylene carbonate, propylene carbonate and ⁇ -butyrolactone are preferred.
  • the electrolytic solution solvent (A) and the electrolytic solution solvent (B) are preferably at least one selected from the group consisting of carbonate-based solvents and ester-based solvents. is preferably When both are carbonate-based solvents, more preferably, electrolyte solvent (A) is a chain carbonate-based solvent, and electrolyte-solution solvent (B) is a cyclic carbonate-based solvent. When both are ester solvents, more preferably, electrolyte solvent (A) is a chain ester solvent and electrolyte solvent (B) is a cyclic ester solvent.
  • a cyclic carbonate-based solvent or a cyclic ester-based solvent is used during the production of sulfonylimide compound (1), it is relatively difficult to reduce the amount of water mixed into sulfonylimide compound (1) during production. Therefore, after sufficiently reducing the water content in the sulfonylimide compound (1) using a chain carbonate-based solvent or a chain ester-based solvent during the production of the sulfonylimide compound (1), a chain carbonate-based solvent or chain By replacing the cyclic ester solvent with a cyclic carbonate solvent or a cyclic ester solvent, a non-aqueous electrolytic solution with a low water content can be obtained.
  • the water mixed in the sulfonylimide compound (1) during production includes, for example, water generated in the neutralization reaction between lithium salts such as LiOH and Li 2 CO 3 and HFSI, water used in the reaction solvent, and extraction process. and the like.
  • the amount (used amount) of the electrolyte solvent (B) added there is no particular lower limit to the amount (used amount) of the electrolyte solvent (B) added, and it may be adjusted as appropriate depending on the type and amount of the electrolyte solvent (A).
  • the amount (used amount) of the electrolyte solvent (B) added preferably 10000 g or less, more preferably 1000 g or less, even more preferably 500 g or less, still more preferably 200 g or less, still more preferably 100 g or less, particularly preferably 50 g or less be.
  • the addition amount (use amount) of the electrolytic solution solvent (B) is, for example, preferably 1 to 1000 parts by mass, more preferably 5 to 500 parts by mass, with respect to 100 parts by mass of the sulfonylimide compound (1). More preferably 10 to 300 parts by mass, more preferably 30 to 200 parts by mass, even more preferably 50 to 100 parts by mass.
  • the amount (used amount) of the electrolytic solution solvent (B) is, for example, preferably 10000 g or less, more preferably 1000 g or less, with respect to 100 g of the sulfonylimide solution containing the sulfonylimide compound (1) and the electrolytic solution solvent (A). is 1000 g or less, more preferably 500 g or less, even more preferably 200 g or less, even more preferably 100 g or less.
  • the method of distilling off the electrolyte solvent (A) from a liquid mixture obtained by adding the electrolyte solvent (B) to the sulfonylimide solution (fractionating the electrolyte solvent (A) and the electrolyte solvent (B)) is particularly It is not limited, and a conventionally known method can be adopted. For example, a method of depressurizing and/or heating a liquid mixture may be used.
  • the fractional distillation step can be carried out under normal pressure or under reduced pressure (a combination of normal pressure and reduced pressure may be carried out during the fractional distillation step). From the viewpoint of suppressing thermal deterioration of the sulfonylimide aqueous solution, it is preferable to carry out under reduced pressure.
  • the degree of pressure reduction is not particularly limited and may be appropriately adjusted according to the concentration of the sulfonylimide compound (1), the types and amounts of the electrolyte solvent (A) and the electrolyte solvent (B), and is preferably 200 kPa or less, for example.
  • the degree of pressure reduction may be constant (same) during the fractional distillation step, or may be changed during the distillation step. For example, after distilling off the electrolyte solvent (A) at a first degree of pressure reduction, the degree of pressure reduction may be lowered to a second degree of pressure reduction lower than the first degree of pressure reduction to further distill off the electrolyte solution solvent (A). .
  • the heating temperature in the fractional distillation step is not particularly limited and may be appropriately adjusted according to the degree of pressure reduction, the type and amount of the electrolyte solvent (A) and the electrolyte solvent (B), etc.
  • the sulfonylimide compound (1 A relatively low temperature is preferable from the viewpoint of suppressing thermal deterioration of the aqueous sulfonylimide solution due to the decomposition of ).
  • the heating temperature is, for example, preferably 10 to 110°C, more preferably 15 to 100°C, still more preferably 20 to 80°C.
  • the treatment time in the fractional distillation step is not particularly limited, and may be appropriately adjusted according to the degree of pressure reduction, heating temperature, type and amount of the electrolyte solvent (A) and electrolyte solvent (B), but is preferably, for example, 0.1 to 24 hours, more preferably 0.2 to 12 hours, still more preferably 0.5 to 8 hours, particularly preferably 0.5 to 5 hours.
  • the device used for the fractional distillation process that can be used for decompression and/or heating may be appropriately selected according to the amount of solution, degree of decompression, heating temperature, and the like.
  • a tank reactor, a pressure-reduced tank reactor, and the like can be mentioned.
  • the method for producing the non-aqueous electrolyte may include other steps as long as the object of the present invention is not hindered. Other steps include filtration, column purification, activated carbon treatment, molecular sieve treatment, and the like.
  • the sulfonylimide solution containing the sulfonylimide compound (1) and the electrolyte solvent (A) is replaced with the sulfonylimide compound (1) and the electrolyte solvent (B) by solvent replacement.
  • a non-aqueous electrolyte is obtained.
  • This non-aqueous electrolyte has a lower water content than non-aqueous electrolytes obtained by conventionally known methods.
  • the method for producing a non-aqueous electrolytic solution includes a preparation step (first preparation step) of preparing an aqueous sulfonylimide solution (first preparation step) and a first preparation step (second preparation step) of preparing a sulfonylimide solution. It may further include a dehydration step of adding the electrolyte solvent (A) to the aqueous sulfonylimide solution obtained in the preparation step, dehydrating it, and substituting it with the electrolyte solvent (A).
  • Non-aqueous electrolyte (Electrolytes)
  • the electrolyte may contain the sulfonylimide compound (1), but may contain other electrolytes (electrolytes other than the sulfonylimide compound (1)).
  • Other electrolytes may be mixed with the non-aqueous electrolyte, or may be mixed with the sulfonylimide solution and/or the aqueous sulfonylimide solution in the process of preparing the non-aqueous electrolyte.
  • Other electrolytes include imide salts, non-imide salts, and the like.
  • Examples of the imide salt include fluorine-containing sulfonylimide salts different from the sulfonylimide compound (1) (hereinafter referred to as "another sulfonylimide compound").
  • Other sulfonylimide compounds include lithium bis(trifluoromethylsulfonyl)imide (LiN(CF 3 SO 2 ) 2 , hereinafter also referred to as “LiTFSI”); lithium bis(pentafluoroethylsulfonyl)imide; lithium bis(heptafluoro propylsulfonyl)imide; non-lithium salts of fluorine-containing sulfonylimides listed as sulfonylimide compound (1) (for example, salts in which lithium (ion) is substituted with a cation other than lithium ion in sulfonylimide compound (1)), etc.
  • Salts substituted with cations other than lithium ions include alkali metal salts such as sodium salts, potassium salts, rubidium salts and cesium salts; alkaline earth metal salts such as beryllium salts, magnesium salts, calcium salts, strontium salts and barium salts. aluminum salts; ammonium salts; phosphonium salts and the like.
  • alkali metal salts such as sodium salts, potassium salts, rubidium salts and cesium salts
  • alkaline earth metal salts such as beryllium salts, magnesium salts, calcium salts, strontium salts and barium salts.
  • aluminum salts such as ammonium salts; phosphonium salts and the like.
  • Other sulfonylimide compounds may be used alone, respectively, or two or more of them may be used in combination.
  • other sulfonylimide compounds may be commercially available products, or may be synthesized by conventionally known methods.
  • Non-imide salts include salts of non-imide anions and cations (lithium ions and cations exemplified above).
  • Examples of non-imide salts include fluorophosphorus salts such as LiPF 6 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (C 3 F 7 ) 3 and LiPF 3 (C 4 F 9 ) 3 .
  • Acid compounds Fluoroboric acid compounds such as LiBF4 , LiBF( CF3 ) 3 , LiBF( C2F5 ) 3 , LiBF( C3F7 ) 3 , lithium hexafluoroarsenate ( LiAsF6 ), LiSbF6 , LiClO 4 , LiSCN, LiAlF4 , CF3SO3Li , LiC[(CF3SO2)3 ] , LiN ( NO2), LiN[(CN) 2 ;
  • salts include salts in which lithium (ions) are substituted with the above-exemplified cations (e.g., NaBF 4 , NaPF 6 , NaPF 3 (CF 3 ) 3 , etc.)
  • Non-imide salts may be used alone. Alternatively, two or more types may be used in combination.
  • the non-imide salt may be a commercially available product or one synthesized by a conventionally known method.
  • electrolytes sulfonylimide compound (1), other electrolytes, etc.
  • electrolytes may exist (contain) in the form of ions in the non-aqueous electrolyte.
  • the concentration of the sulfonylimide compound (1) in the non-aqueous electrolyte should be On the other hand (with respect to 100% by mass of the total amount of components contained in the non-aqueous electrolyte), it is preferably 30% by mass or more.
  • the concentration is preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the content of the sulfonylimide compound (1) in the non-aqueous electrolyte is preferably 10 mol % or more, more preferably 15 mol %, based on the total 100 mol % of the electrolyte salt contained in the non-aqueous electrolyte. That's it.
  • the upper limit of the content is preferably 50 mol % or less.
  • the non-aqueous electrolyte may contain other electrolyte solvents (electrolyte solvents other than the electrolyte solvent (A) and the electrolyte solvent (B)) within a range that does not hinder the object of the present invention.
  • Other electrolyte solvents may be mixed with the non-aqueous electrolyte, or may be mixed with the sulfonylimide solution and/or the aqueous sulfonylimide solution in the process of preparing the non-aqueous electrolyte.
  • Other electrolyte solvents are not particularly limited as long as they can dissolve and disperse the electrolyte.
  • a non-aqueous solvent having a large dielectric constant, a high solubility of the electrolyte salt, a boiling point of 60° C. or higher at normal pressure, and a wide electrochemical stability range is suitable. More preferably, it is an organic solvent with a low water content.
  • organic solvents examples include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 2,6-dimethyltetrahydrofuran, tetrahydropyran, crown ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, Ether solvents such as 1,4-dioxane and 1,3-dioxolane; Cyclic carbonate solvents having unsaturated bonds such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 2-vinyl ethylene carbonate and phenylethylene carbonate; Fluorine-containing cyclic carbonate solvents such as fluoroethylene carbonate, 4,5-difluoroethylene carbonate and trifluoropropylene carbonate; aromatic carboxylic acid ester solvents such as methyl benzoate and ethyl benzoate; ⁇ -butyrolactone,
  • aromatic nitrile solvents such as tolunitrile; nitromethane, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 ( 1H)-pyrimidinone, 3-methyl-2-oxazolidinone and the like; and chain ester solvents such as ethyl acetate, butyl acetate and propyl propionate. These solvents may be used alone or in combination of two or more.
  • the nonaqueous electrolyte may contain additives for the purpose of improving various characteristics of the lithium ion secondary battery.
  • the additive may be added to the non-aqueous electrolyte, or added to the sulfonylimide solution and/or the aqueous sulfonylimide solution in the process of preparing the non-aqueous electrolyte.
  • Additives include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenyl Carboxylic anhydride such as succinic anhydride; ethylene sulfite, 1,3-propanesultone, 1,4-butanesultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethylsulfone, tetramethylthiuram monosulfide, trimethylene sulfur-containing compounds such as glycol sulfate; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide, etc
  • saturated hydrocarbon compounds such as heptane, octane, and cycloheptane
  • carbonate compounds such as vinylene carbonate, fluoroethylene carbonate (FEC), trifluoropropylene carbonate, phenylethylene carbonate and erythritan carbonate; , H 3 NSO 3
  • sulfamate alkali metal salts such as lithium salt, sodium salt, potassium salt; alkaline earth metal salts such as calcium salt, strontium salt, barium salt; manganese salt, copper salt, zinc salt, other metal salts such as iron salts , cobalt salts , nickel salts; ammonium salts; guanidine salts , etc.
  • fluorosulfonic acid compounds such as magnesium fluorosulfonate (Mg(FSO3)2 )
  • fluorophosphate compounds such as lithium monofluorophosphate ( Li2PO3F ) and lithium difluorophosphate ( LiPO2F2 ); lithium Bis
  • the amount of water (water concentration, water content) in the non-aqueous electrolyte is preferably 10000 mass ppm (1 mass%) or less, more preferably 1000 mass, from the viewpoint of suppressing decomposition of the sulfonylimide compound (1) by water. ppm or less, more preferably 100 mass ppm or less, and even more preferably 50 mass ppm or less.
  • the water content is preferably as low as possible, may be below the detection limit, and may be substantially free of water (0 mass ppm).
  • the moisture content can be measured by the method described in Examples below, for example, using a Karl Fischer moisture analyzer or the like.
  • the non-aqueous electrolyte is, for example, 0.1 mass ppm or more, 0.3 mass ppm or more, 0.5 mass ppm or more, 0.7 mass ppm or more, 0.8 mass ppm or more, 1 mass ppm or more, It may contain water at a concentration of 1.5 mass ppm or more, 2 mass ppm or more, 3 mass ppm or more, 5 mass ppm or more, 7 mass ppm or more, or 10 mass ppm or more.
  • the remaining amount of the electrolyte solvent (A) contained in the non-aqueous electrolyte is reduced from the viewpoint of obtaining a non-aqueous electrolyte containing the desired electrolyte solvent (B). It is preferably 25 mol % or less, more preferably 20 mol % or less, relative to 100 mol % of the electrolytic solution.
  • the remaining amount of the electrolyte solvent (A) contained in the non-aqueous electrolyte is reduced from the viewpoint of obtaining a non-aqueous electrolyte containing the desired electrolyte solvent (B).
  • the entire non-aqueous electrolyte With respect to the entire non-aqueous electrolyte (with respect to 100% by mass of the total amount of components contained in the non-aqueous electrolyte), it is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less. be.
  • the non-aqueous electrolytic solution configured as described above is used, for example, in batteries (batteries having a charging/discharging mechanism), electrical storage (electrochemical) devices (or ionic conductor materials constituting these), and the like.
  • the electrolytic solution constitutes, for example, primary batteries, secondary batteries (e.g., lithium (ion) secondary batteries), fuel cells, electrolytic capacitors, electric double layer capacitors, solar cells, electrochromic display elements, and the like. It can be used as an electrolyte for A battery (particularly a secondary battery) will be described below as an example.
  • a method for producing a non-aqueous electrolyte is to prepare a sulfonylimide solution containing a sulfonylimide compound (1) and an electrolyte solvent (A), add an electrolyte solvent (B) to the solution, and The mixture is fractionally distilled to remove the electrolyte solvent (A).
  • the electrolytic solution solvent (A) can be replaced with the desired electrolytic solution solvent (B) without going through complicated steps such as an extraction step.
  • the method for producing a non-aqueous electrolyte uses at least one selected from the group consisting of a chain carbonate solvent and a chain ester solvent as the electrolyte solvent (A), and a cyclic carbonate as the electrolyte solvent (B).
  • A a chain carbonate solvent and a chain ester solvent
  • B a cyclic carbonate
  • a non-aqueous electrolytic solution with a low water content can be obtained.
  • the method for producing a non-aqueous electrolytic solution includes a series of steps (operations) of first preparing an aqueous sulfonylimide solution containing the sulfonylimide compound (1), adding an electrolytic solution solvent (A) to the aqueous solution, and dehydrating. is further included, the resulting sulfonylimide solution has a much lower water content. As a result, a non-aqueous electrolytic solution with a lower water content can be obtained.
  • Example 1 15 g of EC (ethylene carbonate, Mw: 88.06) was added to 25 g of the LiFSI/DMC solution obtained in Synthesis Example 1 and stirred until uniform. Then, using a rotary evaporator ("REN-1000", manufactured by IWAKI) heated to 60° C., the pressure was reduced to 5 kPa, and the solvent was distilled off for 30 minutes. After that, the pressure was further lowered to 2.5 kPa and the solvent was distilled off for 30 minutes. A LiFSI/EC solution (non-aqueous electrolyte) was obtained by the above operation. The solvent composition of the LiFSI/EC solution was analyzed by 1 H-NMR, and the water content was measured by the method described above.
  • REN-1000 rotary evaporator
  • Example 2 A LiFSI/PC solution (non-aqueous electrolyte) was obtained in the same manner as in Example 1 except that PC (propylene carbonate, Mw: 102.09) was used instead of EC, and its solvent composition was analyzed by 1 H-NMR. and the water content was measured by the method described above.
  • PC propylene carbonate, Mw: 102.09
  • Example 3 A LiFSI/EC (non-aqueous electrolyte) solution was obtained in the same manner as in Example 1 except that the LiFSI/EMC solution obtained in Synthesis Example 2 was used instead of the LiFSI/DMC solution obtained in Synthesis Example 1. Then, the solvent composition was analyzed by 1 H-NMR, and the water content was measured by the method described above.
  • Example 4 A LiFSI/PC solution (non-aqueous electrolyte) was obtained in the same manner as in Example 3 except that PC was used instead of EC, the solvent composition was analyzed by 1 H-NMR, and the water content was determined by the method described above. Measured by
  • Example 5 15 g of GBL ( ⁇ -butyrolactone, Mw: 86.09) was added to 25 g of the LiFSI/EtCOOEt solution obtained in Synthesis Example 3 and stirred until uniform. Then, using a rotary evaporator ("REN-1000", manufactured by IWAKI) heated to 60° C., the pressure was reduced to 5 kPa, and the solvent was distilled off for 30 minutes. After that, the pressure was further lowered to 2.5 kPa and the solvent was distilled off for 30 minutes. Through the above operations, a LiFSI/GBL solution (non-aqueous electrolyte) was obtained. The solvent composition of the LiFSI/GBL solution was analyzed by 1 H-NMR, and the water content was measured by the method described above.
  • REN-1000 rotary evaporator
  • REN-1000 manufactured by IWAKI
  • LiFSI/EC solution containing 35% by mass of LiFSI was obtained.
  • the solvent composition in this LiFSI/EC solution was analyzed by 1 H-NMR, and the water content (water concentration) was measured by the method described above.
  • Table 1 shows the results of analysis of the amount of electrolyte, the solvent composition of the electrolyte solution, and the water content of each LiFSI solution obtained above.
  • the present disclosure is suitable for non-aqueous electrolytes used in lithium ion secondary batteries and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解液の製造方法は一般式(1)で表されるスルホニルイミド化合物及び電解液溶媒(B)を含有する非水電解液を製造する方法であり、一般式(1)で表されるスルホニルイミド化合物及び電解液溶媒(B)とは異なる電解液溶媒(A)を含有するスルホニルイミド溶液を調製する調製工程と、調製工程で得られたスルホニルイミド溶液に電解液溶媒(B)を加えて電解液溶媒(A)を留去する分留工程とを含む。 LiN(RSO2)(FSO2) (Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。) (1)

Description

非水電解液の製造方法
 本開示は、非水電解液の製造方法に関するものである。
 リチウムイオン二次電池等の二次電池の電池性能を向上させるために、二次電池に用いられる非水電解液やその材料が種々検討されている。例えば、特許文献1には、特定のフルオロスルホニルイミド塩と電解液溶媒を含む電解液材料の製造方法が提案されている。この製造方法では、特定のフルオロスルホニルイミド塩と電解液溶媒を含む溶液を減圧及び/又は加熱して、フルオロスルホニルイミド塩の製造溶媒を揮発させるため、電解液材料の特性に影響を与える残留溶媒を削減した電解液材料が得られる。
国際公開第2016/052752号
 ところで、各電池メーカーをはじめとするユーザーでは、使用する電解液溶媒がそれぞれ異なる場合がある。そのため、非水電解液の製造時に用いた電解液溶媒を、抽出工程等の煩雑な工程を経ることなく、ユーザーが指定する別の電解液溶媒に置き換えることができれば、ユーザーに対して、非水電解液又はその材料の選択肢が広がるというメリットがある。
 本開示は斯かる点に鑑みてなされたものであり、その目的とするところは、非水電解液の製造時に用いた電解液溶媒を、抽出工程等の煩雑な工程を経ることなく、別の電解液溶媒に置き換えることが可能な非水電解液の製造方法を提供することにある。
 上記の目的を達成するために、この開示技術では、2種類の電解液溶媒を用い、予め第1の電解液溶媒を含有する溶液を調製した後に、第2の電解液溶媒に置き換える、つまり溶媒置換するようにした。本開示は、具体的には以下のとおりである。
 本開示の非水電解液の製造方法は、一般式(1):
LiN(RSO)(FSO) (Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)
で表されるスルホニルイミド化合物及び電解液溶媒(B)を含有する非水電解液を製造する方法であって、前記一般式(1)で表されるスルホニルイミド化合物及び前記電解液溶媒(B)とは異なる電解液溶媒(A)を含有するスルホニルイミド溶液を調製する調製工程と、前記調製工程で得られたスルホニルイミド溶液に前記電解液溶媒(B)を加えて前記電解液溶媒(A)を留去する分留工程とを含む。
 前記製造方法では、前記電解液溶媒(A)と前記電解液溶媒(B)との沸点差が60℃以上300℃以下であってもよい。前記電解液溶媒(A)は沸点60℃以上の溶媒であってもよい。前記電解液溶媒(B)は沸点200℃以上の溶媒であってもよい。前記電解液溶媒(A)及び前記電解液溶媒(B)はカーボネート系溶媒及びエステル系溶媒からなる群より選択される少なくとも1種であってもよい。前記電解液溶媒(A)は鎖状カーボネート系溶媒及び鎖状エステル系溶媒からなる群より選択される少なくとも1種であってもよい。前記電解液溶媒(B)は環状カーボネート系溶媒及び環状エステル系溶媒からなる群より選択される少なくとも1種であってもよい。前記非水電解液中の水分量が10000質量ppm以下であってもよい。前記調製工程において、前記一般式(1)で表されるスルホニルイミド化合物を含有するスルホニルイミド水溶液に前記電解液溶媒(A)を加えて脱水してもよい。前記非水電解液中の前記電解液溶媒(A)の残存量が、該非水電解液100質量%に対して20質量%以下であってもよい。
 本開示によれば、非水電解液の製造時に用いた電解液溶媒を、抽出工程等の煩雑な工程を経ることなく、別の電解液溶媒に置き換えることが可能な非水電解液又はその材料の製造方法を提供することができる。
 以下、本実施の形態を詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
 [非水電解液の製造方法]
 本実施形態に係る非水電解液の製造方法は、後述する特定のスルホニルイミド化合物及び電解液溶媒(A)を含有するスルホニルイミド溶液を用いて、電解液溶媒を置換することにより、当該スルホニルイミド化合物及び電解液溶媒(B)を含有する非水電解液を製造する方法である。電解液溶媒(B)は電解液溶媒(A)とは異なる。この製造方法は、スルホニルイミド溶液を調製する調製工程と、スルホニルイミド溶液に電解液溶媒(B)を加えて、電解液溶媒(A)から電解液溶媒(B)に置き換える分留工程とを少なくとも含む。
 <調製工程>
 (スルホニルイミド化合物)
 調製工程は、スルホニルイミド溶液を調製する工程である。スルホニルイミド溶液は、一般式(1):
 [化1]
 LiN(RSO)(FSO)   (1)
で表されるスルホニルイミド化合物(以下「スルホニルイミド化合物(1)」という、フッ素含有スルホニルイミド塩)を含有する。
 スルホニルイミド化合物(1)は、本実施形態に係る製造方法で得られる非水電解液の電解質である。一般式(1)中、Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。
 炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。炭素数1~6のアルキル基の中では、炭素数1~6の直鎖状又は分枝鎖状のアルキル基が好ましく、炭素数1~6の直鎖状のアルキル基がより好ましい。
 炭素数1~6のフルオロアルキル基としては、炭素数1~6のアルキル基が有する水素原子の一部又は全部がフッ素原子で置換されたものが挙げられる。炭素数1~6のフルオロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。特に、フルオロアルキル基は、パーフルオロアルキル基であってもよい。
 置換基Rとしては、フッ素原子及びパーフルオロアルキル基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等の炭素数1~6のパーフルオロアルキル基等)が好ましく、フッ素原子、トリフルオロメチル基及びペンタフルオロエチル基がより好ましく、フッ素原子及びトリフルオロメチル基がより一層好ましく、フッ素原子がさらに好ましい。
 スルホニルイミド化合物(1)の具体例としては、リチウムビス(フルオロスルホニル)イミド(LiN(FSO、LiFSI)、リチウム(フルオロスルホニル)(メチルスルホニル)イミド、リチウム(フルオロスルホニル)(エチルスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド、リチウム(フルオロスルホニル)(ヘプタフルオロプロピルスルホニル)イミド等が挙げられる。スルホニルイミド化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 スルホニルイミド化合物(1)の中では、電池性能を向上させる観点から、リチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、及びリチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミドが好ましく、リチウムビス(フルオロスルホニル)イミドがより好ましい。換言すると、スルホニルイミド溶液の中では、スルホニルイミド化合物(1)がLiN(FSOを含むものが好ましい。
 スルホニルイミド化合物(1)は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。スルホニルイミド化合物(1)を合成する方法は特に限定されず、従来公知の方法は全て採用することが出来る。例えば、国際公開第2011/149095号、特開2014-201453号公報、特開2010-168249号公報、特開2010-168308号公報、特開2010-189372号公報、国際公開第2011/065502号、特表平8-511274号公報、国際公開第2012/108284号、国際公開第2012/117961号、国際公開第2012/118063号、特開2010-280586号公報、特開2010-254543号公報、特開2007-182410号公報、国際公開第2010/010613号等に記載の方法が挙げられる。上記の従来公知の方法により、スルホニルイミド化合物(1)の粉体(固体)が得られる。
 スルホニルイミド化合物(1)は、本発明の目的を阻害しない範囲内で、スルホニルイミド化合物(1)の製造に用いた製造溶媒(上記の従来公知の製法で得られたスルホニルイミド化合物(1)に含まれている残留溶媒)を含んでいてもよい。残留溶媒とは、スルホニルイミド化合物(1)の製造反応に使用した溶媒や、精製工程に用いた溶媒などである。例えば、水;メタノール、エタノール、プロパノール、ブタノール等のアルコール系溶媒;蟻酸、酢酸等のカルボン酸系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン類;イソブチロニトリル、アセトニトリル、バレロニトリル、ベンゾニトリル等のニトリル系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテル等の脂肪族エーテル系溶媒;HF等のハロゲン系溶媒;ニトロメタン、ニトロベンゼン等のニトロ基含有溶媒;エチルホルムアミド、N-メチルピロリドン等の含窒素有機溶媒;ジメチルスルホキシド;グライム系溶媒、トルエン、o-キシレン、m-キシレン、p-キシレン、ベンゼン、エチルベンゼン、イソプロピルベンゼン、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、テトラリン、シメン、メチルエチルベンゼン、2-エチルトルエン、クロロベンゼン、ジクロロベンゼン等の芳香族炭化水素系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ウンデカン、トリデカン、デカリン、2,2,4,6,6-ペンタメチルヘプタン、イソパラフィン(例えば、「マルカゾールR」(丸善石油化学株式会社製の2,2,4,6,6-ペンタメチルヘプタン、2,2,4,4,6-ペンタメチルヘプタンの混合物)、「アイソパー(登録商標)G」(エクソンモービル製のC9-C11混合イソパラフィン)、「アイソパー(登録商標)E」(エクソンモービル製のC8-C10混合イソパラフィン)ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の鎖状脂肪族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、1,2-ジメチルシクロヘキサン、1,3-ジメチルシクロヘキサン、1,4-ジメチルシクロヘキサン、エチルシクロヘキサン、1,2,4-トリメチルシクロヘキサン、1,3,5-トリメチルシクロヘキサン、プロピルシクロヘキサン、ブチルシクロヘキサン、「スワクリーン150」(丸善石油化学株式会社製のC9アルキルシクロヘキサンの混合物)等の環状脂肪族炭化水素系溶媒;アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール等の芳香族エーテル系溶媒;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒;ジメトキシメタン、1,2-ジメトキシエタン等の鎖状エーテル系溶媒;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン等の環状エーテル系溶媒;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル系溶媒;スルホラン、3-メチルスルホラン等のスルホラン系溶媒;N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルオキサゾリジノン等が挙げられる。
 (電解液溶媒(A))
 スルホニルイミド溶液は、スルホニルイミド化合物(1)と共に、電解液溶媒(A)を含有する。電解液溶媒(A)は、電解質を溶解、分散できるものである。電解液溶媒(A)としては、誘電率が大きく、電解質塩の溶解性が高く、常圧における沸点が60℃以上であり、且つ、電気化学的安定範囲が広い非水系溶媒が好適である。より好ましくは、含有水分量が低い有機溶媒である。このような電解液溶媒(A)としては、ジメチルカーボネート(DMC、沸点:90℃)、エチルメチルカーボネート(EMC、沸点:107℃)、ジエチルカーボネート(DEC、沸点:125.8℃)等の鎖状炭酸エステル(カーボネート)系溶媒;プロピオン酸エチル(沸点:99℃)、プロピオン酸プロピル(沸点:124℃)等の鎖状エステル系溶媒等が挙げられる。これら溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。電解液溶媒(A)の中では、非水電解液中の電解液溶媒(A)の残存量を低減する観点から、鎖状カーボネート系溶媒及び鎖状エステル系溶媒からなる群より選択される少なくとも1種が好ましく、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピオン酸エチル及びプロピオン酸プロピルがより好ましく、ジメチルカーボネート、エチルメチルカーボネート及びプロピオン酸エチルがさらに好ましい。
 (スルホニルイミド溶液の調製方法)
 スルホニルイミド溶液を調製する方法は、特に限定されず、スルホニルイミド化合物(1)の粉体(固体)を電解液溶媒(A)に溶解する方法;電解液溶媒(A)中でスルホニルイミド化合物(1)を合成する方法(例えば、国際公開第2016/052752号(特許文献1)に記載の製造例1において、酢酸ブチルの代わりに電解液溶媒(A)を用いる方法);電解液溶媒(A)中でHFSI〔ビス(フルオロスルホニル)イミド〕とLiОHやLiCO等のリチウム塩とを反応させる方法等が挙げられる。
 また、スルホニルイミド溶液を調製する別の方法として、最初にスルホニルイミド化合物(1)を含有するスルホニルイミド水溶液を調製し、得られたスルホニルイミド水溶液を脱水して溶媒置換することにより、スルホニルイミド溶液を調製してもよい。
 スルホニルイミド水溶液を調製する方法は特に限定されず、スルホニルイミド化合物(1)の粉体(固体)を水に溶解する方法;水、LiOHやLiCO等のリチウム塩及びHFSI〔ビス(フルオロスルホニル)イミド〕を混合し反応させる方法(LiFSI水溶液の調製)等が挙げられる。
 スルホニルイミド水溶液におけるスルホニルイミド化合物(1)濃度は、脱水効率の観点から、好ましくは40質量%以上、より好ましくは45質量%以上、さらに好ましくは50質量%以上である。当該濃度の上限値は、脱水効率の観点から、好ましくは70質量%以下である。
 スルホニルイミド水溶液を脱水して溶媒置換する方法は特に限定されず、例えば、スルホニルイミド水溶液に電解液溶媒(A)を加えた溶液(脱水して電解液溶媒(A)に置換する操作を行うための溶液、以下「脱水用含水スルホニルイミド溶液」ともいう)を脱水する方法等が挙げられる。
 例えば、脱水用含水スルホニルイミド溶液に含まれる水と、添加した電解液溶媒(A)とを共沸留出した留出液のうち、除去する留出液と同じ量の電解液溶媒(A)を連続して添加してもよく;留出液を相分離して、水層を除去する一方、有機相を還流させてもよい。これら操作(脱水工程)により、脱水用含水スルホニルイミド溶液が脱水されて、添加した電解液溶媒(A)を含有するスルホニルイミド溶液が得られる。脱水工程においては、スルホニルイミド溶液は、スルホニルイミド水溶液中の水が、添加した電解液溶媒(A)に溶媒置換されて、水分量が十分に低減された溶液となる。スルホニルイミド溶液は、電解質としてスルホニルイミド化合物(1)と電解液溶媒(A)とを含有するため、非水電解液としてそのまま使用してもよく、非水電解液の原料(電解質溶液、電解液材料)として使用してもよい。
 電解液溶媒(A)の添加量(使用量)は、下限については特に制限はなく、スルホニルイミド化合物(1)中の残留溶媒の種類や量などにより適宜調整すればよい。例えば、スルホニルイミド化合物(1)100gに対して、好ましくは10000g以下、より好ましくは1000g以下、より一層好ましくは500g以下、さらに好ましくは200g以下、さらに一層好ましくは100g以下、特に好ましくは50g以下である。
 また、電解液溶媒(A)の添加量(使用量)は、例えば、スルホニルイミド化合物(1)100質量部に対して、好ましくは1~1000質量部、より好ましくは5~500質量部、より一層好ましくは10~300質量部、さらに好ましくは30~200質量部、さらに一層好ましくは50~100質量部である。
 脱水工程は、常圧下及び減圧下の何れでも実施できる(脱水工程中に常圧下と減圧下とを組み合わせて実施してもよい)が、熱によるスルホニルイミド化合物(1)の分解に起因するスルホニルイミド溶液の熱劣化を抑制する観点から、減圧下で実施するのが好ましい。減圧度はスルホニルイミド化合物(1)濃度、電解液溶媒(A)の種類や量等に応じて適宜調整すればよく特に限定はされないが、例えば、好ましくは200kPa以下、より好ましくは40kPa以下、さらに好ましくは15kPa以下、特に好ましくは10kPa以下である。
 脱水工程における加熱温度は、減圧度、電解液溶媒(A)の種類や量等に応じて適宜調整すればよく特に限定はされないが、熱によるスルホニルイミド化合物(1)の分解に起因するスルホニルイミド水溶液の熱劣化を抑制する観点から、比較的低い温度が好ましい。加熱温度は、例えば、好ましくは10~110℃、より好ましくは15~100℃である。
 脱水工程における処理時間は、減圧度、加熱温度、電解液溶媒(A)の種類や量等に応じて適宜調整すればよく特に限定はされないが、例えば、好ましくは0.1~24時間、より好ましくは0.5~12時間、さらに好ましくは1~8時間、特に好ましくは2~5時間である。
 脱水工程に用いる減圧及び/又は加熱が行える装置としては、溶液量、減圧度、加熱温度等に応じて適宜選択すればよい。例えば、槽型反応器、減圧可能な槽型反応器等が挙げられる。
 調製工程において、本発明の目的を阻害しない範囲内で、スルホニルイミド溶液及び/又はスルホニルイミド水溶液に炭酸塩を添加してもよい。スルホニルイミド溶液及び/又はスルホニルイミド水溶液を調製する際に、溶液中の水分、溶解時の発熱等により、若干のフルオロスルホン酸(HFSO)が発生する。また、スルホニルイミド化合物(1)の製造方法によっては、得られるスルホニルイミド化合物(1)自体にHFSOが含まれることもある。HFSOは、スルホニルイミド化合物(1)の分解に起因するスルホニルイミド水溶液の劣化の原因となるため、スルホニルイミド溶液及び/又はスルホニルイミド水溶液中のHFSOを炭酸塩により捕捉(トラップ)することが望ましい。
 炭酸塩としては、炭酸リチウム(LiCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、炭酸ルビジウム(RbCO)、炭酸セシウム(CsCO)等のアルカリ金属炭酸塩;炭酸ベリリウム(BeCO)、炭酸マグネシウム(MgCO)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)等のアルカリ土類金属炭酸塩;炭酸アンモニウム(NHCO);炭酸銅(II)(CuCO);炭酸鉄(II)(FeCO);炭酸銀(I)(AgCO)等が挙げられる。炭酸塩は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 炭酸塩の中では、HFSOを確実にトラップする観点から、アルカリ金属炭酸塩及びアルカリ土類金属炭酸塩が好ましく、アルカリ金属炭酸塩がより好ましく、LiCO、NaCO、KCO、及びCsCOがさらに好ましく、LiCOがさらに一層好ましい。
 スルホニルイミド水溶液に添加する炭酸塩の添加量は、スルホニルイミド化合物(1)濃度に応じて適宜決定すればよいが、HFSOを確実にトラップする観点から、スルホニルイミド水溶液100質量%中、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上である。当該添加量の上限値は、スルホニルイミド水溶液中に残る炭酸塩の不溶粒子の量を低減する観点から、スルホニルイミド水溶液100質量%中、好ましくは1質量%以下、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下である。
 (スルホニルイミド溶液)
 スルホニルイミド溶液におけるスルホニルイミド化合物(1)の濃度は、保存安定性を向上させる観点から、好ましくは30質量%以上、より好ましくは35質量%以上、さらに好ましくは40質量%以上である。また、当該濃度は、電解液粘度の上昇による電池性能の低下を抑制する観点から、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。
 スルホニルイミド溶液中の水分量(水分濃度)は、水によるスルホニルイミド化合物(1)の分解を抑制する観点から、好ましくは10000質量ppm以下、より好ましくは1000質量ppm以下、さらに好ましくは100質量ppm以下、さらに一層好ましくは50質量ppm以下である。当該水分量は、低いほど好ましく、検出限界以下や実質的に含まれていない(0質量ppm)でもよい。水分量は、後述の実施例で記載の方法、例えばカールフィッシャー水分測定装置等を用いて測定できる。
 <分留工程>
 分留工程は、調製工程で得られたスルホニルイミド溶液に電解液溶媒(B)を加えた混合物において、電解液溶媒(A)と電解液溶媒(B)とを分留する工程である。この分留工程では、スルホニルイミド溶液と電解液溶媒(B)とを含む混合物、つまりスルホニルイミド化合物(1)と、沸点の異なる2種類の電解液溶媒(A)及び電解液溶媒(B)とを含む液体の混合物を加熱し、沸点の低い電解液溶媒(A)を気化させて分離(除去)する分別蒸留操作を行う。この操作により、スルホニルイミド溶液中の電解液溶媒(A)が、当該溶液に添加した電解液溶媒(B)に溶媒置換される。その結果、電解液溶媒(A)量が低減されて、電解液溶媒(A)よりも電解液溶媒(B)を多く含有する非水電解液が得られる。
 (電解液溶媒(B))
 電解液溶媒(B)は、電解質を溶解、分散できるものである。電解液溶媒(B)としては、誘電率が大きく、電解質塩の溶解性が高く、常圧における沸点が60℃以上であり、且つ、電気化学的安定範囲が広い非水系溶媒が好適である。より好ましくは、含有水分量が低い有機溶媒である。
 また、電解液溶媒(B)は、電解液溶媒(A)とは沸点の異なる溶媒である。具体的には、電解液溶媒(B)は電解液溶媒(A)よりも沸点が高く、両者の沸点差が大きい組み合わせが好ましい。両者の沸点差が大きいほど、分留効率が高くなり、混合物中の電解液溶媒(A)が低減され、所望の電解液溶媒(B)を含有する非水電解液が得られる。電解液溶媒(A)と電解液溶媒(B)との沸点差は、非水電解液中の電解液溶媒(A)の残存量を低減する観点から、好ましくは60℃以上、より好ましくは80℃以上、より一層好ましくは100℃以上、さらに好ましくは130℃以上である。また当該沸点差の上限値は、好ましくは300℃以下、より好ましくは200℃以下、より一層好ましくは190℃以下、さらに好ましくは180℃以下、さらに一層好ましくは170℃以下、特に好ましくは160℃以下である。
 このような電解液溶媒(B)としては、常圧における沸点が200℃以上である溶媒が挙げられる。具体例としては、エチレンカーボネート(EC、沸点:244℃)、プロピレンカーボネート(PC、沸点:242℃)、2,3-ジメチルエチレンカーボネート(沸点:313℃)、炭酸1,2-ブチレンカーボネート(沸点:250℃)、エリスリタンカーボネート(沸点:345℃)等の飽和環状炭酸エステル(カーボネート)系溶媒;γ-ブチロラクトン(沸点:204℃)等の環状エステル系溶媒等が挙げられる。これら溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。電解液溶媒(B)の中では、非水電解液中の電解液溶媒(A)の残存量を低減する観点から、環状カーボネート系溶媒及び環状エステル系溶媒からなる群より選択される少なくとも1種が好ましく、エチレンカーボネート、プロピレンカーボネート及びγ-ブチロラクトンが好ましい。
 このように、電解液溶媒(A)及び電解液溶媒(B)は、カーボネート系溶媒及びエステル系溶媒からなる群より選択される少なくとも1種であることが好ましく、ともにカーボネート系溶媒又はエステル系溶媒であることが好ましい。ともにカーボネート系溶媒の場合、より好ましくは、電解液溶媒(A)は鎖状カーボネート系溶媒であり、電解液溶媒(B)は環状カーボネート系溶媒である。ともにエステル系溶媒の場合、より好ましくは、電解液溶媒(A)は鎖状エステル系溶媒であり、電解液溶媒(B)は環状エステル系溶媒である。スルホニルイミド化合物(1)の製造時に環状カーボネート系溶媒又は環状エステル系溶媒を用いた場合、製造時にスルホニルイミド化合物(1)に混入する水を低減させることが比較的困難である。そのため、スルホニルイミド化合物(1)の製造時に鎖状カーボネート系溶媒又は鎖状エステル系溶媒を用いてスルホニルイミド化合物(1)中の水分量を十分に低減させた後に、鎖状カーボネート系溶媒又は鎖状エステル系溶媒を環状カーボネート系溶媒又は環状エステル系溶媒に置き換えることで、低含水率の非水電解液が得られる。なお、製造時にスルホニルイミド化合物(1)に混入する水としては、例えば、LiOHやLiCO等のリチウム塩とHFSIとの中和反応で発生する水、反応溶媒で用いた水、抽出工程による水等が挙げられる。
 電解液溶媒(B)の添加量(使用量)は、下限については特に制限はなく、電解液溶媒(A)種類や量などにより適宜調整すればよい。例えば、スルホニルイミド化合物(1)100gに対して、好ましくは10000g以下、より好ましくは1000g以下、より一層好ましくは500g以下、さらに好ましくは200g以下、さらに一層好ましくは100g以下、特に好ましくは50g以下である。
 また、電解液溶媒(B)の添加量(使用量)は、例えば、スルホニルイミド化合物(1)100質量部に対して、好ましくは1~1000質量部、より好ましくは5~500質量部、より一層好ましくは10~300質量部、さらに好ましくは30~200質量部、さらに一層好ましくは50~100質量部である。
 また、電解液溶媒(B)の添加量(使用量)は、例えば、スルホニルイミド化合物(1)及び電解液溶媒(A)を含有するスルホニルイミド溶液100gに対して、好ましくは10000g以下、より好ましくは1000g以下、より一層好ましくは500g以下、さらに好ましくは200g以下、さらに一層好ましくは100g以下である。
 (分留方法)
 スルホニルイミド溶液に電解液溶媒(B)を加えた液体の混合物から電解液溶媒(A)を留去する(電解液溶媒(A)と電解液溶媒(B)とを分留する)方法は特に限定されず、従来公知の方法を採用できる。例えば、液体の混合物を減圧及び/又は加熱する方法等が挙げられる。
 分留工程は、常圧下及び減圧下の何れでも実施できる(分留工程中に常圧下と減圧下とを組み合わせて実施してもよい)が、熱によるスルホニルイミド化合物(1)の分解に起因するスルホニルイミド水溶液の熱劣化を抑制する観点から、減圧下で実施するのが好ましい。減圧度はスルホニルイミド化合物(1)濃度、電解液溶媒(A)及び電解液溶媒(B)の種類や量等に応じて適宜調整すればよく特に限定はされないが、例えば、好ましくは200kPa以下、より好ましくは40kPa以下、より一層好ましくは15kPa以下、さらに好ましくは10kPa以下、さらに一層好ましくは5kPa以下である。なお、減圧度は、分留工程中、一定(同じ)であってもよく、途中で変更してもよい。例えば、第1の減圧度で電解液溶媒(A)を留去した後、第1の減圧度よりも低い第2の減圧度に下げてさらに電解液溶媒(A)を留去してもよい。
 分留工程における加熱温度は、減圧度、電解液溶媒(A)及び電解液溶媒(B)の種類や量等に応じて適宜調整すればよく特に限定はされないが、熱によるスルホニルイミド化合物(1)の分解に起因するスルホニルイミド水溶液の熱劣化を抑制する観点から、比較的低い温度が好ましい。加熱温度は、例えば、好ましくは10~110℃、より好ましくは15~100℃、さらに好ましくは20~80℃である。
 分留工程における処理時間は、減圧度、加熱温度、電解液溶媒(A)及び電解液溶媒(B)の種類や量等に応じて適宜調整すればよく特に限定はされないが、例えば、好ましくは0.1~24時間、より好ましくは0.2~12時間、さらに好ましくは0.5~8時間、特に好ましくは0.5~5時間である。
 分留工程に用いる減圧及び/又は加熱が行える装置としては、溶液量、減圧度、加熱温度等に応じて適宜選択すればよい。例えば、槽型反応器、減圧可能な槽型反応器等が挙げられる。
 <その他の工程>
 非水電解液の製造方法は、本発明の目的を阻害しない範囲内で、その他の工程を含んでいてもよい。その他の工程としては、ろ過、カラム精製、活性炭処理、モレキュラーシーブ処理等が挙げられる。
 以上の工程(操作)を経て、スルホニルイミド化合物(1)及び電解液溶媒(A)を含有するスルホニルイミド溶液から、溶媒置換により、スルホニルイミド化合物(1)及び電解液溶媒(B)を含有する非水電解液が得られる。この非水電解液は、従来公知の方法で得られる非水電解液よりも含水率が低い。
 スルホニルイミド溶液を、スルホニルイミド化合物(1)を含有するスルホニルイミド水溶液を用いて調製する場合、当該水溶液に電解液溶媒(A)を加えて脱水することで、含水率がより一層低い非水電解液が得られる。つまり、非水電解液の製造方法は、スルホニルイミド溶液を調製する調製工程(第2の調製工程)の前に、スルホニルイミド水溶液を調製する調製工程(第1の調製工程)と、第1の調製工程で得られたスルホニルイミド水溶液に電解液溶媒(A)を加えて脱水して電解液溶媒(A)に置換する脱水工程とをさらに含んでいてもよい。
 [非水電解液]
 (電解質)
 電解質(非水電解液)は、スルホニルイミド化合物(1)を含んでいればよいが、他の電解質(スルホニルイミド化合物(1)以外の電解質)を含んでいてもよい。他の電解質は、非水電解液に混合してもよく、非水電解液の調製工程においてスルホニルイミド溶液及び/又はスルホニルイミド水溶液に混合してもよい。他の電解質としては、イミド塩、非イミド塩等が挙げられる。
 イミド塩としては、スルホニルイミド化合物(1)とは異なる他のフッ素含有スルホニルイミド塩(以下「他のスルホニルイミド化合物」という)等が挙げられる。他のスルホニルイミド化合物としては、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(CFSO、以下「LiTFSI」ともいう);リチウムビス(ペンタフルオロエチルスルホニル)イミド;リチウムビス(ヘプタフルオロプロピルスルホニル)イミド;スルホニルイミド化合物(1)として列挙したフッ素含有スルホニルイミドの非リチウム塩(例えば、スルホニルイミド化合物(1)において、リチウム(イオン)をリチウムイオン以外のカチオンに置換した塩)等が挙げられる。リチウムイオン以外のカチオンに置換した塩としては、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩等のアルカリ金属塩;ベリリウム塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;アルミニウム塩;アンモニウム塩;ホスホニウム塩等が挙げられる。他のスルホニルイミド化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、他のスルホニルイミド化合物は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 非イミド塩としては、非イミド系アニオンとカチオン(リチウムイオン及び前記例示のカチオン)との塩が挙げられる。非イミド塩としては、LiPF、LiPF(CF、LiPF(C、LiPF(C、LiPF(C等のフルオロリン酸化合物;LiBF、LiBF(CF、LiBF(C、LiBF(C等のフルオロホウ酸化合物、六フッ化砒酸リチウム(LiAsF)、LiSbF、LiClO、LiSCN、LiAlF、CFSOLi、LiC[(CFSO]、LiN(NO)、LiN[(CN)等のリチウム塩;非リチウム塩(例えば、これらのリチウム塩において、リチウム(イオン)を前記例示のカチオンに置換した塩(例えば、NaBF、NaPF、NaPF(CF等)等が挙げられる。非イミド塩は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、非イミド塩は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 なお、これらの電解質(スルホニルイミド化合物(1)、他の電解質等)は、非水電解液中において、イオンの形態で存在(含有)していてもよい。
 非水電解液におけるスルホニルイミド化合物(1)の濃度(含有量、2種類以上を併用する場合は含有量の合計、以下同様。)は、電池性能を向上させる観点から、非水電解液全体に対して(非水電解液に含まれる成分の総量100質量%に対して)、好ましくは30質量%以上である。また、当該濃度は、電解液粘度の上昇による電池性能の低下を抑制する観点から、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。
 非水電解液におけるスルホニルイミド化合物(1)の含有量は、電池性能を向上させる観点から、非水電解液に含まれる電解質塩の合計100mol%中、好ましくは10mol%以上、より好ましくは15mol%以上である。当該含有量の上限値は、好ましくは50mol%以下である。
 (他の電解液溶媒)
 非水電解液は、本発明の目的を阻害しない範囲内で、他の電解液溶媒(電解液溶媒(A)及び電解液溶媒(B)以外の電解液溶媒)を含有していてもよい。他の電解液溶媒は、非水電解液に混合してもよく、非水電解液の調製工程においてスルホニルイミド溶液及び/又はスルホニルイミド水溶液に混合してもよい。他の電解液溶媒は、電解質を溶解、分散できるものであれば特に限定されない。他の電解液溶媒としては、誘電率が大きく、電解質塩の溶解性が高く、常圧における沸点が60℃以上であり、且つ、電気化学的安定範囲が広い非水系溶媒が好適である。より好ましくは、含有水分量が低い有機溶媒である。このような有機溶媒としては、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、2,6-ジメチルテトラヒドロフラン、テトラヒドロピラン、クラウンエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエ-テル、1,4-ジオキサン、1,3-ジオキソラン等のエーテル系溶媒;炭酸ビニレン、メチルビニレンカーボネート、エチルビニレンカーボネート、2-ビニル炭酸エチレン及びフェニルエチレンカーボネート等の不飽和結合を有する環状炭酸エステル系溶媒;フルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及びトリフルオロプロピレンカーボネート等のフッ素含有環状炭酸エステル系溶媒;安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒;リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル系溶媒;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2-メチルグルタロニトリル、バレロニトリル、ブチロニトリル、イソブチロニトリル等のニトリル系溶媒;ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等の硫黄化合物系溶媒;ベンゾニトリル、トルニトリル等の芳香族ニトリル系溶媒;ニトロメタン、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、3-メチル-2-オキサゾリジノン等;酢酸エチル、酢酸ブチル、プロピオン酸プロピル等の鎖状エステル系溶媒等が挙げられる。これら溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 (添加剤)
 非水電解液は、リチウムイオン二次電池の各種特性の向上を目的とする添加剤を含んでいてもよい。添加剤は、非水電解液に添加してもよく、非水電解液の調製工程においてスルホニルイミド溶液及び/又はスルホニルイミド水溶液に添加してもよい。添加剤としては、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィド、トリメチレングリコール硫酸エステル等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の飽和炭化水素化合物;ビニレンカーボネート、フルオロエチレンカーボネート(FEC)、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;スルファミン酸(アミド硫酸、HNSO);スルファミン酸塩(リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩;アンモニウム塩;グアニジン塩等);フルオロスルホン酸リチウム(LiFSO)、フルオロスルホン酸ナトリウム(NaFSO)、フルオロスルホン酸カリウム(KFSO)、フルオロスルホン酸マグネシウム(Mg(FSO)等のフルオロスルホン酸化合物;モノフルオロリン酸リチウム(LiPOF)、ジフルオロリン酸リチウム(LiPO)等のフルオロリン酸化合物;リチウムビス(オキサラト)ボレート(LiBOB)、リチウムジフルオロオキサラトボレート(LiDFOB)、リチウムジフルオロオキサラトホスファナイト(LIDFOP)、リチウムテトラフルオロオキサラトホスフェート(LITFOP)、リチウムジフルオロビス(オキサラト)ホスフェート(LiDFOP)、リチウムトリス(オキサラト)ホスフェート等のシュウ酸骨格を有するリチウム塩等のフルオロオキサラト化合物等が挙げられる。これら添加剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 (水分量)
 非水電解液中の水分量(水分濃度、含水率)は、水によるスルホニルイミド化合物(1)の分解を抑制する観点から、好ましくは10000質量ppm(1質量%)以下、より好ましくは1000質量ppm以下、さらに好ましくは100質量ppm以下、さらに一層好ましくは50質量ppm以下である。当該水分量は、低いほど好ましく、検出限界以下でもよく、水を実質的に含んでいなくてもよい(0質量ppm)。水分量は、後述の実施例で記載の方法、例えばカールフィッシャー水分測定装置等を用いて測定できる。
 なお、非水電解液は、例えば、0.1質量ppm以上、0.3質量ppm以上、0.5質量ppm以上、0.7質量ppm以上、0.8質量ppm以上、1質量ppm以上、1.5質量ppm以上、2質量ppm以上、3質量ppm以上、5質量ppm以上、7質量ppm以上、10質量ppm以上の濃度で水分を含んでいてもよい。
 (電解液溶媒(A)の残存量)
 非水電解液に含まれる電解液溶媒(A)の残存量は、電解液溶媒(A)が低減され、所望の電解液溶媒(B)を含有する非水電解液を得る観点から、非水電解液100mol%に対して、好ましくは25mol%以下、より好ましくは20mol%以下である。
 また、非水電解液に含まれる電解液溶媒(A)の残存量は、電解液溶媒(A)が低減され、所望の電解液溶媒(B)を含有する非水電解液を得る観点から、非水電解液全体に対して(非水電解液に含まれる成分の総量100質量%に対して)、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。
 以上のように構成される非水電解液は、例えば、電池(充放電機構を有する電池)、蓄電(電気化学)デバイス(又はこれらを構成するイオン伝導体の材料)等に用いられる。具体的には、電解液は、例えば、一次電池、二次電池(例えば、リチウム(イオン)二次電池)、燃料電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子等を構成する電解液として使用し得る。以下、電池(特に二次電池)を例に挙げて説明する。
 <効果>
 本実施形態に係る非水電解液の製造方法によれば、以下の効果を得ることができる。
・非水電解液の製造方法は、スルホニルイミド化合物(1)及び電解液溶媒(A)を含有するスルホニルイミド溶液を調製し、当該溶液に電解液溶媒(B)を加え、得られた液体の混合物を分留して電解液溶媒(A)を留去する。この一連の工程(操作)により、抽出工程等の煩雑な工程を経ることなく、電解液溶媒(A)を所望の電解液溶媒(B)に置き換えることができる。
・非水電解液の製造方法は、電解液溶媒(A)として鎖状カーボネート系溶媒及び鎖状エステル系溶媒からなる群より選択される少なくとも1種を用い、電解液溶媒(B)として環状カーボネート系溶媒及び環状エステル系溶媒からなる群より選択される少なくとも1種を用いた場合には、低含水率の非水電解液が得られる。
・非水電解液の製造方法は、最初に、スルホニルイミド化合物(1)を含有するスルホニルイミド水溶液を調製し、当該水溶液に電解液溶媒(A)を加えて脱水するという一連の工程(操作)をさらに含む場合、得られるスルホニルイミド溶液の含水率がより一層低くなる。その結果、含水率がより一層低い非水電解液が得られる。
 以下に、本開示を実施例に基づいて説明する。なお、本開示は、以下の実施例に限定されるものではなく、以下の実施例を本開示の趣旨に基づいて変形、変更することが可能であり、それらを本開示の範囲から除外するものではない。
 《合成例1(LiFSI/DMC溶液の合成)》
 露点-40℃以下のドライルームにて、真空ポンプに繋がる冷却管、内温を測定する温度計、及び溶媒投入口を備えた500mLの三口セパラブルフラスコにスターラーチップを入れ、そこにリチウムビス(フルオロスルホニル)イミド(以下「LiFSI」という、Mw:187.06、株式会社日本触媒製)を50質量%含むLiFSI水溶液(LiFSI/HO、スルホニルイミド水溶液)301.01g、ジメチルカーボネート(DMC、Mw:90.08)23.13gを投入した。
 続いて、真空ポンプを使用して、前記フラスコ内を10kPaまで減圧した後、フラスコをオイルバスに浸し、徐々に加温した(オイルバスバス温度:~98℃)。溶媒の留出が始まると同時に、液面が常に一定になるように溶媒投入口からDMCを連続的に追加した。DMCの原単位が52.5(LiFSI重量あたり)となったところで滴下を停止して解圧した。解圧後のLiFSI/DMC溶液(スルホニルイミド溶液)中の水分量(水分濃度)を以下の方法により計測したところ、13.3質量ppmであった。このLiFSI/DMC溶液を孔径3μmのPTFE(ポリテトラフルオロエチレン)メンブレンフィルターを用いて加圧ろ過することで濁度成分を除去した。
 [水分測定]
 LiFSI/DMC溶液における水分量(水分濃度)は、カールフィッシャー水分測定装置AQ-2000(平沼産業株式会社製)を用い、発生液としてアクアライトRS-A(平沼産業株式会社製)、対極液としてアクアライトCN(平沼産業株式会社製)を用いて測定した。
 《合成例2(LiFSI/EMC溶液の合成)》
 連続的に追加する溶媒をエチルメチルカーボネート(EMC、Mw:104.11)に変更したこと以外は合成例1と同様の操作を行うことでLiFSI/EMC溶液(スルホニルイミド溶液)を調製した。得られたLiFSI/EMC溶液中の水分量(水分濃度)を前記の方法により計測したところ、15.4質量ppmであった。
 《合成例3(LiFSI/EtCOOEt溶液の合成)》
 連続的に追加する溶媒をプロピオン酸エチル(EtCOOEt、Mw:102.13)に変更したこと以外は合成例1と同様の操作を行うことでLiFSI/EtCOOEt溶液(スルホニルイミド溶液)を調製した。得られたLiFSI/EtCOOEt溶液中の水分量(水分濃度)を前記の方法により計測したところ、15.7質量ppmであった。
 <実施例1>
 合成例1で得られたLiFSI/DMC溶液25gに対してEC(エチレンカーボネート、Mw:88.06)を15g添加し、均一になるまで撹拌した。その後、60℃に加熱したロータリーエバポレーター(「REN-1000」、IWAKI社製)を使用して、5kPaになるまで減圧して30分間溶媒を留去した。その後、減圧度を2.5kPaにまでさらに下げて30分間溶媒を留去した。以上の操作により、LiFSI/EC溶液(非水電解液)を得た。LiFSI/EC溶液の溶媒組成をH-NMRで分析し、水分量を前記の方法により計測した。
 [H-NMR]
 H-NMRの測定は、Varian社製の「Unity Plus-400」を使用して行った(内部標準物質:トリフルオロトルエン、積算回数:64回)。
 <実施例2>
 ECの代わりにPC(プロピレンカーボネート、Mw:102.09)を用いたこと以外は実施例1と同様にしてLiFSI/PC溶液(非水電解液)を得て、その溶媒組成をH-NMRで分析し、水分量を前記の方法により計測した。
 <実施例3>
 合成例1で得られたLiFSI/DMC溶液の代わりに合成例2で得られたLiFSI/EMC溶液を用いたこと以外は実施例1と同様にしてLiFSI/EC(非水電解液)溶液を得て、その溶媒組成をH-NMRで分析し、水分量を前記の方法により計測した。
 <実施例4>
 ECの代わりにPCを用いたこと以外は実施例3と同様にしてLiFSI/PC溶液(非水電解液)を得て、その溶媒組成をH-NMRで分析し、水分量を前記の方法により計測した。
 <実施例5>
 合成例3で得られたLiFSI/EtCOOEt溶液25gに対してGBL(γ-ブチロラクトン、Mw:86.09)を15g添加し、均一になるまで撹拌した。その後、60℃に加熱したロータリーエバポレーター(「REN-1000」、IWAKI社製)を使用して、5kPaになるまで減圧して30分間溶媒を留去した。その後、減圧度を2.5kPaにまでさらに下げて30分間溶媒を留去した。以上の操作により、LiFSI/GBL溶液(非水電解液)を得た。LiFSI/GBL溶液の溶媒組成をH-NMRで分析し、水分量を前記の方法により計測した。
 <比較例1>
 100mLのナスフラスコにLiFSI(株式会社日本触媒製)を47質量%含むLiFSI水溶液(LiFSI/HO)19.83gとEC6.76gを投入し、均一になるまで撹拌した。その後、60℃に加熱したロータリーエバポレーター(「REN-1000」、IWAKI社製)を使用して、前記フラスコ内を5kPaになるまで減圧して30分間溶媒を留去した。留出が止まったところで解圧し、EC9.29g追加して再度同じ条件で留去を実施した。留出が止まったところで解圧したところ、LiFSIを35質量%含むLiFSI/EC溶液が得られた。このLiFSI/EC溶液中の溶媒組成をH-NMRで分析し、水分量(水分濃度)を前記の方法により計測した。
 前記で得られた各LiFSI溶液の電解質量、電解液溶媒組成、水分量を分析した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上説明したように、本開示は、リチウムイオン二次電池等に用いられる非水電解液に適している。
 

Claims (10)

  1.  一般式(1)で表されるスルホニルイミド化合物及び電解液溶媒(B)を含有する非水電解液を製造する方法であって、
     前記一般式(1)で表されるスルホニルイミド化合物及び前記電解液溶媒(B)とは異なる電解液溶媒(A)を含有するスルホニルイミド溶液を調製する調製工程と、
     前記調製工程で得られたスルホニルイミド溶液に前記電解液溶媒(B)を加えて前記電解液溶媒(A)を留去する分留工程とを含む、非水電解液の製造方法。
    LiN(RSO)(FSO) (Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)
  2.  前記電解液溶媒(A)と前記電解液溶媒(B)との沸点差が60℃以上300℃以下である、請求項1に記載の非水電解液の製造方法。
  3.  前記電解液溶媒(A)は沸点60℃以上の溶媒である、請求項2に記載の非水電解液の製造方法。
  4.  前記電解液溶媒(B)は沸点200℃以上の溶媒である、請求項2又は3に記載の非水電解液の製造方法。
  5.  前記電解液溶媒(A)及び前記電解液溶媒(B)はカーボネート系溶媒及びエステル系溶媒からなる群より選択される少なくとも1種である、請求項1~4のいずれか一項に記載の非水電解液の製造方法。
  6.  前記電解液溶媒(A)は鎖状カーボネート系溶媒及び鎖状エステル系溶媒からなる群より選択される少なくとも1種である、請求項5に記載の非水電解液の製造方法。
  7.  前記電解液溶媒(B)は環状カーボネート系溶媒及び環状エステル系溶媒からなる群より選択される少なくとも1種である、請求項5又は6に記載の非水電解液の製造方法。
  8.  前記非水電解液中の水分量が10000質量ppm以下である、請求項1~7のいずれか一項に記載の非水電解液の製造方法。
  9.  前記調製工程において、前記一般式(1)で表されるスルホニルイミド化合物を含有するスルホニルイミド水溶液に前記電解液溶媒(A)を加えて脱水する、請求項1~8のいずれか一項に記載の非水電解液の製造方法。
  10.  前記非水電解液中の前記電解液溶媒(A)の残存量が、該非水電解液100質量%に対して20質量%以下である、請求項1~9のいずれか一項に記載の非水電解液の製造方法。
     
PCT/JP2022/022741 2021-06-30 2022-06-06 非水電解液の製造方法 WO2023276561A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247002947A KR20240026207A (ko) 2021-06-30 2022-06-06 비수전해액의 제조방법
EP22832719.3A EP4350836A4 (en) 2021-06-30 2022-06-06 PROCESS FOR PRODUCING A NON-AQUEOUS ELECTROLYTIC SOLUTION
JP2023531735A JPWO2023276561A1 (ja) 2021-06-30 2022-06-06
CN202280041755.9A CN117480658A (zh) 2021-06-30 2022-06-06 非水电解液的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109036 2021-06-30
JP2021109036 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276561A1 true WO2023276561A1 (ja) 2023-01-05

Family

ID=84691339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022741 WO2023276561A1 (ja) 2021-06-30 2022-06-06 非水電解液の製造方法

Country Status (5)

Country Link
EP (1) EP4350836A4 (ja)
JP (1) JPWO2023276561A1 (ja)
KR (1) KR20240026207A (ja)
CN (1) CN117480658A (ja)
WO (1) WO2023276561A1 (ja)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2007182410A (ja) 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
WO2010010613A1 (ja) 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
JP2010168308A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010168249A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010189372A (ja) 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010254543A (ja) 2009-03-31 2010-11-11 Mitsubishi Materials Corp ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
JP2010280586A (ja) 2009-06-03 2010-12-16 Central Glass Co Ltd イミド酸塩の製造方法
WO2011065502A1 (ja) 2009-11-27 2011-06-03 株式会社日本触媒 フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
WO2012108284A1 (ja) 2011-02-10 2012-08-16 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
WO2012118063A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法
WO2012117961A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
JP2014201453A (ja) 2013-04-01 2014-10-27 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩の製造方法
WO2016052752A1 (ja) 2014-10-03 2016-04-07 株式会社日本触媒 電解液材料の製造方法
JP2018055882A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法、及びビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料
JP2019204725A (ja) * 2018-05-25 2019-11-28 カーリットホールディングス株式会社 リチウム二次電池
WO2020241161A1 (ja) * 2019-05-31 2020-12-03 株式会社日本触媒 電解質組成物、溶媒組成物、非水電解液及びその用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967295B2 (en) * 2018-11-16 2021-04-06 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (LiFSI) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2007182410A (ja) 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
JP2010189372A (ja) 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2010010613A1 (ja) 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
JP2010168308A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010168249A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010254543A (ja) 2009-03-31 2010-11-11 Mitsubishi Materials Corp ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
JP2010280586A (ja) 2009-06-03 2010-12-16 Central Glass Co Ltd イミド酸塩の製造方法
WO2011065502A1 (ja) 2009-11-27 2011-06-03 株式会社日本触媒 フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
WO2012108284A1 (ja) 2011-02-10 2012-08-16 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
WO2012118063A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法
WO2012117961A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
JP2014201453A (ja) 2013-04-01 2014-10-27 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩の製造方法
WO2016052752A1 (ja) 2014-10-03 2016-04-07 株式会社日本触媒 電解液材料の製造方法
JP2018055882A (ja) * 2016-09-27 2018-04-05 株式会社日本触媒 ビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料の製造方法、及びビス(フルオロスルホニル)イミドのアルカリ金属塩と有機溶媒とを含む電解液材料
JP2019204725A (ja) * 2018-05-25 2019-11-28 カーリットホールディングス株式会社 リチウム二次電池
WO2020241161A1 (ja) * 2019-05-31 2020-12-03 株式会社日本触媒 電解質組成物、溶媒組成物、非水電解液及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4350836A4

Also Published As

Publication number Publication date
EP4350836A4 (en) 2024-10-09
EP4350836A1 (en) 2024-04-10
KR20240026207A (ko) 2024-02-27
JPWO2023276561A1 (ja) 2023-01-05
CN117480658A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
EP3466872B1 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt and method for producing non-aqueous electrolytic solution
US9985317B2 (en) Alkali metal salt of fluorosulfonyl imide, and production method therefor
KR102428546B1 (ko) 헤테로고리형 이온성 액체
JP7209688B2 (ja) 変性トリアジン機能性化合物
JP2014007161A (ja) 非水電解液
JP6267038B2 (ja) 非水電解液及びこれを含む蓄電デバイス
JP6449169B2 (ja) 電解質中の成分としての窒素含有複素環式アニオンの塩
JP2014072102A (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2023276561A1 (ja) 非水電解液の製造方法
WO2023276568A1 (ja) スルホニルイミド水溶液の精製方法、非水電解液の製造方法及び電解質組成物の製造方法
WO2023276812A1 (ja) 組成物の製造方法及び非水電解液
JP2012216387A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216391A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041755.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022832719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023531735

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022832719

Country of ref document: EP

Effective date: 20231214

ENP Entry into the national phase

Ref document number: 20247002947

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002947

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE