WO2020241161A1 - 電解質組成物、溶媒組成物、非水電解液及びその用途 - Google Patents

電解質組成物、溶媒組成物、非水電解液及びその用途 Download PDF

Info

Publication number
WO2020241161A1
WO2020241161A1 PCT/JP2020/018124 JP2020018124W WO2020241161A1 WO 2020241161 A1 WO2020241161 A1 WO 2020241161A1 JP 2020018124 W JP2020018124 W JP 2020018124W WO 2020241161 A1 WO2020241161 A1 WO 2020241161A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
solvent composition
electrolyte
mass ppm
salt
Prior art date
Application number
PCT/JP2020/018124
Other languages
English (en)
French (fr)
Inventor
弘行 水野
幸宏 深田
遼 渡部
荒川 元博
貴之 小畠
祐介 小山
知恵 小野田
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2021522730A priority Critical patent/JP7314264B2/ja
Priority to EP20815667.9A priority patent/EP3979383A4/en
Priority to KR1020217042177A priority patent/KR20220012911A/ko
Priority to US17/615,477 priority patent/US20220238920A1/en
Priority to CN202080036925.5A priority patent/CN113841280A/zh
Publication of WO2020241161A1 publication Critical patent/WO2020241161A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • C01B21/096Amidosulfonic acid; Salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a novel electrolyte composition, a solvent composition, a non-aqueous electrolyte solution, its use, and the like.
  • electrolyte constituting the electrolytic solution, depending on the type of battery to be applied and the like.
  • various lithium salts are known as electrolytes used in lithium ion batteries and the like (Patent Document 1).
  • An object of the present invention is a novel electrolyte composition, a solvent composition (composition for an electrolytic solution, etc.), a non-aqueous electrolyte solution, and as its use, a battery, a storage container for the composition, etc., the composition, etc. To provide storage or transportation methods, etc.
  • the present inventor unexpectedly has a resistance (for example, a lithium secondary battery) in a battery (for example, a lithium secondary battery). It was found that the resistance derived from the positive electrode) could be reduced, and the present invention was completed after further studies.
  • the present invention relates to the following inventions and the like.
  • electrolyte salt the general formula (1): LiN (X 1 SO 2 ) (X 2 SO 2 ) (In the general formula (1), X 1 and X 2 are the same or different, and have a fluorine atom and 1 to 6 carbon atoms.
  • X 1 and X 2 are the same or different, and have a fluorine atom and 1 to 6 carbon atoms.
  • a battery comprising the electrolytic solution containing the electrolyte composition or the solvent composition, or the non-aqueous electrolytic solution.
  • a novel electrolyte salt containing a specific fluorine-containing sulfonylimide lithium salt that is, a sulfonylimide compound represented by the general formula (1)
  • a specific component that is, an amide sulfate component.
  • An electrolyte composition, a solvent composition (non-aqueous electrolyte solution), and the like can be provided.
  • the performance of the electrolytic solution and the battery provided with the electrolytic solution can be improved.
  • the resistance for example, derived from the positive electrode
  • the battery for example, a lithium secondary battery
  • Resistance can be reduced.
  • the performance of the battery or the like may be caused by such a reduction in resistance, for example, as compared with before combining specific components. Can be improved or improved.
  • a stable composition or the like can be provided.
  • problems peculiar to the use of a specific fluorine-containing sulfonylimide lithium salt for example, improvement or suppression of pH decrease with time, decomposition of solvent, etc., and stability (storage stability, etc.) It is possible to provide an excellent composition or the like. Then, according to such a stable composition or the like, corrosion of the container or the like can be improved or suppressed.
  • such a problem is expected to be caused by water in the system and may occur even when it contains an amidosulfate component.
  • a specific solvent that is, a solvent with a relative permittivity of 10 or less
  • even if the system contains an amidosulfate component or some water is contained in the system and thus water from the system at an extremely high level. It can be said that such a problem can be improved or suppressed even if it is not removed), which is extremely surprising.
  • the electrolyte composition contains an electrolyte salt and an amidosulfate component. Therefore, the electrolyte composition can also be said to be an electrolyte salt containing an amidosulfuric acid component.
  • the electrolyte salt contains at least a sulfonylimide compound represented by the following general formula (1) (hereinafter referred to as “sulfonylimide compound (1)”, a fluorine-containing sulfonylimide salt).
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, and a hexyl group.
  • alkyl groups having 1 to 6 carbon atoms a linear or branched alkyl group having 1 to 6 carbon atoms is preferable, and a linear alkyl group having 1 to 6 carbon atoms is more preferable.
  • fluoroalkyl group having 1 to 6 carbon atoms examples include those in which a part or all of the hydrogen atoms of the alkyl group having 1 to 6 carbon atoms are replaced with fluorine atoms.
  • fluoroalkyl group having 1 to 6 carbon atoms include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group and a pentafluoroethyl group.
  • the fluoroalkyl group may be a perfluoroalkyl group.
  • substituents X 1 and X 2 fluorine atoms and perfluoroalkyl groups (for example, perfluoroalkyl groups having 1 to 6 carbon atoms such as trifluoromethyl group, pentafluoroethyl group and heptafluoropropyl group) are preferable. Fluorine atom, trifluoromethyl group and pentafluoroethyl group are more preferable, fluorine atom and trifluoromethyl group are more preferable, and fluorine atom is further preferable.
  • the substituents X 1 and X 2 may be the same or different from each other.
  • the sulfonylimide compound (1) is a salt of a fluorine-containing sulfonylimide ion and a lithium cation.
  • the fluorine-containing sulfonylimide ion includes, for example, an ion (anion) represented by the following formula (1-1).
  • fluorine-containing sulfonylimide ion represented by the above formula (1-1) for example, in the above formula (1-1), one of X 1 and X 2 bonded to the sulfonyl group (-SO 2- ) is fluorine.
  • the two fluoroalkyl groups may be the same or different fluoroalkyl groups.
  • Specific sulfonylimide compounds (1) include lithium bis (fluorosulfonyl) imide (LiN (FSO 2 ) 2 , hereinafter also referred to as “LiFSI”) and lithium bis (trifluoromethylsulfonyl) imide (LiN (CF 3 SO)).
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiN (CF 3 SO) lithium bis (trifluoromethylsulfonyl) imide
  • LiTFSI lithium (fluorosulfonyl) (methylsulfonyl) imide, lithium (fluorosulfonyl) (ethylsulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, lithium (fluoro) Examples thereof include sulfonyl) (pentafluoroethylsulfonyl) imide, lithium (fluorosulfonyl) (heptafluoropropylsulfonyl) imide, lithium bis (pentafluoroethylsulfonyl) imide, and lithium bis (heptafluoropropylsulfonyl) imide.
  • the sulfonylimide compound (1) may be used alone or in combination of two or more. Further, as the sulfonylimide compound (1), a commercially available product may be used, or a compound obtained by synthesizing by a conventionally known method may be used.
  • lithium bis (fluorosulfonyl) imide and lithium bis (trifluoromethylsulfonyl) imide are preferable from the viewpoint of battery characteristics (cycle characteristics, rate characteristics, low temperature characteristics, etc.). Lithium bis (fluorosulfonyl) imide is more preferred.
  • a specific fluorine-containing sulfonylimide lithium salt such as the sulfonylimide compound (1) is also preferable in that it can remarkably exhibit a resistance reducing effect and a battery characteristic improving effect in combination with an amide sulfate component.
  • the fluorine-containing sulfonylimide salt is excellent in the effect of reducing ionic conduction and the effect of reducing interfacial resistance, and the effect of combining with the amide sulfate component is likely to be efficiently exhibited. Be done.
  • the electrolyte salt may contain the sulfonylimide compound (1), but may contain other electrolytes (electrolytes other than the sulfonylimide compound (1)). Examples of other electrolytes include imide salts and non-imide salts.
  • the imide salt examples include a fluorine-containing sulfonylimide salt (hereinafter referred to as “another sulfonylimide compound”) other than the sulfonylimide compound (1).
  • other sulfonylimide compounds include salts of fluorine-containing sulfonylimide ions represented by the above formula (1-1) and cations other than lithium ions [in non-lithium salts (for example, sulfonylimide compound (1)).
  • a salt in which lithium (ion) is replaced with another metal (ion))] can be mentioned.
  • the two fluoroalkyl groups may be the same or different fluoroalkyl groups.
  • Examples of cations other than lithium ions include metal ions other than lithium ions [or metal cations, for example, alkali metal ions other than lithium ions (for example, sodium ions, potassium ions, rubidium ions, cesium ions, etc.), alkaline earths, etc.
  • Metal ions eg, beryllium ion, magnesium ion, calcium ion, strontium ion, barium ion, etc.), aluminum ion, etc.] ammonium ion (eg, tetraethylammonium ion, triethylmethylammonium ion, etc., quaternary ammonium ion), phosphonium Examples thereof include ions (for example, quaternary phosphonium ions such as tetramethylphosphonium ions).
  • the combination of anion and cation is not particularly limited, and any combination of the above anion and cation may be used (a salt may be formed by any combination).
  • sulfonylimide compounds include non-lithium salts of fluorosulfonylimides (eg, sodium bis (fluorosulfonyl) imide, potassium bis (fluorosulfonyl) imide, etc.], (fluorosulfonyl) (fluoroalkylsulfonyl) imide.
  • fluorosulfonylimides eg, sodium bis (fluorosulfonyl) imide, potassium bis (fluorosulfonyl) imide, etc.
  • fluorosulfonyl fluorosulfonylimides
  • Non-lithium salt a non-lithium salt of (fluorosulfonyl) (trifluoromethylsulfonyl) imide [eg, sodium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, potassium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, etc.
  • Non-lithium salt of (fluorosulfonyl) (pentafluoroethylsulfonyl) imide [eg, sodium (fluorosulfonyl) (pentafluoroethylsulfonyl) imide, etc.]
  • Non-lithium salts of (fluorosulfonyl) (fluoroC 1-6 alkylsulfonyl) imides such as [eg (fluorosulfonyl) (heptafluoropropylsulfonyl) imides] [preferably (fluorosulfonyl) (perfluoroC 1-6 )
  • fluorosulfonylimides eg, sodium salts, ie, sodium fluorosulfonylimides, etc.
  • Non-lithium salts of fluoroalkylsulfonylimides eg, sodium salts, ie, sodium fluoroalkylsulfonylimides, etc.
  • the other sulfonylimide compounds may be used alone or in combination of two or more. Further, as the other sulfonylimide compound, a commercially available product may be used, or a compound obtained by synthesizing by a conventionally known method may be used.
  • the combination mode is as long as the sulfonylimide compound (1) is contained at least.
  • the present invention is not particularly limited, and for example, (i) a bis (fluorosulfonyl) imide salt [for example, lithium bis (fluorosulfonyl) imide (sulfonylimide compound (1)) and the like] and a bis (fluoroalkylsulfonyl) imide salt [for example, In combination with lithium bis (trifluoromethylsulfonyl) imide (sulfonylimide compound (1)), sodium bis (trifluoromethylsulfonyl) imide (other sulfonylimide compounds)], (ii) two or more different bis (fluoroalkyl) Combination of sulfonyl) imide salt ⁇ for example, bis (trifluoromethylsulfonyl) imide salt [for example, lithium bis (trifluoromethylsulfonyl) imide, sodium bis (trifluoromethylsulfonyl) imide] and bis (fluoroC 2-6) Alky
  • non-imide salt examples include salts of non-imide-based anions and cations (lithium ion and the above-exemplified cations).
  • Non imide anion for example, boron ions [e.g., BF 4 -, BF (CF 3) 3 -, B (CN) 4 -, in B 12 F 12-x H x ( wherein, X is less than 12 number), etc.], a phosphorus ion ⁇ e.g., PF 6 -, PF m ( C n F 2n + 1) 6-m - ( wherein, ions m is represented by 1 ⁇ 5, n is 1 or more) [For example, PF 3 (CF 3) 3 -, PF 3 (C 2 F 5) 3 -, PF 3 (C 3 F 7) 3 -, PF 3 (C 4 F 9) 3 - and the like], PF 2 O 2 - and the like ⁇ , antimony-based ion (e.g., SbF 6 -, etc.), arsenic ions (e.g., AsF 6 -, etc.), perchloric acid ion (ClO 4
  • non-imide salts include salts of the above-exemplified non-imide anions ⁇ for example, lithium salts [for example, LiBF 4 , LiBF (CF 3 ) 3 , LiB 12 F 12-x H x , LiPF 6 , LiPF 3 (for example, LiBF 4 , LiBF (CF 3 ) 3 , LiB 12 F 12-x H x , LiPF 6 CF 3) 3, LiPF 3 ( C 2 F 5) 3, LiPF 3 (C 3 F 7) 3, LiPF 3 (C 4 F 9) 3, LiSbF 6, LiAsF 6, LiClO 4, LiSCN, LiAlF 4, CF 3 SO 3 Li, LiC [(CF 3 SO 2 ) 3 ], LiN (NO 2 ), LiN [(CN) 2 ], etc.], non-lithium salts [for example, lithium (ion) in these lithium salts Salts substituted with metals (ions) (eg, NaBF 4 , NaPF 6 , NaPF 3 (CF 3 ) 3, etc
  • non-imide salts are preferable from the viewpoint of ionic conductivity, cost, etc.
  • compounds represented by the following general formula (2) hereinafter referred to as “fluorophosphoric acid compound (2)”
  • general A compound represented by the formula (3) hereinafter referred to as “fluoroboric acid compound (3)”
  • lithium hexafluoroaroxide LiAsF 6
  • fluorophosphate compound (2) examples include LiPF 6 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiPF 3 (C 4 F 9 ) 3. And so on.
  • fluorophosphate compounds (2) LiPF 6 and LiPF 3 (C 2 F 5 ) 3 are preferable, and LiPF 6 is more preferable.
  • fluoroboric acid compound (3) examples include LiBF 4 , LiBF (CF 3 ) 3 , LiBF (C 2 F 5 ) 3 , LiBF (C 3 F 7 ) 3, and the like.
  • fluoroboric acid compounds (3) LiBF 4 and LiBF (CF 3 ) 3 are preferable, and LiBF 4 is more preferable.
  • electrolyte salts may be present (contained) in the form of ions in the composition.
  • the ratio of the sulfonylimide compound (1) to the total electrolyte salt is, for example, 1 mol% or more, 5 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, 40 mol% or more, 50 mol% or more. , 60 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, 99 mol% or more, 100 mol% (substantially containing only the sulfonylimide compound (1)), etc. You may.
  • the other electrolyte contains at least one compound selected from the group consisting of the fluorophosphate compound (2), the fluoroboric acid compound (3) and the lithium hexafluoride arsenate (LiAsF 6 ), the compound of such a compound.
  • the ratios to the total other electrolytes are, for example, 1 mol% or more, 5 mol% or more, 10 mol% or more, 20 mol% or more, 30 mol% or more, 40 mol% or more, 50 mol% or more, 60 mol%.
  • substantially fluorophosphate compound (2), fluoroboric acid compound (3) and six It may be (including only at least one compound selected from the group consisting of lithium fluoride arsenate (LiAsF 6 )) and the like.
  • a sulfonylimide compound (1) for example, a fluorosulfonylimide salt containing at least one selected from lithium bis (fluorosulfonyl) imide and lithium bis (trifluoromethylsulfonyl) imide] and other electrolytes [for example, LiPF 6].
  • Other electrolytes containing at least one compound selected from the group consisting of LiBF 4 and LiAsF 6 ] these ratios can be appropriately selected depending on the desired properties and the like, and for example, sulfonylimide.
  • Compound (1) / other electrolyte (molar ratio) 99/1 to 1/99 (for example, 97/3 to 3/97), preferably 95/5 to 5/95 (for example, 93/7 to 7 /). 93), more preferably 90/10 to 10/90 (for example, 83/17 to 17/83), and 80/20 to 20/80 (for example, 77/23 to 23/77).
  • 75/25 to 25/75 eg, 73/27 to 27/73
  • 70/30 to 30/70 eg, 67/33 to 33/67
  • 65/35 to 35/65 eg, 63 / 37-37 / 63
  • the effect of the sulfonylimide compound (1) can be efficiently exhibited and combined with other electrolytes, 80/20 to 1/99 (for example, 70/30 to 10/90, 65/35 to). 20/80, 60/40 to 30/70, 55/45 to 40/60) and the like.
  • amide sulfate component examples include amide sulphate (sulfamic acid), amide sulphate derivative, salts thereof and the like.
  • the amidosulfuric acid component may be used alone or in combination of two or more.
  • amide sulfate derivative examples include N-substituted amide sulfate (N-substituted sulfamic acid, etc.).
  • Such an amide sulfate derivative (and a salt thereof) may be a compound represented by the following formula (4) (N-substituted amide sulfite and a salt thereof).
  • the following formula (4) is expressed as a neutral type (R 1 R 2 NSO 2 (OM)), but it may be a zwitterion type or include any of these.
  • R 1 and R 2 may have an H (hydrogen atom), a hydroxyl group or a substituent, an alkyl group having 1 to 10 carbon atoms, and a cycloalkyl having 3 to 10 carbon atoms. It represents a group, an aryl group having 6 to 16 carbon atoms, an aralkyl group having 7 to 16 carbon atoms, an alkanoyl group having 2 to 16 carbon atoms, may contain a hetero atom, and forms a ring structure with R 1 and R 2.
  • R 1 and R 2 may be the same or different when the above groups are other than H (R 1 and R 2 are not the same when H (R 1 and R 2). 2 is not H at the same time)).
  • M represents H (hydrogen atom) or metal atom.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, a methyl group
  • the cycloalkyl group having 3 to 10 carbon atoms includes, for example, a cyclopropyl group having 6 to 16 carbon atoms.
  • the aryl group of, for example, a phenyl group, a naphthyl group and the like as an aralkyl group having 7 to 16 carbon atoms, for example, a benzyl group and a phenethyl group, and as an alkanoyl group having 2 to 16 carbon atoms, a benzoyl group. And so on.
  • These may be groups containing a hetero atom (for example, nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, etc.).
  • a hetero atom for example, nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, etc.
  • examples of such a group include a group in which a part of a carbon atom is replaced with a hetero atom, for example, a thiocycloalkyl group (for example, a group corresponding to a thiocycloalkane such as thiepan, thiocan, thietan, thiane, or dithiane). And so on.
  • substituent substituting for these groups include, but are not limited to, a hydroxyl group, a halogen atom, an amino group, a carboxyl group, an alkoxy group, an acyl group and the like. These may be substituted alone or in combination of two or more.
  • metal atom examples include alkali metal atoms such as lithium, sodium and potassium; alkaline earth metal atoms such as magnesium, calcium and barium; aluminum and the like.
  • amide sulfate derivative and its salt include, for example, N-hydroxyamide sulfate, N-mono or dialkylamide sulfate [ For example, N-methylamidosulfate, N-ethylamidesulfate, N- (1-methylpropyl) amidosulfate, N- (2-methylbutyl) amidosulfate, N- (2,2-dimethylpropyl) amidosulfate, N, N- Diethylamidosulfate, N- (3-hydroxypropyl) amidosulfate, N-methyl-N- (2,3-dihydroxypropyl) amidosulfate, N, N-bis (2-hydroxyethyl) amidosulfate, N- (2,2) 3-Dihydroxypropyl) amidosulfate, N- (3-methoxy-4-methylphenyl) amidosulfate, N-(2-methoxy-4-methylphenyl) amidosulfate, N-(2-methoxy-4-methylphen
  • the salt is not particularly limited, and for example, the amide sulfate or the amide sulfate derivative may be a salt which is either a base or an acid, and usually the amide sulfate or the amide sulfate derivative is an acid. It may be a salt (a salt of amidosulfate or an amidosulfate derivative and a base).
  • Specific salts include metal salts [eg, alkali metal salts (eg, lithium salt, sodium salt, potassium salt, etc.), alkaline earth metal salts (eg, magnesium salt, calcium salt, barium salt, etc.), aluminum salts. Etc.].
  • Preferred salts include alkali metal salts (eg, lithium salts, etc.) and the like.
  • the salt may be a salt corresponding to the cation of the electrolyte salt to be combined.
  • a lithium salt lithium amidosulfate or the like
  • a lithium salt lithium amidosulfate or the like
  • the amidosulfate component is typically selected from at least one selected from amidosulfate, amidosulfate derivatives and alkali metal salts thereof, in particular from amidosulfate and alkali metal amidosulfate salts (eg, lithium amidosulfate). It may contain at least one species.
  • the electrolyte composition contains an electrolyte salt and an amidosulfate component. Therefore, in one aspect of the present invention, it can be said that an electrolyte salt containing an amidosulfate component is targeted.
  • the ratio of the amide sulfate component can be selected from, for example, about 0.001 mass ppm or more (for example, 0.003 to 50,000 mass ppm) with respect to the electrolyte composition (total amount of electrolyte salt and amide sulfate component).
  • 0.005 mass ppm or more for example, 0.007 to 10000 mass ppm
  • preferably 0.01 mass ppm or more for example, 0.012 to 8000 mass ppm
  • more preferably 0.05 mass ppm or more for example, 0.05 mass ppm).
  • the amide sulfuric acid component is a salt (a salt of amide sulfuric acid or an amide sulfate derivative)
  • the above ratio is in a non-salt form [or a free form, for example, amide sulfuric acid, an amide sulfate derivative (for example, the above formula (4)).
  • M is a hydrogen atom
  • the ratio may be converted (hereinafter, the same applies to the ratio of the amidosulfuric acid component).
  • the electrolyte salt and / or the amidosulfate component may be present (contained) in the form of ions.
  • the amidosulfuric acid component may be partially or wholly added to the electrolyte salt, or one produced in the process of producing the electrolyte salt may be used.
  • the electrolyte composition may contain other components, but may be substantially composed of only the electrolyte salt and the amidosulfuric acid component.
  • the solvent composition contains a sulfonylimide compound (1) as an electrolyte salt, an amidosulfate component, and a solvent.
  • the electrolyte salt sulfonylimide compound (1), other electrolyte, etc.
  • the amide sulfate component the components exemplified in the above electrolyte composition section can be used. Preferred embodiments and the like are also as described above.
  • the electrolyte salt and / or the amidosulfate component may be present (contained) in the form of ions, and usually, the electrolyte salt and the amidosulfate component may be dissolved.
  • the solvent can be appropriately selected depending on the use of the solvent composition and the like, but usually it may be a non-aqueous solvent, an organic solvent, or an aprotic solvent.
  • the solvent may be a solvent capable of dissolving the electrolyte salt and / or the amidosulfate component.
  • the solvent may be a solvent having a relatively low polarity, for example, a solvent having a relative permittivity of 10 or less (organic solvent).
  • the boiling point of the solvent may be, for example, 50 ° C. or higher (for example, 60 ° C. or higher, 70 ° C. or higher), etc., depending on the intended use.
  • Specific solvents include, for example, chain carbonates [eg, dialkyl carbonates (eg, diC 1-4 alkyl carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC)), alkyl.
  • chain carbonates eg, dialkyl carbonates (eg, diC 1-4 alkyl carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC)
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • Aryl carbonate eg, C 1-4 alkylphenyl carbonate such as methylphenyl carbonate), diaryl carbonate (eg, diphenyl carbonate), etc.
  • cyclic carbonate eg, saturated cyclic carbonate (eg, ethylene carbonate, propylene carbonate, 2,3) -Alkylene carbonates such as ethylene dimethyl carbonate, 1,2-butylene carbonate (eg, C 2-6 alkylene carbonate), erythritan carbonate, etc., unsaturated cyclic carbonates (eg, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, etc.) Alkenylene carbonate; 2-vinyl carbonate ethylene), fluorine-containing cyclic carbonate (eg, fluoroethylene carbonate, 4,5-difluoroethylene carbonate, trifluoropropylene carbonate), etc.] and other carbonates; chain ethers [eg, alkane Didiol dialkyl ether
  • chain esters eg, aromatic carboxylic acid esters (eg, methyl benzoate, ethyl benzoate), etc.], cyclic esters [or lactones, eg, ⁇ -butyrolactone , ⁇ -Valerolactone, ⁇ -Valerolactone, etc.] and other esters (carboxylic acid esters); phosphorus such as alkyl phosphate esters (eg, trimethyl phosphate, ethyldimethyl phosphate, diethylmethyl phosphate, triethyl phosphate) Acid esters; aliphatic nitriles (eg acetonitrile, propionitrile, methoxy) Nitriles such as propionitrile, glutaronitrile, adiponitrile, 2-methylglutaronitrile, valeronitrile, butyronitrile, isobutyronitrile, etc., aromatic nitrile
  • carbonates, ethers, esters and the like are preferable, and in particular, chain carbonates (eg, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate), cyclic carbonates (eg, ethylene carbonate, propylene carbonate), lactones, etc.
  • chain carbonates eg, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate
  • cyclic carbonates eg, ethylene carbonate, propylene carbonate
  • lactones etc.
  • chain carbonates eg, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate
  • chain carbonate for example, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like
  • the chain carbonate for example, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate
  • the chain ether for example, ethylene glycol dimethyl ether
  • the solvent may contain (at least contain) the chain carbonate, the chain ether, and the like.
  • a solvent containing a solvent having a relative permittivity of 10 or less may be preferably used as the solvent to be combined with the amidosulfate component.
  • a fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1) (furthermore, a fluorine-containing sulfonylimide salt combined with an amide sulfate component) is combined with an organic solvent having a relative permittivity of 10 or less (for example, a chain carbonate). It seems to be stable [for example, difficult to decompose even in a system in which some water is present)], which is preferable.
  • the ratio of the solvent having a relative permittivity of 10 or less to the whole solvent is, for example, 10% by volume or more, 20% by volume or more, 30% by volume or more, 40% by volume or more. 50% by volume or more, 60% by volume or more, 70% by volume or more, 80% by volume or more, 90% by volume or more, 95% by volume or more, 99% by volume or more, 100% by volume (substantially only solvents having a relative permittivity of 10 or less) ) Etc. may be used.
  • the solvent when the solvent contains a chain carbonate, the solvent may be composed of only the chain carbonate, and may be combined with another solvent [a solvent other than a chain carbonate, for example, a cyclic carbonate (ethylene carbonate, propylene carbonate, etc.)]. You may use it.
  • a solvent other than a chain carbonate for example, a cyclic carbonate (ethylene carbonate, propylene carbonate, etc.)
  • chain carbonate / other solvent volume ratio
  • 99.9 / 0. 1 to 1/99 eg, 99.8 / 0.2 to 10/90
  • 99.5 / 0.5 to 20/80 eg, 99.3 / 0.7 to 30/70
  • it may be 99/1 to 40/60 (for example, 98.8 / 1.2 to 45/55), and 99/1 to 20/80 (for example, 98/2 to 25/75).
  • 97/3 to 30/70 for example, 96/4 to 35/65
  • 95/5 to 40/60 for example, 93/7 to 45/55, 95/5 to 50/50, 93/7 to 55 / It may be 45, 90/10 to 60/40, or the like.
  • the solvent composition may be suitably used for an electrolytic solution.
  • the solvent composition may constitute at least a part of the electrolytic solution.
  • the solvent composition may be used as it is as an electrolytic solution, or may be used as an electrolytic solution material. Therefore, the solvent composition can also be referred to as an electrolytic solution (non-aqueous electrolytic solution).
  • electrolyte salt constituting the electrolytic solution various electrolyte salts are known depending on the type of battery to be applied and the like.
  • electrolytes various electrolyte salts are known depending on the type of battery to be applied and the like.
  • sulfonylimide When a fluorine-containing sulfonylimide salt such as compound (1) is used, phenomena such as a decrease in pH in the system over time, decomposition of the solvent, and corrosion of the container containing the compound may occur. all right. Then, according to the study of the present inventor, it has been found that such a phenomenon may easily occur when the fluorine-containing sulfonylimide salt is combined with an amide sulfate component.
  • the present inventor presumed the decomposition of the fluorine-containing sulfonylimide salt itself as described above (and the generation of an acid component such as hydrogen fluoride due to the decomposition), and this decomposition Partly because of this, the presence of a small amount of water mixed in the system was also speculated.
  • the present inventor has a problem peculiar to the case of using the above-mentioned fluorine-containing sulfonylimide salt (pH reduction, solvent) based on an idea completely different from the idea of suppressing mixed water.
  • the problem can be solved by selecting a solvent having a relative permittivity of 10 or less as the solvent to be combined (particularly, the amide sulfate component). It was found that the problem can be solved even if the system contains some water.
  • the solvent composition (for example, an electrolytic solution material) can be efficiently stabilized.
  • a solvent composition can efficiently suppress the decomposition of the fluorine-containing sulfonylimide salt, the decrease in pH, the decomposition of the solvent, etc. as described above, and therefore, the corrosion of the container, etc. can be efficiently suppressed. Can be done.
  • the solvent composition can exhibit the above effect even when the proportion or concentration of the electrolyte salt (fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1)) is large (for example, 5% by mass or more).
  • an electrolytic solution may be obtained by further mixing a solvent with the solvent composition (diluting the solvent composition with a solvent).
  • a solvent solvent to be mixed or diluted
  • examples of the solvent include the same solvent as described above, and the same or different solvent as the solvent constituting the solvent composition may be used.
  • the ratio (concentration) of the electrolyte salt (or the sulfonylimide compound (1)) can be appropriately selected depending on the mode of use (whether it is used as it is as an electrolytic solution, used as an electrolytic solution material, etc.) and the like. However, for example, 0.02% by mass or more (for example, 0.1% by mass to 99% by mass), preferably 0.1% by mass or more (for example, 0.5 to 80% by mass) with respect to the entire solvent composition. ), More preferably about 1% by mass or more (for example, 5 to 75% by mass, 10 to 75% by mass).
  • the proportion of the electrolyte salt is relatively high or high concentration [for example, 5% by mass or more (for example, 5 to 90% by mass), preferably 5 to 90% by mass) with respect to the entire solvent composition when it is used as an electrolytic solution material.
  • 30 to 80% by mass, 30 to 70% by mass most preferably 35% by mass or more (for example, about 35 to 80% by mass)].
  • it when it is used as it is as an electrolytic solution, it is 1% by mass or more [for example, 3 to 70% by mass], preferably 5% by mass or more (for example, 8 to 8 to) with respect to the entire solvent composition (or electrolytic solution). 50% by mass), more preferably about 10% by mass or more (for example, about 12 to 45% by mass)].
  • the ratio (concentration) of the amidosulfate component can be appropriately selected depending on the mode of use (whether it is used as it is as an electrolytic solution, used as an electrolytic solution material, etc.), and is, for example, the entire solvent composition.
  • 0.01 mass ppm or more for example, 0.02 to 10000 mass ppm
  • 0.03 mass ppm or more for example, 0.04 to 5000 mass ppm
  • more preferably 0.05 mass ppm 0.01 mass ppm or more (for example, 0.02 to 10000 mass ppm), preferably 0.03 mass ppm or more (for example, 0.04 to 5000 mass ppm), more preferably 0.05 mass ppm.
  • the proportion of the amide sulfuric acid component is relatively high or high concentration [for example, 100 mass ppm or more (for example, 100 to 3000 mass ppm) with respect to the entire solvent composition) when it is used as an electrolytic solution material. It may be preferably 300 mass ppm or more (for example, 300 to 2000 mass ppm), more preferably 500 mass ppm or more (for example, about 500 to 1000 mass ppm)], and when it is used as it is as an electrolytic solution, etc.
  • 1 mass ppm or more [for example, 3 to 3000 mass ppm, preferably 30 mass ppm or more (for example, 50 to 2000 mass ppm), more preferably 100 mass ppm or more (for example, 3 to 3000 mass ppm) with respect to the entire solvent composition (or electrolytic solution). For example, about 200 to 1500 mass ppm)] may be used.
  • the solvent composition may be a non-aqueous solvent composition (a solvent composition that does not substantially contain water), although it depends on the intended use.
  • the non-aqueous solvent composition can also be referred to as a non-aqueous electrolytic solution.
  • an electrolyte salt for example, a fluorine-containing sulfonylimide salt
  • the proportion of water in such a solvent composition is a finite amount, for example, 0.1 mass ppm or more (for example, 0.2 mass ppm or more), preferably 0.3 mass ppm or more.
  • 0.1 mass ppm or more for example, 0.2 mass ppm or more
  • 0.4 mass ppm or more may be used, such as 0.5 mass ppm or more, 0.7 mass ppm or more, 0.8 mass ppm or more, 1 mass ppm or more, 1.5 mass ppm or more, It may be 2 mass ppm or more, 3 mass ppm or more, 5 mass ppm or more, 7 mass ppm or more, 10 mass ppm or more, and the like.
  • the upper limit of the proportion of water in the solvent composition is not particularly limited, but is, for example, 3000 mass ppm, 1000 mass ppm, 900 mass ppm, 800 mass ppm, 700 mass ppm, 600 mass ppm, 500 mass ppm, 400 mass ppm. , 300 mass ppm, 200 mass ppm, 100 mass ppm, 50 mass ppm and the like.
  • the solvent composition may be a composition that does not substantially contain a protonic organic solvent, although it depends on the intended use.
  • the proportion of methanol and / or ethanol is 10,000 mass ppm or less (for example, 0.1 mass ppm or detection limit to 10,000 mass ppm), preferably 1000 mass ppm or less, more preferably 100 mass ppm.
  • it may be particularly preferably 50 mass ppm or less, and most preferably 30 mass ppm or less.
  • the solvent composition may contain a specific element or ion (fluorine ion, chlorine ion, sulfate ion, etc.), and may not be substantially contained depending on the intended use.
  • the solvent composition may contain other components (electrolyte, amidosulfuric acid component, and components other than the solvent) as long as there is no actual harm.
  • the other components can be appropriately selected depending on the use of the solvent composition and the like.
  • an additive for the purpose of improving or improving the battery characteristics for example, acid anhydride (succinic anhydride, glutaric anhydride, maleic anhydride) Acids, etc.), etc.] and the like.
  • the other components may be used individually or in combination of two or more.
  • the proportion of the other components can be appropriately selected depending on the type, purpose, etc., and is, for example, 10% by mass or less, 8% by mass or less, 5% by mass or less, and 3% by mass. It may be less than or equal to%.
  • the pH of the solvent composition can be appropriately selected depending on the type of electrolyte and the like, and is not particularly limited, but may be, for example, 3 to 12, preferably 4 to 11, more preferably 4 to 9, or the like.
  • the pH may be the pH not only at the time of preparing the solvent composition but also after the lapse of a predetermined time.
  • the chain carbonate it seems that the decrease in pH over time can be efficiently suppressed, and the above pH can be maintained for a long period of time.
  • the solvent composition (for example, electrolyte material) may be contained (preserved) in a container. By storing it in a container, it can be prepared for storage and transportation. Therefore, the present invention also includes a container containing the solvent composition (container containing the solvent composition), a storage method and a transportation method of the solvent composition or the container.
  • the solvent composition is stable despite containing a fluorine-containing sulfonylimide salt (further, an amidosulfate component) such as the sulfonylimide compound (1) (further containing a predetermined amount of water). Therefore, it is suitable for storage and transportation.
  • Such stabilization can be easily realized efficiently by forming the solvent with a solvent having a relative permittivity of 10 or less (for example, a chain carbonate). Therefore, such a storage or transportation method is carried out in a solvent composition containing a fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1) (further, an amide sulfate component, a predetermined amount of water content) and a solvent. It can also be said to be a method of storing or transporting a solvent containing a solvent having a relative permittivity of 10 or less.
  • Material of container storage container
  • solvent composition The material inside the container and the material of the part that comes into contact with the contents (solvent composition) are not particularly limited, and for example, metal (for example, stainless steel, hasteroy, etc.), resin [for example, , Olefin-based resin (for example, polyethylene, polypropylene, etc.), Fluorine-based resin (for example, polytetrafluoroethylene (PTFE), etc.)], glass, and the like.
  • metal for example, stainless steel, hasteroy, etc.
  • resin for example, Olefin-based resin (for example, polyethylene, polypropylene, etc.), Fluorine-based resin (for example, polytetrafluoroethylene (PTFE), etc.)]
  • PTFE polytetrafluoroethylene
  • the inner surface of the container made of the above metal material may be coated with a resin.
  • the resin used for coating is not particularly limited, and for example, a fluororesin (for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexa) is used.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP Fluoropropylene copolymer
  • olefin-based resins for example, polypropylene and the like
  • the solvent composition for example, by composing the solvent with a solvent having a relative permittivity of 10 or less (for example, a chain carbonate), the solvent contains a fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1).
  • a fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1).
  • the container is preferably sealable (closed system), and as a means for making the container sealable, for example, a form in which a valve is provided in a part of the container is exemplified.
  • the portion (gas phase portion, headspace) other than the solvent composition may be an active gas (for example, air, oxygen, etc.) or an inert gas [for example, a rare gas (helium, etc.). ), Nitrogen, etc.].
  • an active gas for example, air, oxygen, etc.
  • an inert gas for example, a rare gas (helium, etc.).
  • Nitrogen, etc. for example, Nitrogen, etc.
  • the gas phase portion (head space) of the container may be preferably composed of an inert gas (enclosed with the inert gas). Further, the gas phase portion (constituting gas) may be dried (for example, dry air may be used). From such a viewpoint, the dew point of the gas phase portion (the gas constituting the gas phase portion) may be a relatively low temperature, for example, 0 ° C. or lower, ⁇ 10 ° C. or lower, ⁇ 20 ° C. or lower, or the like.
  • the temperature of the solution composition (for example, the temperature during storage or transportation) is not particularly limited, but may be, for example, 60 ° C. or lower (for example, 50 ° C. or lower, 40 ° C. or lower), and ⁇ 40 ° C. or higher (for example, ⁇ 40 ° C. or lower). For example, ⁇ 30 ° C. or higher, ⁇ 20 ° C. or higher, ⁇ 10 ° C. or higher, 0 ° C. or higher) may be used.
  • solidification and decomposition for example, decomposition when a solvent is further added to the electrolytic solution material
  • the solvent composition (electrolyte composition) is suitable for the electrolytic solution.
  • the electrolytic solution may contain an electrolyte composition or a solvent composition (electrolyte salt, amidosulfate component and solvent), may be the solvent composition itself, or may be a solvent composition (solvent composition as an electrolytic solution material). ) And a solvent may be contained.
  • the electrolytic solution can be used, for example, in a battery (a battery having a charge / discharge mechanism), a storage (electrochemical) device (or a material of an ionic conductor constituting these), or the like.
  • the electrolytic solution constitutes, for example, a primary battery, a secondary battery (for example, a lithium (ion) secondary battery), a fuel cell, an electrolytic capacitor, an electric double layer capacitor, a solar cell, an electrochromic display element, and the like.
  • a battery a battery having a charge / discharge mechanism
  • a storage (electrochemical) device or a material of an ionic conductor constituting these
  • the electrolytic solution constitutes, for example, a primary battery, a secondary battery (for example, a lithium (ion) secondary battery), a fuel cell, an electrolytic capacitor, an electric double layer capacitor, a solar cell, an electrochromic display element, and the like.
  • a primary battery for example, a secondary battery (for example,
  • a battery (particularly a lithium ion secondary battery) will be described as an example.
  • a battery (a battery including an electrolytic solution) includes at least a positive electrode and a negative electrode.
  • the positive electrode may be, for example, a positive electrode mixture containing a positive electrode active material (positive electrode active material composition) supported on a positive electrode current collector, or may be usually formed in a sheet shape.
  • the positive electrode active material various ions (lithium ion, sodium ion, etc.) may be stored and released, and for example, it is used in a conventionally known secondary battery (lithium ion secondary battery, sodium ion secondary battery, etc.).
  • a positive electrode active material or the like to be used can be used.
  • Examples of the active material of the lithium ion secondary battery include lithium cobaltate, lithium nickelate, lithium manganate, LiNi 1-xy Co x Mn y O 2 and LiNi 1-xy Co x Al y O 2 (0).
  • X Mn 1-x O 2 (0 ⁇ x ⁇ 1), LiNi x Mn 1-x O 2 (0 ⁇ x ⁇ 1), Li 2 APO 4 F (A Fe, Mn, Ni, Co) and the like.
  • a compound having a chemical olivine structure, sulfur, or the like can be used. These may be used alone or in combination of two or more.
  • Examples of the active material of the sodium ion secondary battery include NaNiO 2 , NaCoO 2 , NamnO 2 , NaVO 2 , NaFeO 2 , Na (Ni X Mn 1-X ) O 2 (0 ⁇ X ⁇ 1), and Na (Fe X Mn).
  • 1-X ) O 2 (0 ⁇ X ⁇ 1), NaVPO 4 F, Na 2 FePO 4 F, Na 3 V 2 (PO 4 ) 3, and the like can be mentioned. These may be used alone or in combination of two or more.
  • the amount of the positive electrode active material used may be, for example, 75 parts by mass or more (for example, 80 to 99 parts by mass), preferably 85 parts by mass or more, and more preferably 90 parts by mass or more per 100 parts by mass of the positive electrode mixture. It may be 99 parts by mass or less, 98 parts by mass or less, and 97 parts by mass or less.
  • the positive electrode mixture may further contain a conductive auxiliary agent (conductive substance), a binder, a solvent, and the like.
  • the conductive auxiliary agent is not particularly limited, and is, for example, carbon black (for example, acetyline black, etc.), graphite, carbon nanotubes (for example, single-walled carbon nanotubes, multi-walled carbon nanotubes, etc.), carbon fibers (for example, vapor phase method). (Carbon fiber, etc.), metal powder material, etc. can be mentioned.
  • the conductive auxiliary agents may be used individually or in combination of two or more.
  • fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene
  • synthetic rubbers such as styrene-butadiene rubber and nitrile butadiene rubber
  • polyamide resins such as polyamideimide
  • polyolefin resins such as polyethylene and polypropylene
  • Poly (meth) acrylic resin polyacrylic acid
  • cellulose-based resin such as carboxymethyl cellulose; and the like.
  • the binder may be used alone or in combination of two or more.
  • the binder may be dissolved in a solvent or dispersed in a solvent at the time of use.
  • the blending amount of the conductive auxiliary agent and the binder can be appropriately adjusted in consideration of the purpose of use of the battery (emphasis on output, emphasis on energy, etc.), ionic conductivity, and the like.
  • the content of the conductive auxiliary agent in the positive electrode mixture is preferably in the range of 0.1 to 10% by mass with respect to 100% by mass of the positive electrode mixture, and more preferably. May be 0.5 to 10% by mass, more preferably 1 to 10% by mass.
  • the content of the binder in the positive electrode mixture is preferably 0.1 to 10% by mass, more preferably 0.5 to 9 with respect to 100% by mass of the positive electrode mixture. It may be% by mass, more preferably 1 to 8% by mass.
  • the solvent (solvent for dispersing or dissolving the positive electrode mixture) is not particularly limited, and conventionally known materials can be used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, tetrahydrofuran, acetone, ethanol. , Ethyl acetate, water and the like. Each of these solvents may be used alone, or two or more kinds thereof may be used in combination.
  • the amount of the solvent used is not particularly limited, and may be appropriately determined according to the production method and the material used.
  • the material of the positive electrode current collector is not particularly limited, and for example, conductive metals such as aluminum, aluminum alloy, SUS (stainless steel), and titanium can be used.
  • the method for producing the positive electrode is not particularly limited.
  • a positive electrode active material composition obtained by dissolving or dispersing a positive electrode mixture in a dispersion solvent can be applied to a positive electrode current collector by a doctor blade method or the like, or a positive electrode can be produced.
  • the positive electrode active material composition to which the liquid lubricant is added is applied or cast on the positive electrode current collector, formed into a desired shape, and then the liquid lubricant is removed. Then, a method of stretching in the uniaxial or multiaxial direction; and the like can be mentioned. Further, if necessary, the dried positive electrode mixture layer may be pressurized.
  • the negative electrode is, for example, a negative electrode mixture (negative electrode active material composition) containing a negative electrode active material supported on a negative electrode current collector, and may be usually formed in a sheet shape.
  • the negative electrode active material a conventionally known negative electrode active material used in various batteries (for example, a lithium secondary battery) can be used, and any ion (for example, lithium ion) can be occluded and released. Good.
  • Specific negative electrode active materials include graphite materials such as artificial graphite and natural graphite, mesophase calcined products made from coal and petroleum pitch, carbon materials such as non-graphitizable carbon, and Si-based materials such as Si, Si alloys, and SiO.
  • a negative electrode material, a Sn-based negative electrode material such as a Sn alloy, and a lithium alloy such as a lithium metal and a lithium-aluminum alloy can be used.
  • the negative electrode active material may be used individually or in combination of two or more.
  • the negative electrode mixture may further contain a conductive auxiliary agent (conductive substance), a binder, a solvent and the like.
  • a conductive auxiliary agent conductive substance
  • the binder, the solvent and the like the same components as described above can be used. Further, the usage ratio and the like are the same as described above.
  • a conductive metal such as copper, iron, nickel, silver, or stainless steel (SUS) can be used.
  • the negative electrode manufacturing method the same method as the positive electrode manufacturing method can be adopted.
  • the battery may include a separator.
  • the separator is arranged so as to separate the positive electrode and the negative electrode.
  • the separator is not particularly limited, and in the present invention, any conventionally known separator can be used.
  • Specific examples of the separator include a porous sheet made of a polymer capable of absorbing and retaining a non-aqueous electrolytic solution (for example, a polyolefin-based microporous separator, a cellulose-based separator, etc.), a non-woven fabric separator, a porous metal body, and the like. Can be mentioned.
  • Examples of the material of the porous sheet include a laminate having a three-layer structure of polyethylene, polypropylene, and polypropylene / polyethylene / polypropylene.
  • non-woven fabric separator examples include cotton, rayon, acetate, nylon, polyester, polypropylene, polyethylene, polyimide, aramid, glass, etc., and the above-exemplified materials may be used according to the required mechanical strength and the like. , Each may be used alone, or may be used alone or in combination of two or more.
  • a battery (battery element) provided with an electrolytic solution, a positive electrode, a negative electrode (further, a separator), etc. is usually housed in a battery exterior material in order to protect the battery element from external impacts, environmental deterioration, etc. when the battery is used. ..
  • the material of the battery exterior material is not particularly limited, and any conventionally known exterior material can be used.
  • the shape of the battery is not particularly limited, and any conventionally known shape as the shape of the lithium ion secondary battery, such as cylindrical type, square type, laminated type, coin type, and large size, should be used. Can be done. Further, when used as a high-voltage power source (several tens of volts to several hundreds of volts) for mounting on an electric vehicle, a hybrid electric vehicle, or the like, the battery module may be configured by connecting individual batteries in series. ..
  • the rated charging voltage of the secondary battery is not particularly limited, but is 3.6 V or more, preferably 4.1 V or more, and more preferably 4.2 V or more (for example, more than 4.2 V). It may be 4.3V or more (for example, 4.35V or more).
  • the rated charging voltage may be 4.6 V or less (for example, 4.5 V or less).
  • the resistance in the applied battery or device is reduced as compared with the case where the amidosulfuric acid component is not contained, or is it caused by it?
  • the performance of the applied battery or device ⁇ for example, charge / discharge characteristics, storage characteristics [for example, high temperature storage characteristics (for example, storage characteristics at 40 ° C. or higher, 50 ° C. or higher)], cycle characteristics, etc. ⁇ can be improved or improved. ..
  • the amidosulfuric acid component can also be said to be an additive for an electrolytic solution (an additive for improving or improving desired properties) (a new additive for an electrolytic solution or the like can be provided). That is, the amidosulfuric acid component, which is a specific component, can be used as an additive to an electrolytic solution or the like, and by using it in such an embodiment, the above-mentioned functions (for example, resistance reduction function, improvement of battery performance, etc.) ) Can be demonstrated.
  • an additive for an electrolytic solution composed of an amidosulfuric acid component
  • an amidosulfuric acid component for example, an agent for reducing resistance (resistance reducing agent), performance (for example, for example).
  • An agent for improving or improving at least one characteristic selected from charge / discharge characteristics, storage characteristics and cycle characteristics
  • a method for reducing resistance by allowing an amidosulfuric acid component to be present in an electrolytic solution (ii).
  • iii) A method of allowing an amidosulfuric acid component to be present in the electrolytic solution to improve or improve the performance (for example, at least one characteristic selected from charge / discharge characteristics, storage characteristics and cycle characteristics) is also included.
  • such a function (for example, a resistance reducing effect and a performance improving effect) can be exhibited under a wide range of conditions as long as an electrolytic solution composed of a solvent composition (or an electrolyte composition) is used.
  • an electrolytic solution composed of a solvent composition or an electrolyte composition
  • Under low temperature for example, 10 ° C or less (for example, 5 ° C or less), 0 ° C or less (for example, -2 ° C or less), -5 ° C or less (for example, -7 ° C or less), -10 ° C or less (for example, -12 ° C).
  • the additives and methods may be applied particularly at such temperatures (eg, agents for reducing resistance at the specific low temperature, methods for reducing resistance at the specific low temperature, etc.
  • a method for improving or improving performance (for example, charge / discharge characteristics) at the specific low temperature may be used).
  • a solvent having a relative permittivity of 10 or less for example, a chain carbonate
  • a fluorine-containing sulfonylimide salt further, an amidosulfate component
  • sulfonylimide compound (1) a fluorine-containing sulfonylimide salt
  • fluorine-containing sulfonylimide salt a fluorine-containing sulfonylimide salt
  • an amidosulfate component such as the sulfonylimide compound (1). It is possible to suppress problems peculiar to (fluorinated sulfonylimide salt) (decomposition of fluorine-containing sulfonylimide salt, decrease in pH, corrosion of container, decomposition of solvent, etc.).
  • the solvent having a relative permittivity of 10 or less is an additive that can solve such a peculiar problem (for example, an agent for suppressing the decomposition of a fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1)). You can also.
  • a fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1) and a solvent
  • An additive for suppressing at least one selected which comprises a solvent having a specific dielectric constant of 10 or less
  • a fluorine-containing sulfonylimide salt and a composition containing the solvent, wherein the fluorine-containing sulfonylimide salt is used.
  • a method of suppressing at least one selected from decomposition, a decrease in pH, and corrosion of a container to be contained, and a method of incorporating a solvent having a specific dielectric constant of 10 or less into the solvent is also included.
  • the composition may contain a finite amount of water (eg, water at a concentration of 0.1 mass ppm or more).
  • Example 1 series The various analysis / evaluation methods performed in this Example 1 series are as follows.
  • 19 F-NMR measurement 19 F-NMR measurement was performed using "Unity Plus-400" manufactured by Varian (internal standard substance: benzenesulfonyl fluoride, number of integrations: 16 times).
  • the prepared battery was charged at 0.1 C (3 mA) for 90 minutes, one side of the sealing portion was cleaved, re-vacuum sealed, and degassed. After that, it is left at room temperature for 3 days, charged with a constant current constant voltage of 4.2 V, 0.5 C (15 mA) for 5 hours, then discharged with a constant current of 0.2 C (6 mA), 2.75 V, and then charged under the same conditions. After that, a constant current discharge of 1C (30mA) and 2.75V termination was performed. This was used as the cell aging process.
  • the cell after aging is charged with a constant current of 1C (30mA) for 30 minutes, the charging depth is set to 50%, impedance measurement is performed at 25 ° C. and -30 ° C., and the frequency at which the arc begins to diverge. The actual shaft resistance value of was measured. Then, from the obtained results, the resistance reduction rate with respect to the reference example (when the amidosulfuric acid component was not contained) [(resistance value of the reference example-resistance value of the example) / resistance value of the reference example ⁇ 100] was determined.
  • the cell after measuring the discharge capacity at -20 ° C was left at room temperature for 3 hours, and a constant current discharge of 0.2 C (6 mA) and 2.75 V termination was performed at 25 ° C. After leaving the discharged cell at ⁇ 20 ° C. for 3 hours, the constant current charge capacity at 1C (30mA) and 4.2V termination was measured at ⁇ 20 ° C.
  • the cell after aging by the method described in the [Resistance value] section is charged at 25 ° C. at 4.2 V, 1 C (30 mA) at a constant voltage of 0.6 mA, and then charged at 25 ° C. at 0.2 C (6 mA), 2
  • the discharge capacity at the end of .75v was measured and used as the initial capacity.
  • charging was performed at 25 ° C. at 4.2 V, 1 C (30 mA) for 3 hours, the cell circuit voltage after charging was measured, and the battery was stored in a constant temperature bath at 60 ° C. for 2 weeks.
  • the cell circuit voltage after leaving the stored cell at 25 ° C. for 3 hours was measured.
  • -Capacity retention rate The capacity retention rate (recovery capacity / initial capacity x 100) was calculated from the initial capacity and the recovery capacity measured at each discharge current.
  • -Voltage drop The difference in circuit voltage before and after leaving was calculated as ⁇ V.
  • Lithium bis (fluorosulfonyl) imide (LiFSI) was synthesized by the method described in Comparative Example 1 of JP-A-2018-0355054.
  • the obtained LiFSI was dissolved in ethyl methyl carbonate (EMC), which is a solvent having a relative permittivity of 10 or less, to obtain an EMC solution containing LiFSI at a concentration of 40% by mass.
  • EMC ethyl methyl carbonate
  • the concentration of LiFSI was measured by 19 F-NMR (the same applies hereinafter).
  • Amidosulfate was added to the obtained EMC solution, the mixture was stirred for 1 day, and filtered through a membrane filter.
  • the electrolyte was dissolved, and no undissolved residue could be visually confirmed.
  • amidosulfate was contained as an amidosulfate component at a concentration of 6 mass ppm.
  • a ternary positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 made Umicore
  • acetylene black Diska “Denka Black”
  • graphite manufactured by Nippon Graphite "SP270”
  • PVdF polyvinylidene Vinylidene fluoride resin
  • NMP N-methylpyrrolidone
  • the obtained positive and negative electrodes were cut, the polarity lead-out leads were ultrasonically welded, opposed by a 16 ⁇ m polyethylene (PE) separator, and sealed on three sides with a laminated exterior. From the unsealed one, 700 ⁇ L of the solvent composition was added as it was as an electrolytic solution. As a result, a 4.2 V, 30 mAh laminated battery was produced. Table 1 shows the results of measuring and evaluating various characteristics of the obtained battery.
  • Example 1-2 A solvent composition was obtained in the same manner as in Example 1-1, except that the amount of amidosulfuric acid added to the solvent composition was changed in Example 1-1. In the solvent composition, the electrolyte was dissolved, and no undissolved residue could be visually confirmed.
  • Example 1-1 a solvent composition was obtained in the same manner as in Example 1-1, except that lithium amidosulfate was used instead of amide sulfuric acid and the amount of addition thereof was changed. In the solvent composition, the electrolyte was dissolved, and no undissolved residue could be visually confirmed.
  • Lithium amidosulfate is made by slurry amidosulfate with pure water, adding lithium hydroxide monohydrate while stirring, filtering the insoluble matter, and then drying the filter medium under reduced pressure at 80 ° C. I used the one created by. When the obtained lithium amidosulfate was analyzed by XRD (X-ray diffraction), no impurities were found.
  • lithium amidosulfate was contained at a concentration of 319 mass ppm in terms of amidosulfate.
  • Example 1-4 In Example 1-1, taurine instead of the amide acid (2-amino-ethanesulfonic acid (aminoethyl sulfonic acid), H 2 N-CH 2 -CH 2 -SO 3 H) as well as using, the amount A solvent composition was obtained in the same manner as in Example 1-1 except that it was changed. In the solvent composition, the electrolyte was dissolved, and no undissolved residue could be visually confirmed.
  • Example 1-5 In Example 1-1, a solvent composition was obtained in the same manner as in Example 1-1, except that sodium amidosulfate was used instead of amide sulfuric acid and the amount of addition thereof was changed. In the solvent composition, the electrolyte was dissolved, and no undissolved residue could be visually confirmed.
  • amidosulfate component is a salt or an ion (free form). ), It can be seen that it functions effectively.
  • Example 1-1 a solvent composition was obtained in the same manner as in Example 1-1, except that only LiPF 6 was used as the electrolyte salt and the amount of amide sulfuric acid added was changed. In the solvent composition, the electrolyte was dissolved, and no undissolved residue could be visually confirmed.
  • Example 2 series Subsequently, the storage stability of the solvent composition was evaluated.
  • the various analysis / evaluation methods performed in this Example 2 series are as follows.
  • the solvent composition was diluted 91-fold with ultrapure water (more than 18.2 ⁇ ⁇ cm) to prepare a measurement solution, and the pH of the composition was measured using an automatic titrator COM-1700A (manufactured by Hiranuma Sangyo Co., Ltd.). ..
  • the solvent composition was prepared using the Karl Fischer Moisture Measuring Device AQ-2000 (manufactured by Hiranuma Sangyo Co., Ltd.) as the generated liquid, Aqualite RS-A (manufactured by Hiranuma Sangyo Co., Ltd.), and the counter electrode liquid, Aqualite CN (Hiranuma Sangyo Co., Ltd.)
  • the water content was measured using (manufactured by).
  • the composition is diluted 100-fold with ultrapure water (more than 18.2 ⁇ ⁇ cm) to obtain a measurement solution, and the amide contained in the composition is used by using an ion chromatography system ICS-3000 (manufactured by Nippon Dionex Corporation). Sulfate, fluorine ion, and sulfate ion were measured.
  • ICS-3000 manufactured by Nippon Dionex Corporation. Sulfate, fluorine ion, and sulfate ion were measured.
  • -Separation mode Ion exchange-Eluent: 7-18 mM KOH aqueous solution-Detector: Electrical conductivity detector-Column: Column for anion analysis Ion PAC AS-17C (manufactured by Nippon Dionex Corporation)
  • the composition was diluted 100-fold with ultrapure water (more than 18.2 ⁇ ⁇ cm) to prepare a measurement solution, and was added to the composition using a multi-type ICP emission spectrophotometer ICPE-9000 (manufactured by Shimadzu Corporation). The iron content was measured.
  • Example 2-1 A solution in which amidosulfate is added to the LiFSI obtained in Example 1-1 and dissolved in ethyl methyl carbonate (EMC), which is a solvent having a relative permittivity of 10 or less, to have a LiFSI concentration of 49.9% by mass. Manufactured. The concentration of LiFSI was measured by 19 F-NMR.
  • EMC ethyl methyl carbonate
  • LiFSI LiFSI was 49.9% by mass
  • fluoride ion was 32% by mass
  • sulfate ion was 9 in the solution. It was found that it contained mass ppm.
  • Examples 2-2 to 2-17 and Reference Examples 2-1 to 2-7 A solution in the same manner as in Example 2-1 except that various conditions (solvent type, LiFSI concentration, amidosulfuric acid concentration, pH, storage conditions, etc.) were set as shown in Table 3 in Example 2-1. The concentration of each component during production and after storage was measured. In Examples 2-10, 2-12 and 2-13, the pH was adjusted by adding a pH adjuster.
  • Example 2-13 A solution in which amidosulfate is added to the LiFSI obtained in Example 1-1 and dissolved in ethyl methyl carbonate (EMC), which is a solvent having a relative permittivity of 10 or less, to have a LiFSI concentration of 49.9% by mass. Manufactured. The concentration of LiFSI was measured by 19 F-NMR.
  • EMC ethyl methyl carbonate
  • Example 2-14 Reference Examples 2-8 to 2-9
  • various conditions solvent type, LiFSI concentration, storage conditions, etc.
  • concentration of each component was measured.
  • the fluorine-containing sulfonylimide salt such as the sulfonylimide compound (1) can be synthesized by, for example, the following method.
  • 1,2,4-trimethylbenzene having the same volume as the total amount of the liquid collected in the distilling receiver was added to the separable flask as a poor solvent. Then, by continuing to add 1,2,4-trimethylbenzene in the same volume as the distillate every 10 minutes into the separable flask, butyl acetate (reaction solvent) in the system is concentrated while concentrating the reaction solution. And 1,2,4-trimethylbenzene were changed to precipitate white crystals of lithium bis (fluorosulfonyl) imide.
  • the flask After repeating the above operation until the supernatant in the separable flask becomes transparent, the flask is cooled to room temperature, the obtained suspension of lithium bis (fluorosulfonyl) imide crystals is filtered, and lithium bis (fluorosulfonyl) is obtained.
  • Imide crystals were collected by filtration. The time from the start of heating of the butyl acetate solution to the end of the concentration step was 6 hours, and the time required from the start of precipitation of white crystals was 2 hours. Then, the obtained crystals were washed with a small amount of hexane, transferred to a flat bottom vat, and dried under reduced pressure at 55 ° C. and 667 Pa for 12 hours to obtain white crystals of lithium bis (fluorosulfonyl) imide (yield: 92. 3g).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

当該電解質組成物を、電解質塩として下記一般式(1)で表されるスルホニルイミド化合物と、アミド硫酸成分とで構成する。 LiN(X1SO2)(X2SO2) (1) (一般式(1)中、X1及びX2は、同一又は異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)

Description

電解質組成物、溶媒組成物、非水電解液及びその用途
 本発明は、新規な電解質組成物、溶媒組成物、非水電解液及びその用途等に関する。
 電解液を構成する電解質として、適用する電池の種類等に応じた種々の成分が知られている。例えば、リチウムイオン電池等に使用される電解質として、種々のリチウム塩が知られている(特許文献1)。
特許第5816998号公報
 本発明の目的は、新規な電解質組成物、溶媒組成物(電解液用の組成物等)、非水電解液、及びその用途として、電池、該組成物等の保存容器、該組成物等の保管又は輸送方法等を提供することにある。
 本発明者は、特定成分であるアミド硫酸成分を、電解質塩として特定のフッ素含有スルホニルイミドリチウム塩と組み合わせることで、意外にも、電池(例えば、リチウム二次電池)等における、抵抗(例えば、正極に由来する抵抗)を低減しうること等を見出し、さらなる検討を重ねて本発明を完成した。
 すなわち、本発明は、以下の発明等に関する。
 電解質塩として一般式(1):LiN(XSO)(XSO)(一般式(1)中、X及びXは、同一又は異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)で表されるスルホニルイミド化合物と、アミド硫酸成分とを含む電解質組成物。
 電解質塩として一般式(1):LiN(XSO)(XSO)(一般式(1)中、X及びXは、同一又は異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)で表されるスルホニルイミド化合物と、アミド硫酸成分と、溶媒とを含む、溶媒組成物及び非水電解液。
 前記電解質組成物又は溶媒組成物を含む電解液、又は前記非水電解液を備えた電池。
 前記溶媒組成物を収容した容器。
 前記溶媒組成物又は前記容器を保管又は輸送する方法。
 本発明によれば、電解質塩として特定のフッ素含有スルホニルイミドリチウム塩(すなわち、一般式(1)で表されるスルホニルイミド化合物)と、特定成分(すなわち、アミド硫酸成分)とを含有する新規な電解質組成物、溶媒組成物(非水電解液)等を提供できる。
 このような組成物等によれば、電解液、さらには電解液を備えた電池等における性能を向上しうる。例えば、電解液の構成成分として特定成分を組み合わせることにより、特定成分を組み合わせる前の電解液を用いた場合に比べて、電池(例えば、リチウム二次電池)における、抵抗(例えば、正極に由来する抵抗)を低減しうる。
 特に、このような抵抗の低減効果は、常温等のみならず、低温においても効率よく発揮しうる。アミド硫酸成分の機能として、このような機能は全く知られておらず、極めて意外なことと言える。
 そして、本発明によれば、このような抵抗の低減に起因してか、例えば、特定成分を組み合わせる前に比べて、電池等の性能(例えば、充放電特性、高温保存特性、サイクル特性等)を改善又は向上しうる。
 また、本発明の別の態様によれば、安定な組成物等を提供しうる。例えば、本発明では、特定のフッ素含有スルホニルイミドリチウム塩を使用する場合に特有の課題、例えば、経時的なpHの低下、溶媒の分解等を改善ないし抑制し、安定性(保存安定性等)に優れた組成物等を提供しうる。そして、このような安定な組成物等によれば、容器の腐食等を改善ないし抑制しうる。
 特に、このような課題は、系中の水に起因することが予期され、アミド硫酸成分を含む場合にも生じうるものであったが、本発明の別の態様の組成物等によれば、特定の溶媒(すなわち、比誘電率10以下の溶媒)と組み合わせることにより、アミド硫酸成分を含んでいる場合や多少の水が系中に含まれていても(ひいては極めて高レベルに系中から水を除去しなくても)、このような課題を改善ないし抑制しうるものであり、極めて意外なことといえる。
 <電解質組成物>
 電解質組成物は、電解質塩とアミド硫酸成分とを含む。そのため、電解質組成物は、アミド硫酸成分を含む電解質塩ということもできる。
 [電解質塩]
 電解質塩は、少なくとも下記一般式(1)で表されるスルホニルイミド化合物(以下「スルホニルイミド化合物(1)」という、フッ素含有スルホニルイミド塩)を含む。
  [化1]
 LiN(XSO)(XSO)     (1)
(一般式(1)中、X及びXは、同一又は異なって(互いに独立して)、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)
 炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。炭素数1~6のアルキル基の中では、炭素数1~6の直鎖状又は分枝鎖状のアルキル基が好ましく、炭素数1~6の直鎖状のアルキル基がより好ましい。
 炭素数1~6のフルオロアルキル基としては、炭素数1~6のアルキル基が有する水素原子の一部又は全部がフッ素原子で置換されたものが挙げられる。炭素数1~6のフルオロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。特に、フルオロアルキル基は、パーフルオロアルキル基であってもよい。
 置換基X及びXとしては、フッ素原子及びパーフルオロアルキル基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等の炭素数1~6のパーフルオロアルキル基)が好ましく、フッ素原子、トリフルオロメチル基及びペンタフルオロエチル基がより好ましく、フッ素原子及びトリフルオロメチル基がより一層好ましく、フッ素原子がさらに好ましい。なお、置換基X及びXは、同一であってもよく、それぞれ異なっていてもよい。
 スルホニルイミド化合物(1)は、フッ素含有スルホニルイミドイオンとリチウムカチオンとの塩である。
 フッ素含有スルホニルイミドイオンとしては、例えば、下記式(1-1)で表されるイオン(アニオン)等が含まれる。
Figure JPOXMLDOC01-appb-C000001
(式(1-1)中、X及びXは、前記と同じ。)
 上記式(1-1)で表されるフッ素含有スルホニルイミドイオンとしては、例えば、前記式(1-1)において、スルホニル基(-SO-)に結合したX及びXの一方がフッ素原子(F)であり、他方がアルキル基であるイオン[又は(フルオロスルホニル)イオン]、スルホニル基に結合したX及びXがフッ素原子であるイオン[又はビス(フルオロスルホニル)イオン]、スルホニル基に結合したX及びXの一方がフルオロアルキル基であり、他方がフッ素原子又はアルキル基であるイオン[又は(フルオロアルキルスルホニル)イオン]、スルホニル基に結合したX及びXがフルオロアルキル基であるイオン[又はビス(フルオロアルキルスルホニル)イオン]等が挙げられる。なお、2つのフルオロアルキル基は、同一の又は異なるフルオロアルキル基であってもよい。
 具体的なスルホニルイミド化合物(1)としては、リチウムビス(フルオロスルホニル)イミド(LiN(FSO、以下「LiFSI」ともいう)、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(CFSO、以下「LiTFSI」ともいう)、リチウム(フルオロスルホニル)(メチルスルホニル)イミド、リチウム(フルオロスルホニル)(エチルスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド、リチウム(フルオロスルホニル)(ヘプタフルオロプロピルスルホニル)イミド、リチウムビス(ペンタフルオロエチルスルホニル)イミド、リチウムビス(ヘプタフルオロプロピルスルホニル)イミド等が挙げられる。スルホニルイミド化合物(1)は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、スルホニルイミド化合物(1)は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 これらのスルホニルイミド化合物(1)の中では、電池特性(サイクル特性、レート特性、低温特性等)等の観点から、リチウムビス(フルオロスルホニル)イミド及びリチウムビス(トリフルオロメチルスルホニル)イミドが好ましく、リチウムビス(フルオロスルホニル)イミドがより好ましい。
 スルホニルイミド化合物(1)のような特定のフッ素含有スルホニルイミドリチウム塩は、アミド硫酸成分との組み合わせにおいて、抵抗低減効果や電池特性の改善効果を顕著に示しうるという点でも好ましい。なお、この理由は定かではないが、当該フッ素含有スルホニルイミド塩が、イオン伝導低減作用や界面抵抗低減作用に優れることと相まって、アミド硫酸成分と組み合わせることによる効果を効率よく発現しやすいものと考えられる。
 電解質塩は、スルホニルイミド化合物(1)を含んでいればよいが、他の電解質(スルホニルイミド化合物(1)以外の電解質)を含んでいてもよい。他の電解質としては、イミド塩、非イミド塩等が挙げられる。
 イミド塩としては、例えば、スルホニルイミド化合物(1)でないフッ素含有スルホニルイミド塩(以下「他のスルホニルイミド化合物」という)等が挙げられる。他のスルホニルイミド化合物としては、例えば、前記式(1-1)で表されるフッ素含有スルホニルイミドイオンと、リチウムイオン以外のカチオンとの塩[非リチウム塩(例えば、スルホニルイミド化合物(1)においてリチウム(イオン)を他の金属(イオン)に置換した塩)]が挙げられる。なお、2つのフルオロアルキル基は、同一の又は異なるフルオロアルキル基であってもよい。
 リチウムイオン以外のカチオンとしては、例えば、リチウムイオン以外の金属イオン[又は金属カチオン、例えば、リチウムイオン以外のアルカリ金属イオン(例えば、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等)、アルカリ土類金属イオン(例えば、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等)、アルミニウムイオン等]、アンモニウムイオン(例えば、テトラエチルアンモニウムイオン、トリエチルメチルアンモニウムイオン等の第4級アンモニウムイオン)、ホスホニウムイオン(例えば、テトラメチルホスホニウムイオン等の第4級ホスホニウムイオン)等が挙げられる。
 他のスルホニルイミド化合物において、アニオンとカチオンの組み合わせは特に限定されず、上記のアニオンとカチオンのいずれの組み合わせであってもよい(いずれの組み合わせで塩を形成してもよい)。
 具体的な他のスルホニルイミド化合物としては、フルオロスルホニルイミドの非リチウム塩(例えば、ナトリウムビス(フルオロスルホニル)イミド、カリウムビス(フルオロスルホニル)イミド等]、(フルオロスルホニル)(フルオロアルキルスルホニル)イミドの非リチウム塩{例えば、(フルオロスルホニル)(トリフルオロメチルスルホニル)イミドの非リチウム塩[例えば、ナトリウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、カリウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド等]、(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミドの非リチウム塩[例えば、ナトリウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド等]、(フルオロスルホニル)(ヘプタフルオロプロピルスルホニル)イミドの非リチウム塩[例えば、(フルオロスルホニル)(ヘプタフルオロプロピルスルホニル)イミド等]等の(フルオロスルホニル)(フルオロC1-6アルキルスルホニル)イミドの非リチウム塩[好ましくは(フルオロスルホニル)(パーフルオロC1-6アルキルスルホニル)イミドの非リチウム塩]等}等のフルオロスルホニルイミドの非リチウム塩(例えば、ナトリウム塩、すなわち、ナトリウムフルオロスルホニルイミド等);ビス(フルオロアルキルスルホニル)イミドの非リチウム塩{例えば、ビス(トリフルオロメチルスルホニル)イミド塩[例えば、ナトリウムビス(トリフルオロメチルスルホニル)イミド、カリウムビス(トリフルオロメチルスルホニル)イミド等]、ビス(ペンタフルオロエチルスルホニル)イミドの非リチウム塩[例えば、ナトリウムビス(ペンタフルオロエチルスルホニル)イミド等]、ビス(ヘプタフルオロプロピルスルホニル)イミドの非リチウム塩[例えば、ナトリウムビス(ヘプタフルオロプロピルスルホニル)イミド等]等のビス(フルオロC1-6アルキルスルホニル)イミドの非リチウム塩[好ましくはビス(パーフルオロC1-6アルキルスルホニル)イミドの非リチウム塩、又は(C2n+1SO(式中、nは1~6の整数)とカチオンとの塩]等}等のフルオロアルキルスルホニルイミドの非リチウム塩(例えば、ナトリウム塩、すなわち、ナトリウムフルオロアルキルスルホニルイミド等)等が挙げられる。他のスルホニルイミド化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、他のスルホニルイミド化合物は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 電解質塩として、スルホニルイミド化合物(1)や他のスルホニルイミド化合物等のフッ素含有スルホニルイミド塩を複数組み合わせて使用する場合、組み合わせの態様としては、少なくともスルホニルイミド化合物(1)が含まれていれば特に限定されず、例えば、(i)ビス(フルオロスルホニル)イミド塩[例えば、リチウムビス(フルオロスルホニル)イミド(スルホニルイミド化合物(1))等]と、ビス(フルオロアルキルスルホニル)イミド塩[例えば、リチウムビス(トリフルオロメチルスルホニル)イミド(スルホニルイミド化合物(1))、ナトリウムビス(トリフルオロメチルスルホニル)イミド(他のスルホニルイミド化合物)]との組み合わせ、(ii)2以上の異なるビス(フルオロアルキルスルホニル)イミド塩の組み合わせ{例えば、ビス(トリフルオロメチルスルホニル)イミド塩[例えば、リチウムビス(トリフルオロメチルスルホニル)イミド、ナトリウムビス(トリフルオロメチルスルホニル)イミド]と、ビス(フルオロC2-6アルキルスルホニル)イミド塩[例えば、リチウムビス(ペンタフルオロエチルスルホニル)イミド(スルホニルイミド化合物(1))、ナトリウムビス(ペンタフルオロエチルスルホニル)イミド(他のスルホニルイミド化合物)]との組み合わせ等}等が挙げられる。この場合、リチウムビス(トリフルオロメチルスルホニル)イミド及びリチウムビス(ペンタフルオロエチルスルホニル)イミドの少なくとも1種を含む。
 非イミド塩としては、非イミド系アニオンとカチオン(リチウムイオン及び前記例示のカチオン)との塩が挙げられる。
 非イミド系アニオンとしては、例えば、ホウ素系イオン[例えば、BF 、BF(CF 、B(CN) 、B1212-x(式中、Xは12未満の数)等]、リン系イオン{例えば、PF 、PF(C2n+16-m (式中、mは1~5、nは1以上を示す)で表されるイオン[例えば、PF(CF 、PF(C 、PF(C 、PF(C 等]、PF 等}、アンチモン系イオン(例えば、SbF 等)、ヒ素系イオン(例えば、AsF 等)、過塩素酸イオン(ClO )、チオシアン酸イオン(NCS)、アルミニウム系イオン(例えば、AlCl 、AlF 等)、スルホン酸系イオン(例えば、CFSO 、FSO 等)、メチド系イオン(例えば、C[(CFSO等)、ジニトロアミンアニオン((ON))、シアナミドイオン(例えば、N[(CN)等)、トリアゾラートイオン(例えば、ジシアノトリアゾラートイオン等)、イミドイオン(イミド系イオン、イミドアニオン)等が挙げられる。
 具体的な非イミド塩としては、前記例示の非イミドアニオンの塩{例えば、リチウム塩[例えば、LiBF、LiBF(CF、LiB1212-x、LiPF、LiPF(CF、LiPF(C、LiPF(C、LiPF(C、LiSbF、LiAsF、LiClO、LiSCN、LiAlF、CFSOLi、LiC[(CFSO]、LiN(NO)、LiN[(CN)]等]、非リチウム塩[例えば、これらのリチウム塩においてリチウム(イオン)を他の金属(イオン)に置換した塩(例えば、NaBF、NaPF、NaPF(CF等)等]等}が挙げられる。非イミド塩は、それぞれ単独で用いてもよく、又は2種以上組み合わせて使用してもよい。また、非イミド塩は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 これらの他の電解質の中でも、イオン伝導度、コストの観点等から、非イミド塩が好ましく、下記一般式(2)で表される化合物(以下「フルオロリン酸化合物(2)」という)、一般式(3)で表される化合物(以下「フルオロホウ酸化合物(3)」という)、及び六フッ化砒酸リチウム(LiAsF)がより好ましい。
  [化3]
 LiPF(C2m+16-a (0≦a≦6、1≦m≦4)     (2)
  [化4]
 LiBF(C2n+14-b (0≦b≦4、1≦n≦4)     (3)
 フルオロリン酸化合物(2)としては、LiPF、LiPF(CF、LiPF(C、LiPF(C、LiPF(C等が挙げられる。フルオロリン酸化合物(2)の中では、LiPF、及びLiPF(Cが好ましく、LiPFがより好ましい。
 フルオロホウ酸化合物(3)としては、LiBF、LiBF(CF、LiBF(C、LiBF(C等が挙げられる。フルオロホウ酸化合物(3)の中では、LiBF、及びLiBF(CFが好ましく、LiBFがより好ましい。
 なお、これらの電解質塩は、組成物において、イオンの形態で存在(含有)していてもよい。
 電解質塩全体に対するスルホニルイミド化合物(1)の割合は、例えば、1モル%以上、5モル%以上、10モル%以上、20モル%以上、30モル%以上、40モル%以上、50モル%以上、60モル%以上、70モル%以上、80モル%以上、90モル%以上、95モル%以上、99モル%以上、100モル%(実質的にスルホニルイミド化合物(1)のみ含む)等であってもよい。
 他の電解質が、フルオロリン酸化合物(2)、フルオロホウ酸化合物(3)及び六フッ化砒酸リチウム(LiAsF)からなる群より選択される少なくとも1種の化合物を含む場合、このような化合物の他の電解質全体に対する割合は、例えば、例えば、1モル%以上、5モル%以上、10モル%以上、20モル%以上、30モル%以上、40モル%以上、50モル%以上、60モル%以上、70モル%以上、80モル%以上、90モル%以上、95モル%以上、99モル%以上、100モル%(実質的にフルオロリン酸化合物(2)、フルオロホウ酸化合物(3)及び六フッ化砒酸リチウム(LiAsF)からなる群より選択される少なくとも1種の化合物のみ含む)等であってもよい。
 スルホニルイミド化合物(1)[例えば、リチウムビス(フルオロスルホニル)イミド及びリチウムビス(トリフルオロメチルスルホニル)イミドから選択された少なくとも1種を含むフルオロスルホニルイミド塩]と、他の電解質[例えば、LiPF、LiBF及びLiAsFからなる群より選択される少なくとも1種の化合物を含む他の電解質]とを組み合わせる場合、これらの割合は、所望の特性等に応じて適宜選択できるが、例えば、スルホニルイミド化合物(1)/他の電解質(モル比)=99/1~1/99(例えば、97/3~3/97)、好ましくは95/5~5/95(例えば、93/7~7/93)、さらに好ましくは90/10~10/90(例えば、83/17~17/83)等であってもよく、80/20~20/80(例えば、77/23~23/77)、75/25~25/75(例えば、73/27~27/73)、70/30~30/70(例えば、67/33~33/67)、65/35~35/65(例えば、63/37~37/63)などであってもよい。また、スルホニルイミド化合物(1)による効果を効率良く発揮しつつ他の電解質と組み合わせることができるという観点から、80/20~1/99(例えば、70/30~10/90、65/35~20/80、60/40~30/70、55/45~40/60)などとしてもよい。
 [アミド硫酸成分]
 アミド硫酸成分(アミド硫酸化合物、アミド硫酸系化合物、アミド硫酸類)としては、例えば、アミド硫酸(スルファミン酸)、アミド硫酸誘導体、これらの塩等が挙げられる。アミド硫酸成分は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 アミド硫酸成分の構造は、特に限定されず、例えば、中性型(HNSO(OH)、HN=SO(OH)など)であってもよく、双性イオン型(HSO 、H=SO(OH)Oなど)であってもよく、これらをいずれも含む構造であってもよい。
 アミド硫酸誘導体としては、例えば、N-置換アミド硫酸(N-置換スルファミン酸等)が含まれる。
 このようなアミド硫酸誘導体(及びその塩)は、下記式(4)で表される化合物(N-置換アミド硫酸及びその塩)であってもよい。なお、下記式(4)は、中性型(RNSO(OM))として表しているが、双性イオン型であっても、これらをいずれも含んでいてもよい。
Figure JPOXMLDOC01-appb-C000002
(式(4)中、R、Rは、H(水素原子)、ヒドロキシル基または置換基を有していてもよい、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数6~16のアリール基、炭素数7~16のアラルキル基、炭素数2~16のアルカノイル基を表し、ヘテロ原子を含んでいてもよく、RとRで環構造を形成していてもよい。R、Rは、H以外の上記基のとき、同一でもよく、異なっていてもよい(R、Rは、Hのとき、同一ではない(R及びRは同時にHではない))。Mは、H(水素原子)又は金属原子を表す。)
 上記式(4)において、炭素数1~10のアルキル基としては、例えば、メチル基などが、炭素数3~10のシクロアルキル基としては、例えば、シクロプロピル基などが、炭素数6~16のアリール基としては、例えば、フェニル基、ナフチル基などが、炭素数7~16のアラルキル基としては、例えば、ベンジル基、フェネチル基などが、炭素数2~16のアルカノイル基としては、ベンゾイル基など挙げられる。
 これらは、ヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子、リン原子など)を含む基であってもよい。このような基としては、例えば、炭素原子の一部がヘテロ原子に置換した基、例えば、チオシクロアルキル基(例えば、チエパン、チオカン、チエタン、チアン、ジチアン等のチオシクロアルカンに対応する基)等が挙げられる。
 また、これらの基に置換する置換基としては、例えば、ヒドロキシル基、ハロゲン原子、アミノ基、カルボキシル基、アルコキシ基、アシル基等が挙げられるが特に限定されない。これらは単独で又は2種以上組み合わせて置換していてもよい。
 金属原子としては、リチウム、ナトリウム、カリウム等のアルカリ金属原子;マグネシウム、カルシウム、バリウム等のアルカリ土類金属原子;アルミニウム等が挙げられる。
 具体的なアミド硫酸誘導体及びその塩[N-置換アミド硫酸及びその塩(又は式(4)で表される化合物)]としては、例えば、N-ヒドロキシアミド硫酸、N-モノ又はジアルキルアミド硫酸[例えば、N-メチルアミド硫酸、N-エチルアミド硫酸、N-(1-メチルプロピル)アミド硫酸、N-(2-メチルブチル)アミド硫酸、N-(2,2-ジメチルプロピル)アミド硫酸、N,N-ジエチルアミド硫酸、N-(3-ヒドロキシプロピル)アミド硫酸、N-メチル-N-(2,3-ジヒドロキシプロピル)アミド硫酸、N,N-ビス(2-ヒドロキシエチル)アミド硫酸、N-(2,3-ジヒドロキシプロピル)アミド硫酸、N-(3-メトキシ-4-メチルフェニル)アミド硫酸、N-メチル-N-(2-ヒドロキシ-3-クロロプロピル)アミド硫酸、N-(2-ヒドロキシ-3-クロロプロピル)アミド硫酸、N-エチル-N-(2-ヒドロキシ-3-クロロプロピル)アミド硫酸]、N-モノ又はジシクロアルキルアミド硫酸(例えば、N-シクロヘキシルアミド硫酸、N,N-ジシクロヘキシルアミド硫酸)、N-モノ又はジアリールアミド硫酸[例えば、N-フェニルアミド硫酸、N-ナフチルアミド硫酸、N-ヒドロキシ-N-(2-ヒドロキシ-1-ナフチル)アミド硫酸、N-(4-ブロモフェニル)アミド硫酸]、N-モノ又はジアラルキルアミド硫酸[例えば、N-ベンジルアミド硫酸、N-(β-メチルフェネチル)アミド硫酸]、N-アルキル-N-アリールアミド硫酸(例えば、N-エチル-N-フェニルアミド硫酸)、N-モノ又はジアシルアミド硫酸[例えば、N-ベンゾイルアミド硫酸、N-(3-クロロアラニル)アミド硫酸、N-(3-クロロ-3-メチルアラニル)アミド硫酸]、N-チオシクロアルキルアミド硫酸[例えば、N-(チエパン-4-イル)アミド硫酸、N-チオカン-4-イルアミド硫酸、チオカン-5-イルアミド硫酸、N-チエタン-3-イルアミド硫酸、N-1,3-ジチアン-5-イルアミド硫酸、N-(チアン-3-イル)アミド硫酸、N-(チオラン-3-イル)アミド硫酸]、これらの塩等が挙げられる。アミド硫酸誘導体及びその塩は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 また、アミド硫酸誘導体(及びその塩)は、タウリン(2-アミノエタンスルホン酸(アミノエチルスルホン酸)、HN-CH-CH-SOH)等であってもよい。
 アミド硫酸成分において、塩としては、特に限定されず、例えば、アミド硫酸やアミド硫酸誘導体を、塩基及び酸のいずれとする塩であってもよく、通常、アミド硫酸やアミド硫酸誘導体を酸とする塩(アミド硫酸やアミド硫酸誘導体と塩基との塩)であってもよい。
 具体的な塩としては、金属塩[例えば、アルカリ金属塩(例えば、リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例えば、マグネシウム塩、カルシウム塩、バリウム塩等)、アルミニウム塩等]が挙げられる。好ましい塩には、アルカリ金属塩(例えば、リチウム塩等)等が含まれる。また、塩は、組み合わせる電解質塩のカチオンに対応する塩であってもよい。例えば、電解質塩としてリチウム塩を使用する場合、リチウム塩(アミド硫酸リチウム等)を使用してもよい。
 アミド硫酸成分は、代表的には、アミド硫酸、アミド硫酸誘導体及びこれらのアルカリ金属塩から選択された少なくとも1種、特に、アミド硫酸及びアミド硫酸アルカリ金属塩(例えば、アミド硫酸リチウム)から選択された少なくとも1種を含んでいてもよい。
 電解質組成物は、電解質塩及びアミド硫酸成分を含む。そのため、本発明の一態様では、アミド硫酸成分を含む電解質塩を対象とするということもできる。
 アミド硫酸成分の割合は、例えば、電解質組成物(電解質塩及びアミド硫酸成分の総量)に対して、0.001質量ppm以上(例えば、0.003~50000質量ppm)程度の範囲から選択でき、0.005質量ppm以上(例えば、0.007~10000質量ppm)、好ましくは0.01質量ppm以上(例えば、0.012~8000質量ppm)、さらに好ましくは0.05質量ppm以上(例えば、0.07~5000質量ppm)程度であってもよく、0.1質量ppm以上(例えば、0.15~10000質量ppm)、0.2質量ppm以上(例えば、0.25~8000質量ppm)、0.3質量ppm以上(例えば、0.5~7000質量ppm)、1質量ppm以上(例えば、1~6000質量ppm)、5質量ppm以上(例えば、5~6000質量ppm)、10質量ppm以上(例えば、10~5000質量ppm)、50質量ppm以上(例えば、65~4000質量ppm)、100質量ppm以上(例えば、100~3000質量ppm)、200質量ppm以上(例えば、200~2500質量ppm)などであってもよい。
 なお、アミド硫酸成分が、塩(アミド硫酸やアミド硫酸誘導体の塩)である場合、上記割合は、塩でない形態[又はフリー体、例えば、アミド硫酸、アミド硫酸誘導体(例えば、前記式(4)においてMが水素原子である場合)等]換算での割合であってもよい(以下、アミド硫酸成分の割合について同じ)。
 なお、電解質組成物において、電解質塩及び/又はアミド硫酸成分は、イオンの形態で存在(含有)していてもよい。
 なお、アミド硫酸成分は、その一部又は全部を、電解質塩に対して添加してもよく、電解質塩の製造過程において生成したものを利用してもよい。
 また、電解質組成物は、他の成分を含んでいてもよいが、実質的に、電解質塩及びアミド硫酸成分のみで構成してもよい。
 <溶媒組成物及び非水電解液>
 溶媒組成物は、電解質塩としてスルホニルイミド化合物(1)と、アミド硫酸成分と、溶媒とを含む。
 溶媒組成物において、電解質塩(スルホニルイミド化合物(1)、他の電解質等)及びアミド硫酸成分は、上記電解質組成物の項で例示の成分を使用できる。好ましい態様等なども前記の通りである。
 なお、溶媒組成物において、電解質塩及び/又はアミド硫酸成分は、イオンの形態で存在(含有)していてもよく、通常、電解質塩及びアミド硫酸成分は、溶解していてもよい。
 溶媒としては、溶媒組成物の用途等に応じて適宜選択できるが、通常、非水溶媒又は有機溶媒であってもよく、非プロトン性溶媒であってもよい。溶媒は、電解質塩及び/又はアミド硫酸成分を溶解可能な溶媒であってもよい。溶媒は、比較的極性の低い溶媒であってもよく、例えば、比誘電率が10以下の溶媒(有機溶媒)であってもよい。
 溶媒の沸点は、用途等によるが、例えば、50℃以上(例えば、60℃以上、70℃以上)等であってもよい。
 具体的な溶媒としては、例えば、鎖状カーボネート[例えば、ジアルキルカーボネート(例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などのジC1-4アルキルカーボネート)、アルキルアリールカーボネート(例えば、炭酸メチルフェニル等のC1-4アルキルフェニルカーボネート)、ジアリールカーボネート(例えば、炭酸ジフェニル)等]、環状カーボネート[例えば、飽和環状カーボネート(例えば、エチレンカーボネート、プロピレンカーボネート、2,3-ジメチル炭酸エチレン、炭酸1,2-ブチレン等のアルキレンカーボネート(例えば、C2-6アルキレンカーボネート)、エリスリタンカーボネート等)、不飽和環状カーボネート(例えば、炭酸ビニレン、メチルビニレンカーボネート、エチルビニレンカーボネート等のアルケニレンカーボネート;2-ビニル炭酸エチレン)、フッ素含有環状カーボネート(例えば、フルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート)等]等のカーボネート類;鎖状エーテル類[例えば、アルカンジオールジアルキルエーテル(例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等)、ポリアルカンジオールジアルキルエーテル(例えば、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエ-テル)等]、環状エーテル類[例えば、テトラヒドロフラン類(例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、2,6-ジメチルテトラヒドロフラン)、テトラヒドロピラン類(例えば、テトラヒドロピラン)、ジオキサン類(例えば、1,4-ジオキサン)、ジオキソラン類(例えば、1,3-ジオキソラン)、クラウンエーテル等]等のエーテル類;鎖状エステル類[例えば、芳香族カルボン酸エステル類(例えば、安息香酸メチル、安息香酸エチル)等]、環状エステル類[又はラクトン類、例えば、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等]等のエステル(カルボン酸エステル)類;リン酸アルキルエステル(例えば、リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル)等のリン酸エステル類;脂肪族ニトリル(例えば、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2-メチルグルタロニトリル、バレロニトリル、ブチロニトリル、イソブチロニトリル等)、芳香族ニトリル類(例えば、ベンゾニトリル、トルニトリル)等のニトリル類;スルホン類(例えば、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン等)、スルホラン類(例えば、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン)等のイオウ含有溶媒;ニトロメタン、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、3-メチル-2-オキサゾリジノン等を挙げることができる。溶媒は、それぞれ単独で使用してもよく、2種以上組み合わせて用いてもよい。
 これらの溶媒のうち、カーボネート類、エーテル類、エステル類等が好ましく、特に、鎖状カーボネート(例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート)、環状カーボネート(例えば、エチレンカーボネート、プロピレンカーボネート)、ラクトン(例えば、γ-ブチロラクトン、γ-バレロラクトン)等が好ましく、鎖状カーボネート(例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等)がさらに好ましい。
 なお、鎖状カーボネート(例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート)、鎖状エーテル(例えば、エチレングリコールジメチルエーテル)等は、比誘電率10以下(さらには沸点50℃以上)の溶媒でもある場合が多い。そのため、溶媒は、当該鎖状カーボネートや鎖状エーテル等を含む(少なくとも含む)ものであってもよい。
 また、本発明の別の態様では、アミド硫酸成分と組み合わせる溶媒として、比誘電率が10以下の溶媒(有機溶媒)を含む溶媒を好適に使用してもよい。スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩(さらにはアミド硫酸成分と組み合わせたフッ素含有スルホニルイミド塩)は、比誘電率が10以下の有機溶媒(例えば、鎖状カーボネート等)との組み合わせにおいて、安定な[例えば、分解しにくい(特に水が多少存在する系でも分解しにくい)]ようであり、好適である。
 溶媒が、比誘電率10以下の溶媒を含む場合、溶媒全体に対する比誘電率10以下の溶媒の割合は、例えば、10体積%以上、20体積%以上、30体積%以上、40体積%以上、50体積%以上、60体積%以上、70体積%以上、80体積%以上、90体積%以上、95体積%以上、99体積%以上、100体積%(実質的に比誘電率10以下の溶媒のみ)等であってもよい。
 特に、溶媒が鎖状カーボネートを含む場合、溶媒は鎖状カーボネートのみで構成してもよく、他の溶媒[鎖状カーボネートでない溶媒、例えば、環状カーボネート(エチレンカーボネート、プロピレンカーボネート等)]と組み合わせて使用してもよい。
 鎖状カーボネートとの他の溶媒とを組み合わせる場合、これらの割合は、所望の特性等に応じて適宜選択できるが、例えば、鎖状カーボネート/他の溶媒(体積比)=99.9/0.1~1/99(例えば、99.8/0.2~10/90)、好ましくは99.5/0.5~20/80(例えば、99.3/0.7~30/70)、さらに好ましくは99/1~40/60(例えば、98.8/1.2~45/55)等であってもよく、99/1~20/80(例えば、98/2~25/75)、97/3~30/70(例えば、96/4~35/65)、95/5~40/60、93/7~45/55、95/5~50/50、93/7~55/45、90/10~60/40などであってもよい。
 溶媒組成物は、電解液用として好適に使用してもよい。電解液用途において、溶媒組成物は、電解液の少なくとも一部を構成すればよい。例えば、溶媒組成物は、そのまま電解液として用いてもよく、電解液材料として用いてもよい。そのため、溶媒組成物は、電解液(非水電解液)ということもできる。
 ここで、電解液を構成する電解質塩として、適用する電池の種類等に応じた種々の電解質塩が知られているが、本発明者の検討によれば、このような電解質のうち、スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩を使用すると、経時的に系中のpHが低下したり、溶媒の分解が生じたり、収容する容器を腐食させる等の現象が生じる場合があることがわかった。そして、このような現象は、本発明者の検討によれば、当該フッ素含有スルホニルイミド塩に、アミド硫酸成分を組み合わせると生じやすい場合があることもわかった。
 本発明者は、この要因を探るべく検討した結果、上記のようなフッ素含有スルホニルイミド塩そのものの分解(そして、分解による、フッ化水素のような酸成分の発生)が推測され、この分解の一因には、系中に混入した微量の水の存在も推測された。
 このような推測のもと、系中に混入する水を抑えるべく検討したが、水の混入を高レベルで抑えるには、使用する成分や調製条件を適宜選択する等、煩雑な条件を要する場合があった。
 このような中、本発明者は、混入する水を抑えるという発想とは全く別異の発想に基づいて、上記のようなフッ素含有スルホニルイミド塩を用いた場合に特有の課題(pH低下、溶媒の分解、容器の腐食等)を解決できないか検討した結果、意外にも、組み合わせる溶媒として比誘電率が10以下の溶媒を選択することによって、当該課題を解決しうること(特に、アミド硫酸成分を含む場合や系中に多少水が含まれる場合であっても当該課題を解決しうること)を見出した。
 すなわち、本発明の別の態様によれば、溶媒組成物(例えば、電解液材料)を効率良く安定化しうる。例えば、このような溶媒組成物は、上記のようなフッ素含有スルホニルイミド塩の分解、pHの低下、溶媒の分解等を効率良く抑制しうるものであり、そのため、容器の腐食等も効率よく抑制しうる。また、溶媒組成物は、電解質塩(スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩)の割合又は濃度が大きい場合(例えば5質量%以上)であっても、上記効果を発揮できる。
 電解液材料とする場合、例えば、溶媒組成物にさらに溶媒を混合(溶媒組成物をさらに溶媒で希釈)することで電解液としてもよい。溶媒(混合又は希釈する溶媒)としては、前記と同様の溶媒が挙げられ、溶媒組成物を構成する溶媒と同一の又は異なる溶媒を用いてもよい。
 溶媒組成物において、電解質塩(又はスルホニルイミド化合物(1))の割合(濃度)は、その使用態様(電解液としてそのまま使用するか、電解液材料とするか等)等に応じて適宜選択できるが、例えば、溶媒組成物全体に対して、0.02質量ppm以上(例えば、0.1質量ppm~99質量%)、好ましくは0.1質量%以上(例えば、0.5~80質量%)、さらに好ましくは1質量%以上(例えば、5~75質量%、10~75質量%)程度であってもよい。
 特に、電解質塩の割合は、電解液材料とする場合等において、比較的高割合又は高濃度[例えば、溶媒組成物全体に対して、5質量%以上(例えば、5~90質量%)、好ましくは10質量%以上(例えば、10~90質量%、10~80質量%)、さらに好ましくは20質量%以上(例えば、20~85質量%、20~75質量%)、特に30質量%以上(例えば、30~80質量%、30~70質量%)、最も好ましくは35質量%以上(例えば、35~80質量%)程度]であってもよい。また、電解液としてそのまま使用する場合等において、溶媒組成物(又は電解液)全体に対して、1質量%以上[例えば、3~70質量%)、好ましくは5質量%以上(例えば、8~50質量%)、さらに好ましくは10質量%以上(例えば、12~45質量%)程度]であってもよい。
 溶媒組成物において、アミド硫酸成分の割合(濃度)は、その使用態様(電解液としてそのまま使用するか、電解液材料とするか等)等に応じて適宜選択できるが、例えば、溶媒組成物全体に対して、0.01質量ppm以上(例えば、0.02~10000質量ppm)、好ましくは0.03質量ppm以上(例えば、0.04~5000質量ppm)、さらに好ましくは0.05質量ppm以上(例えば、0.05~1000質量ppm)程度であってもよく、0.1質量ppm以上(例えば、0.5質量ppm以上)、1質量ppm以上(例えば、3~10000質量ppm)、5質量ppm以上(例えば、5~5000質量ppm)、10質量ppm以上[例えば、50質量ppm以上(例えば、50~3000質量ppm)]、100質量ppm以上(例えば、100~2000質量ppm)、300質量ppm以上(例えば、300~1500質量ppm)等であってもよい。
 特に、アミド硫酸成分の割合は、電解液材料とする場合等において、比較的高割合又は高濃度[例えば、溶媒組成物全体に対して、100質量ppm以上(例えば、100~3000質量ppm)、好ましくは300質量ppm以上(例えば、300~2000質量ppm)、さらに好ましくは500質量ppm以上(例えば、500~1000質量ppm)程度]であってもよく、電解液としてそのまま使用する場合等において、溶媒組成物(又は電解液)全体に対して、1質量ppm以上[例えば、3~3000質量ppm、好ましくは30質量ppm以上(例えば、50~2000質量ppm)、さらに好ましくは100質量ppm以上(例えば、200~1500質量ppm)程度]であってもよい。
 溶媒組成物は、用途にもよるが、通常、非水溶媒組成物(水を実質的に含まない溶媒組成物)であってもよい。この場合、非水溶媒組成物は、非水電解液ということもできる。一方、本発明では、溶媒を比誘電率10以下の溶媒で構成すること等により、組成物(溶媒組成物)が水を多少含む場合であっても、電解質塩(例えば、フッ素含有スルホニルイミド塩)の分解や、それに伴う悪影響[例えば、電解質濃度の低下、分解成分による悪影響(例えば、フッ化水素の発生に伴うpHの低下、溶媒の分解等)]等を効率よく抑えやすいようである。
 このような溶媒組成物(水を含む溶媒組成物)における水の割合は、有限量、例えば、0.1質量ppm以上(例えば、0.2質量ppm以上)、好ましくは0.3質量ppm以上(例えば、0.4質量ppm以上)等であってもよく、0.5質量ppm以上、0.7質量ppm以上、0.8質量ppm以上、1質量ppm以上、1.5質量ppm以上、2質量ppm以上、3質量ppm以上、5質量ppm以上、7質量ppm以上、10質量ppm以上などであってもよい。
 溶媒組成物における水の割合の上限値は、特に限定されないが、例えば、3000質量ppm、1000質量ppm、900質量ppm、800質量ppm、700質量ppm、600質量ppm、500質量ppm、400質量ppm、300質量ppm、200質量ppm、100質量ppm、50質量ppm等であってもよい。
 溶媒組成物は、用途にもよるが、プロトン性有機溶媒を実質的に含まない組成物であってもよい。特に、溶媒組成物において、メタノール及び/又はエタノールの割合は、10000質量ppm以下(例えば、0.1質量ppm又は検出限界~10000質量ppm)、好ましくは1000質量ppm以下、さらに好ましくは100質量ppm以下、特に好ましくは50質量ppm以下、最も好ましくは30質量ppm以下であってもよい。
 溶媒組成物は、特定の元素やイオン(フッ素イオン、塩素イオン、硫酸イオン等)を含んでいてもよく、その用途等に応じて、実質的に含んでいなくてもよい。
 なお、溶媒組成物は、必要に応じて、実害のない範囲で他の成分(電解質、アミド硫酸成分及び溶媒以外の成分)を含んでいてもよい。他の成分としては、溶媒組成物の用途等に応じて適宜選択でき、例えば、電池特性の改善又は向上を目的とした添加剤[例えば、酸無水物(無水コハク酸、無水グルタル酸、無水マレイン酸等)等]等が挙げられる。他の成分は、それぞれ単独で使用してもよく、2種以上組み合わせて使用してもよい。
 溶媒組成物が他の成分を含む場合、他の成分の割合は、その種類や目的等に応じて適宜選択できるが、例えば、10質量%以下、8質量%以下、5質量%以下、3質量%以下等であってもよい。
 溶媒組成物のpHは、電解質の種類等に応じて適宜選択でき、特に限定されないが、例えば、3~12、好ましくは4~11、さらに好ましくは4~9等であってもよい。
 上記のようなpHであれば、溶媒組成物の構成成分(例えば、溶媒)の分解や溶媒組成物(電解液)の保存容器の腐食(さらにはそれに伴う不純物の発生)等を効率よく抑えやすい。なお、上記pHは、溶媒組成物の調製時のみならず、所定時間経過後におけるpHであってもよい。本発明では、前記の通り、鎖状カーボネートを選択することで、経時的なpHの低下を効率よく抑制できるようであり、長期にわたって上記のようなpHを維持しうる。
 <溶媒組成物又は溶媒組成物を収容した容器を保管又は輸送する方法>
 溶媒組成物(例えば、電解液材料)は、容器に収容(保存)してもよい。容器に収容することで、保存や輸送に備えることができる。そのため、本発明には、溶媒組成物を収容した容器(溶媒組成物入り容器)や、溶媒組成物又は当該容器の保存方法や輸送方法も包含する。特に、溶媒組成物は、スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩(さらにはアミド硫酸成分)を含んでいる(さらには所定量の水を含んでいる)にもかかわらず、安定であるため、保存や輸送に好適である。
 このような安定化は、溶媒を比誘電率10以下の溶媒(例えば、鎖状カーボネート)で構成することにより、効率良く実現しやすい。そのため、このような保存又は輸送方法は、スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩(さらには、アミド硫酸成分、所定量の水分量)及び溶媒を含む溶媒組成物において、当該溶媒に比誘電率10以下の溶媒を含有させて、保存又は輸送する方法ということもできる。
 容器(保存容器)の材質容器内部の材質、内容物(溶媒組成物)と接触する部分の材質)としては、特に限定されず、例えば、金属(例えば、ステンレス鋼、ハステロイなど)、樹脂[例えば、オレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン等)、フッ素系樹脂(例えば、ポリテトラフルオロエチレン(PTFE)等)等]、ガラス等が挙げられる。
 また、上記の金属材料から構成される容器の内面を樹脂でコーティングしてもよい。この際、コーティングに用いられる樹脂は特に制限されないが、例えば、フッ素系樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)など)、オレフィン系樹脂(例えば、ポリプロピレン等)が挙げられる。
 溶媒組成物では、例えば、溶媒を比誘電率10以下の溶媒(例えば、鎖状カーボネート)で構成すること等により、スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩を含むにもかかわらず、上記のような材質(例えば、ステンレス鋼等)であっても、腐食(例えば、長期の保存・輸送時における経時的な腐食)を効率よく抑えうる。
 さらに、容器は密封可能(閉鎖系)であることが好ましく、容器を密封可能とする手段としては、例えば、容器の一部にバルブを設ける形態が例示される。
 容器(容器内部)において、溶媒組成物以外の部分(気相部、ヘッドスペース)は、活性ガス(例えば、空気、酸素等)であってもよく、不活性ガス[例えば、希ガス(ヘリウム等)、窒素など]であってもよい。
 容器の気相部(ヘッドスペース)は、好ましくは不活性ガスで構成(不活性ガスが封入)されていてもよい。また、気相部(構成する気体)は、乾燥されていてもよい(例えば、ドライエアであってもよい)。このような観点から、気相部(気相部を構成する気体)の露点は、比較的低い温度、例えば、0℃以下、-10℃以下、-20℃以下などであってもよい。
 溶液組成物の温度(例えば、保管時や輸送時の温度)は、特に限定されないが、例えば、60℃以下(例えば、50℃以下、40℃以下)であってもよく、-40℃以上(例えば、-30℃以上、-20℃以上、-10℃以上、0℃以上)であってもよい。温度を適宜調整することで、凝固や分解(例えば、電解液材料にさらに溶媒を添加したときの分解)を効率よく抑えうる。
 <電解質組成物・溶媒組成物の用途>
 溶媒組成物(電解質組成物)は、前記の通り、電解液用として好適である。電解液は、電解質組成物又は溶媒組成物(電解質塩、アミド硫酸成分及び溶媒)を含んでいればよく、溶媒組成物そのものであってもよく、溶媒組成物(電解液材料としての溶媒組成物)と溶媒とを含んでいてもよい。
 電解液において、各種成分の種類や割合等は、前記の通りである。
 電解液(溶媒組成物)は、例えば、電池(充放電機構を有する電池)、蓄電(電気化学)デバイス(又はこれらを構成するイオン伝導体の材料)等に用いることができる。具体的には、電解液は、例えば、一次電池、二次電池(例えば、リチウム(イオン)二次電池)、燃料電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子等を構成する電解液として使用しうる。
 以下、電池(特にリチウムイオン二次電池)を例に挙げて説明する。電池(電解液を備えた電池)は、正極及び負極を少なくとも含んでいる。
 [正極]
 正極は、例えば、正極活物質を含む正極合剤(正極活物質組成物)が正極集電体に担持されてなるものであってもよく、通常、シート状に成形されていてもよい。
 正極活物質としては、各種イオン(リチウムイオン、ナトリウムイオン等)を吸蔵・放出可能であれば良く、例えば、従来公知の二次電池(リチウムイオン二次電池やナトリウムイオン二次電池)等で使用される正極活物質等を用いることができる。
 リチウムイオン二次電池の活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、LiNi1-x-yCoMnやLiNi1-x-yCoAl(0≦x≦1、0≦y≦1)で表される三元系酸化物などの遷移金属酸化物、LiAPO(A=Fe、Mn、Ni、Co)などのオリビン構造を有する化合物、遷移金属を複数取り入れた固溶材料(電気化学的に不活性な層状のLiMnOと、電気化学的に活性な層状のLiMO(M=Co、Niなどの遷移金属)との固溶体)、LiCoMn1-x(0≦x≦1)、LiNiMn1-x(0≦x≦1)、LiAPOF(A=Fe、Mn、Ni、Co)などのフッ化オリビン構造を有する化合物、硫黄などを用いることができる。これらを単独で使用してもよく、2種以上組み合わせて使用してもよい。
 ナトリウムイオン二次電池の活物質としては、NaNiO、NaCoO、NaMnO、NaVO、NaFeO、Na(NiMn1-X)O(0<X<1)、Na(FeMn1-X)O(0<X<1)、NaVPOF、NaFePOF、Na(PO等が挙げられる。これらを単独で使用してもよく、2種以上組み合わせて使用してもよい。
 正極活物質の使用量は、正極合剤100質量部あたり、例えば、75質量部以上(例えば、80~99質量部)、好ましくは85質量部以上、さらに好ましくは90質量部以上であってもよく、99質量部以下、98質量部以下、97質量部以下であってもよい。
 正極合剤は、さらに、導電助剤(導電物質)、結着剤、溶媒等を含んでいてもよい。
 導電助剤としては、特に限定されず、例えば、カーボンブラック(例えば、アセチンブラック等)、グラファイト、カーボンナノチューブ(例えば、単層カーボンナノチューブ、多層カーボンナノチューブ等)、炭素繊維(例えば、気相法炭素繊維等)、金属粉末材料等が挙げられる。導電助剤は、それぞれ単独で使用してもよく、2種以上組み合わせて使用してもよい。
 結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂;スチレン-ブタジエンゴム、ニトリルブタジエンゴム等の合成ゴム;ポリアミドイミド等のポリアミド系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリ(メタ)アクリル系樹脂;ポリアクリル酸;カルボキシメチルセルロース等のセルロース系樹脂;等が挙げられる。結着剤は、それぞれ単独で使用してもよく、2種以上組み合わせて使用してもよい。なお、結着剤は、使用の際に溶媒に溶解状態であっても、溶媒に分散した状態であってもよい。
 導電助剤及び結着剤の配合量は、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性等を考慮して適宜調整することができる。
 例えば、導電助剤を用いる場合、正極合剤中の導電助剤の含有量としては、正極合剤100質量%に対して、0.1~10質量%の範囲で用いるのが好ましく、より好ましくは0.5~10質量%、さらに好ましくは1~10質量%であってもよい。
 また、結着剤を用いる場合、正極合剤中の結着剤の含有量としては、正極合剤100質量%に対して0.1~10質量%が好ましく、より好ましくは0.5~9質量%、さらに好ましくは1~8質量%であってもよい。
 溶媒(正極合剤を分散または溶解する溶媒)としては特に限定されず、従来公知の各材料を用いることができ、例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、エタノール、酢酸エチル、水等が挙げられる。これらの溶媒は、それぞれ単独で使用してもよく、2種以上組み合わせて使用してもよい。溶媒の使用量は特に限定されず、製造方法や、使用する材料に応じて適宜決定すればよい。
 正極集電体の材料としては特に限定されず、例えば、アルミニウム、アルミニウム合金、SUS(ステンレス鋼)、チタン等の導電性金属が使用できる。
 正極の製造方法は特に限定されないが、例えば、(i)分散用溶媒に正極合剤を溶解又は分散させた正極活物質組成物を正極集電体にドクターブレード法等で塗工したり、正極集電体を正極活物質組成物に浸漬した後、乾燥する方法;(ii)正極活物質組成物を混練成形し乾燥して得たシートを正極集電体に導電性接着剤を介して接合し、プレス、乾燥する方法;(iii)液状潤滑剤を添加した正極活物質組成物を正極集電体上に塗布又は流延して、所望の形状に成形した後、液状潤滑剤を除去し、次いで、一軸又は多軸方向に延伸する方法;等が挙げられる。また、必要に応じて乾燥後の正極合剤層を加圧してもよい。
 [負極]
 負極は、例えば、負極活物質を含む負極合剤(負極活物質組成物)が負極集電体に担持されてなるものであり、通常、シート状に成形されていてもよい。
 負極活物質としては、各種電池(例えば、リチウム二次電池)で使用される従来公知の負極活物質を用いることができ、各種イオン(例えば、リチウムイオン)を吸蔵・放出可能なものであればよい。
 具体的な負極活物質としては、人造黒鉛、天然黒鉛等の黒鉛材料、石炭,石油ピッチから作られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料、Si、Si合金、SiO等のSi系負極材料、Sn合金等のSn系負極材料、リチウム金属、リチウム-アルミニウム合金等のリチウム合金を用いることができる。負極活物質は、それぞれ単独で使用してもよく、2種以上組み合わせて使用してもよい。
 負極合剤は、さらに、導電助剤(導電物質)、結着剤、溶媒等を含んでいてもよい。導電助剤、結着剤、溶媒等としては、前記と同様の成分を使用できる。また、その使用割合等も前記と同様である。
 負極集電体の材料としては、銅、鉄、ニッケル、銀、ステンレス鋼(SUS)等の導電性金属を用いることができる。
 負極の製造方法としては、正極の製造方法と同様の方法を採用することができる。
 [セパレータ]
 電池はセパレータを備えていてもよい。セパレータは正極と負極とを隔てるように配置されるものである。セパレータには、特に制限がなく、本発明では、従来公知のセパレータはいずれも使用することができる。具体的なセパレータとしては、例えば、非水電解液を吸収・保持し得るポリマーからなる多孔性シート(例えば、ポリオレフィン系微多孔質セパレータやセルロース系セパレータなど)、不織布セパレータ、多孔質金属体等が挙げられる。
 上記多孔性シートの材質としては、ポリエチレン、ポリプロピレン、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造を有する積層体等が挙げられる。
 上記不織布セパレータの材質としては、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステル、ポリプロピレン、ポリエチレン、ポリイミド、アラミド、ガラス等が挙げられ、要求される機械的強度等に応じて、上記例示の材質を、それぞれ単独で使用してもよく、単独で又は2種以上組み合わせて用いることができる。
 [電池外装材]
 電解液、正極、負極(さらにはセパレーター)等を備えた電池(電池素子)は、通常、電池使用時の外部からの衝撃、環境劣化等から電池素子を保護するため電池外装材に収容される。電池外装材の素材は特に限定されず従来公知の外装材はいずれも使用することができる。
 電池(リチウムイオン二次電池等)の形状は特に限定されず、円筒型、角型、ラミネート型、コイン型、大型等、リチウムイオン二次電池の形状として従来公知の形状はいずれも使用することができる。また、電気自動車、ハイブリッド電気自動車等に搭載するための高電圧電源(数10V~数100V)として使用する場合には、個々の電池を直列に接続して構成される電池モジュールとすることもできる。
 二次電池(リチウムイオン二次電池等)の定格充電電圧は特に限定されないが、3.6V以上、好ましくは4.1V以上、さらに好ましくは4.2V以上(例えば、4.2V超)であってもよく、4.3V以上(例えば、4.35V以上)であってもよい。定格充電電圧が高いほど、エネルギー密度を高めることはできるが、安全性の観点などから、定格充電電圧は、4.6V以下(例えば、4.5V以下)等であってもよい。
 本発明では、溶媒組成物(又は電解質組成物)で電解液を構成することで、アミド硫酸成分を含まない場合に比べて、適用する電池やデバイスにおける抵抗を低減したり、それに起因してか適用する電池やデバイスの性能{例えば、充放電特性、保存特性[例えば、高温保存特性(例えば、40℃以上、50℃以上等での保存特性)]、サイクル特性等}を改善又は向上しうる。
 そうすると、アミド硫酸成分は、電解液用の添加剤(所望の特性を向上又は改善するための添加剤)ということもできる(新規な電解液用の添加剤等を提供しうる)。すなわち、特定成分であるアミド硫酸成分は、電解液等に対する添加剤として用いることができ、このような態様で用いることで、上記のような機能(例えば、抵抗の低減機能、電池性能の改善等)を発揮しうる。
 そのため、本発明には、(i)アミド硫酸成分で構成された(アミド硫酸成分を含む)電解液用の添加剤[例えば、抵抗を低減するための剤(抵抗低減剤)、性能(例えば、充放電特性、保存特性及びサイクル特性から選択された少なくとも1種の特性)を改善又は向上するための剤]、(ii)電解液にアミド硫酸成分を存在させて、抵抗を低減する方法、(iii)電解液にアミド硫酸成分を存在させて、性能(例えば、充放電特性、保存特性及びサイクル特性から選択された少なくとも1種の特性)を向上又は改善する方法等も含まれる。
 なお、このような機能(例えば、抵抗低減効果や性能の向上効果)は、溶媒組成物(又は電解質組成物)で構成された電解液を用いる限り、幅広い条件にて発揮しうるが、特に、低温下[例えば、10℃以下(例えば、5℃以下)、0℃以下(例えば、-2℃以下)、-5℃以下(例えば、-7℃以下)、-10℃以下(例えば、-12℃以下)、-15℃以下(例えば、-18℃以下)、-20℃以下(例えば、-22℃以下)、-25℃以下(例えば、-22℃以下)、-30℃以下等]において効率よく発揮しうる。
 そのため、上記添加剤や方法は、特に、このような温度において適用してもよい(例えば、上記特定の低温下において抵抗を低減するための剤、上記特定の低温下で抵抗を低減する方法、上記特定の低温下で性能(例えば、充放電特性)を向上又は改善する方法等であってもよい)。
 本発明の別の態様では、比誘電率10以下の溶媒(例えば、鎖状カーボネート)を選択することで、スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩(さらには、アミド硫酸成分と組み合わせたフッ素含有スルホニルイミド塩)に特有の問題(フッ素含有スルホニルイミド塩の分解、pHの低下、容器の腐食、溶媒の分解等)を抑制しうる。
 そうすると、比誘電率10以下の溶媒は、このような特有の問題を解決しうる添加剤(例えば、スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩の分解を抑制するための剤)ということもできる。
 そのため、本発明には、(i)スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩及び溶媒を含む組成物において、フッ素含有スルホニルイミド塩の分解、pHの低下、収容される容器の腐食から選択された少なくとも1つを抑制するための添加剤であって、比誘電率10以下の溶媒を含む剤、(ii)フッ素含有スルホニルイミド塩及び溶媒を含む組成物において、フッ素含有スルホニルイミド塩の分解、pHの低下、収容される容器の腐食から選択された少なくとも1つを抑制する方法であって、溶媒に比誘電率10以下の溶媒を含有させる方法等も含まれる。
 このような剤及び方法において、組成物は、水を有限量(例えば、水を0.1質量ppm以上の濃度で)含んでいてもよい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではない。
 <実施例1シリーズ>
 なお、本実施例1シリーズにおいて行った各種分析・評価方法は、以下の通りである。
19F-NMR測定]
 19F-NMRの測定は、Varian社製の「Unity Plus-400」を使用して行った(内部標準物質:ベンゼンスルホニルフルオリド、積算回数:16回)。
 [イオンクロマトグラフィー]
 溶媒組成物を超純水(18.2Ω・cm超)で1000倍に希釈して測定溶液とし、イオンクロマトグラフィーシステム ICS-3000(日本ダイオネクス株式会社製)を用いて、測定した。
・分離モード:イオン交換
・溶離液:7~20mM KOH水溶液
・検出器:電気伝導度検出器
・カラム:アニオン分析用カラム Ion PAC AS-17C(日本ダイオネクス株式会社製)
 [抵抗値]
 作成した電池に、0.1C(3mA)90分の充電を行い、封止部一辺を開裂、再真空封止し、ガス抜きを行った。その後常温で3日間放置し、4.2V、0.5C(15mA)5時間の定電流定電圧充電後、0.2C(6mA)、2.75V終止の定電流放電、更に同様の条件で充電後、1C(30mA)、2.75V終止の定電流放電を行った。これをセルのエージング工程とした。エージング後のセルに、1C(30mA)、30分の定電流充電を行い、充電深度50%にし、25℃及び-30℃において、1GHzから10mHzまでのインピーダンス測定を行い、円弧が発散し始める周波数の実軸抵抗値を測定した。そして、得られた結果から、参考例(アミド硫酸成分を含まない場合)に対する抵抗減少率[(参考例の抵抗値-実施例の抵抗値)/参考例の抵抗値×100]を求めた。
 [充放電容量]
 抵抗値測定後のセルを、25℃で0.2C(6mA)、2.75Vまで放電後、25℃で、4.2V、1C(30mA)0.6mA終止の定電流定電圧充電を行った。充電後のセルを3時間-20℃で放置後、-20℃で、1C(30mA)、2.75V終止の定電流放電容量を測定した。
 -20℃で放電容量測定後のセルを3時間常温放置し、25℃で0.2C(6mA)、2.75V終止の定電流放電を行った。放電後のセルを-20℃で3時間放置後、-20℃で1C(30mA)、4.2V終止の定電流充電容量を測定した。
 そして、得られた結果から、参考例(アミド硫酸成分を含まない場合)に対する容量上昇率[(実施例の容量-参考例の容量)/参考例の容量×100]を求めた。
 [高温保存特性]
 [抵抗値]の項に記載の方法でエージング後のセルを、25℃で、4.2V、1C(30mA)0.6mA終止の定電圧充電後、25℃で0.2C(6mA)、2.75v終止の放電容量を測定し、初期容量とした。初期容量測定後、25℃で、4.2V、1C(30mA)、3時間終止の充電を行い、充電後のセル回路電圧を測定し、60℃恒温槽で2週間保存した。保存後のセルを25℃で3時間放置後のセル回路電圧を測定した。回路電圧測定後、25℃で、1C(30mA)、2.75V終止までの放電を行い、残存容量を測定した。残存容量測定後、25℃で、4.2V、1C(30mA)、0.6mA終止の充電を行い、0.2C(6mA)、2.75V終止の放電を行い、0.2C回復容量を測定した。さらに同様の充電を行った後、2C(60mA)、2.75V終止の放電を行い、2C回復容量を測定した。
 そして、次のようにして、容量維持率と、電圧の低下を求めた。
・容量維持率:初期容量と、各放電電流で測定した回復容量から、容量維持率(回復容量/初期容量×100)を算出した。
・電圧の低下:放置前後の回路電圧の差を△Vとして算出した。
 [45℃サイクル]
 [抵抗値]の項に記載の方法でエージング後のセルを45℃環境で以下の充放電条件で300サイクルの充放電を行った。
(充放電条件)
・充電:4.2V、1C(30mA)、0.6mA終止
・充電レスト:10分
・放電:30mA、2.75V終止
・放電レスト:10分
 そして、次のようにして、300サイクルの充放電後の容量維持率を求めた。1サイクル目の放電容量と300サイクル目の放電容量との値から、300サイクル容量維持率(300サイクル目の放電容量/1サイクル目の放電容量)×100を算出した。
 [実施例1-1]
 [電解質組成物及び溶媒組成物(電解液)]
 特開2018-035054号公報の比較例1に記載の方法でリチウムビス(フルオロスルホニル)イミド(LiFSI)を合成した。得られたLiFSIを、比誘電率10以下の溶媒であるエチルメチルカーボネート(EMC)に溶解させ、濃度40質量%でLiFSIを含むEMC溶液を得た。なお、LiFSIの濃度は、19F-NMRにより測定した(以下同じ)。
 得られたEMC溶液に、アミド硫酸を添加し、1日撹拌し、メンブレンフィルターで濾過した。濾過後のEMC溶液に、LiPF、エチレンカーボネート(EC)及びEMCを添加して、電解質塩として、LiFSIを0.6M、LiPFを0.6Mの濃度で含む、溶媒組成物(EC/EMC(体積比)=3/7の組成物)を得た。なお、溶媒組成物において、電解質は溶解しており、目視では溶け残りは確認できなかった。
 得られた溶媒組成物を、イオンクロマトグラフィーにて分析したところ、アミド硫酸成分としてアミド硫酸を6質量ppmの濃度で含むことがわかった。
 上記イオンクロマトグラフィー分析結果をふまえると、溶媒組成物は、LiFSIを0.6M(9.3質量%)、LiPFを0.6M(7.5質量%)、アミド硫酸(イオン)を6質量ppm(電解質塩及びアミド硫酸成分の総量に対して36質量ppm)の濃度で含む、溶媒組成物(EC/EMC(体積比)=3/7)であることがわかった。
 [ラミネート電池]
 三元系正極活物質(LiNi1/3Co1/3Mn1/3 ユミコア製)と、アセチレンブラック(デンカ製「デンカブラック」)と、グラファイト(日本黒鉛製「SP270」)と、ポリフッ化ビニリデン樹脂(PVdF、クレハ・バッテリー・マテリアルズ・ジャパン製「♯1120」)とを、質量比93/2/2/3で秤量し、N-メチルピロリドン(NMP)に分散させスラリーを作成した。作成したスラリーをアルミ箔に片面塗工し、乾燥、ロールプレスを行い、正極を作成した。
 グラファイト(日立化成製「SMG」とTimcal製「SFG15」の質量比=85/15混合品):スチレンブタジエンゴム(SBR、JSR製「TRD2101」)/カルボキシメチルセルロース(CMC、ダイセル製「2200」)=97.3/1.5/1.2(質量比)の組成の水系スラリーを作成し、銅箔に片面塗工し、乾燥、ロールプレスを行い、負極を作成した。
 得られた正負極をカットし、極性導出リードを超音波で溶接し、16μmのポリエチレン(PE)セパレーターで対向させ、ラミネート外装で3方を封止した。未封止の1方より、溶媒組成物をそのまま電解液として700μL添加した。これにより4.2V、30mAhのラミネート電池を作成した。得られた電池について、各種特性を測定・評価した結果を表1に示す。
 [実施例1-2]
 実施例1-1において、溶媒組成物に、アミド硫酸の添加量を変更したこと以外は、実施例1-1と同様にして溶媒組成物を得た。なお、溶媒組成物において、電解質は溶解しており、目視では溶け残りは確認できなかった。
 得られた溶媒組成物を、イオンクロマトグラフィーにて分析したところ、アミド硫酸を282質量ppmの濃度で含むことがわかった。
 上記イオンクロマトグラフィー分析結果をふまえると、溶媒組成物は、LiFSIを0.6M(9.3質量%)、LiPFを0.6M(7.5質量%)、アミド硫酸(イオン)を282質量ppm(電解質塩及びアミド硫酸成分の総量に対して1680質量ppm)の濃度で含む、溶媒組成物(EC/EMC(体積比)=3/7)であることがわかった。
 そして、得られた溶媒組成物を用いて、実施例1-1と同様にして、ラミネート電池を作成し、各種特性を測定・評価した結果を表1に示す。
 [実施例1-3]
 実施例1-1において、アミド硫酸に代えてアミド硫酸リチウムを使用するとともに、その添加量を変更したこと以外は、実施例1-1と同様にして溶媒組成物を得た。なお、溶媒組成物において、電解質は溶解しており、目視では溶け残りは確認できなかった。
 アミド硫酸リチウムは、アミド硫酸を純水でスラリー化し、撹拌しながら水酸化リチウム一水和物を、発熱を監視しながら投入し、不溶分を濾過した後、濾物を80℃で減圧乾燥することで作成したものを用いた。なお、得られたアミド硫酸リチウムをXRD(X線回折)で分析したところ、不純物は見られなかった。
 得られた溶媒組成物を、イオンクロマトグラフィーにて分析したところ、アミド硫酸リチウムを、アミド硫酸換算で319質量ppmの濃度で含むことがわかった。
 上記イオンクロマトグラフィー分析結果をふまえると、溶媒組成物は、LiFSIを0.6M(9.3質量%)、LiPFを0.6M(7.5質量%)、アミド硫酸(イオン)を319質量ppm(電解質塩及びアミド硫酸成分の総量に対して1900質量ppm)の濃度で含む、溶媒組成物(EC/EMC(体積比)=3/7)であることがわかった。
 そして、得られた溶媒組成物を用いて、実施例1-1と同様にして、ラミネート電池を作成し、各種特性を測定・評価した結果を表1に示す。
 [実施例1-4]
 実施例1-1において、アミド硫酸に代えてタウリン(2-アミノエタンスルホン酸(アミノエチルスルホン酸)、HN-CH-CH-SOH)を使用するとともに、その添加量を変更したこと以外は、実施例1-1と同様にして溶媒組成物を得た。なお、溶媒組成物において、電解質は溶解しており、目視では溶け残りは確認できなかった。
 得られた溶媒組成物を、イオンクロマトグラフィーにて分析したところ、タウリンを522質量ppmの濃度で含むことがわかった。
 上記イオンクロマトグラフィー分析結果をふまえると、溶媒組成物は、LiFSIを0.6M(9.3質量%)、LiPFを0.6M(7.5質量%)、タウリンを522質量ppm(電解質塩及びアミド硫酸成分の総量に対して3138質量ppm)の濃度で含む、溶媒組成物(EC/EMC(体積比)=3/7)であることがわかった。
 そして、得られた溶媒組成物を用いて、実施例1-1と同様にして、ラミネート電池を作成し、各種特性を測定・評価した結果を表1に示す。
 [実施例1-5]
 実施例1-1において、アミド硫酸に代えてアミド硫酸ナトリウムを使用するとともに、その添加量を変更したこと以外は、実施例1-1と同様にして溶媒組成物を得た。なお、溶媒組成物において、電解質は溶解しており、目視では溶け残りは確認できなかった。
 得られた溶媒組成物を、イオンクロマトグラフィーにて分析したところ、アミド硫酸ナトリウムを、アミド硫酸換算で138質量ppmの濃度で含むことがわかった。
 上記イオンクロマトグラフィー分析結果をふまえると、溶媒組成物は、LiFSIを0.6M(9.3質量%)、LiPFを0.6M(7.5質量%)、アミド硫酸(イオン)を138質量ppm(電解質塩及びアミド硫酸成分の総量に対して834質量ppm)の濃度で含む、溶媒組成物(EC/EMC(体積比)=3/7)であることがわかった。
 そして、得られた溶媒組成物を用いて、実施例1-1と同様にして、ラミネート電池を作成し、各種特性を測定・評価した結果を表1に示す。
 [参考例1-1]
 実施例1-1において、アミド硫酸を使用しなかったこと以外は、実施例1-1と同様にして溶媒組成物[LiFSIを0.6M(9.3質量%)、LiPFを0.6M(7.5質量%)の濃度で含み、アミド硫酸を含まない、溶媒組成物(EC/EMC(体積比)=3/7)]を得た。
 そして、得られた溶媒組成物を用いて、実施例1-1と同様にして、ラミネート電池を作成し、各種特性を測定・評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1の結果から明らかなように、アミド硫酸成分を含むことで、含まない場合に比べて、抵抗が減少し、充放電特性も改善した。また、高温保存特性及びサイクル特性も改善した。このような傾向は、同一種類のアミド硫酸成分では、よりアミド硫酸成分の量(濃度)が多い場合において、顕著であった(実施例1-1と実施例1-2との対比)。
 なお、実施例1-3~1-5において、アミド硫酸に代えて、アミド硫酸リチウム、タウリン又はアミド硫酸ナトリウムを使用した結果からも明らかなように、アミド硫酸成分は、塩、イオン(フリー体)であるかを問わず、有効に機能することがわかる。
 [参考例1-2]
 実施例1-1において、電解質塩としてLiPFのみを使用し、アミド硫酸の添加量を変更したこと以外は、実施例1-1と同様にして、溶媒組成物を得た。なお、溶媒組成物において、電解質は溶解しており、目視では溶け残りは確認できなかった。
 得られた溶媒組成物を、イオンクロマトグラフィーにて分析したところ、アミド硫酸を270質量ppmの濃度で含むことがわかった。
 上記イオンクロマトグラフィー分析結果をふまえると、溶媒組成物は、LiPFを1.2M、アミド硫酸(イオン)を270質量ppm(電解質塩及びアミド硫酸成分の総量に対して1789質量ppm)の濃度で含む、溶媒組成物(EC/EMC(体積比)=3/7)であることがわかった。
 そして、得られた溶媒組成物を用いて実施例1-1と同様にして、ラミネート電池を作成し、各種特性を測定・評価した結果を表2に示す。
 [参考例1-3]
 参考例1-2において、アミド硫酸を使用しなかったこと以外は、参考例1-2と同様にして溶媒組成物[LiPFを1.2Mの濃度で含む、アミド硫酸を含まない、溶媒組成物(EC/EMC(体積比)=3/7)]を得た。
 そして、得られた溶媒組成物を用いて実施例1-1と同様にして、ラミネート電池を作成し、各種特性を測定・評価した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2の結果から明らかなように、アミド硫酸成分を含むことで、LiPFを用いた場合にも、同様の傾向が見られたが、このような傾向は、表1との対比から、電解質塩としてLiFSIを使用した場合において、顕著であることがわかった。
 <実施例2シリーズ>
 続いて、溶媒組成物の保存安定性を評価した。なお、本実施例2シリーズにおいて行った各種分析・評価方法は、以下の通りである。
 [19F-NMR測定]
 19F-NMRの測定は、上記と同様にして行った。
 [pH測定]
 溶媒組成物を超純水(18.2Ω・cm超)で91倍に希釈して測定溶液とし、自動滴定装置 COM-1700A(平沼産業株式会社製)を用いて、組成物のpHを測定した。
 [水分測定]
 溶媒組成物を、カールフィッシャー水分測定装置 AQ-2000(平沼産業株式会社製)を用い、発生液としてアクアライトRS-A(平沼産業株式会社製)、対極液としてアクアライトCN(平沼産業株式会社製)を用いて水分量を測定した。
 [イオンクロマトグラフィー測定]
 組成物を超純水(18.2Ω・cm超)で100倍に希釈して測定溶液とし、イオンクロマトグラフィーシステム ICS-3000(日本ダイオネクス株式会社製)を用いて、組成物中に含まれるアミド硫酸、フッ素イオン、硫酸イオンを測定した。
・分離モード:イオン交換
・溶離液:7~18mM KOH水溶液
・検出器:電気伝導度検出器
・カラム:アニオン分析用カラム Ion PAC AS-17C(日本ダイオネクス株式会社製)
 [ICP測定]
 組成物を超純水(18.2Ω・cm超)で100倍に希釈して測定溶液とし、マルチタイプICP発光分光分析装置 ICPE-9000(株式会社島津製作所製)を用いて、組成物中に含まれる鉄を測定した。
 [抵抗値]
 上記と同様にして、参考例(アミド硫酸成分を含まない場合)に対する抵抗減少率を求めた。
 [充放電容量]
 上記と同様にして、参考例(アミド硫酸成分を含まない場合)に対する容量上昇率を求めた。
 [高温保存特性]
 上記と同様にして、容量維持率と、電圧の低下を求めた。
[45℃サイクル]
 上記と同様にして、300サイクルの充放電後の容量維持率を求めた。
 [実施例2-1]
 実施例1-1で得られたLiFSIに対してアミド硫酸を添加し、比誘電率10以下の溶媒であるエチルメチルカーボネート(EMC)に溶解させてLiFSIの濃度が49.9質量%である溶液を製造した。なお、LiFSIの濃度は、19F-NMRにより測定した。
 この溶液には、カールフィッシャー法による水分分析により、水分が44質量ppm含まれていることが分かった。また、イオンクロマトグラフィーにより、溶液中にフッ化物イオンが31質量ppm、硫酸イオンが8質量ppm、アミド硫酸イオンが23質量ppm含まれていることが分かった。また、電位差自動滴定装置により、溶液のpHを検査したところ、pH=7だった。
 この溶液を、ポリプロピレン製の密閉容器中25℃で1ヶ月保管後、同様の分析をした結果、溶液中には、LiFSIが49.9質量%、フッ化物イオンが32質量ppm、硫酸イオンが9質量ppm含まれていることが分かった。
 [実施例2-2~2-17、及び参考例2-1~2-7]
 実施例2-1において、各種条件(溶媒の種類、LiFSI濃度、アミド硫酸濃度、pH、保管条件等)を表3に示す条件としたこと以外は、実施例2-1と同様にして、溶液製造時及び保管後の各成分濃度を測定した。なお、実施例2-10、2-12及び2-13では、pH調整剤を添加することによりpHを調整した。
 これらの結果を合わせて下記表3に示す。なお、表3において、「EMC」はエチルメチルカーボネート、「EC」はエチレンカーボネート、「PC」はプロピレンカーボネートを示す。
Figure JPOXMLDOC01-appb-T000005
 表3に示すとおり、実施例では(参考例と比べ)、保管前後においてLiFSI濃度に差が無く、保管後の溶液中のフッ化物イオン分および硫酸イオン分の濃度が保たれていることからも明らかなように、LiFSIの分解が抑制され、保存安定性が良好であることが分かった。
 一方、参考例では、保管後のLiFSI濃度が減少している(さらには、フッ化物イオン分および硫酸イオン分の濃度が増加している)ことから、保管中にLiFSIの分解反応等が進んでおり、保存安定性に劣ることが分かった。
 また、参考例では溶液内の水分量が増加するほど保管後のイオン分の濃度が増加し、LiFSIの分解が加速していることが分かった。一方、実施例では溶液中の水分が増加してもフッ化物イオンや硫酸イオンの濃度に大きな変化は見られず、保存安定性が良好であることが分かった。
 [実施例2-13]
 実施例1-1で得られたLiFSIに対してアミド硫酸を添加し、比誘電率10以下の溶媒であるエチルメチルカーボネート(EMC)に溶解させてLiFSIの濃度が49.9質量%である溶液を製造した。なお、LiFSIの濃度は、19F-NMRにより測定した。
 この溶液には、イオンクロマトグラフィーにより、アミド硫酸イオンが23質量ppm含まれていることが分かった。また、この溶液には、カールフィッシャー法による水分分析により、水分が44質量ppm含まれていることが分かった。さらに、ICP分析により溶液中の鉄成分を分析したが、検出されなかった(0質量ppm)。この溶液に、一般的な金属容器の材質として使用されているSUS304のテストピースを浸漬して、ポリプロピレン製の密閉容器中25℃で3ヶ月保管後、同様の分析をした結果、溶液中に鉄成分は検出されない(0質量ppm)ことが分かった。
 [実施例2-14、参考例2-8~2-9]
 実施例2-13において、各種条件(溶媒の種類、LiFSI濃度、保管条件等)を表4に示す条件としたこと以外は、実施例2-13と同様にして、溶液製造時及び保管後の各成分濃度を測定した。
 これらの結果を合わせて下記表4に示す。なお、表4において、「EMC」はエチルメチルカーボネート、「EC」はエチレンカーボネートを示す。
Figure JPOXMLDOC01-appb-T000006
 スルホニルイミド化合物(1)等のフッ素含有スルホニルイミド塩は、例えば、以下の方法で合成することができる。
 (合成例1)
 [リチウムビス(フルオロスルホニル)イミド合成工程(リチウム化工程)]
 炭酸リチウム214gと水966gとを混合し氷浴で冷却したスラリーに対し、ビス(フルオロスルホニル)イミド1000gを45分間かけて滴下した。得られた白濁液から不溶物をNo.5Cの桐山ろ紙で取り除くことにより、リチウムビス(フルオロスルホニル)イミドを50.1質量%含む水溶液(水溶液における水とリチウムビス(フルオロスルホニル)イミドの合計量は、99.8質量%であった。)を得た。なお、リチウムビス(フルオロスルホニル)イミドの濃度は、19F-NMRにより測定した。
 [抽出工程]
 リチウム化工程にて得られた反応溶液200gに水60gと酢酸ブチル600gを加え、室温で10分間撹拌した後、撹拌を停止し、酢酸ブチル層と分かれた水層を除去し、有機層を得た。この有機層に15質量%の水酸化リチウム水溶液100gを加え、室温で10分間攪拌した。その後、反応溶液から水層を除去して、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。
 [濃縮工程]
 ロータリーエバポレーター(「REN-1000」、IWAKI社製)を使用して、減圧下で、リチウム化工程で得られたリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液から反応溶媒を一部留去し、生じた不溶分を濾別してリチウムビス(フルオロスルホニル)イミド溶液228gを得た(濃度:43質量%)。
 滴下ロートおよび冷却管と溜出受器を備えた500mLセパラブルフラスコに、リチウムビス(フルオロスルホニル)イミド98.2gを含んだ酢酸ブチル溶液228gを加えた。真空ポンプを使用して、上記セパラブルフラスコ内を667Paまで減圧し、55℃に加温したオイルバスにセパラブルフラスコを浸漬させ、セパラブルフラスコ内の酢酸ブチル溶液を攪拌しながらゆっくりと加熱することで、溶媒である酢酸ブチルを溜出させた。溜出が始まってから10分間の間に溜出受器に回収した液の総量と同体積量の1,2,4-トリメチルベンゼンを貧溶媒としてセパラブルフラスコに添加した。その後、10分毎に溜出液と同体積量の1,2,4-トリメチルベンゼンをセパラブルフラスコ内に添加し続けることで、反応溶液を濃縮しつつ、系内の酢酸ブチル(反応溶媒)と1,2,4-トリメチルベンゼンとの配合比率を変化させて、リチウムビス(フルオロスルホニル)イミドの白色結晶を析出させた。セパラブルフラスコ内の上澄み液が透明になるまで上記操作を繰り返した後、フラスコを室温まで冷却し、得られたリチウムビス(フルオロスルホニル)イミド結晶の懸濁液を濾過し、リチウムビス(フルオロスルホニル)イミドの結晶を濾取した。なお、酢酸ブチル溶液の加熱開始から濃縮工程終了するまでの時間は6時間であり、白色結晶析出開始までに要した時間は2時間であった。ついで、得られた結晶を少量のヘキサンで洗浄した後、平底バットに移し、55℃、667Paで12時間減圧乾燥を行い、リチウムビス(フルオロスルホニル)イミドの白色結晶を得た(収量:92.3g)。
 (合成例2)
 合成例1のリチウム化工程と同様の方法で、リチウムビス(フルオロスルホニル)イミド水溶液を得た。
 [濃縮工程]
 リチウム化工程にて得られた反応溶液200gに水60gとEMC 600gを加え、室温で10分間撹拌した後、撹拌を停止し、EMC層と分かれた水層を除去し、有機層としてリチウムビス(フルオロスルホニル)イミドのEMC溶液を得た。得られた溶液をロータリーエバポレーター(「REN-1000」、IWAKI社製)を使用して、55℃、2000Paで減圧蒸留を行った。続いて600gのEMCを加えて同様の減圧蒸留を行った。同様の操作をさらに6回繰り返した。生じた不溶分を濾別してリチウムビス(フルオロスルホニル)イミドのEMC溶液240gを得た。
 (合成例3)
 合成例1と同様の方法で、リチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液223gを得た(濃度:44質量%)。
 [濃縮工程]
 得られた酢酸ブチル溶液に、エチレンカーボネート(EC)を100g、エチルメチルカーボネート(EMC)を220g加えた。ロータリーエバポレーター(「REN-1000」、IWAKI社製)を使用して、55℃、2000Paで、減圧蒸留を行った。続いて220gのエチルメチルカーボネートを加えて同様の減圧蒸留を行った。同様の操作をさらに3回繰り返した。生じた不溶分を濾別してリチウムビス(フルオロスルホニル)イミのECおよびEMC溶液390.3gを得た。リチウムビス(フルオロスルホニル)イミドは98.2g、ECは100.0g、EMCは192.1gであった。
 本発明によれば、電解液用等として使用可能な新規な電解質組成物や溶媒組成物等を提供できる。

Claims (22)

  1.  電解質塩として下記一般式(1)で表されるスルホニルイミド化合物と、アミド硫酸成分とを含む電解質組成物。
     LiN(XSO)(XSO)     (1)
    (一般式(1)中、X及びXは、同一又は異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)
  2.  前記電解質塩が、下記一般式(2)で表される化合物、一般式(3)で表される化合物、及び六フッ化砒酸リチウムからなる群より選択される少なくとも1種の化合物をさらに含む、請求項1に記載の電解質組成物。
     LiPF(C2m+16-a (0≦a≦6、1≦m≦4)     (2)
     LiBF(C2n+14-b (0≦b≦4、1≦n≦4)     (3)
  3.  前記アミド硫酸成分が、アミド硫酸及びアミド硫酸のアルカリ金属塩から選択された少なくとも1種を含む、請求項1又は2に記載の電解質組成物。
  4.  前記アミド硫酸成分の割合が、前記電解質塩及びアミド硫酸成分の総量に対して、0.1質量ppm以上である、請求項1~3のいずれか一項に記載の電解質組成物。
  5.  電解質塩として下記一般式(1)で表されるスルホニルイミド化合物と、アミド硫酸成分と、溶媒とを含む溶媒組成物。
     LiN(XSO)(XSO)     (1)
    (一般式(1)中、X及びXは、同一又は異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)
  6.  前記電解質塩が、下記一般式(2)で表される化合物、一般式(3)で表される化合物、及び六フッ化砒酸リチウムからなる群より選択される少なくとも1種の化合物をさらに含む、請求項5に記載の溶媒組成物。
     LiPF(C2m+16-a (0≦a≦6、1≦m≦4)     (2)
     LiBF(C2n+14-b (0≦b≦4、1≦n≦4)     (3)
  7.  前記アミド硫酸成分が、アミド硫酸及びアミド硫酸のアルカリ金属塩から選択された少なくとも1種を含む、請求項5又は6に記載の溶媒組成物。
  8.  前記アミド硫酸成分の割合が、溶媒組成物全体に対して0.1質量ppm以上である、請求項5~7のいずれか一項に記載の溶媒組成物。
  9.  前記アミド硫酸成分の割合が、溶媒組成物全体に対して1質量ppm以上であり、前記電解質塩及びアミド硫酸成分の総量に対して5質量ppm以上である、請求項5~8のいずれか一項に記載の溶媒組成物。
  10.  水を0.1~3000質量ppmの濃度でさらに含む、請求項5~9のいずれか一項に記載の溶媒組成物。
  11.  前記溶媒が、比誘電率10以下の溶媒を含む、請求項5~10のいずれか一項に記載の溶媒組成物。
  12.  前記溶媒が、鎖状カーボネートを含む、請求項5~11のいずれか一項に記載の溶媒組成物。
  13.  前記溶媒全体に対する前記鎖状カーボネートの割合が40体積%以上である、請求項12に記載の溶媒組成物。
  14.  電解質塩として下記一般式(1)で表されるスルホニルイミド化合物と、アミド硫酸成分と、溶媒とを含む非水電解液。
     LiN(XSO)(XSO)     (1)
    (一般式(1)中、X及びXは、同一又は異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)
  15.  前記電解質塩が、下記一般式(2)で表される化合物、一般式(3)で表される化合物、及び六フッ化砒酸リチウムからなる群より選択される少なくとも1種の化合物をさらに含む、請求項14に記載の非水電解液。
     LiPF(C2m+16-a (0≦a≦6、1≦m≦4)     (2)
     LiBF(C2n+14-b (0≦b≦4、1≦n≦4)     (3)
  16.  前記アミド硫酸成分が、アミド硫酸及びアミド硫酸のアルカリ金属塩から選択された少なくとも1種を含む、請求項14又は15に記載の非水電解液。
  17.  前記溶媒が、比誘電率10以下の溶媒を含む、請求項14~16のいずれか一項に記載の非水電解液。
  18.  前記溶媒が、鎖状カーボネートを含む、請求項14~17のいずれか一項に記載の非水電解液。
  19.  請求項1~13のいずれか一項に記載の組成物を含む電解液及び請求項14~18のいずれか一項に記載の非水電解液の少なくとも1種の電解液を備えた電池。
  20.  請求項11~13のいずれか一項に記載の溶媒組成物を収容した容器。
  21.  前記溶媒組成物と接触する部分の材質が、金属、樹脂及びガラスからなる群より選択される少なくとも1種である、請求項20に記載の容器。
  22.  請求項11~13のいずれか一項に記載の溶媒組成物又は該溶媒組成物を収容した容器を保管又は輸送する方法。
PCT/JP2020/018124 2019-05-31 2020-04-28 電解質組成物、溶媒組成物、非水電解液及びその用途 WO2020241161A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021522730A JP7314264B2 (ja) 2019-05-31 2020-04-28 電解質組成物、溶媒組成物、非水電解液及びその用途
EP20815667.9A EP3979383A4 (en) 2019-05-31 2020-04-28 ELECTROLYTE COMPOSITION, SOLVENT COMPOSITION, NON-AQUEOUS ELECTROLYTE AND THEIR USE
KR1020217042177A KR20220012911A (ko) 2019-05-31 2020-04-28 전해질 조성물, 용매 조성물, 비수전해액 및 그 용도
US17/615,477 US20220238920A1 (en) 2019-05-31 2020-04-28 Electrolyte composition, solvent composition, non-aqueous electrolyte, and use thereof
CN202080036925.5A CN113841280A (zh) 2019-05-31 2020-04-28 电解质组合物、溶剂组合物、非水电解液及其用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019103362 2019-05-31
JP2019-103362 2019-05-31
JP2019103361 2019-05-31
JP2019-103361 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241161A1 true WO2020241161A1 (ja) 2020-12-03

Family

ID=73552336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018124 WO2020241161A1 (ja) 2019-05-31 2020-04-28 電解質組成物、溶媒組成物、非水電解液及びその用途

Country Status (7)

Country Link
US (1) US20220238920A1 (ja)
EP (1) EP3979383A4 (ja)
JP (1) JP7314264B2 (ja)
KR (1) KR20220012911A (ja)
CN (1) CN113841280A (ja)
TW (1) TW202107758A (ja)
WO (1) WO2020241161A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257575A (zh) * 2021-05-25 2021-08-13 深圳市凯琦佳科技股份有限公司 一种超低损耗的适用于125度的电解液及其制备方法
WO2022239807A1 (ja) * 2021-05-14 2022-11-17 株式会社日本触媒 非水電解液及び二次電池
EP4087007A4 (en) * 2021-03-17 2022-12-28 Ningde Amperex Technology Limited ELECTROLYTE AND ELECTROCHEMICAL DEVICE COMPRISING THEM
WO2023276812A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 組成物の製造方法及び非水電解液
WO2023276561A1 (ja) * 2021-06-30 2023-01-05 株式会社日本触媒 非水電解液の製造方法
KR20230015289A (ko) * 2021-07-22 2023-01-31 주식회사 천보 설페이트 또는 설포네이트 용제 중의 비스(플루오로설포닐)이미드 알칼리금속염의 제조방법
EP4064407A4 (en) * 2020-02-27 2023-11-01 Nippon Shokubai Co., Ltd. COMPOSITION, ELECTROLYTIC SOLUTION MATERIAL AND ELECTROLYTE SOLUTION

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024125979A1 (en) * 2022-12-15 2024-06-20 Specialty Operations France Process for purifying bis(fluoro sulfonyl)imide salts
WO2024125980A1 (en) * 2022-12-15 2024-06-20 Specialty Operations France Method for manufacturing a solution of bis(fluoro sulfonyl)imide salts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816998B2 (ja) 1976-01-30 1983-04-04 トラルフア、ニルス、ウンダ−ハウグ、アクチ−セルスカプ 可撓性ロボツトア−ム
CN101471454A (zh) * 2007-12-27 2009-07-01 比亚迪股份有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
JP2013084562A (ja) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd 電解液及びその製造方法、並びに、これを用いた蓄電デバイス
JP2015074798A (ja) * 2013-10-08 2015-04-20 日新製鋼株式会社 リチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼および該ステンレス鋼を用いたリチウムイオン二次電池電解液保管容器
JP2015205815A (ja) * 2011-05-24 2015-11-19 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
JP2018035054A (ja) 2016-05-26 2018-03-08 森田化学工業株式会社 ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法ならびにビス(フルオロスルホニル)イミドアルカリ金属塩組成物
WO2019188207A1 (ja) * 2018-03-27 2019-10-03 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール及び化合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101194618B1 (ko) * 2003-09-17 2012-10-25 우베 고산 가부시키가이샤 비수 전해액 및 그것을 사용한 리튬 2차 전지
WO2011149095A1 (ja) * 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
JP5816998B2 (ja) 2013-09-25 2015-11-18 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
KR101944651B1 (ko) * 2015-08-19 2019-01-31 신닛테츠스미킹 마테리알즈 가부시키가이샤 스테인리스 강박
FR3059993A1 (fr) * 2016-12-08 2018-06-15 Arkema France Procede de sechage et de purification du sel de lithium de bis(fluorosulfonyl)imide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816998B2 (ja) 1976-01-30 1983-04-04 トラルフア、ニルス、ウンダ−ハウグ、アクチ−セルスカプ 可撓性ロボツトア−ム
CN101471454A (zh) * 2007-12-27 2009-07-01 比亚迪股份有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
JP2015205815A (ja) * 2011-05-24 2015-11-19 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
JP2013084562A (ja) * 2011-09-30 2013-05-09 Nippon Shokubai Co Ltd 電解液及びその製造方法、並びに、これを用いた蓄電デバイス
JP2015074798A (ja) * 2013-10-08 2015-04-20 日新製鋼株式会社 リチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼および該ステンレス鋼を用いたリチウムイオン二次電池電解液保管容器
JP2018035054A (ja) 2016-05-26 2018-03-08 森田化学工業株式会社 ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法ならびにビス(フルオロスルホニル)イミドアルカリ金属塩組成物
WO2019188207A1 (ja) * 2018-03-27 2019-10-03 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール及び化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979383A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4064407A4 (en) * 2020-02-27 2023-11-01 Nippon Shokubai Co., Ltd. COMPOSITION, ELECTROLYTIC SOLUTION MATERIAL AND ELECTROLYTE SOLUTION
EP4087007A4 (en) * 2021-03-17 2022-12-28 Ningde Amperex Technology Limited ELECTROLYTE AND ELECTROCHEMICAL DEVICE COMPRISING THEM
WO2022239807A1 (ja) * 2021-05-14 2022-11-17 株式会社日本触媒 非水電解液及び二次電池
CN113257575A (zh) * 2021-05-25 2021-08-13 深圳市凯琦佳科技股份有限公司 一种超低损耗的适用于125度的电解液及其制备方法
CN113257575B (zh) * 2021-05-25 2022-09-20 深圳市凯琦佳科技股份有限公司 一种超低损耗的适用于125度的电解液及其制备方法
WO2023276812A1 (ja) 2021-06-30 2023-01-05 株式会社日本触媒 組成物の製造方法及び非水電解液
WO2023276561A1 (ja) * 2021-06-30 2023-01-05 株式会社日本触媒 非水電解液の製造方法
KR20230015289A (ko) * 2021-07-22 2023-01-31 주식회사 천보 설페이트 또는 설포네이트 용제 중의 비스(플루오로설포닐)이미드 알칼리금속염의 제조방법
KR102639468B1 (ko) 2021-07-22 2024-02-22 주식회사 천보 설페이트 또는 설포네이트 용제 중의 비스(플루오로설포닐)이미드 알칼리금속염의 제조방법

Also Published As

Publication number Publication date
KR20220012911A (ko) 2022-02-04
CN113841280A (zh) 2021-12-24
JPWO2020241161A1 (ja) 2020-12-03
US20220238920A1 (en) 2022-07-28
EP3979383A4 (en) 2023-07-19
JP7314264B2 (ja) 2023-07-25
EP3979383A1 (en) 2022-04-06
TW202107758A (zh) 2021-02-16

Similar Documents

Publication Publication Date Title
WO2020241161A1 (ja) 電解質組成物、溶媒組成物、非水電解液及びその用途
EP2958183B1 (en) Electrolyte solution and lithium ion secondary battery provided with same
EP3771013B1 (en) Electrolyte for power storage devices and nonaqueous electrolyte solution
JP6647877B2 (ja) 非水電解液およびそれを用いた非水電解液二次電池
WO2019018432A1 (en) ELECTROLYTES CONTAINING PHOSPHORUS
JP6018820B2 (ja) リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池
US20240105996A1 (en) Non-aqueous electrolytic solution and secondary battery
WO2016204278A1 (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP6715096B2 (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP5893517B2 (ja) 非水電解液
JP6785148B2 (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP6876369B2 (ja) リチウムイオン二次電池
JP2009187880A (ja) 非水電解液二次電池
US20230378537A1 (en) Non-aqueous electrolytic solution, secondary battery, and method for manufacturing same
JP6435235B2 (ja) 含フッ素リン酸エステルシアノアルキルアミド、それを含有する非水電解液及び非水系二次電池
JP2015062154A (ja) リチウムイオン二次電池
JP2022092509A (ja) 非水電解液及びこれを用いた二次電池
JP2015138627A (ja) 正極溶出抑制剤及びこれを含むリチウムイオン二次電池
EP3605699A1 (en) New components for electrolyte compositions
JP7245355B2 (ja) 非水電解液及びリチウムイオン二次電池
JP7251934B2 (ja) 電解液、アルカリ金属イオン二次電池、及び電解液用添加剤
EP4394986A1 (en) Nonaqueous electrolyte solution and method for storing same
EP4336529A1 (en) Storage method for non-aqueous electrolyte
JP6646522B2 (ja) 非水電解液二次電池
JP2022092510A (ja) 非水電解液及びこれを用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217042177

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020815667

Country of ref document: EP

Effective date: 20220103