WO2022186160A1 - 電解質成形体の製造方法及び電解質成形体 - Google Patents

電解質成形体の製造方法及び電解質成形体 Download PDF

Info

Publication number
WO2022186160A1
WO2022186160A1 PCT/JP2022/008402 JP2022008402W WO2022186160A1 WO 2022186160 A1 WO2022186160 A1 WO 2022186160A1 JP 2022008402 W JP2022008402 W JP 2022008402W WO 2022186160 A1 WO2022186160 A1 WO 2022186160A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
compact
producing
less
tablet
Prior art date
Application number
PCT/JP2022/008402
Other languages
English (en)
French (fr)
Inventor
智大 森田
康則 奥村
勝彦 坂本
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020237032838A priority Critical patent/KR20230150995A/ko
Priority to EP22763216.3A priority patent/EP4296224A1/en
Priority to US18/280,172 priority patent/US20240079643A1/en
Priority to JP2023503841A priority patent/JPWO2022186160A1/ja
Priority to CN202280018067.0A priority patent/CN116897138A/zh
Publication of WO2022186160A1 publication Critical patent/WO2022186160A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for manufacturing an electrolyte compact and an electrolyte compact.
  • Sulfonylimide compounds such as lithium bis(fluorosulfonyl)imide, which are used in electrolytes for lithium-ion secondary batteries, are usually crystallized and dried, and then the resulting powder is packaged and shipped as is.
  • a powdery sulfonylimide compound causes blocking during storage or transportation, and there is a problem that it takes a long time to discharge from the container in the subsequent electrolytic solution preparation step.
  • granulation method has been proposed. In this granulation method, the range of 0.5 to 5 mm is adopted as the granulation pore size of the extrusion granulator.
  • the electrolyte is put into the extrusion granulator to extrude the particulate matter, and the screened electrolyte is stirred again to mix and extrude the particles. Heat may be applied and the electrolyte may be denatured.
  • the granulated electrolyte since the granulated electrolyte has a relatively small particle size, it is easy to scatter and difficult to handle.
  • the present disclosure has been made in view of such points, and the object thereof is to provide a molded body in which an electrolyte containing a sulfonylimide compound is less likely to affect the electrolyte, is easy to handle, and can be easily discharged from a container.
  • An object of the present invention is to provide a manufacturing method and such an electrolyte molded body.
  • the inventors of the present application have found that, in an electrolyte containing a sulfonylimide compound, molding the electrolyte through a specific process reduces the specific surface area and suppresses the formation of aggregates during storage. It was found that the electrolyte compact can be easily discharged from the container.
  • the present disclosure is specifically as follows.
  • the method for producing an electrolyte molded body of the present disclosure comprises general formula (1): LiN(R 1 SO 2 )(R 2 SO 2 ) (R 1 and R 2 are the same or different and represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms.)
  • R 1 and R 2 are the same or different and represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms.
  • ( 1) A method for producing a molded body of an electrolyte containing a sulfonylimide compound represented by 1), comprising: a compression step of compressing and granulating the powdery electrolyte to obtain a sheet-like or strip-like electrolyte; Alternatively, it includes a pulverization step of pulverizing the strip-shaped electrolyte
  • the powdery electrolyte is passed between a pair of pressure rolls and compressed and granulated to obtain a sheet-like or strip-like electrolyte having a length in the longitudinal direction of 10 mm or more and 100 mm or less. good too.
  • a roller compactor may be used in the compression step.
  • a roll granulator may be used in the pulverization step.
  • the particle size of the granular electrolyte compact may be 1 mm or more and 10 mm or less.
  • the electrolyte compact may contain the electrolyte in powder form.
  • the method for producing an electrolyte molded body of the present disclosure is a method for producing an electrolyte molded body containing the sulfonylimide compound represented by the general formula (1), wherein the powdery electrolyte is tableted. It includes a tableting step for obtaining a tablet-shaped electrolyte compact. It may further include a drying step of drying the tablet-shaped electrolyte compact. A wetting step of moistening the powdery electrolyte or the tablet-like electrolyte compact may be further included. In the tableting step, a rotary tableting machine may be used. The particle size of the tablet-shaped electrolyte compact may be 5 mm or more and 25 mm or less. The electrolyte compact may contain the electrolyte in powder form.
  • the sulfonylimide compound represented by the general formula (1) may contain at least one of LiN(FSO 2 ) 2 and LiN(CF 3 SO 2 ) 2 .
  • the electrolyte has the general formula (2): LiPF a (C m F 2m+1 ) 6-a (a: 0 ⁇ a ⁇ 6, m: 1 ⁇ m ⁇ 4) Compound represented by (2), general formula (3): LiBF b (C n F 2n+1 ) 4-b (b: 0 ⁇ b ⁇ 4, n: 1 ⁇ n ⁇ 4) (3) It may further contain at least one selected from the group consisting of the compound represented by and LiAsF 6 .
  • the electrolyte molded body of the present disclosure is a molded body of an electrolyte containing the sulfonylimide compound represented by the general formula (1), and is a powdery electrolyte having an average particle size of 1300 ⁇ m or less in 100 parts by mass of the molded body. is 10 parts by mass or less, and the hardness of the molding is 10 N or more and 50 N or less.
  • the particle size of the compact may be 5 mm or more and 25 mm or less.
  • an electrolyte containing a sulfonylimide compound it is possible to provide a method for producing a molded body that is less likely to affect the electrolyte, is easy to handle, and can be easily discharged from a container, and such an electrolyte molded body.
  • the electrolyte molded body obtained by the production method according to the present embodiment has a general formula (1) as an electrolyte: [Chemical 1] LiN( R1SO2 ) ( R2SO2 ) ( 1 ) (hereinafter referred to as "sulfonylimide compound (1)", fluorine-containing sulfonylimide salt).
  • R 1 and R 2 are the same or different (independently) and represent a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 1 to 6 carbon atoms.
  • alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group and hexyl group.
  • alkyl groups having 1 to 6 carbon atoms linear or branched alkyl groups having 1 to 6 carbon atoms are preferred, and linear alkyl groups having 1 to 6 carbon atoms are more preferred.
  • fluoroalkyl group having 1 to 6 carbon atoms examples include those in which some or all of the hydrogen atoms of an alkyl group having 1 to 6 carbon atoms are substituted with fluorine atoms.
  • the fluoroalkyl group having 1 to 6 carbon atoms includes fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group and the like.
  • the fluoroalkyl group may be a perfluoroalkyl group.
  • the substituents R 1 and R 2 are preferably a fluorine atom and a perfluoroalkyl group (eg, a C 1-6 perfluoroalkyl group such as a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, etc.). , a fluorine atom, a trifluoromethyl group and a pentafluoroethyl group are more preferred, a fluorine atom and a trifluoromethyl group are still more preferred, and a fluorine atom is even more preferred.
  • the substituents R 1 and R 2 may be the same or different.
  • Examples of the sulfonylimide compound (1) include lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 , hereinafter also referred to as “LiFSI”), lithium bis(trifluoromethylsulfonyl)imide (LiN(CF 3 SO 2 ) 2 , hereinafter also referred to as “LiTFSI”), lithium (fluorosulfonyl) (methylsulfonyl) imide, lithium (fluorosulfonyl) (ethylsulfonyl) imide, lithium (fluorosulfonyl) (trifluoromethylsulfonyl) imide, lithium (fluorosulfonyl ) (pentafluoroethylsulfonyl)imide, lithium (fluorosulfonyl)(heptafluoropropylsulfonyl)imide, lithium bis(pentafluoroeth
  • the sulfonylimide compounds (1) LiN(FSO 2 ) 2 and LiN(CF 3 SO 2 ) 2 are preferred, and LiN(FSO 2 ) 2 is more preferred, from the viewpoint of improving battery performance.
  • the sulfonylimide compound (1) preferably contains at least one of LiN(FSO 2 ) 2 and LiN(CF 3 SO 2 ) 2 , including LiN(FSO 2 ) 2 things are preferred.
  • sulfonylimide compound (1) a commercially available product may be used, or one synthesized by a conventionally known method may be used.
  • a method for synthesizing the sulfonylimide compound (1) is not particularly limited, and all conventionally known methods can be employed.
  • a powder (solid) of the sulfonylimide compound (1) is obtained by the conventionally known method described above.
  • the sulfonylimide compound (1) can be used in the production solvent used for the production of the sulfonylimide compound (1) (the sulfonylimide compound (1 ) may contain residual solvent).
  • the residual solvent includes the solvent used in the production reaction of the sulfonylimide compound (1), the solvent used in the purification step, and the like.
  • water For example, water; alcohol solvents such as methanol, ethanol, propanol and butanol; carboxylic acid solvents such as formic acid and acetic acid; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; Nitrile solvents such as nitrile and benzonitrile; Ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; Aliphatic ether solvents such as diethyl ether, diisopropyl ether, t-butyl methyl ether and cyclopentyl methyl ether; Halogen-based solvents; nitro group-containing solvents such as nitromethane and nitrobenzene; nitrogen-containing organic solvents such as ethylformamide and N-methylpyrrolidone; dimethyl sulfoxide; glyme-based solvents, tolu
  • aromatic hydrocarbon solvents pentane, hexane, heptane, octane, decane, dodecane, undecane, tridecane, decalin, 2,2,4,6,6-pentamethylheptane, isoparaffin (e.g., "Marcazol R” (Maruzen 2,2,4,6,6-pentamethylheptane manufactured by Petrochemical Co., Ltd., a mixture of 2,2,4,4,6-pentamethylheptane), "Isopar (registered trademark) G” (manufactured by ExxonMobil C9-C11 mixed isoparaffins), “Isopar (registered trademark) E” (C8-C10 mixed isoparaffins manufactured by ExxonMobil) Chain aliphatic hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane; cyclohexane, methylcyclohexane , 1,2-di
  • the electrolyte may contain the sulfonylimide compound (1), but may contain other electrolytes (electrolytes other than the sulfonylimide compound (1)).
  • Other electrolytes include imide salts, non-imide salts, and the like.
  • imide salt examples include fluorine-containing sulfonylimide salts (hereinafter referred to as "other sulfonylimide compounds") different from the sulfonylimide compound (1).
  • Other sulfonylimide compounds include non-lithium salts of fluorine-containing sulfonylimides listed as sulfonylimide compound (1) (for example, salts in which lithium (ion) is substituted with a cation other than lithium ion in sulfonylimide compound (1) ) and the like.
  • Salts substituted with cations other than lithium ions include alkali metal salts such as sodium salts, potassium salts, rubidium salts and cesium salts; alkaline earth metal salts such as beryllium salts, magnesium salts, calcium salts, strontium salts and barium salts. aluminum salts; ammonium salts; phosphonium salts and the like.
  • alkali metal salts such as sodium salts, potassium salts, rubidium salts and cesium salts
  • alkaline earth metal salts such as beryllium salts, magnesium salts, calcium salts, strontium salts and barium salts.
  • aluminum salts such as ammonium salts; phosphonium salts and the like.
  • Other sulfonylimide compounds may be used alone, respectively, or two or more of them may be used in combination.
  • other sulfonylimide compounds may be commercially available products, or may be synthesized by conventionally known methods.
  • Non-imide salts include salts of non-imide anions and cations (lithium ions and cations exemplified above).
  • general formula (2) [Chemical 2] LiPF a (C m F 2m+1 ) 6-a (a: 0 ⁇ a ⁇ 6, m: 1 ⁇ m ⁇ 4) a compound represented by (2) (hereinafter referred to as “fluorophosphate compound (2)”)
  • General formula (3) [Chemical 3] LiBF b (C n F 2n+1 ) 4-b (b: 0 ⁇ b ⁇ 4, n: 1 ⁇ n ⁇ 4)
  • Compound represented by (3) hereinafter referred to as “fluoroboric acid compound (3)”) , lithium hexafluoroarsenate ( LiAsF6 ), LiSbF6, LiClO4, LiSCN , LiAlF4 , CF3SO3Li , LiC [ ( CF3SO2 ) 3 ] , LiN ( NO2), LiN[(
  • the method for producing an electrolyte compact uses a powdery electrolyte as a starting material.
  • the starting material is an electrolyte powder (solid) containing the sulfonylimide compound (1), and an electrolyte powder containing only the sulfonylimide compound (1) (that is, powdery sulfonylimide compound (1) ) can be used.
  • the method for producing an electrolyte compact according to the present embodiment is characterized in that it includes a compression step and a pulverization step (hereinafter also referred to as "a method for producing a granular electrolyte compact").
  • the compression step is a step of compressing and granulating the powdery electrolyte.
  • a powdery electrolyte is passed through a pair of pressure rolls by extrusion to compact (compression granulating).
  • the compression step employs compression granulation rather than extrusion granulation, which can overheat the electrolyte.
  • the powdered electrolyte is pressed and granulated to produce a sheet-shaped or strip-shaped electrolyte instead of extruding and granulating the powdered electrolyte to produce particulate matter. Since the sheet-like or strip-like electrolyte is obtained by one compression step, the electrolyte is prevented from being heated more than necessary.
  • a roller compactor (compression granulator) can be suitably used in the compression process.
  • the roller compactor is not particularly limited, and general commercial products can be used.
  • the pressure (roll pressure) for compressing and granulating the powdery electrolyte may be adjusted as appropriate according to the type of electrolyte (salt composition), residual solvent amount, hardness and size of the compact, etc., but is not particularly limited. However, it is preferably 3 MPa or higher, more preferably 5 MPa or higher, and still more preferably 10 MPa or higher. In addition, the upper limit is preferably 50 MPa or less, more preferably 40 MPa or less, and still more preferably 30 MPa or less, from the viewpoint of suppressing excessive heat applied to the electrolyte.
  • the temperature at which the compression step is performed is not particularly limited, and is, for example, room temperature (about 25°C).
  • the roll gap is not particularly limited, but is preferably 0.1 mm or more, more preferably 0.3 mm or more. Moreover, the upper limit is preferably 10 mm or less, more preferably 0.7 mm or less.
  • a sheet-like or strip-like electrolyte is obtained through the compression process.
  • the size of the sheet-shaped or strip-shaped electrolyte is not particularly limited, and the length in the longitudinal direction is preferably 10 mm or more and 100 mm or less, more preferably 10 mm or more and 80 mm or less, still more preferably 10 mm or more and 70 mm or less, still more preferably 10 mm. 60 mm or less.
  • the length in the transverse direction is preferably 5 mm or more and 50 mm or less, more preferably 5 mm or more and 30 mm or less, and even more preferably 5 mm or more and 20 mm or less.
  • the thickness is preferably 0.1 mm or more and 5 mm or less, more preferably 0.1 mm or more and 3 mm or less.
  • the pulverization step is a step of pulverizing the sheet-like or strip-like electrolyte obtained in the compression step.
  • a granular electrolyte compact is obtained by the pulverization step.
  • vibration mills In the pulverization process, vibration mills, roll granulators, knuckle-type pulverizers, roll mills, high-speed rotary pulverizers (pin mills, hammer mills, screw mills), cylindrical mixers, etc. can be used.
  • a roll granulator is preferable, and a roll granulator with a screen is more preferable, from the viewpoint of controlling the particle size of the electrolyte compact.
  • the roll granulator is not particularly limited, and general commercial products can be used.
  • the temperature when performing the pulverization step is not particularly limited, and is, for example, room temperature (about 25°C).
  • the groove pitch is not particularly limited, but is preferably 1 mm or more and 25 mm or less, more preferably 1 mm or more and 10 mm or less, and still more preferably 5 mm or more and 8 mm or less.
  • the screen diameter is not particularly limited, but is preferably 1 mm or more and 25 mm or less, more preferably 1 mm or more and 10 mm or less, still more preferably 5 mm or more and 8 mm or less.
  • the method for producing a granular electrolyte compact may further include a classification step, if necessary.
  • the classification step is a step of sorting out granular electrolyte compacts from powdery electrolytes that could not be compacted.
  • the classification operation is not particularly limited, and examples thereof include sieving using a sieve.
  • the particle size of the obtained granular electrolyte compact is preferably 2 mm or more, more preferably 2 mm or more. is greater than or equal to 5 mm, more preferably greater than 5 mm. Moreover, the upper limit thereof is preferably 10 mm or less, more preferably 8 mm or less. Note that the particle size can be measured, for example, with a vernier caliper.
  • the granular electrolyte compact may contain a powdery electrolyte.
  • the average particle size of the powdery electrolyte is not particularly limited, but from the viewpoint of distinguishing it from the granular electrolyte compact, it is, for example, 1300 ⁇ m (1.3 mm) or less, preferably 1000 ⁇ m (1 mm) or less, more preferably 700 ⁇ m or less. It is a fine powder of In this specification, the average particle size means the 50% mass average particle size based on JIS Z 8801-1. The 50% mass average particle size is calculated, for example, by the method described in the examples below.
  • a powdery electrolyte containing a sulfonylimide compound is formed into a granular electrolyte by a compression step and a pulverization step.
  • the powdery electrolyte is compacted and granulated, so that the obtained sheet-like or strip-like electrolyte is prevented from being heated more than necessary, and the electrolyte is hardly affected.
  • the electrolyte is less likely to be affected in this respect as well.
  • the granular electrolyte molded body having a predetermined particle size for example, 2 mm or more and 10 mm or less
  • the granular electrolyte molded body having a predetermined particle size for example, 2 mm or more and 10 mm or less
  • the granular electrolyte molded product has a small specific surface area, which suppresses the formation of aggregates (blocking) during storage or transportation, so it can be easily discharged from the container (it takes time to discharge from the container). difficult to apply).
  • an electrolyte containing a sulfonylimide compound it is possible to produce a granular molded body that hardly affects the electrolyte, is easy to handle, and can be easily discharged from a container.
  • the method for producing an electrolyte compact according to the present embodiment is characterized in that it includes a tableting step (hereinafter referred to as “tablet-shaped electrolyte compacting (Also referred to as “body manufacturing method”).
  • the tableting step is a step of tableting the powdered electrolyte.
  • tableting refers to making it possible to retain a predetermined shape (for example, a tablet shape) by compressing a powdered electrolyte.
  • the tableting step is a step of compression-molding a powdery electrolyte with upper and lower molds.
  • the tableting process employs compression molding rather than extrusion granulation (extrusion molding), which can overheat the electrolyte.
  • the powdery electrolyte is compression-molded to produce a tablet-like electrolyte compact. Since the tablet-shaped electrolyte compact can be obtained only by the tableting process, it is possible to prevent the electrolyte from being heated more than necessary.
  • a tableting machine preferably a rotary tableting machine or the like can be used.
  • the rotary tableting machine is not particularly limited, and general commercial products can be used.
  • the pressure (tabletting pressure) for compressing and molding the powdered electrolyte may be appropriately adjusted according to the type of electrolyte (salt composition), the amount of residual solvent, the hardness and size of the molded body, etc.
  • the pressure is not particularly limited as long as it is at least the minimum required pressure for maintaining the tablet form, it is preferably 3 kN or more, more preferably 5 kN or more, and still more preferably 10 kN or more.
  • the upper limit is preferably 150 kN or less, more preferably 100 kN or less, and even more preferably 50 kN or less, from the viewpoint of suppressing excessive heat applied to the electrolyte.
  • the temperature at which the tableting step is performed is not particularly limited, and is, for example, room temperature (about 25°C).
  • the punch tip diameter is not particularly limited, but is preferably 1 mm or more and 25 mm or less, more preferably 5 mm or more and 15 mm or less, and still more preferably 5 mm or more and 10 mm or less. is.
  • the method for producing a tablet-shaped electrolyte compact may further include at least one step of a classification step, a drying step, and a wetting step, if necessary.
  • the classification process is a process of separating tablet-shaped electrolyte compacts from powdered electrolytes that could not be compacted.
  • the classification operation is not particularly limited, and examples thereof include sieving using a sieve.
  • the drying process is a process of drying the tablet-shaped electrolyte compact.
  • the drying method is not particularly limited, and includes, for example, a method of heating the residual solvent in the tablet-like electrolyte compact to a temperature at which it can evaporate.
  • the drying step may be carried out under reduced pressure, under an atmosphere of an inert gas such as nitrogen, or under circulation of an inert gas.
  • the wetting step is a step of wetting a powdery electrolyte with a solvent or the like, or wetting a tablet-like electrolyte compact with a solvent or the like. That is, the wetting step may be a step before the tableting step or a step after the tableting step.
  • the wet method is not particularly limited, and examples thereof include a method of adding the above-described solvent or the like to a powdery electrolyte or a tablet-like electrolyte compact.
  • the particle size of the obtained tablet-shaped electrolyte compact is preferably 5 mm or more, more preferably 5 mm. Excess. Moreover, the upper limit thereof is preferably 25 mm or less, more preferably 15 mm or less, and still more preferably 10 mm or less. Note that the particle size can be measured, for example, with a vernier caliper.
  • the tablet-like electrolyte compact may contain a powder-like electrolyte.
  • the average particle size of the powdery electrolyte is not particularly limited, but from the viewpoint of distinguishing it from the tablet-like electrolyte compact, it is, for example, 1300 ⁇ m (1.3 mm) or less, preferably 1000 ⁇ m (1 mm) or less, more preferably 700 ⁇ m or less. It is a fine powder of In this specification, the average particle size means the 50% mass average particle size based on JIS Z 8801-1. The 50% mass average particle size is calculated, for example, by the method described in the examples below.
  • the content (proportion) of the powdery electrolyte (fine powder having an average particle size of the above upper limit or less) in 100 parts by mass (100% by mass) of the tablet-like electrolyte compact is 10 mass from the viewpoint of improving handling. part (10% by mass) or less, preferably 5 parts by mass (5% by mass) or less. In other words, the tablet-like electrolyte compact has a small amount of fine powder.
  • the hardness (particle hardness) of the tablet-shaped electrolyte compact is 10N or more and 50N or less.
  • the hardness of the electrolyte compact is at least the above lower limit, the shape can be maintained during transportation (handleability is improved) as compared with extrusion granulation (extrusion molding). Further, if the hardness is equal to or less than the above upper limit value, the processing speed required when dissolving in the electrolytic solution is increased, thereby suppressing the problem of poor economy.
  • the lower limit of the hardness is preferably 20N or more, and the upper limit is preferably 40N or less, more preferably 30N or less.
  • the stainless steel (SUS) component (total of Fe, Ni, Cr, etc., hereinafter the same) contained in the powder electrolyte (powder before compaction)
  • the increase rate of the SUS component is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less, and most preferably less than the lower limit of measurement (N.D., about 0% by mass).
  • the SUS component contained in the tablet-like electrolyte compact is preferably 5 ppm by mass or less.
  • the manufacturing method of the granular electrolyte molded body and the manufacturing method of the tablet-shaped electrolyte molded body described above are molding using metal (mainly stainless steel (SUS)) equipment, the SUS component (Fe , Ni, Cr, etc.) can be minimized.
  • a method for producing a tablet-shaped electrolyte compact that includes a tableting step and passes through a metal device only once includes a compression step and a crushing step, and a granular electrolyte compact that passes through a metal device multiple times.
  • the contamination (increase) of the SUS component into the electrolyte molded body can be further reduced in terms of the number of times of passing through the metal equipment in the production process.
  • a powdery electrolyte containing a sulfonylimide compound is formed into a tablet-like electrolyte by a tableting process.
  • the powdery electrolyte is compression-molded, application of excessive heat to the resulting tablet-shaped electrolyte compact is suppressed, and the electrolyte is less likely to be affected.
  • a tablet-like electrolyte compact can be obtained through the tableting process without adding a component such as a binder to the electrolyte, the electrolyte is less likely to be affected in this respect as well.
  • a tablet-shaped electrolyte compact having a predetermined particle size (for example, 5 mm or more and 25 mm or less) is less likely to scatter and is easy to handle (handleability is improved).
  • the tablet-shaped electrolyte compact has a small specific surface area, which suppresses the formation of aggregates (blocking) during storage or transportation, so it can be easily discharged from the container (it takes time to discharge from the container). difficult to apply).
  • a sulfonylimide compound it is possible to produce a tablet-like molded body that hardly affects the electrolyte, is easy to handle, and can be easily discharged from a container.
  • the tablet-shaped electrolyte compact has a hardness within a predetermined range, it has excellent solubility in an electrolytic solution, making it easy to prepare an electrolytic solution.
  • ⁇ Since the tablet-shaped electrolyte compact has a particle size distribution with a small amount of fine powder, it is easy to handle when preparing an electrolyte solution. - When the tablet-shaped electrolyte compact is discharged from a container, it is difficult to cause problems such as clogging.
  • the tablet-shaped electrolyte molded body produces less ion content and has high performance when used in batteries (reduction of performance is suppressed).
  • the tablet-shaped electrolyte compact contamination (increase) of SUS components caused by the apparatus is suppressed.
  • the electrolyte molded body obtained by the manufacturing method of the present disclosure is used, for example, in batteries (batteries having a charging/discharging mechanism), electrical storage (electrochemical) devices (or ionic conductor materials constituting these), and the like.
  • the electrolyte molded body constitutes, for example, a primary battery, a secondary battery (for example, a lithium (ion) secondary battery), a fuel cell, an electrolytic capacitor, an electric double layer capacitor, a solar cell, an electrochromic display element, or the like. It can be used as an electrolyte for
  • Example 1 series> 10 kg of powdered LiFSI (manufactured by Nippon Shokubai Co., Ltd., average particle diameter: 5 to 500 ⁇ m, mode diameter: 263 ⁇ m, hereinafter the same) was put into a roller compactor (manufactured by Kurimoto, Ltd., model: MRCP-200). and subjected to compression molding at a roll gap of 0.5 mm and a pressure of 20 MPa to obtain strip-shaped substances (electrolyte strips) having a longitudinal length of 50 mm and powdery substances.
  • LiFSI powdered by Nippon Shokubai Co., Ltd., average particle diameter: 5 to 500 ⁇ m, mode diameter: 263 ⁇ m, hereinafter the same
  • the strip-shaped substance and the powdery substance were pulverized with a granulator with a screen having a screen diameter of 6 mm (manufactured by Kurimoto, Ltd., model: RGS-1512), and classified with a 1 mm sieve to determine the particle size.
  • a mixture of 3 kg of a 6 mm granular substance (granular electrolyte compact) and 7 kg of a powdery substance (powdered electrolyte, average particle size: 2 to 1300 ⁇ m, mode diameter: 272 ⁇ m) was obtained.
  • the obtained mixture of granular substance and powdery substance was stored in a 1 L container at room temperature (about 25° C.) for one month. After storage, when the content (mixture) was discharged from the container, it could be discharged from the discharge port (45 mm in diameter) without aggregates.
  • Example 2 10 kg of powdered LiFSI was charged from a hopper into a rotary tableting machine (manufactured by Kikusui Seisakusho Co., Ltd., model: VIRG 0518SR3AZ, the same applies hereinafter) equipped with a 5 mm diameter punch and die, and tableted continuously for 2 hours.
  • a tablet pressure of 10 kN 9.7 kg of a tablet-like substance (tablet-like electrolyte compact) having a particle size of 5 mm and a powdery substance (powdered electrolyte, average particle size: 0.5 to 600 ⁇ m, mode diameter: 280 ⁇ m) were obtained.
  • 0.3 kg of the mixture was obtained.
  • the resulting mixture of tablet-like substance and powdery substance was stored in a 1 L container at room temperature (about 25° C.) for one month. After storage, when the content (mixture) was discharged from the container, it could be discharged from the discharge port (45 mm in diameter) without aggregates.
  • Example 3 10 kg of powdered LiFSI was put from a hopper into a rotary tableting machine equipped with a punch and die of 6 mm in diameter, and tableted continuously for 2 hours (tabletting pressure: 10 kN) to obtain a tablet substance with a particle size of 6 mm ( A mixture of 9.8 kg of tablet-like electrolyte compact) and 0.2 kg of powdery substance (powdered electrolyte, average particle size: 0.5 to 650 ⁇ m, modal size: 262 ⁇ m) was obtained. The resulting mixture of tablet-like substance and powdery substance was stored in a 1 L container at room temperature (about 25° C.) for one month. After storage, when the content (mixture) was discharged from the container, it could be discharged from the discharge port (45 mm in diameter) without aggregates.
  • Powdered LiFSI was stored in a 1 L container at room temperature (about 25° C.) for one month. After storage, when the content (powdered LiFSI) was discharged from the container, aggregates larger than the discharge port (45 mm in diameter) were found and could not be discharged without being crushed.
  • Example 2 series> (Example 4)
  • 10 kg of powdered LiFSI was used to obtain 9.7 kg of a tablet-like substance (tablet-like electrolyte compact) having a particle size of 5 mm and a powdery substance (powdered electrolyte (fine powder), average Particle diameter: 0.5 to 600 ⁇ m, mode diameter: 280 ⁇ m) 0.3 kg of a mixture was obtained.
  • the physical properties of the resulting molded body were measured: particle size distribution (powdered substance/molded body), ratio of powdered substance to 100 parts by mass of molded body (percentage of fine powder), hardness, dissolution rate, ion content, and SUS component amount. It was measured based on the following method. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

一般式(1)で表されるスルホニルイミド化合物を含む電解質の成形体を製造する方法は、粉末状の前記電解質を圧縮造粒してシート状又は短冊状の電解質を得る圧縮工程と、シート状又は短冊状の電解質を粉砕して顆粒状の電解質成形体を得る粉砕工程とを含む、又は粉末状の前記電解質を打錠して錠剤状の電解質成形体を得る打錠工程を含む。 LiN(R1SO2)(R2SO2) (R1及びR2は同一又は異なってフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。) (1)

Description

電解質成形体の製造方法及び電解質成形体
 本開示は、電解質成形体の製造方法及び電解質成形体に関するものである。
 リチウムイオン二次電池の電解質等に使用されるリチウムビス(フルオロスルホニル)イミド等のスルホニルイミド化合物は、通常、結晶化させて乾燥した後、得られた粉末をそのまま包装して出荷される。粉末状のスルホニルイミド化合物は、保管中又は輸送中にブロッキングし、後続の電解液調製工程において容器からの排出に時間がかかるという問題があった。
 そのため、例えば、特許文献1には、電解質をホッパーから押出造粒機に投入し、粒子状物質を押出するステップ1と、フィルタスクリーンにより振動スクリーニングし、粒子径がスクリーン開口よりも大きな電解質をスクリーニングするステップ2と、スクリーニングされた電解質をコンベアベルトにより撹拌ドラム内に搬送し、再び撹拌して混合し、粒子を押出造粒した後、包装して保管するステップ3と、を含むリチウム電池用電解質の造粒方法が提案されている。この造粒方法では、押出造粒機の造粒孔径として0.5-5mmの範囲が採用されている。
特開2020-184527号公報
 しかしながら、特許文献1の方法では、電解質を押出造粒機に投入して粒子状物質を押出し、スクリーニングされた電解質を再び撹拌して混合して粒子を押出造粒するため、電解質に必要以上に熱がかかり、電解質が変性するおそれがある。また、造粒される電解質は、その粒子径が比較的小さいため、飛散し易く、取り扱いが困難である。
 本開示は斯かる点に鑑みてなされたものであり、その目的とするところは、スルホニルイミド化合物を含む電解質において、電解質に影響を与え難く、取り扱い易く、且つ容器から容易に排出できる成形体の製造方法及びそのような電解質成形体を提供することにある。
 本願発明者らは、検討を進めた結果、スルホニルイミド化合物を含む電解質において、特定の工程を経て電解質を成形することで比表面積が小さくなり、保管期間中での凝集物の生成が抑制され、容器から電解質成形体を容易に排出できることを見出した。
 本開示は、具体的には以下のとおりである。本開示の電解質成形体の製造方法は、一般式(1):
LiN(RSO)(RSO) (R及びRは同一又は異なってフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)で表されるスルホニルイミド化合物を含む電解質の成形体を製造する方法であって、粉末状の前記電解質を圧縮造粒してシート状又は短冊状の電解質を得る圧縮工程と、前記シート状又は短冊状の電解質を粉砕して顆粒状の電解質成形体を得る粉砕工程とを含む。前記圧縮工程において、粉末状の前記電解質を一対の加圧ロール間に通過させて圧縮造粒することにより長手方向長さが10mm以上100mm以下であるシート状又は短冊状の電解質を得るようにしてもよい。前記圧縮工程において、ローラコンパクタを用いてもよい。前記粉砕工程において、ロールグラニュレータを用いてもよい。前記顆粒状の電解質成形体の粒径は1mm以上10mm以下でもよい。電解質の成形体は、粉末状の前記電解質を含んでいてもよい。
 また、本開示の電解質成形体の製造方法は、前記一般式(1)で表されるスルホニルイミド化合物を含む電解質の成形体を製造する方法であって、粉末状の前記電解質を打錠して錠剤状の電解質成形体を得る打錠工程を含む。前記錠剤状の電解質成形体を乾燥させる乾燥工程をさらに含んでいてもよい。粉末状の前記電解質又は前記錠剤状の電解質成形体を湿潤させる湿潤工程をさらに含んでいてもよい。前記打錠工程において、回転式打錠機を用いてもよい。前記錠剤状の電解質成形体の粒径は5mm以上25mm以下でもよい。電解質の成形体は、粉末状の前記電解質を含んでいてもよい。
 前記一般式(1)で表されるスルホニルイミド化合物が、LiN(FSO及びLiN(CFSOの少なくとも一種を含んでいてもよい。
 前記電解質が、一般式(2):
LiPF(C2m+16-a (a:0≦a≦6、m:1≦m≦4)  (2)で表される化合物、一般式(3):
LiBF(C2n+14-b (b:0≦b≦4、n:1≦n≦4)  (3)
で表される化合物及びLiAsFからなる群より選択される少なくとも一種をさらに含んでいてもよい。
 本開示の電解質成形体は、前記一般式(1)で表されるスルホニルイミド化合物を含む電解質の成形体であって、前記成形体100質量部に占める平均粒子径1300μm以下の粉末状の前記電解質の割合が10質量部以下であり、前記成形体の硬度が10N以上50N以下である。前記成形体の粒径は5mm以上25mm以下でもよい。
 本開示によれば、スルホニルイミド化合物を含む電解質において、電解質に影響を与え難く、取り扱い易く、且つ容器から容易に排出できる成形体の製造方法及びそのような電解質成形体を提供することができる。
 以下、本開示の実施形態を詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。
 (電解質)
 本実施形態に係る製造方法で得られる電解質の成形体は、電解質として一般式(1):[化1]
 LiN(RSO)(RSO)  (1)
で表されるスルホニルイミド化合物(以下「スルホニルイミド化合物(1)」という、フッ素含有スルホニルイミド塩)を含む。
 一般式(1)中、R及びRは同一又は異なって(互いに独立して)、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。
 炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。炭素数1~6のアルキル基の中では、炭素数1~6の直鎖状又は分枝鎖状のアルキル基が好ましく、炭素数1~6の直鎖状のアルキル基がより好ましい。
 炭素数1~6のフルオロアルキル基としては、炭素数1~6のアルキル基が有する水素原子の一部又は全部がフッ素原子で置換されたものが挙げられる。炭素数1~6のフルオロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。特に、フルオロアルキル基は、パーフルオロアルキル基であってもよい。
 置換基R及びRとしては、フッ素原子及びパーフルオロアルキル基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等の炭素数1~6のパーフルオロアルキル基等)が好ましく、フッ素原子、トリフルオロメチル基及びペンタフルオロエチル基がより好ましく、フッ素原子及びトリフルオロメチル基がより一層好ましく、フッ素原子がさらに好ましい。なお、置換基R及びRは、同一であってもよく、それぞれ異なっていてもよい。
 スルホニルイミド化合物(1)としては、例えば、リチウムビス(フルオロスルホニル)イミド(LiN(FSO、以下「LiFSI」ともいう)、リチウムビス(トリフルオロメチルスルホニル)イミド(LiN(CFSO、以下「LiTFSI」ともいう)、リチウム(フルオロスルホニル)(メチルスルホニル)イミド、リチウム(フルオロスルホニル)(エチルスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド、リチウム(フルオロスルホニル)(ヘプタフルオロプロピルスルホニル)イミド、リチウムビス(ペンタフルオロエチルスルホニル)イミド、リチウムビス(ヘプタフルオロプロピルスルホニル)イミド等が挙げられる。スルホニルイミド化合物(1)は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 スルホニルイミド化合物(1)の中では、電池性能向上の観点から、LiN(FSO及びLiN(CFSOが好ましく、LiN(FSOがより好ましい。換言すると、電解質成形体の中では、スルホニルイミド化合物(1)が、LiN(FSO及びLiN(CFSOの少なくとも一種を含むものが好ましく、LiN(FSOを含むものが好ましい。
 スルホニルイミド化合物(1)は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。スルホニルイミド化合物(1)を合成する方法は特に限定されず、従来公知の方法は全て採用することが出来る。例えば、国際公開第2011/149095号、特開2014-201453号公報、特開2010-168249号公報、特開2010-168308号公報、特開2010-189372号公報、国際公開第2011/065502号、特表平8-511274号公報、国際公開第2012/108284号、国際公開第2012/117961号、国際公開第2012/118063号、特開2010-280586号公報、特開2010-254543号公報、特開2007-182410号公報、国際公開第2010/010613号等に記載の方法が挙げられる。上記の従来公知の方法により、スルホニルイミド化合物(1)の粉体(固体)が得られる。
 なお、スルホニルイミド化合物(1)は、本発明の目的を阻害しない範囲内で、スルホニルイミド化合物(1)の製造に用いた製造溶媒(上記の従来公知の製法で得られたスルホニルイミド化合物(1)に含まれている残留溶媒)を含んでいてもよい。残留溶媒とは、スルホニルイミド化合物(1)の製造反応に使用した溶媒や、精製工程に用いた溶媒などである。例えば、水;メタノール、エタノール、プロパノール、ブタノール等のアルコール系溶媒;蟻酸、酢酸等のカルボン酸系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン類;イソブチロニトリル、アセトニトリル、バレロニトリル、ベンゾニトリル等のニトリル系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテル等の脂肪族エーテル系溶媒;HF等のハロゲン系溶媒;ニトロメタン、ニトロベンゼン等のニトロ基含有溶媒;エチルホルムアミド、N-メチルピロリドン等の含窒素有機溶媒;ジメチルスルホキシド;グライム系溶媒、トルエン、o-キシレン、m-キシレン、p-キシレン、ベンゼン、エチルベンゼン、イソプロピルベンゼン、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、テトラリン、シメン、メチルエチルベンゼン、2-エチルトルエン、クロロベンゼン、ジクロロベンゼン等の芳香族炭化水素系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ウンデカン、トリデカン、デカリン、2,2,4,6,6-ペンタメチルヘプタン、イソパラフィン(例えば、「マルカゾールR」(丸善石油化学株式会社製の2,2,4,6,6-ペンタメチルヘプタン、2,2,4,4,6-ペンタメチルヘプタンの混合物)、「アイソパー(登録商標)G」(エクソンモービル製のC9-C11混合イソパラフィン)、「アイソパー(登録商標)E」(エクソンモービル製のC8-C10混合イソパラフィン)ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の鎖状脂肪族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、1,2-ジメチルシクロヘキサン、1,3-ジメチルシクロヘキサン、1,4-ジメチルシクロヘキサン、エチルシクロヘキサン、1,2,4-トリメチルシクロヘキサン、1,3,5-トリメチルシクロヘキサン、プロピルシクロヘキサン、ブチルシクロヘキサン、「スワクリーン150」(丸善石油化学株式会社製のC9アルキルシクロヘキサンの混合物)等の環状脂肪族炭化水素系溶媒;アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール等の芳香族エーテル系溶媒;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒;ジメトキシメタン、1,2-ジメトキシエタン等の鎖状エーテル系溶媒;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキサン、4-メチル-1,3-ジオキソラン等の環状エーテル系溶媒;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル系溶媒;スルホラン、3-メチルスルホラン等のスルホラン系溶媒;N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルオキサゾリジノン等が挙げられる。
 電解質は、スルホニルイミド化合物(1)を含んでいればよいが、他の電解質(スルホニルイミド化合物(1)以外の電解質)を含んでいてもよい。他の電解質としては、イミド塩、非イミド塩等が挙げられる。
 イミド塩としては、スルホニルイミド化合物(1)とは異なる他のフッ素含有スルホニルイミド塩(以下「他のスルホニルイミド化合物」という)等が挙げられる。他のスルホニルイミド化合物としては、スルホニルイミド化合物(1)として列挙したフッ素含有スルホニルイミドの非リチウム塩(例えば、スルホニルイミド化合物(1)において、リチウム(イオン)をリチウムイオン以外のカチオンに置換した塩)等が挙げられる。リチウムイオン以外のカチオンに置換した塩としては、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩等のアルカリ金属塩;ベリリウム塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;アルミニウム塩;アンモニウム塩;ホスホニウム塩等が挙げられる。他のスルホニルイミド化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、他のスルホニルイミド化合物は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 非イミド塩としては、非イミド系アニオンとカチオン(リチウムイオン及び前記例示のカチオン)との塩が挙げられる。非イミド塩としては、一般式(2):
[化2]
 LiPF(C2m+16-a (a:0≦a≦6、m:1≦m≦4)  (2)で表される化合物(以下「フルオロリン酸化合物(2)」という)、一般式(3):
[化3]
 LiBF(C2n+14-b (b:0≦b≦4、n:1≦n≦4)  (3)で表される化合物(以下「フルオロホウ酸化合物(3)」という)、六フッ化砒酸リチウム(LiAsF)、LiSbF、LiClO、LiSCN、LiAlF、CFSOLi、LiC[(CFSO]、LiN(NO)、LiN[(CN)等のリチウム塩;非リチウム塩(例えば、これらのリチウム塩において、リチウム(イオン)を前記例示のカチオンに置換した塩(例えば、NaBF、NaPF、NaPF(CF等)等が挙げられる。非イミド塩は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、非イミド塩は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 <電解質成形体の製造方法>
 本実施形態に係る電解質成形体の製造方法は、粉末状の電解質を出発原料とする。換言すると、出発原料は、スルホニルイミド化合物(1)を含む電解質の粉体(固体)であり、スルホニルイミド化合物(1)のみを含む電解質の粉体(つまり、粉末状のスルホニルイミド化合物(1))でもよい。
 <顆粒状の電解質成形体の製造方法>
 本実施形態に係る電解質成形体の製造方法は、圧縮工程と粉砕工程とを含む点に特徴を有する(以下「顆粒状の電解質成形体の製造方法」ともいう)。
 (圧縮工程)
 圧縮工程は、粉末状の電解質を圧縮造粒する工程である。粉末状の電解質を圧縮造粒する方法としては、例えば粉末状の電解質を押し出しで一対の加圧ロール間に通過させることにより圧密(圧縮造粒)する。このように、圧縮工程では、電解質が過剰に加熱されるおそれがある押出造粒ではなく、圧縮造粒が採用されている。この圧縮工程により、粉末状の電解質を押出造粒して粒子状物質を製造するのではなく、粉末状の電解質を圧縮造粒してシート状又は短冊状の電解質を製造する。シート状又は短冊状の電解質は、1回の圧縮工程で得られるため、電解質に必要以上に熱がかかることが抑制される。
 圧縮工程では、ローラコンパクタ(圧縮造粒機)を好適に用いることができる。ローラコンパクタは、特に限定されず、一般的な市販品を使用できる。
 圧縮工程において、粉末状の電解質を圧縮造粒する圧力(ロール圧力)は、電解質の種類(塩組成)、残留溶媒量、成形体の硬度や大きさ等に応じて適宜調整すればよく特に限定されないが、好ましくは3MPa以上、より好ましくは5MPa以上、さらに好ましくは10MPa以上である。また、その上限は、電解質に必要以上に熱がかかることを抑制する観点から、好ましくは50MPa以下、より好ましくは40MPa以下、さらに好ましくは30MPa以下である。
 圧縮工程を実施するときの温度は、特に限定されず、例えば、室温(25℃程度)である。
 圧縮工程において、ローラコンパクタを用いる場合、そのロール間隙は特に限定されないが、好ましくは0.1mm以上、より好ましくは0.3mm以上である。また、その上限は好ましくは10mm以下、より好ましくは0.7mm以下である。
 圧縮工程によりシート状又は短冊状の電解質が得られる。シート状又は短冊状の電解質の大きさは特に限定されず、長手方向長さは、好ましくは10mm以上100mm以下、より好ましくは10mm以上80mm以下、より一層好ましくは10mm以上70mm以下、さらに好ましくは10mm以上60mm以下である。また、短手方向長さは、好ましくは5mm以上50mm以下、より好ましくは5mm以上30mm以下、さらに好ましくは5mm以上20mm以下である。厚みは、好ましくは0.1mm以上5mm以下、より好ましく0.1mm以上3mm以下である。
 (粉砕工程)
 粉砕工程は、圧縮工程で得られたシート状又は短冊状の電解質を粉砕する工程である。粉砕工程により、顆粒状の電解質成形体が得られる。
 粉砕工程では、振動ミル、ロールグラニュレータ、ナックルタイプ粉砕機、ロールミル、高速回転式粉砕機(ピンミル、ハンマーミル、スクリューミル)、円筒状ミキサー等を用いることができる。これらの中では、電解質成形体の粒径制御の観点から、ロールグラニュレータが好ましく、スクリーン付きロールグラニュレータがより好ましい。ロールグラニュレータは、特に限定されず、一般的な市販品を使用できる。
 粉砕工程を実施するときの温度は、特に限定されず、例えば、室温(25℃程度)である。
 粉砕工程において、ロールグラニュレータ又はスクリーン付きロールグラニュレータを用いる場合、その溝ピッチは特に限定されないが、好ましくは1mm以上25mm以下、より好ましくは1mm以上10mm以下、さらに好ましくは5mm以上8mm以下である。また、スクリーン付きロールグラニュレータを用いる場合、そのスクリーン径は特に限定されないが、好ましくは1mm以上25mm以下、より好ましくは1mm以上10mm以下、さらに好ましくは5mm以上8mm以下である。
 (その他の工程)
 顆粒状の電解質成形体の製造方法は、必要に応じて、分級工程をさらに含んでいてもよい。分級工程は、顆粒状の電解質成形体と、成形体になり得なかった粉末状の電解質とを選別する工程である。分級操作は、特に限定されず、例えば篩を用いた篩い分け等が挙げられる。
 以上の圧縮工程及び粉砕工程、必要に応じてその他の工程を含む顆粒状の電解質成形体の製造方法によれば、得られる顆粒状の電解質成形体の粒径は、好ましくは2mm以上、より好ましくは5mm以上、さらに好ましくは5mm超過である。また、その上限は、好ましくは10mm以下、より好ましくは8mm以下である。なお、粒径は例えばノギス等で計測できる。
 また、顆粒状の電解質成形体は、粉末状の電解質を含んでいてもよい。粉末状の電解質の平均粒子径は、特に限定されないが、顆粒状の電解質成形体と区別する観点から、例えば、1300μm(1.3mm)以下、好ましくは1000μm(1mm)以下、より好ましくは700μm以下の微粉である。なお、本明細書において、平均粒子径はJIS Z 8801-1に基づく50%質量平均粒子径を意味する。50%質量平均粒子径は、例えば後述する実施例に記載の方法により算出される。
 <効果>
 本開示の顆粒状の電解質成形体の製造方法によれば、以下の効果を得ることができる。・圧縮工程及び粉砕工程により、スルホニルイミド化合物を含む粉末状の電解質を顆粒状の電解質に成形する。圧縮工程において、該粉末状の電解質を圧縮造粒するため、得られるシート状又は短冊状の電解質に必要以上に熱がかかることが抑制され、電解質に影響を与え難い。なお、バインダー等の成分を電解質に添加することなく、圧縮工程及び粉砕工程を経て顆粒状の電解質成形体が得られるため、この点でも電解質に影響を与え難い。
・また、粉砕工程において、シート状又は短冊状の電解質を粉砕して得られる所定粒径(例えば2mm以上10mm以下)の顆粒状の電解質成形体は、飛散し難く、取り扱いが容易になる(ハンドリング性が向上する)。
・さらに、顆粒状の電解質成形体は、比表面積が小さくなり、保管中又は輸送中における凝集物の生成(ブロッキング)が抑制されるため、容器から容易に排出できる(容器からの排出に時間がかかり難い)。
以上より、スルホニルイミド化合物を含む電解質において、電解質に影響を与え難く、取り扱い易く、且つ容器から容易に排出できる、顆粒状の成形体を製造できる。
 <錠剤状の電解質成形体の製造方法>
 また、前記した顆粒状の電解質成形体の製造方法とは異なる方法として、本実施形態に係る電解質成形体の製造方法は、打錠工程を含む点に特徴を有する(以下「錠剤状の電解質成形体の製造方法」ともいう)。
 (打錠工程)
 打錠工程は、粉末状の電解質を打錠する工程である。本明細書において、打錠とは、粉末状の電解質を押し固めることにより、所定形状(例えば錠剤状)に保形可能にすることをいう。具体的には、打錠工程は、粉末状の電解質を上下金型によって圧縮成形する工程である。このように、打錠工程では、電解質が過剰に加熱されるおそれがある押出造粒(押出成形)ではなく、圧縮成形が採用されている。この打錠工程により、粉末状の電解質を押出造粒して粒子状物質を製造するのではなく、粉末状の電解質を圧縮成形して錠剤状の電解質成形体を製造する。錠剤状の電解質成形体は、打錠工程のみで得られるため、電解質に必要以上に熱がかかることが抑制される。
 打錠工程では、打錠機、好適には回転式打錠機等を用いることができる。回転式打錠機は、特に限定されず、一般的な市販品を使用できる。
 打錠工程において、粉末状の電解質を圧縮成形する圧力(打錠圧)は、電解質の種類(塩組成)、残留溶媒量、成形体の硬度や大きさ等に応じて適宜調整すればよく、錠剤の形態を維持させるための最低限必要な圧力以上であれば特に限定はされないが、好ましくは3kN以上、より好ましくは5kN以上、さらに好ましくは10kN以上である。また、その上限は、電解質に必要以上に熱がかかることを抑制する観点から、好ましくは150kN以下、より好ましくは100kN以下、さらに好ましくは50kN以下である。
 打錠工程を実施するときの温度は、特に限定されず、例えば、室温(25℃程度)である。
 打錠工程において、打錠機又は回転式打錠機を用いる場合、その杵先直径は特に限定されないが、好ましくは1mm以上25mm以下、より好ましくは5mm以上15mm以下、さらに好ましくは5mm以上10mm以下である。
 (その他の工程)
 錠剤状の電解質成形体の製造方法は、必要に応じて、分級工程、乾燥工程及び湿潤工程の少なくとも一つの工程をさらに含んでいてもよい。
 分級工程は、錠剤状の電解質成形体と、成形体になり得なかった粉末状の電解質とを選別する工程である。分級操作は、特に限定されず、例えば篩を用いた篩い分け等が挙げられる。
 乾燥工程は、錠剤状の電解質成形体を乾燥させる工程である。乾燥方法は特に限定されず、例えば錠剤状の電解質成形体中の残留溶媒を蒸発可能な温度まで加熱する方法等が挙げられる。乾燥工程は減圧下、窒素等の不活性ガス雰囲気下、又は不活性ガス流通下で実施してもよい。
 湿潤工程は、粉末状の電解質を溶媒等で湿潤させる、又は錠剤状の電解質成形体を溶媒等で湿潤させる工程である。即ち、湿潤工程は、打錠工程の前工程でもよく、打錠工程の後工程でもよい。湿潤方法は特に限定されず、例えば粉末状の電解質又は錠剤状の電解質成形体に前記した溶媒等を添加する方法等が挙げられる。
 以上の打錠工程、必要に応じてその他の工程を含む錠剤状の電解質成形体の製造方法によれば、得られる錠剤状の電解質成形体の粒径は、好ましくは5mm以上、より好ましくは5mm超過である。また、その上限は、好ましくは25mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下である。なお、粒径は例えばノギス等で計測できる。
 また、錠剤状の電解質成形体は、粉末状の電解質を含んでいてもよい。粉末状の電解質の平均粒子径は、特に限定されないが、錠剤状の電解質成形体と区別する観点から、例えば、1300μm(1.3mm)以下、好ましくは1000μm(1mm)以下、より好ましくは700μm以下の微粉である。なお、本明細書において、平均粒子径はJIS Z 8801-1に基づく50%質量平均粒子径を意味する。50%質量平均粒子径は、例えば後述する実施例に記載の方法により算出される。
 錠剤状の電解質成形体100質量部(100質量%)に占める粉末状の電解質(平均粒子径が上記の上限値以下の微粉)の含有量(割合)は、取り扱い性向上の観点から、10質量部(10質量%)以下であり、好ましくは5質量部(5質量%)以下である。つまり、錠剤状の電解質成形体は、微粉量が少ない。
 錠剤状の電解質成形体の硬度(粒子硬度)は、10N以上50N以下である。電解質成形体の硬度が上記の下限値以上であると、押出造粒(押出成形)と比較して、輸送時の形状保持が可能になる(取り扱い性が向上する)。また、当該硬度が上記の上限値以下であると、電解液に溶解する際の処理速度がかかることで、経済性が悪くなるという不都合が抑制される。上記の観点から、当該硬度の下限値は、好ましくは20N以上であり、その上限値は、好ましくは40N以下、より好ましくは30N以下である。
 粉末状の電解質(成形前の粉体)に含まれるステンレス(SUS)成分(Fe,Ni,Cr等の合計、以下同じ。)に対する、錠剤状の電解質成形体(成形後の錠剤)に含まれるSUS成分の増加率は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは1質量%以下であり、最も好ましくは測定下限値以下(N.D.、0質量%程度)である。また、錠剤状の電解質成形体に含まれるSUS成分は、好ましくは5質量ppm以下である。なお、上述の顆粒状の電解質成形体の製造方法及び錠剤状の電解質成形体の製造方法は、金属(主にステンレス(SUS))装置による成形であるものの、電解質成形体へのSUS成分(Fe,Ni,Cr等)の混入(増加)を最小限に抑制できる。中でも、打錠工程を含み、1回だけ金属装置を経由する錠剤状の電解質成形体の製造方法は、圧縮工程と粉砕工程とを含み、複数回、金属装置を経由する顆粒状の電解質成形体の製造方法と比較して、製造過程での金属装置を経由する回数の点で、電解質成形体へのSUS成分の混入(増加)をより一層低減できると考えられる。
 <効果>
 本開示の錠剤状の電解質成形体の製造方法によれば、以下の効果を得ることができる。・打錠工程により、スルホニルイミド化合物を含む粉末状の電解質を錠剤状の電解質に成形する。打錠工程において、該粉末状の電解質を圧縮成形するため、得られる錠剤状の電解質成形体に必要以上に熱がかかることが抑制され、電解質に影響を与え難い。なお、バインダー等の成分を電解質に添加することなく、打錠工程を経て錠剤状の電解質成形体が得られるため、この点でも電解質に影響を与え難い。
・また、所定粒径(例えば5mm以上25mm以下)の錠剤状の電解質成形体は、飛散し難く、取り扱いが容易になる(ハンドリング性が向上する)。
・さらに、錠剤状の電解質成形体は、比表面積が小さくなり、保管中又は輸送中における凝集物の生成(ブロッキング)が抑制されるため、容器から容易に排出できる(容器からの排出に時間がかかり難い)。
以上より、スルホニルイミド化合物を含む電解質において、電解質に影響を与え難く、取り扱い易く、且つ容器から容易に排出できる、錠剤状の成形体を製造できる。
 また、本開示の電解質成形体(錠剤状)によれば、以下の効果を得ることができる。
・錠剤状の電解質成形体は、硬度が所定範囲内であるため、電解液への溶解性に優れ、電解液作製が容易になる。
・錠剤状の電解質成形体は、微粉量が少ない粒度分布を有する成形体であるため、電解液作製時に取り扱い易い。
・錠剤状の電解質成形体は、容器からの排出時において、つまりが発生する等の不都合が生じ難い。
・錠剤状の電解質成形体は、各工程で加熱履歴がないため、イオン分の生成量が少なく、電池に使用した際の性能が高い(性能低減が抑制される)。
・錠剤状の電解質成形体は、装置に起因するSUS成分の混入(増加)が抑制される。
 <用途>
 本開示の製造方法により得られる電解質成形体は、例えば、電池(充放電機構を有する電池)、蓄電(電気化学)デバイス(又はこれらを構成するイオン伝導体の材料)等に用いられる。具体的には、電解質成形体は、例えば、一次電池、二次電池(例えばリチウム(イオン)二次電池)、燃料電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子等を構成する電解液として使用し得る。
 以下に、本開示を実施例に基づいて説明する。なお、本開示は、以下の実施例に限定されるものではなく、以下の実施例を本開示の趣旨に基づいて変形、変更することが可能であり、それらを本開示の範囲から除外するものではない。
 <実施例1シリーズ>
 (実施例1)
 10kgの粉末状のLiFSI((株)日本触媒製、平均粒子径:5~500μm、モード径:263μm、以下同じ。)をローラコンパクタ((株)栗本鐵工所製、形式:MRCP-200)に投入し、ロール間隙0.5mm、圧力20MPaで圧縮成形し、長手方向長さが50mmである短冊状物質(短冊状の電解質)及び粉末状物質を得た。続いて、短冊状物質及び粉末状物質をスクリーン径6mmのスクリーン付きグラニュレータ((株)栗本鐵工所製、形式:RGS-1512)で粉砕し、1mmの篩で分級することにより、粒径6mmの顆粒状物質(顆粒状の電解質成形体)3kg及び粉末状物質(粉末状電解質、平均粒子径:2~1300μm、モード径:272μm)7kgの混合物を得た。得られた顆粒状物質及び粉末状物質の混合物を1Lの容器に充填した状態にて1か月間、室温(25℃程度)で保管した。保管後、当該容器から内容物(混合物)を排出したところ、排出口(口径45mm)から凝集物なく排出できた。
 (実施例2)
 10kgの粉末状のLiFSIをホッパーから直径5mmの杵臼を装着した回転打錠機((株)菊水製作所製、形式:VIRG 0518SR3AZ、以下同じ。)に投入し、2時間、連続で打錠(打錠圧:10kN)することにより、粒径5mmの錠剤状物質(錠剤状の電解質成形体)9.7kg及び粉末状物質(粉末状電解質、平均粒子径:0.5~600μm、モード径:280μm)0.3kgの混合物を得た。得られた錠剤状物質及び粉末状物質の混合物を1Lの容器に充填した状態にて1か月間、室温(25℃程度)で保管した。保管後、当該容器から内容物(混合物)を排出したところ、排出口(口径45mm)から凝集物なく排出できた。
 (実施例3)
 10kgの粉末状のLiFSIをホッパーから直径6mmの杵臼を装着した回転打錠機に投入し、2時間、連続で打錠(打錠圧:10kN)することにより、粒径6mmの錠剤状物質(錠剤状の電解質成形体)9.8kg及び粉末状物質(粉末状電解質、平均粒子径:0.5~650μm、モード径:262μm)0.2kgの混合物を得た。得られた錠剤状物質及び粉末状物質の混合物を1Lの容器に充填した状態にて1か月間、室温(25℃程度)で保管した。保管後、当該容器から内容物(混合物)を排出したところ、排出口(口径45mm)から凝集物なく排出できた。
 (比較例1)
 粉末状のLiFSIを1Lの容器に充填した状態にて1ヶ月間室温(25℃程度)で保管した。保管後、当該容器から内容物(粉末状のLiFSI)を排出したところ、排出口(口径45mm)よりも大きい凝集物が見られ、粉砕しないと排出できなかった。
 圧縮工程及び粉砕工程を含む実施例1、打錠工程を含む実施例2及び実施例3は、これら工程を含まない比較例1と比較して、1か月間保管後の内容物(電解質成形体)を粉砕することなく容器から排出できることが分かった。これにより、実施例1、2及び3で得られる電解質成形体は容器から容易に排出できることが分かった。
 <実施例2シリーズ>
 (実施例4)
 実施例2と同様の方法により、10kgの粉末状のLiFSIを用いて、粒径5mmの錠剤状物質(錠剤状の電解質成形体)9.7kg及び粉末状物質(粉末状電解質(微粉)、平均粒子径:0.5~600μm、モード径:280μm)0.3kgの混合物を得た。得られた成形体について、粒度分布(粉末状物質/成形体)、成形体100質量部に占める粉末状物質の割合(微粉割合)、硬度、溶解速度、イオン分量、SUS成分量の各物性を以下の方法に基づいて測定した。その結果を表1に示す。
 [電解質成形体の粒径の測定]
 ノギスで実測し、その最少長さを粒径とした。
 [粉末状電解質の平均粒子径の測定]
 粉末状電解質50gを規格のJIS Z 8801-1に基づくふるいに投入し、上蓋と底蓋をしたのち、300回上下に振動させた後に粒度分布を計測し、50%質量平均粒子径を算出した。
 [硬度の測定]
 実施例4で得られた成形体(試料数:5個)をデジタル硬度計((株)藤原製作所、KHT-20N)にセットして硬度を測定した。試料5個の測定結果を平均した平均硬度を、成形体の硬度として採用した。
 [溶解速度の測定]
 スターラーチップを入れた50mLスクリュー管に、実施例4で得られたLiFSIの成形体を11gと、ジメチルカーボネート29gとを投入し、マグネチックスターラーで撹拌した。撹拌開始時から、目視で確認し成形体がすべて溶解するまでの時間を測定した。
 [イオン分量の測定]
 ポリプロピレン(PP)製の20mLバイアル瓶に、実施例4で得られたLiFSIの成形体を0.1g秤取し、脱イオン水で100倍に希釈して測定溶液とした。測定溶液中に含まれるフッ化物イオン(F)、スルファミン酸イオン、塩化物イオン(Cl)、硫酸イオン(SO 2-)の各イオン分量(濃度)をイオンクロマトグラフィーにより測定した。測定条件は以下のとおりである。
・装置:Thermo Fisher Scientific社製 DIONEX INTEGRION HPIC
・溶離液:7~18 mmol/L KOH
・カラム:Dionex IonPac AS17-C 4 mmI.D.×250 mm。
 [SUS成分量の測定]
 PP製の20mLバイアル瓶に、実施例4で得られたLiFSIの成形体を0.5g秤取し、4%硝酸約9.5gで希釈して測定溶液とした。測定溶液中に含まれるCr,Fe,Ni等の金属(SUS)成分を高周波誘導結合プラズマ発光分光分析法(ICP-AES)により分析した。装置は、ICPE-9000(株式会社島津製作所製)を用いた。
 (比較例2)
 10kgの粉末状のLiFSIを145℃で溶融状態にした。得られた溶融状態のLiFSIを140~145℃のままスポイトで吸い取り、60℃に加温したSUS304製のプレートにすばやく滴下し、固化させることにより、粒径4.8mmのペレット(電解質成形体)10kgを得た(ペレットには、粉末状物質(微粉)が含まれていなかった)。なお、上記反応および操作は露点-50℃以下のドライルーム内で行った。得られたペレットの各物性を実施例4と同様にして測定した。その結果を表1に示す。
 (比較例3)
 粉末状のLiFSI(微粉100%)を用いて、各物性を実施例4と同様にして測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 

Claims (14)

  1.  一般式(1)で表されるスルホニルイミド化合物を含む電解質の成形体を製造する方法であって、
     粉末状の前記電解質を圧縮造粒してシート状又は短冊状の電解質を得る圧縮工程と、
     前記シート状又は短冊状の電解質を粉砕して顆粒状の電解質成形体を得る粉砕工程とを含む、電解質成形体の製造方法。
     LiN(RSO)(RSO) (R及びRは同一又は異なってフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)
  2.  前記圧縮工程において、粉末状の前記電解質を一対の加圧ロール間に通過させて圧縮造粒することにより長手方向長さが10mm以上100mm以下であるシート状又は短冊状の電解質を得る、請求項1に記載の電解質成形体の製造方法。
  3.  前記圧縮工程において、ローラコンパクタを用いる、請求項1又は2に記載の電解質成形体の製造方法。
  4.  前記粉砕工程において、ロールグラニュレータを用いる、請求項1~3のいずれか一項に記載の電解質成形体の製造方法。
  5.  前記顆粒状の電解質成形体の粒径は1mm以上10mm以下である、請求項1~4のいずれか一項に記載の電解質成形体の製造方法。
  6.  一般式(1)で表されるスルホニルイミド化合物を含む電解質の成形体を製造する方法であって、
     粉末状の前記電解質を打錠して錠剤状の電解質成形体を得る打錠工程を含む、電解質成形体の製造方法。
     LiN(RSO)(RSO) (R及びRは同一又は異なってフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)
  7.  前記錠剤状の電解質成形体を乾燥させる乾燥工程をさらに含む、請求項6に記載の電解質成形体の製造方法。
  8.  粉末状の前記電解質又は前記錠剤状の電解質成形体を湿潤させる湿潤工程をさらに含む、請求項6に記載の電解質成形体の製造方法。
  9.  前記打錠工程において、回転式打錠機を用いる、請求項6~8のいずれか一項に記載の電解質成形体の製造方法。
  10.  前記錠剤状の電解質成形体の粒径は5mm以上25mm以下である、請求項6~9のいずれか一項に記載の電解質成形体の製造方法。
  11.  前記一般式(1)で表されるスルホニルイミド化合物が、LiN(FSO及びLiN(CFSOの少なくとも一種を含む、請求項1~10のいずれか一項に記載の電解質成形体の製造方法。
  12.  前記電解質が、一般式(2)で表される化合物、一般式(3)で表される化合物及びLiAsFからなる群より選択される少なくとも一種をさらに含む、請求項1~11のいずれか一項に記載の電解質成形体の製造方法。
     LiPF(C2m+16-a (a:0≦a≦6、m:1≦m≦4)  (2)
     LiBF(C2n+14-b (b:0≦b≦4、n:1≦n≦4)  (3)
  13.  一般式(1)で表されるスルホニルイミド化合物を含む電解質の成形体であって、
     前記成形体100質量部に占める平均粒子径1300μm以下の粉末状の前記電解質の割合が10質量部以下であり、
     前記成形体の硬度が10N以上50N以下である、電解質成形体。
     LiN(RSO)(RSO) (R及びRは同一又は異なってフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)
  14.  前記成形体の粒径は5mm以上25mm以下である、請求項13に記載の電解質成形体。
PCT/JP2022/008402 2021-03-01 2022-02-28 電解質成形体の製造方法及び電解質成形体 WO2022186160A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237032838A KR20230150995A (ko) 2021-03-01 2022-02-28 전해질 성형체의 제조방법 및 전해질 성형체
EP22763216.3A EP4296224A1 (en) 2021-03-01 2022-02-28 Electrolyte compact production method and electrolyte compact
US18/280,172 US20240079643A1 (en) 2021-03-01 2022-02-28 Electrolyte compact production method and electrolyte compact
JP2023503841A JPWO2022186160A1 (ja) 2021-03-01 2022-02-28
CN202280018067.0A CN116897138A (zh) 2021-03-01 2022-02-28 电解质成形体的制造方法及电解质成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021031327 2021-03-01
JP2021-031327 2021-03-01

Publications (1)

Publication Number Publication Date
WO2022186160A1 true WO2022186160A1 (ja) 2022-09-09

Family

ID=83153755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008402 WO2022186160A1 (ja) 2021-03-01 2022-02-28 電解質成形体の製造方法及び電解質成形体

Country Status (6)

Country Link
US (1) US20240079643A1 (ja)
EP (1) EP4296224A1 (ja)
JP (1) JPWO2022186160A1 (ja)
KR (1) KR20230150995A (ja)
CN (1) CN116897138A (ja)
WO (1) WO2022186160A1 (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2007182410A (ja) 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
WO2010010613A1 (ja) 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
JP2010168249A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010168308A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010189372A (ja) 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010254543A (ja) 2009-03-31 2010-11-11 Mitsubishi Materials Corp ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
JP2010280586A (ja) 2009-06-03 2010-12-16 Central Glass Co Ltd イミド酸塩の製造方法
WO2011065502A1 (ja) 2009-11-27 2011-06-03 株式会社日本触媒 フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
WO2012108284A1 (ja) 2011-02-10 2012-08-16 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
WO2012118063A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法
WO2012117961A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
JP2014201453A (ja) 2013-04-01 2014-10-27 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩の製造方法
WO2018147195A1 (ja) * 2017-02-08 2018-08-16 森田化学工業株式会社 ビス(フルオロスルホニル)イミド金属塩ならびに該金属塩の製造方法
CN111403805A (zh) * 2020-04-28 2020-07-10 深圳先进技术研究院 一种复合固态电解质、其制备方法及锂离子电池
JP2020184527A (ja) 2019-04-29 2020-11-12 上海如鯤新材料有限公司 リチウム電池用電解質の造粒方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2007182410A (ja) 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
JP2010189372A (ja) 2008-03-31 2010-09-02 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
WO2010010613A1 (ja) 2008-07-23 2010-01-28 第一工業製薬株式会社 ビス(フルオロスルホニル)イミドアニオン化合物の製造方法およびイオン対化合物
JP2010168249A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010168308A (ja) 2009-01-22 2010-08-05 Nippon Shokubai Co Ltd フルオロスルホニルイミド類およびその製造方法
JP2010254543A (ja) 2009-03-31 2010-11-11 Mitsubishi Materials Corp ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
JP2010280586A (ja) 2009-06-03 2010-12-16 Central Glass Co Ltd イミド酸塩の製造方法
WO2011065502A1 (ja) 2009-11-27 2011-06-03 株式会社日本触媒 フルオロスルホニルイミド塩およびフルオロスルホニルイミド塩の製造方法
WO2011149095A1 (ja) 2010-05-28 2011-12-01 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩およびその製造方法
WO2012108284A1 (ja) 2011-02-10 2012-08-16 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
WO2012118063A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フッ素含有スルホニルイミド塩の製造方法
WO2012117961A1 (ja) 2011-03-03 2012-09-07 日本曹達株式会社 フルオロスルホニルイミドアンモニウム塩の製造方法
JP2014201453A (ja) 2013-04-01 2014-10-27 株式会社日本触媒 フルオロスルホニルイミドのアルカリ金属塩の製造方法
WO2018147195A1 (ja) * 2017-02-08 2018-08-16 森田化学工業株式会社 ビス(フルオロスルホニル)イミド金属塩ならびに該金属塩の製造方法
JP2020184527A (ja) 2019-04-29 2020-11-12 上海如鯤新材料有限公司 リチウム電池用電解質の造粒方法
CN111403805A (zh) * 2020-04-28 2020-07-10 深圳先进技术研究院 一种复合固态电解质、其制备方法及锂离子电池

Also Published As

Publication number Publication date
JPWO2022186160A1 (ja) 2022-09-09
US20240079643A1 (en) 2024-03-07
CN116897138A (zh) 2023-10-17
KR20230150995A (ko) 2023-10-31
EP4296224A1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
KR101227445B1 (ko) 디플루오로인산염의 제조 방법, 이차전지용 비수계 전해질용액 및 비수계 전해질 이차전지
CN109562941B (zh) 双氟磺酰亚胺金属盐和该金属盐的制造方法
EP1438761A2 (fr) Oxyde de lithium et de vanadium, un procede pour sa preparation, son utilisation comme matiere active d'electrode
EP2994425B1 (de) Sphärische partikel, ihre herstellung und verwendung
WO2014027272A2 (de) Kompositmaterialien für lithium-schwefel batterien
EP4027410A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2017091755A (ja) ナトリウムイオン電池用正極活物質及びその製造方法
US20230163281A1 (en) Lithiated silicon/carbon composite materials and method for producing the same
JP7444535B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
JP7444534B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
CN102127660A (zh) 二次锂电池用锂铝合金及其制造方法
WO2022186160A1 (ja) 電解質成形体の製造方法及び電解質成形体
JP5855085B2 (ja) リチウム電池用のアノード材料としての、及び貯蔵容量が高いガルヴァーニ電池としての金属イミド化合物
Tan et al. One-pot resource-efficient synthesis of SnSb powders for composite anodes in sodium-ion batteries
JP2017091662A (ja) 負極活物質材料、負極及び電池、並びに、負極活物質材料の製造方法
JP2020004589A (ja) 炭素質材料の製造方法
EP3734736A1 (en) Method for granulating lithium battery electrolyte
EP3251160B1 (de) Lithiierte silicium/kohlenstoff-kompositmaterialien und verfahren zu deren herstellung
JP5566914B2 (ja) 非水電解質二次電池用負極材料の製造方法
WO2023189851A1 (ja) 硫黄系活物質、電極およびリチウムイオン二次電池
JP2018510111A5 (ja)
KR20110039013A (ko) 피롤리돈 관능기를 가지는 화합물에 극초단파를 조사하여 금속 이온을 환원시키는 방법 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503841

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280018067.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18280172

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237032838

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022763216

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022763216

Country of ref document: EP

Effective date: 20231002