WO2012067092A1 - 透明シート用エポキシ樹脂組成物及びその硬化物 - Google Patents

透明シート用エポキシ樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2012067092A1
WO2012067092A1 PCT/JP2011/076250 JP2011076250W WO2012067092A1 WO 2012067092 A1 WO2012067092 A1 WO 2012067092A1 JP 2011076250 W JP2011076250 W JP 2011076250W WO 2012067092 A1 WO2012067092 A1 WO 2012067092A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
parts
carboxylic acid
acid
Prior art date
Application number
PCT/JP2011/076250
Other languages
English (en)
French (fr)
Inventor
清柳 典子
政隆 中西
義浩 川田
淳子 市川
透 栗橋
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2012544250A priority Critical patent/JP5797204B2/ja
Priority to KR1020137009118A priority patent/KR101847007B1/ko
Priority to GB1306879.6A priority patent/GB2497906B/en
Priority to US13/878,564 priority patent/US9328217B2/en
Priority to CN201180054901.3A priority patent/CN103221451B/zh
Publication of WO2012067092A1 publication Critical patent/WO2012067092A1/ja
Priority to US14/958,116 priority patent/US9493631B2/en
Priority to US14/958,121 priority patent/US20160090440A1/en
Priority to US14/958,113 priority patent/US9493630B2/en
Priority to US15/427,144 priority patent/US20170145150A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/326Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2951Coating or impregnation contains epoxy polymer or copolymer or polyether

Definitions

  • the present invention relates to an epoxy resin composition used for a transparent sheet and a cured product thereof. More specifically, the present invention relates to an epoxy resin composition suitable for an optical sheet excellent in transparency, heat resistance, strength, smoothness, and light resistance, and a cured product thereof.
  • a curable resin composition containing an epoxy resin is used as a resin having excellent heat resistance in the fields of architecture, civil engineering, automobiles, aircraft, and the like.
  • epoxy resins used for electronic devices are required to have very high characteristics, and in recent years, their use in optoelectronics-related fields has attracted attention.
  • Display devices such as liquid crystal displays, plasma displays, EL displays, and portable devices are widespread by general consumers, and demands for display on curved surfaces and stereoscopic display are increasing as they become larger, lighter, and thinner.
  • glass plates are widely used for optical elements such as display elements and front panels of such apparatuses.
  • a plastic material such as an epoxy resin has been studied as an alternative to the glass plate, and various proposals have been made.
  • Patent Document 1 discloses a transparent resin substrate for a liquid crystal display element using an epoxy resin, an acid anhydride curing agent, and alcohol.
  • Patent Document 2 and Patent Document 3 disclose a transparent substrate using glass cloth and a thermosetting resin
  • Patent Document 4 discloses a resin sheet using a resin-cured layer containing a glass fiber cloth and inorganic particles. Is described.
  • glass substitute plastic materials are prone to warpage and cracking due to shrinkage during curing in the production process, and it is difficult to obtain a smooth sheet.
  • glass substitute plastic materials have a larger coefficient of linear expansion than glass plates, so problems may occur due to expansion and contraction during use, and color, heat resistance, light resistance, hardness, etc. Sufficient performance as required in the market as an alternative product has not been obtained.
  • Even in the method proposed in the above-mentioned document it cannot be said that the color is sufficient, and in particular, the one having a high refractive index has a low transmittance at a low wavelength near 400 nm. It can be seen that there are many colors such as yellow. When used for optical applications, a high transmittance around 400 nm is required.
  • the visible light transmittance at 400 nm is less than 90%.
  • the visible light transmittance at 550 nm is still less than 90%.
  • an acid anhydride compound may be used as an epoxy resin curing agent used in such a field.
  • acid anhydrides formed with saturated hydrocarbons are often used because the cured product has excellent light resistance.
  • alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, etc. are common, and in particular, methylhexahydrophthalic anhydride, methyl which is liquid at room temperature. Tetrahydrophthalic anhydride and the like are mainly used because of easy handling.
  • An object of the present invention is to provide an epoxy resin composition suitable for manufacturing an optical sheet that can be used for a display device such as a liquid crystal display, a plasma display, an EL display, and a portable device, and a solar cell, and transparency, heat resistance, strength,
  • the present invention relates to a cured product excellent in light resistance and smoothness.
  • an epoxy resin composition having a specific composition and a cured product thereof can solve the above problems, and have completed the present invention.
  • the present invention (1) a polyvalent carboxylic acid (A) represented by the general formula (I);
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, or a carboxyl group, and q represents the number of substituents R 1 . And an integer of 1 to 4.
  • P is any one of the following x, y, and z)
  • R 2 may be present per ring, and each independently represents a hydrogen atom or a methyl group. * Is a bonding portion with an oxygen atom)
  • a chain alkylene linker having 6 to 20 carbon atoms, having a main chain of 3 or more carbon atoms, substituted at least at one position with an alkyl group,
  • each R independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or a carboxyl group. * Represents a bonding portion with an oxygen atom.
  • the epoxy resin composition for optical sheets of the present invention (hereinafter referred to as an epoxy resin composition) has good stability, and its cured product is excellent in transparency, heat resistance, strength, smoothness, and light resistance. . Therefore, it is particularly suitable for an optical sheet used for a display device such as a liquid crystal display, a plasma display, an EL display, and a portable device, and a solar battery.
  • the polyvalent carboxylic acid (A) used in the present invention is represented by the following general formula (I).
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, or a carboxyl group, and q represents the number of substituents R 1 . And an integer of 1 to 4.
  • P is any one of the following x, y, and z)
  • R 2 may be present per ring, and each independently represents a hydrogen atom or a methyl group. * Is a bonding portion with an oxygen atom)
  • a chain alkylene linker having 6 to 20 carbon atoms, having a main chain of 3 or more carbon atoms, substituted at least at one position with an alkyl group,
  • each R independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or a carboxyl group. * Represents a bonding portion with an oxygen atom.
  • a method for producing a polyvalent carboxylic acid (A) in which P is x in the general formula (I) (hereinafter, for convenience of explanation, such a carboxylic acid is referred to as a polyvalent carboxylic acid (Ax)) will be described.
  • the polyvalent carboxylic acid (Ax) is produced by an addition reaction between an acid anhydride and a crosslinked polycyclic diol.
  • the acid anhydride is a polyvalent carboxylic acid anhydride having one or more alkyl-substituted or carboxyl group-substituted or unsubstituted acid anhydride structures in the molecule having a cyclohexane structure, specifically 1, 2, Examples include, but are not limited to, 4-cyclohexanetricarboxylic acid-1,2-anhydride, 4-methylcyclohexane-1,2-dicarboxylic anhydride, cyclohexane-1,2-dicarboxylic anhydride, and the like. You may mix and use a kind or more.
  • 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride and 4-methylcyclohexane-1,2-dicarboxylic acid anhydride because the optical characteristics are particularly important. From the balance of handling and handling, it is preferable to use a mixture of both.
  • examples of the crosslinked polycyclic diols include diols having a main skeleton of a tricyclodecane structure or a pentacyclopentadecane structure represented by the following general formula (VI). These diols may be used alone or in combination of two or more.
  • R 2 may be present per ring, and each independently represents a hydrogen atom or a methyl group.
  • tricyclodecane dimethanol methyl tricyclodecane dimethanol, pentacyclopentadecane dimethanol and the like.
  • tricyclodecane dimethanol is preferable.
  • the reaction between an acid anhydride and a crosslinked polycyclic diol is generally an addition reaction using an acid or a base as a catalyst, but since it causes coloring, a reaction without a catalyst is particularly preferable in the present invention.
  • examples of usable catalysts include acidic compounds such as hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, and trichloroacetic acid; sodium hydroxide, potassium hydroxide Metal hydroxides such as calcium hydroxide and magnesium hydroxide; amine compounds such as triethylamine, tripropylamine and tributylamine; pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7- Heterocyclic compounds such as ene, imidazole, triazole, tetrazole; 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2 -Fe Ru
  • the catalyst used in the epoxy resin composition of the present invention or the compound used in the additive has a catalytic effect in this reaction, those It is preferable to use the compound of. Specifically, it is a group of compounds described in catalysts and additives in the epoxy resin composition described later, and phosphonium salts, ammonium salts, and metal compounds are particularly preferable in terms of coloring and changes.
  • the amount used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by mass with respect to the total mass of the raw material of 100 parts by mass as necessary.
  • a reaction without a solvent is preferable, but an organic solvent may be used.
  • the organic solvent is used in a mass ratio of 0.005 to 1, preferably 0.005 to 0.7, more preferably, based on the total amount of acid anhydride and cross-linked polycyclic diol as the reaction substrate. Is 0.005 to 0.5 (that is, 50% by mass or less). When the mass ratio exceeds 1, the progress of the reaction becomes extremely slow, which is not preferable.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone, diethyl ether Further, ethers such as tetrahydrofuran, dioxane, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
  • alkanes such as hexane, cyclohexane and heptane
  • aromatic hydrocarbon compounds such as toluene and xylene
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and
  • an epoxy resin composition as a varnish. Therefore, a solvent used in the varnish, specifically, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, dimethyl It is preferable to use formamide, dimethylacetamide, N-methylpyrrolidone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and the like.
  • the epoxy resin composition of the present invention is used as a varnish, it can be used as it is without removing the solvent after completion of the reaction, which is preferable in view of productivity.
  • the reaction proceeds sufficiently even at a temperature of about 20 ° C., but the reaction temperature is preferably 30 to 150 ° C., particularly preferably 40 to 120 ° C., because of the problem of adjusting the reaction time.
  • the reaction temperature is a high temperature of, for example, 150 ° C. or higher, it is not preferable because the generated reaction product may cause acid anhydride formation or the like due to dehydration, dealcoholization, or the like, and may be connected or closed.
  • reaction in the said temperature range is preferable.
  • the reaction ratio between the acid anhydride and the crosslinked polycyclic diol is theoretically preferably an equimolar reaction, but can be changed as necessary. That is, when the reaction was carried out in an excess of acid anhydride during the production of the polyvalent carboxylic acid (A), the polyvalent carboxylic acid (A) and the excess acid anhydride coexisted when the reaction was completed. It becomes a mixture.
  • an acid anhydride as a raw material of the polyvalent carboxylic acid (A) is used in excess, and the epoxy resin composition of the present invention. This excess acid anhydride may be used as it is.
  • the glass transition point (Tg) of the cured product of the present invention when an excess acid anhydride is used as it is in the epoxy resin composition of the present invention is the glass transition point of the cured product of the present invention without using an excess acid anhydride. It becomes higher than (Tg).
  • the molar ratio of the crosslinked polycyclic diol is 0.001 to 2, more preferably 0.01 to 1. 5, more preferably 0.01 to 1.1.
  • the cross-linked polycyclic diols are 0.01 to 0.7 in view of the viscosity and volatility of the polyvalent carboxylic acid (A) obtained and the glass transition point (Tg) of the cured product. Further, it is preferably used in the range of 0.01 to 0.5.
  • the reaction time depends on the reaction temperature, the amount of catalyst, etc., but from the viewpoint of industrial production, a long time reaction is not preferable because it consumes a great deal of energy.
  • An excessively short reaction time means that the reaction is rapid and is not preferable from the viewpoint of safety.
  • a preferred range is 1 to 48 hours, preferably 1 to 36 hours, and more preferably 1 to 24 hours.
  • the catalyst is removed by neutralization, water washing, adsorption, etc., and the solvent is distilled off to obtain the target polyvalent carboxylic acid (Ax).
  • the solvent can be distilled off if necessary, and in the case of no solvent and no catalyst, it can be used as it is for the epoxy resin composition of the present invention.
  • the reaction ratio of the acid anhydride and the crosslinked polycyclic diol is reacted in a theoretical equimolar amount, and then the acid anhydride is mixed.
  • an acid anhydride may be used in excess during the production of the polyvalent carboxylic acid (Ax) to leave the acid anhydride.
  • the acid anhydride mixed after the reaction an acid anhydride having a saturated ring structure without an aromatic ring is used.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1 And heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, and the like.
  • these acid anhydrides in view of heat resistance and light resistance, methylhexahydrophthalic anhydride or cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is particularly preferable.
  • Two or more acid anhydrides to be mixed may be used.
  • the method of adding an acid anhydride in excess and using the excess acid anhydride in addition to the compound of formula (I) can be similarly applied to the following polyvalent carboxylic acid (Ay). .
  • polycarboxylic acid (A) in which P is y in the general formula (I) (hereinafter, for convenience of explanation, such a carboxylic acid is referred to as polyvalent carboxylic acid (Ay)) will be described.
  • the chain alkylene linker represented by P has, as described below, a main chain of alkylene having two alcoholic hydroxyl groups of a diol used as a raw material, and at least 1 of the alkylene. Those in which at least two positions are substituted with alkyl groups, and those in which two or more positions are substituted with alkyl groups are preferred.
  • the number of carbon atoms of the alkyl group is not particularly limited, but an alkyl group having 2 to 10 carbon atoms is preferable.
  • at least one of the substituted alkyl groups preferably has 2 to 10 carbon atoms.
  • the alkyl group may be substituted on any carbon atom constituting the main chain, and includes, for example, a case where a carbon to which an alcoholic hydroxyl group is bonded is substituted. Specific examples of such a chain alkylene linker are shown below.
  • the polyvalent carboxylic acid (Ay) is produced by an addition reaction between an acid anhydride and a chain diol compound.
  • the acid anhydride is a polyvalent carboxylic acid anhydride having one or more cyclohexane structures in the molecule which may have a substituent.
  • the substituents R 1 that the cyclohexane structure may have are each independently an alkyl group or a carboxyl group.
  • acid anhydride examples include the same compounds as in the production of the polyvalent carboxylic acid (Ax).
  • the chain diol compound is a diol having the above-mentioned chain alkylene linker as a main skeleton.
  • a compound in which * is a hydroxyl group can be mentioned.
  • 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3-hexanediol are particularly preferred structures.
  • the reaction between the acid anhydride and the chain diol compound is generally an addition reaction using an acid or base as a catalyst, but in the present invention, a reaction without a catalyst is particularly preferable.
  • a catalyst examples of the catalyst that can be used include the same compounds as those used in the production of the polyvalent carboxylic acid (Ax), and among these, triethylamine, pyridine, and dimethylaminopyridine are preferable.
  • the amount of the catalyst used is not limited, but is preferably 0.001 to 5 parts by mass based on the total mass of the raw material of 100 parts by mass.
  • a chain diol compound may be used in place of the crosslinked polycyclic diol according to the production method of the polyvalent carboxylic acid (Ax). It is preferably 40 to 200 ° C, particularly preferably 40 to 150 ° C. In particular, when this reaction is carried out in the absence of a solvent, the reaction at 100 ° C. or lower is preferred, and the reaction at 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
  • the specific reaction ratio between the acid anhydride and the chain diol compound is compared by the functional group equivalent.
  • the acid anhydride is 1, the chain diol compound is 0.001 to 2 in the molar ratio. More preferably, it is 0.01 to 1.5, and still more preferably 0.01 to 1.1. When the acid anhydride is left, it is preferably used in the range of 0.01 to 0.7, more preferably 0.01 to 0.5.
  • an acid anhydride and a chain diol compound are reacted at 40 to 150 ° C. in a catalyst-free and solvent-free condition, and after completion of the reaction, a polyvalent carboxylic acid (Ay) is taken out. It is a technique.
  • the polycarboxylic acid (Ay) used in the present invention thus obtained has the structure of the above formula (I) and usually shows a colorless to pale yellow solid resinous form (in some cases, crystals) ). Moreover, when it reacts in excess acid anhydride, it is often a liquid state.
  • the substituents R 1 in the general formula (I) are hydrogen atoms, coloring at the time of curing is observed, and particularly severe optical applications.
  • at least one of the substituents R 1 is preferably an alkyl group or a carboxyl group.
  • the substituent R 1 may be not only an alkyl group or a carboxyl group, but also an alkyl group and a carboxyl group.
  • the alkyl group of the substituent R 1 has 1 to 15 carbon atoms, preferably 1 to 6 carbon atoms, and may have a linear, branched or ring structure.
  • alkyl group for the substituent R 1 examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and a t-butyl group. Is a methyl group.
  • At least 50 mol% of all R 1 is an alkyl group, a carboxyl group, or an alkyl group.
  • a polyvalent carboxylic acid (A) substituted with a group and a carboxyl group is preferred. More preferably, 70 mol% or more substituted polycarboxylic acids (Ax) and (Ay), and most preferably 90 mol% or more substituted polycarboxylic acids (Ax) and (Ay).
  • substitution ratio of R 1 with an alkyl group or a carboxyl group, or an alkyl group and a carboxyl group should be adjusted by the amount of acid anhydride used as a raw material for the polyvalent carboxylic acids (Ax) and (Ay). Can do.
  • the substitution ratio can be measured by a known analysis method such as NMR.
  • polycarboxylic acid (A) in which P is z in the general formula (I) (hereinafter, such carboxylic acid is referred to as polyvalent carboxylic acid (Az) for convenience of explanation) will be described.
  • the polyvalent carboxylic acid (Az) is obtained by a reaction between an acid anhydride and bis (dimethylol) dialkyl ether.
  • the bis (dimethylol) dialkyl ether is not particularly limited as long as it is a tetraol compound having an ether bond in the molecule. Specifically, the following general formula (IV);
  • a plurality of R's each independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or a carboxyl group.
  • the substituent R is a straight chain, A branched and cyclic alkyl group having 1 to 15 carbon atoms is preferred, and a linear, branched and cyclic alkyl group having 1 to 6 carbon atoms is particularly preferred. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, and among them, a methyl group is preferable.
  • a compound having such a structure can be produced by dimerizing a triol compound synthesized by an aldol-Canizzaro reaction at the intersection of an aldehyde compound and formaldehyde.
  • 2,2′-bis (dimethylol) dipropyl ether, 2,2′-bis (dimethylol) diethyl ether, 2,2′-bis (dimethylol) dibutyl ether, 2,2′-bis (dimethylol) Examples include dipentyl ether and 2,2′-bis (dimethylol) dihexyl ether.
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, or a carboxyl group, and q represents the number of substituents R 1 .
  • the substituent R 1 may be one or more, and when there are a plurality of substituents R 1 , a hydrogen atom, a carboxyl group, or a carbon number of 1 to Any one or more of 15 alkyl groups, or any of a hydrogen atom, a carboxyl group, and an alkyl group having 1 to 15 carbon atoms can be used.
  • examples of the alkyl group having 1 to 15 carbon atoms include those similar to the alkyl group having 1 to 15 carbon atoms in the substituent R.
  • the substituent R 1 is preferably a carboxyl group or an alkyl group having 1 to 15 carbon atoms.
  • a carboxyl group as the substituent R 1
  • a compound in which q is 1 is preferable.
  • an alkyl group having 1 to 15 carbon atoms is taken as the substituent R 1 , a compound in which q is 1 is preferable.
  • the acid anhydride examples include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, and methylbicyclo [2,2,1. And heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, and the like. Of these, 1,3,4-cyclohexanetricarboxylic acid-3,4-anhydride and methylhexahydrophthalic anhydride are preferred. One or more of the acid anhydrides may be used.
  • the reaction between an acid anhydride and bis (dimethylol) dialkyl ether is generally an addition reaction using an acid or a base as a catalyst, but in the present invention, a reaction without a catalyst is preferred.
  • a catalyst examples of the catalyst that can be used include the same compounds as those used in the production of the polyvalent carboxylic acid (Ax), and among these, triethylamine, pyridine, and dimethylaminopyridine are preferable.
  • the amount of the catalyst used is not limited, but is preferably 0.001 to 5 parts by mass based on the total mass of the raw material of 100 parts by mass.
  • the reaction temperature is preferably 40 to 200 ° C., particularly preferably 40 to 150 ° C.
  • the reaction at 100 ° C. or lower is preferred, and the reaction at 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
  • the reaction ratio between the acid anhydride and bis (dimethylol) dialkyl ether is theoretically preferably equimolar, but can be changed as required. As a specific reaction ratio, the functional group equivalent is compared.
  • the acid anhydride is 1, the molar ratio of bis (dimethylol) dialkyl ether is 0.001-2, more preferably 0.01-1. 5, more preferably 0.01 to 1.1.
  • the reaction ratio of the acid anhydride and bis (dimethylol) dialkyl ether is reacted theoretically in an equimolar amount to produce a polyvalent polyhydric acid.
  • the polyvalent carboxylic acid (Az) is preferably used as a mixture with other curing agents.
  • the polyvalent carboxylic acid resin (Az) is preferably used by mixing with an acid anhydride or liquid carboxylic acid at a temperature of 150 ° C. or less and making them compatible.
  • the catalyst is removed by neutralization, water washing, adsorption, etc., and the solvent is distilled off to obtain the desired polyvalent carboxylic acid (Az).
  • the solvent can be distilled off if necessary, and in the case of a solventless or catalyst-free reaction, it can be used as it is.
  • an acid anhydride and bis (dimethylol) dialkyl ether are reacted at 40 to 150 ° C. in a catalyst-free and solvent-free condition.
  • the polycarboxylic acid (Az) thus obtained has the structure of the above general formula (I) and usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases). .
  • the shape when reacted in an excess of acid anhydride, the shape often shows a liquid state.
  • the epoxy resin of the present invention contains an epoxy resin (B) having an aliphatic cyclic structure in the molecule in addition to the polyvalent carboxylic acid (A), and the polyvalent carboxylic acid (A) is an epoxy resin (B). Acts as a curing agent.
  • the epoxy resin composition of the present invention when an acid anhydride is used as the epoxy resin curing agent in addition to the polyvalent carboxylic acid (A), the total amount of the polyvalent carboxylic acid (A) and the acid anhydride is 100% by mass. Then, the ratio of the polyvalent carboxylic acid (A) is usually 20 to 100% by mass, preferably 20 to 80% by mass, and more preferably 30 to 75% by mass. As described above, when the excess acid anhydride at the time of producing the polyvalent carboxylic acid (A) is used, it is preferable to adjust the amount of the excess acid anhydride to the above range.
  • the epoxy resin (B) having an aliphatic cyclic structure in the molecule will be described.
  • Examples of the epoxy resin (B) having an aliphatic cyclic structure in the molecule include terpene diphenol, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and an aliphatic ring structure.
  • bisphenol A bisphenol A
  • bisphenol F bisphenol F
  • alicyclic epoxy resins etc.
  • the compound represented by the general formula (II) is particularly preferable for the use of the present invention.
  • R 3 is an alkoxy group, m is an average value and is a positive number from 1 to 20, and n is an integer from 1 to 10.
  • the carbon chain of the alkoxy group is linear, branched and cyclic having 1 to 20 carbon atoms, preferably linear, branched and cyclic having 1 to 10 carbon atoms, Preferred are straight chain, branched chain and cyclic having 1 to 6 carbon atoms.
  • R 3 is a residue of a monovalent alcohol such as a methoxy group, an epoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-hexoxy group, or the like.
  • a monovalent alcohol such as a methoxy group, an epoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-hexoxy group, or the like.
  • group, residue of glycol such as ethylene glycol, propylene glycol, neopentyl glycol
  • residue of polyhydric alcohol such as glycerin, trimethylolpropane, trimethylolbutane, trimethylolpentane, pentaerythritol, dipentaerythritol, ditrimethylolpropane Is
  • m is an average value as described above and is a positive number of 1 to 20, preferably a positive number of 1 to 10, and more preferably a positive number of 1 to 6.
  • n is an integer of 1 to 10, preferably an integer of 1 to 5.
  • the compound represented by the general formula (II) is obtained by epoxidizing a polyolefin obtained by ring-opening polymerization of an alcohol and an epoxycyclohexene having a vinyl group by oxidation.
  • the alcohol that is the raw material of the compound represented by the general formula (II) is either a monohydric alcohol or a polyhydric alcohol.
  • polyhydric alcohols are preferable, and trimethylol alcohols are particularly preferable.
  • Specific examples of the trimethylol alcohols include glycerin, pentaerythritol, trimethylolpropane, trimethylolbutane, and trimethylolpentane.
  • epoxy resin (C) having three or more epoxy groups in the molecule
  • epoxy resin (C) among aromatic novolak type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol aralkyl type epoxy resin, etc., it has three or more epoxy groups and aromatic rings in the molecule.
  • An epoxy resin is mentioned.
  • epoxidized products of polyhydric phenols such as tris- (4-hydroxyphenyl) methane and 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane.
  • Phenols phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.
  • formaldehyde acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, 4 -(4-Hydroxyphenyl) acetophenone, epoxidized product of polycondensate with 4- (1- (4-hydroxyphenyl) -1-methylethyl) acetophenone, and bifunctional epoxy resin are also included in the molecule.
  • Phenols, furfural, 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4-bis examples thereof include polycondensates with chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene, etc., and epoxidized products of these modified products.
  • the epoxy resin (C) includes tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols and p-hydroxyacetophenone, 4- (4-hydroxyphenyl) acetophenone, 4- (1- (4-hydroxyphenyl) -1-methyl Epoxidized products such as polycondensates with ethyl) acetophenone and the like are preferred.
  • phenols 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1 ′ -A polycondensation epoxidized product with biphenyl, 1,4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene or the like is preferable, and in consideration of transparency, heat resistance and hardness, 1,1,2 , 2-tetrakis (4-hydroxyphenyl) ethane is preferred.
  • These can be used to complement each other's properties, and are appropriately used to balance the properties such as transparency, heat resistance, light resistance, and hardness of the cured product of the epoxy resin composition of the present invention. Can be used.
  • the epoxy resin (C) used in the present invention is more preferably a solid at room temperature.
  • an epoxy resin (C) having a softening point of 50 to 100 ° C. or a melting point of 50 to 190 ° C. is usually used, but a softening point of 60 to 100 ° C. or a melting point of 60 to 190 ° C. is used.
  • the epoxy equivalent is 130 to 500 g / eq. Can usually be used, but preferably 150 to 400 g / eq. More preferably 170-300 g / eq. Is used. If the epoxy equivalent is too small, it tends to be hard and fragile, and if the epoxy equivalent is too large, problems such as difficulty in obtaining hardness and a low glass transition point may occur.
  • NC-6000 manufactured by Nippon Kayaku
  • C aromatic polyfunctional epoxy resins having 3 or more epoxy groups in the molecule.
  • a compound of the general formula (III) produced by the following production method is preferable.
  • n is an average value and is a positive number of 1 to 2).
  • the compound represented by the general formula (III) is (4- (4- (1,1-bis (p-hydroxyphenyl) -ethyl) ⁇ , ⁇ -dimethylbenzyl) phenol) (hereinafter referred to as phenol compound (PA1)). And an epihalohydrin.
  • the phenol compound (PA1) can be produced, for example, by the technique described in JP-A No. 05-64935. Trisphenol PA is also available from Honshu Chemical Industry.
  • Examples of the epihalohydrin used in the reaction with the phenol compound (PA1) include epichlorohydrin, ⁇ -methylepichlorohydrin, ⁇ -methylepichlorohydrin, epibromohydrin and the like, and epichlorohydrin which is easily available industrially is preferable.
  • the amount of epihalohydrin to be used is generally 2 to 15 mol, preferably 4 to 10 mol, per 1 mol of the hydroxyl group of the phenol compound (PA1). If too much epihalohydrin is used, not only the productivity is deteriorated, but also the softening point of the produced epoxy resin is lowered, and the tackiness and the like in the case of a prepreg is not adversely affected. On the other hand, if the amount of epihalohydrin is 2 mol or less, the value of n becomes large and gelation tends to occur during production.
  • an alkali metal hydroxide In the epoxidation reaction, it is preferable to use an alkali metal hydroxide.
  • the alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
  • the alkali metal hydroxide may be used as a solid or an aqueous solution thereof.
  • an aqueous solution of alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled under reduced pressure or normal pressure. Then, liquid separation is performed to remove water, and the epoxidation reaction can be carried out by continuously returning the epihalohydrin to the reaction system.
  • the amount of the alkali metal hydroxide used is usually 0.90 to 1.5 mol, preferably 1.01 to 1.25 mol, more preferably 1 mol per mol of the hydroxyl group of the phenol compound (PA1). 1.01 to 1.15 mol.
  • quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride, tetramethylphosphonium chloride, tetramethylphosphonium bromide, trimethylbenzylphosphonium chloride,
  • a quaternary phosphonium salt such as triphenylbenzylphosphonium chloride or triphenylethyl bromide may be added as a catalyst.
  • the amount of these quaternary salts used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of the hydroxyl group of the phenol compound (PA1).
  • an alcohol such as methanol, ethanol and isopropyl alcohol
  • an ether such as tetrahydrofuran and dioxane
  • an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide, and dimethylimidazolidinone
  • the amount used is usually 2 to 50% by weight, preferably 4 to 20% by weight, based on the amount of epihalohydrin used.
  • the amount used is usually 5 to 100% by mass, preferably 10 to 80% by mass, based on the amount of epihalohydrin used.
  • the reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C.
  • the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours.
  • This reaction may be carried out under normal pressure or reduced pressure, and the reaction may be carried out under water-epihalohydrin azeotropic dehydration conditions under reduced pressure conditions.
  • the reaction product of these epoxidation reactions can be purified by removing epihalohydrin, a solvent, or the like under heating and reduced pressure after washing with water or without washing with water.
  • the recovered reaction product is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is prepared.
  • a solvent such as toluene or methyl isobutyl ketone
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.00 mol, based on 1 mol of the hydroxyl group of the phenol compound (PA1) used for epoxidation. 2 moles.
  • the reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
  • the epoxy resin thus obtained includes a part of the epoxy resin added with the solvent and water, and a part of the epoxy resin in which halogen cannot be closed.
  • Epoxy equivalent of 195 to 225 g / eq. Preferably 200 to 220 g / eq. It is. 2.
  • two phenolic compounds (PA1) connected by epihalohydrin are 20 area% or less, three connected are 15 area% or less, more preferably two are connected by 15 area% or less. What connected 3 is 10 area% or less.
  • the obtained epoxy resin composition of the present invention In consideration of viscosity, adhesion, glass transition temperature (Tg), hardness, refractive index, etc., the epoxy resin (D) may be used alone or in combination of two or more.
  • Examples of the epoxy resin (D) include an aromatic epoxy resin having less than 3 epoxy groups in the molecule other than the epoxy resin (B) and the epoxy resin (C), a bisphenol type epoxy resin, or a non-aromatic epoxy resin. Is mentioned.
  • bisphenol A bisphenol F, bisphenol S, thiodiphenol, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [1 , 1'-biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol) and formaldehyde, acetaldehyde, benzaldehyde, furfural, 4,4'- Bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1,4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) Bifunctional polycondensate with benzene, te
  • a curing agent other than the polyvalent carboxylic acid (A) may be used in combination as necessary.
  • examples of other curing agents that can be used in combination include amine compounds, acid anhydride compounds having an unsaturated ring structure, amide compounds, phenol compounds, and carboxylic acid compounds.
  • the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, Bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclo
  • the proportion of each component used is 0.5% of component (A) with respect to 1 equivalent of the epoxy groups of all epoxy resins of component (B) + component (C) + component (D). ⁇ 1.5 equivalents (the carboxylic acid is considered to be monofunctional and the acid anhydride is assumed to be monofunctional), particularly preferably 0.5 to 1.2 equivalents. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • component (B) + component (C) + component (D) Is 100 parts by mass
  • the content of the component (B) is 5 to 100 parts by mass, particularly preferably 10 to 90 parts by mass.
  • the content of the component (C) is 0 to 70 parts by mass, particularly preferably 5 to 50 parts by mass.
  • the content of component (D) is 0 to 70 parts by mass, particularly preferably 10 to 50 parts by mass.
  • it is preferable that what mixed all the epoxy resins of component (B) + component (C) + component (D) is solid at normal temperature.
  • the proportion of the liquid component used at room temperature is preferably 30 parts by mass or less in 100 parts by mass of the total epoxy resin.
  • an acid anhydride or liquid carboxylic acid can be preferably selected as another curing agent.
  • an acid anhydride having a saturated ring structure without an aromatic ring is preferable, and an acid anhydride used as a raw material for the polyvalent carboxylic acid (Az) is particularly preferable.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1 And heptane-2,3-dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride.
  • methylhexahydrophthalic anhydride or cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride is particularly preferred in the present invention in consideration of heat resistance and light resistance. Two or more of these acid anhydrides may be used.
  • the liquid carboxylic acid is a bifunctional or higher carboxylic acid and is a liquid polycarboxylic acid having a viscosity of 1000 Pa ⁇ s or less at 25 ° C.
  • a reaction product of an acid anhydride used as a raw material for the polyvalent carboxylic acid (A) and a carbinol-modified silicone compound is preferable.
  • the carbinol-modified silicone compound can be synthesized using a technique described in, for example, Japanese Patent Application Laid-Open No. 2007-508424.
  • a compound having a weight average molecular weight of 500 to 10,000 is particularly preferable, more preferably 600 to 6000, and particularly preferably 600 to 2000. The most preferable range is 600 to 1500.
  • the polyvalent carboxylic acid (Az) and the total amount of the acid anhydride or liquid carboxylic acid are 100% by mass.
  • the proportion of (Az) is usually 20 to 100% by mass, preferably 20 to 80% by mass, more preferably 30 to 75% by mass.
  • a curing accelerator may be used in combination with a curing agent.
  • the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • Diaza compounds such as undecene-7 and the like Salts such as tetraphenylborate and phenol novolac, salts with the above polycarboxylic acids or phosphinic acids, ammonium salts such as tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide, triphenylphosphine, tri (toluyl) ) Phosphines such as phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts, tin octylate, etc.
  • salts such as tetraphenylborate and phenol novolac, salts with the above polycarboxylic acids or phosphinic acids, ammoni
  • microcapsule type curing accelerator obtained by making these curing accelerators into microcapsules. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions.
  • the curing accelerator is usually used in the range of 0.001 to 15 parts by mass with respect to 100 parts by mass of the total epoxy resin in the epoxy resin composition of the present invention.
  • phosphines such as salts, triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, and the like.
  • the curable resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-pho
  • Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • antioxidant may be added to the epoxy resin composition of this invention as needed.
  • examples of the antioxidant that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants.
  • phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - ( 3,5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) Monophenols such as -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2 , 2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis ( -Methyl-6-t-t-
  • sulfur antioxidant examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, and the like. It is done.
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t -Butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbis (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis ( 2,4-di-tert-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl-4- ⁇ 2- (oct)
  • Phosphites 9,10- Hydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene And oxaphosphaphenanthrene oxides such as -10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and the like.
  • antioxidants can be used alone, but may be used in combination of two or more.
  • the amount of the antioxidant used is usually 0.008 to 1 part by mass, preferably 0.01 to 0.5 part by mass with respect to 100 parts by mass of the epoxy resin composition of the present invention.
  • a phosphorus-based antioxidant is preferable.
  • a light stabilizer may be added to the epoxy resin composition of the present invention as necessary.
  • the light stabilizer hindered amine-based light stabilizers, particularly HALS and the like are suitable.
  • HALS is not particularly limited, but typical examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate (for example, Tinuvin 111FDL, a component manufactured by Ciba Japan), poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3 , 5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidy
  • a ultraviolet absorber to the epoxy resin composition of this invention as needed. Although it does not specifically limit as a ultraviolet absorber, A benzotriazole type
  • BTZ benzotriazole
  • UV absorber examples include 2- (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole (for example, Tinuvin PS, manufactured by Ciba Japan), benzenepropanoic acid-3 -(2H-benzotriazol-2-yl) -5- (1,1-dimethylethyl) -4-hydroxyalkyl ester (eg, Tinuvin 99-2, manufactured by Ciba Japan), benzenepropanoic acid-3- (2H-benzo Triazol-2-yl) -5- (1,1-dimethylethyl) -4-hydroxyalkyl ester (eg, Tinuvin 384-2, manufactured by Ciba Japan), 2- (2H-benzotriazol-2-yl) -4, 6-bis (1-methyl-1-phenylethyl) phenol (eg Tinuvin 900, manufactured by Ciba Japan), 2- ( H-benzotriazol-2-yl)
  • a hydroxyphenyltriazine-based (so-called HPT-based) ultraviolet absorber is shown as a compound having a structure represented by the following general formula.
  • R 4 are each independently a hydrogen atom, an aliphatic or aromatic hydrocarbon group having 1 to 12 carbon atoms, a (poly) alkyleneoxy group having 1 to 4 carbon atoms, —O— shows the R 5.
  • R 5 is a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, hydrogen atoms and other glycidyl ether group, a carboxyl group, the reaction residues of acrylate group-containing compound.
  • HPT ultraviolet absorber examples include 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hydroxyphenyl, and oxirane [(alkyl Oxy) methyl] oxirane reaction product (eg, Tinuvin 400, manufactured by Ciba Japan), 2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -2,3, Reaction product of 5-triazine and (2-ethylhexyl) -glycidic acid ester (for example, Tinuvin 405, manufactured by Ciba Japan), 2,4-bis “2-hydroxy-4-butoxyphenyl” -6- (2,4- Dibutoxyphenyl) -1,3,5-triazine (eg, Tinuvin 460, manufactured by Ciba Japan), propanoic acid-2- [4- [4,6-bis ([1,1′-biphenyl] -4 Yl)
  • R 4 is an aromatic hydrocarbon such as isooctyl ester (for example, Tinuvin 479, manufactured by Ciba Japan) show excellent efficacy.
  • a hydroxyphenyltriazine-based (so-called HPT-based) ultraviolet absorber and a hindered amine light stabilizer are contained in combination because the light resistance is further improved.
  • the epoxy resin composition of the present invention has a butyral resin, an acetal resin, an acrylic resin, an epoxy-nylon resin, an NBR-phenol resin, an epoxy-NBR as long as the properties such as transparency and hardness are not impaired.
  • Resin components such as resin, polyamide resin, polyimide resin, and silicone resin may be added as necessary.
  • fine particles having a primary particle size of 1 to 200 nanometers may be added to the epoxy resin composition of the present invention.
  • the fine particles include glass, silica, zirconium oxide, tin oxide, titanium oxide, zinc oxide, indium tin oxide, antimony oxide, selenium oxide, and yttrium oxide.
  • the fine particles are dispersed in a fine powder or solvent that does not contain a dispersion solvent. It can be obtained from the market as a colloidal solution. Moreover, these can be used 1 type or in mixture of 2 or more types.
  • dispersion solvent examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and dimethyldimethylacetamide, esters such as ethyl acetate and butyl acetate, nonpolar solvents such as toluene and xylene, and the like. What dissolves the components may be selected and used.
  • silane coupling agents can also be added.
  • leveling agents surfactants, dyes, pigments, inorganic or organic light diffusion fillers, and the like can also be added.
  • a metal salt for the purpose of improving heat resistance and light resistance.
  • carboxylic acid metal salts such as 2-ethylhexanoic acid, stearic acid, behenic acid, and myristic acid, tin salts, zirconium salts) and phosphoric acid ester metals (zinc such as octyl phosphoric acid and stearyl phosphoric acid) Salts
  • metal compounds such as alkoxy metal salts (such as tributylaluminum and tetrapropylzirconium), and acetylacetone salts (such as acetylacetonezirconium chelate and acetylacetonetitanium chelate). These may be used alone or in combination of two or more.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing the respective components by a method similar to a conventionally known method. For example, an epoxy resin, a polyvalent carboxylic acid curing agent and, if necessary, a curing accelerator and other components are thoroughly mixed using an extruder, a kneader, a roll or the like as necessary until uniform. An epoxy resin composition is obtained. Since the epoxy resin composition of the present invention is solid at room temperature, it can be cast, molded using a casting or transfer molding machine, and then cured by heating.
  • the epoxy resin composition of the present invention comprises toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether It can be diluted with a solvent such as propylene glycol monomethyl ether acetate and used as a varnish. Since the epoxy resin composition of the present invention is usually solid at room temperature, it is more preferable to use it diluted in a solvent because it is easier to handle. In particular, when the glass cloth is impregnated and used, dilution with a solvent is performed.
  • the solvent can be used as one or a mixture of two or more in consideration of the viscosity and drying rate when using the epoxy resin composition of the present invention.
  • the proportion of the solvent used is usually 10 to 200 parts by weight, preferably 15 to 100 parts by weight, based on 100 parts by weight of the epoxy resin composition of the present invention, although it depends on the workability and drying speed during use.
  • the epoxy resin composition of the present invention diluted with a solvent it can be prepared by mixing and dissolving each component according to a conventional method.
  • a varnish of an epoxy resin composition can be obtained by charging each component in a round bottom flask equipped with a stirrer and a thermometer and stirring at 40 to 80 ° C. for 0.5 to 6 hours.
  • component (B) + component (C) + component (D) epoxy resin varnish and component (A) + curing catalyst or additive varnish are prepared separately and mixed at the time of use. The method is particularly preferred.
  • the treatment can be performed by a generally known dispersion method such as a high-speed stirrer such as a homomixer or a sand mill, a microfluidizer, or a three roll.
  • a high-speed stirrer such as a homomixer or a sand mill, a microfluidizer, or a three roll.
  • the varnish of the epoxy resin composition of the present invention is molded by a known method, dried, and then cured by further heating.
  • it can be used in place of a mold by a method known per se such as pouring into a mold, drying after heating, curing, bar coater, air knife coater, die coater, gravure coater, offset printing, flexographic printing, screen printing, etc.
  • the curing agent is volatilized at the time of curing, the component ratio of the film is not changed, and the refractive index is not changed, so that a stable transparent film can be obtained. For this reason, it is suitable for manufacture of the optical sheet mentioned below.
  • a smooth and excellent film can be obtained without causing the surface of the cured film to become rough due to the volatilization of the curing agent or to change the physical properties of the cured film.
  • the drying temperature of the varnish of the epoxy resin composition of the present invention is usually 60 to 200 ° C., although it depends on the solvent used and the air volume.
  • the epoxy resin composition of the present invention can be in a semi-cured state to obtain a prepreg.
  • the drying conditions at this time are not particularly limited, but the temperature is preferably 100 to 180 ° C. and the time is preferably 1 to 30 minutes.
  • a cured product obtained by curing the epoxy resin composition of the present invention is also included in the present invention.
  • a cured product (optical sheet) obtained by preparing a prepreg in which a glass cloth is impregnated with the epoxy resin composition of the present invention and then drying and curing is also included in the present invention.
  • the epoxy resin composition of the present invention is suitable for production of the optical sheet because there is no change in the refractive index due to volatilization of the curing agent during curing.
  • the curing temperature and time of the epoxy resin composition of the present invention are 80 to 200 ° C. and 2 to 200 hours.
  • a curing method it can be cured at a high temperature at a stretch, but it may be cured at a low temperature of 150 ° C. or lower for a long time.
  • initial curing may be performed at 80 to 150 ° C. and post-curing may be performed at 100 to 200 ° C., and the curing reaction may be promoted by increasing the temperature stepwise.
  • the glass cloth for producing the prepreg a known commercially available one can be used.
  • E glass generally used for resin reinforcement has few alkali metal oxides and is suitable for use in the present invention as an alkali-free glass.
  • glass cloths such as woven fabrics, nonwoven fabrics, and knitted fabrics using glass fibers.
  • the present invention there is no particular limitation on the type, but it is cured by impregnating the epoxy resin composition of the present invention.
  • a glass cloth having a small surface irregularity is suitable.
  • the thickness of the glass cloth is usually 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • a prepreg having a thickness of about 25 ⁇ m or less may be prepared, and two to several sheets may be stacked and integrated during curing to form the optical sheet of the present invention.
  • the diameter of the glass fiber used for the glass cloth is preferably small in consideration of transparency and the like, and preferably 10 ⁇ m or less.
  • the glass fiber is preferably treated with a silane coupling agent.
  • the refractive index is 1.51 to 1.57, and 1.55 to 1.57 is more preferable as generally available.
  • the refractive index of the cured product of the present invention is preferably such that the difference between the refractive index of the glass cloth used is small. Specifically, it is preferable that the difference from the refractive index of the glass cloth is ⁇ 0.01, and it is more preferable that the difference is ⁇ 0.005.
  • the refractive index of the cured product of the present invention is within this range, the optical sheet of the present invention having excellent transparency, smoothness, and hardness can be obtained. By applying, drying, and curing the epoxy resin composition of the present invention on these optical sheets, it is also possible to obtain an optical sheet with better transparency and smoothness.
  • the optical sheet of the present invention can be used as a substitute for glass used in display devices such as liquid crystal displays, plasma displays, EL displays, and portable devices, and solar cells.
  • display devices such as liquid crystal displays, plasma displays, EL displays, and portable devices, and solar cells.
  • peripheral materials for liquid crystal display devices such as light guide plates, prism sheets, polarizing plates, retardation plates, viewing angle correction films, adhesives, polarizer protective films, and other liquid crystal display device peripheral materials, antireflection films, and touch panel fronts It can also be used for face plates and optical correction films.
  • GPC measurement conditions Column: Shodex SYSTEM-21 column (KF-803L, KF-802.5 ( ⁇ 2), KF-802) Linked eluent: tetrahydrofuran Flow rate: 1 ml / min. Column temperature: 40 ° C Detection: RI (Reflective index) Calibration curve: Standard polystyrene manufactured by Shodex Epoxy equivalent Method described in JIS K-7236.
  • Synthesis Example x2 Synthesis of polyvalent carboxylic acid (A) A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 12 parts of tricyclodecane dimethanol, 73 parts of H1, and 15 parts of H-TMAn while performing a nitrogen purge. In addition, after reacting at 40 ° C. for 3 hours, the mixture was heated and stirred at 70 ° C. for 1 hour to obtain 100 parts of a mixture of polyvalent carboxylic acid (A) and H1, which is a colorless liquid resin.
  • Synthesis Example x3 Synthesis of polyvalent carboxylic acid (A) A flask equipped with a stirrer, a reflux condenser and a stirrer was charged with 36 parts of tricyclodecane dimethanol, 195 parts of H1, and 69 parts of H-TMAn while purging with nitrogen. In addition, after reacting at 40 ° C. for 3 hours, the mixture was heated and stirred at 70 ° C. for 1 hour to obtain 300 parts of a mixture of polyvalent carboxylic acid (A) and H1, which is a colorless liquid resin.
  • Synthesis Example x4 Synthesis of polyvalent carboxylic acid (A) A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 45 parts of tricyclodecane dimethanol, 195 parts of H1, and 60 parts of H-TMAn while performing a nitrogen purge. In addition, after reacting at 40 ° C. for 3 hours, the mixture was heated and stirred at 70 ° C. for 1 hour to obtain 300 parts of a mixture of polyvalent carboxylic acid (A) and H1, which is a colorless liquid resin.
  • Synthesis Example x5 Synthesis of polyvalent carboxylic acid (A) To a flask equipped with a stirrer, a reflux condenser, and a stirrer, 40 parts of tricyclodecane dimethanol and 200 parts of H1 were added while purging with nitrogen, and 3 parts at 40 ° C. After the time reaction, the mixture was heated and stirred at 70 ° C. for 1 hour to obtain 240 parts of a polyvalent carboxylic acid (A) that was a colorless liquid resin. The epoxy equivalent was 200 g / eq.
  • cured material of this invention were obtained by the composition (a numerical value shows a mass part) as shown in the following examples. Moreover, the evaluation methods and evaluation criteria for the resin composition and the cured film are as follows.
  • Viscosity Viscosity was measured at 25 ° C. using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.).
  • Refractive index (25 ° C.) The refractive index (25 ° C.) of the cured epoxy resin composition was measured with a prism coupler refractometer (made by Metricon).
  • Glass transition temperature (Tg) The Tg point of the cured epoxy resin composition was measured with a viscoelasticity measurement system (DMS-6000: manufactured by Seiko Denshi Kogyo Co., Ltd.) in a tensile mode at a frequency of 1 Hz.
  • DMS-6000 viscoelasticity measurement system
  • MEK diluted solution having a solid content of 70% by mass of the epoxy resin composition of the present invention.
  • the viscosity of the MEK dilution of this epoxy resin composition was 98 mPa ⁇ s.
  • a 40 mm ⁇ 25 mm ⁇ 1 mm depth mold is made on a glass substrate with a heat-resistant release tape, and the MEK diluted solution of the epoxy resin composition of the present invention is poured to a thickness of about 800 ⁇ m, and then at 80 ° C. for 50 minutes. Dried. During the drying, vacuum degassing was performed once to remove bubbles. Then, when the state was confirmed by cooling to room temperature, the epoxy resin composition of the present invention was solid.
  • the refractive index (25 ° C.) was 1.568, and the glass transition temperature (Tg) was 135 ° C.
  • the YI value of the cured film was 0.3, the transmittance was 90.6% at 550 nm, and 90.1% at 400 nm.
  • Example x2 43.6 parts of a mixture of polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example x2, 2.6 parts of EHPE-3150 as Component (B), and obtained in Synthesis Example x6 as Component (C) 35.5 parts of the above compound, 10.4 parts of JER-828 as component (D), 8.0 parts of YD-012 and Hishicolin PX4MP as a curing catalyst (manufactured by Nippon Chemical Industry: quaternary phosphonium Salt) 0.3 parts and 43 parts of MEK as a dilution solvent were heated to 70 ° C. and mixed to obtain a 70% solid content MEK dilution of the epoxy resin composition of the present invention.
  • the viscosity of the MEK diluent having a solid content of the epoxy resin composition of 70% by mass was 40 mPa ⁇ s.
  • the epoxy resin composition of the present invention was solid.
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.566, and the glass transition temperature (Tg) was 140 ° C.
  • the YI value of the cured film was 0.2, and the transmittance was 90.6% at 550 nm and 90.6% at 400 nm.
  • Example x3 In Example x2, except that 0.3 parts of U-CAT5002 (tetraphenylborate of 1,8-diazabicyclo (5,4,0) -undecene-7 derivative manufactured by Sanyo Kasei) is used as a curing catalyst for the other components. Obtained the MEK dilution liquid whose solid content of the epoxy resin composition of this invention is 70 mass% similarly to Example x2. The viscosity of the MEK dilution of this epoxy resin composition was 41 mPa ⁇ s. When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid.
  • U-CAT5002 tetraphenylborate of 1,8-diazabicyclo (5,4,0) -undecene-7 derivative manufactured by Sanyo Kasei
  • Example x1 a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.566, and the glass transition temperature (Tg) was 141 ° C.
  • Example x4 41.3 parts of a mixture of polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example x2 (1 equivalent to all epoxy groups of component (B), component (C) and component (D)) Except for using 27.3 parts of the compound obtained in Synthesis Example x6 without using NC-3000 as Component (C), the solid content of the epoxy resin composition of the present invention was 70% by mass as in Example x1. % MEK dilution was obtained. The viscosity of the MEK dilution of this epoxy resin composition was 62 mPa ⁇ s. When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid.
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 145 ° C.
  • the YI value of the cured film was 0.3, the transmittance was 90.6% at 550 nm, and 90.5% at 400 nm.
  • a light resistance test and a heat resistance test were performed. Although the appearance after the light resistance test was slightly colored, the transparency was good without deterioration such as cracks.
  • the YI value was 5.6, the transmittance was 90.0% at 550 nm, and 80.0% at 400 nm. The appearance after the heat test was good with almost no coloring.
  • the YI value was 0.3, the transmittance was 90.7% at 550 nm, and 90.5% at 400 nm.
  • Example x5 As component (A), 66.6 parts of a 70% by weight polycarboxylic acid solution obtained in Synthesis Example x1, 4.8 parts of EHPE-3150 as component (B), and NC-3000 as component (C) are used. Without using 12.0 parts of the compound obtained in Synthesis Example x6, 8.1 parts of JER-828, 28.5 parts of YD-012 as the component (D), and 23 parts of MEK as a diluent solvent of other components. Except for making parts, a MEK diluted solution in which the solid content of the epoxy resin composition of the present invention was 70% by mass was obtained in the same manner as in Example x1. The viscosity of the MEK dilution of this epoxy resin composition was 306 mPa ⁇ s.
  • Example x1 When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid. Subsequently, a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.558, and the glass transition temperature (Tg) was 106 ° C.
  • Example x6 41.2 parts of a mixture of the polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example x4, 27.4 parts of the compound obtained in Synthesis Example x6 without using NC-3000 as Component (C), MEK in which the solid content of the epoxy resin composition of the present invention is 70% by mass as in Example x1, except that 5.2 parts of JER-828 and 16.0 parts of YD-012 are used as component (D) A dilution was obtained. The viscosity of the MEK dilution of this epoxy resin composition was 70 mPa ⁇ s.
  • Example x1 When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid. Subsequently, a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.561
  • the glass transition temperature (Tg) was 142 ° C.
  • Example x7 40.0 parts of a mixture of the polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example x3, 10.6 parts of EHPE-3150 as component (B), and NC-3000 as component (C)
  • the same procedure as in Example x1 was conducted except that 28.0 parts of the compound obtained in Synthesis Example x6, 5.3 parts of JER-828, 16.1 parts of YD-012 were used as Component (D).
  • An MEK diluted solution having a solid content of the inventive epoxy resin composition of 70% by mass was obtained.
  • the viscosity of the MEK dilution of this epoxy resin composition was 868 mPa ⁇ s.
  • Example x1 When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid. Subsequently, a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.562, and the glass transition temperature (Tg) was 147 ° C.
  • Example x8 40.6 parts of a mixture of the polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example x2 as component (A), 11.3 parts of EHPE-3150 as component (B), NC as component (C) 20.7 parts of the compound obtained in Synthesis Example x6 without using -3000, 5.2 parts of JER-828, 15.9 parts of YD-012 as component (D), BPEF-G (Ogsol EG: A MEK diluent in which the solid content of the epoxy resin composition of the present invention is 70% by mass in the same manner as in Example x1, except that 6.2 parts of Osaka Gas, fluorene structure solid epoxy resin, epoxy equivalent 275) is used. Obtained.
  • the viscosity of the MEK dilution of this epoxy resin composition was 62 mPa ⁇ s.
  • the epoxy resin composition of the present invention was solid.
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.563, and the glass transition temperature (Tg) was 139 ° C.
  • Example x9 As the component (A), 51.0 parts of a mixture of the polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example x2, as the component (B), 36.0 parts of EHPE-3150, Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd.) : Example x1 except that 13.0 parts of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, epoxy equivalent 130) and no component (C) and component (D) are used. Similarly, a MEK diluent having a solid content of 70% by mass of the epoxy resin composition of the present invention was obtained.
  • the viscosity of the MEK dilution of this epoxy resin composition was 33 mPa ⁇ s.
  • the epoxy resin composition of the present invention was solid.
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.512, and the glass transition temperature (Tg) was 160 ° C.
  • the YI value of the cured film was 0.3, the transmittance was 91.9% at 550 nm, and 91.6% at 400 nm.
  • a light resistance test was then performed. The appearance after the light resistance test was good with almost no coloring, and the YI value was 0.5, the transmittance was 91.7% at 550 nm, and 91.0% at 400 nm.
  • Example x10 As the component (A), 50.4 parts of a mixture of the polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example x2, as the component (B), 25.7 parts of EHPE-3150 and 13.0 of celoxide 2021P
  • the solid content of the epoxy resin composition of the present invention was the same as in Example x1 except that 10.9 parts of the compound obtained in Synthesis Example x6 was used as the component and the component (C), and the component (D) was not used.
  • a MEK dilution having a content of 70% by mass was obtained.
  • the viscosity of the MEK dilution of this epoxy resin composition was 33 mPa ⁇ s.
  • Example x1 When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid. Subsequently, a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.523, and the glass transition temperature (Tg) was 157 ° C.
  • the YI value of the cured film was 0.3, and the transmittance was 91.6% at 550 nm and 91.5% at 400 nm.
  • a light resistance test was then performed. Although the appearance after the light resistance test was slightly colored, it had good transparency without deterioration such as cracks. The YI value was 5.8, and the transmittance was 91.0% at 550 nm and 80.0% at 400 nm.
  • Example x11 In Example x4, except that 0.5 part of TINUVIN400 (manufactured by Ciba Specialty Chemicals: hydroxyphenyltriazine-based UV absorber) is further added, the solid content of the epoxy resin composition of the present invention is 70 as in Example x4. A MEK dilution solution of mass% was obtained. The viscosity of the MEK dilution of this epoxy resin composition was 33 mPa ⁇ s. When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid. Subsequently, a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • TINUVIN400 manufactured by Ciba Specialty Chemicals: hydroxyphenyltriazine-based UV absorber
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 145 ° C.
  • the YI value of the cured film was 0.4, the transmittance was 90.4% at 550 nm, and 86.4% at 400 nm.
  • a light resistance test was then performed. Although the appearance after the light resistance test was slightly colored, it had good transparency without deterioration such as cracks.
  • the YI value was 1.3, the transmittance was 90.7% at 550 nm, and 89.0% at 400 nm.
  • Comparative example x1 40.6 parts of Rikacid MH700 (manufactured by Shin Nippon Rika: a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride 7: 3; equivalent is 168 g / eq, hereinafter referred to as H2) (component (B), 1 equivalent to all epoxy groups of component (C) and component (D)), 10.3 parts of EHPE-3150 as component (B), 27.3 parts of compound of Synthesis Example x6 as component (C), As component (D), 5.2 parts of JER-828, 15.9 parts of YD-012, 0.3 parts of zinc octoate as other ingredients, Adeka Stub 260 as additive (manufactured by ADEKA: Phosphorous antioxidant) ) 0.2 parts, 0.2 parts of bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate and 42.8 parts of MEK as a diluent solvent were
  • Example x12 One part of toluene was added to and mixed with 100 parts of MEK diluent having a solid content of 70% by mass obtained in Example x4 and Comparative Example x1, thereby obtaining a sample for volatilization test.
  • a mold of 40 mm ⁇ 25 mm ⁇ depth 1 mm was prepared with a heat-resistant release tape on a glass substrate, and the sample for volatilization test of Example x4 and Comparative Example x1 (MEK / toluene mixed solution having a solid content of 69 mass%) About 800 ⁇ m thick was cast, precisely weighed, and dried at 80 ° C. for 15 minutes. During the process, vacuum degassing was performed once to remove bubbles.
  • Example x13 MEK was added to a MEK diluent having a solid content of 70% by mass of the epoxy resin composition of the present invention obtained in Example x4 to adjust the solid content to 50% by mass, and a commercially available glass cloth (E glass cloth: About 30 ⁇ m thick, plain weave) was added and impregnated. After pulling up the glass cloth, it was dried at 120 ° C. for 7 minutes. The sheet after drying was a solid film. This was further processed for 10 minutes at 150 ° C. while being pressed between PET films that had been subjected to release treatment, and semi-cured to obtain a prepreg. Thereafter, it was cured for 3 hours in a 150 ° C. dryer. A composite sheet of the cured product of the epoxy resin composition of the present invention and glass cloth was obtained, and the refractive index was 1.561. The total light transmittance was 92% and haze was 2%, and it was a transparent sheet without coloring.
  • a commercially available glass cloth E glass cloth: About 30 ⁇ m thick
  • the epoxy resin composition of the present invention can obtain cured products having various refractive indexes that are excellent in transparency, are not colored, have good heat resistance and light resistance. it can.
  • Example x12 it can be seen that by using the polyvalent carboxylic acid (A), a clearly smooth film can be obtained as compared with the case of Comparative Example x1 using a general acid anhydride curing agent. Further, it can be seen that the acid anhydride curing agent of Comparative Example x1 volatilizes in a large amount and the component composition ratio of the cured film changes, whereas in the present invention, there is almost no volatilization.
  • Example x13 it was confirmed that a cured film having a stable refractive index was obtained by using the epoxy resin composition of the present invention, and a transparent film was obtained even when combined with a glass cloth. It was.
  • Example x14 In Example x4, except for Adeka Stub 260 and bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, TINUVIN479 (manufactured by Ciba Specialty Chemicals: hydroxyphenyltriazine UV absorber) was added in the same manner as in Example x4 to obtain a MEK diluted solution having a solid content of 70% by mass of the epoxy resin composition of the present invention. The viscosity of the MEK dilution of this epoxy resin composition was 33 mPa ⁇ s. When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid.
  • TINUVIN479 manufactured by Ciba Specialty Chemicals: hydroxyphenyltriazine UV absorber
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 145 ° C.
  • the YI value of the cured film was 0.4, the transmittance was 90.7% at 550 nm, and 86.6% at 400 nm.
  • a light resistance test was then performed. Although the appearance after the light resistance test was slightly colored, it had good transparency without deterioration such as cracks.
  • the YI value was 0.7, the transmittance was 90.7% at 550 nm, and 85.9% at 400 nm.
  • Example x15 In Example x14, the solid content of the epoxy resin composition of the present invention was 70% by mass in the same manner as in Example x4 except that 0.2 part of TINUVIN123 (manufactured by Ciba Specialty Chemicals: hindered amine light stabilizer) was added. A MEK dilution was obtained. The viscosity of the MEK dilution of this epoxy resin composition was 33 mPa ⁇ s. When the obtained MEK dilution of the epoxy resin composition of the present invention was dried in the same manner as in Example x1, the epoxy resin composition of the present invention was solid. Subsequently, a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • TINUVIN123 manufactured by Ciba Specialty Chemicals: hindered amine light stabilizer
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 145 ° C.
  • the YI value of the cured film was 0.3, the transmittance was 90.7% at 550 nm, and 87.6% at 400 nm.
  • a light resistance test was then performed. Although the appearance after the light resistance test was slightly colored, it had good transparency without deterioration such as cracks.
  • the YI value was 0.6, the transmittance was 90.6% at 550 nm, and 86.9% at 400 nm.
  • Example x16 In Example x14, the solid state of the epoxy resin composition of the present invention was the same as Example x14 except that 0.5 part of TINUVIN405 (manufactured by Ciba Specialty Chemicals: hydroxyphenyltriazine ultraviolet absorber) was added instead of TINUVIN479.
  • An MEK diluent having a content of 70% by mass was obtained.
  • the viscosity of the MEK dilution of this epoxy resin composition was 33 mPa ⁇ s.
  • the epoxy resin composition of the present invention was solid.
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 145 ° C.
  • the YI value of the cured film was 0.5, the transmittance was 90.7% at 550 nm, and 88.4% at 400 nm.
  • a light resistance test was then performed. Although the appearance after the light resistance test was slightly colored, it had good transparency without deterioration such as cracks.
  • the YI value was 0.8, the transmittance was 90.6% at 550 nm, and 87.9% at 400 nm.
  • Example x17 In Example x15, the solid content of the epoxy resin composition of the present invention was 70% by mass in the same manner as in Example x15 except that TINUVIN 144 (manufactured by Ciba Specialty Chemicals: hindered amine light stabilizer) was used instead of TINUVIN 123.
  • a MEK dilution was obtained.
  • the viscosity of the MEK dilution of this epoxy resin composition was 33 mPa ⁇ s.
  • the epoxy resin composition of the present invention was solid. Subsequently, a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example x1.
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 145 ° C.
  • the YI value of the cured film was 0.3, the transmittance was 90.7% at 550 nm, and 87.8% at 400 nm.
  • a light resistance test was then performed. Although the appearance after the light resistance test was slightly colored, it had good transparency without deterioration such as cracks.
  • the YI value was 0.5, the transmittance was 90.6% at 550 nm, and 88.0% at 400 nm.
  • Synthesis Example y1 Synthesis of polyvalent carboxylic acid (A) To a flask equipped with a stirrer, a reflux condenser and a stirrer, while purging with nitrogen, 10 parts of toluene, 2,4-diethyl-1,5-pentanediol (Kyowa) 80 parts of Kyowa All PD9 manufactured by Fermentation Chemical Co., Ltd. and 2168 parts of H were added, heated and stirred at 100 ° C. for 4 hours, and disappearance of raw materials was confirmed by GPC.
  • A To a flask equipped with a stirrer, a reflux condenser and a stirrer, while purging with nitrogen, 10 parts of toluene, 2,4-diethyl-1,5-pentanediol (Kyowa) 80 parts of Kyowa All PD9 manufactured by Fermentation Chemical Co., Ltd. and 2168 parts of H were added, heated and stirred at 100 ° C. for
  • Synthesis Example y2 Synthesis of polyvalent carboxylic acid (A) 2,4-diethyl-1,5-pentanediol (Kyowa Hakko Chemical Co., Ltd.) while purging nitrogen in a flask equipped with a stirrer, a reflux condenser and a stirrer Kyowadiol PD9) 20 parts and H1 100 parts were added, and the mixture was heated and stirred at 60 ° C. for 4 hours.
  • GPC confirmed 1 area% or less of 2,4-diethyl-1,5-pentanediol, and 120 parts of a mixture of polyvalent carboxylic acid (A) and H1 as a colorless liquid resin was obtained.
  • the epoxy equivalent of this mixture is 201 g / eq.
  • the viscosity at 50 ° C. was 1100 mP ⁇ s (16200 mPa ⁇ s E-type viscometer at 25 ° C.).
  • y1D MEK diluent
  • y1D MEK diluent
  • the viscosity of y1D was 309 mPa ⁇ s.
  • the obtained y1 was further adjusted to 70% solid content (y1D ′) using MEK.
  • a 40 mm ⁇ 25 mm ⁇ 1 mm depth mold was made on a glass substrate with a heat-resistant release tape, and y1D ′ was cast to a thickness of about 800 ⁇ m and dried at 80 ° C. for 50 minutes. During the drying, vacuum defoaming was performed once to remove the foam. After cooling to room temperature and confirming the state, y1 was a solid.
  • the refractive index (25 ° C.) was 1.555
  • the glass transition temperature (Tg) was 101 ° C.
  • the YI value of the cured film was 0.2, and the transmittance was 90.7% at 550 nm and 90.5% at 400 nm.
  • Example y2 43.4 parts of a mixture of polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example y2, 11.7 parts of EHPE-3150 as Component (B), and obtained in Synthesis Example x6 as Component (C) 12.5 parts of the above compound, 9.5 parts of JER-828 as component (D), 22.9 parts of YD-012 and 0.3 part of zinc octoate as the other ingredients, Adekastab 260 (ADEKA) as an additive Manufactured by: Phosphorous antioxidant) 0.2 part, 0.2 parts of bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, MEK 43.2 parts of diluent solvent A MEK diluent (y2D) in which the solid content of the epoxy resin composition (y2) of the present invention was 70% by mass was obtained in the same manner as in Example y1 except that it was used.
  • ADKA Adekastab 260
  • the viscosity of y2D was 57 mPa ⁇ s.
  • the obtained y2D was dried in the same manner as in Example y1, and y2 was a solid.
  • a cured product of y2 was obtained in the same manner as in Example y1.
  • the refractive index (25 ° C.) was 1.551, and the glass transition temperature (Tg) was 106 ° C.
  • the YI value of the cured film was 0.2, the transmittance was 90.7% at 550 nm, and 91.0% at 400 nm.
  • a light resistance test and a heat resistance test were performed. Although the appearance after the light resistance test was slightly colored, the transparency was good without deterioration such as cracks.
  • the YI value was 5.2, and the transmittance was 90.1% at 550 nm and 78.8% at 400 nm. The appearance after the heat test was good with almost no coloring. The YI value was 0.3, the transmittance was 90.7% at 550 nm, and 90.5% at 400 nm.
  • Example y3 37.1 parts of a mixture of polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example y2, 4.7 parts of EHPE-3150 as Component (B), and obtained in Synthesis Example x6 as Component (C) 10.1 parts of the above compound, 9.6 parts of JER-828 as the component (D), 38.5 parts of YD-012, 0.3 parts of zinc octoate as the other ingredients, 0 of the ADK STAB 260 as the additive .2 parts, same as Example y1 except that 0.2 parts of bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate and 43.2 parts of MEK as a diluent solvent are used.
  • a MEK diluted solution (y3D) in which the solid content of the epoxy resin composition (y3) of the present invention was 70% by mass was obtained.
  • the viscosity of y3D was 104 mPa ⁇ s.
  • the obtained y3D was dried in the same manner as in Example y1, and y3 was a solid.
  • a cured product of y3 was obtained in the same manner as in Example y1.
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 99 ° C.
  • the YI value of the cured film was 0.1, and the transmittance was 90.6% at 550 nm and 90.9% at 400 nm.
  • Example y4 48.5 parts of a mixture of polyvalent carboxylic acid (component (A)) and H1 obtained in Synthesis Example y2 (1 equivalent to all epoxy groups of component (B), component (C) and component (D)) , 10.3 parts of EHPE-3150 as component (B), 27.3 parts of the compound obtained in Synthesis Example x6 as component (C), 5.2 parts of JER-828 as component (D), YD-012 15.9 parts, other components 0.3 parts zinc octoate, 0.2 parts ADK STAB 260, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate A MEK diluent (y4D) in which the solid content of the epoxy resin composition (y4) of the present invention is 70% by mass in the same manner as in Example y1, except that 0.2 part and 46.2 parts of MEK as a diluent solvent are used.
  • the viscosity of y4D was 60 mPa ⁇ s.
  • the obtained y4D was dried in the same manner as in Example y1, and y4 was a solid.
  • a cured product of y4 was obtained in the same manner as in Example y1.
  • the refractive index (25 ° C.) was 1.552, and the glass transition temperature (Tg) was 107 ° C.
  • the YI value of the cured film was 0.2, and the transmittance was 90.9% at 550 nm and 90.8% at 400 nm.
  • Example y5 45.9 parts of the polycarboxylic acid (A) obtained in Synthesis Example y1, 4.8 parts of EHPE-3150 as Component (B), 7.7 parts of the compound obtained in Synthesis Example x6 as Component (C), As component (D), 8.1 parts of JER-828, 28.5 parts of YD-012, BPEF-G (Ogsol EG: Osaka Gas, fluorene structure solid epoxy resin, epoxy equivalent 275) 5.0 parts, etc.
  • a component 0.3 part of zinc octoate, 0.2 part of ADEKA STAB 260 (manufactured by ADEKA: phosphorus antioxidant) as an additive, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidine -4-yl) 0.2 parts of carbonate and 43.2 parts of MEK as a diluent solvent are heated and mixed at 70 ° C., and the solid content of the epoxy resin composition (y5) of the present invention is 70% by mass. Diluent (y D) was obtained. The viscosity of y5D was 286 mPa ⁇ s. The obtained y5D was dried in the same manner as in Example y1, and y5 was a solid.
  • Example y5 a cured product of y5 was obtained in the same manner as in Example y1.
  • the refractive index (25 ° C.) was 1.560, and the glass transition temperature (Tg) was 102 ° C.
  • the YI value of the cured film was 0.1, and the transmittance was 90.6% at 550 nm and 90.8% at 400 nm.
  • Example y6 In Example y3, except that 0.5 part of TINUVIN400 (manufactured by Ciba Specialty Chemicals: hydroxyphenyltriazine-based ultraviolet absorber) is further added, the solid state of the epoxy resin composition (y6) of the present invention is the same as Example y4.
  • An MEK diluent (y6D) having a content of 70% by mass was obtained.
  • the viscosity of y6D was 106 mPa ⁇ s.
  • the obtained y6D was dried in the same manner as in Example y1, and y6 was a solid. Subsequently, a cured product of y6 was obtained in the same manner as in Example y1.
  • the refractive index (25 ° C.) was 1.561, and the glass transition temperature (Tg) was 100 ° C.
  • the YI value of the cured film was 0.3, the transmittance was 90.4% at 550 nm, and 88.4% at 400 nm.
  • a light resistance test was then performed. Although the appearance after the light resistance test was slightly colored, it had good transparency without deterioration such as cracks.
  • the YI value was 1.3, the transmittance was 90.5% at 550 nm, and 89.0% at 400 nm.
  • Example y7 One part of toluene was added to and mixed with 100 parts of a MEK diluent having a solid content of 70% by mass obtained in Example y4 and Comparative Example y1 to obtain a sample for a volatilization test.
  • a mold having a size of 40 mm ⁇ 25 mm ⁇ depth 1 mm was prepared with a heat-resistant release tape on a glass substrate, and a sample for volatilization test of Example y4 and Comparative Example y1 (MEK / toluene mixed solution having a solid content of 69 mass%) About 800 ⁇ m thick was cast, precisely weighed, and dried at 80 ° C. for 15 minutes. In the middle, vacuum degassing was performed once to remove bubbles.
  • Example y8 MEK was further added to y3D obtained in Example y3 to adjust the solid content to 50% by mass, and a commercially available glass cloth (E glass cloth: about 30 ⁇ m thick, plain weave; refractive index: 1.560) was added and impregnated. I let you. After pulling up the glass cloth, it was dried at 120 ° C. for 7 minutes. The sheet after drying was a solid film. This was further processed for 10 minutes at 150 ° C. while being pressed between PET films that had been subjected to release treatment, and semi-cured to obtain a prepreg. Thereafter, it was cured for 3 hours in a 150 ° C. dryer.
  • E glass cloth about 30 ⁇ m thick, plain weave; refractive index: 1.560
  • a sheet in which the cured product of the epoxy resin composition of the present invention and a glass cloth were combined was obtained, and the refractive index was 1.560.
  • the total light transmittance was 92% and haze was 2%, and it was a transparent sheet without coloring.
  • the epoxy resin composition of the present invention can obtain cured products having various refractive indexes that are excellent in transparency, are not colored, have good heat resistance and light resistance. it can.
  • Example y7 it can be seen that by using the polyvalent carboxylic acid (B), a clearly smooth film can be obtained as compared with the case of Comparative Example y1 using a general acid anhydride curing agent. It can also be seen that the acid anhydride curing agent of Comparative Example y1 volatilizes in a large amount and the component composition ratio of the cured film changes, whereas in the present invention, there is almost no volatilization.
  • Synthesis Example z1 Synthesis of polyvalent carboxylic acid (A) While purging nitrogen in a flask equipped with a stirrer, reflux condenser, and stirrer, 125 parts of ditrimethylolpropane (Di-TMP Perstop), methylcyclohexanedicarboxylic acid 336 parts of anhydride (Licacid MH manufactured by Shin Nippon Rika) and 115 parts of methyl ethyl ketone were added, and the mixture was stirred at 80 ° C. for 7 hours. After completion of the reaction, 198 parts of methyl ethyl ketone was added and the concentration was adjusted to obtain 658 parts of a methyl ethyl ketone solution of polyvalent carboxylic acid (A) having a concentration of 70%.
  • Di-TMP Perstop ditrimethylolpropane
  • methylcyclohexanedicarboxylic acid 336 parts of anhydride Licid MH manufactured by Shin Nippon Rika
  • the refractive index (25 ° C.) was 1.561
  • the glass transition temperature (Tg) was 110 ° C.
  • the YI value of the cured film was 0.2, and the transmittance was 90.7% at 550 nm and 90.5% at 400 nm.
  • a light resistance test and a heat resistance test were performed. Although the appearance after the light resistance test was slightly colored, the transparency was good without deterioration such as cracks. The appearance after the heat test was excellent in transparency without coloration and cracking.
  • Example z2 83.4 parts of polycarboxylic acid (A) obtained in Synthesis Example z1, 30.8 parts of EHPE-3150 as component (B), Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd .: 3,4-epoxycyclohexenylmethyl-3 ′ , 4′-epoxycyclohexenecarboxylate, epoxy equivalent 130 g / eq.) 10.8 parts, component (C) and component (D) are not used, and as other components, a curing catalyst, Hishicolin PX4MP (Nippon Chemical Co., Ltd.) Industrial: quaternary phosphonium salt) 0.2 parts, additive ADEKA STAB 260 (made by ADEKA: phosphorus antioxidant) 0.2 parts, bis (1-undecanoxy-2,2,6,6-tetra Methylpiperidin-4-yl) carbonate and the epoxy resin of the present invention in the same manner as in Example z1 except that 0.21 part of the d
  • Solids content of the composition was obtained MEK diluted solution is 60 wt%.
  • the viscosity of the MEK dilution of this epoxy resin composition was 30 mPa ⁇ s.
  • the epoxy resin composition in Example z2 was liquid.
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example z1.
  • the refractive index (25 ° C.) was 1.500 and the transparency was good.
  • a light resistance test and a heat resistance test were performed. Although the appearance after the light resistance test was slightly colored, the transparency was good without deterioration such as cracks. The appearance after the heat test was excellent in transparency without coloration and cracking.
  • the viscosity of the MEK dilution of this epoxy resin composition was 104 mPa ⁇ s.
  • the epoxy resin composition of the present invention was solid.
  • a cured product of the epoxy resin composition of the present invention was obtained in the same manner as in Example z1.
  • the refractive index (25 ° C.) was 1.550.
  • Comparative example z1 Rikacid MH-700 (manufactured by Nippon Nippon Chemical Co., Ltd .: mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride 7: 3; equivalent is 168 g / eq) 40.6 parts (component (B), component (C) And 1 equivalent to all epoxy groups of component (D)), 10.3 parts of EHPE-3150 as component (B), 27.3 parts of compound obtained in Synthesis Example z3 as component (C), component (D) 5.2 parts of JER-828, 15.9 parts of YD-012, 0.3 parts of zinc octoate as other components, 0.2 part of ADK STAB 260 as an additive, bis (1- Undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate 0.2 part and diluent solvent MEK 66.6 parts were heated to 70 ° C. and mixed to obtain a comparative resin composition.
  • the solid content of 60 mass To
  • Example z4 1 part of toluene was added to and mixed with 100 parts of MEK diluent having a solid content of 60% by mass obtained in Example z3 and Comparative Example z1 to obtain a sample for volatilization test.
  • a mold having a size of 40 mm ⁇ 25 mm ⁇ depth 1 mm was prepared with a heat-resistant release tape on a glass substrate, and the sample for volatilization test of Example z4 and Comparative Example z1 (MEK / toluene mixed solution having a solid content of 59 mass%) About 800 ⁇ m thick was cast, precisely weighed, and dried at 80 ° C. for 15 minutes. In the middle, vacuum degassing was performed once to remove bubbles.
  • Example z5 MEK was added to a MEK diluent having a solid content of 60% by mass of the epoxy resin composition of the present invention obtained in Example z1 to adjust the solid content to 50% by mass, and a commercially available glass cloth (E glass cloth: About 30 ⁇ m thick; plain weave; refractive index: 1.560) was added and impregnated. After pulling up the glass cloth, it was dried at 120 ° C. for 7 minutes. The sheet after drying was a solid film. This was further processed for 10 minutes at 150 ° C. while being pressed between PET films that had been subjected to release treatment, and semi-cured to obtain a prepreg. Thereafter, it was cured for 3 hours in a 150 ° C. dryer. A sheet in which the cured product of the epoxy resin composition of the present invention and a glass cloth were combined was obtained, and the refractive index was 1.560. The total light transmittance was 92% and haze 3%, and it was a transparent sheet without coloring.
  • Example z5 shows that there is no such problem.
  • a cured film having a stable refractive index was obtained by using the epoxy resin composition of the present invention, and a transparent film was obtained even when combined with a glass cloth. It was.
  • the epoxy resin composition of the present invention and the cured product thereof are mainly suitable for optical sheets used for display devices such as liquid crystal displays, plasma displays, EL displays, and portable devices, and solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

【課題】透明性、耐熱性、強度、平滑性、及び耐光性に優れた光学シートの製造に適したエポキシ樹脂組成物及びその硬化物を提供する。 【解決手段】一般式(I)で表される多価カルボン酸(A)と、(式(I)中、Rはそれぞれ独立して、水素原子、炭素数1~15のアルキル基、もしくはカルボキシル基を表し、qは置換基Rの数を表し、1~4の整数である。Pは下記x、y及びzのいずれかである)(式(II)中、Rは1つの環当たり複数存在してもよく、それぞれ独立して、水素原子、もしくはメチル基を表す。*は酸素原子との結合部分である) y. 炭素数6~20の鎖状アルキレンリンカーであって、炭素数3以上の主鎖を有し、少なくとも1箇所がアルキル基で置換されているもの、(式(III)中、Rは、それぞれ独立して水素原子、炭素数1~15のアルキル基、もしくはカルボキシル基を表す。*は酸素原子との結合部分である) 分子内に脂肪族環状構造を有するエポキシ樹脂(B)と、を含む光学シート用エポキシ樹脂組成物。

Description

透明シート用エポキシ樹脂組成物及びその硬化物
 本発明は、透明シートに用いるエポキシ樹脂組成物及びその硬化物に関する。さらに詳しくは、透明性、耐熱性、強度、平滑性、及び耐光性に優れた光学シートに適したエポキシ樹脂組成物及びその硬化物に関するものである。
 エポキシ樹脂を含有する硬化性樹脂組成物は、耐熱性に優れた樹脂として、建築、土木、自動車、航空機などの分野で利用されている。半導体関連材料の分野においても、電子機器に使用されるエポキシ樹脂には非常に高い特性が求められており、また近年ではオプトエレクトロニクス関連分野における利用が注目されている。
 液晶ディスプレイ、プラズマディスプレイ、ELディスプレイ、携帯機器などの表示装置は一般消費者に普及し、大型化、軽量化、薄型化すると共に、曲面での表示や立体表示などの要求が高まっている。このような装置の表示素子や前面パネル等の光学部材には、透明性、硬度、耐薬品性、ガスバリア性など様々な要求を満たすためにガラス板が広く用いられている。しかしながらガラス板は割れやすく、重いという問題があり、この問題を解決するためガラス板の代替としてエポキシ樹脂等のプラスチック素材が検討され、種々の提案がされている。
 例えば特許文献1には、エポキシ樹脂、酸無水物系硬化剤及びアルコールを用いた液晶表示素子用透明樹脂基板が記載されている。また特許文献2や特許文献3には、ガラスクロスと熱硬化性樹脂を用いた透明基板が、特許文献4には、ガラス繊維製布状体と無機粒子を含む樹脂硬化層を用いた樹脂シートが記載されている。
 これらをはじめとするガラス代替プラスチック材料は、その製造工程において、硬化時の収縮によって反りや割れが発生しやすく、平滑なシートを得ることが難しい。またガラス代替プラスチック材料は、ガラス板に比べて線膨張係数が大きいため、その使用時においても膨張や収縮によって問題が発生することがある上、色、耐熱性、耐光性、硬度など、ガラスの代替品として市場で求められているような十分な性能は得られていない。上記文献で提案されている方法においても、色については十分とは言えず、特に屈折率を高めにしたものについては、400nm付近の低波長での透過率が低めの値になっているものが多く、黄色などの着色がみられることがわかる。光学用途に用いる場合には、400nm付近の透過率が高いものが求められる。例えば、特許文献2及び3で提案されている方法においては、400nmの可視光線の透過率が90%未満である。特許文献4で提案されている方法においては、550nmの可視光線の透過率ではあるが、やはり90%未満である。
 製造時の反りや割れ、使用時の膨張や収縮などの問題は、ガラスクロスや無機フィラーを併用することにより改良される。ただし、透明性を得るためには、ガラスクロスや無機フィラー等と樹脂との屈折率を合わせる必要があるため、使用できる材料が限定され、他の物性を満足させることが難しくなる。
 一般にこのような分野で用いられるエポキシ樹脂の硬化剤としては、酸無水物系の化合物が挙げられる。特に飽和炭化水素で形成された酸無水物は、硬化物が耐光性に優れることから、利用されることが多い。これら酸無水物としては、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸等の脂環式酸無水物が一般的であり、中でも常温で液状であるメチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が取扱いの容易さから主に使用されている。
 しかしながら上記脂環式酸無水物は蒸気圧が高いため、これらをエポキシ樹脂の硬化剤として用いて開放系で熱硬化させる際には、このもの自体が大気中に揮発することにより、大気への有害物質の放出による環境汚染、人体への悪影響のみならず、生産ラインの汚染、硬化物中に所定量のカルボン酸無水物(硬化剤)が存在しないことに起因するエポキシ樹脂組成物の硬化不良が起こるという問題がある。また、硬化条件によってその特性が大幅に変わってしまい、安定して目的とした性能を有する硬化物を得ることが困難である。
 特に光学用途では透明なシートを得るために、ガラスクロスなどの無機物と樹脂との屈折率を合わせる必要があるが、硬化時に樹脂中の硬化剤が多量に揮発すると、目的の屈折率が得られず、透明性が不良になるという致命的な問題が発生する。
 いずれにしても、ガラスに代替し得る透明性と、硬化時の収縮の低減、色、耐熱性、耐光性、硬度、平滑性などの条件を兼ね備えることは難しく、すべてを満足できるものは得られていなかった。
特開平6-337408号公報 特開2004-233851号公報 特開2004-269727号公報 特開2005-156840号公報
 本発明の目的は、液晶ディスプレイ、プラズマディスプレイ、ELディスプレイ、携帯機器などの表示装置や太陽電池などに使用可能な光学シートの製造に適したエポキシ樹脂組成物、及び透明性、耐熱性、強度、耐光性、平滑性などに優れたその硬化物に関するものである。
 本発明者らは、前記課題を解決するため鋭意研究した結果、特定の組成を有するエポキシ樹脂組成物及びその硬化物が前記課題を解決することを見出し、本発明を完成させた。
 即ち、本発明は、
(1)一般式(I)で表される多価カルボン酸(A)と、
Figure JPOXMLDOC01-appb-C000006
(式中、Rはそれぞれ独立して、水素原子、炭素数1~15のアルキル基、好ましくは炭素数1~6のアルキル基、もしくはカルボキシル基を表し、qは置換基Rの数を表し、1~4の整数である。Pは下記x、y及びzのいずれかである)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは1つの環当たり複数存在してもよく、それぞれ独立して、水素原子、もしくはメチル基を表す。*は酸素原子との結合部分である)
y. 炭素数6~20の鎖状アルキレンリンカーであって、炭素数3以上の主鎖を有し、少なくとも1箇所がアルキル基で置換されているもの、
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、それぞれ独立して水素原子、炭素数1~15のアルキル基、もしくはカルボキシル基を表す。*は酸素原子との結合部分である)
 分子内に脂肪族環状構造を有するエポキシ樹脂(B)と、
 を含む光学シート用エポキシ樹脂組成物、
(x-1)多価カルボン酸(A)のPがxである(1)に記載の樹脂組成物、
(x-2)多価カルボン酸(A)のRが全て水素原子である(x-1)に記載の樹脂組成物、
(x-3)多価カルボン酸(A)の全てのRの50モル%以上がメチル基及び/又はカルボキシル基である(x-2)に記載の樹脂組成物、
(x-4)多価カルボン酸(A)が、トリシクロデカンジメタノール及びペンタシクロペンタデカンジメタノールから選ばれる少なくとも1種の架橋多環ジオールと、メチルヘキサヒドロ無水フタル酸及びシクロヘキサン-1,2,4-トリカルボン酸無水物から選ばれる少なくとも1種の酸無水物との反応物である(x-1)ないし(x-3)のいずれか一項に記載の樹脂組成物、
(y-1)多価カルボン酸(A)中のPがyである(1)に記載の樹脂組成物、
(y-2)多価カルボン酸(A)中のPの主鎖の2箇所以上がアルキル基で置換されており、かつ該アルキル基の少なくとも1つが炭素数2~10であることを特徴とする(y-1)に記載の樹脂組成物、
(y-3)多価カルボン酸(A)が、少なくとも1箇所がアルキル基で置換されている炭素数1~20の鎖状アルキレンを持つ鎖状ジオール化合物と、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸及びシクロヘキサン-1,2,4-トリカルボン酸無水物から選ばれる少なくとも1種の酸無水物との反応物であることを特徴とする(y-1)又は(y-2)に記載の樹脂組成物、
(z-1)多価カルボン酸(A)中のPがzである(1)に記載の樹脂組成物、
(z-2)Rがメチル基である(z-1)に記載の樹脂組成物、
(2)分子内に脂肪族環状構造を有するエポキシ樹脂(B)が、一般式(II)で表される化合物である(1)に記載の樹脂組成物、
Figure JPOXMLDOC01-appb-C000009
(Rはアルコキシ基、mは平均値であって1~20の正数であり、nは1~10の整数である。)
(3)更に、分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)を含む(1)に記載の樹脂組成物、
(4)分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)が、一般式(III)で表される化合物である(3)に記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000010
(式中、nは1~2の正数である。)、
(5)更に、脂肪族環状構造をもつエポキシ樹脂(B)及び分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)以外のエポキシ樹脂(D)、並びに酸無水物を含む(1)、(2)、(3)又は(4)のいずれか一項に記載の樹脂組成物、
(6)(1)、(2)、(3)又は(4)のいずれか一項に記載の樹脂組成物を硬化して得られる、25℃での屈折率が1.50以上である硬化物、
(7)(1)、(2)、(3)又は(4)のいずれか一項に記載の樹脂組成物をガラスクロスに含浸させ、硬化して得られる、25℃での屈折率が1.51以上である硬化物、
(8)(6)又は(7)に記載の硬化物を用いる光学シート、
に関する。
 本発明の光学シート用エポキシ樹脂組成物(以下、エポキシ樹脂組成物と称す)は安定性が良好で、その硬化物は、透明性、耐熱性、強度、平滑性、及び耐光性に優れている。そのため、特に液晶ディスプレイ、プラズマディスプレイ、ELディスプレイ、携帯機器などの表示装置や太陽電池などに用いる光学シートに適している。
 本発明において用いられる多価カルボン酸(A)は、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000011
(式中、Rはそれぞれ独立して、水素原子、炭素数1~15のアルキル基、好ましくは炭素数1~6のアルキル基、もしくはカルボキシル基を表し、qは置換基Rの数を表し、1~4の整数である。Pは下記x、y及びzのいずれかである)
Figure JPOXMLDOC01-appb-C000012
(式中、Rは1つの環当たり複数存在してもよく、それぞれ独立して、水素原子、もしくはメチル基を表す。*は酸素原子との結合部分である)
y. 炭素数6~20の鎖状アルキレンリンカーであって、炭素数3以上の主鎖を有し、少なくとも1箇所がアルキル基で置換されているもの、
Figure JPOXMLDOC01-appb-C000013
(式中、Rは、それぞれ独立して水素原子、炭素数1~15のアルキル基もしくはカルボキシル基を表す。*は酸素原子との結合部分である)
 なお、前記多価カルボン酸(A)は、後述する製法により得られるが、以下の説明において便宜上、前記一般式(I)で表される単一若しくは2種以上の多価カルボン酸の混合物も含む。
 前記一般式(I)において、Pがxである多価カルボン酸(A)(以下、説明の便宜上、このようなカルボン酸を多価カルボン酸(A-x)という)の製法につき説明する。
 前記多価カルボン酸(A-x)は、酸無水物と架橋多環ジオール類との付加反応により製造される。酸無水物としては、シクロヘキサン構造を有するアルキル置換あるいはカルボキシル基置換、もしくは無置換の酸無水物構造を分子内に1つ以上有する多価カルボン酸無水物であり、具体的には1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、シクロヘキサン-1,2-ジカルボン酸無水物などが挙げられるがこれに限らず、また、2種類以上を混合して用いてもよい。本発明においては特に光学特性を重視することから1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物の使用が好ましく、特に耐熱性と取り扱いのバランスから、両者を混合して使用することが好ましい。
 前記において、架橋多環ジオール類としては、下記一般式(VI)で表されるトリシクロデカン構造、ペンタシクロペンタデカン構造を主骨格とするジオール類等が挙げられる。これらジオール類は1種又は2種類以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000014
(式中、Rは1つの環当たり複数存在してもよく、それぞれ独立して、水素原子、もしくはメチル基を表す。)
 具体的にはトリシクロデカンジメタノール、メチルトリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールなどが挙げられる。硬化物に高い耐熱性が求められる場合はトリシクロデカンジメタノールの使用が好ましい。
 酸無水物と架橋多環ジオール類の反応は、一般に酸や塩基を触媒とする付加反応であるが、着色の原因となることから、本発明においては特に無触媒での反応が好ましい。
 触媒を用いる場合、使用できる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物;トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物;ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物;2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種等の複素環式化合物類;及び、それら複素環式化合物類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等のアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、カルボン酸金属塩(2-エチルヘキサン酸、ステアリン酸、ベヘン酸、ミリスチン酸などの亜鉛塩、スズ塩、ジルコニウム塩)やリン酸エステル金属(オクチルリン酸、ステアリルリン酸等の亜鉛塩)、アルコキシ金属塩(トリブチルアルミニウム、テトラプロピルジルコニウム等)、アセチルアセトン塩(アセチルアセトンジルコニウムキレート、アセチルアセトンチタンキレート等)等の金属化合物等が挙げられる。
 なお、多価カルボン酸(A-x)の製造において、本発明のエポキシ樹脂組成物中で使用する触媒、もしくは添加剤等で使用する化合物が本反応における触媒効果を有するものであれば、それらの化合物を使用することが好ましい。具体的には後述するエポキシ樹脂組成物における触媒、添加剤に記載する化合物群であり、特にホスホニウム塩やアンモニウム塩、金属化合物類が着色やその変化の面において好ましい。
 触媒を使用する場合、その使用量に特に制限はないが、原料の総質量100質量部に対して、通常0.001~5質量部を必要により使用するのが好ましい。
 本反応においては無溶剤での反応が好ましいが、有機溶剤を使用してもよい。有機溶剤の使用量としては、反応基質である酸無水物と架橋多環ジオール類の総量1に対し、質量比で0.005~1であり、好ましくは0.005~0.7、より好ましくは0.005~0.5(すなわち50質量%以下)である。質量比で1を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物などが使用できる。本発明においては、特にエポキシ樹脂組成物をワニスとして使用することが好ましいことから、ワニスで使用する溶剤、具体的にはトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等を用いることが好ましい。本発明のエポキシ樹脂組成物をワニスとして使用する場合、反応終了後、溶剤の除去等無しにそのまま使用することができ、生産性を鑑みると好ましい。
 本反応は20℃程度の温度でも十分に反応は進行するが、反応時間の調整の問題から、反応温度は30~150℃が好ましく、特に好ましくは40~120℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、30~100℃での反応が特に好ましい。反応温度が、例えば150℃以上の高温である場合、生成した反応物が脱水、脱アルコール等により酸無水物化等を起こし、繋がる、もしくは閉環してしまう可能性があることから好ましくない。またカルボン酸の着色が生じる可能性があることから前記の温度範囲での反応が好ましい。
 酸無水物と架橋多環ジオール類との反応比率は、理論的には等モルでの反応が好ましいが、必要に応じて変更可能である。すなわち、多価カルボン酸(A)の製造時に過剰の酸無水物中で反応を行った場合には、反応が終了した時点で多価カルボン酸(A)と過剰の酸無水物とが共存した混合物となる。本発明においては、本発明の硬化物のガラス転移点(Tg)の調整のために、前記多価カルボン酸(A)の原料の酸無水物を過剰に使用して、本発明のエポキシ樹脂組成物にこの過剰の酸無水物をそのまま用いてもよい。過剰の酸無水物をそのまま本発明のエポキシ樹脂組成物に用いた場合の本発明の硬化物のガラス転移点(Tg)は、過剰の酸無水物を用いない本発明の硬化物のガラス転移点(Tg)よりも高くなる。
 具体的な反応比率としては、その官能基当量で比較し、酸無水物を1とした場合、そのモル比で架橋多環ジオール類が0.001~2、より好ましくは0.01~1.5、さらに好ましくは0.01~1.1である。酸無水物を残す場合、得られる多価カルボン酸(A)の粘度や揮発性、前記した硬化物のガラス転移点(Tg)を考慮すると、架橋多環ジオール類は0.01~0.7、さらには0.01~0.5の範囲で使用することが好ましい。
 反応時間は、反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。また短すぎる反応時間は、その反応が急激であることを意味し、安全性の面から好ましくない。好ましい範囲としては1~48時間、好ましくは1~36時間、さらに好ましくは1~24時間である。
 触媒を用いた場合には、反応終了後、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする多価カルボン酸(A-x)が得られる。また無触媒での反応においては、必要に応じて溶剤を留去して、さらに無溶剤、無触媒の場合にはそのまま、本発明のエポキシ樹脂組成物に使用することができる。
 酸無水物を本発明のエポキシ樹脂組成物において用いる場合は、酸無水物と架橋多環ジオール類との反応比率を理論的に等モルで反応させた後に、酸無水物を混合することでも、また、多価カルボン酸(A-x)の製造時に酸無水物を過剰に使用して酸無水物を残すことでもよい。反応後に混合する酸無水物としては、その構造に芳香環を有さず飽和環構造を有する酸無水物を使用する。具体的にはヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが挙げられる。本発明においては、これら酸無水物のうち、耐熱性、耐光性を考慮すると、特にメチルヘキサヒドロフタル酸無水物又はシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が好ましい。これら混合される酸無水物は2種以上を用いてもよい。
 このように、酸無水物を過剰に配合し、式(I)の化合物に加え、余剰の酸無水物を利用する手法は、下記、多価カルボン酸(A-y)においても同様に適応できる。
 次に前記一般式(I)において、Pがyである多価カルボン酸(A)(以下、説明の便宜上、このようなカルボン酸を多価カルボン酸(A-y)という)につき説明する。
 前記式(I)において、Pで表される鎖状アルキレンリンカーは、下記するように原料として使用するジオールの2個のアルコール性水酸基が結合しているアルキレンを主鎖とし、該アルキレンの少なくとも1箇所以上がアルキル基で置換されているもの、さらには2箇所以上がアルキル基で置換されているものが好ましい。該アルキル基の炭素数に特に制限はないが、炭素数2~10のアルキル基が好ましい。鎖状アルキレンリンカーが2箇所以上で置換されている場合、置換するアルキル基のうち少なくとも一つは炭素数2~10であることが好ましい。該アルキル基は、主鎖を構成するいずれの炭素原子を置換していてもよく、例えばアルコール性水酸基が結合している炭素を置換している場合も含む。このような鎖状アルキレンリンカーの具体例を下記に示す。
Figure JPOXMLDOC01-appb-C000015
(前記式中、*で鎖状アルキレンリンカーは式(I)の酸素原子と結合する。)
 多価カルボン酸(A-y)は、酸無水物と鎖状ジオール化合物の付加反応により製造される。酸無水物としては、置換基を有していてもよいシクロヘキサン構造を分子内に1つ以上有する多価カルボン酸無水物である。シクロヘキサン構造が有しうる置換基Rはそれぞれ独立してアルキル基、もしくはカルボキシル基である。
 酸無水物としては具体的には前記多価カルボン酸(A-x)の製造におけるのと同様の化合物が例示できる。
 前記鎖状ジオール化合物としては、前述の鎖状アルキレンリンカーを主骨格とするジオールである。具体的には前記鎖状アルキレンリンカーの具体例において、*がヒドロキシル基である化合物が挙げられる。このような骨格の中で特に好ましい構造としては2,4-ジエチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオールなどが挙げられる。
 酸無水物と鎖状ジオール化合物の反応は、一般に酸や塩基を触媒とする付加反応であるが、本発明においては特に無触媒での反応が好ましい。触媒を用いる場合、使用できる触媒としては前記多価カルボン酸(A-x)の製造におけるものと同様の化合物が例示でき、これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
 触媒の使用量に制限はないが、原料の総質量100質量部に対して、通常0.001~5質量部必要により使用することが好ましい。
 多価カルボン酸(A-y)を製造する場合、多価カルボン酸(A-x)の製法に準じ、架橋多環ジオール類の代わりに鎖状ジオール化合物を使用すればよいが、反応温度は40~200℃が好ましく、特に好ましくは40~150℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、40~100℃での反応が特に好ましい。
 また、酸無水物と鎖状ジオール化合物の具体的な反応比率としてはその官能基当量で比較し、酸無水物を1とした場合、そのモル比で鎖状ジオール化合物が0.001~2、より好ましくは0.01~1.5、さらに好ましくは0.01~1.1である。酸無水物残す場合、0.01~0.7、さらに好ましくは0.01~0.5の範囲で使用することが好ましい。
 触媒を用いた場合には、反応終了後、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする多価カルボン酸(A-y)が得られる。
 最も好適な製造方法としては、酸無水物、鎖状ジオール化合物を無触媒、無溶剤の条件下、40~150℃で反応させ、反応終了後、多価カルボン酸(A-y)を取り出すという手法である。
 このようにして得られる本発明で使用する多価カルボン酸(A-y)は前記式(I)の構造を有し、通常、無色~淡黄色の固形の樹脂状を示す(場合によっては結晶化する)。また、過剰の酸無水物中で反応させた場合は液状である場合が多い。
 なお、多価カルボン酸(A-x)及び(A-y)において、前記一般式(I)における置換基Rの全てが水素原子の場合、硬化時の着色が見られ、特に厳しい光学用途には好適ではないため、置換基Rのうち少なくとも一つはアルキル基又はカルボキシル基であることが好ましい。また、置換基Rはアルキル基又はカルボキシル基の何れかだけでなく、アルキル基及びカルボキシル基であってもよい。置換基Rのアルキル基の炭素数は1~15、好ましくは1~6であり、直鎖、分岐鎖又は環構造いずれの構造のものであってもよい。置換基Rのアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基等が挙げられるが、好ましくはメチル基である。
 置換基を有する多価カルボン酸(A-x)及び(A-y)は、大幅にその光学特性が向上するため、全てのRのうち少なくとも50モル%がアルキル基又はカルボキシル基、又はアルキル基及びカルボキシル基で置換された多価カルボン酸(A)が好ましい。さらに好ましくは70モル%以上が置換された多価カルボン酸(A-x)及び(A-y)であり、最も好ましくは90モル%以上が置換された多価カルボン酸(A-x)及び(A-y)である。なお、Rのアルキル基又はカルボキシル基、又はアルキル基及びカルボキシル基による置換割合は、多価カルボン酸(A-x)及び(A-y)の原料の酸無水物の仕込み量で調整することができる。また、置換割合の測定はNMRなど既知の分析方法によって可能である。
 次に前記一般式(I)において、Pがzである多価カルボン酸(A)(以下、説明の便宜上、このようなカルボン酸を多価カルボン酸(A-z)という)につき説明する。
 多価カルボン酸(A-z)は、酸無水物とビス(ジメチロール)ジアルキルエーテルとの反応により得られる。ビス(ジメチロール)ジアルキルエーテルとしては、分子内にエーテル結合を有するテトラオール化合物であれば特に限定はされないが、具体的には下記一般式(IV);
Figure JPOXMLDOC01-appb-C000016
(式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~15のアルキル基もしくはカルボキシル基を表す。)で示される構造が好ましく、本発明においては、置換基Rが直鎖、分岐鎖、及び環状の炭素数1~15のアルキル基であることが好ましく、直鎖、分岐鎖、及び環状の炭素数1~6のアルキル基であることが特に好ましい。具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、であり、中でもメチル基であることが好ましい。
 このような構造の化合物は、アルデヒド化合物とホルムアルデヒドの交差のアルドール-カニッツァロ反応により合成されるトリオール化合物を二量化することにより製造できる。具体的には2,2’-ビス(ジメチロール)ジプロピルエーテル、2,2’-ビス(ジメチロール)ジエチルエーテル、2,2’-ビス(ジメチロール)ジブチルエーテル、2,2’-ビス(ジメチロール)ジペンチルエーテル、2,2’-ビス(ジメチロール)ジヘキシルエーテルなどが挙げられる。
 多価カルボン酸(A-z)の製造において好ましく用いられる酸無水物は、下記一般式(V)
Figure JPOXMLDOC01-appb-C000017
(式中、Rはそれぞれ独立して、水素原子、炭素数1~15のアルキル基、好ましくは炭素数1~6のアルキル基、もしくはカルボキシル基を表し、qは置換基Rの数を表し、1~4の整数である。)で表される化合物であって、置換基Rは一つ又は二つ以上であってよく、複数ある場合は水素原子、カルボキシル基もしくは炭素数1~15のアルキル基のいずれか一種以上、又は水素原子、カルボキシル基及び炭素数1~15のアルキル基のいずれもとりうる。ここで、炭素数1~15のアルキル基は、置換基Rにおける炭素数1~15のアルキル基と同様のものが例示できる。置換基Rはカルボキシル基又は炭素数1~15のアルキル基であることが好ましい。置換基Rとしてカルボキシル基をとる場合は、qが1である化合物が好ましい。置換基Rとして炭素数1~15のアルキル基をとる場合は、qが1である化合物が好ましい。前記酸無水物としては、具体的にはヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが挙げられる。中でも1,3,4-シクロヘキサントリカルボン酸-3,4-無水物、及びメチルヘキサヒドロ無水フタル酸が好ましい。該酸無水物は一種又は二種以上を用いてもよい。
 酸無水物とビス(ジメチロール)ジアルキルエーテルの反応は、一般に酸や塩基を触媒とする付加反応であるが、本発明においては無触媒での反応が好ましい。触媒を用いる場合、使用できる触媒としては前記多価カルボン酸(A-x)の製造におけるのと同様の化合物が例示でき、これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
 触媒の使用量に制限はないが、原料の総質量100質量部に対して、通常0.001~5質量部必要により使用することが好ましい。
 多価カルボン酸(A-z)を製造する場合も、多価カルボン酸(A-y)の場合と同様に多価カルボン酸(A-x)の製法に準じ、架橋多環ジオール類の代わりにビス(ジメチロール)ジアルキルエーテルを使用すればよいが、反応温度は40~200℃が好ましく、特に好ましくは40~150℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、40~100℃での反応が特に好ましい。
 酸無水物とビス(ジメチロール)ジアルキルエーテルとの反応比率は、理論的には等モルでの反応が好ましいが、必要に応じて変更可能である。具体的な反応比率としてはその官能基当量で比較し、酸無水物を1とした場合、そのモル比でビス(ジメチロール)ジアルキルエーテルが0.001~2、より好ましくは0.01~1.5、さらに好ましくは0.01~1.1である。なお、後述する硬化剤として、さらに他の酸無水物、又は液状カルボン酸を使用する場合、酸無水物とビス(ジメチロール)ジアルキルエーテルとの反応比率を理論的に等モルで反応させて多価カルボン酸(A-z)を得た後に、他の酸無水物又は後述する液状カルボン酸を混合して用いる。多価カルボン酸(A-z)は他の硬化剤との混合物として用いることが好ましい。固形で多価カルボン酸樹脂(A-z)を得た場合は、150℃以下の温度で酸無水物又は液状カルボン酸と混合し、相溶させて使用することが好ましい。
 触媒を用いた場合には、反応終了後、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする多価カルボン酸(A-z)が得られる。また無触媒での反応においては、必要に応じて溶剤を留去し、さらに無溶剤、無触媒の場合はそのまま取り出すことで、使用することができる。
 最も好適な製造方法としては、酸無水物、ビス(ジメチロール)ジアルキルエーテルを無触媒、無溶剤の条件下、40~150℃で反応させるものである。
 このようにして得られる多価カルボン酸(A-z)は、前記一般式(I)の構造を有し、通常、無色~淡黄色の固形の樹脂状を示す(場合によっては結晶化する)。また、過剰の酸無水物中で反応させた場合、その形状は液状を示す場合が多い。
 本発明のエポキシ樹脂は、多価カルボン酸(A)の他に、分子内に脂肪族環状構造を有するエポキシ樹脂(B)を含有し、多価カルボン酸(A)は、エポキシ樹脂(B)の硬化剤として作用する。
 本発明のエポキシ樹脂組成物において、エポキシ樹脂の硬化剤として、多価カルボン酸(A)以外に、酸無水物を用いる場合、多価カルボン酸(A)と酸無水物の全体を100質量%とすると、多価カルボン酸(A)の割合は、通常20~100質量%、好ましくは20~80質量%、より好ましくは30~75質量%である。前記したように、多価カルボン酸(A)製造時の余剰の酸無水物を利用する場合、余剰酸無水物の量が前記範囲となる程度に調整することが好ましい。
 分子内に脂肪族環状構造を有するエポキシ樹脂(B)について説明する。分子内に脂肪族環状構造を有するエポキシ樹脂(B)としては、例えばテルペンジフェノールや、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と脂肪族環構造ジエン(ジシクロペンタジエンやノルボルナジエン、ヘキサヒドロキシインデン等)との重縮合物及びこれらの変性物から誘導されるグリシジルエーテル化物、水添ビスフェノール(ビスフェノールA、ビスフェノールF)型樹脂、脂環式エポキシ樹脂等、分子内にシクロヘキシル構造、ジシクロペンタジエン構造をもつ化合物の他、トリグリジジルイソシアヌレート構造をもつ化合物等が挙げられるが、本発明においては脂環式エポキシ樹脂の使用が好ましく、また常温で固体の化合物が好ましい。
 中でも本発明の用途には、一般式(II)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000018
(Rはアルコキシ基、mは平均値であって1~20の正数であり、nは1~10の整数である。)
 一般式(II)においてアルコキシ基の炭素鎖は、炭素数1~20の直鎖、分岐鎖、及び環状であり、好ましくは炭素数1~10の直鎖、分岐鎖、及び環状であり、さらに好ましくは炭素数1~6の直鎖、分岐鎖、及び環状である。Rは具体的にはメトキシ基、エポキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ヘキソキシ基、等の一価のアルコールの残基、エチレングリコール、プロピレングリコール、ネオペンチルグリコール等のグリコールの残基、グリセリン、トリメチロールプロパン、トリメチロールブタン、トリメチロールペンタン、ペンタエリスリトール、ジペンタエリスリトール、ジトリメチロールプロパン等の多価アルコールの残基が挙げられる。一般式(II)において、mは前記のとおり平均値であって1~20の正数であるが、好ましくは1~10の正数、さらに好ましくは1~6の正数である。nは1~10の整数であるが、好ましくは1~5の整数である。
 一般式(II)で表される化合物は、アルコールとビニル基を有するエポキシシクロヘキセンとの開環重合によって得られたポリオレフィンを酸化によりエポキシ化することで得られる。一般式(II)で表される化合物の原料であるアルコールは、一価アルコール又は多価アルコールのいずれでも用いられるが、本発明においては多価アルコールが好ましく、中でもトリメチロールアルコール類が好ましい。トリメチロールアルコール類としては、具体的にはグリセリン、ペンタエリスリトール、トリメチロールプロパン、トリメチロールブタン、トリメチロールペンタン等が挙げられる。一般式(II)で表される化合物は、市場からは例えばEHPE3150(R=トリメチロールプロパン残基、m=4~5、n=3、ダイセル化学製)、又はEHPE3150と他成分との混合物であるEHPE3150CEが入手可能である。
 次に、分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)について説明する。エポキシ樹脂(C)としては、芳香族ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などのうち、分子内に3個以上のエポキシ基と芳香環をもつエポキシ樹脂が挙げられる。
 具体的には、例えばトリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン等の多価フェノール類のエポキシ化物が挙げられる。フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、4-(4-ヒドロキシフェニル)アセトフェノン、4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)アセトフェノンとの重縮合物のエポキシ化物、さらに、二官能のエポキシ樹脂もその分子内に含抱されるが、フェノール類と、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物のエポキシ化物なども挙げられる。
 これらの化合物のうち、本発明のエポキシ樹脂組成物の硬化物の透明性、耐熱性、耐光性や、硬度を考慮すると、エポキシ樹脂(C)としては、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類とp-ヒドロキシアセトフェノン、4-(4-ヒドロキシフェニル)アセトフェノン、4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)アセトフェノン等との重縮合物などのエポキシ化物が好ましい。なお、高屈折率、耐熱性、強靭性を考慮すると、フェノール類と4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合のエポキシ化物が好ましく,透明性、耐熱性、硬度を考慮すると1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンが好ましい。これらは他の組成の特性を相互に補完するために用いることができ、本発明のエポキシ樹脂組成物の硬化物の透明性、耐熱性、耐光性や、硬度といった特性のバランスを取るために適宜用いることができる。
 また、本発明において用いられるエポキシ樹脂(C)は常温で固体のものがより好ましい。本発明においては通常、軟化点が50~100℃、もしくは融点が50~190℃であるエポキシ樹脂(C)が使用されるが、軟化点が60~100℃、もしくは融点が60~190℃のものが好ましい。また本発明においては、エポキシ当量が130~500g/eq.のものが通常用いられ得るが、好ましくは150~400g/eq.のもの、さらに好ましくは170~300g/eq.のものが用いられる。エポキシ当量が小さすぎると硬く、もろくなりやすい傾向が強く、エポキシ当量が大きすぎる場合、硬度が出にくい、ガラス転移点が低くなるなどの問題が生じ得る。
 中でも分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)として入手可能なものとしては、TECMORE VG3101L(プリンテック製 n≒1.1)、NC-6000(日本化薬製 n≒1.1)等が挙げられるが、本発明においては、以下の製造法で製造される一般式(III)の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000019
(式中、nは平均値であって、1~2の正数である)。
 一般式(III)で表される化合物は、(4-(4-(1,1-ビス(p-ヒドロキシフェニル)-エチル)α,α-ジメチルベンジル)フェノール)(以下、フェノール化合物(PA1)とする)とエピハロヒドリンとの反応によって得られる。フェノール化合物(PA1)は、例えば特開平05-64935公報に記載の手法で製造することができる。またトリスフェノールPAとして本州化学工業より入手可能である。
 フェノール化合物(PA1)との反応において使用するエピハロヒドリンとしては、エピクロルヒドリン、α-メチルエピクロルヒドリン、γ-メチルエピクロルヒドリン、エピブロモヒドリン等が挙げられ、工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は、フェノール化合物(PA1)の水酸基1モルに対し通常2~15モルであり、好ましくは4~10モルである。余りに過剰のエピハロヒドリンを使用すると生産性が悪いばかりではなく、製造されるエポキシ樹脂の軟化点が低くなり、プリプレグとした場合のタック性等に良い影響を与えない。また、エピハロヒドリンの量が2モル以下であると、nの値が大きくなってしまい製造中にゲル化しやすくなる。
 上記エポキシ化反応においては、アルカリ金属水酸化物を使用することが好ましい。該アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。なお、アルカリ金属水酸化物を、固形物として利用してもよいし、その水溶液として利用してもよい。例えば、アルカリ金属水酸化物を水溶液として使用する場合においては、アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に、減圧下又は常圧下で連続的に水及びエピハロヒドリンを留出させ、更に分液して水を除去し、エピハロヒドリンを反応系内に連続的に戻す方法によりエポキシ化反応を行うことができる。また固形を使用する場合、その取り扱いやすさ、溶解性等の問題からフレーク状の物を使用することが好ましい。アルカリ金属水酸化物の使用量は、フェノール化合物(PA1)の水酸基1モルに対して通常0.90~1.5モルであり、好ましくは1.01~1.25モルであり、より好ましくは1.01~1.15モルである。
 上記エポキシ化反応においては、反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩や、テトラメチルホスホニウムクロライド、テトラメチルホスホニウムブロマイド、トリメチルベンジルホスホニウムクロライド、トリフェニルベンジルホスホニウムクロライド、トリフェニルエチルブロマイド等の4級ホスホニウム塩を触媒として添加してもよい。これら4級塩の使用量は、フェノール化合物(PA1)の水酸基1モルに対し通常0.1~15gであり、好ましくは0.2~10gである。
 上記エポキシ化反応においては、メタノール、エタノール、イソプロピルアルコール等のアルコール類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルスルホン、ジメチルスルホキシド、ジメチルイミダゾリジノン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましく、本発明においては、特にその光学特性から、アルコール類及び/又はエーテル類の使用が好ましい。
 上記アルコール類やエーテル類を使用する場合、その使用量は、エピハロヒドリンの使用量に対し通常2~50質量%であり、好ましくは4~20質量%である。一方、上記非プロトン性極性溶媒を用いる場合、その使用量は、エピハロヒドリンの使用量に対し通常5~100質量%であり、好ましくは10~80質量%である。
 上記エポキシ化反応において、反応温度は通常30~90℃であり、好ましくは35~80℃である。一方、反応時間は通常0.5~10時間であり、好ましくは1~8時間である。本反応は常圧下でも減圧下でも構わず、減圧条件で水-エピハロヒドリンの共沸脱水条件で反応しても構わない。これらのエポキシ化反応の反応物は、水洗後、又は水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去することにより精製され得る。また、更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収した反応物をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて、副生成物の閉環反応を行い、副生成物であるハロヒドリンの閉環を確実なものにすることが好ましい。
 この場合、アルカリ金属水酸化物の使用量は、エポキシ化に使用したフェノール化合物(PA1)の水酸基1モルに対して通常0.01~0.3モルであり、好ましくは0.05~0.2モルである。また、反応温度は通常50~120℃であり、反応時間は通常0.5~2時間である。
 上記エポキシ化反応においては、反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明に使用できるエポキシ樹脂を得ることができる。このようにして得られたエポキシ樹脂は一部その溶剤や水によりエポキシ樹脂が付加したものや、閉環しきれずハロゲンが残存するものも含まれる。
 このようにして得られるエポキシ樹脂であれば特段限定されないが、本発明においては、生産性及び取り扱い性に優れ、さらに硬化物に高い機械的強度を与える以下のいずれかの条件を満たすものが好ましい。
1.エポキシ当量が195~225g/eq.、好ましくは200~220g/eq.である。
2.ゲルパーミエーションクロマトグラフィーにおいてフェノール化合物(PA1)同士がエピハロヒドリンによって2つ繋がったものが20面積%以下、3つ繋がったものが15面積%以下、より好ましくは2つ繋がったものが15面積%以下、3つ繋がったものが10面積%以下である。
 更に、前記脂肪族環状構造をもつエポキシ樹脂(B)、及び分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)の他に、得られる本発明のエポキシ樹脂組成物の粘度、密着性や、ガラス転移温度(Tg)、硬度、屈折率等を考慮して、エポキシ樹脂(D)を単独あるいは二種類以上を混合して使用してもよい。
 エポキシ樹脂(D)としては、前記エポキシ樹脂(B)及びエポキシ樹脂(C)以外の分子内に3個未満のエポキシ基をもつ芳香族エポキシ樹脂、ビスフェノール型エポキシ樹脂、又は非芳香族エポキシ樹脂等が挙げられる。
 具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物の2官能体、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、及び/又はエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形又は液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。
 本発明のエポキシ樹脂組成物において、多価カルボン酸(A)以外の他の硬化剤を必要に応じて併用しても構わない。併用できる他の硬化剤としては、例えばアミン系化合物、不飽和環構造を有する酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。使用できる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明のエポキシ樹脂組成物において、各成分の使用比率は、成分(B)+成分(C)+成分(D)の全エポキシ樹脂のエポキシ基1当量に対して、成分(A)0.5~1.5当量(カルボン酸を1官能、酸無水物を1官能と考える)が好ましく、特に好ましくは0.5~1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
 さらに、全エポキシ樹脂中の各成分の使用割合は、所望の屈折率やガラス転移温度や硬度や密着性等を考慮して決められるが、成分(B)+成分(C)+成分(D)を100質量部とした場合に、成分(B)の含有量は5~100質量部、特に好ましくは10~90質量部である。成分(C)の含有量は0~70質量部であり、特に好ましくは5~50質量部である。成分(D)の含有量は0~70質量部であり、特に好ましくは10~50質量部である。また、成分(B)+成分(C)+成分(D)の全エポキシ樹脂を混合したものは、常温で固体であるのが好ましい。成分(B)、(C)、(D)の中で、常温で液体の成分を使用する割合は、全エポキシ樹脂100質量部中の30質量部以下であることが好ましい。
 また、多価カルボン酸(A-z)を使用する場合、他の硬化剤として酸無水物又は液状カルボン酸が好ましく選択できる。この場合の酸無水物としては、その構造に芳香環を有さず飽和環構造を有する酸無水物が好ましく、中でも多価カルボン酸(A-z)の原料として用いられる酸無水物が好ましい。具体的にはヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、及びシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが挙げられる。これら酸無水物のうち、本発明においては、耐熱性、耐光性を考慮すると、特にメチルヘキサヒドロフタル酸無水物又はシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物が好ましい。これら酸無水物は2種以上を用いてもよい。
 また、前記液状カルボン酸とは、二官能以上のカルボン酸であって、25℃で1000Pa・s以下の粘度である液状の多価カルボン酸である。具体的には多価カルボン酸(A)の原料として用いられる酸無水物とカルビノール変性シリコーン化合物との反応物が好ましい。カルビノール変性シリコーン化合物としては、例えば特開2007-508424号公報等に記載の手法を用いて合成できる。市場から入手可能な化合物としてはDow Corning5562(東レ・ダウコーニング製)、X22-160-AS、KF-6001、KF-6002、KF-6003(いずれも信越化学製)、XF42-B0970(モメンティブ製)、サイラプレーンFM-4411、FM-4421、FM-4425などが挙げられる。本発明においては、特に重量平均分子量500~10000の化合物が好ましく、より好ましくは600~6000、特に好ましくは600~2000である。また最も好ましい範囲としては600~1500である。
 本発明のエポキシ樹脂組成物において、酸無水物又は液状カルボン酸を用いる場合、多価カルボン酸(A-z)と酸無水物又は液状カルボン酸の全体を100質量%とすると、多価カルボン酸(A-z)の割合は、通常20~100質量%、好ましくは20~80質量%、より好ましくは30~75質量%である。
 本発明のエポキシ樹脂組成物においては、硬化剤とともに硬化促進剤を併用しても差し支えない。用い得る硬化促進剤の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド等のアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ、等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤は、本発明のエポキシ樹脂組成物中の、全エポキシ樹脂100質量部に対し、通常0.001~15質量部の範囲で使用される。
 本発明の用途では、透明性、耐熱性、耐光性、硬化速度などを考慮すると、無触媒もしくは、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらの塩類、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物等を使用するのが好ましい。
 本発明の硬化性樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類又はリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)又はリン含有エポキシ化合物が特に好ましい。難燃性を付与する場合は、リン含有化合物の使用量は、リン含有化合物/全エポキシ樹脂=0.1~0.6(質量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
 さらに本発明のエポキシ樹脂組成物には、必要に応じて酸化防止剤を添加してもよい。使用できる酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤の具体例としては、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、等のモノフェノール類;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が挙げられる。
 イオウ系酸化防止剤の具体例としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
 リン系酸化防止剤の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類などが挙げられる。
 これらの酸化防止剤は、それぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。酸化防止剤の使用量は、本発明のエポキシ樹脂組成物100質量部に対して、通常0.008~1質量部、好ましくは0.01~0.5質量部である。また、本発明においてはリン系の酸化防止剤が好ましい。
 さらに本発明のエポキシ樹脂組成物には、必要に応じて光安定剤を添加してもよい。光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物(例えばチヌビン111FDL、チバジャパン製の成分)、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕(例えばチヌビン111FDL、チバジャパン製の成分)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート(例えばチヌビン144、チバジャパン製)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(例えばチヌビン292、チバジャパン製の成分)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(例えばチヌビン292、チバジャパン製の成分)、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート(例えばチヌビン123、チバジャパン製の成分)、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等が挙げられる。光安定剤は1種のみが用いられても良いし、2種類以上が併用されてもよい。
 さらに本発明のエポキシ樹脂組成物には、必要に応じて紫外線吸収剤を添加してもよい。紫外線吸収剤としては特に限定はないが、ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系等が挙げられ、先に記載した光安定剤と併用することも可能である。
 ベンゾトリアゾール系(所謂BTZ系)紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール(例えばチヌビンPS、チバジャパン製)、ベンゼンプロパン酸-3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシアルキルエステル(例えばチヌビン99-2、チバジャパン製)、ベンゼンプロパン酸-3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシアルキルエステル(例えばチヌビン384-2、チバジャパン製)、2-(2H-ベンゾトリアゾール-2-イル)-4、6-ビス(1-メチル-1-フェニルエチル)フェノール(例えばチヌビン900、チバジャパン製)、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(例えばチヌビン928、チバジャパン製)、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコールの反応生成物(例えばチヌビン1130、チバジャパン製)等のベンゾトリアゾール類が挙げられる。
 ヒドロキシフェニルトリアジン系(所謂HPT系)紫外線吸収剤は、下記一般式で示される構造を有している化合物として示される。
Figure JPOXMLDOC01-appb-C000020
(式中、複数存在するRは、それぞれ独立して水素原子、炭素数1~12の脂肪族又は芳香族の炭化水素基、炭素数1~4の(ポリ)アルキレンオキシ基、-O-Rを示す。なお、Rは、水素原子、炭素数1~12の炭化水素基、水素原子とその他グリシジルエーテル基、カルボキシル基、アクリレート基含有化合物との反応残基を示す。)
 HPT系紫外線吸収剤としては、例えば、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニル, とオキシラン[(アルキルオキシ)メチル]オキシランとの反応生成物(例えばチヌビン400、チバジャパン製)、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-2,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物(例えばチヌビン405、チバジャパン製)、2,4-ビス「2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン(例えばチヌビン460、チバジャパン製)、プロパン酸-2-[4-[4,6-ビス([1,1‘-ビフェニル]-4-イル)-1,3,5-トリアジン-2-イル]-3-ヒドロキシフェニル]―,イソオクチルエステル(例えばチヌビン479、チバジャパン製)等のヒドロキシフェニルトリアジン類が挙げられる。これらのうち、経時的な着色性に優れるヒドロキシフェニルトリアジン類が好適に用いられる。
 特に、プロパン酸-2-[4-[4,6-ビス([1,1‘-ビフェニル]-4-イル)-1,3,5-トリアジン-2-イル]-3-ヒドロキシフェニル]-イソオクチルエステル(例えばチヌビン479、チバジャパン製)等、Rのうち少なくとも一つが、芳香族炭化水素であるものが優れた効能を示す。
 これらのうち、ヒドロキシフェニルトリアジン系(所謂HPT系)紫外線吸収剤とヒンダードアミン系光安定剤を合わせて含有すると、さらに耐光性が向上するため好ましい。
 さらに本発明のエポキシ樹脂組成物には、透明性や硬度などの特性を損なわない範囲でブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などの樹脂成分を必要に応じて添加してもよい。
 さらに本発明のエポキシ樹脂組成物には、一次粒径が1~200ナノメートルの微粒子を添加してもよい。微粒子としては、例えばガラス、シリカ、酸化ジルコニウム、酸化スズ、酸化チタン、酸化亜鉛、酸化インジウムスズ、酸化アンチモン、酸化セレン、酸化イットリウムなどが挙げられ,分散溶媒を含有しない微粉末や溶媒に分散させたコロイド溶液として市場から入手して用いることができる。また、これらを1種又は2種以上を混合して用いることができる。分散溶媒としては、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジメチルジメチルアセトアミドなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、トルエン、キシレンなどの非極性溶媒など、本発明のエポキシ樹脂組成物の各成分が溶解するものを選定して用いればよい。
 その他、シランカップリング剤、離型剤、レベリング剤、界面活性剤、染料、顔料、無機あるいは有機の光拡散フィラー等も添加することができる。
 本発明においては、耐熱性、耐光特性を改良する目的で、金属塩を添加することが好ましい。具体的にはカルボン酸金属塩(2-エチルヘキサン酸、ステアリン酸、ベヘン酸、ミリスチン酸などの亜鉛塩、スズ塩、ジルコニウム塩)やリン酸エステル金属(オクチルリン酸、ステアリルリン酸等の亜鉛塩)、アルコキシ金属塩(トリブチルアルミニウム、テトラプロピルジルコニウム等)、アセチルアセトン塩(アセチルアセトンジルコニウムキレート、アセチルアセトンチタンキレート等)等の金属化合物等が挙げられる。これらは単独或いは2種以上を用いてもよい。
 本発明のエポキシ樹脂組成物は、各成分を、従来知られている方法と同様の方法で、均一に混合し、その硬化物とすることができる。例えば、エポキシ樹脂と多価カルボン酸硬化剤並びに必要により硬化促進剤や他の成分とを、必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して本発明のエポキシ樹脂組成物を得る。本発明のエポキシ樹脂組成物は常温で固体であるため、溶融後、注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化するという手法が挙げられる。
 また、本発明のエポキシ樹脂組成物は、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の溶剤に希釈してワニスとして使用することができる。本発明のエポキシ樹脂組成物は通常、常温で固体であるため、溶剤に希釈して使用するほうが扱いやすく、より好ましい。特にガラスクロスに含浸させて用いる場合は、溶剤による希釈を行う。
 溶剤は、本発明のエポキシ樹脂組成物を使用する際の粘度や乾燥速度などを考慮し、1種あるいは2種以上の混合溶剤として用いることができる。溶剤の使用割合は、使用時の作業性や乾燥速度によるが、本発明のエポキシ樹脂組成物100質量部に対して、通常10~200質量部、好ましくは15~100質量部である。
 溶剤で希釈した本発明のエポキシ樹脂組成物を得る場合も、各成分を常法に従い混合溶解することにより調製することができる。例えば、撹拌装置、温度計のついた丸底フラスコに各成分を仕込み、40~80℃にて0.5~6時間撹拌することによりエポキシ樹脂組成物のワニスを得ることができる。この際に、成分(B)+成分(C)+成分(D)のエポキシ樹脂のワニスと、成分(A)+硬化触媒や添加剤のワニスとを別々に調製しておき、使用時に混合する方法が特に好ましい。先に記載したとおり、微粒子を添加する場合には、ホモミキサー、サンドミル等高速撹拌機やマイクロフルイダイザー、三本ロール等、一般に公知の分散方法で処理を行うこともできる。
 このようにして得られた本発明のエポキシ樹脂組成物のワニスは、公知の方法で成型し、乾燥した後、さらに加熱することによって硬化させる。例えば、金型に流し込み、加熱乾燥後、硬化させる方法や、バーコーター、エアナイフコーター、ダイコーター、グラビアコーター、オフセット印刷、フレキソ印刷、スクリーン印刷など、それ自体公知の方法で金型の代わりとなる金属板や離型フィルム等に塗布し、加熱乾燥後、硬化させる方法、ガラスクロスに含浸させ、加熱乾燥後、硬化させる方法、またガラスや透明プラスチック基材に塗布し、加熱乾燥後、硬化させて基材とともに使用するコーティング剤としての使用方法なども挙げられる。本発明のエポキシ樹脂組成物は、硬化の際に硬化剤が揮発して膜の成分比が変わって屈折率が変化することがないため、安定した透明な膜を得ることができる。このため、後述する光学シートの製造に適している。また、硬化剤の揮発により硬化膜の表面が荒れたり、硬化膜の物性が変わってしまったりすることもなく、平滑で硬度に優れた膜を得ることができる。
 本発明のエポキシ樹脂組成物のワニスの乾燥温度は、使用する溶剤や風量にもよるが、通常は60~200℃が好ましい。ガラスクロス等のガラス繊維シート状基材に前記ワニスを含浸させ、溶剤を乾燥する際に、本発明のエポキシ樹脂組成物を半硬化状態にすることにより、プリプレグを得ることも可能である。この際の乾燥条件は特に限定はされないが、温度は100~180℃、時間は1~30分が好ましい。
 本発明のエポキシ樹脂組成物を硬化して得られる硬化物も本発明に含まれる。本発明のエポキシ樹脂組成物をガラスクロスに含浸させたプリプレグを作製した後、乾燥、硬化して得られる硬化物(光学シート)も同様に本発明に含まれる。前述したとおり、本発明のエポキシ樹脂組成物は、硬化の際に硬化剤が揮発することによる屈折率の変化がないため、該光学シートの製造に適している。なお、本発明のエポキシ樹脂組成物の硬化温度及び時間は、80~200℃及び2~200時間である。硬化方法としては高温で一気に硬化させることもできるが、150℃以下の低温で長時間硬化させても良い。80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行うなど、ステップワイズに昇温し硬化反応を進めても良い。
 前記プリプレグを作製するためのガラスクロスは、公知である市販のものを用いることができる。中でも一般的に樹脂強化用として用いられるEガラスは、アルカリ金属酸化物が少なく、無アルカリガラスとして本発明の用途には適している。市販のガラスクロスには、ガラス繊維を用いた織布、不織布、編物など様々なものがあり、本発明においてはその種類に特に制限はないが、本発明のエポキシ樹脂組成物を含浸させて硬化した際に平滑な硬化物を得るためには、ガラスクロスの表面の凹凸が小さいものが適している。プリプレグを作製する際の乾燥及び半硬化の条件を考慮すると、ガラスクロスの厚みは通常100μm以下であり、好ましくは50μm以下である。25μm程度かそれ以下の厚さのものを用いてプリプレグを作製し、硬化時に2枚~数枚を重ね合わせて一体化し本発明の光学シートとしても良い。ガラスクロスに用いるガラス繊維の径は、透明性などを考慮すると小さいほうが良く、10μm以下が好ましい。また本発明のエポキシ樹脂組成物との密着性を考慮すると、ガラス繊維はシランカップリング剤により処理してあるものが好ましい。屈折率は1.51~1.57であり、一般的に入手可能なものとして1.55~1.57がより好ましい。
 本発明において、本発明の硬化物の屈折率は、用いるガラスクロスの屈折率との差が少ないものが好ましい。具体的には該ガラスクロスの屈折率との差が±0.01となるものが好ましく、さらには差が±0.005となるものが好ましい。本発明の硬化物の屈折率がこの範囲であると、透明性、平滑性、硬度に優れた本発明の光学シートが得られる。これら光学シート上に、さらに本発明のエポキシ樹脂組成物を塗布、乾燥、硬化することにより、透明性、平滑性のより優れた光学シートを得ることも可能である。
 本発明の光学シートは、液晶ディスプレイ、プラズマディスプレイ、ELディスプレイ、携帯機器などの表示装置や太陽電池などに用いられるガラスの代替品として利用可能である。その他にも、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料や、反射防止フィルム、タッチパネル用前面板、光学補正フィルムなどにも使用できる。
 次に、実施例により本発明を更に詳細に説明する。なお、本発明は以下の実施例によって何ら限定されるものではない。合成例x2~z2においては、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)によりトリシクロデカンジメタノールの消失を確認した時点で反応終了とした。
 合成例において、部は特に断わりのない限り質量部である。また、GPCの測定条件及びエポキシ当量の測定方法は以下の通りである。
 GPC測定条件
  カラム:Shodex SYSTEM-21カラム
      (KF-803L、KF-802.5(×2本)、KF-802)
  連結溶離液:テトラヒドロフラン
  流速:1ml/min.
  カラム温度:40℃、
  検出:RI(Reflective index)
  検量線:Shodex製標準ポリスチレン
 エポキシ当量
  JIS K-7236に記載の方法。
合成例X1 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらメチルエチルケトン(以下、MEK)204部、トリシクロデカンジメタノール294部、4-メチルシクロヘキサンジカルボン酸無水物(新日本理化(株)製、リカシッドMH;以下、H1)423部、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn;以下、H-TMAn)99部を加え、50℃で2時間反応後、70℃で4時間加熱撹拌を行なった。得られた溶液にMEKをさらに145部加えることで多価カルボン酸(A)のMEK溶液1166部が得られた。得られた溶液は無色であり、エポキシ当量は272g/eqであって、多価カルボン酸(A)の濃度は70質量%であった。
合成例x2 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール12部、H1 73部、H-TMAn 15部を加え、40℃で3時間反応後、70℃で1時間加熱撹拌を行い、無色の液状樹脂である多価カルボン酸(A)とH1の混合物を100部得た。この混合物のエポキシ当量は171g/eqであり、GPCで測定した成分比は酸無水物と架橋多環ジオール類の反応物:H1:H-TMAn=40.8:48.8:10.5であった。
合成例x3 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール36部、H1 195部、H-TMAn 69部を加え、40℃で3時間反応後、70℃で1時間加熱撹拌を行い、無色の液状樹脂である多価カルボン酸(A)とH1の混合物を300部得た。この混合物のエポキシ当量は162g/eqであり、GPCで測定した成分比は酸無水物と架橋多環ジオール類の反応物:H1:H-TMAn=42.0:42.1:15.9であった。
合成例x4 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール45部、H1 195部、H-TMAn 60部を加え、40℃で3時間反応後、70℃で1時間加熱撹拌を行い、無色の液状樹脂である多価カルボン酸(A)とH1の混合物を300部得た。この混合物のエポキシ当量は170g/eqであり、GPCで測定した成分比は酸無水物と架橋多環ジオール類の反応物:H1:H-TMAn=51.0:37.1:11.9であった。
合成例x5 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール40部、H1 200部を加え、40℃で3時間反応後、70℃で1時間加熱撹拌を行い、無色の液状樹脂である多価カルボン酸(A)を240部得た。エポキシ当量は200g/eqであった。
合成例x6 エポキシ樹脂(C)の合成
 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら(4-(4-(1,1-ビス(p-ヒドロキシフェニル)-エチル)α,α-ジメチルベンジル)フェノール)141.5部、エピクロルヒドリン463部、メタノール46部を仕込み、撹拌下で70℃まで昇温した。次いでフレーク状水酸化ナトリウム42部を90分かけて分割添加し、その後、70℃で1時間攪拌した。反応終了後、水200部を加えて水洗を行って生成した塩などを除去した後、油層からロータリーエバポレーターを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、70℃にまで昇温した。撹拌下で30質量%の水酸化ナトリウム水溶液12部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレーターを用いて180℃で減圧下にメチルイソブチルケトン等を留去することで無色~淡黄色のエポキシ樹脂(C)190部を得た。得られたエポキシ樹脂は式(III)で表され、そのnは1.1、エポキシ当量は209g/eq.、軟化点は57.7℃、溶融粘度(200℃)0.12Pa・sであった。
 以下の実施例に示すような組成(数値は質量部を示す)にて本発明のエポキシ樹脂組成物及び硬化物を得た。また、樹脂組成物及び硬化膜についての評価方法及び評価基準は以下の通りである。
(1)粘度:E型粘度計(TV-200:東機産業(株)製)を用い、25℃にて測定した。
(2)屈折率(25℃):硬化したエポキシ樹脂組成物の屈折率(25℃)をプリズムカップラー屈折率計(メトリコン製)で測定した。
(3)ガラス転移温度(Tg):硬化したエポキシ樹脂組成物のTg点を粘弾性測定システム(DMS-6000:セイコー電子工業(株)製)において、引っ張りモード、周波数1Hzにて測定した。
(4)400nm透過率、550nm透過率、YI値:硬化したエポキシ樹脂組成物の硬化膜の膜厚をデュアルタイプ膜厚計(ケット科学研究所製)にて測定した後、透過率を分光光度計U-3310(日立製)にて測定し、さらに100μm厚に換算した値での400nm透過率、550nm透過率、YI値を求めた。
(5)耐光試験:エポキシ樹脂組成物の硬化膜をEYE SUPER UV TESTER SUV-W11(岩崎電気製)にて60℃、60%RHの条件で4時間の耐光試験を行った後、外観を目視で観察した。さらに透過率(400nm、550nm)、着色(YI値)を(4)と同様に測定した。
(6)耐熱試験:エポキシ樹脂組成物の硬化膜を120℃乾燥機中に100時間投入した後、外観を目視で観察した。さらに透過率(400nm、550nm)、着色(YI値)を(4)と同様に測定した。
(7)全光線透過率、ヘイズ:ヘイズメーターTC-H3DPK(東京電色製)にて測定した。
実施例x1
 合成例x2で得た多価カルボン酸(成分(A))とH1の混合物39.9部、成分(B)としてEHPE-3150(ダイセル化学製:一般式(II)において、R=トリメチロールプロパン残基、m=5、エポキシ当量181)を10.3部、成分(C)として合成例x6で得られた化合物16.4部、NC-3000(日本化薬製:ビフェニル構造多官能エポキシ樹脂、エポキシ当量275)12.3部、成分(D)としてJER-828(三菱化学製:液状ビスフェノールAエポキシ樹脂、エポキシ当量185)を5.2部、YD-012(東都化成製:固形ビスフェノールAエポキシ樹脂、エポキシ当量670)を15.9部、その他の成分としてオクタン酸亜鉛0.3部、添加剤であるアデカスタブ260(ADEKA製:リン系酸化防止剤)0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤であるMEK43.2部を、70℃に加温、混合し、本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は98mPa・sであった。
 ガラス基板上に耐熱離型テープで40mm×25mm×深さ1mmの型を作成し、本発明のエポキシ樹脂組成物のMEK希釈液を厚さ約800μmにまで注型し、80℃にて50分間乾燥した。乾燥途中で真空脱泡を、1回行い泡を除去した。その後室温まで冷却し状態を確認したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて150℃乾燥機にて3時間硬化し、本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.568であり、ガラス転移温度(Tg)は135℃だった。硬化膜のYI値は0.3、透過率は550nmで90.6%、400nmで90.1%だった。
実施例x2
 合成例x2で得た多価カルボン酸(成分(A))とH1の混合物43.6部、成分(B)としてEHPE-3150を2.6部、成分(C)として合成例x6で得られた化合物35.5部、成分(D)としてJER-828を10.4部、YD-012を8.0部、その他の成分として、硬化触媒であるヒシコーリンPX4MP(日本化学工業製:4級ホスホニウム塩)0.3部、希釈溶剤のMEK43部を、70℃に加温、混合し、本発明のエポキシ樹脂組成物の固形分70%MEK希釈液を得た。このエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液の粘度は40mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.566であり、ガラス転移温度(Tg)は140℃だった。硬化膜のYI値は0.2、透過率は550nmで90.6%、400nmで90.6%だった。
実施例x3
 実施例x2において、その他の成分にて硬化触媒としてU-CAT5002(三洋化成製1,8-ジアザビシクロ(5,4,0)-ウンデセン-7誘導体のテトラフェニルボレート)0.3部を使用する以外は、実施例x2と同様に本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は41mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.566であり、ガラス転移温度(Tg)は141℃だった。
実施例x4
 合成例x2で得た多価カルボン酸(成分(A))とH1の混合物41.3部(成分(B)、成分(C)及び成分(D)の全てのエポキシ基に対して1当量)、成分(C)としてNC-3000を用いずに合成例x6で得られた化合物27.3部を用いる以外は、実施例x1と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は62mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は145℃だった。硬化膜のYI値は0.3、透過率は550nmで90.6%、400nmで90.5%だった。
 次いで耐光試験、耐熱試験を行った。耐光試験後の外観は若干着色があるがひび割れなどの劣化もなく透明性は良好であった。YI値は5.6、透過率は550nmで90.0%、400nmで80.0%だった。
 耐熱試験後の外観は着色もほとんどなく良好であった。YI値は0.3、透過率は550nmで90.7%、400nmで90.5%だった。
実施例x5
 成分(A)として合成例x1で得た濃度70質量%の多価カルボン酸溶液66.6部、成分(B)としてEHPE-3150を4.8部、成分(C)としてNC-3000を用いずに合成例x6で得られた化合物12.0部、成分(D)としてJER-828を8.1部、YD-012を、28.5部を用い、その他成分の希釈溶剤のMEKを23部にする以外は、実施例x1と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は306mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.558であり、ガラス転移温度(Tg)は106℃だった。
実施例x6
 合成例x4で得た多価カルボン酸(成分(A))とH1の混合物41.2部、成分(C)としてNC-3000を用いずに合成例x6で得られた化合物27.4部、成分(D)としてJER-828を5.2部、YD-012を16.0部用いる以外は、実施例x1と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は70mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は142℃だった。
実施例x7
 合成例x3で得た多価カルボン酸(成分(A))とH1の混合物40.0部、成分(B)としてEHPE-3150を10.6部、成分(C)としてNC-3000を用いずに合成例x6で得られた化合物28.0部、成分(D)としてJER-828を5.3部、YD-012を、16.1部を用いる以外は、実施例x1と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は868mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.562であり、ガラス転移温度(Tg)は147℃だった。
実施例x8
 成分(A)として合成例x2で得た多価カルボン酸(成分(A))とH1の混合物40.6部、成分(B)としてEHPE-3150を11.3部、成分(C)としてNC-3000を用いずに合成例x6で得られた化合物20.7部を、成分(D)としてJER-828を5.2部、YD-012を15.9部、BPEF-G(オグソールEG:大阪ガス製、フルオレン構造固形エポキシ樹脂、エポキシ当量275)6.2部を用いる以外は、実施例x1と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は62mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.563であり、ガラス転移温度(Tg)は139℃だった。
実施例x9
 成分(A)として合成例x2で得た多価カルボン酸(成分(A))とH1の混合物51.0部、成分(B)としてEHPE-3150を36.0部、セロキサイド2021P (ダイセル化学製:3,4-エポキシシクロヘキシメチル-3,4-エポキシシクロヘキサンカルボキシレート、エポキシ当量130)13.0部を用い、成分(C)及び成分(D)を用いないこと以外は、実施例x1と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は33mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.512であり、ガラス転移温度(Tg)は160℃だった。硬化膜のYI値は0.3、透過率は550nmで91.9%、400nmで91.6%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色もほとんど見られず良好であり、YI値は0.5、透過率は550nmで91.7%、400nmで91.0%だった。
実施例x10
 成分(A)として合成例x2で得た多価カルボン酸(成分(A))とH1の混合物50.4部、成分(B)としてEHPE-3150を25.7部、セロキサイド2021Pを13.0部、成分(C)として合成例x6で得られた化合物10.9部を用い、成分(D)を用いないこと以外は、実施例x1と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は33mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.523であり、ガラス転移温度(Tg)は157℃だった。硬化膜のYI値は0.3、透過率は550nmで91.6%、400nmで91.5%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色が若干あるもののひび割れなどの劣化もなく透明性良好だった。YI値は5.8、透過率は550nmで91.0%、400nmで80.0%だった。
実施例x11
 実施例x4において、さらにTINUVIN400(チバスペシャルティケミカルズ製:ヒドロキシフェニルトリアジン系紫外線吸収剤)を0.5部追加する以外は、実施例x4と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は33mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は145℃だった。硬化膜のYI値は0.4、透過率は550nmで90.4%、400nmで86.4%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色が若干あるもののひび割れなどの劣化もなく透明性良好だった。YI値は1.3、透過率は550nmで90.7%、400nmで89.0%だった。
比較例x1
 リカシッドMH700(新日本理化製:メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物7:3;当量は168g/eq、以下、H2と称す)40.6部(成分(B)、成分(C)及び成分(D)の全てのエポキシ基に対して1当量)、成分(B)としてEHPE-3150を10.3部、成分(C)として合成例x6の化合物27.3部、成分(D)としてJER-828を5.2部、YD-012を15.9部、その他の成分としてオクタン酸亜鉛0.3部、添加剤であるアデカスタブ260(ADEKA製:リン系酸化防止剤)0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤であるMEK42.8部を、70℃に加温、混合し、比較用の樹脂組成物の固形分が70質量%であるMEK希釈液を得た。
実施例x12
 実施例x4及び比較例x1で得られた組成物の固形分が70質量%であるMEK希釈液100部に対して、トルエン1部をそれぞれ添加、混合し、揮発試験用のサンプルを得た。
 ガラス基板上に耐熱離型テープで40mm×25mm×深さ1mmの型を作成し、実施例x4及び比較例x1の揮発試験用サンプル(固形分が69質量%のMEK・トルエン混合溶液)を、厚さ約800μm注型し、精秤後、80℃にて15分間乾燥した。途中で真空脱泡を、1回行い泡を除去した。その後、まだ溶剤が残った状態で下記の条件にて硬化を行い、硬化物を得た。硬化後に精秤し、注型したサンプル固形分に対して、乾燥・硬化中の揮発減量(%)を計算した。得られた硬化物の表面の外観を観察し、屈折率を測定した。
実施例x13
 実施例x4で得られた本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液にMEKを添加して固形分50質量%に調整し、市販のガラスクロス(Eガラスクロス:約30μm厚、平織)を入れ、含浸させた。ガラスクロスを引き上げた後、120℃で7分乾燥した。乾燥後のシートは固形のフィルムであった。それをさらに離型処理したPETフィルムにはさんでプレスしながら150℃にて10分処理し、半硬化させてプリプレグを得た。その後150℃乾燥機にて3時間硬化した。本発明のエポキシ樹脂組成物の硬化物とガラスクロスの複合化されたシートが得られ、屈折率は1.561だった。全光線透過率は92%、ヘイズ2%であり、着色のない透明シートであった。
 実施例x1~x11の結果から明らかなように本発明のエポキシ樹脂組成物は、透明性に優れ、着色もなく、耐熱性、耐光性の良好な、様々な屈折率の硬化物を得ることができる。実施例x12からは、多価カルボン酸(A)を用いることにより、一般的な酸無水物硬化剤を用いた比較例x1の場合と比べて明らかに平滑な膜が得られることがわかる。また比較例x1の酸無水物硬化剤が多量に揮発して硬化膜の成分構成比が変化するのに対し、本発明では揮発がほとんどないことがわかる。揮発による硬化膜の成分構成比の変化は、硬化膜の屈折率のブレにつながるため、ガラスクロスと組み合わせた場合に屈折率が合わなくなり透明シートを得ることが困難となるが、本発明の実施例ではそのような問題はないことがわかる。実施例x13の結果からわかるように、本発明のエポキシ樹脂組成物を用いることにより安定した屈折率の硬化膜を得られ、ガラスクロスと組み合わせた際にも透明な膜が得られることが確認された。
実施例x14
 実施例x4において、アデカスタブ260及びビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネートを除き、TINUVIN479(チバスペシャルティケミカルズ製:ヒドロキシフェニルトリアジン系紫外線吸収剤)を0.5部追加する以外は、実施例x4と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は33mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は145℃だった。硬化膜のYI値は0.4、透過率は550nmで90.7%、400nmで86.6%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色が若干あるもののひび割れなどの劣化もなく透明性良好だった。YI値は0.7、透過率は550nmで90.7%、400nmで85.9%だった。
実施例x15
 実施例x14において、さらにTINUVIN123(チバスペシャルティケミカルズ製:ヒンダードアミン系光安定剤)を0.2部追加する以外は、実施例x4と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は33mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は145℃だった。硬化膜のYI値は0.3、透過率は550nmで90.7%、400nmで87.6%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色が若干あるもののひび割れなどの劣化もなく透明性良好だった。YI値は0.6、透過率は550nmで90.6%、400nmで86.9%だった。
実施例x16
 実施例x14において、TINUVIN479の変わりにTINUVIN405(チバスペシャルティケミカルズ製:ヒドロキシフェニルトリアジン系紫外線吸収剤)0.5部を追加する以外は、実施例x14と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は33mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は145℃だった。硬化膜のYI値は0.5、透過率は550nmで90.7%、400nmで88.4%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色が若干あるもののひび割れなどの劣化もなく透明性良好だった。YI値は0.8、透過率は550nmで90.6%、400nmで87.9%だった。
実施例x17
 実施例x15において、TINUVIN123の変わりにTINUVIN144(チバスペシャルティケミカルズ製:ヒンダードアミン系光安定剤)を使用する以外は、実施例x15と同様にして本発明のエポキシ樹脂組成物の固形分が70質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は33mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例x1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例x1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は145℃だった。硬化膜のYI値は0.3、透過率は550nmで90.7%、400nmで87.8%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色が若干あるもののひび割れなどの劣化もなく透明性良好だった。YI値は0.5、透過率は550nmで90.6%、400nmで88.0%だった。
合成例y1 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトルエン10部、2,4-ジエチル-1,5-ペンタンジオール(協和発酵ケミカル株式会社製 キョウワオールPD9)80部、H2168部を加え、100℃で4時間加熱撹拌を行い、GPCにより原料の消失を確認した。反応終了後、ロータリーエバポレーターを用い、残存する溶剤を留去することで、無色の固形樹脂である本発明の多価カルボン酸(A)が246部得られた。GPCによる純度は97面積%であり、エポキシ当量は248g/eq.であった。
合成例y2 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら2,4-ジエチル-1,5-ペンタンジオール(協和発酵ケミカル株式会社製 キョウワジオールPD9)20部、H1 100部を加え、60℃で4時間加熱撹拌を行った。GPCにより2,4-ジエチル-1,5-ペンタンジオールの1面積%以下を確認し、無色の液状樹脂である多価カルボン酸(A)とH1とのの混合物120部得られた。この混合物のエポキシ当量は201g/eq.であり、GPCで測定した成分比は酸無水物と架橋多環ジオール類の反応物:H1=43:57であった。50℃における粘度は1100mP・sであった(25℃では16200mPa・s E型粘度計)。
実施例y1
 合成例y2で得た多価カルボン酸(成分(A))とH1の混合物34.8部、成分(B)としてEHPE-3150(ダイセル化学製:一般式(II)において、R=トリメチロールプロパン残基、m=5、エポキシ当量181)9.5部、成分(D)としてJER-828(三菱化学製:液状ビスフェノールAエポキシ樹脂、エポキシ当量185)9.6部、YD-012(東都化成製:固形ビスフェノールAエポキシ樹脂、エポキシ当量670)46.2部、その他の成分として、硬化触媒であるヒシコーリンPX4MP(日本化学工業製:4級ホスホニウム塩)0.3部、添加剤であるアデカスタブ260(ADEKA製:リン系酸化防止剤)0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤のMEK25.2部を、70℃に加温、混合し、本発明のエポキシ樹脂組成物(y1)の固形分80%MEK希釈液(y1D)を得た。y1Dの粘度は309mPa・sであった。
 得られたy1を、MEKを用いてさらに固形分70%(y1D’)に調整した。
 ガラス基板上に耐熱離型テープで40mm×25mm×深さ1mmの型を作成し、y1D’を厚さ約800μmにまで注型し、80℃にて50分間乾燥した。乾燥途中で真空脱泡を1回行い、泡を除去した。その後室温まで冷却し状態を確認したところ、y1は固体であった。
 続いて150℃乾燥機にて3時間硬化し、y1の硬化物を得た。屈折率(25℃)は1.555であり、ガラス転移温度(Tg)は101℃だった。硬化膜のYI値は0.2、透過率は550nmで90.7%、400nmで90.5%だった。
実施例y2
 合成例y2で得た多価カルボン酸(成分(A))とH1の混合物43.4部、成分(B)としてEHPE-3150を11.7部、成分(C)として合成例x6で得られた化合物12.5部、成分(D)としてJER-828を9.5部、YD-012を22.9部、その他の成分としてオクタン酸亜鉛0.3部、添加剤であるアデカスタブ260(ADEKA製:リン系酸化防止剤)0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤のMEK43.2部を用いる以外は、実施例y1と同様にして本発明のエポキシ樹脂組成物(y2)の固形分が70質量%であるMEK希釈液(y2D)を得た。y2Dの粘度は57mPa・sであった。
 得られたy2Dを実施例y1と同様にして乾燥したところ、y2は固体であった。
 続いて実施例y1と同様にy2の硬化物を得た。屈折率(25℃)は1.551であり、ガラス転移温度(Tg)は106℃だった。硬化膜のYI値は0.2、透過率は550nmで90.7%、400nmで91.0%だった。
 次いで耐光試験、耐熱試験を行った。耐光試験後の外観は若干着色があるがひび割れなどの劣化もなく透明性は良好であった。YI値は5.2、透過率は550nmで90.1%、400nmで78.8%だった。
 耐熱試験後の外観は着色もほとんどなく良好であった。YI値は0.3、透過率は550nmで90.7%、400nmで90.5%だった。
実施例y3
 合成例y2で得た多価カルボン酸(成分(A))とH1の混合物37.1部、成分(B)としてEHPE-3150を4.7部、成分(C)として合成例x6で得られた化合物10.1部、成分(D)としてJER-828を9.6部、YD-012を38.5部、その他の成分としてオクタン酸亜鉛0.3部、添加剤であるアデカスタブ260を0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤のMEK43.2部を用いる以外は、実施例y1と同様にして本発明のエポキシ樹脂組成物(y3)の固形分が70質量%であるMEK希釈液(y3D)を得た。y3Dの粘度は104mPa・sであった。
 得られたy3Dを実施例y1と同様にして乾燥したところ、y3は固体であった。
 続いて実施例y1と同様にy3の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は99℃だった。硬化膜のYI値は0.1、透過率は550nmで90.6%、400nmで90.9%だった。
 次いで耐光試験、耐熱試験を行った。耐光試験後の外観は若干着色があるがひび割れなどの劣化もなく透明性は良好であった。YI値は5.6、透過率は550nmで90.0%、400nmで78.0%だった。
実施例y4
 合成例y2で得た多価カルボン酸(成分(A))とH1の混合物48.5部(成分(B)、成分(C)及び成分(D)の全てのエポキシ基に対して1当量)、成分(B)としてEHPE-3150を10.3部、成分(C)として合成例x6で得られた化合物27.3部、成分(D)としてJER-828を5.2部、YD-012を15.9部、その他の成分としてオクタン酸亜鉛0.3部、アデカスタブ260を0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤のMEK46.2部を用いる以外は、実施例y1と同様にして本発明のエポキシ樹脂組成物(y4)の固形分が70質量%であるMEK希釈液(y4D)を得た。y4Dの粘度は60mPa・sであった。
 得られたy4Dを実施例y1と同様にして乾燥したところ、y4は固体であった。
 続いて実施例y1と同様にy4の硬化物を得た。屈折率(25℃)は1.552であり、ガラス転移温度(Tg)は107℃だった。硬化膜のYI値は0.2、透過率は550nmで90.9%、400nmで90.8%だった。
実施例y5
 合成例y1で得た多価カルボン酸(A)45.9部、成分(B)としてEHPE-3150を4.8部、成分(C)として合成例x6で得られた化合物7.7部、成分(D)としてJER-828を8.1部、YD-012を28.5部、BPEF-G(オグソールEG:大阪ガス製、フルオレン構造固形エポキシ樹脂、エポキシ当量275)5.0部、その他の成分としてオクタン酸亜鉛0.3部、添加剤であるアデカスタブ260(ADEKA製:リン系酸化防止剤)0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤であるMEK43.2部を、70℃に加温、混合し、本発明のエポキシ樹脂組成物(y5)の固形分が70質量%であるMEK希釈液(y5D)を得た。y5Dの粘度は286mPa・sであった。
 得られたy5Dを実施例y1と同様にして乾燥したところ、y5は固体であった。
 続いて実施例y1と同様にy5の硬化物を得た。屈折率(25℃)は1.560であり、ガラス転移温度(Tg)は102℃だった。硬化膜のYI値は0.1、透過率は550nmで90.6%、400nmで90.8%だった。
実施例y6
 実施例y3において、さらにTINUVIN400(チバスペシャルティケミカルズ製:ヒドロキシフェニルトリアジン系紫外線吸収剤)を0.5部追加する以外は、実施例y4と同様にして本発明のエポキシ樹脂組成物(y6)の固形分が70質量%であるMEK希釈液(y6D)を得た。y6Dの粘度は106mPa・sであった。
 得られたy6Dを実施例y1と同様にして乾燥したところ、y6は固体であった。
 続いて実施例y1と同様にy6の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は100℃だった。硬化膜のYI値は0.3、透過率は550nmで90.4%、400nmで88.4%だった。
 次いで耐光性試験を行った。耐光試験後の外観は着色が若干あるもののひび割れなどの劣化もなく透明性良好だった。YI値は1.3、透過率は550nmで90.5%、400nmで89.0%だった。
比較例y1
 リカシッドMH700(新日本理化製:メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物7:3;当量は168g/eqであり)40.6部(成分(B)、成分(C)及び成分(D)の全てのエポキシ基に対して1当量)、成分(B)としてEHPE-3150を10.3部、成分(C)として合成例x6で得られた化合物27.3部、成分(D)としてJER-828を5.2部、YD-012を15.9部、その他の成分としてオクタン酸亜鉛0.3部、添加剤であるアデカスタブ260を0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤であるMEK42.8部を、70℃に加温、混合し、比較用の樹脂組成物の固形分が70質量%であるMEK希釈液を得た。
実施例y7
 実施例y4及び比較例y1で得られた組成物の固形分が70質量%であるMEK希釈液100部に対して、トルエン1部をそれぞれ添加、混合し、揮発試験用のサンプルを得た。
 ガラス基板上に耐熱離型テープで40mm×25mm×深さ1mmの型を作成し、実施例y4及び比較例y1の揮発試験用サンプル(固形分が69質量%のMEK・トルエン混合溶液)を、厚さ約800μm注型し、精秤後、80℃にて15分間乾燥した。途中で真空脱泡を1回行い、泡を除去した。その後、まだ溶剤が残った状態で下記の条件にて硬化を行い、硬化物を得た。硬化後に精秤し、注型したサンプル固形分に対して、乾燥・硬化中の揮発減量(%)を計算した。得られた硬化物の表面の外観を観察し、屈折率を測定した。
Figure JPOXMLDOC01-appb-T000022
実施例y8
 実施例y3で得られたy3DにさらにMEKを添加して固形分50質量%に調整し、市販のガラスクロス(Eガラスクロス:約30μm厚、平織;屈折率:1.560)を入れ、含浸させた。ガラスクロスを引き上げた後、120℃で7分乾燥した。乾燥後のシートは固形のフィルムであった。それをさらに離型処理したPETフィルムにはさんでプレスしながら150℃にて10分処理し、半硬化させてプリプレグを得た。その後150℃乾燥機にて3時間硬化した。本発明のエポキシ樹脂組成物の硬化物とガラスクロスの複合化されたシートが得られ、屈折率は1.560だった。全光線透過率は92%、ヘイズ2%であり、着色のない透明シートであった。
 実施例y1~8の結果から明らかなように本発明のエポキシ樹脂組成物は、透明性に優れ、着色もなく、耐熱性、耐光性の良好な、様々な屈折率の硬化物を得ることができる。実施例y7からは、多価カルボン酸(B)を用いることにより、一般的な酸無水物硬化剤を用いた比較例y1の場合と比べて明らかに平滑な膜が得られることがわかる。また比較例y1の酸無水物硬化剤が多量に揮発して硬化膜の成分構成比が変化するのに対し、本発明では揮発がほとんどないことがわかる。揮発による硬化膜の成分構成比の変化は、硬化膜の屈折率のブレにつながるため、ガラスクロスと組み合わせた場合に屈折率が合わなくなり透明シートを得ることが困難となるが、本発明の実施例ではそのような問題はないことがわかる。実施例y8の結果からわかるように、本発明のエポキシ樹脂組成物を用いることにより安定した屈折率の硬化膜を得られ、ガラスクロスと組み合わせた際にも透明な膜が得られることが確認された。
合成例z1 多価カルボン酸(A)の合成
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら、ジトリメチロールプロパン(Di-TMP パーストープ製)125部、メチルシクロヘキサンジカルボン酸無水物(リカシッドMH 新日本理化製)336部、メチルエチルケトン115部を加え、80℃で7時間撹拌した。反応終了後、メチルエチルケトン198部を加え、濃度調整を行い、濃度70%の多価カルボン酸(A)のメチルエチルケトン溶液658部を得た。
実施例z1
 合成例z1で得た多価カルボン酸(A)53.1部、成分(B)としてEHPE-3150(ダイセル化学製:一般式(II)において、R=トリメチロールプロパン残基、m=5、エポキシ当量181g/eq.)2.2部、成分(C)として合成例x6で得られた化合物7.1部、成分(D)としてJER-828(三菱化学製:液状ビスフェノールAエポキシ樹脂、エポキシ当量185g/eq.)8.9部、YD-012(東都化成製:固形ビスフェノールAエポキシ樹脂、エポキシ当量670g/eq.)44.6部、その他の成分として、硬化触媒であるヒシコーリンPX4MP(日本化学工業製:4級ホスホニウム塩)0.3部、添加剤であるアデカスタブ260(ADEKA製:リン系酸化防止剤)0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤のMEK51.2部を、70℃に加温、混合し、本発明のエポキシ樹脂組成物の固形分60質量%MEK希釈液を得た。このMEK希釈液の粘度は54mPa・sであった。
 ガラス基板上に耐熱離型テープで40mm×25mm×深さ1mmの型を作成し、本発明のエポキシ樹脂組成物のMEK希釈液を厚さ約800μmにまで注型し、80℃にて50分間乾燥した。乾燥途中で真空脱泡を、1回行い泡を除去した。その後室温まで冷却し状態を確認したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて150℃乾燥機にて3時間硬化し、本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.561であり、ガラス転移温度(Tg)は110℃だった。硬化膜のYI値は0.2、透過率は550nmで90.7%、400nmで90.5%だった。
 次いで耐光試験、耐熱試験を行った。耐光試験後の外観は若干着色があるがひび割れなどの劣化もなく透明性は良好であった。耐熱試験後の外観は着色、及び、ひび割れなどの劣化もなく透明性は良好であった。
実施例z2
 合成例z1で得た多価カルボン酸(A)83.4部、成分(B)としてEHPE-3150を30.8部、セロキサイド2021P(ダイセル化学製:3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、エポキシ当量130g/eq.)10.8部を用い、成分(C)、成分(D)を用いず、その他の成分として、硬化触媒であるヒシコーリンPX4MP(日本化学工業製:4級ホスホニウム塩)0.2部、添加剤であるアデカスタブ260(ADEKA製:リン系酸化防止剤)0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤のMEK42.1部を用いる以外は、実施例z1と同様にして本発明のエポキシ樹脂組成物の固形分が60質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は30mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例z1と同様にして乾燥したところ、実施例z2のエポキシ樹脂組成物は液体であった。
 続いて実施例z1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.500で透明性良好だった。次いで耐光試験、耐熱試験を行った。耐光試験後の外観は若干着色があるがひび割れなどの劣化もなく透明性は良好であった。耐熱試験後の外観は着色、及び、ひび割れなどの劣化もなく透明性は良好であった。
実施例z3
 合成例z1で得た多価カルボン酸(A)79.6部(成分(B)、成分(C)及び成分(D)の全てのエポキシ基に対して1当量)、成分(B)としてEHPE-3150を10.3部、成分(C)として合成例x6で得られた化合物27.3部、成分(D)としてJER-828を5.2部、YD-012を15.9部、その他の成分としてオクタン酸亜鉛0.3部、アデカスタブ260を0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤のMEK52.9部を用いる以外は、実施例z1と同様にして本発明のエポキシ樹脂組成物の固形分が60質量%であるMEK希釈液を得た。このエポキシ樹脂組成物のMEK希釈液の粘度は104mPa・sであった。
 得られた本発明のエポキシ樹脂組成物のMEK希釈液を実施例z1と同様にして乾燥したところ、本発明のエポキシ樹脂組成物は固体であった。
 続いて実施例z1と同様に本発明のエポキシ樹脂組成物の硬化物を得た。屈折率(25℃)は1.550だった。
比較例z1
 リカシッドMH-700(新日本理化製:メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物7:3;当量は168g/eq)40.6部(成分(B)、成分(C)及び成分(D)の全てのエポキシ基に対して1当量)、成分(B)としてEHPE-3150を10.3部、成分(C)として合成例z3で得られた化合物27.3部、成分(D)としてJER-828を5.2部、YD-012を15.9部、その他の成分としてオクタン酸亜鉛0.3部、添加剤であるアデカスタブ260を0.2部、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート0.2部、希釈溶剤であるMEK66.6部を、70℃に加温、混合し、比較用の樹脂組成物の固形分が60質量%であるMEK希釈液を得た。
実施例z4
 実施例z3及び比較例z1で得られた組成物の固形分が60質量%であるMEK希釈液100部に対して、トルエン1部をそれぞれ添加、混合し、揮発試験用のサンプルを得た。
 ガラス基板上に耐熱離型テープで40mm×25mm×深さ1mmの型を作成し、実施例z4及び比較例z1の揮発試験用サンプル(固形分が59質量%のMEK・トルエン混合溶液)を、厚さ約800μm注型し、精秤後、80℃にて15分間乾燥した。途中で真空脱泡を1回行い、泡を除去した。その後、まだ溶剤が残った状態で下記の条件にて硬化を行い、硬化物を得た。硬化後に精秤し、注型したサンプル固形分に対して、乾燥・硬化中の揮発減量(質量%)を計算した。得られた硬化物の表面の外観を観察し、屈折率を測定した。
Figure JPOXMLDOC01-appb-T000023
実施例z5
 実施例z1で得られた本発明のエポキシ樹脂組成物の固形分が60質量%であるMEK希釈液にMEKを添加して固形分50質量%に調整し、市販のガラスクロス(Eガラスクロス:約30μm厚;平織;屈折率:1.560)を入れ、含浸させた。ガラスクロスを引き上げた後、120℃で7分乾燥した。乾燥後のシートは固形のフィルムであった。それをさらに離型処理したPETフィルムにはさんでプレスしながら150℃にて10分処理し、半硬化させてプリプレグを得た。その後150℃乾燥機にて3時間硬化した。本発明のエポキシ樹脂組成物の硬化物とガラスクロスの複合化されたシートが得られ、屈折率は1.560だった。全光線透過率は92%、ヘイズ3%であり、着色のない透明シートであった。
 実施例z1~4の結果から明らかなように本発明のエポキシ樹脂組成物からは、透明性に優れ、着色もない、様々な屈折率の硬化物を得ることができる。また実施例z4の結果からは、多価カルボン酸(A)を用いることにより、一般的な酸無水物硬化剤を用いた比較例z1の場合と比べて明らかに平滑な膜が得られることがわかる。また比較例z1の酸無水物硬化剤が多量に揮発して硬化膜の成分構成比が変化するのに対し、本発明では揮発がほとんどないことがわかる。揮発による硬化膜の成分構成比の変化は、硬化膜の屈折率のブレにつながるため、ガラスクロスと組み合わせた場合に屈折率が合わなくなり透明シートを得ることが困難となるが、本発明の実施例ではそのような問題はないことがわかる。実施例z5の結果からわかるように、本発明のエポキシ樹脂組成物を用いることにより安定した屈折率の硬化膜を得られ、ガラスクロスと組み合わせた際にも透明な膜が得られることが確認された。
 本発明のエポキシ樹脂組成物及びその硬化物は、主に、液晶ディスプレイ、プラズマディスプレイ、ELディスプレイ、携帯機器などの表示装置や太陽電池などに用いる光学シートに適するものである。

Claims (17)

  1.  一般式(I)で表される多価カルボン酸(A)と、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはそれぞれ独立して、水素原子、炭素数1~15のアルキル基、もしくはカルボキシル基を表し、qは置換基Rの数を表し、1~4の整数である。Pは下記x、y及びzのいずれかである)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは1つの環当たり複数存在してもよく、それぞれ独立して、水素原子、もしくはメチル基を表す。*は酸素原子との結合部分である)
    y. 炭素数6~20の鎖状アルキレンリンカーであって、炭素数3以上の主鎖を有し、少なくとも1箇所がアルキル基で置換されているもの、
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、それぞれ独立して水素原子、炭素数1~15のアルキル基、もしくはカルボキシル基を表す。*は酸素原子との結合部分である)
     分子内に脂肪族環状構造を有するエポキシ樹脂(B)と、
     を含む光学シート用エポキシ樹脂組成物。
  2.  多価カルボン酸(A)のPがxである請求項1に記載の樹脂組成物。
  3.  多価カルボン酸(A)のRが全て水素原子である請求項2に記載の樹脂組成物。
  4.  多価カルボン酸(A)の全てのRの50モル%以上がメチル基及び/又はカルボキシル基である請求項3に記載の樹脂組成物。
  5.  多価カルボン酸(A)が、トリシクロデカンジメタノール及びペンタシクロペンタデカンジメタノールから選ばれる少なくとも1種の架橋多環ジオールと、メチルヘキサヒドロ無水フタル酸及びシクロヘキサン-1,2,4-トリカルボン酸無水物から選ばれる少なくとも1種の酸無水物との反応物である請求項2ないし4のいずれか一項に記載の樹脂組成物。
  6.  多価カルボン酸(A)中のPがyである請求項1に記載の樹脂組成物。
  7.  多価カルボン酸(A)中のPの主鎖の2箇所以上がアルキル基で置換されており、かつ該アルキル基の少なくとも1つが炭素数2~10であることを特徴とする請求項6に記載の樹脂組成物。
  8.  多価カルボン酸(A)が、少なくとも1箇所がアルキル基で置換されている炭素数1~20の鎖状アルキレンを持つ鎖状ジオール化合物と、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸及びシクロヘキサン-1,2,4-トリカルボン酸無水物から選ばれる少なくとも1種の酸無水物との反応物であることを特徴とする請求項6又は7に記載の樹脂組成物。
  9.  多価カルボン酸(A)中のPがzである請求項1に記載の樹脂組成物。
  10.  Rがメチル基である請求項9に記載の樹脂組成物。
  11.  分子内に脂肪族環状構造を有するエポキシ樹脂(B)が、一般式(II)で表される化合物である請求項1に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000004
    (Rはアルコキシ基、mは平均値であって1~20の正数であり、nは1~10の整数である。)
  12.  更に、分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)を含む請求項1に記載の樹脂組成物。
  13.  分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)が、一般式(III)で表される化合物である請求項12に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000005
    (式中、nは1~2の正数である。)
  14.  更に、脂肪族環状構造をもつエポキシ樹脂(B)及び分子内に3個以上のエポキシ基を有する芳香族多官能エポキシ樹脂(C)以外のエポキシ樹脂(D)、並びに酸無水物を含む請求項1、11、12又は13のいずれか一項に記載の樹脂組成物。
  15.  請求項1、11、12又は13のいずれか一項に記載の樹脂組成物を硬化して得られる、25℃での屈折率が1.50以上である硬化物。
  16.  請求項1、11、12又は13のいずれか一項に記載の樹脂組成物をガラスクロスに含浸させ、硬化して得られる、25℃での屈折率が1.51以上である硬化物。
  17.  請求項15又は16に記載の硬化物を用いる光学シート。
PCT/JP2011/076250 2010-11-17 2011-11-15 透明シート用エポキシ樹脂組成物及びその硬化物 WO2012067092A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012544250A JP5797204B2 (ja) 2010-11-17 2011-11-15 透明シート用エポキシ樹脂組成物及びその硬化物
KR1020137009118A KR101847007B1 (ko) 2010-11-17 2011-11-15 투명 시트용 에폭시 수지 조성물 및 그의 경화물
GB1306879.6A GB2497906B (en) 2010-11-17 2011-11-15 Epoxy resin composition for transparent sheets and cured product thereof
US13/878,564 US9328217B2 (en) 2010-11-17 2011-11-15 Epoxy resin composition for transparent sheets and cured product thereof
CN201180054901.3A CN103221451B (zh) 2010-11-17 2011-11-15 透明片材用环氧树脂组合物及其固化物
US14/958,116 US9493631B2 (en) 2010-11-17 2015-12-03 Epoxy resin composition for transparent sheets and cured product thereof
US14/958,121 US20160090440A1 (en) 2010-11-17 2015-12-03 Epoxy Resin Composition For Transparent Sheets And Cured Product Thereof
US14/958,113 US9493630B2 (en) 2010-11-17 2015-12-03 Epoxy resin composition for transparent sheets and cured product thereof
US15/427,144 US20170145150A1 (en) 2010-11-17 2017-02-08 Epoxy Resin Composition For Transparent Sheets And Cured Product Thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-256578 2010-11-17
JP2010256578 2010-11-17
JP2010276139 2010-12-10
JP2010-276139 2010-12-10
JP2011019726 2011-02-01
JP2011-019726 2011-02-01

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US13/878,564 A-371-Of-International US9328217B2 (en) 2010-11-17 2011-11-15 Epoxy resin composition for transparent sheets and cured product thereof
US14/958,113 Division US9493630B2 (en) 2010-11-17 2015-12-03 Epoxy resin composition for transparent sheets and cured product thereof
US14/958,121 Division US20160090440A1 (en) 2010-11-17 2015-12-03 Epoxy Resin Composition For Transparent Sheets And Cured Product Thereof
US14/958,116 Division US9493631B2 (en) 2010-11-17 2015-12-03 Epoxy resin composition for transparent sheets and cured product thereof

Publications (1)

Publication Number Publication Date
WO2012067092A1 true WO2012067092A1 (ja) 2012-05-24

Family

ID=46084019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076250 WO2012067092A1 (ja) 2010-11-17 2011-11-15 透明シート用エポキシ樹脂組成物及びその硬化物

Country Status (6)

Country Link
US (5) US9328217B2 (ja)
JP (1) JP5797204B2 (ja)
KR (1) KR101847007B1 (ja)
CN (2) CN103221451B (ja)
GB (2) GB2536345B (ja)
WO (1) WO2012067092A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080587A (ja) * 2012-09-21 2014-05-08 Nippon Kayaku Co Ltd 透明接着材料
JP2014208798A (ja) * 2013-03-29 2014-11-06 日本化薬株式会社 硬化性樹脂組成物及びガラス繊維を含む硬化物
JP2016004205A (ja) * 2014-06-18 2016-01-12 チェイル インダストリーズ インコーポレイテッド 偏光板およびこれを用いた表示装置
JP2016523313A (ja) * 2013-06-28 2016-08-08 スリーエム イノベイティブ プロパティズ カンパニー シム処理用途のための高弾性率エポキシ接着剤
JP2017039894A (ja) * 2015-08-21 2017-02-23 日本化薬株式会社 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
JP2018172472A (ja) * 2017-03-31 2018-11-08 日本化薬株式会社 透明難燃シート
JP2019119765A (ja) * 2017-12-28 2019-07-22 日鉄ケミカル&マテリアル株式会社 熱硬化性組成物、硬化膜および表示装置
WO2019240079A1 (ja) * 2018-06-12 2019-12-19 日立化成株式会社 硬化性樹脂組成物及び電子部品装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221451B (zh) 2010-11-17 2015-11-25 日本化药株式会社 透明片材用环氧树脂组合物及其固化物
EP2692795A4 (en) * 2011-03-31 2015-04-01 Mitsubishi Gas Chemical Co RESIN COMPOSITION, PRE-IMPREGNATED, AND LAMINATE COATED WITH METAL SHEET
JP6287837B2 (ja) * 2012-07-27 2018-03-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN103709375A (zh) * 2013-11-25 2014-04-09 蓝星(北京)特种纤维技术研发中心有限公司 一种含有双环戊二烯脂环结构的高性能环氧树脂组合物
SG11201605819SA (en) * 2014-01-15 2016-08-30 Toray Industries Adhesive composition and adhesive film having same, substrate provided with adhesive composition, and semiconductor device and method for manufacturing same
US9069294B1 (en) * 2014-01-15 2015-06-30 Xerox Corporation Transfer assist members
US10465037B2 (en) * 2014-07-22 2019-11-05 Sabic Global Technologies B.V. High heat monomers and methods of use thereof
JP6404110B2 (ja) * 2014-12-18 2018-10-10 信越化学工業株式会社 シリコーン変性エポキシ樹脂と多価カルボン酸化合物を含有するエポキシ樹脂およびその硬化物
CN106916414B (zh) * 2015-12-25 2019-01-22 广东生益科技股份有限公司 一种热固性树脂组合物、含有它的预浸料、覆金属箔层压板以及印制电路板
JP7110569B2 (ja) * 2017-09-21 2022-08-02 ブラザー工業株式会社 テープ及びテープカセット
JP7078134B2 (ja) * 2018-11-09 2022-05-31 株式会社ニコン 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
JP2021178941A (ja) * 2020-05-15 2021-11-18 株式会社ダイセル 新規エポキシ樹脂及びエポキシ樹脂組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1418801A (en) * 1972-02-08 1975-12-24 Siemens Ag Adducts
JP2005330475A (ja) * 2004-04-20 2005-12-02 Nippon Kayaku Co Ltd 結晶性エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP2009114390A (ja) * 2007-11-08 2009-05-28 Daicel Chem Ind Ltd エポキシ樹脂組成物、及びその硬化物
JP2010032991A (ja) * 2008-07-02 2010-02-12 Nippon Kayaku Co Ltd Mems用感光性樹脂組成物及びその硬化物
WO2010150524A1 (ja) * 2009-06-22 2010-12-29 日本化薬株式会社 多価カルボン酸、その組成物、硬化性樹脂組成物、硬化物および多価カルボン酸の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807094B2 (ja) * 1990-12-27 1998-09-30 住友ベークライト株式会社 光半導体封止用エポキシ樹脂組成物
US5196485A (en) 1991-04-29 1993-03-23 Ppg Industries, Inc. One package stable etch resistant coating
JP3153046B2 (ja) 1993-05-31 2001-04-03 日東電工株式会社 液晶表示素子用透明樹脂基板
US6268055B1 (en) * 1997-12-08 2001-07-31 Ppg Industries Ohio, Inc. Photochromic epoxy resin coating composition and articles having such a coating
JP2000119374A (ja) * 1998-10-15 2000-04-25 Toppan Printing Co Ltd 感光性樹脂組成物およびそれを用いた多層プリント配線板
MY131962A (en) 2001-01-24 2007-09-28 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
JP2003277473A (ja) * 2002-03-26 2003-10-02 Japan Epoxy Resin Kk Led封止材用エポキシ樹脂組成物及びled装置
JP4393077B2 (ja) 2003-01-31 2010-01-06 旭化成イーマテリアルズ株式会社 透明基板
JP4174355B2 (ja) 2003-03-10 2008-10-29 住友ベークライト株式会社 透明複合体組成物
JP4241340B2 (ja) 2003-11-25 2009-03-18 日東電工株式会社 樹脂シート、液晶セル基板、液晶表示装置、エレクトロルミネッセンス表示装置用基板、エレクトロルミネッセンス表示装置および太陽電池用基板
JP4198091B2 (ja) * 2004-06-02 2008-12-17 旭化成株式会社 発光素子封止用樹脂組成物
JP2008007623A (ja) * 2006-06-29 2008-01-17 Chisso Corp ナノインプリント用組成物
JP5000238B2 (ja) * 2006-09-01 2012-08-15 株式会社ダイセル 活性エネルギー線硬化性封止剤および該封止剤を用いた光半導体装置
CN103221451B (zh) 2010-11-17 2015-11-25 日本化药株式会社 透明片材用环氧树脂组合物及其固化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1418801A (en) * 1972-02-08 1975-12-24 Siemens Ag Adducts
JP2005330475A (ja) * 2004-04-20 2005-12-02 Nippon Kayaku Co Ltd 結晶性エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP2009114390A (ja) * 2007-11-08 2009-05-28 Daicel Chem Ind Ltd エポキシ樹脂組成物、及びその硬化物
JP2010032991A (ja) * 2008-07-02 2010-02-12 Nippon Kayaku Co Ltd Mems用感光性樹脂組成物及びその硬化物
WO2010150524A1 (ja) * 2009-06-22 2010-12-29 日本化薬株式会社 多価カルボン酸、その組成物、硬化性樹脂組成物、硬化物および多価カルボン酸の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080587A (ja) * 2012-09-21 2014-05-08 Nippon Kayaku Co Ltd 透明接着材料
JP2017179381A (ja) * 2012-09-21 2017-10-05 日本化薬株式会社 透明封止材料
JP2014208798A (ja) * 2013-03-29 2014-11-06 日本化薬株式会社 硬化性樹脂組成物及びガラス繊維を含む硬化物
JP2016523313A (ja) * 2013-06-28 2016-08-08 スリーエム イノベイティブ プロパティズ カンパニー シム処理用途のための高弾性率エポキシ接着剤
JP2016004205A (ja) * 2014-06-18 2016-01-12 チェイル インダストリーズ インコーポレイテッド 偏光板およびこれを用いた表示装置
JP2017039894A (ja) * 2015-08-21 2017-02-23 日本化薬株式会社 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
JP2018172472A (ja) * 2017-03-31 2018-11-08 日本化薬株式会社 透明難燃シート
JP2019119765A (ja) * 2017-12-28 2019-07-22 日鉄ケミカル&マテリアル株式会社 熱硬化性組成物、硬化膜および表示装置
JP7493301B2 (ja) 2017-12-28 2024-05-31 日鉄ケミカル&マテリアル株式会社 熱硬化性組成物、硬化膜および表示装置
WO2019240079A1 (ja) * 2018-06-12 2019-12-19 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JPWO2019240079A1 (ja) * 2018-06-12 2021-07-08 昭和電工マテリアルズ株式会社 硬化性樹脂組成物及び電子部品装置
JP7302598B2 (ja) 2018-06-12 2023-07-04 株式会社レゾナック 硬化性樹脂組成物及び電子部品装置

Also Published As

Publication number Publication date
US20130323994A1 (en) 2013-12-05
GB2497906B (en) 2016-05-04
GB2536345A (en) 2016-09-14
GB2536345B (en) 2017-01-11
KR20140009142A (ko) 2014-01-22
US9493630B2 (en) 2016-11-15
US20160090440A1 (en) 2016-03-31
KR101847007B1 (ko) 2018-04-10
JPWO2012067092A1 (ja) 2014-05-12
US9328217B2 (en) 2016-05-03
US20170145150A1 (en) 2017-05-25
GB201306879D0 (en) 2013-05-29
CN103221451A (zh) 2013-07-24
US9493631B2 (en) 2016-11-15
GB2497906A (en) 2013-06-26
GB201601442D0 (en) 2016-03-09
JP5797204B2 (ja) 2015-10-21
US20160083615A1 (en) 2016-03-24
US20160083576A1 (en) 2016-03-24
CN104672433B (zh) 2018-02-09
CN104672433A (zh) 2015-06-03
CN103221451B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5797204B2 (ja) 透明シート用エポキシ樹脂組成物及びその硬化物
KR101913603B1 (ko) 에폭시 수지 조성물, 그 경화물, 및 경화성 수지 조성물
JP5713898B2 (ja) 多価カルボン酸、その組成物、硬化性樹脂組成物、硬化物および多価カルボン酸の製造方法
JP5574447B2 (ja) 多価カルボン酸組成物およびその製造方法、ならびに該多価カルボン酸組成物を含有してなる硬化性樹脂組成物
JP5832023B2 (ja) 透明回路基板用エポキシ樹脂組成物及びその硬化物
TWI550019B (zh) 透明電路基板用環氧樹脂組成物及層合玻璃片
JP6239587B2 (ja) 多価カルボン酸組成物、エポキシ樹脂用硬化剤組成物、エポキシ樹脂組成物およびその硬化物
JP5686629B2 (ja) エポキシ樹脂組成物
TWI472548B (zh) An epoxy resin composition, a hardened resin composition, and a cured product thereof
TWI471347B (zh) A thermosetting resin composition and a hardened product thereof, and an optical semiconductor device
JP5519685B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5367065B2 (ja) オレフィン化合物、エポキシ樹脂、硬化性樹脂組成物及びその硬化物、led装置
JP5993003B2 (ja) 多価カルボン酸組成物、多価カルボン酸組成物の製造方法、エポキシ樹脂用硬化剤組成物、エポキシ樹脂組成物および硬化物
TWI617558B (zh) 多官能酸酐、熱硬化性樹脂組成物與其預浸料及硬化物
JP2014208798A (ja) 硬化性樹脂組成物及びガラス繊維を含む硬化物
JP2018039898A (ja) 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、それらの硬化物並びに光半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544250

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137009118

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1306879

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20111115

WWE Wipo information: entry into national phase

Ref document number: 1306879.6

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13878564

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11840901

Country of ref document: EP

Kind code of ref document: A1