WO2011114824A1 - α線量が少ない錫又は錫合金及びその製造方法 - Google Patents

α線量が少ない錫又は錫合金及びその製造方法 Download PDF

Info

Publication number
WO2011114824A1
WO2011114824A1 PCT/JP2011/053024 JP2011053024W WO2011114824A1 WO 2011114824 A1 WO2011114824 A1 WO 2011114824A1 JP 2011053024 W JP2011053024 W JP 2011053024W WO 2011114824 A1 WO2011114824 A1 WO 2011114824A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
dose
months
cph
lead
Prior art date
Application number
PCT/JP2011/053024
Other languages
English (en)
French (fr)
Inventor
学 加納
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/634,946 priority Critical patent/US9394590B2/en
Priority to JP2012505570A priority patent/JP5456881B2/ja
Priority to EP11756014.4A priority patent/EP2548981B1/en
Priority to KR1020127020954A priority patent/KR101444568B1/ko
Publication of WO2011114824A1 publication Critical patent/WO2011114824A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Definitions

  • the present invention relates to tin or a tin alloy with a reduced ⁇ dose, which is used for manufacturing semiconductors, and a method for manufacturing the same.
  • tin is a material used for manufacturing semiconductors, and is a main raw material for solder materials.
  • solder is used to bond semiconductor chips and substrates, and when bonding or sealing Si chips such as ICs or LSIs to lead frames or ceramic packages, TAB (tape automated bonding) or flip It is used for bump formation at the time of chip manufacturing, semiconductor wiring materials, and the like.
  • TAB tape automated bonding
  • flip It is used for bump formation at the time of chip manufacturing, semiconductor wiring materials, and the like.
  • the density is increased and the operating voltage and cell capacity are reduced, there is an increased risk of soft errors due to the influence of ⁇ rays from the material in the vicinity of the semiconductor chip. For these reasons, there is a demand for high purity of the solder material and tin, and a material with less ⁇ -rays is required.
  • Patent Document 1 describes a method for producing low ⁇ -ray tin, in which tin and lead having an ⁇ dose of 10 cph / cm 2 or less are alloyed and then refining is performed to remove the lead contained in the tin.
  • the purpose of this technique is to dilute 210 Pb in tin by adding high-purity Pb to reduce the ⁇ dose.
  • Pb must be further removed after addition to tin
  • a numerical value in which the ⁇ dose is greatly reduced after three years of refining tin. Since it is understood that it is not possible to use tin whose ⁇ dose has decreased after three years, it is not an industrially efficient method.
  • Patent Document 2 when a material selected from Na, Sr, K, Cr, Nb, Mn, V, Ta, Si, Zr, and Ba is added to Sn—Pb alloy solder at 10 to 5000 ppm, There is a description that the count number decreases to 0.5 cph / cm 2 or less. However, the addition of such materials can reduce the count of radiation ⁇ particles at a level of 0.015 cph / cm 2 , which has not reached a level that can be expected as a material for semiconductor devices today. A further problem is that elements that are undesirable when mixed in semiconductors, such as alkali metal elements, transition metal elements, and heavy metal elements, are used as materials to be added. Therefore, it must be said that the material for assembling the semiconductor device is a material having a low level.
  • Patent Document 3 describes that the count of radiation ⁇ particles emitted from a solder fine wire is 0.5 cph / cm 2 or less and used for connection wiring of a semiconductor device or the like. However, this level of radiation ⁇ particle count level does not reach the level that can be expected for today's semiconductor device materials.
  • Patent Document 4 lead concentration is low by electrolysis using sulfuric acid and hydrochloric acid with high purity such as special grade sulfuric acid and special grade hydrochloric acid and using high purity tin as an anode. It is described that high-purity tin having an ⁇ -ray count number of 0.005 cph / cm 2 or less is obtained. It is natural that a high-purity material can be obtained by using raw materials (reagents) with a high purity without considering the cost, but it is still the lowest ⁇ of the precipitated tin shown in the example of Patent Document 4 The line count is 0.002 cph / cm 2 , and the expected level is not reached for the high cost.
  • Patent Document 5 nitric acid is added to a heated aqueous solution to which crude metal tin is added to precipitate metastannic acid, which is filtered and washed, and the washed metastannic acid is dissolved with hydrochloric acid or hydrofluoric acid.
  • a method of obtaining metal tin of 5N or more by electrowinning using this solution as an electrolyte is described.
  • Patent Document 6 discloses a technique in which the amount of Pb contained in Sn constituting the solder alloy is reduced and Bi or Sb, Ag, Zn is used as the alloy material. However, in this case, even if Pb is reduced as much as possible, a means for fundamentally solving the problem of the count number of radiation ⁇ particles caused by Pb inevitably mixed in is not shown.
  • Patent Document 7 discloses tin produced by electrolysis using a special grade sulfuric acid reagent, having a quality of 99.99% or more and a radiation ⁇ particle count of 0.03 cph / cm 2 or less. Yes. In this case as well, it is natural that a high-purity material can be obtained if high-purity raw materials (reagents) are used without considering the cost. However, the deposited tin shown in the example of Patent Document 7 is still used. The lowest ⁇ -ray count number is 0.003 cph / cm 2 , and the expected level is not reached for the high cost.
  • Patent Document 8 listed below describes lead for a brazing material for semiconductor devices, having a grade of 4 nines or more, a radioisotope of less than 50 ppm, and a radiation ⁇ particle count of 0.5 cph / cm 2 or less.
  • Patent Document 9 below discloses a tin for a brazing material for a semiconductor device having a quality of 99.95% or more, a radioisotope of less than 30 ppm, and a radiation ⁇ particle count of 0.2 cph / cm 2 or less. Are listed. All of these have a problem that the allowable amount of the count number of the radiation ⁇ particles is moderate and has not reached a level that can be expected as a material for a semiconductor device today.
  • the present applicant has high-purity tin, that is, a purity of 5 N or more (except for gas components of O, C, N, H, S, and P).
  • the contents of each of the radioactive elements U and Th are 5 ppb or less
  • the contents of each of Pb and Bi that emit radiation ⁇ particles are 1 ppm or less to eliminate the influence of ⁇ rays on the semiconductor chip as much as possible.
  • the high-purity tin is finally manufactured by melting, casting, and rolling / cutting if necessary, and the ⁇ -ray count of the high-purity tin is 0.001 cph / cm 2 or less. It relates to the technology that realizes.
  • Po has a very high sublimation property, and Po sublimes when heated in a manufacturing process such as a melting / casting process. If the polonium isotope 210 Po is removed at the initial stage of production, it is natural that the polonium isotope 210 Po is not transformed into the lead isotope 206 Pb, and ⁇ rays are not generated. This is because the generation of ⁇ -rays in the manufacturing process was considered to be the time of disintegration from 210 Po to the lead isotope 206 Pb. However, in fact, it was thought that Po was almost lost at the time of manufacture, but generation of ⁇ rays was continuously observed. Therefore, simply reducing the ⁇ -ray count of high-purity tin at the initial stage of manufacture cannot be said to be a fundamental solution.
  • the present invention generates ⁇ rays of tin and tin alloys. It is an object to obtain a high-purity tin having a reduced ⁇ dose of tin that can be applied to a required material and a method for producing the same.
  • Tin characterized in that the ⁇ dose of the sample after melting and casting is less than 0.0005 cph / cm 2 .
  • each ⁇ dose is less than 0.0005 cph / cm 2 after 1 week, 3 weeks, 1 month, 2 months, 6 months and 30 months after melting and casting.
  • tin. 3 The ⁇ dose measured for the first time of the sample is less than 0.0002 cph / cm 2 , and the difference between the ⁇ dose and the ⁇ dose measured after 5 months has passed is less than 0.0003 cph / cm 2.
  • the ⁇ dose measured for the first time of the sample is less than 0.0002 cph / cm 2 , and the difference between the ⁇ dose and the ⁇ dose measured after 5 months has passed is less than 0.0003 cph / cm 2.
  • Po has very high sublimability, and Po is sublimated when heated in the manufacturing process, for example, the melting / casting process. If the polonium isotope 210 Po is removed in the production process, it is considered that the polonium isotope 210 Po does not change into the lead isotope 206 Pb, and ⁇ rays are not generated (see “U” in FIG. 1). See Collapse chain). However, in the state isotope 210 Po little of polonium, caused the collapse of 210 Pb ⁇ 210 Bi ⁇ 210 Po ⁇ 206 Pb. And it turned out that it takes about 27 months (a little over 2 years) for this broken chain to be in an equilibrium state (refer FIG. 2).
  • FIG. 3 shows the relationship between the Pb content and the ⁇ dose.
  • the straight line shown in FIG. 3 is shifted up and down depending on the ratio of the lead isotopes 214 Pb, 210 Pb, 209 Pb, 208 Pb, 207 Pb, 206 Pb, and 204 Pb, and the ratio of the lead isotope 210 Pb is large. It turns out that it shifts up. That is, when the amount of the lead isotope 210 Pb exceeds 30 Bq / kg, the straight line shown in FIG. 3 moves upward.
  • the measurement sample is covered with an aluminum plate (27 mg / cm 2 ), and after being left for two weeks or longer, 210 Bi beta rays generated from 210 Pb are measured for 6000 seconds with a low background beta ray measurement device. The net count rate of the measurement sample is obtained, and the radioactivity concentration of 210 Pb is calculated by correcting the count efficiency, chemical recovery rate, and the like.
  • a low background beta ray measuring device LBC-471Q and LBC-4201 manufactured by Aloka Co., Ltd. were used.
  • the lower limit of detection of the radioactive concentration of 210 Pb is “the detection can be guaranteed for the nuclide to be analyzed when the analysis / measurement conditions (test amount, chemical recovery rate, measurement time, counting efficiency, etc.) are determined. “Minimum radioactivity value”.
  • the lead isotope 210 Pb can also be reduced.
  • the alpha dose does not increase over time.
  • the low abundance ratio of the lead isotope 206 Pb means that the ratio of the U-decay chain shown in FIG. 1 is relatively small, and the lead isotope 210 Pb belonging to this series also decreases. It is done.
  • the polonium isotope 210 Po that generates alpha rays due to the decay of lead to the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months after melting and casting.
  • each of the ⁇ doses less than 0.0005 cph / cm 2 after 30 months after 27 months when the collapse chain of 210 Pb ⁇ 210 Bi ⁇ 210 Po ⁇ 206 Pb is in equilibrium provide.
  • the difference between the result of measuring the ⁇ dose of the melted and cast tin sample and the ⁇ dose after 5 months can be less than 0.0003 cph / cm 2 .
  • the abundance ratio of the lead isotope 206 Pb is less than 25% in the raw material tin.
  • the isotope 206 Pb abundance of lead and, in the four stable isotopes 208 Pb, 207 Pb, 206 Pb , 204 Pb lead refers to a ratio of 206 Pb.
  • the measurement of the ⁇ dose of the first tin sample does not mean the measurement of the ⁇ dose of the tin sample immediately after melting and casting. That is, even if the ⁇ dose is measured at any time of the tin sample, it means that the difference from the ⁇ dose after 5 months is less than 0.0003 cph / cm 2 .
  • the first ⁇ dose measurement is not a denial of measuring the ⁇ dose of the tin sample immediately after melting and casting.
  • BG background ⁇ ray measuring apparatus
  • the above ⁇ dose is a substantial ⁇ dose obtained by removing ⁇ rays emitted from the ⁇ ray measuring apparatus.
  • the “ ⁇ dose” described in the present specification is used in this sense.
  • ⁇ dose may be mitigated by components other than tin that have little or little ⁇ dose, but at least in the case of a tin alloy containing 40% or more of tin in the alloy component, the ⁇ dose is It can be said that it is desirable to use a small amount of the tin of the present invention.
  • tin is purified by distillation or electrolysis.
  • distillation must be repeated many times, and if there is an azeotrope, it is difficult to isolate and purify, and lead cannot be reduced to a level of 1 ppm or less.
  • electrolytic method an electrolytic solution in which hexafluorosilicic acid and acid are mixed and an additive such as glue is added thereto is used.
  • the standard electrode potentials of tin and lead are very close (tin-0.14V, lead-0.13V), so it is difficult to separate them, and lead contamination from hexafluorosilicic acid or additive glue etc. There is a limit that lead can be reduced only to several tens of ppm level.
  • lead is removed to a level of 0.1 ppm by controlling the pH (strongly acidic pH region) and the tin concentration in the electrolyte in an electrolyte containing only acid without using hexafluorosilicic acid and additives. It became possible to do.
  • the high-purity tin of the present invention thus obtained has an excellent effect that the occurrence of soft errors due to the influence of ⁇ rays of the semiconductor device can be remarkably reduced.
  • the Sn concentration of the electrolytic solution is preferably 30 to 200 g / L. If it is less than 30 g / L, the impurity concentration becomes high, and if it exceeds 200 g / L, Sn oxide tends to precipitate, so it can be said that the above range is desirable. Note that the upper limit of the Sn concentration is more preferably 180 g / L or less. Further, it is desirable to use raw material tin in which the amount of lead isotope 210 Pb in the raw material tin is 30 Bq / kg or less. Although raw material tin containing the lead isotope 210 Pb in an amount exceeding this amount can be used, it can be said that it is desirable to enhance the purification effect and reduce it as much as possible.
  • a present Example is an example to the last, and is not restrict
  • the raw material tin shown in Table 1 was used. Table 1 shows the types of raw material tin and the amount of lead isotope 210 Pb (unit: Bq / kg) contained in the raw materials A to E.
  • Example 1 Raw material tin having a purity level of 3N was leached with hydrochloric acid (or sulfuric acid), and a leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as an electrolytic solution. Electrolysis was carried out under conditions of an electrolysis temperature of 30 ° C. and a current density of 7 A / dm 2 by using a raw material tin cast plate as the anode and a titanium plate as the cathode. When the thickness of tin electrodeposited on the cathode reached about 2 mm, the electrolysis was once stopped, and the cathode was pulled up from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and recovered.
  • hydrochloric acid or sulfuric acid
  • the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated.
  • the collected electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the Pb content was 0.06 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material A) used here was 14 Bq / kg.
  • the total amount of the four stable isotopes of lead was 1.81 ppm, and the abundance ratio of the stable isotope 206 Pb of lead was 24.86%.
  • Gas Flow Proportional Counter model 8600A-LB manufactured by Ordela was used as the ⁇ -ray measuring device.
  • the gas used is 90% argon-10% methane, the measurement time is 104 hours for both the background and the sample, and the first 4 hours is the time required for the measurement chamber purge. Used for.
  • the polonium isotope 210 Po which generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is at most 0.0003 cph / cm 2 . Yes, the conditions of the present invention were satisfied.
  • the difference in both ⁇ doses of the measurement sample was 0.0001 cph / cm 2 , and the conditions of the present invention were satisfied. I met.
  • the measured ⁇ dose is a substantial ⁇ dose obtained by removing ⁇ rays emitted from the ⁇ ray measuring apparatus.
  • the leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as the electrolytic solution.
  • this electrolytic solution condition (Sn concentration) was changed to have a pH of 1.0 and an Sn concentration of 30 g. Even when electrolytic purification was performed using a leaching solution having a pH of 1.0 and an Sn concentration of 180 g / L, substantially the same result was obtained.
  • Example 2 Raw material tin having a purity level of 3N was leached with hydrochloric acid (or sulfuric acid), and a leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as an electrolytic solution. Electrolysis was carried out under conditions of an electrolysis temperature of 30 ° C. and a current density of 1 A / dm 2 using raw material tin cast into a plate for the anode and a titanium plate for the cathode. When the thickness of tin electrodeposited on the cathode reached about 2 mm, the electrolysis was once stopped, and the cathode was pulled up from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and recovered.
  • the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated.
  • the collected electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the Pb content was 0.07 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material A: the same raw material as in Example 1) used here was 14 Bq / kg.
  • the total amount of the four stable isotopes of lead was 1.81 ppm, and the abundance ratio of the stable isotope 206 Pb of lead was 24.86%.
  • the polonium isotope 210 Po which generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is at most 0.0003 cph / cm 2 . Yes, the conditions of the present invention were satisfied.
  • the difference in both ⁇ doses of the measurement sample was 0.0001 cph / cm 2 , and the conditions of the present invention were satisfied. I met.
  • the leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as the electrolytic solution.
  • this electrolytic solution condition (Sn concentration) was changed to have a pH of 1.0 and an Sn concentration of 30 g. Similar results were obtained even when electrolytic purification was performed using a leaching solution of / L, pH: 1.0, and Sn concentration: 180 g / L.
  • Example 3 Raw material tin having a purity level of 3N was leached with hydrochloric acid (or sulfuric acid), and a leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as an electrolytic solution. Electrolysis was carried out under conditions of an electrolysis temperature of 30 ° C. and a current density of 1 A / dm 2 using raw material tin cast into a plate for the anode and a titanium plate for the cathode. When the thickness of tin electrodeposited on the cathode reached about 2 mm, the electrolysis was once stopped, and the cathode was pulled up from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and recovered.
  • the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated.
  • the collected electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the Pb content was 0.05 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material B) used here was 15 Bq / kg.
  • the total amount of the four stable isotopes of lead was 3.8 ppm, and the abundance ratio of the stable isotope 206 Pb of lead was 24.74%.
  • the polonium isotope 210 Po which generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is 0.0002 cph / cm 2 at the maximum. Yes, the conditions of the present invention were satisfied.
  • the difference in both ⁇ doses of the measurement sample was 0.0001 cph / cm 2 , and the conditions of the present invention were satisfied. I met.
  • the leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as the electrolytic solution.
  • this electrolytic solution condition (Sn concentration) was changed to have a pH of 1.0 and an Sn concentration of 30 g. Similar results were obtained even when electrolytic purification was performed using a leaching solution of / L, pH: 1.0, and Sn concentration: 180 g / L.
  • Example 4 Raw material tin having a purity level of 3N was leached with hydrochloric acid (or sulfuric acid), and a leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as an electrolytic solution.
  • Raw material tin was cast into a plate shape for the anode and a titanium plate was used for the cathode, and electrolysis was performed twice under the conditions of an electrolysis temperature of 30 ° C. and a current density of 7 A / dm 2 . That is, in this step, the electrodeposited tin collected at the first time is melted and cast into a plate shape to make an anode plate, and re-electrolysis (second electrolysis) is performed.
  • the electrolysis step when the thickness of tin electrodeposited on the cathode reached about 2 mm, the electrolysis was once stopped, and the cathode was lifted from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and collected. After collection, the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated. The collected electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the Pb content was 0.06 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material C) used here was 48 ⁇ 6.2 Bq / kg.
  • the total amount of the four stable isotopes of lead was 11.55 ppm, and the abundance ratio of the stable isotope 206 Pb of lead was 25.97%.
  • the polonium isotope 210 Po that generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is at most 0.0005 cph / cm 2 It was small and satisfied the conditions of the present invention.
  • the ⁇ dose difference was 0.0002 cph / cm 2 , which satisfied the conditions of the present invention.
  • the leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as the electrolytic solution.
  • this electrolytic solution condition (Sn concentration) was changed to have a pH of 1.0 and an Sn concentration of 30 g. Similar results were obtained even when electrolytic purification was performed using a leaching solution of / L, pH: 1.0, and Sn concentration: 180 g / L.
  • Example 5 Raw material tin having a purity level of 3N was leached with hydrochloric acid (or sulfuric acid), and a leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as an electrolytic solution. Electrolysis was carried out under conditions of an electrolysis temperature of 30 ° C. and a current density of 7 A / dm 2 by using a raw material tin cast plate as the anode and a titanium plate as the cathode. When the thickness of tin electrodeposited on the cathode reached about 2 mm, the electrolysis was once stopped, and the cathode was pulled up from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and recovered.
  • the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated.
  • the collected electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the Pb content was 0.06 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material E) used here was 24 Bq / kg.
  • the total amount of the four stable isotopes of lead was 4.5 ppm, and the abundance ratio of the stable isotope 206 Pb of lead was 22.22%.
  • the polonium isotope 210 Po which generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is 0.0005 cph / cm 2 at the maximum. Yes, the conditions of the present invention were satisfied.
  • the difference in both ⁇ doses of the measurement sample was 0.0002 cph / cm 2 , and the conditions of the present invention were satisfied. I met.
  • the leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as the electrolytic solution.
  • this electrolytic solution condition (Sn concentration) was changed to have a pH of 1.0 and an Sn concentration of 30 g. Similar results were obtained even when electrolytic purification was performed using a leaching solution of / L, pH: 1.0, and Sn concentration: 180 g / L.
  • the electrolysis was once stopped, and the cathode was pulled up from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and recovered. After collection, the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated. The collected electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the Pb content was 0.07 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material D) used here was 60 ⁇ 7.2 Bq / kg.
  • the total amount of the four stable isotopes of lead was 12.77 ppm, and the abundance ratio of the stable isotope 206 Pb of lead was 25.06%.
  • the ⁇ dose after 3 weeks from melting and casting was the same level as the background (BG) ⁇ dose, but it clearly increased 6 months after melting and casting.
  • the dose (difference from the background ⁇ dose) was 0.02 cph / cm 2 , which did not satisfy the conditions of the present invention.
  • Comparative Example 2 Raw material tin having a purity level of 3N was leached with hydrochloric acid (or sulfuric acid), and a leaching solution having a pH of 1.0 and an Sn concentration of 80 g / L was used as an electrolytic solution.
  • Raw material tin was cast into a plate shape for the anode, and a titanium plate was used for the cathode, and electrolysis was performed under conditions of an electrolysis temperature of 30 ° C. and a current density of 7 A / dm 2 .
  • the electrolysis was once stopped, and the cathode was pulled up from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and recovered. After collection, the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated. The collected electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the Pb content was 0.09 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material C: the same raw material as in Example 4) used here was 48 ⁇ 6.2 Bq / kg.
  • the total amount of the four stable isotopes of lead was 11.55 ppm, and the abundance ratio of the stable isotope 206 Pb of lead was 25.97%.
  • the ⁇ dose after 3 weeks from melting / casting was the same level as the background (BG) ⁇ dose, but it clearly increased 6 months after melting / casting.
  • (Difference with the background ⁇ dose) was 0.01 cph / cm 2 , which did not satisfy the conditions of the present invention.
  • This is a melting / casting process, but the alpha dose temporarily decreased due to the sublimation of Po, but the purification effect was not sufficient, and it contained a large amount of Pb, resulting in a large amount of 210 Pb. chain (210 Pb ⁇ 210 Bi ⁇ 210 Po ⁇ 206 Pb) is considered to be due to the increase is in ⁇ dose is built.
  • the difference in ⁇ dose was 0.007 cph / cm 2 , which did not satisfy the conditions of the present invention.
  • the total amount of the four stable isotopes of lead was 3.9 ppm, The abundance ratio of stable isotope 206 Pb was 25%.
  • the ⁇ dose after 3 weeks from melting / casting was the same level as the background (BG) ⁇ dose, but it clearly increased 6 months after melting / casting.
  • (Difference with the background ⁇ dose) was 0.0008 cph / cm 2 , which did not satisfy the conditions of the present invention. This is because the alpha dose temporarily decreased due to Po sublimation in the melting / casting process, but the purification effect was not sufficient, and it contained a lot of Pb, resulting in a lot of 210 Pb. ( 210 Pb ⁇ 210 Bi ⁇ 210 Po ⁇ 206 Pb) is constructed and it is considered that the ⁇ dose increased.
  • the difference in ⁇ dose was 0.0004 cph / cm 2 , which also did not satisfy the conditions of the present invention. It was.
  • the electrolysis was once stopped, and the cathode was pulled up from the electrolytic cell, and the electrodeposited tin was peeled off from the cathode and recovered. After collection, the cathode was returned to the electrolytic cell, electrolysis was resumed, and this was repeated.
  • the recovered electrodeposited tin was washed and dried, and melted and cast at a temperature of 260 ° C. to obtain a tin ingot.
  • This tin ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 . This was used as an ⁇ -ray measurement sample.
  • the Pb content was 0.7 ppm
  • the U content was ⁇ 5 ppb
  • the Th content was ⁇ 5 ppb.
  • the amount of unstable lead isotope 210 Pb in the raw material tin (raw material A: the same raw material as in Example 1) used here was 14 Bq / kg.
  • the total amount of the four stable isotopes of lead was 1.81 ppm
  • the abundance ratio of the stable isotope 206 Pb of lead was 24.86%.
  • the ⁇ dose after 3 weeks from melting / casting was the same level as the background (BG) ⁇ dose, but it clearly increased 6 months after melting / casting. (Difference with the background ⁇ dose) was 0.0003 cph / cm 2 , which did not satisfy the conditions of the present invention.
  • Example 5 (0.5% Cu-3% Ag-tin alloy consisting of remaining Sn)
  • the tin produced in Example 1 was prepared.
  • the additive elements of the tin alloy of this example were 6N—Ag and 6N—Cu, which were obtained by highly purifying commercially available silver and copper by electrolysis. These were added to the above tin and melted and cast at 260 ° C. to produce a Sn—Cu—Ag alloy ingot composed of 0.5% Cu—3% Ag—remainder Sn.
  • the ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 . This was used as an ⁇ -ray measurement sample. In this sample, the Pb content was 0.06 ppm, the U content was ⁇ 5 ppb, and the Th content was ⁇ 5 ppb.
  • the polonium isotope 210 Po which generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is at most 0.0003 cph / cm 2 . Yes, the conditions of the present invention were satisfied.
  • the ⁇ dose difference was 0.0001 cph / cm 2 , which satisfied the conditions of the present invention.
  • Example 6 (3.5% Ag-tin alloy consisting of Sn)
  • the tin produced in Example 1 was prepared.
  • Silver, which is an additive element of the tin alloy of this example, is obtained by dissolving commercially available Ag with nitric acid, adding HCl to this to precipitate AgCl, and further reducing this with hydrogen to obtain high purity Ag of 5N-Ag. Obtained. This was added to the tin and melted and cast at 260 ° C. to produce a Sn—Ag alloy ingot composed of 3.5% Ag—the balance Sn.
  • the ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 . This was used as an ⁇ -ray measurement sample. In this sample, the Pb content was 0.06 ppm, the U content was ⁇ 5 ppb, and the Th content was ⁇ 5 ppb.
  • the polonium isotope 210 Po which generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is at most 0.0003 cph / cm 2 . Yes, the conditions of the present invention were satisfied.
  • the difference in ⁇ dose was 0.0001 cph / cm 2 , which satisfied the conditions of the present invention.
  • Example 7 Tein alloy consisting of 9% Zn-balance Sn
  • the tin produced in Example 1 was prepared.
  • commercially available zinc was purified to 6N—Zn by electrolysis. These were added to the tin and melted and cast at 240 ° C. to produce a Sn—Zn alloy ingot composed of 9% Zn—the balance Sn.
  • the ingot was rolled to a thickness of about 1.5 mm and cut into 310 mm ⁇ 310 mm. This surface area is 961 cm 2 .
  • the polonium isotope 210 Po which generates ⁇ -rays due to the decay of lead into the isotope 206 Pb after 1 week, 3 weeks, 1 month, 2 months, 6 months, and lead isotope 206 Pb
  • the ⁇ dose is at most 0.0003 cph / cm 2 . Yes, the conditions of the present invention were satisfied.
  • the difference in ⁇ dose was 0.0001 cph / cm 2 , which satisfied the conditions of the present invention.
  • Example 5 (Comparative Example 5) (0.5% Cu-3% Ag-tin alloy consisting of remaining Sn)
  • the tin produced in Example 1 was prepared.
  • Commercially available 3N level silver and copper were used as additive elements of the tin alloy of this example. These were added to the above tin and melted and cast at 260 ° C. to produce a Sn—Cu—Ag alloy ingot composed of 0.5% Cu—3% Ag—remainder Sn.
  • the Pb content was 7.1 ppm
  • the U content was 10 ppb
  • the Th content was 10 ppb.
  • the ⁇ dose at 3 weeks after melting and casting was at the same level as the background, but it clearly increased after 6 months from melting and casting, and the ⁇ dose of this sample (background ⁇ dose) Difference) was 0.1 cph / cm 2 , which did not satisfy the conditions of the present invention.
  • the difference in ⁇ dose is 0.005 cph / cm 2 , which also does not satisfy the conditions of the present invention. It was.
  • Example 6 (3.5% Ag-tin alloy consisting of Sn)
  • the tin produced in Example 1 was prepared.
  • Silver, which is an additive element of the tin alloy of this example, is a Sn—Ag alloy composed of 3.5% Ag—the balance Sn, which is prepared by adding commercially available 3N level Ag to the tin, melting and casting at 260 ° C. An ingot was manufactured. In this sample, the Pb content was 5.3 ppm, the U content was 7 ppb, and the Th content was 6 ppb.
  • the ⁇ dose at 3 weeks after melting and casting was at the same level as the background, but it clearly increased after 6 months from melting and casting, and the ⁇ dose of this sample (background ⁇ dose) Difference) was 0.03 cph / cm 2 , which did not satisfy the conditions of the present invention.
  • the difference in ⁇ dose was 0.002 cph / cm 2 , which also did not satisfy the conditions of the present invention. It was.
  • the alpha dose temporarily decreased because Po sublimated in the melting / casting process, it contained a large amount of Pb, and as a result, it contained a large amount of 210 Pb, so that the collapse chain ( 210 Pb ⁇ 210 Bi ⁇ 210 Po ⁇ 206 Pb), and the ⁇ dose is thought to have increased.
  • Example 7 Tetin alloy consisting of 9% Zn-balance Sn
  • the tin produced in Example 1 was prepared.
  • As the additive element of the tin alloy of this example commercially available 3N level zinc was used. These were added to the tin and melted and cast at 240 ° C. to produce a Sn—Zn alloy ingot composed of 9% Zn—remainder Sn.
  • the Pb content was 15.1 ppm
  • the U content was 12 ppb
  • the Th content was 10 ppb.
  • the ⁇ dose at 3 weeks after melting and casting was at the same level as the background, but it clearly increased after 6 months from melting and casting, and the ⁇ dose of this sample (background ⁇ dose) Difference) was 0.5 cph / cm 2 , which did not satisfy the conditions of the present invention.
  • the difference in ⁇ dose is 0.01 cph / cm 2 , which also does not satisfy the conditions of the present invention. It was.
  • the present invention has an excellent effect that it can provide tin and a tin alloy that can be applied to a material with less ⁇ -rays, so that the influence of ⁇ -rays on the semiconductor chip can be eliminated as much as possible. Therefore, the occurrence of soft errors due to the influence of ⁇ rays of the semiconductor device can be remarkably reduced, and it is useful as a material for locations where tin such as a solder material is used.

Abstract

溶解・鋳造した後の試料のα線量が0.0005cph/cm未満であることを特徴とする錫。最近の半導体装置は、高密度化及び高容量化されているので、半導体チップ近傍の材料からのα線の影響により、ソフトエラーが発生する危険が多くなってきている。特に、半導体装置に近接して使用される、はんだ材料若しくは錫に対する高純度化の要求が強く、またα線の少ない材料が求められているので、本発明は、錫及び錫合金のα線発生の現象を解明すると共に、要求される材料に適応できる錫のα線量を低減させた高純度錫及びその製造方法を得ることを課題とする。

Description

α線量が少ない錫又は錫合金及びその製造方法
 この発明は、半導体の製造等に使用する、α線量を低減させた錫又は錫合金及びその製造方法に関する。
 一般に、錫は、半導体の製造に使用される材料で、特にはんだ材料の主たる原料である。半導体を製造する際に、はんだは半導体チップと基板との接合、ICやLSI等のSiチップをリードフレームやセラミックスパッケージにボンディングし又は封止する時、TAB(テープ・オートメイテッド・ボンディング)やフリップチップ製造時のバンプ形成、半導体用配線材等に使用されている。
 最近の半導体装置は、高密度化及び動作電圧やセルの容量が低下しているので、半導体チップ近傍の材料からのα線の影響により、ソフトエラーが発生する危険が多くなってきた。このようなことから、前記はんだ材料及び錫の高純度化の要求があり、またα線の少ない材料が求められている。
 錫からα線を減少させるという目的の技術に関するいくつかの開示がある。それを以下に紹介する。下記特許文献1には、錫とα線量が10cph/cm以下の鉛を合金化した後、錫に含まれる鉛を除去する精錬を行う低α線錫の製造方法が記載されている。この技術の目的は高純度Pbの添加により錫中の210Pbを希釈してα線量を低減しようとするものである。
 しかし、この場合、錫に添加した後で、Pbをさらに除去しなければならないという煩雑な工程が必要であり、また錫を精錬した3年後にはα線量が大きく低下した数値を示しているが、3年を経ないとこのα線量が低下した錫を使用できないというようにも理解されるので、産業的には効率が良い方法とは言えない。
 下記特許文献2には、Sn-Pb合金はんだに、Na、Sr、K、Cr、Nb、Mn、V、Ta、Si、Zr、Baから選んだ材料を10~5000ppm添加すると、放射線α粒子のカウント数が0.5cph/cm以下に低下するという記載がある。
 しかし、このような材料の添加によっても放射線α粒子のカウント数を減少できたのは0.015cph/cmレベルであり、今日の半導体装置用材料としては期待できるレベルには達していない。
 さらに問題となるのは、添加する材料としてアルカリ金属元素、遷移金属元素、重金属元素など、半導体に混入しては好ましくない元素が用いられていることである。したがって、半導体装置組立て用材料としてはレベルが低い材料と言わざるを得ない。
 下記特許文献3には、はんだ極細線から放出される放射線α粒子のカウント数を0.5cph/cm以下にして、半導体装置等の接続配線用として使用することが記載されている。しかし、この程度の放射線α粒子のカウント数レベルでは、今日の半導体装置用材料としては期待できるレベルには達していない。
 下記特許文献4には、特級硫酸、特級塩酸などの精製度の高い硫酸と塩酸を使用して電解液とし、かつ高純度の錫を陽極に用いて電解することにより鉛濃度が低く、鉛のα線カウント数が0.005cph/cm以下の高純度錫を得ることが記載されている。コストを度外視して、高純度の原材料(試薬)を使用すれば、高純度の材料が得られることは当然ではあるが、それでも特許文献4の実施例に示されている析出錫の最も低いα線カウント数が0.002cph/cmであり、コスト高の割には、期待できるレベルには達していない。
 下記特許文献5には、粗金属錫を加えた加熱水溶液に硝酸を添加してメタ錫酸を沈降させ、ろ過し、これを洗浄し、洗浄後のメタ錫酸を塩酸又は弗酸で溶解し、この溶解液を電解液として電解採取により5N以上の金属錫を得る方法が記載されている。この技術には漠然とした半導体装置用としての適用ができると述べているが、放射性元素及び放射線α粒子のカウント数の制限については、特に言及されておらず、これらについては関心が低いレベルのものと言える。
 下記特許文献6には、はんだ合金を構成するSn中に含まれるPbの量を減少させ、合金材としてBi又はSb、Ag、Znを用いるとする技術が示されている。しかし、この場合たとえPbをできるだけ低減したとしても、必然的に混入してくるPbに起因する放射線α粒子のカウント数の問題を根本的に解決する手段は、特に示されていない。
 下記特許文献7には、特級硫酸試薬を用いて電解して製造した、品位が99.99%以上であり、放射線α粒子のカウント数が0.03cph/cm以下である錫が開示されている。この場合も、コストを度外視して、高純度の原材料(試薬)を使用すれば、高純度の材料が得られることは当然ではあるが、それでも特許文献7の実施例に示されている析出錫の最も低いα線カウント数が0.003cph/cmであり、コスト高の割には、期待できるレベルには達していない。
 下記特許文献8には、4ナイン以上の品位を有し、放射性同位元素が50ppm未満、放射線α粒子のカウント数が0.5cph/cm以下である、半導体装置用ろう材用鉛が記載されている。また、下記特許文献9には、99.95%以上の品位で、放射性同位元素が30ppm未満、放射線α粒子のカウント数が0.2cph/cm以下である、半導体装置用ろう材用錫が記載されている。
 これらはいずれも、放射線α粒子のカウント数の許容量が緩やかで、今日の半導体装置用材料としては期待できるレベルには達していない問題がある。
 このようなことから、本出願人は下記特許文献10に示すように、高純度錫、すなわち純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、その中でも放射性元素であるU、Thのそれぞれの含有量が5ppb以下、放射線α粒子を放出するPb、Biのそれぞれの含有量が1ppm以下とし、半導体チップへのα線の影響を極力排除する提案を行った。この場合、高純度錫は最終的には、溶解・鋳造及び、必要により圧延・切断して製造されるもので、その高純度錫のα線カウント数が0.001cph/cm以下であることを実現する技術に関するものである。
 Snの精製の際に、Poは非常に昇華性が高く、製造工程、例えば溶解・鋳造工程で加熱されるとPoが昇華する。製造の初期の段階でポロニウムの同位体210Poが除去されていれば、当然ながらポロニウムの同位体210Poから鉛の同位体206Pbへの壊変も起こらず、α線も発生しないと考えられる。
 製造工程でのα線の発生は、この210Poから鉛の同位体206Pbへの壊変時と考えられたからである。しかし、実際には、製造時にPoが殆ど消失したと考えられていたのに、引き続きα線の発生が見られた。したがって、単に製造初期の段階で、高純度錫のα線カウント数を低減させるだけでは、根本的な問題の解決とは言えなかった。
特許第3528532号公報 特許第3227851号公報 特許第2913908号公報 特許第2754030号公報 特開平11-343590号公報 特開平9-260427号公報 特開平1-283398号公報 特公昭62-47955号公報 特公昭62-1478号公報 WO2007-004394号公報
 最近の半導体装置は、高密度化及び動作電圧やセルの容量が低下しているので、半導体チップ近傍の材料からのα線の影響により、ソフトエラーが発生する危険が多くなってきている。特に、半導体装置に近接して使用される、はんだ材料若しくは錫に対する高純度化の要求が強く、またα線の少ない材料が求められているので、本発明は、錫及び錫合金のα線発生の現象を解明すると共に、要求される材料に適応できる錫のα線量を低減させた高純度錫及びその製造方法を得ることを課題とする。
 上記の課題を解決するために、以下の発明を提供するものである。
 1)溶解・鋳造した後の試料のα線量が0.0005cph/cm未満であることを特徴とする錫。
 2)溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び30ヵ月後の、それぞれのα線量が0.0005cph/cm未満であることを特徴とする錫。
 3)試料の第1回目に測定したα線量が0.0002cph/cm未満であって、そのα線量と、それから5ヶ月経過した後に測定したα線量との差が0.0003cph/cm未満であることを特徴とする錫。
 4)試料の第1回目に測定したα線量が0.0002cph/cm未満であって、そのα線量と、それから5ヶ月経過した後に測定したα線量との差が0.0003cph/cm未満であることを特徴とする1)又は2)記載の錫。
 5)Pb含有量が0.1ppm以下であることを特徴とする1)~4)のいずれか一項に記載の錫。
 6)U,Thのそれぞれの含有量が5ppb以下であることを特徴とする1)~3)のいずれか一項に記載の錫。
 7)前記1)~6)のいずれか一項に記載の錫を40%以上含有する錫合金。
 8)純度3Nレベルの原料錫を塩酸又は硫酸で浸出した後、pH1.0以下、Sn濃度200g/L以下の電解液を用いて電解精製することを特徴とする前記1)~6)のいずれか一項に記載の錫の製造方法。
 9)Sn濃度を30~180g/Lとして電解することを特徴とする8)記載の錫の製造方法。
 10)原料錫中の鉛の同位体210Pbの量が30Bq/kg以下である原料錫を用いることを特徴とする8)又は9)記載の錫の製造方法。
 本発明は、最近の半導体装置は、高密度化及び動作電圧やセルの容量が低下しており、半導体チップ近傍の材料からのα線の影響により、ソフトエラーが発生する危険が多くなってきているが、α線の少ない材料に適応できる錫及び錫合金を提供できるという優れた効果を有する。これにより、半導体装置のα線の影響によるソフトエラーの発生を著しく減少できる。
ウラン(U)が崩壊し、206Pbに至るまでの崩壊チェーン(ウラン・ラジウム崩壊系列)を示す図である。 ポロニウムの同位体210Poが殆どない状態から、210Pb→210Bi→210Po→206Pbの崩壊チェーンが再構築されて放射されるα線量を示す図である。 Sn中のPb含有量とα線量との関係を示す図である。
 α線を発生する放射性元素は数多く存在するが、多くは半減期が非常に長いか非常に短いために実際には問題にならず、実際に問題になるのはU崩壊チェーン(図1参照)における、ポロニウムの同位体210Poから鉛の同位体206Pbに壊変する時に発生するα線である。
 半導体用Pbフリーはんだ材料はSn-Ag-Cu、Sn-Ag、Sn-Cu、Sn-Zn等が開発されており、低αの錫材料が求められているが、錫中の微量の鉛を完全に除去することは非常に困難であり、通常半導体用の錫材料には10ppmレベル以上の鉛が含有されている。
 上記の通り、Poは非常に昇華性が高く、製造工程、例えば溶解・鋳造工程で加熱されるとPoが昇華する。製造工程でポロニウムの同位体210Poが除去されていれば、ポロニウムの同位体 210Poから鉛の同位体206Pbへの壊変も起こらず、α線も発生しないと考えられる(図1の「U崩壊チェーン」参照)。
 しかし、ポロニウムの同位体210Poが殆どない状態において、210Pb→210Bi→210Po→206Pbの崩壊が起こる。そして、この崩壊チェーンが平衡状態になるには約27ヶ月(2年強)を要することが分かった(図2参照)。
 すなわち、材料中に鉛の同位体210Pb(半減期22年)が含有されていると、時間の経過とともに210Pb→210Bi(半減期5日)→210Po(半減期138日)の壊変(図1)が進み、崩壊チェーンが再構築されて210Poが生じるために、ポロニウムの同位体210Poから鉛の同位体206Pbへの壊変によるα線が発生するのである。
 従って、製品製造直後はα線量が低くても問題は解決せず、時間の経過とともに徐々にα線量が高くなり、ソフトエラーが起こる危険性が高まるという問題が生ずるのである。前記約27ヶ月(2年強)は、決して短い期間ではない。
 製品製造直後はα線量が低くても時間の経過とともに徐々にα線量が高くなるという問題は、材料中に図1に示すU崩壊チェーンの鉛の同位体210Pbが含有されているからであり、鉛の同位体210Pbの含有量を極力少なくしなければ、上記の問題を解決することはできないと言える。
 図3にPb含有量とα線量との関係を示す。この図3に示す直線は、鉛の同位体214Pb、210Pb、209Pb、208Pb、207Pb、206Pb、204Pbの割合によって上下にシフトし、鉛の同位体210Pbの割合が大きいほど上にシフトすることが分かった。すなわち、鉛の同位体210Pbの量が30Bq/kgを超えると、図3に示す直線は上方に移動する。
210Pbの分析方法と定量下限値)
 分析試料に混酸(硝酸・塩酸)を加えて溶解後、鉛、カルシウム担体を添加し、アンモニア水を用いて水酸化物沈殿を生成させ、錫を除去する。上澄みにアンモニア水と炭酸ナトリウムを入れ、炭酸塩沈殿を生成させる。この沈殿物を塩酸で溶解し、Srレジンカラムに通す。溶出液に硝酸を加え硫酸塩沈殿を生成した後、マウントし測定試料とする。この測定試料にアルミ板(27mg/cm)をかぶせ、2週間以上放置後、低バックグラウンドベータ線測定装置で210Pbから生成した210Biのベータ線を6000秒間測定する。測定試料の正味計数率を求め、計数効率、化学回収率等の補正を行い210Pbの放射能濃度を算出する。なお、測定機器として、低バックグラウンドベータ線測定装置、アロカ社製LBC-471Q及びLBC-4201を用いた。また、210Pbの放射能濃度の検出下限値は、分析・測定条件(供試量、化学回収率、測定時間、計数効率等)が決定した時に、分析対象となる核種について「検出を保証できる最小の放射能値」とする。
 以上から、錫中の鉛の同位体210Pbの割合を低減することが重要であり、Pbを0.1ppm以下にまで低減することにより、結果として、鉛の同位体210Pbも低減できるため、時間の経過とともにα線量が高くならない。
 また、鉛の同位体206Pbの存在比が少ないということは、図1に示すU崩壊チェーンの比率が相対的に小さいということであり、この系列に属する鉛の同位体210Pbも少なくなると考えられる。
 これにより、溶解・鋳造した錫のα線量が0.0005cph/cm未満を達成することが可能となる。このレベルのα線量にすることが、本願発明の基本であり、従来技術においては、このような認識を持って、上記を達成することを開示又は示唆する記載はなかったと言える。
 具体的には、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後の、それぞれのα線量が0.0005cph/cm未満である錫を提供する。
 さらに本発明は、溶解・鋳造した錫の試料のα線量を測定した結果と、それから5ヶ月後のα線量との差を0.0003cph/cm未満とすることができる。上記α線量を減少させるためには、原料錫において、鉛の同位体206Pbの存在比が25%未満であることが望ましい。なお、ここでの鉛の同位体206Pbの存在比とは、鉛の4つの安定同位体208Pb、207Pb、206Pb、204Pbにおいて、206Pbの占める割合のことをいう。
 この場合、最初の錫試料のα線量の測定は、溶解・鋳造した直後の錫試料のα線量の測定を意味するものではない。すなわち錫試料のいかなる時期において測定したα線量の測定であっても、それから5ヶ月後のα線量との差が0.0003cph/cm未満であることを意味するものである。勿論、最初のα線量の測定を溶解・鋳造した直後の錫試料のα線量の測定とすることを否定するものでないことは容易に理解されるであろう。
 さらに、α線量を測定する場合に注意を要することがある。それはα線測定装置(機器)からα線(以下、必要に応じて「バックグラウンド(BG)α線」という用語を使用する。)が出ることである。本願発明で上記のα線量は、α線測定装置から出るα線を除去した実質のα線量である。本願明細書で記載する「α線量」は、この意味で使用する。
 以上については、錫から発生するα線量について述べたが、錫を含有する合金においても、同様にα線量の影響を強く受ける。α線量が少ないか又は殆ど発生しない錫以外の成分によりα線量の影響が緩和されることもあるが、少なくとも合金成分中に、錫が40%以上含有する錫合金の場合については、α線量が少ない本発明の錫を用いることが望ましいと言える。
 通常、錫の精製は、蒸留法又は電解法で行われる。しかし、この蒸留法では、何回も繰り返し蒸留を行わなければならず、また、共沸混合物があると単離・精製することが難しく、鉛を1ppm以下のレベルまで低減することはできない。
 また、電解法では、ヘキサフルオロケイ酸と酸とを混合し、これにニカワ等の添加剤を加えた電解液を用いる。しかし、錫と鉛は標準電極電位が非常に近い(錫-0.14V、鉛-0.13V)ので分離が困難であり、また、ヘキサフルオロケイ酸や添加剤のニカワ等から鉛の汚染を受けることがあり、鉛を数10ppmレベルまでしか低減できないという限界がある。
 本願発明では、ヘキサフルオロケイ酸や添加剤を用いない酸だけの電解液において、pH(強酸性のpH領域)や電解液中の錫濃度を制御することで、鉛を0.1ppmレベルまで除去することが可能となった。
 このようにして得た本願発明の高純度錫は、半導体装置のα線の影響によるソフトエラーの発生を著しく減少できるという優れた効果を有する。
 前記電解で錫を製造する場合には、電解液のSn濃度は30~200g/Lとするのが望ましい。30g/L未満であると不純物濃度が高くなり、200g/Lを超えるとSn酸化物が析出する傾向があるので、上記の範囲とするのが望ましいと言える。なお、Sn濃度の上限については、より好ましくは180g/L以下とするのが良い。さらに、原料錫中の鉛の同位体210Pbの量が30Bq/kg以下である原料錫を用いることが望ましい。この量を超える量の鉛の同位体210Pbを含有する原料錫を使用することもできるが、精製効果を高めて、極力低減することが望ましいと言える。
 次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
 なお、以下の実施例及び比較例に示す原料については、表1に示す原料錫を使用した。表1には原料錫の種類と各原料A~Eに含まれる鉛の同位体210Pb量(単位:Bq/kg)を示す。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした。陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度30°C、電流密度7A/dmという条件で電解を行った。
 陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。回収した電着錫を洗浄・乾燥し、260°C温度で溶解・鋳造し、錫インゴットとした。
 この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.06ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料A)における、鉛の不安定同位体210Pbの量は14Bq/kgであった。そして、鉛の4つの安定同位体の合計量は1.81ppm、鉛の安定同位体206Pbの存在比は24.86%であった。なお、ここでの鉛の同位体206Pbの存在比とは、鉛の4つの同位体208Pb、207Pb、206Pb、204Pbにおいて、206Pbの占める割合のことをいう。以下の実施例においても、同様とする。
  α線測定装置はOrdela社製のGas Flow Proportional Counterモデル8600A-LBを用いた。使用ガスは90%アルゴン-10%メタン、測定時間はバックグラウンド及び試料とも104時間で、最初の4時間は測定室パージに必要な時間として5時間後から104時間後までのデータをα線量算出に用いた。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0003cph/cmであり、本願発明の条件を満たしていた。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、測定試料のα線量の双方の差は0.0001cph/cmであり、本願発明の条件を満たしていた。上記の通り、この測定したα線量は、α線測定装置から出るα線を除去した実質のα線量である。以下の実施例においても同様である。
 なお、この実施例では、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした場合であるが、この電解液条件(Sn濃度)を替え、pH:1.0、Sn濃度:30g/Lの浸出液、又pH:1.0、Sn濃度:180g/Lの浸出液を用いて電解精製しても、ほぼ同様な結果が得られた。
(実施例2)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした。陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度30°C、電流密度1A/dmという条件で電解を行った。
 陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。回収した電着錫を洗浄・乾燥し、260°C温度で溶解・鋳造し、錫インゴットとした。
 この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.07ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料A:実施例1と同一の原料)における、鉛の不安定同位体210Pbの量は14Bq/kgであった。そして、鉛の4つの安定同位体の合計量は1.81ppm、鉛の安定同位体206Pbの存在比は24.86%であった。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0003cph/cmであり、本願発明の条件を満たしていた。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、測定試料のα線量の双方の差は0.0001cph/cmであり、本願発明の条件を満たしていた。
 なお、この実施例では、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした場合であるが、この電解液条件(Sn濃度)を替え、pH:1.0、Sn濃度:30g/Lの浸出液、又pH:1.0、Sn濃度:180g/Lの浸出液を用いて電解精製してもほぼ同様な結果が得られた。
(実施例3)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした。
 陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度30°C、電流密度1A/dmという条件で電解を行った。
 陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。回収した電着錫を洗浄・乾燥し、260°C温度で溶解・鋳造し、錫インゴットとした。
 この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.05ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料B)における、鉛の不安定同位体210Pbの量は15Bq/kgであった。そして、鉛の4つの安定同位体の合計量は3.8ppm、鉛の安定同位体206Pbの存在比は24.74%であった。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0002cph/cmであり、本願発明の条件を満たしていた。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、測定試料のα線量の双方の差は0.0001cph/cmであり、本願発明の条件を満たしていた。
 なお、この実施例では、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした場合であるが、この電解液条件(Sn濃度)を替え、pH:1.0、Sn濃度:30g/Lの浸出液、又pH:1.0、Sn濃度:180g/Lの浸出液を用いて電解精製してもほぼ同様な結果が得られた。
(実施例4)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした。陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度30°C、電流密度7A/dmという条件の電解を2回行った。すなわち、この工程は、1回目で回収した電着錫を溶解・鋳造して板形状にしたものを陽極板とし、再電解(第2回目の電解)を行うものである。
 なお、前記電解工程においては、陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。回収した電着錫を洗浄・乾燥し、260°C温度で溶解・鋳造し、錫インゴットとした。
 この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.06ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料C)における、鉛の不安定同位体210Pbの量は48±6.2Bq/kgであった。そして、鉛の4つの安定同位体の合計量は11.55ppm、鉛の安定同位体206Pbの存在比は25.97%であった。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヶ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0005cph/cmより小さく、本願発明の条件を満たしていた。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.0002cph/cmであり、本願発明の条件を満たしていた。なお、この実施例では、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした場合であるが、この電解液条件(Sn濃度)を替え、pH:1.0、Sn濃度:30g/Lの浸出液、又pH:1.0、Sn濃度:180g/Lの浸出液を用いて電解精製してもほぼ同様な結果が得られた。
(実施例5)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした。陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度30°C、電流密度7A/dmという条件で電解を行った。
 陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。回収した電着錫を洗浄・乾燥し、260°C温度で溶解・鋳造し、錫インゴットとした。
 この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.06ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料E)における、鉛の不安定同位体210Pbの量は24Bq/kgであった。そして、鉛の4つの安定同位体の合計量は4.5ppm、鉛の安定同位体206Pbの存在比は22.22%であった。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0005cph/cmであり、本願発明の条件を満たしていた。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、測定試料のα線量の双方の差は0.0002cph/cmであり、本願発明の条件を満たしていた。
 なお、この実施例では、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした場合であるが、この電解液条件(Sn濃度)を替え、pH:1.0、Sn濃度:30g/Lの浸出液、又pH:1.0、Sn濃度:180g/Lの浸出液を用いて電解精製してもほぼ同様な結果が得られた。
(比較例1)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした。
 陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度30°C、電流密度7A/dmという条件の電解を行った。
 陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。回収した電着錫を洗浄・乾燥し、260°C温度で溶解・鋳造し、錫インゴットとした。
 この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.07ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料D)における、鉛の不安定同位体210Pbの量は60±7.2Bq/kgであった。そして、鉛の4つの安定同位体の合計量は12.77ppm、鉛の安定同位体206Pbの存在比は25.06%であった。
 上記試料について、溶解・鋳造から3週間後のα線量は、バックグラウンド(BG)α線量と同レベルであったが、溶解・鋳造から6ヵ月後で明らかに増加しており、本試料のα線量(バックグラウンドα線量との差)が0.02cph/cmとなり、本願発明の条件を満たしていなかった。
 これは溶解・鋳造工程でPoが昇華したため一時的にα線量が低くなったものの、精製効果が十分ではなく、Pbを多く含有し、結果として210Pbも多く含有しているために、再び崩壊チェーン(210Pb→210Bi→210Po→206Pb)が構築されてα線量が増加したためと考えられる。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.007cph/cmであり、本願発明の条件を満たしていなかった。
(比較例2)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、pH1.0、Sn濃度:80g/Lの浸出液を電解液とした。
 陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度30°C、電流密度7A/dmという条件の電解を行った。
 陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。回収した電着錫を洗浄・乾燥し、260°C温度で溶解・鋳造し、錫インゴットとした。
 この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.09ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料C:実施例4と同一の原料)における、鉛の不安定同位体210Pbの量は48±6.2Bq/kgであった。そして、鉛の4つの安定同位体の合計量は11.55ppm、鉛の安定同位体206Pbの存在比は25.97%であった。
 上記試料について、溶解・鋳造から3週間後のα線量はバックグラウンド(BG)α線量と同レベルであったが、溶解・鋳造から6ヵ月後で明らかに増加しており、本試料のα線量(バックグラウンドα線量との差)が0.01cph/cmとなり、本願発明の条件を満たしていなかった。
 これは溶解・鋳造工程で、Poが昇華したため一時的にα線量が低くなったものの、精製効果が十分ではなく、Pbを多く含有し、結果として210Pbも多く含有しているために再び崩壊チェーン(210Pb→210Bi→210Po→206Pb)が構築されてα線量が増加したためと考えられる。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.007cph/cmであり、本願発明の条件を満たしていなかった。
(比較例3)
 Pbを4ppm含有する錫を、260°Cの温度で溶解・鋳造し、錫インゴットとした。この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量4ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(実施例3で用いた原料Bと実施例3で作製した錫とを調整した原料)において、鉛の4つの安定同位体の合計量は3.9ppm、鉛の安定同位体206Pbの存在比は25%であった。
 上記試料について、溶解・鋳造から3週間後のα線量はバックグラウンド(BG)α線量と同レベルであったが、溶解・鋳造から6ヵ月後で明らかに増加しており、本試料のα線量(バックグラウンドα線量との差)が0.0008cph/cmとなり、本願発明の条件を満たしていなかった。
 これは溶解・鋳造工程でPoが昇華したため一時的にα線量が低くなったものの、精製効果が十分ではなく、Pbを多く含有し、結果として210Pbも多く含有しているために再び崩壊チェーン(210Pb→210Bi→210Po→206Pb)が構築されてα線量が増加したためと考えられる。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.0004cph/cmであり、これも本願発明の条件を満たしていなかった。
(比較例4)
 純度3Nレベルの原料錫を塩酸(または硫酸)で浸出し、ヘキサフルオロケイ酸と酸とを混合し、Sn濃度:50g/Lの浸出液を電解液とした。
 陽極には原料錫を鋳込み板形状のものを、陰極にはチタン製の板を用い、電解温度20°C、電流密度1A/dmという条件で電解を行った。
 陰極に電着する錫の厚さが2mm程度になると一旦電解を停止し、陰極を電解槽から引き上げて陰極から電着錫を剥がして回収した。回収後は陰極を電解槽に戻し、電解を再開し、これを繰り返した。
 回収した電着錫を洗浄・乾燥し、260°Cの温度で溶解・鋳造し、錫インゴットとした。この錫インゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.7ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 また、ここで用いた原料錫(原料A:実施例1と同一の原料)における、鉛の不安定同位体210Pbの量は14Bq/kgであった。そして、鉛の4つの安定同位体の合計量は1.81ppm、鉛の安定同位体206Pbの存在比は24.86%であった。
 上記試料について、溶解・鋳造から3週間後のα線量はバックグラウンド(BG)α線量と同レベルであったが、溶解・鋳造から6ヵ月後で明らかに増加しており、本試料のα線量(バックグラウンドα線量との差)が0.0003cph/cmとなり、本願発明の条件を満たしていなかった。
 これは溶解・鋳造工程でPoが昇華したため一時的にα線量が低くなったものの、精製効果が十分ではなく、Pbを多く含有し、結果として210Pbも多く含有しているために再び崩壊チェーン(210Pb→210Bi→210Po→206Pb)が構築されてα線量が増加したためと考えられる。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.0003cph/cmであり、これも本願発明の条件を満たしていなかった。
(実施例5)
(0.5%Cu-3%Ag-残部Snからなる錫合金)
 実施例1で作製した錫を準備した。本実施例の錫合金の添加元素は、市販の銀及び銅を電解により高純度化し、6N-Ag及び6N-Cuとした。これらを前記錫に添加し、260°Cで溶解・鋳造し、0.5%Cu-3%Ag-残部SnからなるSn-Cu-Ag合金インゴットを製造した。
 このインゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
 この試料中のPb含有量0.06ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0003cph/cmであり、本願発明の条件を満たしていた。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.0001cph/cmとなり、本願発明の条件を満たしていた。
(実施例6)
(3.5%Ag-残部Snからなる錫合金)
 実施例1で作製した錫を準備した。本実施例の錫合金の添加元素である銀は、市販のAgを硝酸により溶解し、これにHClを添加してAgClを析出させ、これをさらに水素還元して5N-Agの高純度Agを得た。これを前記錫に添加し、260°Cで溶解・鋳造し、3.5%Ag-残部SnからなるSn-Ag合金インゴットを製造した。
 このインゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。
  この試料中のPb含有量0.06ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0003cph/cmであり、本願発明の条件を満たしていた。また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.0001cph/cmであり、本願発明の条件を満たしていた。
(実施例7)
(9%Zn-残部Snからなる錫合金)
 実施例1で作製した錫を準備した。本実施例の錫合金の添加元素は、市販の亜鉛を電解により高純度化し6N-Znとした。これらを前記錫に添加し、240°Cで溶解・鋳造し、9%Zn-残部SnからなるSn-Zn合金インゴットを製造した。このインゴットを圧延し、約1.5mmの厚さとし、310mm×310mmに切り出した。この表面積は961cmである。これをα線測定試料とした。この試料中のPb含有量0.06ppm、U含有量<5ppb、Th含有量<5ppbとなった。
 上記試料について、溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び鉛の同位体206Pbへの壊変によるα線を発生させるポロニウムの同位体210Poがない状態において、210Pb→210Bi→210Po→206Pbの崩壊チェーンが平衡状態になる27ヶ月を過ぎた30ヵ月後にα線量を測定した結果、α線量は最大でも0.0003cph/cmであり、本願発明の条件を満たしていた。また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.0001cph/cmであり、本願発明の条件を満たしていた。
(比較例5)
(0.5%Cu-3%Ag-残部Snからなる錫合金)
 実施例1で作製した錫を準備した。本実施例の錫合金の添加元素は、市販の3Nレベルの銀及び銅を用いた。これらを前記錫に添加し、260°Cで溶解・鋳造し、0.5%Cu-3%Ag-残部SnからなるSn-Cu-Ag合金インゴットを製造した。この試料中のPb含有量7.1ppm、U含有量10ppb、Th含有量10ppbとなった。
 上記試料について、溶解・鋳造から3週間後のα線量はバックグラウンドと同レベルであったが、溶解・鋳造から6ヵ月後は明らかに増加しており、本試料のα線量(バックグラウンドα線量との差)が0.1cph/cmとなり、本願発明の条件を満たしていなかった。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.005cph/cmであり、これも本願発明の条件を満たしていなかった。
 これは溶解・鋳造工程でPoが昇華したため一時的にα線量が低くなったものの、Pbを多く含有し、結果として210Pbも多く含有しているために再び崩壊チェーン(210Pb→210Bi→210Po→206Pb)が構築されてα線量が増加したためと考えられる。
(比較例6)
(3.5%Ag-残部Snからなる錫合金)
 実施例1で作製した錫を準備した。本実施例の錫合金の添加元素である銀は、市販の3NレベルのAgを前記錫に添加し、260°Cで溶解・鋳造し、3.5%Ag-残部SnからなるSn-Ag合金インゴットを製造した。
 この試料中のPb含有量5.3ppm、U含有量7ppb、Th含有量6ppbとなった。
 上記試料について、溶解・鋳造から3週間後のα線量はバックグラウンドと同レベルであったが、溶解・鋳造から6ヵ月後は明らかに増加しており、本試料のα線量(バックグラウンドα線量との差)が0.03cph/cmとなり、本願発明の条件を満たしていなかった。
 また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.002cph/cmであり、これも本願発明の条件を満たしていなかった。
 これは、溶解・鋳造工程でPoが昇華したため一時的にα線量が低くなったものの、Pbを多く含有し、結果として210Pbも多く含有しているために再び崩壊チェーン(210Pb→210Bi→210Po→206Pb)が構築されてα線量が増加したためと考えられる。
(比較例7)
(9%Zn-残部Snからなる錫合金)
 実施例1で作製した錫を準備した。本実施例の錫合金の添加元素は、市販の3Nレベルの亜鉛を用いた。これらを前記錫に添加し、240°Cで溶解・鋳造し、9%Zn-残部SnからなるSn-Zn合金インゴットを製造した。
 この試料中のPb含有量15.1ppm、U含有量12ppb、Th含有量10ppbとなった。
 上記試料について、溶解・鋳造から3週間後のα線量はバックグラウンドと同レベルであったが、溶解・鋳造から6ヵ月後は明らかに増加しており、本試料のα線量(バックグラウンドα線量との差)が0.5cph/cmとなり、本願発明の条件を満たしていなかった。また、同一試料について、1ヶ月後と6ヶ月後の5ヶ月間の、経時変化を見た場合、α線量の差は0.01cph/cmであり、これも本願発明の条件を満たしていなかった。
 これは溶解・鋳造工程でPoが昇華したため一時的にα線量が低くなったものの、Pbを多く含有し、結果として210Pbも多く含有しているために再び崩壊チェーン(210Pb→210Bi→210Po→206Pb)が構築されてα線量が増加したためと考えられる。
 上記の通り、本発明はα線の少ない材料に適応できる錫及び錫合金を提供できるという優れた効果を有するので、半導体チップへのα線の影響を極力排除することができる。したがって、半導体装置のα線の影響によるソフトエラーの発生を著しく減少でき、はんだ材等の錫を使用する箇所の材料として有用である。

Claims (10)

  1.  溶解・鋳造した後の試料のα線量が0.0005cph/cm未満であることを特徴とする錫。
  2.  溶解・鋳造から1週間後、3週間後、1ヵ月後、2ヵ月後、6ヵ月後及び30ヵ月後の、それぞれのα線量が0.0005cph/cm未満であることを特徴とする錫。
  3.  試料の第1回目に測定したα線量が0.0002cph/cm未満であって、そのα線量と、それから5ヶ月経過した後に測定したα線量との差が0.0003cph/cm未満であることを特徴とする錫。
  4.  試料の第1回目に測定したα線量が0.0002cph/cm未満であって、そのα線量と、それから5ヶ月経過した後に測定したα線量との差が0.0003cph/cm未満であることを特徴とする請求項1又は2記載の錫。
  5.  Pb含有量が0.1ppm以下であることを特徴とする請求項1~4のいずれか一項に記載の錫。
  6.  U,Thのそれぞれの含有量が5ppb以下であることを特徴とする請求項1~3のいずれか一項に記載の錫。
  7.  前記請求項1~6のいずれか一項に記載の錫を40%以上含有する錫合金。
  8.  純度3Nレベルの原料錫を塩酸又は硫酸で浸出した後、pH1.0以下、Sn濃度200g/L以下の電解液を用いて電解精製することを特徴とする前記請求項1~6のいずれか一項に記載の錫の製造方法。
  9.  Sn濃度を30~180g/Lとして電解することを特徴とする請求項8記載の錫の製造方法。
  10.  原料錫中の鉛の同位体210Pbの量が30Bq/kg以下である原料錫を用いることを特徴とする請求項8又は9記載の錫の製造方法。
PCT/JP2011/053024 2010-03-16 2011-02-14 α線量が少ない錫又は錫合金及びその製造方法 WO2011114824A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/634,946 US9394590B2 (en) 2010-03-16 2011-02-14 Low α-dose tin or tin alloy, and method for producing same
JP2012505570A JP5456881B2 (ja) 2010-03-16 2011-02-14 α線量が少ない錫又は錫合金の製造方法
EP11756014.4A EP2548981B1 (en) 2010-03-16 2011-02-14 Low -dose tin or tin alloy and method for producing same
KR1020127020954A KR101444568B1 (ko) 2010-03-16 2011-02-14 α 선량이 적은 주석 또는 주석 합금 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-059598 2010-03-16
JP2010059598 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011114824A1 true WO2011114824A1 (ja) 2011-09-22

Family

ID=44648931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053024 WO2011114824A1 (ja) 2010-03-16 2011-02-14 α線量が少ない錫又は錫合金及びその製造方法

Country Status (6)

Country Link
US (1) US9394590B2 (ja)
EP (1) EP2548981B1 (ja)
JP (2) JP5456881B2 (ja)
KR (1) KR101444568B1 (ja)
TW (1) TWI495733B (ja)
WO (1) WO2011114824A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510623B1 (ja) * 2013-09-19 2014-06-04 千住金属工業株式会社 Niボール、Ni核ボール、はんだ継手、フォームはんだ、はんだペースト
WO2014087514A1 (ja) * 2012-12-06 2014-06-12 千住金属工業株式会社 Cuボール
JP5585751B1 (ja) * 2014-02-04 2014-09-10 千住金属工業株式会社 Cuボール、Cu核ボール、はんだ継手、はんだペースト、およびフォームはんだ
JP5585752B1 (ja) * 2014-02-04 2014-09-10 千住金属工業株式会社 Niボール、Ni核ボール、はんだ継手、はんだペースト、およびフォームはんだ
JP5652560B1 (ja) * 2014-02-04 2015-01-14 千住金属工業株式会社 Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手
JP5652561B1 (ja) * 2014-02-04 2015-01-14 千住金属工業株式会社 フラックスコートボール、はんだペースト、フォームはんだ及びはんだ継手
JP2015522796A (ja) * 2012-05-04 2015-08-06 ハネウェル・インターナショナル・インコーポレーテッド 金属材料のα粒子放出ポテンシャルを査定する方法
JP2017002398A (ja) * 2014-02-20 2017-01-05 Jx金属株式会社 低α線ビスマスの製造方法及び低α線ビスマス
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
WO2017154740A1 (ja) * 2016-03-09 2017-09-14 Jx金属株式会社 高純度錫及びその製造方法
US10400342B2 (en) 2015-10-19 2019-09-03 Jx Nippon Mining & Metals Corporation High purity tin and method for manufacturing same
US11572632B2 (en) 2014-10-02 2023-02-07 Jx Nippon Mining & Metals Corporation Method for manufacturing high purity tin, electrowinning apparatus for high purity tin and high purity tin

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958652B1 (ko) * 2005-07-01 2010-05-20 닛코킨조쿠 가부시키가이샤 고순도 주석 또는 주석 합금 및 고순도 주석의 제조방법
WO2012120982A1 (ja) 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 α線量が少ない銅又は銅合金及び銅又は銅合金を原料とするボンディングワイヤ
JP5993097B2 (ja) 2013-12-02 2016-09-14 Jx金属株式会社 高純度塩化コバルトの製造方法
JP5590259B1 (ja) * 2014-01-28 2014-09-17 千住金属工業株式会社 Cu核ボール、はんだペーストおよびはんだ継手
JP5590260B1 (ja) * 2014-02-04 2014-09-17 千住金属工業株式会社 Agボール、Ag核ボール、フラックスコートAgボール、フラックスコートAg核ボール、はんだ継手、フォームはんだ、はんだペースト、Agペースト及びAg核ペースト
JP5534122B1 (ja) * 2014-02-04 2014-06-25 千住金属工業株式会社 核ボール、はんだペースト、フォームはんだ、フラックスコート核ボールおよびはんだ継手
US8992759B1 (en) * 2014-02-20 2015-03-31 Honeywell International Inc. Metal refining process using mixed electrolyte
JP6448417B2 (ja) * 2014-10-02 2019-01-09 Jx金属株式会社 高純度錫の製造方法、高純度錫の電解採取装置及び高純度錫
US9708689B2 (en) * 2015-04-08 2017-07-18 Honeywell International Inc. Isotope displacement refining process for producing low alpha materials
US9546433B1 (en) 2015-11-24 2017-01-17 International Business Machines Corporation Separation of alpha emitting species from plating baths
US9359687B1 (en) 2015-11-24 2016-06-07 International Business Machines Corporation Separation of alpha emitting species from plating baths
JP6176422B1 (ja) * 2015-12-25 2017-08-09 堺化学工業株式会社 低α線量硫酸バリウム粒子とその利用とその製造方法
JP6512354B2 (ja) * 2017-08-17 2019-05-15 三菱マテリアル株式会社 低α線放出量の金属又は錫合金及びその製造方法
WO2019035446A1 (ja) * 2017-08-17 2019-02-21 三菱マテリアル株式会社 低α線放出量の金属及び錫合金並びにその製造方法
JP7314658B2 (ja) * 2018-07-30 2023-07-26 三菱マテリアル株式会社 低α線放出量の酸化第一錫の製造方法
CN111118305B (zh) * 2020-01-17 2020-09-18 东莞永安科技有限公司 一种低α剂量锡或低α剂量锡合金及其制备方法
JP6836091B1 (ja) * 2020-04-10 2021-02-24 千住金属工業株式会社 はんだ合金、はんだ粉末、ソルダペースト、はんだボール、ソルダプリフォーム及びはんだ継手

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621478B2 (ja) 1982-10-01 1987-01-13 Mitsubishi Metal Corp
JPS6247955B2 (ja) 1982-09-30 1987-10-12 Mitsubishi Metal Corp
JPH01283398A (ja) 1988-05-09 1989-11-14 Mitsui Mining & Smelting Co Ltd 錫およびその製造方法
JPH09260427A (ja) 1996-03-19 1997-10-03 Fujitsu Ltd 半導体装置、回路基板及び電子回路装置
JP2754030B2 (ja) 1989-03-02 1998-05-20 三井金属鉱業株式会社 高純度錫の製造方法
JPH1180852A (ja) * 1997-09-02 1999-03-26 Mitsubishi Materials Corp 低α線量錫の製造方法
JP2913908B2 (ja) 1991-06-28 1999-06-28 三菱マテリアル株式会社 半田極細線およびその製造方法
JPH11343590A (ja) 1998-05-29 1999-12-14 Mitsubishi Materials Corp 高純度錫の製造方法
JP3227851B2 (ja) 1992-12-15 2001-11-12 三菱マテリアル株式会社 低α線Pb合金はんだ材およびはんだ膜
JP2003193283A (ja) * 2001-12-28 2003-07-09 Fujitsu Ltd 電解めっき液及びその調製方法、半導体装置の製造方法ならびに放射性不純物の分析方法
JP2004244711A (ja) * 2003-02-17 2004-09-02 Harima Chem Inc 低α線錫合金の製造方法
WO2007004394A1 (ja) 2005-07-01 2007-01-11 Nippon Mining & Metals Co., Ltd. 高純度錫又は錫合金及び高純度錫の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009588A (ja) 1999-06-25 2001-01-16 Mitsubishi Materials Corp Pb−Sn系ハンダ材
JP4533498B2 (ja) 2000-03-24 2010-09-01 アルバックマテリアル株式会社 スパッタリングターゲットないし蒸着材料とその分析方法
JP4421170B2 (ja) 2002-04-11 2010-02-24 日鉱金属株式会社 Ni−Sn合金からなるバリヤー層を備えた回路基板
WO2004034427A2 (en) * 2002-10-08 2004-04-22 Honeywell International Inc. Semiconductor packages, lead-containing solders and anodes and methods of removing alpha-emitters from materials

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247955B2 (ja) 1982-09-30 1987-10-12 Mitsubishi Metal Corp
JPS621478B2 (ja) 1982-10-01 1987-01-13 Mitsubishi Metal Corp
JPH01283398A (ja) 1988-05-09 1989-11-14 Mitsui Mining & Smelting Co Ltd 錫およびその製造方法
JP2754030B2 (ja) 1989-03-02 1998-05-20 三井金属鉱業株式会社 高純度錫の製造方法
JP2913908B2 (ja) 1991-06-28 1999-06-28 三菱マテリアル株式会社 半田極細線およびその製造方法
JP3227851B2 (ja) 1992-12-15 2001-11-12 三菱マテリアル株式会社 低α線Pb合金はんだ材およびはんだ膜
JPH09260427A (ja) 1996-03-19 1997-10-03 Fujitsu Ltd 半導体装置、回路基板及び電子回路装置
JPH1180852A (ja) * 1997-09-02 1999-03-26 Mitsubishi Materials Corp 低α線量錫の製造方法
JP3528532B2 (ja) 1997-09-02 2004-05-17 三菱マテリアル株式会社 低α線量錫の製造方法
JPH11343590A (ja) 1998-05-29 1999-12-14 Mitsubishi Materials Corp 高純度錫の製造方法
JP2003193283A (ja) * 2001-12-28 2003-07-09 Fujitsu Ltd 電解めっき液及びその調製方法、半導体装置の製造方法ならびに放射性不純物の分析方法
JP2004244711A (ja) * 2003-02-17 2004-09-02 Harima Chem Inc 低α線錫合金の製造方法
WO2007004394A1 (ja) 2005-07-01 2007-01-11 Nippon Mining & Metals Co., Ltd. 高純度錫又は錫合金及び高純度錫の製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
JP2015522796A (ja) * 2012-05-04 2015-08-06 ハネウェル・インターナショナル・インコーポレーテッド 金属材料のα粒子放出ポテンシャルを査定する方法
WO2014087514A1 (ja) * 2012-12-06 2014-06-12 千住金属工業株式会社 Cuボール
US9668358B2 (en) 2012-12-06 2017-05-30 Senju Metal Industry Co., Ltd. Cu ball
US9816160B2 (en) 2013-09-19 2017-11-14 Senju Metal Industry Co., Ltd. Ni ball, Ni nuclear ball, solder joint, foam solder and solder paste
JP5510623B1 (ja) * 2013-09-19 2014-06-04 千住金属工業株式会社 Niボール、Ni核ボール、はんだ継手、フォームはんだ、はんだペースト
WO2015040714A1 (ja) * 2013-09-19 2015-03-26 千住金属工業株式会社 Niボール、Ni核ボール、はんだ継手、フォームはんだ、はんだペースト
JP5652561B1 (ja) * 2014-02-04 2015-01-14 千住金属工業株式会社 フラックスコートボール、はんだペースト、フォームはんだ及びはんだ継手
US9802251B2 (en) 2014-02-04 2017-10-31 Senju Metal Industry Co., Ltd. Ni ball, Ni core ball, solder joint, solder paste, and solder foam
WO2015118611A1 (ja) * 2014-02-04 2015-08-13 千住金属工業株式会社 Cuボール、Cu核ボール、はんだ継手、はんだペースト、およびフォームはんだ
US10137535B2 (en) 2014-02-04 2018-11-27 Senju Metal Industry Co., Ltd. Cu ball, Cu core ball, solder joint, solder paste, and solder foam
JP5652560B1 (ja) * 2014-02-04 2015-01-14 千住金属工業株式会社 Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手
JP5585752B1 (ja) * 2014-02-04 2014-09-10 千住金属工業株式会社 Niボール、Ni核ボール、はんだ継手、はんだペースト、およびフォームはんだ
JP5585751B1 (ja) * 2014-02-04 2014-09-10 千住金属工業株式会社 Cuボール、Cu核ボール、はんだ継手、はんだペースト、およびフォームはんだ
WO2015118613A1 (ja) * 2014-02-04 2015-08-13 千住金属工業株式会社 Niボール、Ni核ボール、はんだ継手、はんだペースト、およびフォームはんだ
JP2017002398A (ja) * 2014-02-20 2017-01-05 Jx金属株式会社 低α線ビスマスの製造方法及び低α線ビスマス
US11572632B2 (en) 2014-10-02 2023-02-07 Jx Nippon Mining & Metals Corporation Method for manufacturing high purity tin, electrowinning apparatus for high purity tin and high purity tin
US10400342B2 (en) 2015-10-19 2019-09-03 Jx Nippon Mining & Metals Corporation High purity tin and method for manufacturing same
US11136680B2 (en) 2015-10-19 2021-10-05 Jx Nippon Mining & Metals Corporation High purity tin and method for manufacturing same
WO2017154740A1 (ja) * 2016-03-09 2017-09-14 Jx金属株式会社 高純度錫及びその製造方法
JPWO2017154740A1 (ja) * 2016-03-09 2018-03-15 Jx金属株式会社 高純度錫及びその製造方法
US11118276B2 (en) 2016-03-09 2021-09-14 Jx Nippon Mining & Metals Corporation High purity tin and method for producing same

Also Published As

Publication number Publication date
EP2548981A1 (en) 2013-01-23
JP5456881B2 (ja) 2014-04-02
KR20120106889A (ko) 2012-09-26
JPWO2011114824A1 (ja) 2013-06-27
TW201139692A (en) 2011-11-16
US20130028786A1 (en) 2013-01-31
EP2548981B1 (en) 2020-09-02
US9394590B2 (en) 2016-07-19
JP2014088621A (ja) 2014-05-15
EP2548981A4 (en) 2017-08-30
TWI495733B (zh) 2015-08-11
KR101444568B1 (ko) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5456881B2 (ja) α線量が少ない錫又は錫合金の製造方法
JP5690917B2 (ja) 銅又は銅合金、ボンディングワイヤ、銅の製造方法、銅合金の製造方法及びボンディングワイヤの製造方法
JP5296269B1 (ja) 高純度錫合金
JP5822250B2 (ja) α線量が少ない銀又は銀を含有する合金及びその製造方法
JP2013185214A (ja) α線量が少ないビスマス又はビスマス合金及びその製造方法
JP5903497B2 (ja) 低α線ビスマスの製造方法並びに低α線ビスマス及びビスマス合金
TWI670233B (zh) 低α射線鉍之製造方法及低α射線鉍
JP6067855B2 (ja) 低α線ビスマス及び低α線ビスマスの製造方法
JP5847256B2 (ja) α線量が少ない銀又は銀を含有する合金及びその製造方法
JP5960341B2 (ja) 低α線ビスマスの製造方法
TW201525153A (zh) 低α射線鉍之製造方法及低α射線鉍

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505570

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127020954

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011756014

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13634946

Country of ref document: US