WO2019035446A1 - 低α線放出量の金属及び錫合金並びにその製造方法 - Google Patents

低α線放出量の金属及び錫合金並びにその製造方法 Download PDF

Info

Publication number
WO2019035446A1
WO2019035446A1 PCT/JP2018/030211 JP2018030211W WO2019035446A1 WO 2019035446 A1 WO2019035446 A1 WO 2019035446A1 JP 2018030211 W JP2018030211 W JP 2018030211W WO 2019035446 A1 WO2019035446 A1 WO 2019035446A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
tin
sulfate
lead
aqueous solution
Prior art date
Application number
PCT/JP2018/030211
Other languages
English (en)
French (fr)
Inventor
広隆 平野
能弘 吉田
琢磨 片瀬
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018142195A external-priority patent/JP6512354B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201880052602.8A priority Critical patent/CN111032921B/zh
Priority to US16/638,770 priority patent/US20200385843A1/en
Priority to KR1020197038175A priority patent/KR102161930B1/ko
Priority to EP18846525.6A priority patent/EP3653760A4/en
Publication of WO2019035446A1 publication Critical patent/WO2019035446A1/ja
Priority to US17/991,018 priority patent/US20230085708A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining
    • C22B13/08Separating metals from lead by precipitating, e.g. Parkes process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/22Obtaining zinc otherwise than by distilling with leaching with acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/32Refining zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/04Obtaining tin by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/14Electrolytic production, recovery or refining of metals by electrolysis of solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a low ⁇ -emitting amount metal of tin, silver, copper, zinc or indium which has a very low ⁇ -ray emission amount suitable for a solder material for producing an electronic component.
  • the present invention relates to a low ⁇ -ray emitting alloy (hereinafter referred to as a tin alloy) of tin and one or more metals selected from the group consisting of silver, copper, zinc, indium, bismuth, nickel and germanium.
  • a tin alloy low ⁇ -ray emitting alloy
  • the present invention relates to methods for producing these low ⁇ -emitting metals or tin alloys.
  • Priority is claimed on Japanese Patent Application Nos. 2017-157394 filed on Aug. 17, 2017 and Japanese Patent Application No. 2018-142195 filed on July 30, 2018, the contents of which are incorporated herein by reference. I will use it here.
  • Tin alloys such as -Ag, Sn-Cu, Sn-Zn, Sn-In, and Sn-Bi have been developed.
  • alloys and the like in which trace components such as Ni and Ge are further added to the above-mentioned alloys have been developed.
  • Such solder materials are used in the manufacture of semiconductor devices such as bonding of chips and substrates in semiconductor memories.
  • Patent Document 1 As a method of obtaining tin with low alpha emission, tin is alloyed with lead having an alpha emission of 10 cph / cm 2 or less, and then tin contained in tin is refined to remove tin with low alpha emission.
  • Patent Document 1 (claim 1, paragraph [0011] to paragraph [0016], paragraph [0022]).
  • this embodiment 1 of Patent Document 1 a method, the surface ⁇ -rays released amount 5cph / cm 2, Purity: a 99.99% commercial Sn, surface ⁇ rays released amount 10cph / cm 2, purity: 99.
  • this leaching solution is used as an electrolytic solution, and the electrolytic solution is oxidized as an adsorbent of impurities.
  • At least one of titanium, aluminum oxide, tin oxide, activated carbon and carbon is suspended, and electrolytic refining is performed using a raw material Sn anode, and the content of each of U and Th is 5 ppb or less, and each of Pb and Bi Discloses a method for obtaining high purity tin having a content of 1 ppm or less and a purity of 5 N or more (excluding gas components of O, C, N, H, S, P) (eg, patent Reference 2 (see claim 3, paragraph [0014]).
  • the alpha ray count of high purity tin having the cast structure of the tin It is stated that the number can be 0.001 cph / cm 2 or less.
  • Non-Patent Document 1 ( Abstract)
  • the increase in the incidence of soft errors is attributed to the increase in the amount of alpha rays emitted from the solder material in a high temperature environment.
  • Non-Patent Document 1 From the report of Non-Patent Document 1 above, it has become clear that when the device is exposed to a high temperature environment, an increase in the amount of alpha radiation emitted from the solder material leads to an increase in soft errors. That is, not only the initial amount of alpha rays emitted from tin, but also the amount of alpha rays emitted from tin when exposed to a high temperature environment, the amount is equal to the initial amount of alpha rays, 0.002 cph / cm 2 It is required that In fact, even if the initial tin alpha ray emission is 0.001 cph / cm 2 or less, the required low alpha ray emission of tin can not be obtained under heating corresponding to a high temperature environment.
  • patent documents 1 and 2 do not discuss the amount of alpha rays emitted in a high temperature environment of tin after solder bonding, and the metal tin obtained in patent documents 1 and 2 is exposed to a high temperature environment. is ⁇ -ray emission of tin is likely to have even exceeded in either exceeds 0.001 cph / cm 2, or 0.002cph / cm 2 when the.
  • Patent Document 1 it is necessary to dissolve Sn and Pb in a high purity graphite crucible using a high frequency induction furnace in a nitrogen atmosphere as a method of adding high purity lead to raw material tin. Require a lot of time and heat energy, and a simpler production method has been desired.
  • Table 1 of Patent Document 2 describes that 220 wtppm of lead (Pb) in the raw material tin becomes 0.06 wt ppm in Example 4 after purification, so the concentration of Pb in the raw material tin is described.
  • the reduction rate of is at most about 1/4000.
  • the reduction ratio of 210 Pb is also about 1/4000 at the maximum, and for the reduction of 210 Pb concentration It is shown that there is a limit.
  • An object of the present invention is to provide a low ⁇ -ray emission having an ⁇ -ray emission amount of 0.002 cph / cm 2 or less without raising the ⁇ -ray emission amount even if heating is performed regardless of the 210 Pb concentration of raw material tin
  • the present invention is to provide a metal or tin alloy in any amount of tin, silver, copper, zinc or indium.
  • Another object of the present invention is to provide a method for producing such a low alpha emission amount of the above metal or tin alloy by a liquid phase method.
  • the inventors of the present invention conducted intensive studies to solve the above problems, and as a result, it was found that raw material tin and lead with a low ⁇ emission amount are melted and alloyed in a crucible and 210 Pb contained in the raw material tin
  • the method of reducing the concentration of 210 Pb contained in the raw material tin in the liquid phase was devised without using the thermal melting method as shown in Patent Document 1 for reducing the concentration of.
  • Patent Document 1 By adjusting the degree of reduction, we reached the present invention to obtain a metal that does not increase the amount of ⁇ -ray emission even when used by being exposed to a high temperature environment.
  • the first aspect of the present invention is a metal of low alpha emission amount of any of tin, silver, copper, zinc and indium, and emission amount of alpha ray after heating at 100 ° C. for 6 hours in the atmosphere.
  • a metal with a low alpha emission amount characterized by having a ratio of 0.002 cph / cm 2 or less.
  • a low ⁇ -emitting amount of tin according to the first aspect, and one or more selected from the group consisting of silver, copper, zinc, indium, bismuth, nickel and germanium.
  • a low ⁇ -emitting tin alloy characterized in that it is an alloy with metal and the ⁇ -ray emission is 0.002 cph / cm 2 or less after heating in the atmosphere at 100 ° C. for 6 hours. .
  • a third aspect of the present invention is the invention based on the second aspect, wherein the metal that forms an alloy with the low ⁇ -ray emitting amount tin is selected from the group consisting of silver, copper, zinc and indium. It is a low ⁇ -emitting tin alloy which is one or more metals.
  • a fourth aspect of the present invention is the invention based on any of the first to third aspects, wherein the ⁇ ray of the metal or the tin alloy after heating at 200 ° C. for 6 hours in the atmosphere It is a metal or tin alloy with a low ⁇ emission amount of 0.002 cph / cm 2 or less.
  • a metal (M) of tin, silver, copper, zinc or indium containing lead (Pb) as an impurity respectively is used as sulfuric acid (H 2 ) sO 4) the dissolved in aqueous metal sulfate (MSO 4) aqueous solution with preparing and precipitating lead sulfate (PbSO 4) in sulfuric acid salt aqueous solution (a), as shown in FIG. 1 (b)
  • the sulfate aqueous solution in the step (a) is filtered to remove lead sulfate from the sulfate aqueous solution, and as shown in FIG.
  • the sulfuric acid in the step (b) is removed in the first tank
  • PbNO 3 lead nitrate
  • a sixth aspect of the present invention is the invention based on the fifth aspect, wherein the predetermined concentration of lead nitrate in the aqueous lead nitrate solution of the step (c) is 10% by mass to 30% by mass. It is a method of producing a linear emission metal.
  • a seventh aspect of the present invention is the invention based on the fifth or sixth aspect, wherein the predetermined addition rate of the lead nitrate aqueous solution in the step (c) is 1 liter of the sulfate aqueous solution (hereinafter referred to as L). ) Is 1 mg / sec to 100 mg / sec.
  • a mixture of metal tin and one or more metals selected from the group consisting of silver, copper, zinc, indium, bismuth, nickel and germanium is added and mixed, and this mixture is A method for producing a low ⁇ -emitting tin alloy by casting, wherein the metal tin is metal tin produced by the method according to any one of the fifth to seventh aspects, wherein The metal to be added is a method for producing a low ⁇ -emitting amount tin alloy, wherein the ⁇ -ray emitting amount is 0.002 cph / cm 2 or less.
  • a low ⁇ is obtained by adding and mixing one or more metals selected from the group consisting of silver, copper, zinc and indium to metal tin and casting this mixture.
  • a method for producing a linear emission tin alloy characterized in that the metal tin and the metal added to the metal tin are metals manufactured according to any of the fifth to seventh aspects. It is a method for producing a low alpha emission tin alloy.
  • the metal of low alpha emission of any of tin, silver, copper, zinc and indium of the first aspect of the present invention, and the tin alloy of low alpha emission of the second and third aspects of the present invention While there is a feature that the ⁇ ray emission amount does not increase even at the initial stage of production and after a long time since manufacture, the ⁇ ray emission amount does not increase even if it is heated at 100 ° C. for 6 hours in the atmosphere Of 0.002 cph / cm 2 or less. For this reason, even if the low alpha ray emission metal or tin alloy of the first to third aspects is used as a solder material in a semiconductor device such as bonding of a chip and a substrate, the semiconductor device is exposed to high temperature environments.
  • the reason for setting the heating condition to “100 ° C. for 6 hours” in the invention of the first aspect is that the actual use environment is expected to be around 100 ° C. With respect to time, heating for 6 hours and long time heating This is to clarify the measurement conditions since a similar increase is confirmed.
  • the “6 hours at 200 ° C.” means that the higher the heating temperature, the more the ⁇ -ray emission increases, and when it exceeds 200 ° C., the tin melting point is the metal melting point. C., and the sample is dissolved, to clarify the measurement conditions.
  • the metal of the low ⁇ -ray emission amount in the present invention does not increase the ⁇ -ray emission amount even when heated at a temperature lower than the melting point of tin, and the ⁇ -ray emission amount is 0 It is paraphrased to remain below .002 cph / cm 2 .
  • the ⁇ -ray emission amount changes in a quadratic curve with the passage of time, and the ⁇ -ray emission amount after one year changes at a rate of 80% or more of the maximum change. Therefore, in the present invention, by confirming that the amount of alpha ray emission after one year does not change, it has been confirmed that the amount does not change with time.
  • the raw material tin and the low ⁇ -emitting lead are melted in a crucible and alloyed to form 210 Pb contained in the raw material tin Unlike the thermal melting method as shown in Patent Document 1 for reducing the concentration, a sulfuric acid aqueous solution is prepared by using a tin sulfate aqueous solution as a metal raw material of tin, silver, copper, zinc or indium containing lead as an impurity respectively. Filter out the lead.
  • the aqueous solution of sulfate of this metal raw material is reacted with an aqueous solution of lead nitrate containing low ⁇ -emitting amount of lead (Pb with a low content of 210 Pb) to obtain a high ⁇ dose of lead ( 210 Pb content) in the aqueous solution of sulfuric acid It is contained in the above-mentioned metal raw material by the liquid phase method of precipitating as lead sulfate while replacing much Pb) ion with lead (Pb with a small 210 Pb content) ion of low ⁇ emission amount and removing it by filtering Reduce the concentration of 210 Pb.
  • the concentration of lead nitrate in the aqueous lead nitrate solution of step (c) is 10% by mass to 30% by mass to obtain a metal raw material. because it reliably precipitating and removing derived lead (210 Pb), the tin after the heating, silver, copper, alpha ray emission amount of any of the metals zinc or indium to further decrease.
  • the addition rate of the lead nitrate aqueous solution in step (c) is set to 1 mg / sec to 100 mg / sec per 1 L of sulfate aqueous solution. Since it is possible to precipitate and remove lead ( 210 Pb) derived from the metal raw material even more reliably, the ⁇ -ray emission amount of the metal of any of tin, silver, copper, zinc or indium after the heating is further further increased Decrease.
  • the low ⁇ -emitting metal tin produced in the fifth to seventh aspects has an ⁇ -ray emitting amount of 0.002 cph.
  • a tin raw material having a high concentration of 210 Pb is used, It is possible to produce tin alloys with low alpha emission.
  • the metal tin with a low ⁇ -emitting amount according to the fifth to seventh aspects is used in the fifth to seventh aspects.
  • a metal such as silver having a low alpha radiation emission amount of 0.002 cph / cm 2 or less, as in the invention based on the fifth aspect, In theory, however, it is possible to produce tin alloys with low alpha emission, no matter how high the 210 Pb concentration tin source is used.
  • the metal raw material for obtaining the metal of any of tin, silver, copper, zinc and indium (represented by M in FIG. 1) of the low ⁇ emission amount of the first embodiment the Pb content of the impurity and The choice is not constrained by the large amount of alpha radiation.
  • a commercially available metal such as tin having a Pb concentration of about 320 mass ppm and an alpha ray emission amount due to Pb of about 9 cph / cm 2 is used as a metal raw material, the manufacturing method and apparatus described below In the above metal finally obtained using the above, the ⁇ -ray emission after heating at 100 ° C. or 200 ° C.
  • the shape of the said metal raw material is not limited, It may be powdery or massive.
  • a method of electrolytic elution using a hydrogen ion exchange membrane may be employed.
  • a sulfuric acid aqueous solution H 2 SO 4
  • the metal raw material is added thereto from the supply port 11b, and the metal raw material is dissolved in an aqueous sulfuric acid solution by stirring with a stirrer 12 to prepare an aqueous solution of sulfate (MSO 4 ) 13 of the metal raw material.
  • an aqueous solution of tin sulfate, silver sulfate, copper sulfate, zinc sulfate, and indium sulfate is prepared.
  • this aqueous solution is referred to as a sulfate aqueous solution.
  • lead (Pb) in the metal raw material is precipitated as lead sulfate (PbSO 4 ) at the bottom of the sulfate preparation tank 11.
  • the aqueous sulfate solution is passed through the filter 16 (hereinafter referred to as filtering) by the pump 14 provided outside the sulfate preparation tank 11 and transferred to the next first tank 21 via the transfer pipeline 17. .
  • Lead sulfate which precipitates at the bottom of the sulfate preparation tank 11 by the filter 16, is removed from the aqueous sulfate solution.
  • a membrane filter is preferable.
  • the pore size of the filter is preferably in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the sulfate solution 23 which has been transferred by the pump 14 and from which lead sulfate has been removed is stored in the first tank 21 shown in FIG.
  • a predetermined amount of the aqueous sulfate solution is stored in the first tank 21.
  • the aqueous lead solution is added and the aqueous sulfate solution 23 is stirred with a stirrer 22 at a rotational speed of at least 100 rpm.
  • the aqueous solution 23 of the above-mentioned metal raw material from which lead sulfate has been removed is adjusted to a temperature of 10 ° C. to 50 ° C., and an aqueous solution of lead nitrate containing lead (Pb) with a low alpha emission Add over.
  • Pb lead nitrate containing lead
  • PbSO 4 lead sulfate
  • This lead nitrate aqueous solution is prepared, for example, by mixing Pb having a surface alpha ray emission amount of 10 cph / cm 2 and purity of 99.99% in a nitric acid aqueous solution.
  • the radioactive isotope lead ( 210 Pb) and the stable isotope lead (Pb) ions which are the causes of the high alpha emission contained in the metal raw material, are mixed in the solution. removed later, the lead content of radioactive isotopes in the liquid (210 Pb) is gradually reduced.
  • concentration of the sulfate in the sulfate aqueous solution of the said metal raw material it is preferable to set it as 100 g / L or more and 250 g / L or less.
  • concentration of sulfuric acid (H 2 SO 4 ) in the aqueous solution of sulfate is preferably 10 g / L to 50 g / L.
  • the upper limit value of the stirring speed is a rotational speed at which the liquid does not scatter by stirring, and is determined by the size of the first tank 21 which is a reaction tank, the size and shape of the blades of the stirrer 22.
  • a cylindrical container with a diameter of about 1.5 m can be used as the size of the first tank 21, the size of the blades of the stirrer 22 is about 0.5 m, and the shape is a propeller shape Can be used.
  • the alpha ray emission amount of lead contained in the aqueous solution of lead nitrate is the same as that of lead tin alloyed in the raw material tin of Patent Document 1 and is a low alpha ray emission amount of 10 cph / cm 2 or less. Because this was the 10cph / cm 2 or less the ⁇ -emitting amount can not be exceeding 10cph / cm 2 and ⁇ -ray emission amount of the finally obtained metal feedstock 0.002cph / cm 2 or less is there.
  • the concentration of lead nitrate in the aqueous solution of lead nitrate is preferably 10% by mass to 30% by mass.
  • the amount is less than 10% by mass, the reaction time between the aqueous solution of the sulfate and the aqueous solution of lead nitrate tends to be long and the production efficiency is deteriorated. If the amount is more than 30% by mass, lead nitrate is not efficiently used and tends to be wasted.
  • the addition rate of the aqueous solution of lead nitrate is preferably 1 mg / sec to 100 mg / sec, more preferably 1 mg / sec to 10 mg / sec, relative to 1 L of the aqueous solution of sulfate.
  • the addition rate depends on the concentration of lead nitrate in the aqueous solution of lead nitrate, but if it is less than 1 mg / sec, the reaction time between the aqueous solution of sulfate and the aqueous solution of lead nitrate tends to be prolonged and the production efficiency tends to deteriorate, exceeding 100 mg / sec. Also, lead nitrate is not efficiently used and tends to be wasted.
  • the lead nitrate aqueous solution Even if the concentration and addition rate of the lead nitrate aqueous solution are increased, the reduction of the radioactive isotope lead ( 210 Pb) proceeds only at a constant rate It is necessary to add it over a certain period of time to sufficiently reduce it. For this reason, if the addition time is less than 30 minutes, the amount of ⁇ -ray emission of the metal raw material can not be reduced to a desired value.
  • the aqueous solution of sulfate salt 23 at a temperature of 10 ° C. to 50 ° C. in the first tank 21 was provided outside the first tank 21.
  • the pump 24 feeds the filter 26 through the filter 26 to the circulation line 27 or the transfer line 28 to the next second tank (not shown).
  • the circulation line 27 and the transfer line 28 are provided with on-off valves 27a and 28a, respectively.
  • the aqueous sulfate solution 23 is circulated through the circulation line 27 at a rate of a circulation flow rate of at least 1% by volume with respect to the total liquid volume in the tank.
  • the circulation of the aqueous sulfate solution removes excess lead sulfate in the solution, and the substitution of the lead ( 210 Pb) ion of the radioactive isotope and the lead (Pb) ion of the stable isotope in the aqueous sulfate solution smoothly proceeds. It will be.
  • the amount of the aqueous sulfate solution passing through the filter 26 is small if the amount is less than 1% by volume, and the lead sulfate filter 26 suspended in the solution is reduced.
  • the collection efficiency of When the collection efficiency decreases, a large amount of lead sulfate remains in the aqueous solution of sulfate, and the substitution of the lead ( 210 Pb) ion of the radioactive isotope and the lead (Pb) ion of the stable isotope in the aqueous solution of sulfate smoothly. It will not be done.
  • the filter 26 can use the membrane filter mentioned above.
  • ⁇ Step (d)> [Electrolytic extraction of any metal of tin, silver, copper, zinc and indium]
  • the valve 27a is closed, and the valve 28a is opened to filter the aqueous solution of sulfate in which the ⁇ dose of lead ( 210 Pb) ion is reduced from the first tank 21 to another not-shown second tank with the filter 26.
  • An aqueous solution of sulfuric acid salt at a temperature of 10 to 50 ° C. is used as an electrolytic solution, a titanium platinum plate is arranged on the anode in the electrolytic solution, a plate made of SUS on the cathode, and the aqueous solution of sulfuric acid is electrolyzed in the second tank.
  • the metal deposited on the cathode is collected, optionally melted and cast to obtain an ingot of the above metal. It is also possible to obtain a plate-like metal by rolling a part of the ingot.
  • the amount of emitted alpha radiation is 0.002 cph / cm 2 or less at the initial stage of production and after a long time since production, and the amount of emitted alpha radiation even when heated at 100 ° C. or 200 ° C. in the atmosphere for 6 hours
  • Low alpha ray emission amount of metal tin (Sn), metal silver (Ag), metal copper (Cu), metal zinc (Zn) or metal indium (In) (for solder materials) having an amount of 0.002 cph / cm 2 or less
  • Metal tin materials, metal silver materials for solder materials, metal copper materials for solder materials, metal zinc materials for solder materials or metal indium materials for solder materials can be manufactured.
  • the amount of alpha rays emitted at the initial stage of manufacture and after a long time since manufacture is 0.001 cph / cm 2 or less, and heated at 100 ° C. or 200 ° C. in the air for 6 hours Even if the ⁇ dose is 0.001 cph / cm 2 or less, metal tin (Sn), metal silver (Ag), metal copper (Cu), metal zinc (Zn) or metal indium (In) having a low ⁇ ray emission amount ) Can also be manufactured.
  • the amount of alpha rays emitted after initial production and after a long time since production is 0.0005 cph / cm 2 or less, and at 100 ° C. and 200 ° C. in the air for 6 hours
  • a low ⁇ -emitting amount of metal tin (Sn), metal silver (Ag), metal copper (Cu), metal zinc (Zn) or metal indium (which has an ⁇ dose of 0.0005 cph / cm 2 or less even if it is heated) It is also possible to produce In).
  • At least one metal selected from the group consisting of silver, copper, zinc, indium, bismuth, nickel and germanium which is obtained in the first embodiment and which has low ⁇ -ray emission amount of metal tin (Sn) Tin alloys are produced by casting with two or more metals.
  • a metal that forms an alloy with metal tin when a tin alloy is used as a solder, silver, copper, zinc, and indium are preferable from the viewpoint of the melting point and mechanical properties of the solder.
  • the alpha ray emission of silver, copper, zinc, indium, bismuth or nickel which forms an alloy with metal tin is 0.002 cph / cm 2 or less.
  • a furnace generally used for casting such as a high frequency induction melting furnace can be used.
  • vacuum atmosphere inert gas atmospheres, such as nitrogen or argon, are mentioned.
  • a melting furnace dedicated to low ⁇ -ray alloys it is preferable to use.
  • the tin alloy obtained in the second embodiment like the metal obtained in the first embodiment, has an ⁇ ray emission amount of 0.002 cph / cm 2 or less at the initial stage of production and after a long time since production. And the alpha ray emission amount is 0.002 cph / cm 2 or less even when heated at 100 ° C. or 200 ° C. in the atmosphere for 6 hours.
  • Example 1 Using commercially available Sn powder with an alpha ray emission of 10.2 cph / cm 2 and a Pb concentration of 15 ppm as a metal raw material, this is added to and mixed with a 130 g / L aqueous sulfuric acid solution stored in a tin sulfate preparation tank Te was prepared tin sulfate solution 1 m 3 of 200 g / L were dissolved at 50 ° C.. As a result, Pb contained in the metal material tin was precipitated as lead sulfate. The tin sulfate aqueous solution was filtered through a Yuasa Membrane Systems membrane filter (pore diameter: 0.2 ⁇ m) to remove lead sulfate.
  • a Yuasa Membrane Systems membrane filter pore diameter: 0.2 ⁇ m
  • an aqueous lead nitrate solution (lead nitrate concentration: 20 mass) containing Pb with an alpha ray emission amount of 5 cph / cm 2 in this aqueous solution %) was added over 30 minutes at a rate of 1 mg / sec ⁇ L (1000 mg / sec).
  • the cylindrical container of diameter 1.5m was used as a 1st tank.
  • the aqueous solution of tin sulfate is passed through the same membrane filter as above to remove lead sulfate from the aqueous solution of tin sulfate, and sulfuric acid so that the circulation flow rate to the total liquid volume becomes 1% by volume in the first tank
  • the tin aqueous solution was circulated.
  • the tin sulfate aqueous solution is filtered from the first tank and then transferred to the second tank, and the tin sulfate aqueous solution is used as an electrolyte in the second tank, the titanium platinum plate as an anode and the SUS plate as a cathode in the electrolyte.
  • electrolysis was performed at a liquid temperature of 30 ° C. and a cathode current density of 5 A / dm 2 .
  • the metal tin deposited on the cathode was collected and rolled as a final product to obtain a plate-like metal tin.
  • the manufacturing conditions of Example 1 are shown in Table 1 below.
  • the addition rate of the lead nitrate aqueous solution is the addition rate to 1 L of the tin sulfate aqueous solution.
  • the total addition amount of the lead nitrate aqueous solution is the addition amount to 1 L of the tin sulfate aqueous solution.
  • Examples 2 to 16 and Comparative Examples 1 to 7 In Examples 2 to 16 and Comparative Examples 1 to 7, the stirring speed and circulation speed of the raw material tin and tin sulfate aqueous solution described in Example 1, the alpha dose of Pb in the lead nitrate aqueous solution, lead nitrate concentration, addition speed, addition time As shown in Table 1 above. Thereafter, in the same manner as in Example 1, a plate-like metal tin as a final product was obtained.
  • Comparative Example 8 a plate-like metal tin as a final product was obtained according to Example 1 of Patent Document 1 described in the background art of the present specification. Specifically, commercially available Sn with a surface alpha ray emission amount of 5 cph / cm 2 , purity: 99.99% and Pb concentration of 240 ppm, and surface alpha ray emission amount of 10 cph / cm 2 , purity: 99.99% Commercialized Pb is prepared, Sn and Pb are melted in a high purity graphite crucible in a nitrogen atmosphere using a high frequency induction furnace to produce a Sn-5 mass% Pb alloy, and this alloy is used as a high purity graphite crucible The mixture was heated and melted to evaporate and remove Pb, and after cooling, the Sn remaining in the crucible was rolled to prepare a Sn plate with a low ⁇ -ray emission amount.
  • Comparative Example 9 In Comparative Example 9, a plate-like metal tin was obtained according to Example 1 of Patent Document 2 described in the background art of the present specification. Specifically, a commercially available Sn powder having an alpha ray emission amount of 9.2 cph / cm 2 and a Pb concentration of 240 ppm was used as a raw material tin. The raw material tin was leached with sulfuric acid, and this leachate was used as an electrolyte. As an anode, a Sn plate of 3N level was used. The electrolysis was carried out under the conditions of an electrolysis temperature of 20 ° C. and a current density of 1 A / dm 2 . The metal tin deposited on the cathode was collected and rolled to obtain a plate-like metal tin as a final product.
  • Pb concentration in metallic tin is prepared by dissolving plate-like metallic tin as a sample, dissolving it in thermal hydrochloric acid, and subjecting the resulting solution to ICP (plasma emission spectrometry, lower limit of determination: It analyzed by 1 mass ppm), and measured the amount of impurities Pb.
  • the amount of alpha rays emitted from this sample 2 was measured in the same manner as in sample 1.
  • the amount of ⁇ -ray emission at this time was “after heating (100 ° C.)”.
  • the sample 2 for which the measurement of the ⁇ -ray emission amount was finished was heated at 200 ° C. for 6 hours in the atmosphere, it was gradually cooled to room temperature to obtain a sample 3.
  • the amount of alpha rays emitted from this sample 3 was measured in the same manner as in sample 1.
  • the amount of ⁇ -ray emission at this time was “after heating (200 ° C.)”.
  • sample 3 was vacuum-packed and stored for one year to prevent contamination to obtain sample 4, and the amount of alpha rays emitted from this sample 4 was measured in the same manner as sample 1.
  • the amount of alpha rays emitted at this time is "one year later".
  • the lead nitrate concentration of the lead nitrate aqueous solution is set to 20 mass%, and the addition time is set to 20 minutes, so that the lead ( 210 Pb) of the radioactive isotope of the raw material tin is not sufficiently reduced.
  • the alpha dose of metal tin was 0.0006 cph / cm 2 , but after heating at 100 ° C. it was 0.0025 cph / cm 2 , after heating at 200 ° C. 0.0029 cph / cm 2 , and 1 more. It has increased to 0.0043 cph / cm 2 each year after year.
  • the alpha dose of metal tin made under the conditions described in Example 1 of Patent Document 1 of Comparative Example 8 was less than 0.0005 cph / cm 2 before heating, but 0 after heating at 100 ° C. the .0026cph / cm 2, also after heating at 200 ° C. the 0.0027cph / cm 2, yet after one year 0.0021cph / cm 2, were increased respectively.
  • the alpha dose of metal tin produced under the conditions described in Example 1 of Patent Document 2 of Comparative Example 9 was 0.0008 cph / cm 2 before heating, but it was 0. 0 after heating at 100 ° C. the 0021cph / cm 2, also after heating at 200 ° C. the 0.0023cph / cm 2, yet after one year 0.0032cph / cm 2, were increased respectively.
  • the ⁇ dose of metal tin before heating is less than 0.0005 cph / cm 2 Or 0.0005 to 0.0007 cph / cm 2 .
  • the alpha dose of metal tin after heating at 100 ° C. is less than 0.0005 cph / cm 2 or 0.0005 cph / cm 2
  • the alpha dose of metal tin after heating at 200 ° C. is 0.0005cph / cm 2 less than the either was 0.0005 ⁇ 0.0006cph / cm 2.
  • the alpha dose of metal tin after one year was less than 0.0005 cph / cm 2 . That is, the metal tin obtained in Examples 1 to 16 has an ⁇ dose before heating of less than 0.001 cph / cm 2 , and an ⁇ dose after heating at 100 ° C. of 0.001 cph / cm 2 or less.
  • the alpha dose after heating at 200 ° C. was 0.002 cph / cm 2 or less, and the alpha dose of metal tin after one year was less than 0.0005 cph / cm 2 .
  • Example 17 and Comparative Example 10 As a metal raw material, a commercial Cu powder having an alpha ray emission amount of 0.2 cph / cm 2 and a Pb concentration of 15 ppm is used instead of the raw material tin described in Example 1 and sulfuric acid instead of the aqueous tin sulfate solution described in Example 1 An aqueous copper solution was prepared.
  • Example 18 and Comparative Example 11 As a metal raw material, a commercial Zn powder having an alpha ray emission amount of 3 cph / cm 2 and a Pb concentration of 15 ppm is used instead of the raw material tin described in Example 1 and a zinc sulfate aqueous solution instead of the tin sulfate aqueous solution described in Example 1 was prepared.
  • Example 19 and Comparative Example 12 Using a commercially available indium powder having an alpha ray emission of 5 cph / cm 2 and a Pb concentration of 15 ppm as the metal raw material instead of the raw material tin described in Example 1 and using an indium sulfate aqueous solution instead of the tin sulfate aqueous solution described in Example 1 was prepared.
  • the metallic copper, metallic zinc and metallic indium obtained in Examples 17 to 19 satisfying the production conditions of the fifth aspect of the present invention have an ⁇ dose of 0.0005 cph of these metals before heating. It was less than 1 cm 2 .
  • the alpha dose of these metals after heating at 100 ° C. is less than 0.0005 cph / cm 2 or 0.0005 cph / cm 2
  • the alpha dose of metal tin after heating at 200 ° C. is Less than 0.0005 cph / cm 2 or 0.0005 cph / cm 2
  • the alpha dose of metal tin after one year was less than 0.0005 cph / cm 2 .
  • the metallic copper, metallic zinc and metallic indium obtained in Examples 17 to 19 have an ⁇ dose before heating of less than 0.001 cph / cm 2 and an ⁇ dose after heating at 100 ° C. of 0.001 cph. / Cm 2 or less, ⁇ dose after heating at 200 ° C. is 0.002 cph / cm 2 or less, and ⁇ dose of metallic copper, metallic zinc and metallic indium after one year is 0.0005 cph / cm 2 It was less than.
  • Examples 20 to 27 and Comparative Examples 13 to 20 In Examples 20 to 27, the plate-shaped metal tin obtained in Example 1 was used, and in Comparative Examples 13 to 20, the plate-shaped metal tin obtained in Comparative Example 1 was used.
  • These metal tins and metal raw materials of silver, copper, zinc, indium, bismuth, nickel, germanium having an ⁇ ray emission amount of 0.002 cph / cm 2 or less shown in Table 5 below are cut and weighed, and a carbon crucible In a vacuum atmosphere using a high frequency induction vacuum melting furnace, and heated to a temperature above the melting temperature of each metal raw material to cast a tin alloy as a final product.
  • the alpha dose of the tin alloy before heating obtained in Examples 20 to 27 was 0.0005 cph. / cm 2 less than the either was 0.0005 ⁇ 0.0006cph / cm 2.
  • Dose alpha tin alloy after heating at 100 ° C. either less than 0.0005cph / cm 2, a 0.0005 ⁇ 0.0007cph / cm 2, the tin alloy after heating at 200 ° C. alpha dose ⁇ tin alloy after dose and one year, it may be the less than 0.0005cph / cm 2, was 0.0005 ⁇ 0.0006cph / cm 2.
  • the ⁇ dose before heating is less than 0.001 cph / cm 2
  • the ⁇ dose after heating at 100 ° C. is 0.001 cph / cm 2 or less.
  • the ⁇ dose after heating at 200 ° C. was 0.002 cph / cm 2 or less
  • the ⁇ dose of the tin alloy after one year was less than 0.0005 cph / cm 2 .
  • the low ⁇ -ray emission tin alloy of tin and tin can be used as a solder material containing tin as a main metal for bonding semiconductor chips of semiconductor devices in which soft errors are considered to be a problem due to the influence of ⁇ -rays.

Abstract

錫、銀、銅、亜鉛又はインジウムのいずれかの低α線放出量の金属であって、大気中で100℃、6時間加熱した後のα線の放出量が0.002cph/cm以下である。不純物として鉛をそれぞれ含む錫、銀、銅、亜鉛又はインジウムのいずれかの金属を硫酸水溶液に溶解して前記金属の硫酸塩水溶液を調製するとともにこの水溶液中で硫酸鉛を沈殿させて除去する。硫酸鉛を除去した硫酸塩水溶液を撹拌しながらα線放出量が10cph/cm以下の鉛を含む硝酸鉛水溶液を添加して硫酸塩水溶液中で硫酸鉛を沈殿させ、同時にこの水溶液から硫酸鉛を除去しながら循環させる。硫酸塩水溶液を電解液として前記金属を電解採取する。

Description

低α線放出量の金属及び錫合金並びにその製造方法
 本発明は、電子部品を製造するためのはんだ材料に好適なα線の放出量が極めて少ない低α線放出量の錫、銀、銅、亜鉛又はインジウムのいずれかの金属に関する。また銀、銅、亜鉛、インジウム、ビスマス、ニッケル及びゲルマニウムからなる群より選ばれた1種以上の金属と錫との低α線放出量の合金(以下、錫合金という。)に関する。更にこれらの低α線放出量の金属又は錫合金の各製造方法に関する。
 本願は、2017年8月17日に日本に出願された特願2017-157394号及び2018年7月30日に日本に出願された特願2018-142195号について優先権を主張し、その内容をここに援用する。
 電子部品を製造するためのはんだ材料として、鉛(Pb)が環境に影響を及ぼすということを理由として、Pbフリーの錫(Sn)を主たる金属とするはんだ材料、例えばSn-Ag-Cu、Sn-Ag、Sn-Cu、Sn-Zn、Sn-In、Sn-Bi等の錫合金が開発されている。
 また上記合金に更にNi、Ge等の微量成分を添加した合金等が開発されている。こうしたはんだ材料は半導体メモリーにおけるチップと基板の接合など半導体装置の製造に使用されている。
 Pbフリーのはんだ材料であっても、主たるはんだ材料であるSnからPbを完全に除去することは非常に困難であり、Sn中には微量のPbが不純物として含まれる。
 近年、ますます高密度化及び高容量化している半導体装置においては、このPbの同位体である210Pbから生じる210Poから放出されるα線が、ソフトエラー発生の一要因であることが分かってきた。このため、この不純物として含まれる210Pbに起因するα線が極力放出しない低α線放出量の錫が求められている。また、現状の市場では、α線放出量は0.002cph/cm以下の製品が最も普及しており、一つの指標として0.002cph/cm以下であることが重要視される。また、製品の使用環境の多様化に伴い、0.001cph/cm以下の製品への需要も高まってきている。
 低α線放出量の錫を得る方法として、錫とα線放出量が10cph/cm以下の鉛を合金化した後、錫に含まれる鉛を除去する精錬を行う低α線放出量の錫の製造方法が開示されている(例えば、特許文献1(請求項1、段落[0011]~段落[0016]、段落[0022])参照。)。
 この特許文献1の実施例1の方法では、表面α線放出量が5cph/cm、純度:99.99%の市販のSnと、表面α線放出量が10cph/cm、純度:99.99%の市販のPbを用意し、SnとPbを窒素雰囲気中、高純度黒鉛ルツボ内で高周波誘導炉を用いて溶解し、Sn-5wt%Pb合金を製造している。そして、この合金を高純度黒鉛ルツボに入れて加熱溶融して、Pbを蒸発除去し、冷却後、ルツボ内に残留したSnを圧延することで、低α線放出量のSn板を作製している。
 また、別の低α線放出量の錫を得る方法として、原料となる錫を硫酸のような酸で浸出させた後、この浸出液を電解液とし、該電解液に不純物の吸着剤である酸化チタン、酸化アルミニウム、酸化錫、活性炭、カーボンのいずれか1種類以上を懸濁させ、原料Snアノードを用いて電解精製を行い、U、Thのそれぞれの含有量が5ppb以下、Pb、Biのそれぞれの含有量が1ppm以下であり、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)である高純度錫を得る方法が開示されている(例えば、特許文献2(請求項3、段落[0014])参照。)。
 この特許文献2には、この方法で製造された高純度錫又は錫合金は最終的には、溶解鋳造によって製造されるものであるが、その錫の鋳造組織を持つ高純度錫のα線カウント数が0.001cph/cm以下とすることができると記載されている。
 一方、はんだによって基板に接合したチップが使用時に高温環境に曝された場合、使用初期と比較して、ソフトエラーの発生率が上昇する問題が近年報告されている(例えば、非特許文献1(Abstract)参照。)。
 この報告によれば、ソフトエラーの発生率の上昇は、高温環境下ではんだ材料からのα線放出量が増加することに起因するとされている。
日本国特許第3528532号公報(B) 日本国特許第4472752号公報(B)
 上記非特許文献1の報告から、デバイスが高温環境に曝された際に、はんだ材料由来のα線放出量の増加がソフトエラーの増加につながることが明らかになった。すなわち、錫を製造した初期のα線放出量のみならず、高温環境に曝されたときの錫のα線放出量に関しても、初期と変わらないα線放出量であり、0.002cph/cm以下であることが必要とされている。
 実際に、初期の錫のα線放出量が0.001cph/cm以下であっても、高温環境下に相当する加熱下では、必要とされる錫の低α線放出量が得られていない場合があることを、本発明者らは確認している。
 しかしながら、上記特許文献1及び2では、はんだ接合後の錫の高温環境下でのα線放出量の議論はなされておらず、特許文献1及び2で得られた金属錫では、高温環境に曝されたときの錫のα線放出量が0.001cph/cmを超えているか、若しくは0.002cph/cmでさえ超えているおそれがある。
 また、上記特許文献1の方法では、原料錫に高純度鉛を添加する方法として、SnとPbを窒素雰囲気中、高周波誘導炉を用い、高純度黒鉛ルツボ内で溶解する必要があるため、製造に時間と熱エネルギーを多く必要とし、より簡便な製造方法が求められていた。
 また、特許文献2の表1には、原料錫中の220wtppmの鉛(Pb)が精製後の実施例4で0.06wtppmになることが記載されていることから、原料錫中のPbの濃度の低減割合は最大でも1/4000程度である。
 ここで、α線放出量に起因する210Pbは非放射性の安定したPbと同様の挙動を示すことから、210Pbの低減割合も最大で1/4000程度であり、210Pb濃度の低減には限界があることが示される。
 このため、特許文献2の方法では、不純物としてのPb濃度が高い原料錫に対応できる保証がなく、原料錫中のPb濃度が高くなった場合には、0.001cph/cm以下のレベルのα線放出量を達成することができないおそれがある。
 本発明の目的は、原料錫の210Pb濃度の高低に拘わらず、加熱してもα線放出量が上昇せずに、α線放出量が0.002cph/cm以下である低α線放出量の錫、銀、銅、亜鉛又はインジウムのいずれかの金属又は錫合金を提供することにある。本発明の別の目的は、こうした低α線放出量の上記金属又は錫合金を液相法で製造する方法を提供することにある。
 本発明者らは、上記の課題を解決するために、鋭意研究を行った結果、原料錫と低α線放出量の鉛とをルツボで溶解して合金化して原料錫中に含まれる210Pbの濃度を低減する特許文献1に示されるような熱溶融法に依らずに、原料錫中に含まれる210Pbの濃度を液相で低減する方法を案出した。そして低減程度を調整することで、高温環境に曝されて使用されても、α線放出量が増加しない金属を得る本発明に到達した。
 本発明の第1の観点は、錫、銀、銅、亜鉛及びインジウムのいずれかの低α線放出量の金属であって、大気中で100℃、6時間加熱した後のα線の放出量が0.002cph/cm以下であることを特徴とする低α線放出量の金属である。
 本発明の第2の観点は、第1の観点の低α線放出量の錫と、銀、銅、亜鉛、インジウム、ビスマス、ニッケル及びゲルマニウムからなる群より選ばれた1種又は2種以上の金属との合金であって、大気中で100℃、6時間加熱した後のα線の放出量が0.002cph/cm以下であることを特徴とする低α線放出量の錫合金である。
 本発明の第3の観点は、第2の観点に基づく発明であって、前記低α線放出量の錫と合金を形成する金属が、銀、銅、亜鉛及びインジウムからなる群より選ばれた1種又は2種以上の金属である低α線放出量の錫合金である。
 本発明の第4の観点は、第1ないし第3の観点のいずれかの観点に基づく発明であって、大気中で200℃、6時間加熱した後の前記金属又は前記錫合金のα線の放出量が0.002cph/cm以下である低α線放出量の金属又は錫合金である。
 本発明の第5の観点は、図1(a)に示すように、不純物として鉛(Pb)をそれぞれ含む錫、銀、銅、亜鉛又はインジウムのいずれかの金属(M)を硫酸(HSO)水溶液に溶解して前記金属の硫酸塩(MSO)水溶液を調製するとともに硫酸塩水溶液中で硫酸鉛(PbSO)を沈殿させる工程(a)と、図1(b)に示すように、工程(a)の硫酸塩水溶液をフィルタリングして硫酸鉛を硫酸塩水溶液から除去する工程(b)と、図1(c)に示すように、第1槽で、工程(b)の硫酸鉛を除去した硫酸錫水溶液を少なくとも100rpmの回転速度で撹拌しながらα線放出量が10cph/cm以下の鉛を含む所定の濃度の硝酸鉛(PbNO)水溶液を所定の速度で30分以上かけて添加して、硫酸塩水溶液中で硫酸鉛を沈殿させ、同時に硫酸塩水溶液をフィルタリングして硫酸鉛を硫酸塩水溶液から除去しながら、第1槽中で全体液量に対する循環流量が少なくとも1体積%の割合で循環させる工程(c)と、図1(d)に示すように、工程(c)の硫酸塩水溶液を第1槽から別の第2槽に移した後、硫酸塩水溶液を電解液として前記金属(M)を電解採取する工程(d)とを含むことを特徴とする低α線放出量の金属の製造方法である。
 本発明の第6の観点は、第5の観点に基づく発明であって、前記工程(c)の前記硝酸鉛水溶液中の硝酸鉛の所定の濃度が10質量%~30質量%である低α線放出量の金属の製造方法である。
 本発明の第7の観点は、第5又は第6の観点に基づく発明であって、前記工程(c)の前記硝酸鉛水溶液の所定の添加速度が前記硫酸塩水溶液1リットル(以下、Lという。)に対して1mg/秒~100mg/秒である低α線放出量の金属の製造方法である。
 本発明の第8の観点は、金属錫に、銀、銅、亜鉛、インジウム、ビスマス、ニッケル及びゲルマニウムからなる群より選ばれた1種又は2種以上の金属を添加混合して、この混合物を鋳造することによって低α線放出量の錫合金を製造する方法であって、前記金属錫は、第5ないし第7のいずれかの観点の方法により製造された金属錫であり、前記金属錫に添加する金属は、α線放出量が0.002cph/cm以下であることを特徴とする低α線放出量の錫合金の製造方法である。
 本発明の第9の観点は、金属錫に、銀、銅、亜鉛及びインジウムからなる群より選ばれた1種又は2種以上の金属を添加混合して、この混合物を鋳造することによって低α線放出量の錫合金を製造する方法であって、前記金属錫及び前記金属錫に添加する金属は、それぞれ第5ないし第7のいずれかの観点により製造された金属であることを特徴とする低α線放出量の錫合金の製造方法である。
 本発明の第1の観点の錫、銀、銅、亜鉛及びインジウムのいずれかの低α線放出量の金属、本発明の第2及び第3の観点の低α線放出量の錫合金は、それぞれ製造初期及び製造から長時間経過してもα線放出量が上昇しない特長があるとともに、大気中で100℃、6時間加熱してもα線放出量が上昇せずに、α線放出量が0.002cph/cm以下のままである。このため、第1ないし第3の観点の低α線放出量の金属又は錫合金をはんだ材料としてチップと基板の接合など半導体装置に使用して、この半導体装置を高温環境に曝しても、はんだに含まれる前記金属又は前記錫合金からはα線の放出が極めて少なく、ソフトエラー発生の確率が低い。
 加熱条件を第1の観点の発明で「100℃で6時間」とするのは、実際の使用環境が100℃程度と見込まれるためであり、時間に関しては6時間の加熱で長時間の加熱と同程度の上昇が確認されることから、測定条件を明確にするためである。
 第4の観点の発明で「200℃で6時間」とするのは、加熱温度が高いほどα線放出量は上昇し易く、また200℃を超えると金属が錫の場合には、錫の融点である232℃に近くなりサンプルが溶解してしまうことから、測定条件を明確にするためである。このため、本発明における低α線放出量の金属は、金属が錫の場合には、錫の融点以下の温度で加熱してもα線放出量が上昇せずに、α線放出量が0.002cph/cm以下のままであると言い換えられる。
 はんだ材料のα線は210Poから放出されるが、親核種の210Pbが存在するとその半減期に従ってα線放出量が増加していく傾向が良く知られている。このため、α線放出量が時間の経過とともに変化することを確認することはとても重要な要素である。このα線放出量の増加はシミュレーションにより計算可能であり、約828日で最大値を迎える。このため、時間の経過によるα線放出量の変化の有無を確認するためには、828日までの変化を確認することが好ましい。一方、α線放出量は、時間の経過とともに2次曲線的に変化し、1年経過後のα線放出量は最大で変化したときの80%以上の割合で変化する。このため、本発明では、1年後のα線放出量が変化しないことを確認することで、経時的に変化しないことを確認している。
 本発明の第5の観点の低α線放出量の金属の製造方法では、原料の錫と低α線放出量の鉛とをルツボで溶解して合金化して原料錫中に含まれる210Pbの濃度を低減する特許文献1に示されるような熱溶融法と異なり、不純物として鉛をそれぞれ含む錫、銀、銅、亜鉛又はインジウムのいずれかの金属原料を硫酸錫水溶液にして、ここで生じる硫酸鉛をフィルタリングで除去する。
 その後、この金属原料の硫酸塩水溶液を低α線放出量の鉛(210Pb含有量の少ないPb)を含む硝酸鉛水溶液と反応させて硫酸塩水溶液中の高α線量の鉛(210Pb含有量の多いPb)イオンを低α線放出量の鉛(210Pb含有量の少ないPb)イオンに置換しながら硫酸鉛として沈殿させ、フィルタリングにより除去するという液相法で、上記金属原料中に含まれる210Pbの濃度を低減する。
 このため、この方法では、特許文献1の方法と比べて、より簡便に低α線放出量の金属を製造することができる。この方法では、所定の濃度の硝酸鉛水溶液を所定の添加速度で30分以上かけて添加し、かつ硫酸塩水溶液をフィルタリングして硫酸鉛を除去しながら、槽内で循環させるため、金属原料が含む鉛不純物量と最終的な狙いのα線放出量に合わせて、必要な割合で210Pbを低減することが可能である。
 このため、最終的に得られる上記錫、銀、銅、亜鉛又はインジウムのいずれかの金属は、210Pbに起因するα線量が、特許文献1で製造される錫のα線量より大幅に減少し、製造初期及び製造から長時間経過した後のα線放出量は勿論のこと、大気中で100℃又は200℃で6時間加熱しても、加熱後のα線放出量は初期値から大きく変化しない。
 また、この方法では、連続的に210Pbの濃度を低減することが可能であるため、理論上どんなに210Pbの濃度が高い金属原料を用いても、低α線放出量の上記金属を製造することが可能である。
 本発明の第6の観点の低α線放出量の金属の製造方法では、工程(c)の硝酸鉛水溶液中の硝酸鉛の濃度を10質量%~30質量%にすることにより、金属原料に由来する鉛(210Pb)をより確実に沈殿除去できるため、上記加熱後の上記錫、銀、銅、亜鉛又はインジウムのいずれかの金属のα線放出量はより一層減少する。
 本発明の第7の観点の低α線放出量の金属の製造方法では、工程(c)の硝酸鉛水溶液の添加速度を硫酸塩水溶液1Lに対して1mg/秒~100mg/秒にすることにより、金属原料に由来する鉛(210Pb)を更により一層確実に沈殿除去できるため、上記加熱後の上記錫、銀、銅、亜鉛又はインジウムのいずれかの金属のα線放出量は更により一層減少する。
 本発明の第8の観点の低α線放出量の錫合金の製造方法では、第5ないし第7の観点で製造された低α線放出量の金属錫に、α線放出量が0.002cph/cm以下の銀等の金属を添加して鋳造し、錫合金を製造するため、第5の観点に基づく発明と同様に、理論上どんなに210Pbの濃度が高い錫原料を用いても、低α線放出量の錫合金を製造することが可能である。
 本発明の第9の観点の低α線放出量の錫合金の製造方法では、第5ないし第7の観点で製造された低α線放出量の金属錫に、第5ないし第7の観点で製造された低α線放出量のα線放出量が0.002cph/cm以下の銀等の金属を添加して鋳造し、錫合金を製造するため、第5の観点に基づく発明と同様に、理論上どんなに210Pbの濃度が高い錫原料を用いても、低α線放出量の錫合金を製造することが可能である。
本発明の低α線放出量の錫、銀、銅、亜鉛及びインジウムのいずれかの金属の製造方法の各工程を示すフローチャートである。 ウラン(U)が崩壊し、206Pbに至るまでの崩壊チェーン(ウラン・ラジウム崩壊系列)を示す図である。 本実施形態の低α線放出量の金属の製造装置の一部を示す図である。
 次に本発明を実施するための形態を図面に基づいて説明する。
 α線を放出する放射性元素は数多く存在するが、多くは半減期が非常に長いか非常に短いために実際には問題にならない。
 実際に問題になるのは、例えば、図2の破線の枠内に示す、U崩壊チェーンにおける、210Pb→210Bi→210Poのβ崩壊後、ポロニウムの同位体210Poから鉛の同位体206Pbへα崩壊する時に放出される放射線の一種としてのα線である。
 特に、はんだに用いる錫のα線の放出メカニズムに関しては、過去の調査によりこのことが明らかとなっている。ここでは、Biは半減期が短いため、管理上無視することができる。
 要約すると、錫のα線源は、主に210Poであるが、その210Poの放出源である210Pbの量が、主にα線の放出量に影響を及ぼしている。
<第1の実施形態>
 先ず、本発明の第1の実施形態の低α線放出量の錫、銀、銅、亜鉛及びインジウムのいずれかの金属(はんだ材用金属材料)の製造方法を、図1に示す工程の順に、また図3に示す製造装置に基づいて説明する。
<工程(a)と工程(b)>
〔金属原料〕
 第1の実施形態の低α線放出量の錫、銀、銅、亜鉛及びインジウムのいずれかの金属(図1においてMで表す。)を得るための金属原料については、不純物のPb含有量やα線放出量の多寡によって、その選定は束縛されない。
 例えばPb濃度が320質量ppm程度含まれ、Pbによるα線放出量が9cph/cm程度である市販品の錫のような金属を金属原料として使用しても、以下に述べる製造方法と製造装置とを使用して最終的に得られる上記金属において、大気中で100℃又は200℃で6時間加熱した後のα線放出量を0.002cph/cm以下にすることができる。
 なお、上記金属原料の形状は限定されず、粉末状であっても塊状であってもよい。溶解速度を速めるために、水素イオン交換膜を用いて電解溶出する方法を採用しても良い。
〔硫酸塩水溶液の調製と硫酸鉛の沈殿分離〕
 図1に示す工程(a)と工程(b)とでは、図3に示すように、硫酸塩調製槽11に供給口11aから硫酸水溶液(HSO)を入れて槽11に貯えておき、そこに供給口11bから上記金属原料を添加して、撹拌機12で撹拌することにより、上記金属原料を硫酸水溶液に溶解して上記金属原料の硫酸塩(MSO)水溶液13を調製する。
 具体的には、硫酸錫、硫酸銀、硫酸銅、硫酸亜鉛、硫酸インジウムの水溶液を調製する。以下、この水溶液を硫酸塩水溶液という。この時、硫酸塩調製槽11の底部に、上記金属原料中の鉛(Pb)が硫酸鉛(PbSO)となって沈殿する。
 硫酸塩調製槽11の外部に設けられたポンプ14により、硫酸塩水溶液をフィルター16に通して(以下、フィルタリングという。)、また移送管路17を経由して次の第1槽21に移送する。
 フィルター16により硫酸塩調製槽11の底部に沈殿する硫酸鉛は、硫酸塩水溶液から除去される。フィルター16としてはメンブレンフィルターが好ましい。フィルターの孔径は0.1μm~10μmの範囲が好ましい。
<工程(c)>
〔鉛(210Pb)の低減〕
 図1に示す工程(c)では、図3に示す第1槽21には、ポンプ14により移送され、硫酸鉛が除去された硫酸塩水溶液23が貯えられる。この硫酸塩水溶液が第1槽21に所定量貯えられたところで、第1槽21において、供給口21aから10cph/cm以下の低α線放出量の鉛(Pb)を含む所定の濃度の硝酸鉛水溶液を添加して、撹拌機22で少なくとも100rpmの回転速度で硫酸塩水溶液23を撹拌する。
 ここでは、硫酸鉛を除去した上記金属原料の硫酸塩水溶液23を温度10℃~50℃に調整して低α線放出量の鉛(Pb)を含む硝酸鉛水溶液を所定の速度で30分以上かけて添加する。これにより、硫酸塩水溶液中で硫酸鉛(PbSO)が第1槽21の底部に沈殿する。
 この硝酸鉛水溶液は、例えば表面α線放出量が10cph/cm、純度が99.99%のPbを硝酸水溶液に混合して調製される。上記工程により、上記金属原料に含まれていた高α線放出量の原因である不純物の放射性同位体の鉛(210Pb)及び安定同位体の鉛(Pb)イオンが、液中で混合された後に取り除かれ、液中の放射性同位体の鉛(210Pb)の含有量が徐々に低減される。
 なお、上記金属原料の硫酸塩水溶液中の硫酸塩の濃度としては、100g/L以上250g/L以下とすることが好ましい。硫酸塩水溶液中の硫酸(HSO)濃度としては10g/L以上50g/L以下とすることが好ましい。
 硫酸塩水溶液の撹拌速度が100rpm未満では、硫酸塩水溶液と硝酸鉛水溶液中の鉛イオンが十分に混合される前に硫酸鉛として沈殿してしまうため、硫酸塩水溶液中の放射性同位体の鉛(210Pb)イオンを安定同位体の鉛(Pb)イオンに置換できない。撹拌速度の上限値は、液が撹拌によって飛散しない程度の回転速度であり、反応槽である第1槽21の大きさ、撹拌機22の羽根のサイズ、形状によって決められる。ここで、第1槽21の大きさとしては直径1.5m程度の円柱形の容器を用いることができ、撹拌機22の羽根の大きさは0.5m程度であり、形状はプロペラ形状のものを用いることができる。
 硝酸鉛水溶液に含まれる鉛のα線放出量は、特許文献1の原料錫と合金化する鉛と同じ10cph/cm以下の低α線放出量である。このα線放出量を10cph/cm以下としたのは、10cph/cmを超えると最終的に得られる金属原料のα線放出量を0.002cph/cm以下にすることができないからである。また硝酸鉛水溶液中の硝酸鉛の濃度は、10質量%~30質量%であることが好ましい。10質量%未満では、硫酸塩水溶液と硝酸鉛水溶液との反応時間が長引いて製造効率が悪化し易く、30質量%を超えると、硝酸鉛が効率的に活用されず、無駄になり易い。
 また硝酸鉛水溶液の添加速度は、硫酸塩水溶液1Lに対して1mg/秒~100mg/秒であることが好ましく、1mg/秒~10mg/秒であることが更に好ましい。この添加速度は、硝酸鉛水溶液中の硝酸鉛濃度に依存する一方、1mg/秒未満では、硫酸塩水溶液と硝酸鉛水溶液との反応時間が長引いて製造効率が悪化し易く、100mg/秒を超えると、硝酸鉛が効率的に活用されず、無駄になり易い。
 更に硝酸鉛水溶液を添加するのに30分以上かけるのは、硝酸鉛水溶液の濃度及び添加速度を高めても、放射性同位体の鉛(210Pb)の低減は、一定の割合でしか進行せず、十分に低減させるのに一定の時間をかけて添加する必要があるからである。このため、添加時間が30分未満であると、上記金属原料のα線放出量を所望の値まで低下させることができない。
 図3に戻って、図1に示すこの工程(c)では、上記添加と同時に、第1槽21内の温度10℃~50℃の硫酸塩水溶液23は第1槽21の外部に設けられたポンプ24により、フィルター26を通して、循環管路27に送られるか、或いは移送管路28を経由して、図示しない次の第2槽に移送される。
 循環管路27及び移送管路28には、それぞれ開閉バルブ27a及び28aが設けられる。ポンプ24を稼働させて、第1槽21でフィルター26により、残存する硫酸鉛(PbSO)を硫酸塩水溶液23から除去しながら、バルブ27aを開放し、バルブ28aを閉止することにより、第1槽中で全体液量に対する循環流量が少なくとも1体積%の割合で硫酸塩水溶液23を、循環管路27を通して循環させる。
 この硫酸塩水溶液の循環により、液中の余分な硫酸鉛が除去され、硫酸塩水溶液中の放射性同位体の鉛(210Pb)イオンと安定同位体の鉛(Pb)イオンの置換がスムーズに行われる。
 循環流量を少なくとも1体積%(1体積%以上)にするのは、1体積%未満では、フィルター26を通過する硫酸塩水溶液の液量が僅かになり、液中に浮遊する硫酸鉛のフィルター26における捕集効率が低下するためである。捕集効率が低下すると、硫酸塩水溶液中に硫酸鉛が大量の残留して、硫酸塩水溶液中の放射性同位体の鉛(210Pb)イオンと安定同位体の鉛(Pb)イオンの置換がスムーズに行われなくなる。
 フィルター26は上述したメンブレンフィルターを用いることができる。
<工程(d)>
〔錫、銀、銅、亜鉛及びインジウムのいずれかの金属の電解採取〕
 続いて、バルブ27aを閉止し、バルブ28aを開放することにより、第1槽21から別の図示しない第2槽に鉛(210Pb)イオンのα線量が低下した硫酸塩水溶液をフィルター26でフィルタリングした後に移送する。
 温度10~50℃の硫酸塩水溶液を電解液として用い、電解液中にアノードにチタン白金板を、カソードにSUS製の板をそれぞれ配置して、第2槽で硫酸塩水溶液を電解することにより、カソードに錫、銀、銅、亜鉛及びインジウムのいずれかの金属を析出させる。カソードに析出したこの金属を採取し、必要により溶解、鋳造することにより、上記金属のインゴットを得る。インゴットの一部を圧延して板状の金属を得ることもできる。
 これにより、製造初期及び製造から長時間経過した後のα線放出量が0.002cph/cm以下であるとともに、大気中で100℃又は200℃で、6時間加熱してもα線放出量が0.002cph/cm以下である、低α線放出量の金属錫(Sn)、金属銀(Ag)、金属銅(Cu)、金属亜鉛(Zn)又は金属インジウム(In)(はんだ材用金属錫材料、はんだ材用金属銀材料、はんだ材用金属銅材料、はんだ材用金属亜鉛材料又ははんだ材用金属インジウム材料)を製造することができる。
 また、上述した製造方法によれば、製造初期及び製造から長時間経過した後のα線放出量が0.001cph/cm以下であるとともに、大気中で100℃又は200℃で、6時間加熱してもα線量が0.001cph/cm以下である、低α線放出量の金属錫(Sn)、金属銀(Ag)、金属銅(Cu)、金属亜鉛(Zn)又は金属インジウム(In)を製造することもできる。
 更には、上述した製造方法によれば、製造初期及び製造から長時間経過した後のα線放出量が0.0005cph/cm以下であるとともに、大気中で100℃及び200℃で、6時間加熱してもα線量が0.0005cph/cm以下である、低α線放出量の金属錫(Sn)、金属銀(Ag)、金属銅(Cu)、金属亜鉛(Zn)又は金属インジウム(In)を製造することも可能である。
<第2の実施形態>
 次に、本発明の第2の実施形態の低α線放出量の錫合金の製造方法を説明する。
 この製造方法では、第1の実施形態で得られた低α線放出量の金属錫(Sn)と、銀、銅、亜鉛、インジウム、ビスマス、ニッケル及びゲルマニウムからなる群より選ばれた1種又は2種以上の金属とを鋳造することにより錫合金を製造する。
 ここで金属錫と合金を形成する金属としては、錫合金をはんだとして用いた場合、そのはんだの融点と機械特性の観点から、銀、銅、亜鉛、インジウムが好ましい。本発明の目的を達成するため、金属錫と合金を形成する銀、銅、亜鉛、インジウム、ビスマス又はニッケルのα線放出量は0.002cph/cm以下である。
 なお、本実施形態において、鋳造は、例えば、高周波誘導溶解炉等、一般的に鋳造に用いられる炉を利用することができる。また、鋳造時の雰囲気としては、真空雰囲気や、窒素又はアルゴン等の不活性ガス雰囲気が挙げられる。更にコンタミネーションを防ぐために、低α線合金専用の溶解炉を使用することが好ましい。
 第2の実施形態で得られた錫合金は、第1の実施形態で得られた金属と同様に、製造初期及び製造から長時間経過した後のα線放出量が0.002cph/cm以下であるとともに、大気中で100℃又は200℃で、6時間加熱してもα線放出量が0.002cph/cm以下である特徴を有する。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <実施例1>
 金属原料としてα線放出量が10.2cph/cmでPb濃度が15ppmの市販のSn粉末を用いて、これを硫酸錫調製槽に貯えられた、濃度130g/Lの硫酸水溶液に添加混合して、50℃で溶解して200g/Lの硫酸錫水溶液1mを調製した。これにより金属原料の錫に含まれていたPbが硫酸鉛として沈殿した。硫酸錫水溶液をユアサメンブレンシステム社製のメンブレンフィルター(孔径:0.2μm)を通してろ過し、硫酸鉛を除去した。
 次いで第1槽で、硫酸鉛を除去した硫酸錫水溶液を100rpmの回転速度で撹拌しながら、この水溶液にα線放出量が5cph/cmのPbを含む硝酸鉛水溶液(硝酸鉛濃度:20質量%)を1mg/秒・L(1000mg/秒)の速度で30分かけて添加した。なお、第1槽としては、直径1.5mの円柱形の容器を用いた。
 この添加と同時に硫酸錫水溶液を上記と同一のメンブレンフィルターに通して硫酸鉛を硫酸錫水溶液から除去しながら、第1槽中で全体液量に対する循環流量が1体積%の割合になるように硫酸錫水溶液を循環させた。
 その後、硫酸錫水溶液を第1槽からフィルタリングした後に第2槽に移し、第2槽でこの硫酸錫水溶液を電解液として用い、電解液中にアノードとしてチタン白金板を、カソードとしてSUS板をそれぞれ配置し、液温30℃、カソード電流密度5A/dmで電解を行った。
 カソードに析出した金属錫を採取し、最終製品である圧延して板状の金属錫を得た。上記実施例1の製造条件を以下の表1に示す。なお、硝酸鉛水溶液の添加速度は、硫酸錫水溶液1Lに対する添加速度である。硝酸鉛水溶液の全添加量は、硫酸錫水溶液1Lに対する添加量である。
Figure JPOXMLDOC01-appb-T000001
<実施例2~16及び比較例1~7>
 実施例2~16及び比較例1~7では、実施例1で述べた原料錫、硫酸錫水溶液の撹拌速度・循環速度、硝酸鉛水溶液のPbのα線量、硝酸鉛濃度、添加速度、添加時間を上記表1に示すように変更した。以下、実施例1と同様にして、最終製品である板状の金属錫を得た。
<比較例8>
 比較例8では、本明細書の背景技術に記載した特許文献1の実施例1に準じて、最終製品である板状の金属錫を得た。具体的には、表面α線放出量が5cph/cm、純度:99.99%でPb濃度が240ppmの市販のSnと、表面α線放出量が10cph/cm、純度:99.99%の市販のPbを用意し、SnとPbを窒素雰囲気中、高純度黒鉛ルツボ内で高周波誘導炉を用いて溶解し、Sn-5質量%Pb合金を製造し、この合金を高純度黒鉛ルツボに入れて加熱溶融して、Pbを蒸発除去し、冷却後、ルツボ内に残留したSnを圧延して低α線放出量のSn板を作製した。
<比較例9>
 比較例9では、本明細書の背景技術に記載した特許文献2の実施例1に準じて、板状の金属錫を得た。具体的には、原料錫としてα線放出量が9.2cph/cmでPb濃度が240ppmの市販のSn粉末を用いた。この原料錫を硫酸で浸出し、この浸出液を電解液とした。またアノードには3NレベルのSn板を用いた。これを電解温度20℃で電流密度1A/dmという条件で電解を行った。カソードに析出した金属錫を採取し、圧延して最終製品である板状の金属錫を得た。
 <比較試験及び評価その1>
 実施例1~16及び比較例1~9で得られた25種類の最終製品である金属錫について、次に述べる方法で、金属錫中のPb濃度及びこのPbによるα線放出量を加熱前と加熱後と加熱し徐冷してから1年経過した後で測定した。この結果を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
(a)金属錫中のPb濃度
 金属錫中のPb濃度は、板状の金属錫を試料とし、これを熱塩酸に溶解し、得られた液をICP(プラズマ発光分光分析装置、定量下限:1質量ppm)で分析し、不純物Pb量を測定した。
(b)金属錫中のPbによるα線放出量
 初めに、得られた板状の金属錫を加熱前の試料1とした。この加熱前の試料1から放出されるα線量をアルファサイエンス社製ガスフロー式α線測定装置(MODEL-1950、測定下限:0.0005cph/cm)で96時間測定した。この装置の測定下限は0.0005cph/cmである。この時のα線放出量を加熱前のα線放出量とした。
 次に、加熱前で測定した試料1を大気中、100℃で6時間加熱した後、室温まで徐冷して試料2とした。この試料2のα線放出量を試料1と同様の方法で測定した。この時のα線放出量を「加熱後(100℃)」とした。
 次に、α線放出量の測定が終わった試料2を大気中、200℃で6時間加熱した後、室温まで徐冷して試料3とした。この試料3のα線放出量を試料1と同様の方法で測定した。この時のα線放出量を「加熱後(200℃)」とした。
 更に試料3を、コンタミネーションを防ぐために真空梱包して1年間保管して試料4とし、この試料4のα線放出量を試料1と同様の方法で測定した。この時のα線放出量を「1年後」とした。
 表2から明らかなように、比較例1では、硝酸鉛水溶液を添加する際の硫酸錫水溶液の撹拌速度を50rpmにしたために、原料錫の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属錫のα線量は0.0005cph/cm未満であったが、100℃での加熱後は0.0024cph/cmに、また200℃での加熱後は0.0027cph/cmに、更に1年後では0.0135cph/cmに、それぞれ増加していた。
 比較例2では、硝酸鉛水溶液を添加中及び添加後の硫酸錫水溶液の循環速度を硫酸錫水溶液1Lに対して0.5体積%にしたために、原料中の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属錫のα線量は0.0005cph/cm未満であったが、100℃での加熱後は0.0021cph/cmに、また200℃での加熱後は0.0025cph/cmに、更に1年後では0.0186cph/cmに、それぞれ増加していた。
 比較例3では、硝酸鉛水溶液の硝酸鉛濃度を40質量%と高くしたにも拘わらず、添加時間を20分間にしたために、原料錫の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属錫のα線量は0.0005cph/cm未満であったが、100℃及び200℃での加熱後はそれぞれ0.0022cph/cmに、更に1年後では0.0045cph/cmに、増加していた。
 比較例4では、硝酸鉛水溶液の硝酸鉛濃度を20質量%にして、添加時間を20分間にしたために、原料錫の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属錫のα線量は0.0006cph/cmであったが、100℃での加熱後は0.0025cph/cmに、また200℃での加熱後は0.0029cph/cmに、更に1年後では0.0043cph/cmに、それぞれ増加していた。
 比較例5では、硝酸鉛水溶液の添加速度を10mg/秒に速めたにも拘わらず、添加時間を20分間にしたために、原料錫の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属錫のα線量は0.0005cph/cm未満であったが、100℃での加熱後は0.0023cph/cmに、また200℃での加熱後は0.0025cph/cmに、更に1年後では0.0038cph/cmに、それぞれ増加していた。
 比較例6では、硝酸鉛水溶液の添加速度を100mg/秒に速めたにも拘わらず、添加時間を20分間にしたために、原料錫の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属錫のα線量は0.0007cph/cmであったが、100℃での加熱後は0.0024cph/cmに、また200℃での加熱後は0.0031cph/cmに、更に1年後では0.0032cph/cmに、それぞれ増加していた。
 比較例7では、硝酸鉛水溶液に含まれるPbのα線量が12cph/cmである硝酸鉛水溶液を用いたために、原料錫の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属錫のα線量は0.0008cph/cmであったが、100℃での加熱後は0.0021cph/cmに、また200℃での加熱後は0.0025cph/cmに、更に1年後では0.0076cph/cmに、それぞれ増加していた。
 比較例8の特許文献1の実施例1に記載された条件で作られた金属錫のα線量は、加熱前は0.0005cph/cm未満であったが、100℃での加熱後は0.0026cph/cmに、また200℃での加熱後は0.0027cph/cmに、更に1年後では0.0021cph/cmに、それぞれ増加していた。
 比較例9の特許文献2の実施例1に記載された条件で作られた金属錫のα線量は、加熱前は0.0008cph/cmであったが、100℃での加熱後は0.0021cph/cmに、また200℃での加熱後は0.0023cph/cmに、更に1年後では0.0032cph/cmに、それぞれ増加していた。
 これに対して、本発明の第5の観点の製造条件を満たした実施例1~16で得られた金属錫は、加熱前の金属錫のα線量は、0.0005cph/cm未満であるか、0.0005~0.0007cph/cmであった。
 また、100℃での加熱後の金属錫のα線量は、0.0005cph/cm未満であるか、0.0005cph/cmであり、200℃での加熱後の金属錫のα線量は、0.0005cph/cm未満であるか、0.0005~0.0006cph/cmであった。
 更に、1年後の金属錫のα線量は、0.0005cph/cm未満であった。即ち、実施例1~16で得られた金属錫は、加熱前のα線量は0.001cph/cm未満であり、100℃での加熱後のα線量は0.001cph/cm以下であり、200℃での加熱後のα線量は0.002cph/cm以下であり、1年後の金属錫のα線量は、0.0005cph/cm未満であった。
<実施例17及び比較例10>
 金属原料として実施例1で述べた原料錫の代わりにα線放出量が0.2cph/cmでPb濃度が15ppmの市販のCu粉末を用い、実施例1で述べた硫酸錫水溶液の代わり硫酸銅水溶液を調製した。
<実施例18及び比較例11>
 金属原料として実施例1で述べた原料錫の代わりにα線放出量が3cph/cmでPb濃度が15ppmの市販のZn粉末を用い、実施例1で述べた硫酸錫水溶液の代わり硫酸亜鉛水溶液を調製した。
<実施例19及び比較例12>
 金属原料として実施例1で述べた原料錫の代わりにα線放出量が5cph/cmでPb濃度が15ppmの市販のインジウム粉末を用い、実施例1で述べた硫酸錫水溶液の代わり硫酸インジウム水溶液を調製した。
 実施例17~19及び比較例10~12の硫酸塩水溶液の撹拌速度・循環速度、硝酸鉛水溶液のPbのα線量、硝酸鉛濃度、添加速度、添加時間を以下の表3に示すように変更した。以下、実施例1と同様にして、最終製品である金属銅、金属亜鉛及び金属インジウムをそれぞれ得た。
Figure JPOXMLDOC01-appb-T000003
 <比較試験及び評価その2>
 実施例17~19及び比較例10~12で得られた金属銅、金属亜鉛及び金属インジウムについて、前述した方法で、これらの金属中のPb濃度及びこのPbによるα線放出量を、加熱前と加熱後と1年後でそれぞれ測定した。この結果を、以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、比較例10では、硝酸鉛水溶液を添加する際の硫酸銅水溶液の撹拌速度を50rpmにしたために、原料Cu粉末の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属銅のα線量は0.0005cph/cm未満であったが、100℃での加熱後は0.0029cph/cmに、また200℃での加熱後は0.0031cph/cmに、更に1年後では0.0092cph/cmに、それぞれ増加していた。
 比較例11では、硝酸鉛水溶液を添加する際の硫酸亜鉛水溶液の撹拌速度を50rpmにし、循環速度を0.5体積%にしたために、原料Zn粉末の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属亜鉛のα線量は0.0005cph/cm未満であったが、100℃での加熱後は0.0026cph/cmに、また200℃での加熱後は0.0025cph/cmに、更に1年後では0.0123cph/cmに、それぞれ増加していた。
 比較例12では、硝酸鉛水溶液を添加する際の硫酸インジウム水溶液の撹拌速度を50rpmにしたために、原料インジウム粉末の放射性同位体の鉛(210Pb)が十分に低減されず、加熱前の金属銅のα線量は0.0005cph/cm未満であったが、100℃での加熱後は0.0031cph/cmに、また200℃での加熱後は0.0028cph/cmに、更に1年後では0.0109cph/cmに、それぞれ増加していた。
 これに対して、本発明の第5の観点の製造条件を満たした実施例17~19で得られた金属銅、金属亜鉛及び金属インジウムは、加熱前のこれら金属のα線量は、0.0005cph/cm未満であった。
 また、100℃での加熱後のこれらの金属のα線量は、0.0005cph/cm未満であるか、0.0005cph/cmであり、200℃での加熱後の金属錫のα線量は、0.0005cph/cm未満であるか、0.0005cph/cmであった。更に1年後の金属錫のα線量は、0.0005cph/cm未満であった。
 即ち、実施例17~19で得られた金属銅、金属亜鉛及び金属インジウムは、加熱前のα線量は0.001cph/cm未満であり、100℃での加熱後のα線量は0.001cph/cm以下であり、200℃での加熱後のα線量は0.002cph/cm以下であり、1年後の金属銅、金属亜鉛及び金属インジウムのα線量は、0.0005cph/cm未満であった。
<実施例20~27及び比較例13~20>
 実施例20~27では、実施例1で得られた板状の金属錫を用い、比較例13~20では、比較例1で得られた板状の金属錫を用いた。これらの金属錫と、以下の表5に示すα線放出量が0.002cph/cm以下の銀、銅、亜鉛、インジウム、ビスマス、ニッケル、ゲルマニウムの金属原料とを切断、計量し、カーボンルツボに入れ、高周波誘導真空溶解炉を用いて、真空雰囲気下で、各金属原料の溶融温度以上の温度に加熱して、最終製品である錫合金を鋳造した。
Figure JPOXMLDOC01-appb-T000005
 <比較試験及び評価その3>
 実施例20~27及び比較例13~20で得られた最終製品である錫合金について、前述した方法で、これらの錫合金中のPb濃度及びこのPbによるα線放出量を、加熱前と加熱後と1年後で測定した。この結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように、比較例13~20では、比較例1で得られた板状の金属錫を用いたため、加熱前の錫合金のα線量は0.0005cph/cm未満であるか、0.0005~0.0006cph/cmであったが、100℃での加熱後は0.0021~0.0029cph/cmに、また200℃での加熱後は0.0022~0.0028cph/cmに、更に1年後では0.0084~0.0120cph/cmに、それぞれ増加していた。
 これに対して、実施例20~27では、実施例1で得られた板状の金属錫を用いたため、実施例20~27で得られた加熱前の錫合金のα線量は、0.0005cph/cm未満であるか、0.0005~0.0006cph/cmであった。また100℃での加熱後の錫合金のα線量は、0.0005cph/cm未満であるか、0.0005~0.0007cph/cmであり、200℃での加熱後の錫合金のα線量及び1年後の錫合金のα線量は、それぞれ0.0005cph/cm未満であるか、0.0005~0.0006cph/cmであった。即ち、実施例20~27で得られた錫合金は、加熱前のα線量は0.001cph/cm未満であり、100℃での加熱後のα線量は0.001cph/cm以下であり、200℃での加熱後のα線量は0.002cph/cm以下であり、1年後の錫合金のα線量は、0.0005cph/cm未満であった。
 本発明の低α線放出量の錫、銀、銅、亜鉛又はインジウムのいずれかの金属、又は銀、銅、亜鉛、インジウム、ビスマス、ニッケル及びゲルマニウムからなる群より選ばれた1種以上の金属と錫との低α線放出量の錫合金は、α線の影響によりソフトエラーが問題視される半導体装置の半導体チップの接合用の錫を主たる金属とするはんだ材料に利用することができる。
 11  硫酸塩調製槽
 12、22  撹拌機
 13  硫酸塩水溶液
 14、24  ポンプ
 16、26  フィルター
 17、28  移送管路
 21  第1槽
 23  硫酸塩水溶液
 27  循環管路

Claims (9)

  1.  錫、銀、銅、亜鉛又はインジウムのいずれかの低α線放出量の金属であって、
     大気中で100℃、6時間加熱した後のα線の放出量が0.002cph/cm以下であることを特徴とする低α線放出量の金属。
  2.  請求項1記載の低α線放出量の錫と、銀、銅、亜鉛、インジウム、ビスマス、ニッケル及びゲルマニウムからなる群より選ばれた1種又は2種以上の金属との合金であって、
     大気中で100℃、6時間加熱した後のα線の放出量が0.002cph/cm以下であることを特徴とする低α線放出量の錫合金。
  3.  前記低α線放出量の錫と合金を形成する金属が、銀、銅、亜鉛及びインジウムからなる群より選ばれた1種又は2種以上の金属である請求項2記載の低α線放出量の錫合金。
  4.  大気中で200℃、6時間加熱した後の前記金属又は前記錫合金のα線の放出量が0.002cph/cm以下である請求項1ないし3のいずれか1項に記載の低α線放出量の金属又は錫合金。
  5.  不純物として鉛をそれぞれ含む錫、銀、銅、亜鉛又はインジウムのいずれかの金属を硫酸水溶液に溶解して前記金属の硫酸塩水溶液を調製するとともに前記硫酸塩水溶液中で硫酸鉛を沈殿させる工程(a)と、
     前記工程(a)の前記硫酸塩水溶液をフィルタリングして前記硫酸鉛を前記硫酸塩水溶液から除去する工程(b)と、
     第1槽で、前記工程(b)の前記硫酸鉛を除去した硫酸塩水溶液を少なくとも100rpmの回転速度で撹拌しながらα線放出量が10cph/cm以下の鉛を含む所定の濃度の硝酸鉛水溶液を所定の速度で30分以上かけて添加して、硫酸塩水溶液中で硫酸鉛を沈殿させ、同時に前記硫酸塩水溶液をフィルタリングして前記硫酸鉛を前記硫酸塩水溶液から除去しながら、前記第1槽中で全体液量に対する循環流量が少なくとも1体積%の割合で循環させる工程(c)と、
     前記工程(c)の前記硫酸塩水溶液を前記第1槽から別の第2槽に移した後、前記硫酸塩水溶液を電解液として前記金属を電解採取する工程(d)と
     を含むことを特徴とする低α線放出量の金属の製造方法。
  6.  前記工程(c)の前記硝酸鉛水溶液中の硝酸鉛の所定の濃度が10質量%~30質量%である請求項5記載の低α線放出量の金属の製造方法。
  7.  前記工程(c)の前記硝酸鉛水溶液の所定の添加速度が前記硫酸塩水溶液1リットルに対して1mg/秒~100mg/秒である請求項5又は6記載の低α線放出量の金属の製造方法。
  8.  金属錫に、銀、銅、亜鉛、インジウム、ビスマス、ニッケル及びゲルマニウムからなる群より選ばれた1種又は2種以上の金属を添加混合して、この混合物を鋳造することによって低α線放出量の錫合金を製造する方法であって、
     前記金属錫は、請求項5ないし7のいずれか1項に記載の方法により製造された金属錫であり、
     前記金属錫に添加する金属は、α線放出量が0.002cph/cm以下であることを特徴とする低α線放出量の錫合金の製造方法。
  9.  金属錫に、銀、銅、亜鉛及びインジウムからなる群より選ばれた1種又は2種以上の金属を添加混合して、この混合物を鋳造することによって低α線放出量の錫合金を製造する方法であって、
     前記金属錫及び前記金属錫に添加する金属は、それぞれ請求項5ないし7のいずれか1項に記載の方法により製造された金属であることを特徴とする低α線放出量の錫合金の製造方法。
PCT/JP2018/030211 2017-08-17 2018-08-13 低α線放出量の金属及び錫合金並びにその製造方法 WO2019035446A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880052602.8A CN111032921B (zh) 2017-08-17 2018-08-13 低α射线释放量的金属及锡合金以及其制造方法
US16/638,770 US20200385843A1 (en) 2017-08-17 2018-08-13 METAL AND TIN ALLOY HAVING LOW alpha-RAY EMISSION, AND METHOD FOR PRODUCING SAME
KR1020197038175A KR102161930B1 (ko) 2017-08-17 2018-08-13 저 α 선 방출량의 금속 및 주석 합금 그리고 그 제조 방법
EP18846525.6A EP3653760A4 (en) 2017-08-17 2018-08-13 LOW RADIANT METAL AND TIN ALLOY AND THE METHOD OF MANUFACTURING THEM
US17/991,018 US20230085708A1 (en) 2017-08-17 2022-11-21 Metal and tin alloy having low alpha-ray emission, and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017157394 2017-08-17
JP2017-157394 2017-08-17
JP2018-142195 2018-07-30
JP2018142195A JP6512354B2 (ja) 2017-08-17 2018-07-30 低α線放出量の金属又は錫合金及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/638,770 A-371-Of-International US20200385843A1 (en) 2017-08-17 2018-08-13 METAL AND TIN ALLOY HAVING LOW alpha-RAY EMISSION, AND METHOD FOR PRODUCING SAME
US17/991,018 Division US20230085708A1 (en) 2017-08-17 2022-11-21 Metal and tin alloy having low alpha-ray emission, and method for producing same

Publications (1)

Publication Number Publication Date
WO2019035446A1 true WO2019035446A1 (ja) 2019-02-21

Family

ID=65362426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030211 WO2019035446A1 (ja) 2017-08-17 2018-08-13 低α線放出量の金属及び錫合金並びにその製造方法

Country Status (2)

Country Link
US (1) US20230085708A1 (ja)
WO (1) WO2019035446A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102636A1 (ja) * 2020-11-12 2022-05-19 三菱マテリアル株式会社 有機錫化合物、その製造方法、これを用いたeuvレジスト膜形成用液組成物及びeuvレジスト膜の形成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528532B2 (ja) 1971-11-13 1977-03-10
JP4472752B2 (ja) 2005-07-01 2010-06-02 日鉱金属株式会社 高純度錫又は錫合金及び高純度錫の製造方法
JP2011214040A (ja) * 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp α線量が少ない銀又は銀を含有する合金及びその製造方法
WO2012120982A1 (ja) * 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 α線量が少ない銅又は銅合金及び銅又は銅合金を原料とするボンディングワイヤ
JP2014169502A (ja) * 2014-03-28 2014-09-18 Jx Nippon Mining & Metals Corp α線量が少ないインジウム又はインジウムを含有する合金
JP2016074969A (ja) * 2014-10-02 2016-05-12 Jx金属株式会社 高純度錫の製造方法、高純度錫の電解採取装置及び高純度錫
JP2017057451A (ja) * 2015-09-15 2017-03-23 Jx金属株式会社 低α線高純度亜鉛及び低α線高純度亜鉛の製造方法
JP2017510706A (ja) * 2014-02-20 2017-04-13 ハネウェル・インターナショナル・インコーポレーテッド 混合電解質を用いる改良された金属精製方法
JP2017157394A (ja) 2016-03-01 2017-09-07 富士通株式会社 全固体電池
JP2018142195A (ja) 2017-02-28 2018-09-13 沖電気工業株式会社 現金処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456881B2 (ja) * 2010-03-16 2014-04-02 Jx日鉱日石金属株式会社 α線量が少ない錫又は錫合金の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528532B2 (ja) 1971-11-13 1977-03-10
JP4472752B2 (ja) 2005-07-01 2010-06-02 日鉱金属株式会社 高純度錫又は錫合金及び高純度錫の製造方法
JP2011214040A (ja) * 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp α線量が少ない銀又は銀を含有する合金及びその製造方法
WO2012120982A1 (ja) * 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 α線量が少ない銅又は銅合金及び銅又は銅合金を原料とするボンディングワイヤ
JP2017510706A (ja) * 2014-02-20 2017-04-13 ハネウェル・インターナショナル・インコーポレーテッド 混合電解質を用いる改良された金属精製方法
JP2014169502A (ja) * 2014-03-28 2014-09-18 Jx Nippon Mining & Metals Corp α線量が少ないインジウム又はインジウムを含有する合金
JP2016074969A (ja) * 2014-10-02 2016-05-12 Jx金属株式会社 高純度錫の製造方法、高純度錫の電解採取装置及び高純度錫
JP2017057451A (ja) * 2015-09-15 2017-03-23 Jx金属株式会社 低α線高純度亜鉛及び低α線高純度亜鉛の製造方法
JP2017157394A (ja) 2016-03-01 2017-09-07 富士通株式会社 全固体電池
JP2018142195A (ja) 2017-02-28 2018-09-13 沖電気工業株式会社 現金処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. NARASIMHAM ET AL.: "Influence of Polonium Diffusion at Elevated Temperature on the Alpha Emission Rate and Memory SER", IEEE, 2017

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102636A1 (ja) * 2020-11-12 2022-05-19 三菱マテリアル株式会社 有機錫化合物、その製造方法、これを用いたeuvレジスト膜形成用液組成物及びeuvレジスト膜の形成方法

Also Published As

Publication number Publication date
US20230085708A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
KR101623629B1 (ko) 구리 또는 구리 합금, 본딩 와이어, 구리의 제조 방법, 구리 합금의 제조 방법 및 본딩 와이어의 제조 방법
US9394590B2 (en) Low α-dose tin or tin alloy, and method for producing same
JP5189229B1 (ja) 高純度ランタンの製造方法、高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜
JP2013185214A (ja) α線量が少ないビスマス又はビスマス合金及びその製造方法
US20230085708A1 (en) Metal and tin alloy having low alpha-ray emission, and method for producing same
JP6512354B2 (ja) 低α線放出量の金属又は錫合金及びその製造方法
JP5903497B2 (ja) 低α線ビスマスの製造方法並びに低α線ビスマス及びビスマス合金
WO2020026745A1 (ja) 低α線放出量の酸化第一錫及びその製造方法
TWI670233B (zh) 低α射線鉍之製造方法及低α射線鉍
GB2343683A (en) Method for preparation of target material for spattering
JP7314658B2 (ja) 低α線放出量の酸化第一錫の製造方法
TWI830754B (zh) 低α射線放射量的氧化錫(II)及其製造方法
WO2015098191A1 (ja) 低α線ビスマス及び低α線ビスマスの製造方法
JP5941596B2 (ja) 低α線ビスマスの製造方法及び低α線ビスマス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038175

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018846525

Country of ref document: EP

Effective date: 20200214