WO2011108579A1 - 高分子水処理膜及びその製造方法並びに水処理方法 - Google Patents

高分子水処理膜及びその製造方法並びに水処理方法 Download PDF

Info

Publication number
WO2011108579A1
WO2011108579A1 PCT/JP2011/054745 JP2011054745W WO2011108579A1 WO 2011108579 A1 WO2011108579 A1 WO 2011108579A1 JP 2011054745 W JP2011054745 W JP 2011054745W WO 2011108579 A1 WO2011108579 A1 WO 2011108579A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water treatment
water
resin solution
treatment membrane
Prior art date
Application number
PCT/JP2011/054745
Other languages
English (en)
French (fr)
Inventor
俊洋 玉井
直孝 大籔
咲 谷村
大杉 高志
龍一 松尾
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP11750688.1A priority Critical patent/EP2548632A4/en
Priority to JP2011535747A priority patent/JP5097298B2/ja
Priority to US13/582,528 priority patent/US20120325746A1/en
Priority to AU2011221916A priority patent/AU2011221916B2/en
Priority to CN201180012309.7A priority patent/CN102905778B/zh
Publication of WO2011108579A1 publication Critical patent/WO2011108579A1/ja
Priority to US14/883,880 priority patent/US9855531B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/0871Fibre guidance after spinning through the manufacturing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/301Polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Definitions

  • the present invention relates to a polymer water treatment membrane, a method for producing the same, and a water treatment method.
  • a polymeric water treatment membrane is used.
  • Such a polymer water treatment membrane is generally used as a separation membrane in a water treatment apparatus, for example, polysulfone (PS) type, polyvinylidene fluoride (PVDF) type, polyethylene (PE) type, cellulose acetate ( BACKGROUND
  • PS polysulfone
  • PVDF polyvinylidene fluoride
  • PE polyethylene
  • BACKGROUND A hollow fiber porous membrane formed of various polymer materials such as CA), polyacrylonitrile (PAN), polyvinyl alcohol (PVA), and polyimide (PI) is used.
  • polysulfone-based resins are widely used because they are excellent in physical and chemical properties such as heat resistance, acid resistance, alkali resistance and the like and film formation is easy.
  • the hollow fiber porous membrane captures pollutants of a certain size or more and removes the pollutants from water by pressurized supply of sewage to the fine pores.
  • the performance required for such a polymer water treatment membrane is to have excellent water permeability, excellent physical strength, and stability to various chemical substances in addition to the intended separation characteristics. That is, high chemical resistance), low resistance to soiling during filtration (that is, excellent soiling resistance), and the like can be mentioned.
  • a cellulose acetate-based hollow fiber separation membrane which is resistant to contamination even by long-term use and has a relatively high water permeability has been proposed (see Patent Document 1).
  • this cellulose acetate separation membrane has low mechanical strength and insufficient chemical resistance. Therefore, when the separation membrane is contaminated, there is a problem that it is extremely difficult to perform cleaning by physical or chemical means.
  • a polymer water treatment membrane comprising a hollow fiber membrane made of polyvinylidene fluoride resin and excellent in both physical strength and chemical resistance has been proposed (see Patent Document 2).
  • This high molecular weight water treatment membrane can be used by direct immersion in an aeration tank, and even if it becomes contaminated, it can be cleaned using various chemicals.
  • polyvinylidene fluoride has relatively low hydrophilicity and low staining resistance.
  • immersion type MBR membrane separation activated sludge method
  • This immersion type MBR is a method of obtaining treated water by suction filtration using a hollow fiber-like or flat membrane-like water treatment membrane immersed in a biological treatment water tank, and it has a filtration efficiency due to the deposition of dirt on the outer surface of the membrane. In order to prevent the decrease, the film surface is always cleaned by aeration.
  • the required aeration power in the immersion MBR involves a great deal of power costs and leads to an increase in running costs.
  • the water treatment is properly used for internal pressure filtration and external pressure filtration according to the application.
  • high pressure water is supplied to the thin internal diameter hollow fiber membrane by internal pressure filtration. This enables water treatment with a high filtration amount.
  • a large diameter tubular membrane which is a composite material with a support or a low pressure by a flat membrane is used. Water treatment is carried out using an operation method in which an air flow or a water flow is supplied to the outer surface of the membrane so that the turbidity component is not deposited on the surface of the membrane.
  • an internal pressure type (outside tank type) MBR is proposed in which biological treated water is allowed to flow into the inside of a hollow fiber membrane juxtaposed to a biological treatment tank, and filtration is performed by the internal pressure.
  • the water treatment membrane module used in this internal pressure type MBR has a tube with an inner diameter of about 5 to 10 mm so that clogging due to accumulation of solid content on the module end surface caused by biological treated water containing solid content of various sizes does not occur.
  • Lahr-shaped water treatment membranes are used.
  • a resin solution composed of a resin and a solvent is passed through a double tubular mold, coagulated water by a nonsolvent is sent inside the hollow portion, and A non-solvent induced phase separation method (NIPS method) in which phase separation is carried out by immersing in a coagulation tank is used (for example, Patent Document 5).
  • NIPS method non-solvent induced phase separation method
  • a skin layer is formed by bringing the resin solution out of the mold into contact with air once to evaporate the solvent in the resin solution.
  • the resin solution is dropped in the vertical direction by gravity and then immersed in a coagulation tank, and then the film obtained by coagulation of the resin component in the coagulation tank is made to follow a guide such as a roller. It is transported in the take-off direction, and finally the take-off direction is made horizontal and cut.
  • a polymer water treatment membrane capable of satisfying all the requirements of having excellent water permeability, excellent physical strength, high chemical resistance, and excellent stain resistance is strongly demanded. It is done. In addition, it is desired to establish a manufacturing method that can simply and reliably manufacture a film that can fully satisfy such characteristics.
  • the present invention has been made in view of the above problems, and it is a polymer water treatment membrane having further improved water treatment efficiency while securing mechanical strength and water permeability, etc., a polymer that can be easily and reliably manufactured. It is an object of the present invention to provide a method for producing a water treatment membrane, and a water treatment method capable of realizing efficient water treatment and maintenance.
  • the membrane under the specific condition and / or the specific condition The inventors have found a method for simply and reliably producing a membrane that can fully satisfy the above-mentioned characteristics by transferring / recovering the above, and the present invention has been accomplished.
  • the polymer water treatment membrane of the present invention is It is characterized by comprising a hollow fiber membrane having a self-supporting structure of substantially single main constituent material having an outer diameter of 3.6 mm to 10 mm and an SDR value which is a ratio of the outer diameter to the wall thickness is 3.6 to 34. I assume.
  • such a polymeric water treatment membrane comprises one or more of the following.
  • a porosity of 30 to 85% with respect to the cross-sectional area of the hollow fiber membrane (B) The pores having a minor axis dimension of 10 to 100 ⁇ m are 80% or more of the total pore area, and (c) the innermost layer, the inner layer, the outer layer and the outermost layer are layered sequentially from the center to the radial direction It is distributed, and the major axis dimension of the pores in the inner layer and the outer layer occupies 20 to 50% of the thickness, respectively, and the major axis dimension of the pores in the innermost layer and the outermost layer is the thickness Account for 0-20% of It has the fractionation property of ultrafiltration membrane or microfiltration membrane.
  • the internal pressure resistance of the membrane is 0.3MPa or more,
  • the external pressure strength is 0.1 MPa or more, and the water permeability of pure water is 100 L / m 2 ⁇ hr ⁇ atm or more.
  • the main constituent material is polyvinyl chloride, polyvinyl chloride or polyvinyl chloride-chlorinated vinyl chloride copolymer thereof.
  • the polymerization degree of the vinyl chloride resin is 250 to 3,000.
  • the chlorine content of the vinyl chloride resin is 56.7 to 73.2%.
  • the mass ratio of the vinyl chloride monomer unit in the vinyl chloride resin is 50 to 99% by mass.
  • Such a manufacturing method comprises one or more of the following.
  • Prepare a resin solution of almost single main components The resin solution is discharged and solidified from the discharge port into the coagulating tank from the discharge port in the direction in which the discharge direction of the resin solution is horizontal to the ground.
  • the resin solution is discharged in a state where the discharge port is immersed in a coagulation tank containing a non-solvent using a spinning mold provided with a discharge port.
  • the method further includes cutting the obtained membrane in the coagulation bath or cutting the membrane at a position higher than the discharge port outside the coagulation bath.
  • the specific gravity difference between the resin solution and the non-solvent is within 1.0.
  • the water treatment method of the present invention is characterized by using the above-mentioned high molecular weight water treatment membrane as a separation membrane, or separating the water through the wastewater treated biologically with activated sludge inside the above-mentioned high molecular weight water treatment membrane. I assume.
  • the present invention it is possible to provide a high molecular weight water treatment membrane in which water treatment efficiency is further improved while securing mechanical strength, water permeability and the like.
  • a polymer water treatment membrane capable of sufficiently satisfying the above-mentioned characteristics can be produced most appropriately, simply and reliably. Furthermore, efficient water treatment and maintenance can be realized by using this polymer water treatment membrane.
  • the polymer water treatment membrane of the present invention is a membrane composed mainly of a hollow fiber membrane having a self-supporting structure of substantially single main constituent materials.
  • the polymer water treatment membrane of the present invention is, in other words, a hollow fiber membrane having a single layer structure formed of substantially single main constituent materials.
  • the single layer structure means that it is formed of a single material.
  • a material with weak strength can not maintain a desired shape, for example, a cylindrical shape, a tube shape, etc., unless it is a composite material with a support formed of a stronger material (ceramic, non-woven fabric, etc.) .
  • the conventional relatively large-diameter water treatment membrane has a tubular ceramic structure as a structure supporting the membrane so that the desired shape can be maintained when used as the water treatment membrane other than the material forming the membrane. Or it was accompanied by the nonwoven fabric etc. which were shape
  • the polymer water treatment membrane of the present invention is formed of only hollow fiber membranes, and different materials / materials (for example, non-woven fabric, paper, metal, ceramic, etc.) which do not change a desired shape such as a tubular shape. Without the support formed from.
  • the polymer water treatment membrane of the present invention means a membrane formed in a single layer structure, and does not adopt a laminated structure of different materials / materials. Nevertheless, even with such a structure, it has sufficient strength to retain the desired shape, such as a cylinder, tube shape, etc. when used as a water treatment membrane, ie “self-supporting / structure” have. Therefore, a large-diameter membrane can be realized without a support. For this reason, also in the backwashing, the membrane part in charge of the filtration function does not peel off from the support, and unlike the tube-shaped membrane using a support such as ceramic, excellent water permeability is ensured. can do.
  • the substantially single main constituent material means that it is substantially formed of a single material, as described above.
  • the term "substantially single” means that the main constituent material is one. That is, in the material forming the high molecular weight water treatment membrane (for example, the resin constituting the high molecular weight water treatment membrane), 50% by mass or more (preferably 60% by mass or more, more preferably 70% by mass or more of one resin) It also means that the properties of one of the resins govern the properties of the constituent material. Specifically, it means a material having 50 to 99% by mass of one resin. In addition, it is intended that the single material and the single main constituent material do not include additives generally used in the production of the hollow fiber membrane described later in the production of the vinyl chloride resin described later. ing.
  • hollow fiber membranes examples include membranes having an outer diameter of about 3.6 to 10 mm and a wall thickness of about 0.15 to 2.4 mm.
  • the strength of the hollow fiber membrane is determined by various factors such as the material, the inner diameter, the wall thickness, the roundness, the internal structure, etc.
  • the SDR value (value calculated by the ratio of the outer diameter to the wall thickness) It was found that the use of) was effective. That is, as a result of conducting various experiments, it was found that in order to realize, for example, 0.3 MPa as the pressure resistance performance of the internal and external pressure, it is necessary to design the SDR value to about 34 or less. On the other hand, designing to reduce the SDR value leads to a decrease in membrane filtration area in the water treatment module.
  • the SDR is preferably about 3.6 or more. Among them, it is preferably about 4.0 or more, preferably about 20 or less, and more preferably about 16 or less and about 11 or less.
  • the SDR value is preferably about 4 to 16, and more preferably about 6.5 to 11.
  • the inner diameter is determined by the outer diameter and the wall thickness, but for example, about 1.6 to 9.4 mm is mentioned, and about 4 mm to 8 mm is suitable. In this case, the wall thickness is 0.1 mm to 2 mm The degree is suitable.
  • the polymer water treatment membrane of the present invention is (1) A membrane comprising a hollow fiber membrane having a self-supporting structure of an almost single main constituent material having an outer diameter of 3.6 mm to 10 mm and an SDR value of 3.6 to 34 can be mentioned.
  • the outer diameter is preferably about 5 to 7 mm
  • the SDR value is preferably about 6.5 to 11.
  • the inner and outer diameters, thickness and the like of the film can be measured by actual measurement using an electron micrograph or the like.
  • a membrane comprising a hollow fiber membrane having a self-supporting structure of a substantially single main constituent material having an inner diameter of 3 to 8 mm and an SDR value of 4 to 13, (3) A membrane made of a hollow fiber membrane having a self-supporting structure of a substantially single main constituent material having an inner diameter of 1.6 mm to 9.4 mm and a wall thickness of 0.15 mm to 2.4 mm can be mentioned.
  • the polymer water treatment membrane is preferably a porous membrane having a large number of micropores on its surface.
  • the average pore diameter of the micropores is, for example, about 0.001 to 10 ⁇ m, preferably about 0.01 to 1 ⁇ m.
  • the size and density of the pores on the surface of the membrane can be appropriately adjusted according to the above-mentioned inner diameter, thickness, characteristics to be obtained, etc. For example, it is a grade that can realize the amount of permeated water described later Is suitable. Therefore, while functioning as a water treatment membrane by the porosity of such fine pores, adjusting the fractionation property of, for example, an ultrafiltration membrane or a microfiltration membrane by the size and density of the micropores, etc. Can.
  • the ultrafiltration membrane is a membrane with a pore size of about 2 to 200 nm
  • the microfiltration membrane is a membrane of about 50 nm to 10 ⁇ m.
  • the porosity is, for example, about 10 to 90%, preferably about 20 to 80%.
  • the porosity here means the ratio of the total area of the pores to the total area of the polymer water treatment membrane in any cross section (cross section in the radial direction of the hollow fiber membrane, the same applies hereinafter), for example, The method of calculating and calculating each area from the microscope picture of a surface is mentioned.
  • the porosity relative to the cross-sectional area of the hollow fiber membrane is preferably about 30 to 85%, more preferably about 50 to 85%, about 40 to 75% or about 50 to 75%.
  • pores with a minor axis dimension of 10 to 100 ⁇ m are preferably about 80% or more of the total pore area, and more preferably about 83% or more, about 85% or more, or about 87% or more .
  • the pores constituting the innermost layer, the inner layer, the outer layer and the outermost layer are distributed in layers in the radial direction from the center, and the major axis dimensions of the pores in the inner layer and the outer layer are respectively meat It occupies about 20 to 50% of the thickness, and the major axis dimension of the pores in the innermost layer and the outermost layer more preferably occupies about 0 to 20% of the thickness.
  • the holes 21 constitute each layer relatively regularly so that the major axis direction coincides with the radial direction, for example, the innermost layer 20d, the inner layer 20c, the outer layer 20b, and the outermost layer 20a are arranged / distributed, respectively.
  • the arrangement / distribution in this case may be independent to such an extent that the layers can be clearly separated, but the holes 21 constituting the other layer are partially nested between the holes 21 constituting one layer. It may overlap (see X in FIG. 1).
  • hole in such each layer can be observed / measured by an electron micrograph.
  • Holes 21d are distributed in the innermost layer 20 of the hollow fiber membrane, holes 21c are distributed in the inner layer 20c, holes 21b are distributed in the outer layer 20b, and holes 21a are distributed in the outermost layer 20a.
  • the size of the holes 21 in each layer for example, it is preferable that the major axis A and / or the short axis B of the holes 21 shown in FIG.
  • the major axis dimensions of the holes 21c and 20b in the inner layer 20c and the outer layer 20b preferably occupy about 20 to 50% of the wall thickness and about 25 to 45% of the wall thickness Is preferred.
  • the average major axis dimension of each of the holes 21c and the holes 20b is, for example, preferably relatively uniform at about ⁇ 30%, and more preferably at about ⁇ 15%.
  • the major axis dimensions of the holes 21d and 21a in the innermost layer 20d and the outermost layer 20a preferably occupy about 0 to 20% of the thickness and about 5 to 15% of the thickness. Is preferred.
  • the average major axis dimension of each of the holes 21 d and the holes 20 a is preferably relatively uniform, for example, on the order of ⁇ 30%, and more preferably on the order of ⁇ 15%.
  • the polymer water treatment membrane of the present invention is formed of substantially single main constituent materials, and as such main constituent materials, materials / materials used in the relevant field can be used, among which And vinyl chloride resins are suitable.
  • a vinyl chloride resin a vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having a copolymerizable unsaturated bond and a vinyl chloride monomer, and a polymer obtained by graft copolymerizing a vinyl chloride monomer Examples thereof include graft copolymers and (co) polymers composed of those vinyl chloride monomer units chlorinated. These may be used alone or in combination of two or more.
  • a hydrophilic monomer is copolymerized.
  • the chlorination of vinyl chloride monomer units may be carried out prior to polymerization or may be carried out after polymerization.
  • the content ratio of monomer units other than vinyl chloride monomer (including chlorinated vinyl chloride) unit is in a range that does not impair the original performance.
  • a unit derived from a vinyl chloride monomer including a unit derived from a chlorinated vinyl chloride monomer
  • the vinyl chloride resin Does not include plasticizers and other polymers blended into the copolymer resin.
  • the vinyl chloride resin may be blended with another monomer or polymer.
  • the vinyl chloride resin is contained in an amount of 50% by mass or more (preferably 60% by mass or more, more preferably 70% by mass or more) based on the total resin constituting the membrane, and the monomer or polymer to be blended is It is less than 50% by mass of the total resin.
  • Examples of the monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) ) Acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, neopentyl (meth) acrylate, cyclopentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate , N-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-decyl (meth
  • the polymer to be graft-copolymerized to vinyl chloride is not particularly limited as long as it can be graft-polymerized to vinyl chloride, and, for example, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-carbon monoxide copolymer Combined, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate-carbon monoxide copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, acrylonitrile-butadiene copolymer, polyurethane, chlorinated polyethylene, Chlorinated polypropylene etc. are mentioned. These may be used alone or in combination of two or more.
  • a crosslinkable monomer may be used as a monomer material constituting the polymer film.
  • hydrophilic monomer for example, (1) Cationic group-containing vinyl monomers and / or salts thereof such as amino group, ammonium group, pyridyl group, imino group and betaine structure (hereinafter sometimes referred to as "cationic monomers"), (2) hydrophilic nonionic group-containing vinyl monomers such as hydroxyl group, amide group, ester structure, ether structure and the like (hereinafter sometimes referred to as "nonionic monomer”), (3) An anionic group-containing vinyl monomer such as a carboxyl group, a sulfonic acid group or a phosphoric acid group and / or a salt thereof (hereinafter sometimes referred to as "anionic monomer”) (4) Other monomers may, for example, be mentioned.
  • Aminoethyl vinyl ethers vinyl ethers such as dimethylaminoethyl vinyl; acid neutralized products of monomers having an amino group such as, or the like, alkyl halides (C1-22), benzyl halides, alkyl (C1 carbons) -18) or quaternized with aryl (6 to 24 carbon atoms) sulfonic acid or dialkyl sulfate (2 to 8 carbon atoms in total);
  • Diallyl type quaternary ammonium salts such as dimethyldiallyl ammonium chloride, diethyldiallyl ammonium chloride, N- (3-sulfopropyl) -N- (meth) acryloyloxyethyl-N, N-dimethylammonium betaine, N- (3-sulfo Propyl) -N- (meth) acryloylamidopropyl-N, N-dimethylammonium betaine, N- (3-carboxymethyl) -N- (meth) acryloylamidopropyl-N, N-dimethylammonium betaine, N-carboxymethyl Monomers such as vinyl monomers having a betaine structure such as -N- (meth) acryloyloxyethyl-N, N-dimethylammonium betaine are exemplified. Among these cationic groups, amino group- and ammonium group-containing monomers are preferred.
  • vinyl alcohol (meth) acrylamide type monomers, (meth) acrylic acid esters having the above hydroxyalkyl (1 to 8 carbon atoms) group, and (meth) acrylic acid esters of the above polyhydric alcohols are preferable.
  • carboxylic acid monomers having a polymerizable unsaturated group such as (meth) acrylic acid, maleic acid, itaconic acid and the like, and / or acid anhydrides thereof (two or more of them in one monomer When having a carboxyl group);
  • Sulfonic acid monomers having a polymerizable unsaturated group such as styrene sulfonic acid, 2- (meth) acrylamido-2-alkyl (1 to 4 carbon atoms) propane sulfonic acid;
  • Examples thereof include phosphoric acid monomers having a polymerizable unsaturated group such as vinylphosphonic acid and (meth) acryloyloxyalkyl (C1-C4) phosphoric acid.
  • the anionic group may be neutralized to any degree of neutralization by the basic substance.
  • all anionic groups in the polymer or a part of them form salts.
  • ammonium ion, trialkyl ammonium ion having a total of 3 to 54 carbon atoms eg, trimethyl ammonium ion, triethyl ammonium ion
  • hydroxy alkyl ammonium ion having 2 to 4 carbon atoms total carbon number
  • Examples thereof include 4-8 dihydroxyalkyl ammonium ions, trihydroxyalkyl ammonium ions having 6 to 12 carbon atoms in total, alkali metal ions, alkaline earth metal ions and the like.
  • Neutralization may be neutralization of the monomers or conversion to polymers and then neutralization.
  • the method for producing the vinyl chloride resin is not particularly limited, and any conventionally known polymerization method can be used. For example, a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method and the like can be mentioned.
  • the method of chlorination is not particularly limited, and methods known in the relevant field, for example, JP-A Nos. 9-278826, 2006-328165, International Publication WO / 2008/62526, etc. The described method can be used.
  • the chlorine content of the vinyl chloride resin is preferably 56.7 to 73.2%.
  • the chlorine content as the chlorinated vinyl chloride resin is suitably 58 to 73.2%, preferably 60 to 73.2%, more preferably 67 to 71%. preferable.
  • the vinyl chloride resin preferably has a degree of polymerization of about 250 to 3,000, and more preferably 500 to 1,300.
  • the degree of polymerization herein means a value measured in accordance with JIS K 6720-2. In order to adjust the degree of polymerization to the above range, it is preferable to appropriately adjust the conditions known in the art such as the reaction time and reaction temperature.
  • the polymer water treatment membrane of the present invention is preferably formed of polyvinyl chloride (homopolymer), polychlorinated vinyl chloride (homopolymer), or a copolymer of vinyl chloride and chlorinated vinyl chloride, among others.
  • the vinyl chloride resin constituting the polymer water treatment membrane of the present invention is an additive for the purpose of improving the formability, thermal stability, etc. at the time of film formation, to the extent that the effects of the present invention are not impaired.
  • lubricants, heat stabilizers, film forming aids and the like may be blended. You may use these individually or in combination of 2 or more types.
  • As the lubricant, stearic acid, paraffin wax and the like can be mentioned.
  • heat stabilizer examples include tin-based, lead-based and Ca / Zn-based stabilizers generally used for molding vinyl chloride resins.
  • hydrophilic polymers such as polyethyleneglycol of various polymerization degrees, polyvinyl pyrrolidone, etc. are mentioned.
  • the water permeability of pure water at a transmembrane pressure of 100 kPa is about 100 L / (m 2 ⁇ h) or more and about 200 L / (m 2 ⁇ h) or more. Is preferably about 600 L / (m 2 ⁇ h) or more, more preferably about 800 L / (m 2 ⁇ h) or more, and still more preferably about 1000 L / (m 2 ⁇ h) or more . Further, the internal pressure resistance strength of the film is preferably about 0.3 MPa or more, and more preferably about 0.35 MPa or more or about 0.4 MPa or more.
  • the external pressure resistance of the film is preferably about 0.1 MPa or more, and more preferably about 0.15 MPa or more or about 0.2 MPa or more.
  • the flow rate of pure water at an transmembrane pressure difference of 100 kPa is about 100 L / (m 2 ⁇ h) or more
  • the internal pressure resistance of the film is about 0.3 MPa or more
  • the external pressure strength is about 0.1 MPa or more Is more preferred.
  • the polymeric water treatment membrane may be manufactured using any of the methods known in the art such as thermally induced phase separation (TIPS), non-solvent induced phase separation (NIPS), stretching, and the like. Among them, production by the NIPS method is preferable.
  • TIPS thermally induced phase separation
  • NIPS non-solvent induced phase separation
  • stretching and the like. Among them, production by the NIPS method is preferable.
  • a resin solution is prepared which is composed of a material (resin) constituting the membrane and its good solvent, and optionally additives.
  • the good solvent in this case is not particularly limited, and can be appropriately selected depending on the type of material (resin) and the like.
  • dimethylsulfoxide, N, N-dimethylformamide, tetrahydrofuran, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like can be mentioned.
  • the concentration, viscosity and the like of the resin solution in this case are not particularly limited, but for example, a viscosity of about 500 to 4000 mPa ⁇ s is suitable, and about 1000 to 3000 mPa ⁇ s is preferable.
  • a viscosity of about 500 to 4000 mPa ⁇ s is suitable, and about 1000 to 3000 mPa ⁇ s is preferable.
  • the roundness of the outer shape of the hollow fiber membrane can be secured in the spinning line, and a membrane with uniform thickness and thickness can be manufactured.
  • a coagulation tank 30 as shown in FIG. 4 is usually used.
  • the coagulation tank 30 is filled with a non-solvent.
  • a spinning die provided with discharge ports in the form of concentric double nozzles for spinning resin solutions is used.
  • the spinning mold may be disposed from inside to outside or from outside to inside of the coagulation tank so that it can be spun into the coagulation tank 30.
  • a spinning mold 31 provided with a discharge port (not shown) is disposed in the coagulation tank 30 so as to be immersed in a nonsolvent is exemplified.
  • the spinning die 31 when the spinning die 31 is disposed inside the coagulation tank 30, the resin solution is directly discharged into the non-solvent without touching the air, and liquid-liquid phase separation is rapidly started. As a result, a dense skin layer is not formed on the surface, resulting in a porous surface. That is, excellent water permeability can be expressed due to the decrease in filtration resistance.
  • the mold is submerged in the coagulation bath from the state where the resin solution is discharged in advance in the air. Because of the resin solution that is constantly discharged, it is possible to avoid clogging due to the increase in discharge resistance that occurs at the nozzle tip at the start of spinning.
  • the horizontal spinning described in the present invention is also possible when the spinning mold is placed horizontally outside the coagulation tank, and in this case, the following two procedures can be considered as a procedure for starting the spinning.
  • (1) A method of inserting the discharge port of the spinning die while discharging the resin solution into the place where the non-solvent continues to flow out from the opening of the side of the coagulation tank, and guiding the resin solution into the coagulation tank (2)
  • a discharge method of the resin solution is started after the discharge port of the spinning mold is previously installed or fixed on the side surface of the coagulation tank, and the resin solution is discharged into the coagulation tank.
  • the flow from which the nonsolvent flows out and the flow of the resin solution from the discharge port of the spinning mold are in the opposite direction, and the resin solution discharged from the discharge port of the spinning mold has a large discharge resistance at the start of spinning. You will receive Therefore, stagnation of the flow in the vicinity of the discharge port of the spinning die occurs, solidification of the resin in that part proceeds, and as a result, the discharge port of the spinning die becomes more likely to be blocked.
  • the non-solvent in the coagulation tank flows back to the discharge port of the spinning mold to which the resin solution should flow before the start of spinning, and the resin solution may solidify inside the discharge port of the spinning mold at the start of spinning. Is high.
  • the discharge direction of the resin solution from the spinning mold 31 that is, the direction of the resin solution discharged from the discharge port is, for example, ⁇ 30 ° with respect to the bottom surface 30a of the coagulation tank 30 (FIG. 3 33) It is preferable to adjust so that it may become less than. In other words, it is preferable that the discharge direction be adjusted so that the resin solution is discharged within ⁇ 30 ° with respect to the ground. Among them, it is more preferable to adjust so as to discharge horizontally or substantially horizontally (about ⁇ 5 °) with respect to the coagulation tank 30a or the ground.
  • the conventional hollow fiber membrane has a small overall outer diameter, so it is possible to cope with changes in the pulling direction. It was relatively flexible and did not cause shape deterioration such as flattening or bending of the film.
  • the polymer water treatment membrane in the range of the SDR value shown in the present invention has an outer diameter larger than that of the conventional hollow fiber membrane.
  • the polymer water treatment membrane in the still flexible state during solidification can not withstand the change of the spinning direction, and seriousness of the shape surface such as flattening and bending of the membrane It was found that failure occurred and the strength of the film was significantly reduced.
  • the inventors thoroughly studied the above facts and, in the production of the polymer water treatment membrane shown in the present invention, horizontally discharging the resin solution from the spinning die, and the spinning die in a coagulating water tank It was determined that immersion and spinning were the most appropriate procedure.
  • the present invention is a single layer film having no support while avoiding serious problems of the shape surface such as flattening and bending of the film at the time of film formation, and excellent strength.
  • a high molecular weight water treatment membrane that does not get clogged at the end of the membrane, even with high concentration drainage such as biotreated drainage, from a spinning mold immersed in water We have determined that horizontal spinning of is most appropriate.
  • the non-solvent in the coagulation tank is in direct contact with the resin solution, the difference between the temperature of the resin solution (or spinning die) discharged from the discharge port and the temperature of the non-solvent is about 100 ° C. It is preferable to make it within. As a result, it is possible to prevent clogging in the vicinity of the discharge port of the spinning die due to a rapid temperature drop of the resin solution and a concomitant rapid rise in the viscosity of the resin solution. Further, by keeping the temperature of the non-solvent constant, the phase separation behavior of the resin solution can be stably maintained, and performance such as water permeability and strength can be stably exhibited.
  • the discharge port is maintained at ⁇ 30 ° horizontal in the coagulation tank, so that the constant velocity and uniform load can be obtained without changing the film take-up direction after the resin solution is discharged. It will be easier to take over. This makes it possible to minimize the deformation of the membrane structure.
  • Cutting after membrane withdrawal may be carried out in the coagulation tank or outside the tank.
  • the cutting 35 when cutting the membrane 34 outside the coagulation tank 30, the cutting 35 is at the cutting position 38 higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30. It is preferred to do. This prevents the outflow of the internal coagulating liquid from the tip of the ejected membrane by the siphon effect, thereby minimizing the pressure change of the internal coagulating liquid inside the membrane, thereby flattening the membrane shape. As a result, it is possible to prevent the variation in the film shape and to exert an effect on the stabilization of the film shape. From this viewpoint, in the case of cutting in the coagulation tank, the position to be cut is not particularly limited.
  • the polymer water treatment membrane of the present invention is excellent in the balance between the amount of permeated water and the physical strength. Therefore, it is suitably used as a separation membrane in the existing water treatment apparatus, and suitable water treatment aiming at purification of water, in particular, water treatment of high concentration drainage becomes possible.
  • the polymeric water treatment membrane of the present invention having such properties can be suitably used as an ultrafiltration (UF) membrane and a microfiltration (MF) membrane.
  • the water treatment method of the present invention is not particularly limited, and may be realized by a method known in the art according to the object, application, etc., except using the above-mentioned polymer water treatment membrane of the present invention.
  • use in immersion type MBR (membrane separation activated sludge method) which has been increasingly adopted in recent years can be mentioned.
  • a unit consisting of a hollow fiber-shaped water treatment membrane is activated by activated sludge from activated sludge treatment tank.
  • the treated wastewater is drawn by a pump, poured into the polymer water treatment membrane shown in the present invention bundled inside the unit, and treated with internal pressure filtration by applying pressure from the inside to the outside of the membrane. be able to.
  • the internal pressure MBR shown in FIG. 2 is advantageous.
  • it may be used in a method of separating water through activated sludge in the hollow interior of a polymer water treatment membrane.
  • a water treatment module 10 having a plurality of hollow fiber water treatment membranes 13 housed in a cylindrical case and having an end sealed with a sealing material 14 while extracting activated sludge containing treated water with a pump
  • a pressure of 0.3 MPa or more is applied to flow through activated sludge containing treated water into the hollow interior of hollow fiber water treatment membrane 13 to pass water, and treated water shown by arrow D separated through hollow fiber treated membrane, activated sludge,
  • the method of separating into is illustrated.
  • the separated activated sludge is returned to the activated sludge tank 12 as shown by the arrow C and reused.
  • the concentration of activated sludge is preferably 3000 ppm to 12000 ppm.
  • the polymer water treatment membrane according to the present invention has a relatively large inner diameter as compared to the conventional hollow fiber-shaped water treatment membrane while maintaining sufficient strength, and thus contained relatively large floc such as biotreated drainage Even when the drainage is subjected to internal pressure filtration, the membrane is not clogged at the end face of the membrane, that is, the inlet where the drainage is introduced. This is a feature not found in conventional hollow fiber-shaped water treatment membranes.
  • the resin solution was continuously discharged substantially horizontally horizontally by a spinning mold into a coagulation tank (filled with water), and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • ⁇ Strength evaluation The obtained film had an outer diameter of 5.4 mm and an SDR value of 18 (inner diameter: 4.8 mm), and had a uniform shape without breakage, bending, waviness, warping and uneven thickness.
  • the pressure resistance performance was an internal pressure of 0.5 MPa and an external pressure of 0.3 MPa. Further, the tensile breaking strength was 33 N / piece, and the tensile breaking elongation was 50%.
  • the ratio of the area occupied by the pores in the radial cross section was 75%.
  • the pores have a width (length in the short axis direction: B in FIG. 1) of 10 ⁇ m in each of the outermost layer and the innermost layer, and a length (length in the long axis direction: A in FIG. 1) is thick It was 5%.
  • the outer layer and the inner layer each had a width of 20 ⁇ m and a length of about 40% of the wall thickness.
  • These pores, that is, pores with a minor axis dimension of 10 to 100 ⁇ m were about 85% of the total of the cross-sectional areas of all the pores.
  • ⁇ Permeability evaluation >> A water treatment module as shown in FIG.
  • the biological treatment water of about MLSS 3000 means 3000 mg / liter of activated sludge suspended solids
  • the factory drainage about SS 50 means 50 mg / liter of suspended solids.
  • the relative water permeability as compared with the pure water permeability was about 80%.
  • the globulin blocking rate at this time was 99% or more.
  • the polymer water treatment membrane according to the present invention has sufficient mechanical strength against internal and external hydraulic pressure of 0.3 MPa or more as a water treatment membrane, and 100 L / m 2 ⁇ hr ⁇ atm or more
  • the balance between the amount of permeated water and the tensile strength was excellent while securing the water permeability and the like.
  • the resin solution was continuously discharged substantially horizontally horizontally by a spinning mold into a coagulation tank (filled with water), and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • the obtained film had an outer diameter of 5.1 mm and an SDR value of 8.5, and had a uniform shape free from bending, bending, waviness, warping and uneven thickness.
  • the pressure resistance performance was an internal pressure of 0.9 MPa and an external pressure of 0.4 MPa. Further, the tensile breaking strength was 45 N / piece, and the tensile breaking elongation was 50%.
  • ⁇ Permeability evaluation >> A water treatment module as shown in FIG. 2 was produced using a hollow fiber single-filament yarn, and water permeability 120 L / m 2 ⁇ hr ⁇ atm in pure water was confirmed.
  • the water permeability of 100 to 50 L / m 2 ⁇ hr ⁇ atm was confirmed including the backwashing step.
  • water permeability of 110 to 80 L / m 2 ⁇ hr ⁇ atm was confirmed in the factory drainage water of about SS50.
  • the internal water pressure at the time of treatment was filtered at 25 ° C. using a 100 ppm concentration ⁇ globulin aqueous solution, the relative water permeability as compared with the pure water permeability was about 80%.
  • the globulin blocking rate at this time was 99% or more.
  • the resin solution was continuously discharged almost horizontally horizontally by a spinning mold into a coagulation tank (filled with water), and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • the obtained film had an outer diameter of 4.6 mm, an SDR value of 5.8, and had a uniform shape free from bending, bending, waviness, warping and uneven thickness.
  • the pressure resistance was an internal pressure of 0.7 MPa and an external pressure of 0.5 MPa.
  • the tensile breaking strength was 40 N / piece, and the tensile breaking elongation was 50%.
  • ⁇ Permeability evaluation >> The water treatment module as shown in FIG. 2 was produced using a hollow fiber single filament, and water permeability 450 L / m 2 hr ⁇ atm in pure water was confirmed. As a result of conducting a water permeability test using the activated sludge of MLSS 3000 and an apparatus as shown in FIG.
  • the water permeability of 300 to 200 L / m 2 ⁇ hr ⁇ atm was confirmed including the backwashing step.
  • water permeability of 400 to 300 L / m 2 ⁇ hr ⁇ atm was confirmed in the factory drainage water of about SS50.
  • the internal water pressure at the time of treatment was filtered at 25 ° C. using a 100 ppm concentration ⁇ globulin aqueous solution, the relative water permeability as compared with the pure water permeability was about 80%.
  • the globulin blocking rate at this time was 99% or more.
  • Comparative Example 1 High SDR ⁇ film formation >> 25% by weight of HA31K (degree of chlorination 67%, degree of polymerization 800) made by Sekisui Chemical Co., Ltd. as chlorinated vinyl chloride resin and 25% by weight of polyethylene glycol 400 as pore forming agent dissolved in dimethylacetamide did.
  • the resin solution was continuously discharged substantially horizontally horizontally by a spinning mold into a coagulation tank (filled with water), and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • ⁇ Strength evaluation ⁇ The obtained film had an outer diameter of 5.1 mm, an SDR value of 40, and had a uniform shape free from breakage, bending, waviness, warping and uneven thickness.
  • the pressure resistance performance was an internal pressure of 0.2 MPa and an external pressure of 0.08 MPa, and the performance as a water treatment film could not be exhibited.
  • Comparative Example 2 Vertical Extrusion ⁇ Film Forming >> 25% by weight of HA31K (degree of chlorination 67%, degree of polymerization 800) made by Sekisui Chemical Co., Ltd. as chlorinated vinyl chloride resin and 25% by weight of polyethylene glycol 400 as pore forming agent dissolved in dimethylacetamide did.
  • the resin solution was continuously discharged vertically in a coagulation tank (filled with water) by a spinning mold, and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane. As shown in FIG.
  • Example 4 CPVC ⁇ film formation >> 18% by weight HA31K (degree of chlorination 67%, degree of polymerization 800) manufactured by Sekisui Chemical Co., Ltd. as chlorinated vinyl chloride resin and 15% by weight polyvinylpyrrolidone as a pore forming agent were dissolved in dimethylacetamide .
  • the resin solution was continuously discharged substantially horizontally horizontally by a spinning mold into a coagulation tank (filled with water), and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane. As shown in FIG.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • the obtained film had an outer diameter of 5.6 mm, an SDR value of 11.2, and had a uniform shape free from bending, bending, waviness, warping and uneven thickness.
  • the pressure resistance performance was an internal pressure of 0.6 MPa and an external pressure of 0.4 MPa.
  • ⁇ Permeability evaluation >> The water treatment module as shown in FIG. 2 was produced using a hollow fiber single-filament yarn, and 300 L / m 2 ⁇ hr ⁇ atm of water permeability in pure water was confirmed. As a result of conducting a water permeability test using the activated sludge of MLSS 3000 and an apparatus as shown in FIG.
  • the water permeability of 150 to 100 L / m 2 ⁇ hr ⁇ atm was confirmed including the backwashing step.
  • the permeability of 250 to 200 L / m 2 ⁇ hr ⁇ atm was confirmed in the factory drainage water of about SS50.
  • the relative water permeability as compared with the pure water permeability was about 80%.
  • the globulin blocking rate at this time was 99% or more. The results are shown in Table 2.
  • Example 5 CA ⁇ film formation >> 24% by weight of cellulose triacetate and 15.4% by weight of triethylene glycol as a pore forming aid were dissolved in N-methyl 2-pyrrolidone.
  • the resin solution was continuously discharged substantially horizontally horizontally by a spinning mold into a coagulation tank (filled with water), and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • the obtained film had an outer diameter of 5.6 mm, an SDR value of 11.2, and had a uniform shape free from bending, bending, waviness, warping and uneven thickness.
  • the pressure resistance performance was an internal pressure of 0.5 MPa and an external pressure of 0.3 MPa.
  • ⁇ Permeability evaluation >> The water treatment module as shown in FIG. 2 was produced using a hollow fiber single-filament yarn, and water permeability 700 L / m 2 hr ⁇ atm in pure water was confirmed. As a result of conducting a water permeability test using the activated sludge of MLSS 3000 and an apparatus as shown in FIG.
  • the water permeability of 400 to 300 L / m 2 ⁇ hr ⁇ atm was confirmed including the backwashing step.
  • the permeability of 600 to 500 L / m 2 ⁇ hr ⁇ atm was confirmed in the factory drainage water of about SS50.
  • the relative water permeability as compared with the pure water permeability was about 80%.
  • the globulin blocking rate at this time was 99% or more. The results are shown in Table 2.
  • Example 6 PES ⁇ film formation >> 22% by weight of polyethersulfone and 5% by weight of polyvinylpyrrolidone as a pore forming agent were dissolved in N-methyl 2-pyrrolidone.
  • the resin solution was continuously discharged substantially horizontally horizontally by a spinning mold into a coagulation tank (filled with water), and phase separation was performed in the coagulation tank to obtain a porous hollow fiber membrane.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • ⁇ Strength evaluation The obtained film had an inner diameter of 5.6 mm, an SDR value of 11.2, and had a uniform shape free from bending, bending, waviness, warping and uneven thickness.
  • the pressure resistance performance was an internal pressure of 0.5 MPa and an external pressure of 0.3 MPa.
  • ⁇ Permeability evaluation >> The water treatment module as shown in FIG.
  • Examples 7-14 Strength and SDR ⁇ film formation >> 18% by weight HA31K (degree of chlorination 67%, degree of polymerization 800) manufactured by Sekisui Chemical Co., Ltd. as chlorinated vinyl chloride resin and 15% by weight polyvinylpyrrolidone as a pore forming agent were dissolved in dimethylacetamide .
  • the resin solution is continuously discharged almost horizontally by the spinning mold into the coagulation tank (filled with water), and phase separation is performed in the coagulation tank to obtain a porous hollow fiber membrane. At this time, the resin solution is discharged.
  • the amount, the discharge amount of the internal coagulating liquid, the take-up speed and the like were changed to form films of various shapes. As shown in FIG.
  • the spinning direction of the membrane 34 was horizontal, and in the coagulation tank 30 (filled with water), the membrane was drawn from the discharge port of the spinning mold 31 in a horizontal direction 36) in a straight line 10).
  • the film 34 is lifted about 10 cm by a roller 39 between about 1 m downstream thereof, and cut at a cutting position 38 outside the coagulation tank 30 and higher than the position 37 of the discharge port of the spinning mold 31 in the coagulation tank 30 It was cut 35 by machine.
  • ⁇ Strength evaluation ⁇ The obtained film had an outer diameter of 3.8 to 10 mm and an SDR value of 7 to 16, and had a uniform shape free from bending, bending, waviness, warping and uneven thickness.
  • the outer diameter and SDR values and the internal pressure resistance and external pressure resistance performance of these films are summarized in Table 3.
  • a water treatment module as shown in FIG. 2 was produced using a hollow fiber single fiber, and the water permeation performance in pure water was confirmed to be about 300 L / m 2 ⁇ hr ⁇ atm in all the membranes.
  • the water permeability of 200 to 150 L / m 2 ⁇ hr ⁇ atm was confirmed including the backwashing step.
  • the permeability of 250 to 300 L / m 2 ⁇ hr ⁇ atm was confirmed in the factory drainage water of about SS50.
  • Example 15 Cutting height After pulling the membrane in the horizontal direction, the hollow fiber membrane was cut in the same manner as in Example 1 except that the membrane was cut by a cutting machine in the coagulation bath without changing the height as it is. Manufactured. As a result, it was confirmed that the same characteristics as in Example 1 were exhibited.
  • Example 16 upward 20 ° A hollow fiber membrane was produced in the same manner as in Example 1 except that the membrane was spun straight upward with the spinning direction of 20 °, and cut in the coagulation bath without changing the direction and height. As a result, it was confirmed that the same characteristics as in Example 1 were exhibited.
  • Example 17 downward 20 ° A hollow fiber membrane was produced in the same manner as in Example 1 except that the membrane was spun straight down at 20 ° and pulled in a straight line and cut in the coagulation tank without changing the direction and height. As a result, it was confirmed that the same characteristics as in Example 1 were exhibited.
  • Comparative example 3 upward 45 ° A hollow fiber membrane was produced in the same manner as in Example 1 except that the membrane was spun in an upward direction of 45 °, taken straight, and cut in the coagulation tank without changing the direction and height. However, in comparison with Example 1, it was in the non-uniform shape where there was waviness, warpage and uneven thickness.
  • Comparative example 4 downward 45 ° A hollow fiber membrane was produced in the same manner as in Example 1 except that the membrane was spun straight down at a 45 ° direction, and cut in a coagulation bath without changing the direction and height. However, in comparison with Example 1, it was in the non-uniform shape where there was waviness, warpage and uneven thickness.
  • the present invention is used for purification of water such as river water and ground water purification, clarification of industrial water, drainage and sewage treatment, pretreatment of seawater desalination, etc. regardless of the aspect of the water treatment apparatus etc. It can be widely used as a water treatment membrane, a microfiltration membrane or the like, and in particular, it can be advantageously used for MBR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Activated Sludge Processes (AREA)
  • Artificial Filaments (AREA)

Abstract

 機械的強度及び透水性等を確保しながら、水処理効率をさらに向上させた高分子水処理膜、簡便かつ確実に製造することができる高分子水処理膜の製造方法、効率的な水処理/メンテナンス可能な水処理方法を提供することを目的とする。外径が3.6mm~10mm及び外径と肉厚との比であるSDR値が、3.6~34である略単一の主要構成素材による自立構造を有する中空糸膜からなる高分子水処理膜、略単一素材の樹脂溶液を調製し、前記樹脂溶液を、地面に対して水平±30°以内で、吐出口から凝固槽中に吐出して凝固させることを含む高分子水処理膜の製造方法及びこの高分子水処理膜を分離膜として用いるか、この高分子水処理膜の内部に活性汚泥によって生物処理された排水を通して水を分離する水処理方法。

Description

高分子水処理膜及びその製造方法並びに水処理方法
 本発明は、高分子水処理膜及びその製造方法並びに水処理方法に関する。
 従来から、例えば、河川水及び地下水の除濁、工業用水の清澄、排水及び汚水処理、海水淡水化の前処理等の水の精製のために、高分子水処理膜が利用されている。
 このような高分子水処理膜は、通常、水処理装置において分離膜として利用されており、例えば、ポリスルホン(PS)系、ポリビニリデンフルオライド(PVDF)系、ポリエチレン(PE)系、酢酸セルロース(CA)系、ポリアクリロニトリル(PAN)系、ポリビニルアルコール(PVA)系、ポリイミド(PI)系等の種々の高分子材料によって形成された、中空糸状の多孔質膜が利用されている。特に、ポリスルホン系樹脂は、耐熱性、耐酸性、耐アルカリ性等の物理的及び化学的性質に優れ、また製膜も容易な点から、多用されている。
 中空糸状の多孔質膜は、微細孔に汚水を加圧供給することにより、一定サイズ以上の汚染物質のみを捕捉して水から汚染物質を除去する。一般に、このような高分子水処理膜に要求される性能としては、目的とする分離特性に加え、優れた透水性を有すること、物理的強度に優れていること、各種化学物質に対する安定性(つまり、耐薬品性)が高いこと、ろ過時に汚れが付着しにくい(つまり、耐汚染性)が優れていること等が挙げられる。
 例えば、長期の使用によっても汚染しにくく、その透水性も比較的高い酢酸セルロース系の中空糸分離膜が提案されている(特許文献1参照)。
 しかし、この酢酸セルロース系分離膜は、機械的強度が小さく、耐薬品性も十分でない。したがって、分離膜が汚染した場合は、物理的又は薬品による化学的手段による洗浄を行うことが極めて困難であるという問題がある。
 また、物理的強度及び耐薬品性の双方に優れた、ポリフッ化ビニリデン系樹脂からなる中空糸膜による高分子水処理膜が提案されている(特許文献2参照)。この高分子水処理膜は、曝気槽に直接浸漬して用いることも可能であり、汚染した場合であっても種々の化学薬品を用いて洗浄することが可能となる。
 しかし、ポリフッ化ビニリデンは親水性が比較的小さく、耐汚染性が低い。
 近年の排水処理では、浸漬型MBR(膜分離活性汚泥法)が多く用いられている(特許文献3及び4参照)。この浸漬型MBRは、生物処理水槽中に浸漬した中空糸状又は平膜状の水処理膜を用いて吸引ろ過により処理水を得る方法であり、膜の外面に汚れが堆積することによるろ過効率の低下を防止するために、常時曝気によって膜表面の洗浄が行われている。
 しかし、浸漬型MBRでの必要な曝気動力は多大な電力コストを伴い、ランニングコストの増大を招く。
 また、水処理は、それぞれ用途に応じて、内圧ろ過式と外圧ろ過式との使い分けが行なわれている。例えば、ろ過する液体がすでに純度の高い水道水のようなものである場合、内圧ろ過方式により、細い内径の中空糸膜に水を高圧供給する。これにより、高いろ過量にて水処理が可能となる。一方、濁度の高い水をろ過する場合、濁度成分によって膜内部の閉塞を避けるために、支持体との複合材料である大口径のチューブラー膜を採用するか、平膜による低圧にて、膜外表面に気流又は水流を供給して膜表面に濁度成分が堆積しないような運転方法を採用して、水処理が行なわれている。
 さらに、生物処理水槽に併設した中空糸膜の内部に生物処理水を流し、内圧によるろ過を行う内圧式(槽外式)MBRが提案されている。この内圧式MBRで用いられる水処理膜のモジュールでは、大小さまざまな固形分を含む生物処理水に起因するモジュール端面での固形分の堆積による閉塞が発生しないよう、内径が5~10mm程度のチューブラー状の水処理膜が用いられている。
 しかし、平膜によるろ過では耐圧性能の問題から処理量を多くできないこと、膜表面への濁度成分の堆積を防ぐために原水供給ポンプ以外の設備やエネルギーが必要となるなどの課題がある。
 また、チューブラー膜による処理は、水処理膜の内径大型化に従い、処理時の内圧への耐性が低下するため、強固な支持体もしくは膜厚の増大が必要となる。その一方、支持体を用いた場合は、膜表面に濁度成分をはじめとした汚れが堆積するため、処理量が低下した際に中空糸膜において通例行われる逆圧洗浄(逆洗)されるが、これにより、支持体に貼り付けられているチューブラー膜そのものの剥がれによる破損が発生しやすい。特に、高浮遊物質を含有する水処理に適した内圧式ろ過方式のチューブラー膜では、逆洗が実質的に不可能である。よって、逆洗以外の方法で透水量の低下を防ぐためにスポンジボールの使用、高い内部流速の維持など、システムの複雑化及び消費エネルギーの増大が余儀なくされることが現状である。
 また、水処理膜の膜厚を増大させた場合には、処理水量に対する設置面積効率が低下するという新たな課題を招く。
 さらに、中空糸状の多孔質膜の製造方法では、従来から、樹脂と溶媒からなる樹脂溶液を二重管状の金型に通し、中空部となる内部に非溶媒による凝固水を送り、かつ、外部を凝固槽に浸漬して相分離を行なう非溶媒誘起相分離法(NIPS法)が利用されている(例えば、特許文献5等)。この方法では、金型から出た樹脂溶液を、一度空気に接触させ、樹脂溶液中の溶媒を蒸発させることによってスキン層を形成している。そのために、樹脂溶液を重力により鉛直方向に落下させてから凝固槽へ浸漬させ、その後、凝固槽中での樹脂成分の凝固により得られた膜を、ローラーなどのガイドに沿わせることにより、異なる引き取り方向に移送し、最終的に引き取り方向を水平にし、切断している。
 しかし、中空糸状の多孔質膜の口径が大きくなるにつれて、上記製膜方法における屈曲等によって、折れ、うねり、そり、偏肉等が発生する。また、巻き取りが困難となり、膜形状が扁平化するなど、均質な中空糸膜を製造することが極めて困難であり、その結果、上述した特性を十分に満足させる高分子水処理膜が得られないという課題もある。
特開平8-108053号公報 特開2003-147629号公報 特開2000-051885号公報 特開2004-313923号公報 特開2010-82509号公報
 上述したように、優れた透水性を有し、物理的強度に優れ、耐薬品性が高く、耐汚染性に優れているという全ての要求を満足させることができる高分子水処理膜が強く求められている。
 また、このような特性を十分に満足させることができる膜を、簡便かつ確実に製造することができる製造方法の確立が望まれている。
 本発明は上記課題に鑑みなされたものであり、機械的強度及び透水性等を確保しながら、水処理効率をさらに向上させた高分子水処理膜、簡便かつ確実に製造することができる高分子水処理膜の製造方法、効率的な水処理及びメンテナンスを実現することができる水処理方法を提供することを目的とする。
 本発明者らは、内圧式MBRへの対応と、設置面積効率の向上とについて鋭意検討した結果、水処理膜の強度に着目し、これらを向上させることにより、上述したトレードオフとなる双方の特性を十分満足し得る水処理膜を得ることができることを見出した。
 すなわち、外径と肉厚との比で規定されるSDR値を適宜に設計すること及び断面に現れる空孔割合及び形状を適宜に設計することによって、従来の中空糸膜よりも大きな内径を有し、かつろ過操作に伴う内外圧に十分耐え得る水処理膜を得ることができることを見出した。
 さらに、膜の製造工程において、樹脂溶液の凝固槽内での反応/作用及び得られた膜の移送方法などについて鋭意検討した結果、特定の条件下における紡糸状態及び/又は特定の条件下で膜を移送/回収することにより、上述した特性を十分に満足させることができる膜を簡便かつ確実に製造することができる方法を見出し、本発明の完成に至った。
 すなわち、本発明の高分子水処理膜は、
 外径が3.6mm~10mm及び
 外径と肉厚との比であるSDR値が、3.6~34である略単一の主要構成素材による自立構造を有する中空糸膜からなることを特徴とする。
 このような高分子水処理膜は、以下の1以上を備えることが好ましい。
 中空糸膜の径方向の断面において、
 (a)前記中空糸膜の断面積に対する空孔率が30~85%であり、
 (b)短軸寸法10~100μmの空孔が全空孔面積の80%以上であり、かつ
 (c)中心から半径方向にわたって、最内層、内層、外層及び最外層と順次空孔が層状に分布しており、かつ前記内層及び外層における空孔の長軸寸法は、それぞれ、肉厚の20~50%を占め、前記最内層及び最外層における空孔の長軸寸法は、それぞれ、肉厚の0~20%を占める。
 限外ろ過膜又は精密ろ過膜の分画性を有する。
 膜の耐内圧強度が0.3MPa以上、
 耐外圧強度が0.1MPa以上であり、かつ
 純水の透水量が100L/m2・hr・atm以上である。
 主要構成素材が、ポリ塩化ビニル、ポリ塩素化塩化ビニル又はこれらの塩化ビニル-塩素化塩化ビニル共重合体である。
 前記塩化ビニル系樹脂の重合度が250~3000である。
 前記塩化ビニル系樹脂の塩素含有率が56.7~73.2%である。
 前記塩化ビニル系樹脂における塩化ビニル系モノマー単位の質量比が50~99質量%である。
 略単一素材の樹脂溶液を調製し、
 前記樹脂溶液を、地面に対して水平±30°以内で、吐出口から凝固槽中に吐出して凝固させることを含むことを特徴とする。
 このような製造方法は、以下の1以上を備えることが好ましい。
 略単一の主要構成素材の樹脂溶液を調製し、
 該樹脂溶液を、該樹脂溶液の吐出方向が地面に対して水平方向に吐出口から凝固槽内に吐出して凝固させることを含む。
 吐出口を供える紡糸金型を用い、該吐出口が非溶媒を含む凝固槽中に浸漬した状態で樹脂溶液を吐出する。
 さらに、凝固槽中で得られた膜の切断を行うか又は
 凝固槽外であって、前記吐出口よりも高い位置で膜の切断を行うことを含む。
 樹脂溶液と非溶媒との比重差が1.0以内である。
 本発明の水処理方法は、上述した高分子水処理膜を分離膜として用いること、あるいは、上述した高分子水処理膜の内部に活性汚泥によって生物処理された排水を通して水を分離することを特徴とする。
 本発明によれば、機械的強度及び透水性等を確保しながら、水処理効率をさらに向上させた高分子水処理膜提供することができる。
 また、本発明に記載した方法を用いることで、上述した特性を十分に満足させることができる高分子水処理膜を最も適切に、簡便かつ確実に製造することができる。
 さらに、この高分子水処理膜を用いることにより、効率的な水処理及びメンテナンスを実現することができる。
本発明の高分子水処理膜の径方向の断面を説明するための概略図である。 本発明の高分子水処理膜を備えた水処理ユニットを用いた内圧式MBRを説明するための概念図である。 本発明の高分子水処理膜の製造方法における樹脂溶液の吐出角度を説明するための概略図である。 本発明の高分子水処理膜の製造方法における樹脂溶液の吐出から膜の切断までの工程を説明するための概略図である。 比較例における樹脂溶液の引き取りを説明するための概略図である。
 本発明の高分子水処理膜は、主として、略単一の主要構成素材による自立構造を有する中空糸膜からなる膜である。
 (形態/構造)
 本発明の高分子水処理膜は、言い換えると、略単一の主要構成素材で形成された単層構造を有する中空糸状の膜である。
 ここで単層構造とは、単一の素材から形成されていることを意味する。通常、強度が弱い素材は、より強度の強い素材(セラミック、不織布等)から形成される支持体との複合材料にしないと所望の形状、例えば、円筒形状、チューブ形状等を維持することができない。従って、従来の比較的大口径の水処理膜は、膜を形成する素材以外に、水処理膜としての使用時に、所望の形状を保持できるよう、膜を支持する構造体として、筒状のセラミック又は筒状に成形した不織布等を伴っていた。
 一方、本発明の高分子水処理膜は、中空糸膜のみから形成されており、筒状などの所望の形状を変化させないような、異なる材料/素材(例えば、不織布、紙、金属、セラミック等)から形成される支持体を伴わない。言い換えると、本発明の高分子水処理膜は、単層構造で形成された膜を意味し、異なる材料/素材による積層構造を採らない。にもかかわらず、このような構造であっても、水処理膜としての使用時に円筒、チューブ形状等の所望の形状が保持されるほどに十分な強度を有し、すなわち「自立性/構造」を有している。従って、支持体レスで大口径膜を実現することができる。このため、逆洗時においても、ろ過機能を担当する膜部分が支持体から剥離することもなく、また、セラミック等の支持体を用いたチューブ形状膜等とは異なり、優れた透水性能を確保することができる。
 また、略単一の主要構成素材とは、上述したように、実質的に単一の素材から形成されていることを意味する。略単一とは、主要構成素材が1種であることを意味する。つまり、高分子水処理膜を形成する素材(例えば、高分子水処理膜を構成する樹脂)において、1種の樹脂が50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上)を占めていることを意味し、その1種の樹脂の性質が構成素材の性質を支配していることをも意味する。具体的には、1種の樹脂が50~99質量%を有する素材を意味する。
 なお、単一の素材及び単一の主要構成素材には、後述する塩化ビニル系樹脂の製造の際、後述する中空糸膜の製造の際に通常用いられる添加剤は含まれないことを意図している。
 中空糸状の膜としては、例えば、その外径が3.6~10mm程度、肉厚が0.15~2.4mm程度の膜が挙げられる。
 中空糸膜の強度は、材料、内径、肉厚、真円度、内部構造等の種々の要因によって決定されるが、なかでも、SDR値(外径と肉厚との比で計算される値)を用いることが有効であることを見出した。つまり、様々の実験を行なった結果、内外圧の耐圧性能として、例えば、0.3MPaを実現するためには、SDR値34程度以下に設計する必要があることが分かった。一方、SDR値を低減させる設計にすることは、水処理モジュールにおける膜ろ過面積の低下につながる。よって、これらのバランスを図る観点から、SDRは3.6程度以上であることが好ましい。
 なかでも、4.0程度以上であることが好ましく、20程度以下であることが好ましく、16程度以下、11程度以下であることがより好ましい。特に、外径が5~7mm程度の場合には、SDR値は4~16程度とすることが好ましく、6.5~11程度に設定することがより好ましい。
 なお、内径は、その外径及び肉厚によって決定されるが、例えば、1.6~9.4mm程度が挙げられ、4mm~8mm程度が適しており、この場合、肉厚0.1mm~2mm程度が適している。
 したがって、本発明の高分子水処理膜は、具体的には、
 (1)外径が3.6mm~10mm及びSDR値が、3.6~34である略単一の主要構成素材による自立構造を有する中空糸膜からなる膜が挙げられる。
 なかでも、外径が5~7mm程度、SDR値が6.5~11程度であることが好ましい。これにより、中空糸膜に内圧、外圧を印加した場合の強度を保ちながら、高濃度の排水を通水させた場合にも中空糸内が閉塞しない程度の大きさの内径を確保することが可能となる。
 なお、膜の内外径、肉厚等は、電子顕微鏡写真等を用いた実測などによって測定することができる。
 また、(2)内径が3~8mmであり、SDR値が4~13である略単一の主要構成素材による自立構造を有する中空糸膜からなる膜、
 (3)内径が1.6mm~9.4mm及び肉厚が0.15mm~2.4mmである略単一の主要構成素材による自立構造を有する中空糸膜からなる膜等が挙げられる。
 高分子水処理膜は、その表面に多数の微細孔を有する多孔質膜であることが好ましい。その微細孔の平均孔径は、例えば、0.001~10μm程度、好ましくは0.01~1μm程度が挙げられる。膜表面の細孔の大きさ及び密度は、上述した内径、肉厚、得ようとする特性等によって適宜調整することができ、例えば、後述する透過水量を実現することができる程度であることが適している。よって、このような微細孔の多孔によって、水処理膜としての機能を果たすとともに、この微細孔の大きさ及び密度等によって、例えば、限外ろ過膜又は精密ろ過膜の分画性を調整することができる。なお、一般に、限外ろ過膜は、孔の大きさが2~200nm程度の膜、精密ろ過膜は、50nm~10μm程度の膜であることが知られている。
 空孔率は、例えば、10~90%程度、好ましくは20~80%程度が挙げられる。ここでの空孔率は、任意の横断面(中空糸膜の径方向の断面、以下同じ)における高分子水処理膜の全面積に対する空孔の全面積の割合を意味し、例えば、膜横断面の顕微鏡写真から各面積を算出して求める方法が挙げられる。
 例えば、上述した(1)の場合、中空糸膜の径方向の断面において、
 (a)前記中空糸膜の断面積に対する空孔率が30~85%程度であることが好ましく、50~85%程度、40~75%程度又は50~75%程度であることがより好ましい。
 また、(b)短軸寸法10~100μmの空孔が全空孔面積の80%程度以上であることが好ましく、83%程度以上、85%程度以上又は87%程度以上であることがより好ましい。
 さらに、(c)中心から半径方向にわたって、最内層、内層、外層及び最外層を構成する空孔が層状に分布しており、かつ前記内層及び外層における空孔の長軸寸法は、それぞれ、肉厚の20~50%程度を占めており、前記最内層及び最外層における空孔の長軸寸法は、それぞれ、肉厚の0~20%程度を占めることがより好ましい。これにより、透水性能を保ちながら中空糸膜に内圧・外圧を印加した場合の応力集中を分散して膜全体の強度を保つことが可能となる。
 つまり、図1において、中空糸膜20の径方向の断面に示したように、空孔21は長軸方向が半径方向と一致するように比較的規則正しく各層を構成しており、例えば、最内層20d、内層20c、外層20b及び最外層20aを構成するようにそれぞれ配列/分布している。この場合の配列/分布は、明確に各層に分離できる程度に独立していてもよいが、他層を構成する空孔21が、一層を構成する空孔21の間に部分的に入れ子状に重なっていてもよい(図1のX参照)。
 なお、このような各層における空孔の分布は、電子顕微鏡写真によって観察/測定することができる。
 中空糸膜の最内層20には空孔21dが、内層20cには空孔21cが、外層20bには空孔21bが及び最外層20aには空孔21aが、それぞれ分布している。各層における空孔21の大きさは、例えば、図1に示す空孔21の長軸A及び/又は短軸Bが、±30%程度に比較的層ごとにそろっていることが好ましい。特に、内層20c及び外層20bにおける空孔21c、20bの長軸寸法は、それぞれ、肉厚の20~50%程度を占めていることが好ましく、肉厚の25~45%程度を占めていることが好ましい。空孔21c及び空孔20bのそれぞれの平均長軸寸法は、例えば、±30%程度に比較的そろっていることが好ましく、±15%程度がより好ましい。また、最内層20d及び最外層20aにおける空孔21d、21aの長軸寸法は、それぞれ、肉厚の0~20%程度を占めることが好ましく、肉厚の5~15%程度を占めていることが好ましい。空孔21d及び空孔20aのそれぞれの平均長軸寸法は、例えば、±30%程度に比較的そろっていることが好ましく、±15%程度がより好ましい。
 (材料/素材)
 本発明の高分子水処理膜は、略単一の主要構成素材によって形成されており、このような主要構成素材としては、当該分野において使用される材料/素材を用いることができるが、なかでも、塩化ビニル系樹脂であることが適している。
 塩化ビニル系樹脂としては、塩化ビニル単独重合体(塩化ビニルホモポリマー)、共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体、これらの塩化ビニルモノマー単位が塩素化されたものからなる(共)重合体等が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。特に、耐汚染性を向上するために、親水性モノマーが共重合されていることが適している。
 塩化ビニルモノマー単位の塩素化は、重合前に行われていてもよいし、重合した後に行われていてもよい。
 また、塩化ビニル(塩素化塩化ビニルを含む)の共重合体とする場合には、塩化ビニルモノマー(塩素化塩化ビニルを含む)単位以外のモノマー単位の含有率は、本来の性能を阻害しない範囲とし、塩化ビニルモノマー由来の単位(塩素化塩化ビニルモノマー由来の単位を含む)を50質量%以上、例えば、50~99質量%含むことが好ましい(ここでの質量計算では、塩化ビニル系樹脂中には、可塑剤、当該共重合体樹脂にブレンドされるその他の重合体を含まない)。
 塩化ビニル系樹脂には、別のモノマー又はポリマーがブレンドされていてもよい。特に、耐汚染性を向上するために、親水性モノマー含有共重合体又は親水化ポリマーをブレンドすることが好ましい。この場合、塩化ビニル系樹脂が、膜を構成する全樹脂に対して50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上)で含有され、ブレンドされるモノマー又はポリマーは、全樹脂の50質量%未満である。
 塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、フェニル(メタ)アクリレート、トルイル(メタ)アクリレート、キシリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシ(メタ)アクリレート、2-フェノキシ(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-エトキシプロピル(メタ)アクリレート等の(メタ)アクリル酸誘導体;エチレン、プロピレン、ブチレン等のα-オレフィン類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;ブチルビニルエーテル、セチルビニルエーテル等のビニルエーテル類;スチレン、α-メチルスチレン等の芳香族ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニルビニル類;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-置換マレイミド類、(メタ)アクリル酸、無水マレイン酸、アクリロニトリル等が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。例えば、さらなる柔軟性や対汚染性、耐薬品性を付与するため、酢酸ビニル、アクリル酸エステル、エチレン、プロピレン、フッ化ビニリデンを共重合又はブレンドすることが適している。
 塩化ビニルにグラフト共重合する重合体としては、塩化ビニルにグラフト重合させることができるものであれば特に限定されず、例えば、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-一酸化炭素共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート-一酸化炭素共重合体、エチレン-メチルメタクリレート共重合体、エチレン-プロピレン共重合体、アクリロニトリル-ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
 さらに、高分子膜を構成するモノマー材料として、架橋性モノマーを用いてもよい。架橋性モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,2-ブチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸エステル類;
 N-メチルアリルアクリルアミド、N-ビニルアクリルアミド、N,N'-メチレンビス(メタ)アクリルアミド、ビスアクリルアミド酢酸等のアクリルアミド類;
 ジビニルベンゼン、ジビニルエーテル、ジビニルエチレン尿素等のジビニル化合物;
 ジアリルフタレート、ジアリルマレート、ジアリルアミン、トリアリルアミン、トリアリルアンモニウム塩、ペンタエリスリトールのアリルエーテル化体、分子中に少なくとも2個のアリルエーテル単位を有するスクローゼのアリルエーテル化体等のポリアリル化合物;
 ビニル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシ-3-アクリロイルオキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-アクリロイルオキシプロピル(メタ)アクリレート等の不飽和アルコールの(メタ)アクリル酸エステル等が挙げられる。
 親水性モノマーとしては、例えば、
 (1)アミノ基、アンモニウム基、ピリジル基、イミノ基、ベタイン構造等のカチオン性基含有ビニルモノマー及び/又はその塩(以下、「カチオン性モノマー」と記載することがある)、
 (2)水酸基、アミド基、エステル構造、エーテル構造等の親水性の非イオン性基含有ビニルモノマー(以下、「非イオン性モノマー」と記載することがある)、
 (3)カルボキシル基、スルホン酸基、リン酸基等のアニオン性基含有ビニルモノマー及び/又はその塩(以下、「アニオン性モノマー」と記載することがある)
 (4)その他のモノマー等が挙げられる。
 具体的には、
 (1)カチオン性モノマーとしては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジイソプロピルアミノエチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、ジイソブチルアミノエチル(メタ)アクリレート、ジt-ブチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、ジプロピルアミノプロピル(メタ)アクリルアミド、ジイソプロピルアミノプロピル(メタ)アクリルアミド、ジブチルアミノプロピル(メタ)アクリルアミド、ジイソブチルアミノプロピル(メタ)アクリルアミド、ジt-ブチルアミノプロピル(メタ)アクリルアミド等の炭素数2~44のジアルキルアミノ基を有する(メタ)アクリル酸エステル又は(メタ)アクリルアミド;
 ジメチルアミノスチレン、ジメチルアミノメチルスチレン等の総炭素数2~44ジアルキルアミノ基を有するスチレン;
 2-又は4-ビニルピリジン等のビニルピリジン;N-ビニルイミダゾール等のN-ビニル複素環化合物類;
 アミノエチルビニルエーテル、ジメチルアミノエチルビニル等のビニルエーテル類;等のアミノ基を有するモノマーの酸中和物又はこれらのモノマーをハロゲン化アルキル(炭素数1~22)、ハロゲン化ベンジル、アルキル(炭素数1~18)もしくはアリール(炭素数6~24)スルホン酸又は硫酸ジアルキル(総炭素数2~8)等により4級化したもの;
 ジメチルジアリルアンモニウムクロライド、ジエチルジアリルアンモニウムクロライド等のジアリル型4級アンモニウム塩、N-(3-スルホプロピル)-N-(メタ)アクリロイルオキシエチル-N,N-ジメチルアンモニウムベタイン、N-(3-スルホプロピル)-N-(メタ)アクリロイルアミドプロピル-N,N-ジメチルアンモニウムベタイン、N-(3-カルボキシメチル)-N-(メタ)アクリロイルアミドプロピル-N,N-ジメチルアンモニウムベタイン、N-カルボキシメチル-N-(メタ)アクリロイルオキシエチル-N,N-ジメチルアンモニウムベタイン等のベタイン構造を有するビニルモノマー等のモノマーが例示される。
 これらのカチオン性基の中でも、アミノ基及びアンモニウム基含有モノマーが好ましい。
 (2)非イオン性モノマーとしては、ビニルアルコール;
 N-ヒドロキシプロピル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、N-ヒドロキシプロピル(メタ)アクリルアミド等のヒドロキシアルキル(炭素数1~8)基を有する(メタ)アクリル酸エステル又は(メタ)アクリルアミド;
 ポリエチレングリコール(メタ)アクリレート(エチレングリコールの重合度が1~30)等の多価アルコールの(メタ)アクリル酸エステル;
 (メタ)アクリルアミド;
 N-メチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド等のアルキル(炭素数1~8)(メタ)アクリルアミド;
 N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド等のジアルキル(総炭素数2~8)(メタ)アクリルアミド;
 ジアセトン(メタ)アクリルアミド;N-ビニルピロリドン等のN-ビニル環状アミド;
 メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート等のアルキル(炭素数1~8)基を有する(メタ)アクリル酸エステル;
 N-(メタ)アクロイルモルホリン等の環状アミド基を有する(メタ)アクリルアミドが例示される。
 なかでも、ビニルアルコール、(メタ)アクリルアミド系モノマー及び上記のヒドロキシアルキル(炭素数1~8)基を有する(メタ)アクリル酸エステル、上記の多価アルコールの(メタ)アクリル酸エステルが好ましい。
 (3)アニオン性モノマーとしては、(メタ)アクリル酸、マレイン酸、イタコン酸等の重合性の不飽和基を有するカルボン酸モノマー及び/又はその酸無水物(1つのモノマー中に2つ以上のカルボキシル基を有する場合);
 スチレンスルホン酸、2-(メタ)アクリルアミド-2-アルキル(炭素数1~4)プロパンスルホン酸等の重合性の不飽和基を有するスルホン酸モノマー;
 ビニルホスホン酸、(メタ)アクリロイロキシアルキル(炭素数1~4)リン酸等の重合性の不飽和基を有するリン酸モノマー等が例示される。
 アニオン性基は、塩基性物質により任意の中和度に中和されてもよい。この場合、ポリマー中の全てのアニオン性基又はその一部のアニオン性基は、塩を生成する。ここで、塩における陽イオンとしては、アンモニウムイオン、総炭素数3~54のトリアルキルアンモニウムイオン(例えば、トリメチルアンモニウムイオン、トリエチルアンモニウムイオン)、炭素数2~4のヒドロキシアルキルアンモニウムイオン、総炭素数4~8のジヒドロキシアルキルアンモニウムイオン、総炭素数6~12のトリヒドロキシアルキルアンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオン等が例示される。
 中和は、モノマーを中和しても、ポリマーにしてから中和してもよい。
 (4)上述したビニルモノマー以外、N-ビニル-2-ピロリドン、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート等の水素結合可能な活性部位を有するモノマーであってもよい。
 上記塩化ビニル系樹脂の製造方法は、特に限定されず、従来公知の任意の重合方法を利用することができる。例えば、塊状重合方法、溶液重合方法、乳化重合方法、懸濁重合方法等が挙げられる。
 塩素化の方法としては、特に限定されるものではなく、当該分野で公知の方法、例えば、特開平9-278826号公報、特開2006-328165号公報、国際公開WO/2008/62526号等に記載の方法を使用することができる。なお、塩化ビニル系樹脂の塩素含有率は、56.7~73.2%であることが好ましい。また、塩素化塩化ビニル系樹脂としての塩素含有率は、58~73.2%であるものが適しており、60~73.2%であるものが好ましく、67~71%であるものがより好ましい。
 塩化ビニル系樹脂は、重合度が250~3000程度であることが好ましく、500~1300であることがより好ましい。重合度が低すぎると、紡糸する際の溶液粘度が低下し、製膜作業が困難となり、また、作成した水処理膜の強度が乏しくなる傾向がある。一方、重合度が高すぎると、粘度が高くなりすぎることに起因して、製膜された水処理膜に気泡の残留をもたらす傾向がある。ここでの重合度はJIS K 6720-2に準拠して測定した値を意味する。
 重合度を上記の範囲に調整するためには、反応時間、反応温度等の当該分野において公知の条件を適宜調節することが好ましい。
 本発明の高分子水処理膜は、なかでも、ポリ塩化ビニル(ホモポリマー)、ポリ塩素化塩化ビニル(ホモポリマー)又は塩化ビニルと塩素化塩化ビニルとのコポリマーによって形成されていることが好ましい。
 ただし、本発明の高分子水処理膜を構成する塩化ビニル系樹脂には、本発明の効果を損なわない範囲にて、製膜時における成形性、熱安定性等を向上させる目的で、添加剤、例えば、滑剤、熱安定剤、製膜助剤等をブレンドしてもよい。これらは単独で又は2種以上を組み合わせて用いてもよい。
 滑剤としては、ステアリン酸、パラフィンワックス等が挙げられる。
 熱安定剤としては、一般に塩化ビニル系樹脂の成形に用いられる錫系、鉛系、Ca/Zn系の各安定剤が挙げられる。
 製膜助剤としては、各種重合度のポリエチレングリコール、ポリビニルピロリドン等の親水性高分子が挙げられる。
 (性能)
 本発明の高分子水処理膜は、膜間差圧100kPaにおける純水の透過水量が100L/(m2・h)程度以上、200L/(m2・h)程度以上であることが適しており、600L/(m2・h)程度以上であることが好ましく、800L/(m2・h)程度以上であることがより好ましく、1000L/(m2・h)程度以上であることがさらに好ましい。
 また、膜の耐内圧強度が0.3MPa程度以上であることが好ましく、0.35MPa程度以上又は0.4MPa程度以上がより好ましい。
 膜の耐外圧強度が0.1MPa程度以上であることが好ましく、0.15MPa程度以上又は0.2MPa程度以上がより好ましい。
 なかでも、膜間差圧100kPaにおける純水の透過水量が100L/(m2・h)程度以上、膜の耐内圧強度が0.3MPa程度以上かつ耐外圧強度が0.1MPa程度以上であることがより好ましい。
 (製法)
 高分子水処理膜は、熱誘起相分離法(TIPS)、非溶媒誘起相分離法(NIPS)、延伸法など、当該分野で公知の方法のいずれを利用して製造してもよい。なかでも、NIPS法によって製造することが好ましい。
 例えば、NIPS法を利用する場合、膜を構成する材料(樹脂)及びその良溶媒、任意に添加物からなる樹脂溶液を調製する。この場合の良溶媒は特に限定されるものではなく、材料(樹脂)の種類等によって適宜選択することができる。例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、テトラヒドロフラン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等が挙げられる。
 この場合の樹脂溶液の濃度及び粘度等は特に限定されないが、例えば、500~4000mPa・s程度の粘度とすることが適しており、1000~3000mPa・s程度が好ましい。これにより、紡糸ライン中で中空糸膜の外形の真円度を確保することができ、均一な太さ・膜厚の膜を製造することができる。
 また別の観点から、後述する非溶媒との比重差を1.0以内に調製することが適しており、0.8以内が好ましく、さらに0.2以内がより好ましい。これにより、膜の引き取り中に、凝固槽内で膜自体が浮いたり又は沈んだり、扁平することを有効に防止することができる。
 上述した樹脂溶液を凝固させるために、通常、図4に示すような凝固槽30が用いられる。凝固槽30には、非溶媒が充填されている。
 通常、樹脂溶液を紡糸するために同心円状の2重ノズル形状となった吐出口を供えた紡糸金型が用いられる。この紡糸金型は、凝固槽30に紡糸できるように凝固槽の内又は外あるいは外から内に及んで配置されていてもよい。例えば、吐出口(図示せず)を供えた紡糸金型31が、凝固槽30内部に、つまり、非溶媒に浸漬されて配置されているものが挙げられる。このように、凝固槽30内部に紡糸金型31が配置されている場合には、樹脂溶液が空気に触れることなく非溶媒中に直接吐出され、速やかに液-液相分離が開始されるため、表面に緻密なスキン層が形成されず、多孔質な表面となる。すなわち、ろ過抵抗が低下することに起因してすぐれた透水量を発現させることができる。また、後述する水平方向への紡糸においても、本発明による凝固槽中に金型を浸漬させる方式によれば、空気中であらかじめ樹脂溶液を吐出した状態から凝固槽中に金型を沈めることにより、常に吐出され続ける樹脂溶液のために、紡糸開始時にノズル先端で生じる吐出抵抗増大に伴う詰まりを回避することができる。
 凝固槽外部に紡糸金型を水平に配置する場合にも同様に本発明に記載される水平方向への紡糸は可能であり、この場合、紡糸を開始する手順として以下の2つが考えられる。例えば、(1)凝固槽の側面の開口部から非溶媒が流出し続けているところに、樹脂溶液を吐出しながら紡糸金型の吐出口を挿入し、樹脂溶液を凝固槽中に導く方法及び(2)予め紡糸金型の吐出口を凝固槽側面に設置又は固定してから樹脂溶液の吐出を開始し、凝固槽中に樹脂溶液を吐出する方法である。
 (1)では、非溶媒が流出する流れと紡糸金型の吐出口からの樹脂溶液の流れが正反対の方向になり、紡糸金型の吐出口より吐出される樹脂溶液は紡糸開始時に大きな吐出抵抗を受けることとなる。そのため、紡糸金型の吐出口近傍での流れの停滞が起こり、その部分での樹脂の固化が進行し、結果として紡糸金型の吐出口が閉塞する可能性が高くなる。
 (2)では、紡糸開始前に凝固槽中の非溶媒が、樹脂溶液が流れるべき紡糸金型の吐出口に逆流し、紡糸開始時に紡糸金型の吐出口内部で樹脂溶液が固化する可能性が高い。
 これらのことは本発明を工業的に実施するにあたり、製膜開始時の作業性を著しく低下させると考えられる。加えて、全体的もしくは部分的な詰まりが吐出口に残留することにより、膜の正常な形成を妨げ、結果として強度の低下・透水性能の低下を引き起こすことが考えられる。発明者らは、上記事情を鑑み、鋭意検討を重ねた結果、本発明の実施形態としては金型(吐出口)を凝固槽中に浸漬する手法が最も適切であると突き止めた。
 紡糸金型31からの樹脂溶液の吐出方向(図3の32)、つまり、吐出口から排出される樹脂溶液の方向は、例えば、凝固槽30の底面30aに対して±30°(図3の33)以内となるように調整されていることが好ましい。言い換えると、地面に対して±30°以内に、樹脂溶液が吐出するように吐出方向が調整されていることが好ましい。なかでも、凝固槽30a又は地面に対して水平又は略水平(±5°程度)で吐出するように調整されていることがより好ましい。
 これまで一般的に採用されてきた、紡糸金型から鉛直方向への樹脂溶液吐出の方式では、従来の中空糸膜であれば全体の外径が小さいため、引取り方向の変化に対しても比較的柔軟に追従し、膜の偏平・折れ曲がりなどの形状悪化を引き起こすことはなかった。
 一方、発明者らのこれまでの検討によれば、本発明において示されるSDR値の範囲における高分子水処理膜は従来中空糸膜と比べ外径が大きくなるため、上記鉛直方向もしくは本発明で示される範囲から外れた角度での吐出方式では、紡糸方向の変化に対して凝固中のまだ柔軟な状態の高分子水処理膜が耐え切れず、膜の偏平・折れ曲がりなどの形状面の重大な不具合が発生し、膜の強度が著しく低下することがわかった。発明者らは上記事実に鋭意検討を加え、本発明において示される高分子水処理膜の作製に当たって、樹脂溶液を紡糸金型から水平方向に吐出させることと、かつ紡糸金型を凝固水槽中に浸漬させて紡糸を行うことが最も適切な手法であることを突き止めた。
 すなわち、本発明で示されるSDR値の範囲で、製膜時の膜の偏平・折れ曲がりなどの形状面の重大な不具合を回避し、支持体を持たない単層の膜でありながら、すぐれた強度と透水量とを有し、生物処理された排水のような高濃度の排水に対しても膜の末端で詰まることのない高分子水処理膜の作製には、水中に浸漬した紡糸金型からの水平方向への紡糸が最も適切であることを突き止めた。
 凝固槽に充填されている非溶媒としては、上述した樹脂溶液の種類により適宜選択することができるが、例えば、主成分が水であるものが好ましい。
 凝固槽中の非溶媒は、樹脂溶液に直接接触するものであることから、吐出口から吐出される樹脂溶液の温度(又は紡糸金型)と、非溶媒の温度との差を、100℃程度以内とすることが好ましい。これにより、樹脂溶液の急激な温度低下およびそれに伴う樹脂溶液の粘度の急上昇による紡糸金型の吐出口近傍での詰まりを防止することができる。また、非溶媒の温度を一定に保つことにより、樹脂溶液の相分離挙動を安定に維持することができ、透水性能・強度などの性能を安定的に発現させることが可能となる。
 製膜の際の膜の引き取りは、一般に直線方向に行うことが好ましい。本発明では、上述したように、吐出口が凝固槽内において水平±30°に保持されていることにより、樹脂溶液の吐出後に膜の引き取り方向を変化させずに、一定の速度及び均一な荷重を維持した引き取りが容易となる。これにより、膜構造の変形を最小限に留めることが可能となる。
 膜の引き取り後の切断は、凝固槽内で行なっても、槽外で行なってもよい。特に、図4に示したように、凝固槽30外で膜34を切断する場合には、切断35は、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で行うことが好ましい。これによって、サイフォン効果による吐出された膜の先端からの内部凝固液の流出を防止し、そのことで膜内部の内部凝固液の圧力変化を最小限に留めることで、膜形状の扁平化をはじめとした、膜形状のバラつきを防止することができ、膜形状の安定化に効果を発揮する。この観点から、凝固槽内で切断する場合には、その切断する位置は特に限定されない。
 本発明の高分子水処理膜は、透過水量と物理的強度とのバランスに優れている。従って、分離膜として既存の水処理装置に好適に利用され、水の精製を目的とする好適な水処理、特に、高濃度排水の水処理が可能となる。このような特性を有する本発明の高分子水処理膜は、限外濾過(UF)膜及び精密濾過(MF)膜として好適に利用することができる。
 本発明の水処理方法は、特に限定されるものではなく、上述した本発明の高分子水処理膜を用いること以外、その対象、用途等に応じて、当該分野で公知の方法により実現することができる。
 例えば、近年採用が増えている浸漬型MBR(膜分離活性汚泥法)での使用が挙げられ、この場合、中空糸形状の水処理膜よりなるユニットに対して活性汚泥処理槽から活性汚泥によって生物的に処理された排水をポンプによって引き込み、ユニット内部に束ねられた本発明において示される高分子水処理膜の内部に流し込み、膜の内側から外側に圧力をかけることにより内圧ろ過によって水処理を行うことができる。
 また、例えば、図2に示した内圧式MBRでの使用が有利である。例えば、高分子水処理膜の中空内部に活性汚泥を通して水を分離する方法に用いてもよい。具体的には、矢印Aに示したように、排水が嫌気槽11及び活性汚泥槽12と順次送られ、活性汚泥槽12で所定の浄化が行われた後、矢印Bに示したように、処理水を含む活性汚泥をポンプで引抜するとともに、複数の中空糸水処理膜13を円筒状ケースの中に収容し、端部を封止材14で封止された水処理モジュール10を用い、中空糸水処理膜13の中空内部に処理水を含む活性汚泥を0.3MPa以上の圧を負荷して通水し、中空糸処理膜を通して分離された矢印Dに示す処理水と、活性汚泥とに分離する方法が例示される。なお、分離された活性汚泥は、矢印Cに示すように活性汚泥槽12に戻され、再利用される。活性汚泥の濃度は3000ppm~12000ppmが好ましい。
 本発明による高分子水処理膜は、十分な強度を保ちながら従来中空糸形状の水処理膜に比べて大きな内径をもつため、生物処理された排水のような、比較的大きなフロックが含まれた排水を内圧ろ過する際にも、膜の端面、すなわち排水が導入される入り口で膜が詰まることがない。このことは従来の中空糸形状の水処理膜には見られない特徴である。
 以下、本発明の高分子水処理膜及び水処理方法を、実施例に基づいて詳細に説明する。なお、本発明は、これら実施例のみに限定されるものではない。
 実施例1
 《製膜》
 塩素化塩化ビニル樹脂として積水化学工業株式会社製、HA31K(塩素化度67%、重合度800)を25重量%と、製孔助剤としてポリエチレングリコール400を20重量%とを、ジメチルアセトアミドに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、外径5.4mm、SDR値18(内径4.8mm)で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 耐圧性能は、内圧0.5MPa、外圧0.3MPaであった。
 また、引張破断強度は33N/本、引張破断伸び50%であった。
 径方向の断面における空孔の占める面積の割合は75%であった。空孔は、最外層及び最内層では、それぞれ、幅(短軸方向の長さ:図1のB)10μmであり、長さ(長軸方向の長さ:図1のA)が肉厚の5%であった。外層及び内層では、それぞれ、幅20μmであり、長さが肉厚の約40%であった。これら空孔、つまり、短軸寸法10~100μmの空孔は、全空孔の断面積の総和の約85%であった。
 《透水性評価》
 中空糸膜単糸を用いて図2に示すような水処理モジュールを作製し、純水における透水性能200L/m2 hr・atmを確認した。
 また、MLSS3000の活性汚泥を用いて、図2に示すような装置を用いて透水試験を行った結果、逆洗工程も含めて150~100L/m2・hr・atmの透水性能を確認した。同様にSS50程度の工場排水において180~150L/m2・hr・atmの透水性能を確認した。
 なお、MLSS3000程度の生物処理水とは、活性汚泥浮遊物質3000mg/リットル、SS50程度の工場排水とは、浮遊物質量が50mg/リットルを意味する。
 また、100ppm濃度のγグロブリン水溶液を用いて、処理時の内水圧を0.05MPaで、25℃にてろ過したところ、純水透水性能と比較した相対透水率は、約80%であった。このときのグロブリン阻止率は99%以上であった。
 上記結果から、本発明による高分子水処理膜は、大口径にもかかわらず、水処理膜として十分な耐内外水圧強度0.3MPa以上の機械的強度と、100L/m2・hr・atm以上の透水性等を確保しながら、特に、透過水量と引張強度とのバランスに優れていることが確認された。加えて、固形分の堆積による閉塞が発生しにくく、高SS(高浮遊物質量)排水の処理においてプレフィルターや沈殿等の前処理なしでろ過が可能であることが証明された。
 実施例2
 《製膜》
 塩素化塩化ビニル樹脂として積水化学工業株式会社製、HA31K(塩素化度67%、重合度800)を25重量%と、製孔助剤としてポリエチレングリコール400を20重量%とを、テトラヒドロフランに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、外径5.1mm、SDR値は8.5で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 耐圧性能は、内圧0.9MPa、外圧0.4MPaであった。
 また、引張破断強度は45N/本、引張破断伸び50%であった。
 《透水性評価》
 中空糸膜単糸を用いて図2に示すような水処理モジュールを作製し、純水における透水性能120L/m2・hr・atmを確認した。
 MLSS3000の活性汚泥と、図2に示すような装置を用いて透水試験を行った結果、逆洗工程も含めて100~50L/m2・hr・atmの透水性能を確認した。同様にSS50程度の工場排水において110~80L/m2・hr・atmの透水性能を確認した。
 100ppm濃度のγグロブリン水溶液を用いて、処理時の内水圧を0.05MPaで、25℃にてろ過したところ、純水透水性能と比較した相対透水率は、約80%であった。このときのグロブリン阻止率は99%以上であった。
 実施例3
 《製膜》
 塩素化塩化ビニル樹脂として積水化学工業株式会社製、HA05K(塩素化度67%、重合度500)を22重量%と、製孔助剤としてポリエチレングリコール400を22重量%とを、ジメチルアセトアミドに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出し、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、外径4.6mm、SDR値は5.8で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 耐圧性能は、内圧0.7MPa、外圧0.5MPaであった。
 また、引張破断強度は40N/本、引張破断伸び50%であった。
 《透水性評価》
 中空糸膜単糸を用いて図2に示すような水処理モジュールを作製し、純水における透水性能450L/m2 hr・atmを確認した。
 MLSS3000の活性汚泥と、図2に示すような装置を用いて透水試験を行った結果、逆洗工程も含めて300~200L/m2・hr・atmの透水性能を確認した。同様にSS50程度の工場排水において400~300L/m2・hr・atmの透水性能を確認した。
 100ppm濃度のγグロブリン水溶液を用いて、処理時の内水圧を0.05MPaで、25℃にてろ過したところ、純水透水性能と比較した相対透水率は、約80%であった。このときのグロブリン阻止率は99%以上であった。
 比較例1:高SDR
 《製膜》
 塩素化塩化ビニル樹脂として積水化学工業株式会社製、HA31K(塩素化度67%、重合度800)を25重量%と、製孔助剤としてポリエチレングリコール400を20重量%とを、ジメチルアセトアミドに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、外径5.1mm、SDR値は40で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 しかし、耐圧性能は、内圧0.2MPa、外圧0.08MPaであり、水処理膜としての性能を発揮することができなかった。
 比較例2:垂直押し出し
 《製膜》
 塩素化塩化ビニル樹脂として積水化学工業株式会社製、HA31K(塩素化度67%、重合度800)を25重量%と、製孔助剤としてポリエチレングリコール400を20重量%とを、ジメチルアセトアミドに溶解した。この樹脂溶液を紡糸金型により連続的に垂直に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図5に示したように、膜40の紡糸方向を垂直とし、膜40aを、3cmのエアギャップを通じて凝固槽30(水充填)に入れ、金型出口から1メートル下流で、ガイドローラー41によって、膜40aの引き取り方向を300°方向転換し、再度ガイドローラー42によって、膜40bの引き取り方向を30°方向転換し、約8m一直線に引き取った。その下流約1mで、ローラーにより10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、おおよそ外径5.4mm、SDR値18ではあったが、折れ、曲がり、うねり、そり及び偏肉等のある不均一な形状であった。
 実施例1~実施例3及び比較例1~比較例2を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例4:CPVC
 《製膜》
 塩素化塩化ビニル樹脂として積水化学工業株式会社製、HA31K(塩素化度67%、重合度800)を18重量%と、製孔助剤としてポリビニルピロリドンを15重量%とを、ジメチルアセトアミドに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、外径5.6mm、SDR値11.2で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 耐圧性能は、内圧0.6MPa、外圧0.4MPaであった。
 《透水性評価》
 中空糸膜単糸を用いて図2に示すような水処理モジュールを作製し、純水における透水性能300L/m2・hr・atmを確認した。
 MLSS3000の活性汚泥と、図2に示すような装置を用いて透水試験を行った結果、逆洗工程も含めて150~100L/m2・hr・atmの透水性能を確認した。同様にSS50程度の工場排水において250~200L/m2・hr・atmの透水性能を確認した。
 また、100ppm濃度のγグロブリン水溶液を用いて、処理時の内水圧を0.05MPaで、25℃にてろ過したところ、純水透水性能と比較した相対透水率は、約80%であった。このときのグロブリン阻止率は99%以上であった。
 これらの結果を表2に示す。
 実施例5:CA
 《製膜》
 セルローストリアセテート24重量%と、製孔助剤としてトリエチレングリコール15.4重量%とを、N-メチル2-ピロリドンに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、外径5.6mm、SDR値11.2で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 耐圧性能は、内圧0.5MPa、外圧0.3MPaであった。
 《透水性評価》
 中空糸膜単糸を用いて図2に示すような水処理モジュールを作製し、純水における透水性能700L/m2 hr・atmを確認した。
 MLSS3000の活性汚泥と、図2に示すような装置を用いて透水試験を行った結果、逆洗工程も含めて400~300L/m2・hr・atmの透水性能を確認した。同様にSS50程度の工場排水において600~500L/m2・hr・atmの透水性能を確認した。
 また、100ppm濃度のγグロブリン水溶液を用いて、処理時の内水圧を0.05MPaで、25℃にてろ過したところ、純水透水性能と比較した相対透水率は、約80%であった。このときのグロブリン阻止率は99%以上であった。
 これらの結果を表2に示す。
 実施例6:PES
 《製膜》
 ポリエーテルサルフォン22重量%と、製孔助剤としてポリビニルピロリドン5重量%とを、N-メチル2-ピロリドンに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得た。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、内径5.6mm、SDR値11.2で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 耐圧性能は、内圧0.5MPa、外圧0.3MPaであった。
 《透水性評価》
 中空糸膜単糸を用いて図2に示すような水処理モジュールを作製し、純水における透水性能300L/m2 hr・atmを確認した。
 MLSS3000の活性汚泥と、図2に示すような装置を用いて透水試験を行った結果、逆洗工程も含めて200~150L/m2・hr・atmの透水性能を確認した。同様にSS50程度の工場排水において250~200L/m2・hr・atmの透水性能を確認した。
 また、100ppm濃度のγグロブリン水溶液を用いて、処理時の内水圧を0.05MPaで、25℃にてろ過したところ、純水透水性能と比較した相対透水率は、約80%であった。このときのグロブリン阻止率は99%以上であった。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例7~14:強度とSDR
 《製膜》
 塩素化塩化ビニル樹脂として積水化学工業株式会社製、HA31K(塩素化度67%、重合度800)を18重量%と、製孔助剤としてポリビニルピロリドンを15重量%とを、ジメチルアセトアミドに溶解した。この樹脂溶液を紡糸金型により連続的にほぼ水平に凝固槽内(水充填)に吐出させ、凝固槽にて相分離させることによって多孔質の中空糸膜を得るが、このとき樹脂溶液の吐出量、内部凝固液の吐出量、引き取り速度などを変更し、種々の形状の膜を製膜した。
 図4に示したように、膜34の紡糸方向を水平方向とし、凝固槽30内(水充填)において、紡糸金型31の吐出口から10m一直線に水平方向36)に引き取った。その下流1m程度の間で、膜34をローラー39により10cm程度持ち上げ、凝固槽30外であって、凝固槽30内の紡糸金型31の吐出口の位置37よりも高い切断位置38で、切断機によって切断35した。
 《強度評価》
 得られた膜は、外径3.8~10mm、SDR値7~16で、折れ、曲がり、うねり、そり及び偏肉のない均一な形状であった。
 これらの膜の外径・SDR値および耐内圧・耐外圧性能を表3にまとめる。
 《透水性評価》
 中空糸膜単糸を用いて図2に示すような水処理モジュールを作製し、純水における透水性能はすべての膜において、約300L/m2・hr・atmを確認した。
 MLSS3000の活性汚泥と、図2に示すような装置を用いて透水試験を行った結果、逆洗工程も含めて200~150L/m2・hr・atmの透水性能を確認した。同様にSS50程度の工場排水において250~300L/m2・hr・atmの透水性能を確認した。
Figure JPOXMLDOC01-appb-T000003
 実施例15:切断高さ
 膜を水平方向に引き取った後、膜を、そのまま高さを変更せずに凝固槽内で切断機によって切断した以外実施例1と同様の方法により、中空糸膜を製造した。
 その結果、実施例1と略同様の特性を示すことを確認した。
 実施例16:上向き20°
 膜の紡糸方向を上向き20°として、一直線に引き取り、そのまま向き・高さを変えることなく凝固槽内で切断した以外、実施例1と同様の方法により中空糸膜を製造した。その結果、実施例1と略同様の特性を示すことを確認した。
 実施例17:下向き20°
 膜の紡糸方向を下向き20°として、一直線に引き取り、そのまま向き・高さを変えることなく凝固槽内で切断した以外、実施例1と同様の方法により中空糸膜を製造した。その結果、実施例1と略同様の特性を示すことを確認した。
 比較例3:上向き45°
 膜の紡糸方向を上向き45°として、一直線に引き取り、そのまま向き・高さを変えることなく凝固槽内で切断した以外、実施例1と同様の方法により中空糸膜を製造した。しかし、実施例1と比較してうねり、そり及び偏肉の存在する不均一な形状でであった。
 比較例4:下向き45°
 膜の紡糸方向を下向き45°として、一直線に引き取り、そのまま向き・高さを変えることなく凝固槽内で切断した以外、実施例1と同様の方法により中空糸膜を製造した。しかし、実施例1と比較してうねり、そり及び偏肉の存在する不均一な形状でであった。
 本発明は、水処理装置の態様等にかかわらず、河川水及び地下水の除濁、工業用水の清澄、排水及び汚水処理、海水淡水化の前処理等の水の精製等のために使用される水処理膜、精密濾過膜等として、広範に利用することができ、特に、MBRに有利に使用することができる。
10 水処理モジュール
11 嫌気槽
12 活性汚泥槽
13 中空糸水処理膜
14 封止材
20 中空糸膜
20a 最外層
20b 外層
20c 内層
20d 最内層
21 空孔
21a、21b、21c、21d 空孔
A 空孔の長軸
B 空孔の短軸
30 凝固槽
30a 底面
31 紡糸金型
32 吐出方向
33 吐出角度
34、40a、40b 膜
35 切断
36 水平方向
37 吐出口の位置
38 切断位置
39 ローラー
41、42 ガイドローラー

Claims (15)

  1.  外径が3.6mm~10mm及び
     外径と肉厚との比であるSDR値が、3.6~34である略単一の主要構成素材による自立構造を有する中空糸膜からなることを特徴とする高分子水処理膜。
  2.  中空糸膜の径方向の断面において、
     (a)前記中空糸膜の断面積に対する空孔率が30~85%であり、
     (b)短軸寸法10~100μmの空孔が全空孔面積の80%以上であり、かつ
     (c)中心から半径方向にわたって、最内層、内層、外層及び最外層と順次空孔が層状に分布しており、かつ前記内層及び外層における空孔の長軸寸法は、それぞれ、肉厚の20~50%を占め、前記最内層及び最外層における空孔の長軸寸法は、それぞれ、肉厚の0~20%を占めることを特徴とする請求項1に記載の高分子水処理膜。
  3.  限外ろ過膜又は精密ろ過膜の分画性を有する請求項1又は2に記載の高分子水処理膜。
  4.  膜の耐内圧強度が0.3MPa以上、
     耐外圧強度が0.1MPa以上であり、かつ
     純水の透水量が100L/m2・hr・atm以上である請求項1~3のいずれか1項に記載の高分子水処理膜。
  5.  主要構成素材が、ポリ塩化ビニル、ポリ塩素化塩化ビニル又はこれらの塩化ビニル-塩素化塩化ビニル共重合体である請求項1~4のいずれか1項に記載の高分子水処理膜。
  6.  前記塩化ビニル系樹脂の重合度が250~3000である請求項1~5のいずれか1項に記載の高分子水処理膜。
  7.  前記塩化ビニル系樹脂の塩素含有率が56.7~73.2%である請求項1~6のいずれか1項に記載の高分子水処理膜。
  8.  前記塩化ビニル系樹脂における塩化ビニル系モノマー単位の質量比が50~99質量%である請求項1~7のいずれか1項に記載の高分子水処理膜。
  9.  略単一素材の樹脂溶液を調製し、
     前記樹脂溶液を、地面に対して水平±30°以内で、吐出口から凝固槽中に吐出して凝固させることを含む高分子水処理膜の製造方法。
  10.  略単一の主要構成素材の樹脂溶液を調製し、
     該樹脂溶液を、該樹脂溶液の吐出方向が地面に対して水平方向に吐出口から凝固槽内に吐出して凝固させることを含む請求項9に記載の高分子水処理膜の製造方法。
  11.  吐出口を供える紡糸金型を用い、該吐出口が非溶媒を含む凝固槽中に浸漬した状態で樹脂溶液を吐出する請求項9又は10に記載の高分子水処理膜の製造方法。
  12.  さらに、凝固槽中で得られた膜の切断を行うか又は
     凝固槽外であって、前記吐出口よりも高い位置で膜の切断を行うことを含む請求項9~11のいずれか1項に記載の高分子水処理膜の製造方法。
  13.  樹脂溶液と非溶媒との比重差が1.0以内である請求項9~12のいずれか1項に記載の高分子水処理膜の製造方法。
  14.  請求項1~8のいずれか1項に記載の高分子水処理膜を分離膜として用いることを特徴とする水処理方法。
  15.  請求項1~8のいずれか1項に記載の高分子水処理膜の内部に活性汚泥によって生物処理された排水を通して水を分離することを特徴とする水処理方法。
PCT/JP2011/054745 2010-03-04 2011-03-02 高分子水処理膜及びその製造方法並びに水処理方法 WO2011108579A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11750688.1A EP2548632A4 (en) 2010-03-04 2011-03-02 Macromolecular water-treatment membrane, manufacturing method therefor, and water treatment method
JP2011535747A JP5097298B2 (ja) 2010-03-04 2011-03-02 高分子水処理膜及びその製造方法並びに水処理方法
US13/582,528 US20120325746A1 (en) 2010-03-04 2011-03-02 Polymer membrane for water treatment and method for manufacture of same, and water treatment method
AU2011221916A AU2011221916B2 (en) 2010-03-04 2011-03-02 Polymer membrane for water treatment and method for manufacture of same, and water treatment method
CN201180012309.7A CN102905778B (zh) 2010-03-04 2011-03-02 高分子水处理膜及其制造方法以及水处理方法
US14/883,880 US9855531B2 (en) 2010-03-04 2015-10-15 Polymer membrane for water treatment and method for manufacture of same, and water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-047798 2010-03-04
JP2010047798 2010-03-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/582,528 A-371-Of-International US20120325746A1 (en) 2010-03-04 2011-03-02 Polymer membrane for water treatment and method for manufacture of same, and water treatment method
US14/883,880 Continuation US9855531B2 (en) 2010-03-04 2015-10-15 Polymer membrane for water treatment and method for manufacture of same, and water treatment method

Publications (1)

Publication Number Publication Date
WO2011108579A1 true WO2011108579A1 (ja) 2011-09-09

Family

ID=44542226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054745 WO2011108579A1 (ja) 2010-03-04 2011-03-02 高分子水処理膜及びその製造方法並びに水処理方法

Country Status (7)

Country Link
US (2) US20120325746A1 (ja)
EP (1) EP2548632A4 (ja)
JP (2) JP5097298B2 (ja)
CN (1) CN102905778B (ja)
AU (1) AU2011221916B2 (ja)
TW (1) TWI541061B (ja)
WO (1) WO2011108579A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543429A1 (en) * 2010-03-04 2013-01-09 Sekisui Chemical Co., Ltd. Macromolecular water-treatment membrane and manufacturing method therefor
JP2013052339A (ja) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd 水処理方法
JP2013052340A (ja) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd 水処理方法
JP2013086042A (ja) * 2011-10-20 2013-05-13 Sekisui Chem Co Ltd 高分子水処理膜
JP2013150961A (ja) * 2012-01-26 2013-08-08 Sekisui Chem Co Ltd 高分子水処理膜の製造方法
JP2013202580A (ja) * 2012-03-29 2013-10-07 Sekisui Chem Co Ltd 中空糸膜の透水性能の評価方法
JP2014124579A (ja) * 2012-12-26 2014-07-07 Sekisui Chem Co Ltd 有機排水の処理装置
JP2015145485A (ja) * 2014-02-04 2015-08-13 三菱樹脂株式会社 樹脂多孔質体及びその製造方法
JP2017094228A (ja) * 2015-11-18 2017-06-01 三菱重工環境・化学エンジニアリング株式会社 膜モジュール及び水処理システム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128784A (ja) * 2012-11-27 2014-07-10 Sekisui Chem Co Ltd 膜分離活性汚泥処理装置
JPWO2014128851A1 (ja) * 2013-02-20 2017-02-02 積水化学工業株式会社 水処理方法及び水処理装置
JPWO2014128850A1 (ja) * 2013-02-20 2017-02-02 積水化学工業株式会社 水処理方法及び水処理装置
KR102140264B1 (ko) 2013-12-20 2020-07-31 주식회사 엘지화학 중공사막
TWI480096B (zh) * 2014-03-17 2015-04-11 Southern Taiwan University Of Scienceand Technology 中空纖維膜製備裝置與方法及其製得的中空纖維膜
KR102017195B1 (ko) * 2016-11-11 2019-09-02 주식회사 엘지화학 중공사막
EP3388141A1 (en) * 2017-04-12 2018-10-17 Gambro Lundia AB Filtration device
CN107954488A (zh) * 2017-11-24 2018-04-24 苏州赛易特环保科技有限公司 一种纤维管水质净化器
KR20210022589A (ko) * 2018-06-27 2021-03-03 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 편평 시트 다공성 멤브레인
CN111072136B (zh) * 2019-12-30 2022-04-01 南京公诚节能新材料研究院有限公司 一种用于曝气生物滤池的复合型生物滤料
CN111111480B (zh) * 2020-01-09 2021-09-14 南京工业大学 一种唑来磷酸改性纳滤膜及其制备方法
CN112604512A (zh) * 2020-11-16 2021-04-06 广西中科鼎新产业技术研究院有限公司 一种耐酸性超滤膜材料及其制备方法
CN113061206B (zh) * 2021-03-08 2022-07-08 青海洁神环境科技股份有限公司 一种改性pvdc聚合物及其制备方法和用途

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223403A (ja) * 1985-07-23 1987-01-31 Sumitomo Electric Ind Ltd 多孔性中空糸膜及びその製造方法
JPH04343707A (ja) * 1991-05-17 1992-11-30 Nok Corp ポリフッ化ビニリデン多孔質糸の製造方法
JPH07163849A (ja) * 1993-12-15 1995-06-27 Kuraray Co Ltd ポリスルホン系中空糸膜およびその製造方法
JPH08108053A (ja) 1994-10-12 1996-04-30 Daicel Chem Ind Ltd 酢酸セルロース中空糸分離膜およびその製造法
JPH09278826A (ja) 1996-04-10 1997-10-28 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂の製造方法
JP2000051885A (ja) 1998-08-13 2000-02-22 Mitsubishi Rayon Co Ltd 活性汚泥処理装置
JP2002292254A (ja) * 2001-03-29 2002-10-08 Yuasa Corp 浸漬型膜ろ過装置
JP2003147629A (ja) 2001-11-07 2003-05-21 Toray Ind Inc 中空糸膜の製造方法及び中空糸膜
JP2004313923A (ja) 2003-04-16 2004-11-11 Kubota Corp 膜分離活性汚泥法を用いた処理システム
JP2006328165A (ja) 2005-05-25 2006-12-07 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂の製造方法
JP2007500591A (ja) * 2003-08-06 2007-01-18 上海立昇浄水設備有限公司 ポリ塩化ビニルの中空濾膜およびその製造方法
WO2008062526A1 (fr) 2006-11-24 2008-05-29 Sekisui Chemical Co., Ltd. Résines de chlorure de vinyle chlorées et leur procédé de fabrication
JP2009112895A (ja) * 2007-11-02 2009-05-28 Yuasa Membrane System:Kk 多孔質膜とその製造方法
JP2010082509A (ja) 2008-09-30 2010-04-15 Kobe Univ 多孔質膜

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE492707A (ja) * 1948-12-18
US2659102A (en) * 1951-03-14 1953-11-17 Du Pont Spinning viscose rayon
US2923598A (en) * 1954-06-30 1960-02-02 Pittsburgh Plate Glass Co Method of forming filaments embodying polyurethane resins
US2965437A (en) * 1958-04-02 1960-12-20 Du Pont Process for wet spinning plasticized elastomeric polymers and subsequently removing the plasticizer
US3975478A (en) * 1974-08-14 1976-08-17 Monsanto Company Method for producing highly permeable acrylic hollow fibers
JPS5334868A (en) 1976-09-13 1978-03-31 Sumitomo Electric Industries Fine porous tube
JPS54145379A (en) * 1978-05-02 1979-11-13 Asahi Chem Ind Co Ltd Aromatic polysulfone hollow fiber semipermeable membrane
US4175153A (en) * 1978-05-16 1979-11-20 Monsanto Company Inorganic anisotropic hollow fibers
JPS54153779A (en) * 1978-05-25 1979-12-04 Kuraray Co Ltd Preparation of polyvinyl alcohol base selective transmission membrane
DE3584562D1 (de) * 1984-06-13 1991-12-05 Inst Nat Rech Chimique Verfahren zur herstellung von hohlfasern und ihre verwendung in membrantrennverfahren.
JPS618150A (ja) * 1984-06-22 1986-01-14 Toyo Soda Mfg Co Ltd 微量液体用フイルタ−
JP2686949B2 (ja) * 1988-03-01 1997-12-08 旭化成工業株式会社 選択吸着機能性ミクロフィルターとその製造方法
US5174999A (en) * 1988-12-13 1992-12-29 Alza Corporation Delivery system comprising fluid ingress and drug egress
US6280626B1 (en) 1998-08-12 2001-08-28 Mitsubishi Rayon Co., Ltd. Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly
US6921482B1 (en) * 1999-01-29 2005-07-26 Mykrolis Corporation Skinned hollow fiber membrane and method of manufacture
US6322703B1 (en) 1999-04-20 2001-11-27 Asahi Kasei Kabushiki Kaisha Method for purifying aqueous suspension
US6802820B1 (en) * 2000-04-13 2004-10-12 Transvivo, Inc. Specialized hollow fiber membranes for in-vivo plasmapheresis and ultrafiltration
EP1338328A4 (en) * 2000-08-10 2006-09-20 Gs Yuasa Corp FILTERING IMMERSION MEMBRANE
JP3883510B2 (ja) * 2001-02-27 2007-02-21 旭化成せんい株式会社 ポリケトン繊維及びその製造方法
US6596167B2 (en) * 2001-03-26 2003-07-22 Koch Membrane Systems, Inc. Hydrophilic hollow fiber ultrafiltration membranes that include a hydrophobic polymer and a method of making these membranes
KR100452719B1 (ko) * 2002-02-09 2004-10-12 박헌휘 섬유질 지지체로 강화한 고인장강도의 중공사 분리막 및 그 제조방법
US7919178B2 (en) 2003-03-21 2011-04-05 Millipore Corporation Spatially-controlled modified porous membrane
JP2005081273A (ja) * 2003-09-09 2005-03-31 Yanmar Co Ltd 活性汚泥処理システムの運転方法及びその運転方法に使用される膜分離ユニット
TWI277440B (en) 2004-12-14 2007-04-01 Asahi Kasei Chemicals Corp Hollow fiber membrane cartridge
JP4671784B2 (ja) 2005-06-28 2011-04-20 荏原エンジニアリングサービス株式会社 分離膜による水処理方法及び装置
ATE513071T1 (de) * 2005-07-08 2011-07-15 Univ Bath Anorganische poröse hohlfasern
EP1913992A4 (en) 2005-07-20 2008-08-20 Kureha Corp POROUS CAVITY MEMBRANE FROM VINYLIDENFLUORIDE RESIN
CN100562356C (zh) * 2007-06-18 2009-11-25 海南立昇净水科技实业有限公司 亲水性聚氯乙烯合金中空纤维过滤膜及其制备方法
JP2009242984A (ja) * 2008-03-31 2009-10-22 Toho Tenax Co Ltd 炭素繊維前駆体の製造方法
CN101322921A (zh) * 2008-07-24 2008-12-17 武汉艾科滤膜技术有限公司 聚氯乙烯中空纤维膜的制造方法
EP2452741A4 (en) * 2009-07-06 2013-12-04 Sekisui Chemical Co Ltd POLYMERIC MEMBRANE FOR TREATING WATER

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223403A (ja) * 1985-07-23 1987-01-31 Sumitomo Electric Ind Ltd 多孔性中空糸膜及びその製造方法
JPH04343707A (ja) * 1991-05-17 1992-11-30 Nok Corp ポリフッ化ビニリデン多孔質糸の製造方法
JPH07163849A (ja) * 1993-12-15 1995-06-27 Kuraray Co Ltd ポリスルホン系中空糸膜およびその製造方法
JPH08108053A (ja) 1994-10-12 1996-04-30 Daicel Chem Ind Ltd 酢酸セルロース中空糸分離膜およびその製造法
JPH09278826A (ja) 1996-04-10 1997-10-28 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂の製造方法
JP2000051885A (ja) 1998-08-13 2000-02-22 Mitsubishi Rayon Co Ltd 活性汚泥処理装置
JP2002292254A (ja) * 2001-03-29 2002-10-08 Yuasa Corp 浸漬型膜ろ過装置
JP2003147629A (ja) 2001-11-07 2003-05-21 Toray Ind Inc 中空糸膜の製造方法及び中空糸膜
JP2004313923A (ja) 2003-04-16 2004-11-11 Kubota Corp 膜分離活性汚泥法を用いた処理システム
JP2007500591A (ja) * 2003-08-06 2007-01-18 上海立昇浄水設備有限公司 ポリ塩化ビニルの中空濾膜およびその製造方法
JP2006328165A (ja) 2005-05-25 2006-12-07 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂の製造方法
WO2008062526A1 (fr) 2006-11-24 2008-05-29 Sekisui Chemical Co., Ltd. Résines de chlorure de vinyle chlorées et leur procédé de fabrication
JP2009112895A (ja) * 2007-11-02 2009-05-28 Yuasa Membrane System:Kk 多孔質膜とその製造方法
JP2010082509A (ja) 2008-09-30 2010-04-15 Kobe Univ 多孔質膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2548632A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543429A4 (en) * 2010-03-04 2013-09-04 Sekisui Chemical Co Ltd MACROMOLECULAR WATER TREATMENT MEMBRANE AND METHOD FOR MANUFACTURING THE SAME
EP2543429A1 (en) * 2010-03-04 2013-01-09 Sekisui Chemical Co., Ltd. Macromolecular water-treatment membrane and manufacturing method therefor
US9193815B2 (en) 2010-03-04 2015-11-24 Sekisui Chemical Co., Ltd. Polymer membrane for water treatment and method for manufacture of same
JP2013052339A (ja) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd 水処理方法
JP2013052340A (ja) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd 水処理方法
JP2013086042A (ja) * 2011-10-20 2013-05-13 Sekisui Chem Co Ltd 高分子水処理膜
JP2013150961A (ja) * 2012-01-26 2013-08-08 Sekisui Chem Co Ltd 高分子水処理膜の製造方法
JP2013202580A (ja) * 2012-03-29 2013-10-07 Sekisui Chem Co Ltd 中空糸膜の透水性能の評価方法
JP2014124579A (ja) * 2012-12-26 2014-07-07 Sekisui Chem Co Ltd 有機排水の処理装置
JP2015145485A (ja) * 2014-02-04 2015-08-13 三菱樹脂株式会社 樹脂多孔質体及びその製造方法
JP2017094228A (ja) * 2015-11-18 2017-06-01 三菱重工環境・化学エンジニアリング株式会社 膜モジュール及び水処理システム
KR20180052779A (ko) * 2015-11-18 2018-05-18 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 막 모듈 및 수처리 시스템
KR102020164B1 (ko) 2015-11-18 2019-09-09 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 막 모듈 및 수처리 시스템

Also Published As

Publication number Publication date
CN102905778A (zh) 2013-01-30
TW201143880A (en) 2011-12-16
EP2548632A4 (en) 2017-03-15
JP5309250B2 (ja) 2013-10-09
JPWO2011108579A1 (ja) 2013-06-27
US20120325746A1 (en) 2012-12-27
JP2012166201A (ja) 2012-09-06
EP2548632A1 (en) 2013-01-23
US9855531B2 (en) 2018-01-02
CN102905778B (zh) 2016-01-27
TWI541061B (zh) 2016-07-11
JP5097298B2 (ja) 2012-12-12
US20160030892A1 (en) 2016-02-04
AU2011221916B2 (en) 2015-07-23
AU2011221916A1 (en) 2012-10-11
AU2011221916A2 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
WO2011108579A1 (ja) 高分子水処理膜及びその製造方法並びに水処理方法
Otitoju et al. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review
JP5960401B2 (ja) 水処理装置及び水処理方法
US9649602B2 (en) Method of sewage treatment and sewage treatment apparatus
JP5829080B2 (ja) 水処理方法
CN102470328B (zh) 1,1-二氟乙烯系树脂多孔膜、该多孔膜的制造方法和过滤水的制造方法
WO2011108580A1 (ja) 高分子水処理膜及びその製造方法
TWI473648B (zh) Polymer water treatment film
WO2007119850A1 (ja) 高耐久性pvdf多孔質膜及びその製造方法、並びに、これを用いた洗浄方法及び濾過方法
US11338253B2 (en) Porous hollow fiber membrane, method for producing same, and water purification method
WO2006087963A1 (ja) フッ化ビニリデン系樹脂中空糸多孔膜、それを用いる水の濾過方法およびその製造方法
WO2007125709A1 (ja) 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JP2013052339A (ja) 水処理方法
WO2013022016A1 (ja) 排水処理用高分子多孔質膜
JP5890971B2 (ja) 高分子水処理膜及び水処理方法
JP2013244424A (ja) 高分子水処理膜の製造方法
JP2013150961A (ja) 高分子水処理膜の製造方法
JP2014240041A (ja) 中空糸膜及びその製造方法
JP2013116461A (ja) 中空糸膜の製造方法
JP2014136183A (ja) 中空糸膜の製造方法
JP2002361055A (ja) 濾過膜及びそれを用いた浄水器並びに膜モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012309.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011535747

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13582528

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011221916

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 8283/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011750688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011221916

Country of ref document: AU

Date of ref document: 20110302

Kind code of ref document: A