WO2011001932A1 - アルミニウム箔の製造方法 - Google Patents
アルミニウム箔の製造方法 Download PDFInfo
- Publication number
- WO2011001932A1 WO2011001932A1 PCT/JP2010/060964 JP2010060964W WO2011001932A1 WO 2011001932 A1 WO2011001932 A1 WO 2011001932A1 JP 2010060964 W JP2010060964 W JP 2010060964W WO 2011001932 A1 WO2011001932 A1 WO 2011001932A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum foil
- aluminum
- plating solution
- film
- storage device
- Prior art date
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 165
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 156
- 239000011888 foil Substances 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000007747 plating Methods 0.000 claims abstract description 65
- -1 aluminum halide Chemical class 0.000 claims abstract description 24
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 16
- 150000003457 sulfones Chemical class 0.000 claims abstract description 15
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 9
- 150000003141 primary amines Chemical class 0.000 claims abstract description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims abstract description 5
- 150000003512 tertiary amines Chemical class 0.000 claims abstract description 5
- 125000001453 quaternary ammonium group Chemical group 0.000 claims abstract description 4
- 150000003335 secondary amines Chemical class 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims description 28
- 238000003860 storage Methods 0.000 claims description 17
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical group CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 claims description 16
- 230000005611 electricity Effects 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 229910000039 hydrogen halide Inorganic materials 0.000 claims description 9
- 239000012433 hydrogen halide Substances 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 abstract description 18
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 8
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005868 electrolysis reaction Methods 0.000 abstract 2
- 238000000926 separation method Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 28
- 238000005096 rolling process Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 12
- 239000005703 Trimethylamine hydrochloride Substances 0.000 description 11
- SZYJELPVAFJOGJ-UHFFFAOYSA-N trimethylamine hydrochloride Chemical compound Cl.CN(C)C SZYJELPVAFJOGJ-UHFFFAOYSA-N 0.000 description 11
- 238000002156 mixing Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- XHFGWHUWQXTGAT-UHFFFAOYSA-N dimethylamine hydrochloride Natural products CNC(C)C XHFGWHUWQXTGAT-UHFFFAOYSA-N 0.000 description 5
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NJQFCQXFOHVYQJ-PMACEKPBSA-N BF 4 Chemical compound C1([C@@H]2CC(=O)C=3C(O)=C(C)C4=C(C=3O2)[C@H](C(C)C)C2=C(O4)C(C)=C(C(C2=O)(C)C)OC)=CC=CC=C1 NJQFCQXFOHVYQJ-PMACEKPBSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- HBOOMWHZBIPTMN-UHFFFAOYSA-N 1-hexylsulfonylhexane Chemical compound CCCCCCS(=O)(=O)CCCCCC HBOOMWHZBIPTMN-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- JEXYCADTAFPULN-UHFFFAOYSA-N 1-propylsulfonylpropane Chemical compound CCCS(=O)(=O)CCC JEXYCADTAFPULN-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- BNPJNOLDKSAJSD-UHFFFAOYSA-N C(C)[N+](CC)(CC)CC.[B+3] Chemical compound C(C)[N+](CC)(CC)CC.[B+3] BNPJNOLDKSAJSD-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BICAGYDGRXJYGD-UHFFFAOYSA-N hydrobromide;hydrochloride Chemical compound Cl.Br BICAGYDGRXJYGD-UHFFFAOYSA-N 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- UPOHIXYDQZCJLR-UHFFFAOYSA-J tetraethylazanium tetrafluoride Chemical compound C(C)[N+](CC)(CC)CC.[F-].[F-].[F-].[F-].C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC UPOHIXYDQZCJLR-UHFFFAOYSA-J 0.000 description 1
- DDFYFBUWEBINLX-UHFFFAOYSA-M tetramethylammonium bromide Chemical compound [Br-].C[N+](C)(C)C DDFYFBUWEBINLX-UHFFFAOYSA-M 0.000 description 1
- RXMRGBVLCSYIBO-UHFFFAOYSA-M tetramethylazanium;iodide Chemical compound [I-].C[N+](C)(C)C RXMRGBVLCSYIBO-UHFFFAOYSA-M 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/42—Electroplating: Baths therefor from solutions of light metals
- C25D3/44—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
- C25D3/665—Electroplating: Baths therefor from melts from ionic liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/74—Terminals, e.g. extensions of current collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/16—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture specially for use as rectifiers or detectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/0038—Obtaining aluminium by other processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/02—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/266—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
Definitions
- the present invention relates to a method for producing an aluminum foil. More specifically, the present invention relates to a method for producing an aluminum foil by an electrolytic method that can be used as a positive electrode current collector of an electricity storage device such as a lithium ion secondary battery or a super capacitor (such as an electric double layer capacitor, a redox capacitor, or a lithium ion capacitor). .
- an electricity storage device such as a lithium ion secondary battery or a super capacitor (such as an electric double layer capacitor, a redox capacitor, or a lithium ion capacitor).
- lithium-ion secondary batteries with large energy density and no significant reduction in discharge capacity are used as the power source for mobile tools such as mobile phones and laptop computers.
- mobile tools such as mobile phones and laptop computers.
- miniaturization of lithium ion secondary batteries attached to the tools.
- new applications of supercapacitors with large energy density such as electric double layer capacitors, redox capacitors and lithium ion capacitors will be developed. Accelerating, and further higher energy density is required.
- An electricity storage device such as a lithium ion secondary battery or a supercapacitor has a positive electrode and a negative electrode made of polyolefin in an organic electrolyte containing a fluorine-containing compound such as LiPF 6 or NR 4 .BF 4 (R is an alkyl group) as an electrolyte. It has a structure that is arranged through a separator consisting of.
- the positive electrode is composed of a positive electrode active material such as LiCoO 2 (lithium cobaltate) and activated carbon and a positive electrode current collector
- the negative electrode is composed of a negative electrode active material such as graphite and activated carbon and a negative electrode current collector, and each shape is a current collector.
- an active material is applied to the surface of the material and formed into a sheet shape.
- it is immersed in an organic electrolyte containing a highly corrosive fluorine-containing compound, so that the material of the positive electrode current collector is particularly excellent in electrical conductivity and resistance. It is required to be excellent in corrosiveness.
- the material of the positive electrode current collector aluminum that is a good electrical conductor and has excellent corrosion resistance by forming a passive film on the surface is adopted as the material of the positive electrode current collector.
- the material for the negative electrode current collector include copper and nickel).
- One method for reducing the size and increasing the energy density of an electricity storage device is to reduce the thickness of a current collector that constitutes a sheet-shaped electrode.
- an aluminum foil produced by a rolling method and having a thickness of about 15 to 20 ⁇ m is generally used for the positive electrode current collector. Therefore, by reducing the thickness of the aluminum foil, the object can be achieved. Can be achieved.
- the rolling method it is difficult to further reduce the thickness of the foil on an industrial production scale. Therefore, as an aluminum foil manufacturing method that replaces the rolling method, a method of manufacturing an aluminum foil by an electrolytic method can be considered.
- Patent Document 1 discloses an electrolytic bath comprising 50 to 75 mol% of aluminum chloride and 25 to 50 mol% of alkylpyridinium chloride, or an electrolytic bath obtained by adding an organic solvent to this bath as a method for producing an aluminum foil by an electrolytic method. Although the method to be used is disclosed, this method has a very high chlorine concentration of the plating solution.
- Patent Document 1 has a problem that the film forming speed is slow because the maximum current density that can be applied is about 2 A / dm 2 (if the applied current density is further increased, the plating solution is decomposed). Etc., the plating process cannot be performed stably).
- the film formation rate can be expected to improve by adding organic solvents such as benzene and toluene to the plating solution, but these organic solvents are highly toxic and flammable. From the viewpoint of ease of waste liquid treatment and safety, it must be said that there is a problem in adding these organic solvents to the plating solution.
- organic solvents such as benzene and toluene
- an object of the present invention is to provide a method for producing a high-purity aluminum foil rich in ductility at a high film formation rate by an electrolytic method using a plating solution having a low chlorine concentration.
- the present inventors have energetically studied the electroplating technology of aluminum, and as a result of the research, developed a method using a plating solution prepared by dissolving an aluminum halide in dialkyl sulfone. (Japanese Patent Laid-Open No. 2008-31551). Therefore, the present inventors tried to produce an aluminum foil by an electrolytic method using this plating solution.
- This plating solution has a significantly lower chlorine concentration than the plating solution used in the method described in Patent Document 1.
- the production method of the aluminum foil of the present invention based on the above knowledge is as follows: (1) dialkyl sulfone, (2) aluminum halide, and (3) ammonium halide, primary amine A hydrogen halide salt of a secondary amine, a hydrogen halide salt of a tertiary amine, a general formula: R 1 R 2 R 3 R 4 N ⁇ X (R 1 to R 4 are the same or different and alkyl).
- R 1 R 2 R 3 R 4 N ⁇ X R 1 to R 4 are the same or different and alkyl
- the surface of the substrate by an electrolytic method using a plating solution containing at least one nitrogen-containing compound selected from the group consisting of quaternary ammonium salts represented by After the aluminum coating is formed on the substrate, the coating is peeled off from the substrate.
- the production method according to claim 2 is characterized in that, in the production method according to claim 1, the dialkyl sulfone is dimethyl sulfone.
- the aluminum foil of the present invention has an aluminum content of 97.0 to 99.9 mass%, S and Cl contents of 1.5 mass% or less, and a Vickers hardness of 40 to 120 Hv as described in claim 3. And having a thickness of 1 to 15 ⁇ m.
- the aluminum foil according to claim 4 has a cross-sectional structure in which the crystal structure grows wide from the surface located on the substrate side to the surface on the opposite side in the aluminum foil according to claim 3. It is characterized by.
- the positive electrode electrical power collector for electrical storage devices of this invention consists of the aluminum foil of Claim 3, as described in Claim 5.
- the electrode for an electricity storage device of the present invention is characterized in that, as described in claim 6, an electrode active material is supported on the aluminum foil according to claim 3.
- the electrical storage device of this invention is comprised using the electrode for electrical storage devices of Claim 6, as described in Claim 7. It is characterized by the above-mentioned.
- the present invention it is possible to provide a method for producing a high-purity aluminum foil rich in ductility at a high film formation rate by an electrolytic method using a plating solution having a low chlorine concentration.
- the method for producing the aluminum foil of the present invention comprises (1) dialkyl sulfone, (2) aluminum halide, and (3) ammonium halide, a primary amine hydrogen halide salt, a secondary amine hydrogen halide salt, Tertiary hydrogen halide salt, general formula: R 1 R 2 R 3 R 4 N ⁇ X (R 1 to R 4 are the same or different and are alkyl groups, X represents a counter anion for a quaternary ammonium cation)
- An aluminum film is formed on the surface of the substrate by an electrolytic method using a plating solution containing at least one nitrogen-containing compound selected from the group consisting of the quaternary ammonium salts represented, and then the film is peeled from the substrate It is characterized by doing.
- the dialkyl sulfone contained in the plating solution used in the method for producing an aluminum foil of the present invention has an alkyl group having 1 to 6 carbon atoms such as dimethyl sulfone, diethyl sulfone, dipropyl sulfone, dihexyl sulfone, and methylethyl sulfone ( Examples thereof may be linear or branched), but dimethylsulfone can be preferably employed from the viewpoint of good electrical conductivity and availability.
- Examples of the aluminum halide include aluminum chloride and aluminum bromide, but from the viewpoint of minimizing the amount of moisture contained in the plating solution which is a factor that hinders the precipitation of aluminum.
- the halide is preferably anhydrous.
- ammonium halide examples include ammonium chloride and ammonium bromide.
- primary amine to tertiary amine the carbon number of the alkyl group such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, hexylamine, methylethylamine, etc. Examples are those having 1 to 6 (which may be linear or branched).
- hydrogen halide examples include hydrogen chloride and hydrogen bromide.
- R 1 to R 4 are the same or different and an alkyl group, X represents a counter anion for a quaternary ammonium cation
- alkyl group represented by 1 to R 4 include those having 1 to 6 carbon atoms (which may be linear or branched) such as a methyl group, an ethyl group, a propyl group, and a hexyl group.
- the X Other halide ions such as chloride ion or bromide ion and iodide ion, BF 4 - and PF 6 - and the like can be exemplified.
- Suitable nitrogen-containing compounds include hydrochlorides of tertiary amines such as trimethylamine hydrochloride in terms of facilitating the production of high-purity aluminum foil having high ductility at a high film formation rate.
- the blending ratio of dialkyl sulfone, aluminum halide, and nitrogen-containing compound is preferably 1.5 to 4.0 moles, more preferably 2.0 to 3.5 moles, for 10 moles of dialkyl sulfone. .
- the nitrogen-containing compound is preferably 0.01 to 2.0 mol, more preferably 0.05 to 1.5 mol. If the blending amount of aluminum halide is less than 1.5 moles relative to 10 moles of dialkyl sulfone, the formed aluminum film may be darkened (a phenomenon called burning), or the film formation efficiency may be lowered. On the other hand, if the amount exceeds 4.0 mol, the plating solution may become too hot and decompose due to excessive heating.
- the effect of blending when the compounding amount of the nitrogen-containing compound is less than 0.01 mole with respect to 10 moles of dialkyl sulfone, that is, realization of plating treatment with high current density applied based on the improvement of the electrical conductivity of the plating solution While there is a risk that the effects of improving the film formation rate, improving the purity of the aluminum foil, and improving the ductility may be difficult to obtain, the composition of the plating solution will change essentially when it exceeds 2.0 mol. There is a risk that aluminum will not precipitate.
- Examples of electroplating conditions include a plating solution temperature of 80 to 110 ° C. and an applied current density of 2 to 15 A / dm 2 .
- the lower limit of the temperature of the plating solution should be determined in consideration of the melting point of the plating solution, preferably 85 ° C., more preferably 95 ° C. (Because the plating solution is solidified below the melting point of the plating solution, plating is performed. Processing is no longer possible).
- the temperature of the plating solution exceeds 110 ° C., the reaction between the aluminum coating formed on the surface of the substrate and the plating solution is activated, and the purity is lowered by incorporating a large amount of impurities into the aluminum coating. There is a fear.
- the applied current density is desirably 3 to 12 A / dm 2 .
- a notable advantage of the plating solution used in the method for producing an aluminum foil of the present invention is that a stable plating process can be performed even when a current density of 10 A / dm 2 or more is applied. It is in a point that can be done.
- the plating time is usually 1 to 30 minutes, although it depends on the desired thickness of the aluminum foil, the temperature of the plating solution, the applied current density, and the like.
- the plating treatment environment is desirably a dry atmosphere from the viewpoint of preventing the deterioration of the plating solution and extending its life.
- Examples of the base material (cathode) for forming the aluminum coating include a stainless plate, a titanium plate, an aluminum plate, and a nickel plate.
- the surface of the base material be as smooth as possible by performing mirror finishing or the like.
- the aluminum film formed on the surface has a feature that it can be easily peeled off even if such processing is not performed on the substrate (the reason is not necessarily clear, but the aluminum film is formed on the surface of the substrate). It is presumed that S and Cl derived from the plating solution are concentrated near the surface of the aluminum coating on the side in contact with the base material).
- An example of the material of the anode is aluminum.
- the aluminum film can be peeled off from the substrate batchwise, or the aluminum film can be continuously formed and peeled using a cathode drum (for example, Japanese Patent Laid-Open No. 6-93490).
- an aluminum foil having a thickness of 15 ⁇ m or less which is very difficult to produce by a rolling method, and further impossible to produce by a rolling method.
- An aluminum foil having a thickness of 10 ⁇ m or less can be produced at a high film formation rate by an electrolytic method using a plating solution having a low chlorine concentration.
- the resulting aluminum foil is highly pure in addition to being rich in ductility.
- the aluminum content is 97.0 to 99.9 mass%, and the S and Cl contents are both 1.5 mass% or less (typically 0.01 to 0).
- the manufactured aluminum foil can be used as a thin-film positive electrode current collector for reducing the size and increasing the energy density of an electricity storage device. Obtaining an aluminum foil having an Ra of about 1 to 10 ⁇ m corresponding to the Ra of the substrate is very convenient for obtaining a positive electrode current collector that is required to have such a surface roughness.
- the plating solution used in the present invention does not require the addition of an organic solvent such as benzene or toluene in order to increase the film formation rate, it can be washed with water and can be easily subjected to waste liquid treatment.
- Example 1 Dimethylsulfone, anhydrous aluminum chloride, and trimethylamine hydrochloride were mixed at a molar ratio of 10: 3: 0.1 and dissolved at 110 ° C. to prepare an electrolytic aluminum plating solution.
- An aluminum plate having a purity of 99.99% is used for the anode
- a stainless plate having a surface roughness (Ra) of 5 ⁇ m is used for the cathode (base material for forming the aluminum coating)
- a plating solution is applied at an applied current density of 3 A / dm 2.
- the stainless steel plate with the aluminum coating formed on the surface is taken out of the plating solution, washed with water and dried, and then tweezers interposed between the aluminum coating and the stainless steel plate are slid along the stainless steel plate from the end.
- the aluminum film peeled off from the stainless steel plate easily, and an aluminum foil was obtained.
- the obtained aluminum foil has a thickness of 5 ⁇ m and a surface roughness (Ra) of 5 ⁇ m, and the purity of aluminum is high (aluminum content: 99.9 mass%, S and Cl contents: both 0.04 mass%),
- the Vickers hardness was 50 Hv (load: 0.05 kg), and it was rich in ductility like the aluminum foil produced by the rolling method.
- the thickness of the aluminum foil was measured by observing the cross section with a scanning electron microscope (S-800: manufactured by Hitachi, Ltd.) (hereinafter the same).
- the surface roughness (Ra) of the stainless steel plate and aluminum foil used as the cathode was measured using an ultradeep shape measuring microscope (VK-8510, manufactured by Keyence Corporation).
- the purity of the aluminum foil was determined by measuring the S content using a sulfur analyzer (EMIA-820W: manufactured by Horiba Seisakusho) after washing both surfaces of the foil, and wavelength dispersive X-ray fluorescence analyzer (RIX-2100: manufactured by Rigaku). Was used to measure the Cl content, and the remainder was defined as the aluminum content (the same applies hereinafter).
- the Vickers hardness of the aluminum foil was measured using a micro hardness meter (MVK-E: manufactured by Akashi Seisakusho Co., Ltd.) (hereinafter the same).
- Example 2 Dimethylsulfone, anhydrous aluminum chloride, trimethylamine hydrochloride, and tetramethylammonium chloride were mixed at a molar ratio of 10: 3: 0.1: 1 and dissolved at 110 ° C. to prepare an electrolytic aluminum plating solution.
- the same anode and cathode as in Example 1 were used, and an electroplating treatment was performed while stirring the plating solution at 95 ° C. at an applied current density of 12 A / dm 2 .
- the plating solution was stirred at a higher speed than the stirring performed in Example 1 so as to prevent a decrease in the aluminum ion concentration in the vicinity of the cathode.
- an aluminum foil having a thickness of 5 ⁇ m could be obtained.
- the obtained aluminum foil has high aluminum purity (aluminum content: 99.9 mass%, S and Cl contents: both 0.04 mass%), and the Vickers hardness is the same as that of the aluminum foil obtained in Example 1. It was 80 Hv (load: 0.05 kg) and was rich in ductility.
- Example 3 An aluminum foil was obtained in the same manner as in Example 1 except that ammonium chloride was used instead of trimethylamine hydrochloride. The obtained aluminum foil had the same characteristics as the aluminum foil obtained in Example 1.
- Example 4 An aluminum foil was obtained in the same manner as in Example 1 except that dimethylamine hydrochloride was used instead of trimethylamine hydrochloride. The obtained aluminum foil had the same characteristics as the aluminum foil obtained in Example 1.
- Example 5 An aluminum foil was obtained in the same manner as in Example 1 except that tetramethylammonium chloride was used instead of trimethylamine hydrochloride. The obtained aluminum foil had the same characteristics as the aluminum foil obtained in Example 1.
- Example 6 An aluminum foil was obtained in the same manner as in Example 1 except that tetraethylammonium boron tetrafluoride was used instead of trimethylamine hydrochloride. The obtained aluminum foil had the same characteristics as the aluminum foil obtained in Example 1.
- Example 1 Relation between blending amount of trimethylamine hydrochloride in electrolytic aluminum plating solution and purity of aluminum foil A molar ratio of dimethylsulfone, anhydrous aluminum chloride, and trimethylamine hydrochloride was 10: 3: 0.01 or 0.03. The purity of the aluminum foil obtained in Example 1 was measured in the same manner as in Example 1, except that the electrolytic aluminum plating solution was prepared by mixing at a rate of 110 ° C. In addition, the relationship between the amount of trimethylamine hydrochloride in the electrolytic aluminum plating solution and the purity of the aluminum foil was investigated. The results are shown in Table 1.
- Experimental Example 2 Relationship between the amount of dimethylamine hydrochloride blended in the electrolytic aluminum plating solution and the purity of the aluminum foil 10: 3: 0.01 or 0.005 in terms of a molar ratio of dimethylsulfone, anhydrous aluminum chloride, and dimethylamine hydrochloride.
- the purity of the aluminum foil obtained in the same manner as in Example 4 was measured except that the electrolytic aluminum plating solution was prepared by mixing at a ratio of 03 and dissolving at 110 ° C.
- the aluminum foil obtained in Example 4 was measured.
- the relationship between the blending amount of dimethylamine hydrochloride into the electrolytic aluminum plating solution and the purity of the aluminum foil was investigated. The results are shown in Table 2.
- Experimental Example 3 Strength of aluminum foil produced by the production method of the present invention The thickness was the same as in Example 1 except that the applied current density was 5 A / dm 2 and the plating treatment time was 10, 15, and 20 minutes. Aluminum foils of 10, 15, and 20 ⁇ m were obtained, respectively (the aluminum content was 99.9 mass%). The tensile strength of the obtained aluminum foil was measured according to JIS Z2241 using an autograph (EZ-Test: manufactured by Shimadzu Corporation). The results are shown in Table 3. Table 3 also shows the measurement results of the tensile strength of a commercially available aluminum foil (manufactured by Nippon Foil Co., Ltd.) having a thickness of 20 ⁇ m manufactured by a rolling method.
- the strength of the aluminum foil produced by the production method of the present invention is equal to or greater than the strength of the aluminum foil produced by the rolling method. Was found to be superior to the latter strength.
- Experimental Example 4 Comparison of the structure of the aluminum foil produced by the production method of the present invention and the aluminum foil produced by the rolling method Implemented except that the applied current density was 5 A / dm 2 and the plating treatment time was 25 minutes.
- the cross-sectional structure was observed using a scanning electron microscope (S-4300: manufactured by Hitachi, Ltd.). The results are shown in FIGS. 1 and 2, respectively. As is clear from FIG.
- the cross-sectional structure of the aluminum foil produced by the production method of the present invention is such that the crystal structure is wide (spreading) from the surface located on the substrate side toward the surface on the opposite side.
- the cross-sectional structure of the aluminum foil manufactured by the rolling method is a horizontally elongated structure in which the crystal structure is stretched in the rolling direction. The structure was found to be quite different.
- Experimental Example 5 Ease of peeling of the aluminum coating formed on the surface of the substrate
- the composition in the vicinity of the surfaces of both sides of the aluminum foil obtained by peeling the aluminum coating from the stainless steel plate in Example 1 was analyzed by an X-ray photoelectron analyzer ( ESCA-850M: manufactured by Shimadzu Corporation).
- ESCA-850M manufactured by Shimadzu Corporation
- the present inventors have confirmed by a separate experiment that the aluminum film can be easily peeled from the substrate. Therefore, the reason why the aluminum film formed on the surface of the substrate in the present invention can be easily peeled off from the substrate is related to the concentration of S and Cl near the surface on the side in contact with the substrate. It was inferred. It should be noted that the concentration of S and Cl near the surface of the aluminum foil that was located on the substrate side disappears by washing with water or using acetone, which has an adverse effect on the final quality of the aluminum foil. (It means that there is an advantage that it can be removed by washing after contributing to the peeling of the aluminum coating from the substrate).
- Application Example 1 Use of aluminum foil produced by the production method of the present invention as a positive electrode current collector for an electricity storage device Example 1 except that the applied current density is 5 A / dm 2 and the plating treatment time is 15 minutes. Similarly, an aluminum foil having a thickness of 15 ⁇ m (aluminum content is 99.9 mass%) is used as a test electrode, a lithium foil is used as a counter electrode and a reference electrode, and a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio is 1: 1). A tripolar electrochemical evaluation cell was prepared using a solution of LiPF 6 dissolved in the electrolyte as an electrolyte.
- the potential of the test electrode was scanned in the range of 1 to 6 V at a scanning speed of 1 mV / sec, and the characteristics were electrochemically evaluated by cyclic voltammetry.
- the results are shown in FIG.
- the result of having performed the same evaluation by using a commercially available aluminum foil (manufactured by Nippon Foil Co., Ltd.) having a thickness of 20 ⁇ m manufactured by a rolling method as a test electrode is shown in FIG.
- the current-potential is the same as when the aluminum foil manufactured by the rolling method is used as a test electrode.
- the curve stabilized after the second cycle. Therefore, it turned out that the aluminum foil manufactured by the manufacturing method of this invention can be utilized as a positive electrode electrical power collector for electrical storage devices.
- Application Example 2 Production of an electricity storage device using the aluminum foil produced by the production method of the present invention as a positive electrode current collector for an electricity storage device Using the aluminum foil obtained in Example 1 as a positive electrode current collector, An electricity storage device having a configuration known per se was produced using the positive electrode active material applied as the positive electrode.
- the present invention has industrial applicability in that it can provide a method for producing a high-purity aluminum foil rich in ductility at a high film formation rate by an electrolytic method using a plating solution having a low chlorine concentration. .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
リチウムイオン二次電池やスーパーキャパシターといった蓄電デバイスは、例えば、電解質としてLiPF6やNR4・BF4(Rはアルキル基)などの含フッ素化合物を含んだ有機電解液中に、正極と負極がポリオレフィンなどからなるセパレータを介して配された構造を持つ。正極はLiCoO2(コバルト酸リチウム)や活性炭などの正極活物質と正極集電体からなるとともに、負極はグラファイトや活性炭などの負極活物質と負極集電体からなり、それぞれの形状は集電体の表面に活物質を塗布してシート状に成型したものが一般的である。各電極とも、大きな電圧がかかることに加え、腐食性が高い含フッ素化合物を含んだ有機電解液に浸漬されることから、特に、正極集電体の材料は、電気伝導性に優れるとともに、耐腐食性に優れることが求められる。このような事情から、現在、正極集電体の材料としては、ほぼ100%に、電気良導体であり、かつ、表面に不働態膜を形成することで優れた耐腐食性を有するアルミニウムが採用されている(負極集電体の材料としては銅やニッケルなどが挙げられる)。
そこで圧延法にかわるアルミニウム箔の製造方法として、アルミニウム箔を電解法によって製造する方法が考えられる。電解法による金属箔の製造は、例えば、ステンレス板などの基材の表面に電気めっきで金属被膜を形成した後、当該被膜を基材から剥離することによって行われるものであり、例えば銅箔の製造方法としてはよく知られているものである。しかしながら、アルミニウムは電気化学的に卑な金属であるため電気めっきが非常に難しいこともあり、アルミニウム箔を電解法によって製造することは容易なことではない。特許文献1には、アルミニウム箔を電解法によって製造する方法として、塩化アルミニウム50~75モル%とアルキルピリジニウムクロリド25~50モル%とからなる電解浴またはこの浴に有機溶媒を添加した電解浴を用いる方法が開示されているが、この方法は、めっき液の塩素濃度が非常に高い。そのため、めっき液に含まれる塩素がめっき処理中に大気中の水分と反応することで塩化水素ガスが発生し、設備の腐食を引き起こすといった問題があるので、塩化水素ガスの発生を防ぐための対策や発生した塩化水素ガスで設備が腐食することを防ぐための対策を講じる必要がある。また、特許文献1に記載の方法には、印加できる電流密度が最大でも2A/dm2程度であるため、成膜速度が遅いといった問題もある(印加電流密度をこれ以上高くするとめっき液の分解などが起こることによって安定にめっき処理を行うことができなくなる)。成膜速度はめっき液にベンゼンやトルエンなどの有機溶媒を添加することで改善を期待することができるが、これらの有機溶媒は毒性が高く、また、引火性が高いといった危険性があるため、廃液処理の容易性や安全性の点からは、めっき液にこれらの有機溶媒を添加することには問題があると言わざるを得ない。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、ジアルキルスルホンがジメチルスルホンであることを特徴とする。
また、本発明のアルミニウム箔は、請求項3記載の通り、アルミニウムの含量が97.0~99.9mass%、SとClの含量がともに1.5mass%以下であり、ビッカース硬度が40~120Hvであって、厚みが1~15μmであることを特徴とする。
また、請求項4記載のアルミニウム箔は、請求項3記載のアルミニウム箔において、基材側に位置していた表面からその反対側の表面に向かって結晶組織が幅広に成長した断面構造を有してなることを特徴とする。
また、本発明の蓄電デバイス用正極集電体は、請求項5記載の通り、請求項3記載のアルミニウム箔からなることを特徴とする。
また、本発明の蓄電デバイス用電極は、請求項6記載の通り、請求項3記載のアルミニウム箔に電極活物質を担持させてなることを特徴とする。
また、本発明の蓄電デバイスは、請求項7記載の通り、請求項6記載の蓄電デバイス用電極を用いて構成されてなることを特徴とする。
ジメチルスルホン、無水塩化アルミニウム、トリメチルアミン塩酸塩をモル比で10:3:0.1の割合で混合し、110℃で溶解させて電解アルミニウムめっき液を調製した。陽極に純度99.99%のアルミニウム板、陰極(アルミニウム被膜を形成するための基材)に表面粗さ(Ra)が5μmのステンレス板を用い、3A/dm2の印加電流密度で、めっき液を95℃に保って攪拌しながら電気めっき処理を10分間行った。10分後、表面にアルミニウム被膜が形成されたステンレス板をめっき液から取り出し、水洗を行ってから乾燥した後、その端部からアルミニウム被膜とステンレス板の間に介入させたピンセットをステンレス板に沿って滑らせるように移動させると、アルミニウム被膜はステンレス板から容易に剥離し、アルミニウム箔が得られた。得られたアルミニウム箔は、厚みが5μmで表面粗さ(Ra)が5μmであり、アルミニウムの純度が高く(アルミニウムの含量:99.9mass%、SとClの含量:ともに0.04mass%)、ビッカース硬度は50Hv(荷重:0.05kg)であって、圧延法によって製造されるアルミニウム箔と同様、延性に富むものであった。なお、アルミニウム箔の厚みは断面を走査型電子顕微鏡(S-800:日立製作所社製)で観察することによって測定した(以下同じ)。陰極として用いたステンレス板とアルミニウム箔の表面粗さ(Ra)は超深度形状測定顕微鏡(VK-8510:キーエンス社製)を用いて測定した。アルミニウム箔の純度はその両面を水洗した後に硫黄分析装置(EMIA-820W:堀場製作所社製)を用いてSの含量を測定するとともに波長分散蛍光X線分析装置(RIX-2100:リガク社製)を用いてClの含量を測定し、その残りをアルミニウムの含量とした(以下同じ)。アルミニウム箔のビッカース硬度は微小硬度計(MVK-E:明石製作所社製)を用いて測定した(以下同じ)。
ジメチルスルホン、無水塩化アルミニウム、トリメチルアミン塩酸塩、塩化テトラメチルアンモニウムをモル比で10:3:0.1:1の割合で混合し、110℃で溶解させて電解アルミニウムめっき液を調製した。実施例1と同様の陽極と陰極を用い、12A/dm2の印加電流密度で、めっき液を95℃に保って攪拌しながら電気めっき処理を行った。なお、めっき液の攪拌は、実施例1で行った攪拌よりもより高速に行い、陰極付近におけるアルミニウムイオン濃度の低下を防ぐようにした。その結果、塩化テトラメチルアンモニウムを含むめっき液を高速に攪拌することで、実施例1の印加電流密度よりも高い印加電流密度で安定な電気めっき処理が可能となり、実施例1よりもより短時間で厚みが5μmのアルミニウム箔を得ることができた。得られたアルミニウム箔は、実施例1で得られたアルミニウム箔と同様、アルミニウムの純度が高く(アルミニウムの含量:99.9mass%、SとClの含量:ともに0.04mass%)、ビッカース硬度は80Hv(荷重:0.05kg)であって、延性に富むものであった。
トリメチルアミン塩酸塩のかわりに塩化アンモニウムを用いること以外は実施例1と同様にしてアルミニウム箔を得た。得られたアルミニウム箔は、実施例1で得られたアルミニウム箔と同様の特性を有していた。
トリメチルアミン塩酸塩のかわりにジメチルアミン塩酸塩を用いること以外は実施例1と同様にしてアルミニウム箔を得た。得られたアルミニウム箔は、実施例1で得られたアルミニウム箔と同様の特性を有していた。
トリメチルアミン塩酸塩のかわりに塩化テトラメチルアンモニウムを用いること以外は実施例1と同様にしてアルミニウム箔を得た。得られたアルミニウム箔は、実施例1で得られたアルミニウム箔と同様の特性を有していた。
トリメチルアミン塩酸塩のかわりに四フッ化ホウ素テトラエチルアンモニウムを用いること以外は実施例1と同様にしてアルミニウム箔を得た。得られたアルミニウム箔は、実施例1で得られたアルミニウム箔と同様の特性を有していた。
ジメチルスルホン、無水塩化アルミニウム、トリメチルアミン塩酸塩をモル比で10:3:0.01または0.03の割合で混合し、110℃で溶解させて電解アルミニウムめっき液を調製すること以外は実施例1と同様にして得られたアルミニウム箔の純度を測定し、実施例1で得られたアルミニウム箔の純度とあわせて電解アルミニウムめっき液へのトリメチルアミン塩酸塩の配合量とアルミニウム箔の純度との関係を調べた。結果を表1に示す。
ジメチルスルホン、無水塩化アルミニウム、ジメチルアミン塩酸塩をモル比で10:3:0.01または0.03の割合で混合し、110℃で溶解させて電解アルミニウムめっき液を調製すること以外は実施例4と同様にして得られたアルミニウム箔の純度を測定し、実施例4で得られたアルミニウム箔の純度とあわせて電解アルミニウムめっき液へのジメチルアミン塩酸塩の配合量とアルミニウム箔の純度との関係を調べた。結果を表2に示す。
印加電流密度を5A/dm2、めっき処理時間を10、15、20分間とすること以外は実施例1と同様にして厚みがそれぞれ10、15、20μmのアルミニウム箔を得た(アルミニウムの含量はいずれも99.9mass%)。得られたアルミニウム箔の引っ張り強度をオートグラフ(EZ-Test:島津製作所社製)を用いてJIS Z2241に従って測定した。結果を表3に示す。また、表3には圧延法によって製造された厚みが20μmの市販のアルミニウム箔(日本製箔社製)の引っ張り強度の測定結果を併せて示す。
印加電流密度を5A/dm2、めっき処理時間を25分間とすること以外は実施例1と同様にして得た厚みが25μmのアルミニウム箔(アルミニウムの含量は99.9mass%)の断面構造と、圧延法によって製造された厚みが20μmの市販のアルミニウム箔(日本製箔社製)の断面構造を、走査型電子顕微鏡(S-4300:日立製作所社製)を用いて観察した。結果をそれぞれ図1と図2に示す。図1から明らかなように、本発明の製造方法によって製造されたアルミニウム箔の断面構造は、基材側に位置していた表面からその反対側の表面に向かって結晶組織が幅広(末広がり)に成長したものであるのに対し、図2から明らかなように、圧延法によって製造されたアルミニウム箔の断面構造は、結晶組織が圧延方向に引き伸ばされて横長になったものであり、両者の断面構造は全く異なることがわかった。
実施例1においてアルミニウム被膜をステンレス板から剥離させて得たアルミニウム箔の両面の表面付近の組成をX線光電子分析装置(ESCA-850M:島津製作所社製)を用いて測定した。その結果、基材側に位置していた表面付近の組成とその反対側の表面付近の組成は異なり、前者においては後者には認められないSとClの濃化が認められた。電気めっき処理を開始する前に無通電時間を設けた場合、その時間が長いほど基材に接する側のアルミニウム被膜の表面付近にめっき液に由来するSとClが濃化し、その程度が高いと基材からのアルミニウム被膜の剥離が容易であることを本発明者らは別途の実験によって確認している。従って、本発明において基材の表面に形成されたアルミニウム被膜が基材から容易に剥離することができる理由には、基材に接する側のその表面付近におけるSとClの濃化が関係しているものと推察された。なお、アルミニウム箔の基材側に位置していた表面付近におけるSとClの濃化は、水洗やアセトンを用いた洗浄を行うことで消失することから、アルミニウム箔の最終的な品質に悪影響を及ぼすものではない(アルミニウム被膜の基材からの剥離に寄与した後に洗浄によって除去することができるという利点があることを意味する)。
印加電流密度を5A/dm2、めっき処理時間を15分間とすること以外は実施例1と同様にして得た厚みが15μmのアルミニウム箔(アルミニウムの含量は99.9mass%)を試験極、リチウム箔を対極および参照極とし、エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比は1:1)にLiPF6を溶解した溶液を電解液として、3極式の電気化学評価セルを作製した。この電気化学評価セルを用い、試験極の電位を1mV/秒の走査速度で1~6Vの範囲で走査させ、サイクリックボルタンメトリーによってその特性を電気化学的に評価した。結果を図3に示す。また、圧延法によって製造された厚みが20μmの市販のアルミニウム箔(日本製箔社製)を試験極として同様の評価を行った結果を図4に示す。図3と図4から明らかなように、本発明の製造方法によって製造されたアルミニウム箔を試験極とした場合も、圧延法によって製造されたアルミニウム箔を試験極とした場合と同様、電流-電位曲線が2サイクル目以降安定化した。よって、本発明の製造方法によって製造されたアルミニウム箔は、蓄電デバイス用正極集電体として利用できることがわかった。
実施例1で得たアルミニウム箔を正極集電体として利用し、その表面に正極活物質を塗布したものを正極として、自体公知の構成を有する蓄電デバイスを作製した。
Claims (7)
- (1)ジアルキルスルホン、(2)アルミニウムハロゲン化物、および、(3)ハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:R1R2R3R4N・X(R1~R4は同一または異なってアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩からなる群から選択される少なくとも1つの含窒素化合物を少なくとも含むめっき液を用いた電解法によって基材の表面にアルミニウム被膜を形成した後、当該被膜を基材から剥離することを特徴とするアルミニウム箔の製造方法。
- ジアルキルスルホンがジメチルスルホンであることを特徴とする請求項1記載の製造方法。
- アルミニウムの含量が97.0~99.9mass%、SとClの含量がともに1.5mass%以下であり、ビッカース硬度が40~120Hvであって、厚みが1~15μmであることを特徴とするアルミニウム箔。
- 基材側に位置していた表面からその反対側の表面に向かって結晶組織が幅広に成長した断面構造を有してなることを特徴とする請求項3記載のアルミニウム箔。
- 請求項3記載のアルミニウム箔からなることを特徴とする蓄電デバイス用正極集電体。
- 請求項3記載のアルミニウム箔に電極活物質を担持させてなることを特徴とする蓄電デバイス用電極。
- 請求項6記載の蓄電デバイス用電極を用いて構成されてなることを特徴とする蓄電デバイス。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011520907A JP5403053B2 (ja) | 2009-06-29 | 2010-06-28 | アルミニウム箔の製造方法 |
CN201080029194.8A CN102471909B (zh) | 2009-06-29 | 2010-06-28 | 铝箔的制造方法 |
US13/378,174 US9219279B2 (en) | 2009-06-29 | 2010-06-28 | Method for producing aluminum foil |
KR1020127002420A KR101467643B1 (ko) | 2009-06-29 | 2010-06-28 | 알루미늄박의 제조방법 |
EP10794101.5A EP2450476B1 (en) | 2009-06-29 | 2010-06-28 | Method for manufacturing aluminum foil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009153923 | 2009-06-29 | ||
JP2009-153923 | 2009-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011001932A1 true WO2011001932A1 (ja) | 2011-01-06 |
Family
ID=43411008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060964 WO2011001932A1 (ja) | 2009-06-29 | 2010-06-28 | アルミニウム箔の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9219279B2 (ja) |
EP (1) | EP2450476B1 (ja) |
JP (2) | JP5403053B2 (ja) |
KR (1) | KR101467643B1 (ja) |
CN (1) | CN102471909B (ja) |
WO (1) | WO2011001932A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012201961A (ja) * | 2011-03-28 | 2012-10-22 | Hitachi Metals Ltd | 多孔質アルミニウム箔の製造方法 |
US20120312692A1 (en) * | 2011-02-18 | 2012-12-13 | Sumitomo Electric Industries, Ltd. | Aluminum porous body and method for producing the same |
JP2012246561A (ja) * | 2011-05-31 | 2012-12-13 | Hitachi Metals Ltd | 電解アルミニウム箔製造装置 |
JP2013023715A (ja) * | 2011-07-19 | 2013-02-04 | Kyoto Univ | 多孔質アルミニウム材料の製造方法 |
WO2013062026A1 (ja) | 2011-10-27 | 2013-05-02 | 日立金属株式会社 | 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス |
WO2013129479A1 (ja) | 2012-02-29 | 2013-09-06 | 日立金属株式会社 | 低融点な電気アルミニウムめっき用めっき液の調製方法、電気アルミニウムめっき用めっき液、アルミニウム箔の製造方法、および、電気アルミニウムめっき用めっき液の融点を低下させる方法 |
CN104247113A (zh) * | 2012-03-22 | 2014-12-24 | 住友电气工业株式会社 | 锂二次电池 |
JP2015067872A (ja) * | 2013-09-30 | 2015-04-13 | 日立金属株式会社 | 電解アルミニウム箔、及びそれを用いた電極、並びに蓄電デバイス |
JP2015155564A (ja) * | 2014-02-20 | 2015-08-27 | 日立金属株式会社 | 電解アルミニウム箔、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
WO2015125900A1 (ja) * | 2014-02-20 | 2015-08-27 | 日立金属株式会社 | 電解アルミニウム箔およびその製造方法、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
JP2017084739A (ja) * | 2015-10-30 | 2017-05-18 | 株式会社日本触媒 | リチウムイオン二次電池 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730258A (zh) * | 2014-01-08 | 2014-04-16 | 深圳顺络电子股份有限公司 | 用于制备固体电解电容器阳极的阳极混粉 |
CN104213157A (zh) * | 2014-09-17 | 2014-12-17 | 朱忠良 | 一种水相容性电镀铝液以及铝镀膜的形成方法及形成的铝镀物品 |
JP7323022B2 (ja) * | 2018-02-14 | 2023-08-08 | 株式会社プロテリアル | アルミニウム箔の製造方法 |
JP2019173164A (ja) * | 2018-03-28 | 2019-10-10 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JP7293674B2 (ja) * | 2019-01-31 | 2023-06-20 | 株式会社プロテリアル | ボンディングワイヤ |
JP7247611B2 (ja) * | 2019-01-31 | 2023-03-29 | 株式会社プロテリアル | キャリア箔付電解アルミニウム箔 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104791A (ja) | 1987-10-17 | 1989-04-21 | Nisshin Steel Co Ltd | アルミニウム電解箔の製造方法 |
JPH0693490A (ja) | 1992-09-10 | 1994-04-05 | Nippon Denkai Kk | 電解金属箔の製造方法 |
JP2005108724A (ja) * | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2008031551A (ja) | 2006-06-29 | 2008-02-14 | Hitachi Metals Ltd | アルミニウムめっき層および金属部材並びにその製造方法 |
JP2008195989A (ja) * | 2007-02-09 | 2008-08-28 | Dipsol Chem Co Ltd | 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法 |
WO2010044305A1 (ja) * | 2008-10-15 | 2010-04-22 | 日立金属株式会社 | 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 |
JP2010090414A (ja) * | 2008-10-06 | 2010-04-22 | Hitachi Metals Ltd | 電気アルミニウムめっき液およびアルミニウムめっき膜 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0274774B1 (en) * | 1986-12-04 | 1992-01-15 | Shell Internationale Researchmaatschappij B.V. | Electrodeposition of aluminium |
JPH01104792A (ja) * | 1987-10-19 | 1989-04-21 | Nisshin Steel Co Ltd | Fe−Ni合金電解箔の製造方法 |
US5041194A (en) * | 1989-05-18 | 1991-08-20 | Mitsubishi Petrochemical Co., Ltd. | Aluminum electroplating method |
JP3054357B2 (ja) * | 1996-02-08 | 2000-06-19 | 昭和アルミニウム株式会社 | 小口径穴あけ加工用エントリーボード |
JPH1197032A (ja) * | 1997-09-18 | 1999-04-09 | Nippon Foil Mfg Co Ltd | 二次電池用アルミニウム箔製集電体 |
JP2002184411A (ja) | 2000-12-15 | 2002-06-28 | Sumitomo Electric Ind Ltd | 非水電池用の負極集電体とその製造方法、および非水電池用の負極 |
JP3744369B2 (ja) * | 2001-03-16 | 2006-02-08 | 松下電器産業株式会社 | ニッケル水素二次電池集電体用ニッケル箔およびその製造方法 |
JP2004076031A (ja) * | 2002-08-09 | 2004-03-11 | Ishikawajima Harima Heavy Ind Co Ltd | 電解めっき用めっき浴及び複合めっき用めっき浴並びにこれらの製造方法 |
KR100560492B1 (ko) * | 2004-02-25 | 2006-03-13 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 전류 집전체 및 이를 포함하는리튬 이차 전지 |
JP2006286381A (ja) * | 2005-03-31 | 2006-10-19 | Sanyo Electric Co Ltd | 電池の電極製造用圧縮ロール及び電池用電極の製造方法 |
JP2007070698A (ja) * | 2005-09-07 | 2007-03-22 | Kyoto Univ | 金属の電析方法 |
JP2007238980A (ja) * | 2006-03-07 | 2007-09-20 | Hitachi Metals Ltd | 電解アルミニウムめっき方法およびアルミニウムめっき部材 |
JP4986122B2 (ja) * | 2006-03-31 | 2012-07-25 | 日立金属株式会社 | 電解アルミニウムめっき液およびアルミニウムめっき膜 |
JP4824490B2 (ja) * | 2006-07-05 | 2011-11-30 | 株式会社神戸製鋼所 | 微細パターン形成方法及び微細パターン形成金属シートの製造方法 |
US20080067972A1 (en) | 2006-09-15 | 2008-03-20 | Norio Takami | Power supply system and motor car |
KR100907804B1 (ko) * | 2007-04-26 | 2009-07-16 | 주식회사 대유신소재 | 전기 도금을 이용한 탄소 재료의 알루미늄 도금 장치 및 방법 |
-
2010
- 2010-06-28 WO PCT/JP2010/060964 patent/WO2011001932A1/ja active Application Filing
- 2010-06-28 CN CN201080029194.8A patent/CN102471909B/zh active Active
- 2010-06-28 KR KR1020127002420A patent/KR101467643B1/ko active IP Right Grant
- 2010-06-28 JP JP2011520907A patent/JP5403053B2/ja active Active
- 2010-06-28 US US13/378,174 patent/US9219279B2/en active Active
- 2010-06-28 EP EP10794101.5A patent/EP2450476B1/en active Active
-
2013
- 2013-10-29 JP JP2013224353A patent/JP5979117B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104791A (ja) | 1987-10-17 | 1989-04-21 | Nisshin Steel Co Ltd | アルミニウム電解箔の製造方法 |
JPH0693490A (ja) | 1992-09-10 | 1994-04-05 | Nippon Denkai Kk | 電解金属箔の製造方法 |
JP2005108724A (ja) * | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2008031551A (ja) | 2006-06-29 | 2008-02-14 | Hitachi Metals Ltd | アルミニウムめっき層および金属部材並びにその製造方法 |
JP2008195989A (ja) * | 2007-02-09 | 2008-08-28 | Dipsol Chem Co Ltd | 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法 |
JP2010090414A (ja) * | 2008-10-06 | 2010-04-22 | Hitachi Metals Ltd | 電気アルミニウムめっき液およびアルミニウムめっき膜 |
WO2010044305A1 (ja) * | 2008-10-15 | 2010-04-22 | 日立金属株式会社 | 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2450476A4 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120312692A1 (en) * | 2011-02-18 | 2012-12-13 | Sumitomo Electric Industries, Ltd. | Aluminum porous body and method for producing the same |
CN103328694A (zh) * | 2011-02-18 | 2013-09-25 | 住友电气工业株式会社 | 铝多孔体及其制造方法 |
JP2012201961A (ja) * | 2011-03-28 | 2012-10-22 | Hitachi Metals Ltd | 多孔質アルミニウム箔の製造方法 |
JP2012246561A (ja) * | 2011-05-31 | 2012-12-13 | Hitachi Metals Ltd | 電解アルミニウム箔製造装置 |
JP2013023715A (ja) * | 2011-07-19 | 2013-02-04 | Kyoto Univ | 多孔質アルミニウム材料の製造方法 |
JPWO2013062026A1 (ja) * | 2011-10-27 | 2015-04-02 | 日立金属株式会社 | 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス |
WO2013062026A1 (ja) | 2011-10-27 | 2013-05-02 | 日立金属株式会社 | 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス |
US9812700B2 (en) | 2011-10-27 | 2017-11-07 | Hitachi Metals, Ltd. | Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electrical storage devices, electrode for electrical storage devices, and electrical storage device |
CN103958742A (zh) * | 2011-10-27 | 2014-07-30 | 日立金属株式会社 | 多孔铝箔的制造方法、多孔铝箔、蓄电装置用正极集电体、蓄电装置用电极,以及蓄电装置 |
EP2772569A4 (en) * | 2011-10-27 | 2015-08-19 | Hitachi Metals Ltd | METHOD FOR THE PRODUCTION OF A POROUS ALUMINUM FOIL, POROUS ALUMINUM FOIL, POSITIVE ELECTRODE COLLECTOR FOR AN ELECTRICITY STORAGE DEVICE, ELECTRODE FOR AN ELECTRICITY STORAGE DEVICE AND ELECTRICITY STORAGE DEVICE |
US9382634B2 (en) | 2012-02-29 | 2016-07-05 | Hitachi Metals, Ltd. | Method for preparing low-melting-point plating solution for aluminum electroplating, plating solution for aluminum electroplating, method for producing aluminum foil, and method for lowering melting point of plating solution for aluminum electroplating |
JPWO2013129479A1 (ja) * | 2012-02-29 | 2015-07-30 | 日立金属株式会社 | 低融点な電気アルミニウムめっき用めっき液の調製方法、電気アルミニウムめっき用めっき液、アルミニウム箔の製造方法、および、電気アルミニウムめっき用めっき液の融点を低下させる方法 |
CN104204308A (zh) * | 2012-02-29 | 2014-12-10 | 日立金属株式会社 | 低熔点的电镀铝用镀液的调制方法、电镀铝用镀液、铝箔的制造方法、以及降低电镀铝用镀液的熔点的方法 |
WO2013129479A1 (ja) | 2012-02-29 | 2013-09-06 | 日立金属株式会社 | 低融点な電気アルミニウムめっき用めっき液の調製方法、電気アルミニウムめっき用めっき液、アルミニウム箔の製造方法、および、電気アルミニウムめっき用めっき液の融点を低下させる方法 |
KR20140129342A (ko) | 2012-02-29 | 2014-11-06 | 히타치 긴조쿠 가부시키가이샤 | 저융점의 전기 알루미늄 도금용 도금액의 조제 방법, 전기 알루미늄 도금용 도금액, 알루미늄박의 제조 방법, 및 전기 알루미늄 도금용 도금액의 융점을 저하시키는 방법 |
CN104247113A (zh) * | 2012-03-22 | 2014-12-24 | 住友电气工业株式会社 | 锂二次电池 |
JP2015067872A (ja) * | 2013-09-30 | 2015-04-13 | 日立金属株式会社 | 電解アルミニウム箔、及びそれを用いた電極、並びに蓄電デバイス |
WO2015125899A1 (ja) * | 2014-02-20 | 2015-08-27 | 日立金属株式会社 | 電解アルミニウム箔、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
WO2015125900A1 (ja) * | 2014-02-20 | 2015-08-27 | 日立金属株式会社 | 電解アルミニウム箔およびその製造方法、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
KR20160124074A (ko) | 2014-02-20 | 2016-10-26 | 히타치 긴조쿠 가부시키가이샤 | 전해알루미늄박 및 그 제조방법, 축전 디바이스용 집전체, 축전 디바이스용 전극, 축전 디바이스 |
KR20160124073A (ko) | 2014-02-20 | 2016-10-26 | 히타치 긴조쿠 가부시키가이샤 | 전해알루미늄박, 축전 디바이스용 집전체, 축전 디바이스용 전극, 축전 디바이스 |
JP2015155564A (ja) * | 2014-02-20 | 2015-08-27 | 日立金属株式会社 | 電解アルミニウム箔、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
US9991519B2 (en) | 2014-02-20 | 2018-06-05 | Hitachi Metals, Ltd. | Electrolytic aluminum foil, production method therefor, current collector for electrical storage device, electrode for electrical storage device, and electrical storage device |
JP2017084739A (ja) * | 2015-10-30 | 2017-05-18 | 株式会社日本触媒 | リチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
EP2450476A1 (en) | 2012-05-09 |
KR20120101329A (ko) | 2012-09-13 |
US9219279B2 (en) | 2015-12-22 |
US20120088153A1 (en) | 2012-04-12 |
CN102471909B (zh) | 2015-09-02 |
JP5403053B2 (ja) | 2014-01-29 |
JPWO2011001932A1 (ja) | 2012-12-13 |
EP2450476B1 (en) | 2022-10-12 |
JP2014051743A (ja) | 2014-03-20 |
JP5979117B2 (ja) | 2016-08-24 |
KR101467643B1 (ko) | 2014-12-01 |
CN102471909A (zh) | 2012-05-23 |
EP2450476A4 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5979117B2 (ja) | アルミニウム箔の製造方法およびアルミニウム箔 | |
EP2639341B1 (en) | Method for producing aluminium foil | |
KR101958507B1 (ko) | 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스 | |
JP5527328B2 (ja) | 炭素性粒子が分散担持されてなるアルミニウム箔 | |
JP5617611B2 (ja) | 引張強度に優れる複合金属箔 | |
JP5482646B2 (ja) | 粗面を有するアルミニウム箔 | |
JP5888403B2 (ja) | 低融点な電気アルミニウムめっき用めっき液の調製方法、電気アルミニウムめっき用めっき液、アルミニウム箔の製造方法、および、電気アルミニウムめっき用めっき液の融点を低下させる方法 | |
JP6252832B2 (ja) | アルミニウム箔、及びそれを用いた電極、並びに蓄電デバイス | |
JP5929000B2 (ja) | 多孔質アルミニウム箔の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080029194.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10794101 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011520907 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13378174 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010794101 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127002420 Country of ref document: KR Kind code of ref document: A |