WO2010044305A1 - 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 - Google Patents

電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 Download PDF

Info

Publication number
WO2010044305A1
WO2010044305A1 PCT/JP2009/063671 JP2009063671W WO2010044305A1 WO 2010044305 A1 WO2010044305 A1 WO 2010044305A1 JP 2009063671 W JP2009063671 W JP 2009063671W WO 2010044305 A1 WO2010044305 A1 WO 2010044305A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
plating solution
plating
chloride
plating film
Prior art date
Application number
PCT/JP2009/063671
Other languages
English (en)
French (fr)
Inventor
星 裕之
篤志 岡本
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN200980146014.1A priority Critical patent/CN102216499B/zh
Priority to JP2010506725A priority patent/JP4530111B2/ja
Priority to US13/123,760 priority patent/US9068270B2/en
Publication of WO2010044305A1 publication Critical patent/WO2010044305A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts

Definitions

  • the present invention relates to an electrolytic aluminum plating solution and a method for forming an aluminum plating film using the same.
  • Patent Document 1 reports a low-temperature molten salt electroplating solution prepared by mixing and melting dimethyl sulfone and aluminum halide (such as aluminum chloride) as a relatively safe electroaluminum plating solution. ing.
  • this plating solution uses dimethyl sulfone as a non-aqueous solvent, the bath cost is high. Therefore, in order to reduce the plating cost, it is necessary to extend the life of the plating solution.
  • this plating solution uses a highly hygroscopic aluminum halide as a solute, it has the property of gradually absorbing and deteriorating moisture in the air. When plating is performed using a plating solution that has deteriorated due to absorption of moisture, a black film called burn (hereinafter simply referred to as “burn”) tends to occur.
  • the present inventors effectively remove moisture from the plating solution by adding dimethylamine borane to the plating solution in Patent Document 2. Reported how to remove. However, in this method, in subsequent studies, it was found that the plating solution may ignite due to a rapid reaction between dimethylamine borane and water when the amount of water mixed in the plating solution increases. .
  • an object of the present invention is to provide a plating solution capable of performing an electroaluminum plating process stably for a long period of time and having a long life and a method for forming an aluminum plating film using the plating solution.
  • the present inventors have obtained a plating solution prepared by mixing and melting dimethylsulfone, aluminum halide, ammonium chloride or tetraalkylammonium chloride at a predetermined ratio ( Low temperature molten salt electroplating solution) is capable of stable electroaluminum plating for a long period of time even when the amount of moisture mixed in is increased. Has also found that a uniform aluminum plating film can be formed on the object to be plated.
  • the electroaluminum plating solution of the present invention made on the basis of the above knowledge contains 1.5 to 4.0 mol of aluminum halide with respect to 10.0 mol of dimethylsulfone as defined in claim 1, and contains aluminum halide. It is characterized in that it contains ammonium chloride in a molar ratio of 1/15 to 1/4 or tetraalkylammonium chloride in a molar ratio of 1/15 to 1/2.
  • the electroaluminum plating solution according to claim 2 is the electroaluminum plating solution according to claim 1, wherein the aluminum halide is aluminum chloride.
  • the electroaluminum plating solution according to claim 3 is the electroaluminum plating solution according to claim 1, wherein the aluminum halide is an anhydride.
  • the electroaluminum plating solution according to claim 4 is the electroaluminum plating solution according to claim 1, wherein the tetraalkylammonium chloride is tetramethylammonium chloride.
  • the method for forming an aluminum plating film according to the present invention is the surface of the object to be plated by installing the object to be plated as a cathode in the electroplated aluminum plating solution according to claim 1 and energizing it. An aluminum plating film is formed on the substrate.
  • the article of the present invention is characterized in that, as described in claim 6, an aluminum plating film is formed on the surface by the method for forming an aluminum plating film according to claim 5.
  • the electroaluminum plating process can be stably performed for a long period of time. It is possible to provide a plating solution that can be formed and a method for forming an aluminum plating film using the plating solution.
  • Example 1 it is a photograph which shows the result of the visual observation about the relationship between the quantity of the water added to the plating solution, and the external appearance of the aluminum plating film formed in the surface of an oxygen-free copper plate.
  • 2 is a photograph showing the results in Example 2.
  • FIG. 2 is a photograph showing the result in Comparative Example 1; 4 is a photograph showing the results in Comparative Example 2; It is a photograph which shows the result in the comparative example 3 same as the above.
  • Image analysis of burn area occupied by the relationship between the amount of water added to the plating solution and the appearance of the aluminum plating film formed on the surface of the oxygen-free copper plate in Examples 1 and 2 and Comparative Examples 1, 2 and 3 It is a graph which shows the result computed by these.
  • the electroaluminum plating solution of the present invention contains 1.5 to 4.0 mol of aluminum halide with respect to 10.0 mol of dimethylsulfone, and ammonium chloride with respect to aluminum halide in a molar ratio of 1/15 to 1 / 4 or tetraalkylammonium chloride in a molar ratio of 1/15 to 1/2.
  • the electroaluminum plating solution of the present invention can stably perform the plating treatment for a long period of time even when the amount of moisture mixed in gradually increases.
  • Al (DMSO 2 ) 3 3+ DMSO 2 which contribute to the electrodeposition of aluminum by containing ammonium chloride or tetraalkylammonium chloride with a predetermined composition is: It means that dimethylsulfone, Electrochimica Acta, vol.40, No.11, pp.1711-1716, 1995) is present stably in the plating solution.
  • the aluminum halide examples include aluminum chloride and aluminum bromide, but aluminum chloride can be preferably used in view of material costs.
  • the aluminum halide is preferably an anhydride from the viewpoint of reducing the amount of moisture contained in the plating solution as much as possible.
  • the content of the aluminum halide is defined as 1.5 to 4.0 mol with respect to 10.0 mol of dimethylsulfone. If the amount is less than 1.5 mol, there is a risk that burns are likely to occur. This is because if it exceeds, the liquid resistance of the plating solution becomes too high, so that the applied voltage increases and the plating solution may be decomposed.
  • the content of the aluminum halide is desirably 2.0 to 3.5 mol with respect to 10.0 mol of dimethyl sulfone.
  • the content is defined as 1/15 to 1/4 in terms of molar ratio to the aluminum halide.
  • the effect of inclusion in the plating solution below 1/15 That is, while there is a possibility that the life of the plating solution cannot be improved and the electrical conductivity cannot be improved, if it exceeds 1/4, the plating solution easily absorbs moisture due to its hygroscopicity. This is because there is a possibility that bubbles may be generated in the surface, or a non-plated portion or gloss unevenness may occur.
  • the content of ammonium chloride is preferably 1/10 to 1/5 in molar ratio with respect to the aluminum halide.
  • examples of the tetraalkylammonium chloride include compounds having 1 to 6 carbon atoms in the alkyl group, such as tetramethylammonium chloride and tetraethylammonium chloride.
  • tetramethylammonium chloride can be suitably employed.
  • the content is specified to be 1/15 to 1/2 in terms of molar ratio with respect to the aluminum halide. The effect is that when the content is less than 1/15, it is included in the plating solution, that is, the life of the plating solution is increased.
  • the content of tetraalkylammonium chloride is preferably 1/10 to 2/5 in molar ratio with respect to the aluminum halide.
  • a dialkylamine hydrochloride such as dimethylamine hydrochloride or a trialkylamine hydrochloride such as trimethylamine hydrochloride is used for the purpose of increasing the purity of the formed aluminum plating film. Etc. may be included.
  • the plating treatment using the electroaluminum plating solution of the present invention includes, for example, an anode made of aluminum (also serving as a source of aluminum ions) and an object to be plated as a cathode in the plating solution, and the temperature of the plating solution. May be adjusted to 85 to 115 ° C. and the applied current density to 2.0 to 7.5 A / dm 2 . If the temperature of the plating solution falls below 85 ° C, the liquid resistance of the plating solution becomes too high, so that the applied voltage increases and the plating solution may be decomposed. On the other hand, if the temperature exceeds 115 ° C, it is formed on the surface of the object to be plated.
  • the reaction between the aluminum plating film and the plating solution is activated, and there is a possibility that the purity of the film may be lowered by incorporating a large amount of impurities into the film.
  • the applied current density is less than 2.0 A / dm 2 , the film formation efficiency may be reduced.
  • the applied current density is more than 7.5 A / dm 2 , there is a risk that burns are likely to occur due to excess current.
  • the applied current density is preferably 2.5 to 5.0 A / dm 2 .
  • the time for the plating process depends on the desired thickness of the aluminum plating film (typically 20 to 100 ⁇ m), the temperature of the plating solution, the applied current density, etc., but is usually 10 minutes to 3 hours. is there.
  • the plating method either a rack method or a barrel method can be adopted. Since the electroaluminum plating solution of the present invention has high electrical conductivity, it is possible to form a uniform plating film on the object to be plated even by a plating process using a barrel method. This can be characterized as an advantage of the electroaluminum plating solution of the present invention as well as being capable of stable plating treatment for a long period of time even if the amount of moisture mixed in gradually increases.
  • the object to be plated (article) to be treated by the electroaluminum plating process is not particularly limited as long as an aluminum plating film can be formed on the surface by the electroaluminum plating process.
  • a conductive metal material a carbon film or a synthetic resin material imparted with electrical conductivity by forming, for example, a metal film (a film of nickel, copper, zinc, or the like) on the surface may be used.
  • the object to be plated may be a metal material having a metal film formed on the surface. Corrosion resistance and design can be imparted by forming an aluminum plating film on the surface of the object to be plated.
  • an electroaluminum plating process when performing an electroaluminum plating process, it is desirable to fully dry a to-be-plated object from a viewpoint of reducing the quantity of the water
  • a pretreatment of the electroaluminum plating treatment in addition to the removal treatment using an organic acid or inorganic acid of the oxide film naturally formed on the surface of the object to be plated, zincate treatment, electroless plating treatment, conductive anodic oxidation treatment, Conductive chemical conversion treatment or the like may be performed.
  • anodizing treatment or thermal hydroxylation treatment to the aluminum plating film formed on the surface of the object to be plated, it is possible to add wear resistance to the plating film or enhance the corrosion resistance of the plating film. Also good.
  • Example 1 Dimethylsulfone, anhydrous aluminum chloride, and ammonium chloride were mixed at a ratio of 10: 3: 0.5 (molar ratio), and heated to 110 ° C. to be melted to prepare an electroaluminum plating solution.
  • a white uniform aluminum plating film (thickness: about 40 ⁇ m) could be formed on the surface of the object to be plated.
  • 1.2 g of water is added to 250 mL of the plating solution, After a sufficient time was taken until the reaction between the plating solution and water was completed, a plating treatment was performed under the same conditions as described above, and 1.2 g of water was sequentially added and the same operation was repeated.
  • the result of visual observation is shown in FIG.
  • Example 2 Dimethylsulfone, anhydrous aluminum chloride, and tetramethylammonium chloride were mixed at a ratio of 10: 3: 1 (molar ratio), heated to 110 ° C. and melted to prepare an electrolytic aluminum plating solution.
  • this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was.
  • FIG. 2 shows the result of visual observation
  • FIG. 6 shows the result of calculating the burned area by image analysis. As apparent from FIGS. 2 and 6, no burn was observed even when the amount of water added was 10.8 g, but color unevenness was observed when the amount of water added was 7.2 g. From the above results, it was found that good plating treatment can be performed at least up to 6.0 g of water.
  • Comparative Example 1 Dimethylsulfone and anhydrous aluminum chloride were mixed at a ratio of 10: 2 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
  • this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. The result of visual observation is shown in FIG. 3, and the result of calculating the burned area by image analysis is shown in FIG. As apparent from FIG. 3 and FIG. 6, no generation of burns was observed when the amount of water added was 2.4 g, but generation of burns was observed when the amount of water added was 3.6 g. It was found that the plating solution of Example 1 and the plating solution of Example 2 contained ammonium chloride and tetramethylammonium chloride, respectively, to achieve a longer life than this plating solution.
  • Comparative Example 2 Dimethyl sulfone and anhydrous aluminum chloride were mixed at a ratio of 10: 4 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
  • this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. The result of visual observation is shown in FIG. 4, and the result of calculating the burned area by image analysis is shown in FIG. As apparent from FIG. 4 and FIG. 6, generation of burns was slightly observed when the amount of water added was 2.4 g, and generation of burns became significant when the amount of water added was 3.6 g. It was found that the plating solution of Example 1 and the plating solution of Example 2 contained ammonium chloride and tetramethylammonium chloride, respectively, to achieve a longer life than this plating solution.
  • Comparative Example 3 Dimethylsulfone, anhydrous aluminum chloride, and dimethylamine hydrochloride were mixed at a ratio of 10: 3: 0.2 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
  • this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. The result of visual observation is shown in FIG. 5, and the result of calculating the burned area by image analysis is shown in FIG. As apparent from FIG. 5 and FIG. 6, generation of burns was slightly observed when the amount of water added was 3.6 g, and generation of burns became significant when the amount of water added was 4.8 g. It has been found that dimethylamine hydrochloride does not have the effect of extending the life of the plating solution possessed by ammonium chloride or tetramethylammonium chloride.
  • Comparative Example 4 Dimethylsulfone, anhydrous aluminum chloride, and ammonium chloride were mixed at a ratio of 10: 3: 1 (molar ratio), and heated to 110 ° C. to be melted to prepare an electroaluminum plating solution.
  • this plating solution was used for plating under the same plating conditions as in Example 1, bubbles were generated in the plating solution, and the generated bubbles contacted the object to be plated. There were streaky unplated parts. Therefore, it was found that a plating solution containing 1/3 of ammonium chloride in a molar ratio with respect to anhydrous aluminum chloride contained too much ammonium chloride and could not perform good plating treatment (ammonium chloride).
  • the amount of aluminum complex ions (Al (DMSO 2 ) 3 3+ ) in the plating solution decreases, but it does not become zero at a molar ratio of up to 1/4 with respect to the aluminum halide. This was confirmed by a separate experiment).
  • Comparative Example 5 Dimethylsulfone, anhydrous aluminum chloride, and tetramethylammonium chloride were mixed at a ratio of 10: 3: 2 (molar ratio), heated to 110 ° C. and melted to prepare an electroaluminum plating solution.
  • this plating solution was used for plating under the same plating conditions as in Example 1, an aluminum plating film was not formed on the surface of the object to be plated. Therefore, it was found that a plating solution containing 2/3 of tetramethylammonium chloride in a molar ratio with respect to anhydrous aluminum chloride has an excessive content of tetramethylammonium chloride and cannot perform good plating treatment.
  • Comparative Example 6 Dimethylsulfone, anhydrous aluminum chloride, and dimethylamine hydrochloride were mixed at a ratio of 10: 3: 0.75 (molar ratio) and heated to 110 ° C. to melt, thereby preparing an electroaluminum plating solution.
  • this plating solution was used for plating under the same plating conditions as in Example 1, the aluminum plating film formed on the surface of the object to be plated had color unevenness and streak-like unplated portions. . Therefore, it was found that dimethylamine hydrochloride does not have the effect of extending the life of the plating solution possessed by ammonium chloride or tetramethylammonium chloride.
  • Comparative Example 7 Dimethyl sulfone, anhydrous aluminum chloride, and dimethylamine borane were mixed at a ratio of 10: 2: 0.1 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
  • this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. As a result, when 1.2 g of water was added to 250 mL of the plating solution and the plating solution and water were reacted, the plating solution emitted a green flame and burned. It has been found that there is no effect of extending the life of the plating solution that ammonium or tetramethylammonium chloride has.
  • Example 3 Using the electroaluminum plating solution prepared in Example 2, an oxygen-free copper plate having a purity of 99.99% having a size of 70 mm ⁇ 70 mm ⁇ 0.5 mm (previously immersed in a 10 mL / L nitric acid aqueous solution as a surface to be plated) Was removed, washed with water, and sufficiently dried with warm air), except that the plating was performed under the same plating conditions as in Example 1 to form an aluminum plating film on the surface of the object to be plated. .
  • the result of having evaluated the adhesiveness with the to-be-plated object of the plating film formed in the surface of to-be-plated object by a cross-cut test is shown in FIG. As is clear from FIG. 7, no peeling of the plating film from the object to be plated was observed, so that this plating film was formed on the surface of the object to be plated with excellent adhesion. I understood.
  • Example 4 Using the electrolytic aluminum plating solution prepared in Example 2, a zinc alloy treatment, a strike copper plating treatment, and an electrogalvanization treatment were sequentially performed on a magnesium alloy plate (AZ31 rolled material) of 50 mm ⁇ 50 mm ⁇ 1.0 mm as an object to be plated. Except that the outermost surface was sufficiently dried as a galvanized film, and was plated under the same plating conditions as in Example 1 to form an aluminum plated film (thickness: about 40 ⁇ m) on the surface of the galvanized film did.
  • FIG. 8 shows the result of visual observation of the appearance of the magnesium alloy plate having the aluminum plating film on the outermost surface
  • FIG. 9 shows the result of cross-sectional observation. As is apparent from FIGS.
  • the aluminum plating film formed on the outermost surface of the magnesium alloy plate was white and uniform, and was dense.
  • a neutral salt spray test for 96 hours Went.
  • the result of visual observation of the appearance after the neutral salt spray test is shown in FIG.
  • no rusting was observed on the surface of the aluminum plating film, indicating excellent corrosion resistance.
  • the aluminum plating film could be colored similarly to a pure aluminum material etc. by performing an anodizing process with respect to this magnesium alloy board which has an aluminum plating film in the outermost surface. From the above results, it was found that corrosion resistance and design properties can be imparted by forming an aluminum plating film on the surface of the magnesium alloy plate.
  • Example 5 Dimethylsulfone, anhydrous aluminum chloride, and tetramethylammonium chloride were mixed at a ratio of 10: 2: 1 (molar ratio), heated to 110 ° C. and melted to prepare an electrolytic aluminum plating solution.
  • a Teflon (registered trademark) barrel made of hexagonal pillars with a side of 2 cm and a length of 5 cm, into which 180 iron balls (to-be-plated) with a diameter of 5 mm and one copper ball with a diameter of 10 mm connected with a lead wire, was added Installed in the plating solution, and connected to the iron ball and the lead wire through a copper ball to form a cathode, and an applied current of 4.0 A / dm 2 at 110 ° C. while rotating the barrel at a rotation speed of 10 rpm. Energization was performed for 50 minutes at a density to perform plating.
  • FIG. 11 shows the results of cross-sectional observation of an iron ball having an aluminum plating film on the surface. As is clear from FIG. 11, it was found that a dense aluminum plating film was formed on the surface of the iron ball.
  • Comparative Example 8 Dimethylsulfone and anhydrous aluminum chloride were mixed at a ratio of 10: 2 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution. Using this plating solution, the same plating method as in Example 5 was performed to form an aluminum plating film (thickness: about 40 ⁇ m) on the surface of the iron ball.
  • FIG. 12 shows the results of cross-sectional observation of an iron ball having an aluminum plating film on the surface. As is clear from FIG. 12, the aluminum plating film formed on the surface of the iron ball was formed in a layer shape and was found to be non-uniform with separation between layers. .
  • the electrical conductivity of the plating solution of Example 5 and the plating solution of Comparative Example 8 is shown in FIG. As is apparent from FIG. 13, the electrical conductivity of the plating solution of Example 5 and the plating solution of Comparative Example 8 are greatly different, and the difference in electrical conductivity is the property of the aluminum plating film formed on the surface of the iron ball. It was found that the electrical conductivity was improved when the plating solution contained tetramethylammonium chloride (the higher the slope of the polarization curve, the higher the electrical conductivity).
  • the present invention enables stable electroaluminum plating treatment for a long period of time even when the amount of moisture mixed in gradually increases, and in addition, the formation of a uniform aluminum plating film on the object to be plated can also be achieved by plating treatment using a barrel method.
  • the present invention has industrial applicability in that a plating solution that can be used and a method for forming an aluminum plating film using the plating solution can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 本発明の課題は、長期間安定に電気アルミニウムめっき処理が可能な、高寿命化が図られためっき液およびそれを使用したアルミニウムめっき被膜の形成方法を提供することである。その解決手段としての本発明の電気アルミニウムめっき液は、ジメチルスルホン10.0molに対してアルミニウムハロゲン化物を1.5~4.0mol含有し、かつ、アルミニウムハロゲン化物に対して塩化アンモニウムをモル比で1/15~1/4含有するか、または、塩化テトラアルキルアンモニウムをモル比で1/15~1/2含有することを特徴とする。このめっき液は、電気伝導性が高いので、バレル方式でのめっき処理によっても被めっき物に対して均一なアルミニウムめっき被膜を形成することができるという更なる利点を有する。

Description

電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法
 本発明は、電気アルミニウムめっき液およびそれを使用したアルミニウムめっき被膜の形成方法に関する。
 アルミニウムの電析電位は水素発生の電位よりも卑であるため、水溶液からアルミニウムを電析することは不可能である。従って、電気アルミニウムめっき液は、これまで非水溶媒を使用したものが多く研究されてきた。非水溶媒としてはテトラヒドロフランやトルエンなどが知られているが、これらは引火性が強いという問題があるため、殆ど実用化されていない。このような中で、比較的安全な電気アルミニウムめっき液として、ジメチルスルホンとアルミニウムハロゲン化物(塩化アルミニウムなど)を混合して溶融させることで調製した低温溶融塩電気めっき液が特許文献1において報告されている。しかしながら、このめっき液は、非水溶媒としてジメチルスルホンを使用しているため、建浴コストが高い。よって、めっきコストを下げるためには、このめっき液の寿命を長くする必要がある。ところが、このめっき液は、溶質として吸湿性の強いアルミニウムハロゲン化物を使用しているので、次第に空気中の水分を吸収して劣化するという性質を持つ。水分を吸収して劣化しためっき液を使用してめっき処理を行うと、ヤケと呼ばれる黒い被膜(以下、単に「ヤケ」と称する)が生じやすくなる。
 本発明者らは、特許文献1に記載の電気アルミニウムめっき液が有する上記の問題を解消すべく、特許文献2において、めっき液にジメチルアミンボランを含有せしめることで、めっき液から水分を効果的に除去する方法を報告した。しかしながら、この方法は、その後の検討において、めっき液中への水分の混入量が多くなると、ジメチルアミンボランと水との反応が急激に起こることでめっき液が発火する場合があることが判明した。
特開2004-76031号公報 特開2006-161154号公報
 そこで本発明は、長期間安定に電気アルミニウムめっき処理が可能な、高寿命化が図られためっき液およびそれを使用したアルミニウムめっき被膜の形成方法を提供することを目的とする。
 本発明者らは、上記の点に鑑みて鋭意研究を重ねた結果、ジメチルスルホン、アルミニウムハロゲン化物、塩化アンモニウムまたは塩化テトラアルキルアンモニウムを所定の割合で混合して溶融させることで調製しためっき液(低温溶融塩電気めっき液)は、水分の混入量が次第に増加しても長期間安定に電気アルミニウムめっき処理が可能であること、加えて、電気伝導性が高いので、バレル方式でのめっき処理によっても被めっき物に対する均一なアルミニウムめっき被膜の形成が可能であることを見出した。
 上記の知見に基づいてなされた本発明の電気アルミニウムめっき液は、請求項1記載の通り、ジメチルスルホン10.0molに対してアルミニウムハロゲン化物を1.5~4.0mol含有し、かつ、アルミニウムハロゲン化物に対して塩化アンモニウムをモル比で1/15~1/4含有するか、または、塩化テトラアルキルアンモニウムをモル比で1/15~1/2含有することを特徴とする。
 また、請求項2記載の電気アルミニウムめっき液は、請求項1記載の電気アルミニウムめっき液において、アルミニウムハロゲン化物が塩化アルミニウムであることを特徴とする。
 また、請求項3記載の電気アルミニウムめっき液は、請求項1記載の電気アルミニウムめっき液において、アルミニウムハロゲン化物が無水物であることを特徴とする。
 また、請求項4記載の電気アルミニウムめっき液は、請求項1記載の電気アルミニウムめっき液において、塩化テトラアルキルアンモニウムが塩化テトラメチルアンモニウムであることを特徴とする。
 また、本発明のアルミニウムめっき被膜の形成方法は、請求項5記載の通り、請求項1記載の電気アルミニウムめっき液中に被めっき物を陰極として設置し、通電を行うことで被めっき物の表面にアルミニウムめっき被膜を形成することを特徴とする。
 また、本発明の物品は、請求項6記載の通り、請求項5記載のアルミニウムめっき被膜の形成方法によって表面にアルミニウムめっき被膜が形成されてなることを特徴とする。
 本発明によれば、水分の混入量が次第に増加しても長期間安定に電気アルミニウムめっき処理が可能であり、加えて、バレル方式でのめっき処理によっても被めっき物に対する均一なアルミニウムめっき被膜の形成が可能であるめっき液およびそれを使用したアルミニウムめっき被膜の形成方法を提供することができる。
実施例1における、めっき液に添加した水の量と無酸素銅板の表面に形成されたアルミニウムめっき被膜の外観との関係についての目視観察の結果を示す写真である。 同、実施例2における結果を示す写真である。 同、比較例1における結果を示す写真である。 同、比較例2における結果を示す写真である。 同、比較例3における結果を示す写真である。 実施例1,2および比較例1,2,3における、めっき液に添加した水の量と無酸素銅板の表面に形成されたアルミニウムめっき被膜の外観との関係についてのヤケの占有面積を画像解析によって算出した結果を示すグラフである。 実施例3における、無酸素銅板の表面に形成されたアルミニウムめっき被膜の無酸素銅板との密着性を碁盤目試験によって評価した結果を示す写真である。 実施例4における、最表面にアルミニウムめっき被膜を有するマグネシウム合金板の外観の目視観察の結果を示す写真である。 同、断面観察の結果を示す写真である。 同、中性塩水噴霧試験後の外観の目視観察の結果を示す写真である。 実施例5における、表面にアルミニウムめっき被膜を有する鉄球の断面観察の結果を示す写真である。 比較例8における、表面にアルミニウムめっき被膜を有する鉄球の断面観察の結果を示す写真である。 実施例5のめっき液と比較例8のめっき液の電気伝導性を示すグラフである。
 本発明の電気アルミニウムめっき液は、ジメチルスルホン10.0molに対してアルミニウムハロゲン化物を1.5~4.0mol含有し、かつ、アルミニウムハロゲン化物に対して塩化アンモニウムをモル比で1/15~1/4含有するか、または、塩化テトラアルキルアンモニウムをモル比で1/15~1/2含有することを特徴とするものである。本発明の電気アルミニウムめっき液は、水分の混入量が次第に増加しても長期間安定にめっき処理を行うことができる。その理由の1つとしては、塩化アンモニウムまたは塩化テトラアルキルアンモニウムを所定の組成のもとで含有することで、アルミニウムの電析に寄与するアルミニウム錯イオン(Al(DMSO 3+:DMSOはジメチルスルホンを意味する。Electrochimica Acta,vol.40,No.11,pp.1711-1716,1995)がめっき液中で安定に存在することが考えられる。
 アルミニウムハロゲン化物としては、塩化アルミニウムや臭化アルミニウムなどを挙げることができるが、材料コストなどに鑑みれば、塩化アルミニウムを好適に採用することができる。アルミニウムハロゲン化物は、めっき液に含まれる水分の量を可能な限り少なくするという観点から、無水物であることが望ましい。アルミニウムハロゲン化物の含有量を、ジメチルスルホン10.0molに対して1.5~4.0molと規定するのは、1.5molを下回るとヤケが発生しやすくなる恐れがある一方、4.0molを上回るとめっき液の液抵抗が高くなりすぎることで印加電圧が高くなってめっき液が分解する恐れがあるからである。アルミニウムハロゲン化物の含有量は、ジメチルスルホン10.0molに対して2.0~3.5molが望ましい。
 めっき液に塩化アンモニウムを含有せしめる場合のその含有量をアルミニウムハロゲン化物に対してモル比で1/15~1/4と規定するのは、1/15を下回るとめっき液に含有せしめることの効果、即ち、めっき液の高寿命化や電気伝導性の向上を図ることができなくなる恐れがある一方、1/4を上回るとその吸湿性によってめっき液が水分を吸収しやすくなることでめっき液中に気泡が発生したり無めっき部分や光沢ムラが発生したりする恐れがあるからである。塩化アンモニウムの含有量は、アルミニウムハロゲン化物に対してモル比で1/10~1/5が望ましい。
 めっき液に塩化テトラアルキルアンモニウムを含有せしめる場合、塩化テトラアルキルアンモニウムとしては、塩化テトラメチルアンモニウムや塩化テトラエチルアンモニウムなどのアルキル基の炭素数が1~6の化合物を挙げることができるが、材料コストなどに鑑みれば、塩化テトラメチルアンモニウムを好適に採用することができる。その含有量をアルミニウムハロゲン化物に対してモル比で1/15~1/2と規定するのは、1/15を下回るとめっき液に含有せしめることの効果、即ち、めっき液の高寿命化や電気伝導性の向上を図ることができなくなる恐れがある一方、1/2を上回るとめっき液中のアルミニウム錯イオン(Al(DMSO 3+)の存在量が減少してしまうことでめっき被膜が形成されない恐れがあるからである。塩化テトラアルキルアンモニウムの含有量は、アルミニウムハロゲン化物に対してモル比で1/10~2/5が望ましい。
 なお、本発明の電気アルミニウムめっき液には、形成されるアルミニウムめっき被膜の純度を高めることなどを目的として、ジメチルアミン塩酸塩などのジアルキルアミン塩酸塩や、トリメチルアミン塩酸塩などのトリアルキルアミン塩酸塩などを含有せしめてもよい。
 本発明の電気アルミニウムめっき液を使用しためっき処理は、例えば、アルミニウムからなる陽極(アルミニウムイオンの供給源にもなる)と、陰極としての被めっき物をめっき液中に設置し、めっき液の温度を85~115℃、印加電流密度を2.0~7.5A/dmに調整して行えばよい。めっき液の温度が85℃を下回るとめっき液の液抵抗が高くなりすぎることで印加電圧が高くなってめっき液が分解する恐れがある一方、115℃を上回ると被めっき物の表面に形成されたアルミニウムめっき被膜とめっき液との間での反応が活発化し、被膜中に不純物が多く取り込まれることでその純度が低下する恐れがある。また、印加電流密度が2.0A/dmを下回ると成膜効率が低下する恐れがある一方、7.5A/dmを上回ると電流過剰によってヤケが発生しやすくなる恐れがある。印加電流密度は、2.5~5.0A/dmが望ましい。なお、めっき処理の時間は、アルミニウムめっき被膜の所望する厚み(標準的には20~100μmである)、めっき液の温度や印加電流密度などにも依存するが、通常、10分間~3時間である。めっき方式は、ラック方式とバレル方式のいずれも採用することができる。本発明の電気アルミニウムめっき液は、電気伝導性が高いので、バレル方式でのめっき処理によっても被めっき物に対する均一なめっき被膜の形成が可能である。このことは、水分の混入量が次第に増加しても長期間安定にめっき処理が可能であることとともに、本発明の電気アルミニウムめっき液の利点として特徴付けることができる。
 電気アルミニウムめっき処理の処理対象となる被めっき物(物品)は、電気アルミニウムめっき処理によってその表面にアルミニウムめっき被膜を形成することができるものであれば特に制限されるものではなく、それ自体が電気伝導性を有する金属材料の他、表面に例えば金属被膜(ニッケル、銅、亜鉛などの被膜)を形成することで電気伝導性を付与した炭素材料や合成樹脂材料などであってもよい。また、被めっき物は、表面に金属被膜を形成した金属材料であってもよい。被めっき物の表面にアルミニウムめっき被膜を形成することで、耐食性や意匠性を付与することができる。なお、電気アルミニウムめっき処理を行う際には、めっき液に含まれる水分の量を可能な限り少なくするという観点から、被めっき物は十分に乾燥しておくことが望ましい。また、電気アルミニウムめっき処理の前処理として、被めっき物の表面に自然生成した酸化膜の有機酸や無機酸を使用した除去処理の他、ジンケート処理、無電解めっき処理、導電性陽極酸化処理、導電性化成処理などを行ってもよい。被めっき物の表面に形成されたアルミニウムめっき被膜に対して陽極酸化処理や熱水酸化処理を行うことで、めっき被膜に耐磨耗性を付加したり、めっき被膜の耐食性を増強したりしてもよい。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載によって何ら限定して解釈されるものではない。
実施例1:
 ジメチルスルホンと無水塩化アルミニウムと塩化アンモニウムを10:3:0.5の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液250mL中に、陽極として40mm×20mm×2mmの純アルミニウム板(A1090)を、陰極として被めっき物とする20mm×20mm×0.5mmの純度99.99%の無酸素銅板(予め10mL/Lの硝酸水溶液に浸漬して表面酸化膜を除去した後、水洗し、温風にて十分に乾燥したもの)を設置し、110℃にて3.0A/dmの印加電流密度で60分間通電し、めっき処理を行った。その結果、被めっき物の表面に白色の均一なアルミニウムめっき被膜(厚み:約40μm)を形成することができた。次に、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べるため、めっき液250mLに水を1.2g添加し、めっき液と水との反応が終了するまで十分に時間をかけた後、上記と同じ条件でめっき処理を行い、さらに順次、水を1.2gずつ添加して同じ操作を繰り返した。めっき液に添加した水の量と被めっき物の表面に形成されためっき被膜の外観との関係について、目視観察の結果を図1に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図1と図6から明らかなように、水の添加量を10.8gとしてもヤケの発生は認められなかったが、水の添加量が9.6gになるとスジ状の無めっき部分の発生が認められた。以上の結果から、少なくとも水の添加量が8.4gまでは良好なめっき処理を行うことができることがわかった。
実施例2:
 ジメチルスルホンと無水塩化アルミニウムと塩化テトラメチルアンモニウムを10:3:1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図2に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図2と図6から明らかなように、水の添加量を10.8gとしてもヤケの発生は認められなかったが、水の添加量が7.2gになると色ムラの発生が認められた。以上の結果から、少なくとも水の添加量が6.0gまでは良好なめっき処理を行うことができることがわかった。
比較例1:
 ジメチルスルホンと無水塩化アルミニウムを10:2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図3に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図3と図6から明らかなように、水の添加量が2.4gではヤケの発生は認められなかったが、水の添加量が3.6gになるとヤケの発生が認められたことから、実施例1のめっき液と実施例2のめっき液は、それぞれ塩化アンモニウムと塩化テトラメチルアンモニウムを含有することで、このめっき液よりも高寿命化が図られていることがわかった。
比較例2:
 ジメチルスルホンと無水塩化アルミニウムを10:4の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図4に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図4と図6から明らかなように、水の添加量が2.4gでヤケの発生がわずかに認められ、水の添加量が3.6gになるとヤケの発生が顕著となったことから、実施例1のめっき液と実施例2のめっき液は、それぞれ塩化アンモニウムと塩化テトラメチルアンモニウムを含有することで、このめっき液よりも高寿命化が図られていることがわかった。
比較例3:
 ジメチルスルホンと無水塩化アルミニウムとジメチルアミン塩酸塩を10:3:0.2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図5に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図5と図6から明らかなように、水の添加量が3.6gでヤケの発生がわずかに認められ、水の添加量が4.8gになるとヤケの発生が顕著となったことから、ジメチルアミン塩酸塩は、塩化アンモニウムや塩化テトラメチルアンモニウムが有するめっき液の寿命を長くする効果を有さないことがわかった。
比較例4:
 ジメチルスルホンと無水塩化アルミニウムと塩化アンモニウムを10:3:1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様のめっき条件でめっき処理を行ったところ、めっき液中に気泡が発生し、発生した気泡が被めっき物に接触したことでアルミニウムめっき被膜の表面にはスジ状の無めっき部分が存在した。従って、無水塩化アルミニウムに対して塩化アンモニウムをモル比で1/3含有するめっき液では、塩化アンモニウムの含有量が多すぎて、良好なめっき処理を行うことができないことがわかった(塩化アンモニウムの添加量が増えるに従ってめっき液中のアルミニウム錯イオン(Al(DMSO 3+)の存在量が減少するが、アルミニウムハロゲン化物に対してモル比で1/4までの添加量では0にはならないことを別途の実験によって確認した)。
比較例5:
 ジメチルスルホンと無水塩化アルミニウムと塩化テトラメチルアンモニウムを10:3:2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様のめっき条件でめっき処理を行ったところ、被めっき物の表面にアルミニウムめっき被膜は形成されなかった。従って、無水塩化アルミニウムに対して塩化テトラメチルアンモニウムをモル比で2/3含有するめっき液では、塩化テトラメチルアンモニウムの含有量が多すぎて、良好なめっき処理を行うことができないことがわかった(塩化テトラメチルアンモニウムの添加量が増えるに従ってめっき液中のアルミニウム錯イオン(Al(DMSO 3+)の存在量が減少するが、アルミニウムハロゲン化物に対してモル比で1/2までの添加量では0にはならないことを別途の実験によって確認した)。
比較例6:
 ジメチルスルホンと無水塩化アルミニウムとジメチルアミン塩酸塩を10:3:0.75の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様のめっき条件でめっき処理を行ったところ、被めっき物の表面に形成されたアルミニウムめっき被膜には色ムラやスジ状の無めっき部分が存在した。従って、ジメチルアミン塩酸塩は、塩化アンモニウムや塩化テトラメチルアンモニウムが有するめっき液の寿命を長くする効果を有さないことがわかった。
比較例7:
 ジメチルスルホンと無水塩化アルミニウムとジメチルアミンボランを10:2:0.1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。その結果、めっき液250mLに水を1.2g添加し、めっき液と水とを反応させた時点で、めっき液が緑色の炎を発して燃焼してしまったことから、ジメチルアミンボランは、塩化アンモニウムや塩化テトラメチルアンモニウムが有するめっき液の寿命を長くする効果を有さないことがわかった。
実施例3:
 実施例2で調製した電気アルミニウムめっき液を使用し、被めっき物として70mm×70mm×0.5mmの純度99.99%の無酸素銅板(予め10mL/Lの硝酸水溶液に浸漬して表面酸化膜を除去した後、水洗し、温風にて十分に乾燥したもの)を使用したこと以外は実施例1と同様のめっき条件でめっき処理を行い、被めっき物の表面にアルミニウムめっき被膜を形成した。被めっき物の表面に形成されためっき被膜の被めっき物との密着性を碁盤目試験によって評価した結果を図7に示す。図7から明らかなように、めっき被膜の被めっき物からの剥離は全く認められなかったことから、このめっき被膜は、優れた密着性のもとに被めっき物の表面に形成されていることがわかった。
実施例4:
 実施例2で調製した電気アルミニウムめっき液を使用し、被めっき物として50mm×50mm×1.0mmのマグネシウム合金板(AZ31圧延材)にジンケート処理とストライク銅めっき処理と電気亜鉛めっき処理を順次行って最表面を亜鉛めっき被膜として十分に乾燥したものを使用したこと以外は実施例1と同様のめっき条件でめっき処理を行い、亜鉛めっき被膜の表面にアルミニウムめっき被膜(厚み:約40μm)を形成した。最表面にアルミニウムめっき被膜を有するマグネシウム合金板の外観の目視観察の結果を図8に、断面観察の結果を図9に示す。図8と図9から明らかなように、マグネシウム合金板の最表面に形成されたアルミニウムめっき被膜は白色の均一なものであり、また、緻密であることがわかった。この最表面にアルミニウムめっき被膜を有するマグネシウム合金板に対し、100℃の熱水を使用して1時間の酸化処理を行うことで表面に酸化膜を形成した後、96時間の中性塩水噴霧試験を行った。中性塩水噴霧試験後の外観の目視観察の結果を図10に示す。図10から明らかなように、アルミニウムめっき被膜の表面には発錆はまったく認められず、優れた耐食性を示した。また、この最表面にアルミニウムめっき被膜を有するマグネシウム合金板に対し、陽極酸化処理を行うことで、純アルミニウム材などと同様にアルミニウムめっき被膜の着色を行うことができた。以上の結果から、マグネシウム合金板の表面にアルミニウムめっき被膜を形成することで、耐食性や意匠性を付与することができることがわかった。
実施例5:
 ジメチルスルホンと無水塩化アルミニウムと塩化テトラメチルアンモニウムを10:2:1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液中に、陽極として70mm×70mm×1mmの純度99.99%のアルミニウム板を設置した。また、直径5mmの鉄球(被めっき物)180個とリード線を接続した直径10mmの銅製ボール1個を投入した一辺が2cmで長さが5cmの六角柱のテフロン(登録商標)製バレルをめっき液中に設置し、銅製ボールを介して鉄球とリード線の導通をとることで陰極とし、バレルを10rpmの回転速度で回転させながら、110℃にて4.0A/dmの印加電流密度で50分間通電し、めっき処理を行った。その結果、鉄球の表面に白色の均一なアルミニウムめっき被膜(厚み:約40μm)を形成することができた。表面にアルミニウムめっき被膜を有する鉄球の断面観察の結果を図11に示す。図11から明らかなように、鉄球の表面には緻密なアルミニウムめっき被膜が形成されていることがわかった。
比較例8:
 ジメチルスルホンと無水塩化アルミニウムを10:2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例5と同様のバレル方式でのめっき処理を行い、鉄球の表面にアルミニウムめっき被膜(厚み:約40μm)を形成した。表面にアルミニウムめっき被膜を有する鉄球の断面観察の結果を図12に示す。図12から明らかなように、鉄球の表面に形成されたアルミニウムめっき被膜は、層状に形成されており、かつ、層と層の間で剥離が生じた不均一なものであることがわかった。実施例5のめっき液と比較例8のめっき液の電気伝導性を図13に示す。図13から明らかなように、実施例5のめっき液と比較例8のめっき液の電気伝導性は大きく異なり、この電気伝導性の相違が鉄球の表面に形成されたアルミニウムめっき被膜の性状に反映していること、めっき液が塩化テトラメチルアンモニウムを含有することで、電気伝導性が向上することがわかった(分極曲線の勾配が大きいほど電気伝導性が高い)。
 本発明は、水分の混入量が次第に増加しても長期間安定に電気アルミニウムめっき処理が可能であり、加えて、バレル方式でのめっき処理によっても被めっき物に対する均一なアルミニウムめっき被膜の形成が可能であるめっき液およびそれを使用したアルミニウムめっき被膜の形成方法を提供することができる点において産業上の利用可能性を有する。
 
 
 

Claims (6)

  1.  ジメチルスルホン10.0molに対してアルミニウムハロゲン化物を1.5~4.0mol含有し、かつ、アルミニウムハロゲン化物に対して塩化アンモニウムをモル比で1/15~1/4含有するか、または、塩化テトラアルキルアンモニウムをモル比で1/15~1/2含有することを特徴とする電気アルミニウムめっき液。
  2.  アルミニウムハロゲン化物が塩化アルミニウムであることを特徴とする請求項1記載の電気アルミニウムめっき液。
  3.  アルミニウムハロゲン化物が無水物であることを特徴とする請求項1記載の電気アルミニウムめっき液。
  4.  塩化テトラアルキルアンモニウムが塩化テトラメチルアンモニウムであることを特徴とする請求項1記載の電気アルミニウムめっき液。
  5.  請求項1記載の電気アルミニウムめっき液中に被めっき物を陰極として設置し、通電を行うことで被めっき物の表面にアルミニウムめっき被膜を形成することを特徴とするアルミニウムめっき被膜の形成方法。
  6.  請求項5記載のアルミニウムめっき被膜の形成方法によって表面にアルミニウムめっき被膜が形成されてなることを特徴とする物品。
     
     
     
PCT/JP2009/063671 2008-10-15 2009-07-31 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 WO2010044305A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980146014.1A CN102216499B (zh) 2008-10-15 2009-07-31 电镀铝液以及铝镀膜的形成方法
JP2010506725A JP4530111B2 (ja) 2008-10-15 2009-07-31 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法
US13/123,760 US9068270B2 (en) 2008-10-15 2009-07-31 Aluminum electroplating solution and method for forming aluminum plating film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-266131 2008-10-15
JP2008266131 2008-10-15
JP2009056413 2009-03-10
JP2009-056413 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010044305A1 true WO2010044305A1 (ja) 2010-04-22

Family

ID=42106472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063671 WO2010044305A1 (ja) 2008-10-15 2009-07-31 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法

Country Status (4)

Country Link
US (1) US9068270B2 (ja)
JP (1) JP4530111B2 (ja)
CN (1) CN102216499B (ja)
WO (1) WO2010044305A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001932A1 (ja) * 2009-06-29 2011-01-06 日立金属株式会社 アルミニウム箔の製造方法
WO2012063920A1 (ja) * 2010-11-11 2012-05-18 日立金属株式会社 アルミニウム箔の製造方法
JP2012136736A (ja) * 2010-12-27 2012-07-19 Hitachi Metals Ltd 引張強度に優れる複合金属箔
KR20140081890A (ko) * 2011-10-27 2014-07-01 히타치 긴조쿠 가부시키가이샤 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101951069B1 (ko) 2012-02-29 2019-02-21 히타치 긴조쿠 가부시키가이샤 저융점의 전기 알루미늄 도금용 도금액의 조제 방법, 전기 알루미늄 도금용 도금액, 알루미늄박의 제조 방법, 및 전기 알루미늄 도금용 도금액의 융점을 저하시키는 방법
JP2016027190A (ja) * 2014-06-24 2016-02-18 住友電気工業株式会社 アルミニウムめっき液、アルミニウム膜の製造方法、及びアルミニウム多孔体
US10208391B2 (en) 2014-10-17 2019-02-19 Ut-Battelle, Llc Aluminum trihalide-neutral ligand ionic liquids and their use in aluminum deposition
EP3088571B1 (en) 2015-04-28 2021-06-02 The Boeing Company Environmentally friendly aluminum coatings as sacrificial coatings for high strength steel alloys
US10340552B1 (en) 2017-12-22 2019-07-02 Industrial Technology Research Institute Electrolyte composition and metal-ion battery employing the same
US11661665B2 (en) 2020-04-30 2023-05-30 The Boeing Company Aluminum and aluminum alloy electroplated coatings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346372A (ja) * 2003-05-22 2004-12-09 Ishikawajima Harima Heavy Ind Co Ltd アルミナ皮膜による表面改質部品及びその製造方法
JP2006161154A (ja) * 2004-11-09 2006-06-22 Hitachi Metals Ltd 電解アルミニウムめっき液
JP2008195989A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274774B1 (en) 1986-12-04 1992-01-15 Shell Internationale Researchmaatschappij B.V. Electrodeposition of aluminium
JP2678984B2 (ja) 1988-04-26 1997-11-19 日新製鋼株式会社 電気アルミニウムめっき浴およびその浴によるめっき方法
US5041194A (en) * 1989-05-18 1991-08-20 Mitsubishi Petrochemical Co., Ltd. Aluminum electroplating method
US6083647A (en) * 1992-08-14 2000-07-04 Sony Corporation Non-aqueous electrolyte comprising an aluminum compound and a method for the electrodeposition of aluminum from the electrolyte
JP2004076031A (ja) 2002-08-09 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd 電解めっき用めっき浴及び複合めっき用めっき浴並びにこれらの製造方法
CN1247822C (zh) 2003-11-07 2006-03-29 苏州大学 非水溶剂无氰镀金液
JP4986122B2 (ja) 2006-03-31 2012-07-25 日立金属株式会社 電解アルミニウムめっき液およびアルミニウムめっき膜
JP5170681B2 (ja) * 2008-10-06 2013-03-27 日立金属株式会社 電気アルミニウムめっき液およびアルミニウムめっき膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346372A (ja) * 2003-05-22 2004-12-09 Ishikawajima Harima Heavy Ind Co Ltd アルミナ皮膜による表面改質部品及びその製造方法
JP2006161154A (ja) * 2004-11-09 2006-06-22 Hitachi Metals Ltd 電解アルミニウムめっき液
JP2008195989A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219279B2 (en) 2009-06-29 2015-12-22 Hitachi Metals, Ltd. Method for producing aluminum foil
CN102471909A (zh) * 2009-06-29 2012-05-23 日立金属株式会社 铝箔的制造方法
WO2011001932A1 (ja) * 2009-06-29 2011-01-06 日立金属株式会社 アルミニウム箔の製造方法
JPWO2011001932A1 (ja) * 2009-06-29 2012-12-13 日立金属株式会社 アルミニウム箔の製造方法
JP5403053B2 (ja) * 2009-06-29 2014-01-29 日立金属株式会社 アルミニウム箔の製造方法
JP2014051743A (ja) * 2009-06-29 2014-03-20 Hitachi Metals Ltd アルミニウム箔
WO2012063920A1 (ja) * 2010-11-11 2012-05-18 日立金属株式会社 アルミニウム箔の製造方法
JP5516751B2 (ja) * 2010-11-11 2014-06-11 日立金属株式会社 アルミニウム箔の製造方法
US9267216B2 (en) 2010-11-11 2016-02-23 Hitachi Metals Ltd. Method for producing aluminum foil
JP2012136736A (ja) * 2010-12-27 2012-07-19 Hitachi Metals Ltd 引張強度に優れる複合金属箔
US20140272598A1 (en) * 2011-10-27 2014-09-18 Hitachi Metals, Ltd. Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electrical storage devices, electrode for electrical storage devices, and electrical storage device
KR20140081890A (ko) * 2011-10-27 2014-07-01 히타치 긴조쿠 가부시키가이샤 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스
US9812700B2 (en) * 2011-10-27 2017-11-07 Hitachi Metals, Ltd. Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electrical storage devices, electrode for electrical storage devices, and electrical storage device
KR101958507B1 (ko) * 2011-10-27 2019-03-14 히타치 긴조쿠 가부시키가이샤 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스

Also Published As

Publication number Publication date
JPWO2010044305A1 (ja) 2012-03-15
JP4530111B2 (ja) 2010-08-25
CN102216499B (zh) 2014-06-25
CN102216499A (zh) 2011-10-12
US20110253543A1 (en) 2011-10-20
US9068270B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
JP4530111B2 (ja) 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法
US10895016B2 (en) Electrolytic generation of manganese (III) ions in strong sulfuric acid
US20090211914A1 (en) Trivalent Chromium Electroplating Solution and an Operational Method Thereof
KR101749947B1 (ko) 강한 황산 중의 망간(ⅲ) 이온의 전기분해적 생성
JP4756462B2 (ja) 電解アルミニウムめっき液
JP5170681B2 (ja) 電気アルミニウムめっき液およびアルミニウムめっき膜
CN110846662B (zh) 一种镀铜/石墨烯的镁合金复合材料及其制备方法
TWI500582B (zh) 使用改良的陽極,在強硫酸中電解產生三價錳離子
JP2013189660A (ja) マグネシウムまたはマグネシウム合金成形体とその製造方法
BR102022011647A2 (pt) Composição de um revestimento e respectivo processo de aplicação em substratos metálicos
TWI802731B (zh) 適於從電解池的電解質溶液電鍍或電澱積金屬用之電極及其製法,以及從電解質溶液電鍍或電澱積金屬用之未分隔電解池,和從電解質溶液電鍍或電澱積金屬之製法
Zhu et al. Copper coating electrodeposited directly onto AZ31 magnesium alloy
JP4609779B2 (ja) マグネシウム合金部材およびその高耐食被膜形成方法
JP2010174315A (ja) 被膜を有するマグネシウム合金部材およびその製造方法
JP2012233216A (ja) 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法
JP5246539B2 (ja) マグネシウム合金部材およびその高耐食被膜形成方法
WO2022266739A1 (pt) Composição de um revestimento e respectivo processo de aplicação em substratos metálicos
Azumi et al. Corrosion prevention of magnesium alloys: 12. Plating techniques to protect magnesium (Mg) alloys from corrosion
KR20160149522A (ko) 알루미늄 박막의 코팅방법과 이에 의해 제조된 알루미늄 코팅제품
Azumi et al. Plating techniques to protect magnesium (Mg) alloys from corrosion
JPH06330330A (ja) アルミニウム無電解メッキ法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146014.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010506725

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13123760

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09820483

Country of ref document: EP

Kind code of ref document: A1