WO2010044305A1 - 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 - Google Patents
電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 Download PDFInfo
- Publication number
- WO2010044305A1 WO2010044305A1 PCT/JP2009/063671 JP2009063671W WO2010044305A1 WO 2010044305 A1 WO2010044305 A1 WO 2010044305A1 JP 2009063671 W JP2009063671 W JP 2009063671W WO 2010044305 A1 WO2010044305 A1 WO 2010044305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- plating solution
- plating
- chloride
- plating film
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
- C25D3/665—Electroplating: Baths therefor from melts from ionic liquids
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/42—Electroplating: Baths therefor from solutions of light metals
- C25D3/44—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
Definitions
- the present invention relates to an electrolytic aluminum plating solution and a method for forming an aluminum plating film using the same.
- Patent Document 1 reports a low-temperature molten salt electroplating solution prepared by mixing and melting dimethyl sulfone and aluminum halide (such as aluminum chloride) as a relatively safe electroaluminum plating solution. ing.
- this plating solution uses dimethyl sulfone as a non-aqueous solvent, the bath cost is high. Therefore, in order to reduce the plating cost, it is necessary to extend the life of the plating solution.
- this plating solution uses a highly hygroscopic aluminum halide as a solute, it has the property of gradually absorbing and deteriorating moisture in the air. When plating is performed using a plating solution that has deteriorated due to absorption of moisture, a black film called burn (hereinafter simply referred to as “burn”) tends to occur.
- the present inventors effectively remove moisture from the plating solution by adding dimethylamine borane to the plating solution in Patent Document 2. Reported how to remove. However, in this method, in subsequent studies, it was found that the plating solution may ignite due to a rapid reaction between dimethylamine borane and water when the amount of water mixed in the plating solution increases. .
- an object of the present invention is to provide a plating solution capable of performing an electroaluminum plating process stably for a long period of time and having a long life and a method for forming an aluminum plating film using the plating solution.
- the present inventors have obtained a plating solution prepared by mixing and melting dimethylsulfone, aluminum halide, ammonium chloride or tetraalkylammonium chloride at a predetermined ratio ( Low temperature molten salt electroplating solution) is capable of stable electroaluminum plating for a long period of time even when the amount of moisture mixed in is increased. Has also found that a uniform aluminum plating film can be formed on the object to be plated.
- the electroaluminum plating solution of the present invention made on the basis of the above knowledge contains 1.5 to 4.0 mol of aluminum halide with respect to 10.0 mol of dimethylsulfone as defined in claim 1, and contains aluminum halide. It is characterized in that it contains ammonium chloride in a molar ratio of 1/15 to 1/4 or tetraalkylammonium chloride in a molar ratio of 1/15 to 1/2.
- the electroaluminum plating solution according to claim 2 is the electroaluminum plating solution according to claim 1, wherein the aluminum halide is aluminum chloride.
- the electroaluminum plating solution according to claim 3 is the electroaluminum plating solution according to claim 1, wherein the aluminum halide is an anhydride.
- the electroaluminum plating solution according to claim 4 is the electroaluminum plating solution according to claim 1, wherein the tetraalkylammonium chloride is tetramethylammonium chloride.
- the method for forming an aluminum plating film according to the present invention is the surface of the object to be plated by installing the object to be plated as a cathode in the electroplated aluminum plating solution according to claim 1 and energizing it. An aluminum plating film is formed on the substrate.
- the article of the present invention is characterized in that, as described in claim 6, an aluminum plating film is formed on the surface by the method for forming an aluminum plating film according to claim 5.
- the electroaluminum plating process can be stably performed for a long period of time. It is possible to provide a plating solution that can be formed and a method for forming an aluminum plating film using the plating solution.
- Example 1 it is a photograph which shows the result of the visual observation about the relationship between the quantity of the water added to the plating solution, and the external appearance of the aluminum plating film formed in the surface of an oxygen-free copper plate.
- 2 is a photograph showing the results in Example 2.
- FIG. 2 is a photograph showing the result in Comparative Example 1; 4 is a photograph showing the results in Comparative Example 2; It is a photograph which shows the result in the comparative example 3 same as the above.
- Image analysis of burn area occupied by the relationship between the amount of water added to the plating solution and the appearance of the aluminum plating film formed on the surface of the oxygen-free copper plate in Examples 1 and 2 and Comparative Examples 1, 2 and 3 It is a graph which shows the result computed by these.
- the electroaluminum plating solution of the present invention contains 1.5 to 4.0 mol of aluminum halide with respect to 10.0 mol of dimethylsulfone, and ammonium chloride with respect to aluminum halide in a molar ratio of 1/15 to 1 / 4 or tetraalkylammonium chloride in a molar ratio of 1/15 to 1/2.
- the electroaluminum plating solution of the present invention can stably perform the plating treatment for a long period of time even when the amount of moisture mixed in gradually increases.
- Al (DMSO 2 ) 3 3+ DMSO 2 which contribute to the electrodeposition of aluminum by containing ammonium chloride or tetraalkylammonium chloride with a predetermined composition is: It means that dimethylsulfone, Electrochimica Acta, vol.40, No.11, pp.1711-1716, 1995) is present stably in the plating solution.
- the aluminum halide examples include aluminum chloride and aluminum bromide, but aluminum chloride can be preferably used in view of material costs.
- the aluminum halide is preferably an anhydride from the viewpoint of reducing the amount of moisture contained in the plating solution as much as possible.
- the content of the aluminum halide is defined as 1.5 to 4.0 mol with respect to 10.0 mol of dimethylsulfone. If the amount is less than 1.5 mol, there is a risk that burns are likely to occur. This is because if it exceeds, the liquid resistance of the plating solution becomes too high, so that the applied voltage increases and the plating solution may be decomposed.
- the content of the aluminum halide is desirably 2.0 to 3.5 mol with respect to 10.0 mol of dimethyl sulfone.
- the content is defined as 1/15 to 1/4 in terms of molar ratio to the aluminum halide.
- the effect of inclusion in the plating solution below 1/15 That is, while there is a possibility that the life of the plating solution cannot be improved and the electrical conductivity cannot be improved, if it exceeds 1/4, the plating solution easily absorbs moisture due to its hygroscopicity. This is because there is a possibility that bubbles may be generated in the surface, or a non-plated portion or gloss unevenness may occur.
- the content of ammonium chloride is preferably 1/10 to 1/5 in molar ratio with respect to the aluminum halide.
- examples of the tetraalkylammonium chloride include compounds having 1 to 6 carbon atoms in the alkyl group, such as tetramethylammonium chloride and tetraethylammonium chloride.
- tetramethylammonium chloride can be suitably employed.
- the content is specified to be 1/15 to 1/2 in terms of molar ratio with respect to the aluminum halide. The effect is that when the content is less than 1/15, it is included in the plating solution, that is, the life of the plating solution is increased.
- the content of tetraalkylammonium chloride is preferably 1/10 to 2/5 in molar ratio with respect to the aluminum halide.
- a dialkylamine hydrochloride such as dimethylamine hydrochloride or a trialkylamine hydrochloride such as trimethylamine hydrochloride is used for the purpose of increasing the purity of the formed aluminum plating film. Etc. may be included.
- the plating treatment using the electroaluminum plating solution of the present invention includes, for example, an anode made of aluminum (also serving as a source of aluminum ions) and an object to be plated as a cathode in the plating solution, and the temperature of the plating solution. May be adjusted to 85 to 115 ° C. and the applied current density to 2.0 to 7.5 A / dm 2 . If the temperature of the plating solution falls below 85 ° C, the liquid resistance of the plating solution becomes too high, so that the applied voltage increases and the plating solution may be decomposed. On the other hand, if the temperature exceeds 115 ° C, it is formed on the surface of the object to be plated.
- the reaction between the aluminum plating film and the plating solution is activated, and there is a possibility that the purity of the film may be lowered by incorporating a large amount of impurities into the film.
- the applied current density is less than 2.0 A / dm 2 , the film formation efficiency may be reduced.
- the applied current density is more than 7.5 A / dm 2 , there is a risk that burns are likely to occur due to excess current.
- the applied current density is preferably 2.5 to 5.0 A / dm 2 .
- the time for the plating process depends on the desired thickness of the aluminum plating film (typically 20 to 100 ⁇ m), the temperature of the plating solution, the applied current density, etc., but is usually 10 minutes to 3 hours. is there.
- the plating method either a rack method or a barrel method can be adopted. Since the electroaluminum plating solution of the present invention has high electrical conductivity, it is possible to form a uniform plating film on the object to be plated even by a plating process using a barrel method. This can be characterized as an advantage of the electroaluminum plating solution of the present invention as well as being capable of stable plating treatment for a long period of time even if the amount of moisture mixed in gradually increases.
- the object to be plated (article) to be treated by the electroaluminum plating process is not particularly limited as long as an aluminum plating film can be formed on the surface by the electroaluminum plating process.
- a conductive metal material a carbon film or a synthetic resin material imparted with electrical conductivity by forming, for example, a metal film (a film of nickel, copper, zinc, or the like) on the surface may be used.
- the object to be plated may be a metal material having a metal film formed on the surface. Corrosion resistance and design can be imparted by forming an aluminum plating film on the surface of the object to be plated.
- an electroaluminum plating process when performing an electroaluminum plating process, it is desirable to fully dry a to-be-plated object from a viewpoint of reducing the quantity of the water
- a pretreatment of the electroaluminum plating treatment in addition to the removal treatment using an organic acid or inorganic acid of the oxide film naturally formed on the surface of the object to be plated, zincate treatment, electroless plating treatment, conductive anodic oxidation treatment, Conductive chemical conversion treatment or the like may be performed.
- anodizing treatment or thermal hydroxylation treatment to the aluminum plating film formed on the surface of the object to be plated, it is possible to add wear resistance to the plating film or enhance the corrosion resistance of the plating film. Also good.
- Example 1 Dimethylsulfone, anhydrous aluminum chloride, and ammonium chloride were mixed at a ratio of 10: 3: 0.5 (molar ratio), and heated to 110 ° C. to be melted to prepare an electroaluminum plating solution.
- a white uniform aluminum plating film (thickness: about 40 ⁇ m) could be formed on the surface of the object to be plated.
- 1.2 g of water is added to 250 mL of the plating solution, After a sufficient time was taken until the reaction between the plating solution and water was completed, a plating treatment was performed under the same conditions as described above, and 1.2 g of water was sequentially added and the same operation was repeated.
- the result of visual observation is shown in FIG.
- Example 2 Dimethylsulfone, anhydrous aluminum chloride, and tetramethylammonium chloride were mixed at a ratio of 10: 3: 1 (molar ratio), heated to 110 ° C. and melted to prepare an electrolytic aluminum plating solution.
- this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was.
- FIG. 2 shows the result of visual observation
- FIG. 6 shows the result of calculating the burned area by image analysis. As apparent from FIGS. 2 and 6, no burn was observed even when the amount of water added was 10.8 g, but color unevenness was observed when the amount of water added was 7.2 g. From the above results, it was found that good plating treatment can be performed at least up to 6.0 g of water.
- Comparative Example 1 Dimethylsulfone and anhydrous aluminum chloride were mixed at a ratio of 10: 2 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
- this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. The result of visual observation is shown in FIG. 3, and the result of calculating the burned area by image analysis is shown in FIG. As apparent from FIG. 3 and FIG. 6, no generation of burns was observed when the amount of water added was 2.4 g, but generation of burns was observed when the amount of water added was 3.6 g. It was found that the plating solution of Example 1 and the plating solution of Example 2 contained ammonium chloride and tetramethylammonium chloride, respectively, to achieve a longer life than this plating solution.
- Comparative Example 2 Dimethyl sulfone and anhydrous aluminum chloride were mixed at a ratio of 10: 4 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
- this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. The result of visual observation is shown in FIG. 4, and the result of calculating the burned area by image analysis is shown in FIG. As apparent from FIG. 4 and FIG. 6, generation of burns was slightly observed when the amount of water added was 2.4 g, and generation of burns became significant when the amount of water added was 3.6 g. It was found that the plating solution of Example 1 and the plating solution of Example 2 contained ammonium chloride and tetramethylammonium chloride, respectively, to achieve a longer life than this plating solution.
- Comparative Example 3 Dimethylsulfone, anhydrous aluminum chloride, and dimethylamine hydrochloride were mixed at a ratio of 10: 3: 0.2 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
- this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. The result of visual observation is shown in FIG. 5, and the result of calculating the burned area by image analysis is shown in FIG. As apparent from FIG. 5 and FIG. 6, generation of burns was slightly observed when the amount of water added was 3.6 g, and generation of burns became significant when the amount of water added was 4.8 g. It has been found that dimethylamine hydrochloride does not have the effect of extending the life of the plating solution possessed by ammonium chloride or tetramethylammonium chloride.
- Comparative Example 4 Dimethylsulfone, anhydrous aluminum chloride, and ammonium chloride were mixed at a ratio of 10: 3: 1 (molar ratio), and heated to 110 ° C. to be melted to prepare an electroaluminum plating solution.
- this plating solution was used for plating under the same plating conditions as in Example 1, bubbles were generated in the plating solution, and the generated bubbles contacted the object to be plated. There were streaky unplated parts. Therefore, it was found that a plating solution containing 1/3 of ammonium chloride in a molar ratio with respect to anhydrous aluminum chloride contained too much ammonium chloride and could not perform good plating treatment (ammonium chloride).
- the amount of aluminum complex ions (Al (DMSO 2 ) 3 3+ ) in the plating solution decreases, but it does not become zero at a molar ratio of up to 1/4 with respect to the aluminum halide. This was confirmed by a separate experiment).
- Comparative Example 5 Dimethylsulfone, anhydrous aluminum chloride, and tetramethylammonium chloride were mixed at a ratio of 10: 3: 2 (molar ratio), heated to 110 ° C. and melted to prepare an electroaluminum plating solution.
- this plating solution was used for plating under the same plating conditions as in Example 1, an aluminum plating film was not formed on the surface of the object to be plated. Therefore, it was found that a plating solution containing 2/3 of tetramethylammonium chloride in a molar ratio with respect to anhydrous aluminum chloride has an excessive content of tetramethylammonium chloride and cannot perform good plating treatment.
- Comparative Example 6 Dimethylsulfone, anhydrous aluminum chloride, and dimethylamine hydrochloride were mixed at a ratio of 10: 3: 0.75 (molar ratio) and heated to 110 ° C. to melt, thereby preparing an electroaluminum plating solution.
- this plating solution was used for plating under the same plating conditions as in Example 1, the aluminum plating film formed on the surface of the object to be plated had color unevenness and streak-like unplated portions. . Therefore, it was found that dimethylamine hydrochloride does not have the effect of extending the life of the plating solution possessed by ammonium chloride or tetramethylammonium chloride.
- Comparative Example 7 Dimethyl sulfone, anhydrous aluminum chloride, and dimethylamine borane were mixed at a ratio of 10: 2: 0.1 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution.
- this plating solution in the same manner as in Example 1, the influence of moisture contained in the plating solution on the aluminum plating film formed on the surface of the object to be plated was examined. It was. As a result, when 1.2 g of water was added to 250 mL of the plating solution and the plating solution and water were reacted, the plating solution emitted a green flame and burned. It has been found that there is no effect of extending the life of the plating solution that ammonium or tetramethylammonium chloride has.
- Example 3 Using the electroaluminum plating solution prepared in Example 2, an oxygen-free copper plate having a purity of 99.99% having a size of 70 mm ⁇ 70 mm ⁇ 0.5 mm (previously immersed in a 10 mL / L nitric acid aqueous solution as a surface to be plated) Was removed, washed with water, and sufficiently dried with warm air), except that the plating was performed under the same plating conditions as in Example 1 to form an aluminum plating film on the surface of the object to be plated. .
- the result of having evaluated the adhesiveness with the to-be-plated object of the plating film formed in the surface of to-be-plated object by a cross-cut test is shown in FIG. As is clear from FIG. 7, no peeling of the plating film from the object to be plated was observed, so that this plating film was formed on the surface of the object to be plated with excellent adhesion. I understood.
- Example 4 Using the electrolytic aluminum plating solution prepared in Example 2, a zinc alloy treatment, a strike copper plating treatment, and an electrogalvanization treatment were sequentially performed on a magnesium alloy plate (AZ31 rolled material) of 50 mm ⁇ 50 mm ⁇ 1.0 mm as an object to be plated. Except that the outermost surface was sufficiently dried as a galvanized film, and was plated under the same plating conditions as in Example 1 to form an aluminum plated film (thickness: about 40 ⁇ m) on the surface of the galvanized film did.
- FIG. 8 shows the result of visual observation of the appearance of the magnesium alloy plate having the aluminum plating film on the outermost surface
- FIG. 9 shows the result of cross-sectional observation. As is apparent from FIGS.
- the aluminum plating film formed on the outermost surface of the magnesium alloy plate was white and uniform, and was dense.
- a neutral salt spray test for 96 hours Went.
- the result of visual observation of the appearance after the neutral salt spray test is shown in FIG.
- no rusting was observed on the surface of the aluminum plating film, indicating excellent corrosion resistance.
- the aluminum plating film could be colored similarly to a pure aluminum material etc. by performing an anodizing process with respect to this magnesium alloy board which has an aluminum plating film in the outermost surface. From the above results, it was found that corrosion resistance and design properties can be imparted by forming an aluminum plating film on the surface of the magnesium alloy plate.
- Example 5 Dimethylsulfone, anhydrous aluminum chloride, and tetramethylammonium chloride were mixed at a ratio of 10: 2: 1 (molar ratio), heated to 110 ° C. and melted to prepare an electrolytic aluminum plating solution.
- a Teflon (registered trademark) barrel made of hexagonal pillars with a side of 2 cm and a length of 5 cm, into which 180 iron balls (to-be-plated) with a diameter of 5 mm and one copper ball with a diameter of 10 mm connected with a lead wire, was added Installed in the plating solution, and connected to the iron ball and the lead wire through a copper ball to form a cathode, and an applied current of 4.0 A / dm 2 at 110 ° C. while rotating the barrel at a rotation speed of 10 rpm. Energization was performed for 50 minutes at a density to perform plating.
- FIG. 11 shows the results of cross-sectional observation of an iron ball having an aluminum plating film on the surface. As is clear from FIG. 11, it was found that a dense aluminum plating film was formed on the surface of the iron ball.
- Comparative Example 8 Dimethylsulfone and anhydrous aluminum chloride were mixed at a ratio of 10: 2 (molar ratio), and heated to 110 ° C. to melt, thereby preparing an electrolytic aluminum plating solution. Using this plating solution, the same plating method as in Example 5 was performed to form an aluminum plating film (thickness: about 40 ⁇ m) on the surface of the iron ball.
- FIG. 12 shows the results of cross-sectional observation of an iron ball having an aluminum plating film on the surface. As is clear from FIG. 12, the aluminum plating film formed on the surface of the iron ball was formed in a layer shape and was found to be non-uniform with separation between layers. .
- the electrical conductivity of the plating solution of Example 5 and the plating solution of Comparative Example 8 is shown in FIG. As is apparent from FIG. 13, the electrical conductivity of the plating solution of Example 5 and the plating solution of Comparative Example 8 are greatly different, and the difference in electrical conductivity is the property of the aluminum plating film formed on the surface of the iron ball. It was found that the electrical conductivity was improved when the plating solution contained tetramethylammonium chloride (the higher the slope of the polarization curve, the higher the electrical conductivity).
- the present invention enables stable electroaluminum plating treatment for a long period of time even when the amount of moisture mixed in gradually increases, and in addition, the formation of a uniform aluminum plating film on the object to be plated can also be achieved by plating treatment using a barrel method.
- the present invention has industrial applicability in that a plating solution that can be used and a method for forming an aluminum plating film using the plating solution can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
また、請求項2記載の電気アルミニウムめっき液は、請求項1記載の電気アルミニウムめっき液において、アルミニウムハロゲン化物が塩化アルミニウムであることを特徴とする。
また、請求項3記載の電気アルミニウムめっき液は、請求項1記載の電気アルミニウムめっき液において、アルミニウムハロゲン化物が無水物であることを特徴とする。
また、請求項4記載の電気アルミニウムめっき液は、請求項1記載の電気アルミニウムめっき液において、塩化テトラアルキルアンモニウムが塩化テトラメチルアンモニウムであることを特徴とする。
また、本発明のアルミニウムめっき被膜の形成方法は、請求項5記載の通り、請求項1記載の電気アルミニウムめっき液中に被めっき物を陰極として設置し、通電を行うことで被めっき物の表面にアルミニウムめっき被膜を形成することを特徴とする。
また、本発明の物品は、請求項6記載の通り、請求項5記載のアルミニウムめっき被膜の形成方法によって表面にアルミニウムめっき被膜が形成されてなることを特徴とする。
ジメチルスルホンと無水塩化アルミニウムと塩化アンモニウムを10:3:0.5の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液250mL中に、陽極として40mm×20mm×2mmの純アルミニウム板(A1090)を、陰極として被めっき物とする20mm×20mm×0.5mmの純度99.99%の無酸素銅板(予め10mL/Lの硝酸水溶液に浸漬して表面酸化膜を除去した後、水洗し、温風にて十分に乾燥したもの)を設置し、110℃にて3.0A/dm2の印加電流密度で60分間通電し、めっき処理を行った。その結果、被めっき物の表面に白色の均一なアルミニウムめっき被膜(厚み:約40μm)を形成することができた。次に、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べるため、めっき液250mLに水を1.2g添加し、めっき液と水との反応が終了するまで十分に時間をかけた後、上記と同じ条件でめっき処理を行い、さらに順次、水を1.2gずつ添加して同じ操作を繰り返した。めっき液に添加した水の量と被めっき物の表面に形成されためっき被膜の外観との関係について、目視観察の結果を図1に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図1と図6から明らかなように、水の添加量を10.8gとしてもヤケの発生は認められなかったが、水の添加量が9.6gになるとスジ状の無めっき部分の発生が認められた。以上の結果から、少なくとも水の添加量が8.4gまでは良好なめっき処理を行うことができることがわかった。
ジメチルスルホンと無水塩化アルミニウムと塩化テトラメチルアンモニウムを10:3:1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図2に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図2と図6から明らかなように、水の添加量を10.8gとしてもヤケの発生は認められなかったが、水の添加量が7.2gになると色ムラの発生が認められた。以上の結果から、少なくとも水の添加量が6.0gまでは良好なめっき処理を行うことができることがわかった。
ジメチルスルホンと無水塩化アルミニウムを10:2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図3に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図3と図6から明らかなように、水の添加量が2.4gではヤケの発生は認められなかったが、水の添加量が3.6gになるとヤケの発生が認められたことから、実施例1のめっき液と実施例2のめっき液は、それぞれ塩化アンモニウムと塩化テトラメチルアンモニウムを含有することで、このめっき液よりも高寿命化が図られていることがわかった。
ジメチルスルホンと無水塩化アルミニウムを10:4の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図4に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図4と図6から明らかなように、水の添加量が2.4gでヤケの発生がわずかに認められ、水の添加量が3.6gになるとヤケの発生が顕著となったことから、実施例1のめっき液と実施例2のめっき液は、それぞれ塩化アンモニウムと塩化テトラメチルアンモニウムを含有することで、このめっき液よりも高寿命化が図られていることがわかった。
ジメチルスルホンと無水塩化アルミニウムとジメチルアミン塩酸塩を10:3:0.2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。目視観察の結果を図5に、ヤケの占有面積を画像解析によって算出した結果を図6に示す。図5と図6から明らかなように、水の添加量が3.6gでヤケの発生がわずかに認められ、水の添加量が4.8gになるとヤケの発生が顕著となったことから、ジメチルアミン塩酸塩は、塩化アンモニウムや塩化テトラメチルアンモニウムが有するめっき液の寿命を長くする効果を有さないことがわかった。
ジメチルスルホンと無水塩化アルミニウムと塩化アンモニウムを10:3:1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様のめっき条件でめっき処理を行ったところ、めっき液中に気泡が発生し、発生した気泡が被めっき物に接触したことでアルミニウムめっき被膜の表面にはスジ状の無めっき部分が存在した。従って、無水塩化アルミニウムに対して塩化アンモニウムをモル比で1/3含有するめっき液では、塩化アンモニウムの含有量が多すぎて、良好なめっき処理を行うことができないことがわかった(塩化アンモニウムの添加量が増えるに従ってめっき液中のアルミニウム錯イオン(Al(DMSO2)3 3+)の存在量が減少するが、アルミニウムハロゲン化物に対してモル比で1/4までの添加量では0にはならないことを別途の実験によって確認した)。
ジメチルスルホンと無水塩化アルミニウムと塩化テトラメチルアンモニウムを10:3:2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様のめっき条件でめっき処理を行ったところ、被めっき物の表面にアルミニウムめっき被膜は形成されなかった。従って、無水塩化アルミニウムに対して塩化テトラメチルアンモニウムをモル比で2/3含有するめっき液では、塩化テトラメチルアンモニウムの含有量が多すぎて、良好なめっき処理を行うことができないことがわかった(塩化テトラメチルアンモニウムの添加量が増えるに従ってめっき液中のアルミニウム錯イオン(Al(DMSO2)3 3+)の存在量が減少するが、アルミニウムハロゲン化物に対してモル比で1/2までの添加量では0にはならないことを別途の実験によって確認した)。
ジメチルスルホンと無水塩化アルミニウムとジメチルアミン塩酸塩を10:3:0.75の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様のめっき条件でめっき処理を行ったところ、被めっき物の表面に形成されたアルミニウムめっき被膜には色ムラやスジ状の無めっき部分が存在した。従って、ジメチルアミン塩酸塩は、塩化アンモニウムや塩化テトラメチルアンモニウムが有するめっき液の寿命を長くする効果を有さないことがわかった。
ジメチルスルホンと無水塩化アルミニウムとジメチルアミンボランを10:2:0.1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例1と同様の方法で、被めっき物の表面に形成されるアルミニウムめっき被膜に対して、めっき液中に含まれる水分がどのような影響を及ぼすかを調べた。その結果、めっき液250mLに水を1.2g添加し、めっき液と水とを反応させた時点で、めっき液が緑色の炎を発して燃焼してしまったことから、ジメチルアミンボランは、塩化アンモニウムや塩化テトラメチルアンモニウムが有するめっき液の寿命を長くする効果を有さないことがわかった。
実施例2で調製した電気アルミニウムめっき液を使用し、被めっき物として70mm×70mm×0.5mmの純度99.99%の無酸素銅板(予め10mL/Lの硝酸水溶液に浸漬して表面酸化膜を除去した後、水洗し、温風にて十分に乾燥したもの)を使用したこと以外は実施例1と同様のめっき条件でめっき処理を行い、被めっき物の表面にアルミニウムめっき被膜を形成した。被めっき物の表面に形成されためっき被膜の被めっき物との密着性を碁盤目試験によって評価した結果を図7に示す。図7から明らかなように、めっき被膜の被めっき物からの剥離は全く認められなかったことから、このめっき被膜は、優れた密着性のもとに被めっき物の表面に形成されていることがわかった。
実施例2で調製した電気アルミニウムめっき液を使用し、被めっき物として50mm×50mm×1.0mmのマグネシウム合金板(AZ31圧延材)にジンケート処理とストライク銅めっき処理と電気亜鉛めっき処理を順次行って最表面を亜鉛めっき被膜として十分に乾燥したものを使用したこと以外は実施例1と同様のめっき条件でめっき処理を行い、亜鉛めっき被膜の表面にアルミニウムめっき被膜(厚み:約40μm)を形成した。最表面にアルミニウムめっき被膜を有するマグネシウム合金板の外観の目視観察の結果を図8に、断面観察の結果を図9に示す。図8と図9から明らかなように、マグネシウム合金板の最表面に形成されたアルミニウムめっき被膜は白色の均一なものであり、また、緻密であることがわかった。この最表面にアルミニウムめっき被膜を有するマグネシウム合金板に対し、100℃の熱水を使用して1時間の酸化処理を行うことで表面に酸化膜を形成した後、96時間の中性塩水噴霧試験を行った。中性塩水噴霧試験後の外観の目視観察の結果を図10に示す。図10から明らかなように、アルミニウムめっき被膜の表面には発錆はまったく認められず、優れた耐食性を示した。また、この最表面にアルミニウムめっき被膜を有するマグネシウム合金板に対し、陽極酸化処理を行うことで、純アルミニウム材などと同様にアルミニウムめっき被膜の着色を行うことができた。以上の結果から、マグネシウム合金板の表面にアルミニウムめっき被膜を形成することで、耐食性や意匠性を付与することができることがわかった。
ジメチルスルホンと無水塩化アルミニウムと塩化テトラメチルアンモニウムを10:2:1の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液中に、陽極として70mm×70mm×1mmの純度99.99%のアルミニウム板を設置した。また、直径5mmの鉄球(被めっき物)180個とリード線を接続した直径10mmの銅製ボール1個を投入した一辺が2cmで長さが5cmの六角柱のテフロン(登録商標)製バレルをめっき液中に設置し、銅製ボールを介して鉄球とリード線の導通をとることで陰極とし、バレルを10rpmの回転速度で回転させながら、110℃にて4.0A/dm2の印加電流密度で50分間通電し、めっき処理を行った。その結果、鉄球の表面に白色の均一なアルミニウムめっき被膜(厚み:約40μm)を形成することができた。表面にアルミニウムめっき被膜を有する鉄球の断面観察の結果を図11に示す。図11から明らかなように、鉄球の表面には緻密なアルミニウムめっき被膜が形成されていることがわかった。
ジメチルスルホンと無水塩化アルミニウムを10:2の割合で混合し(モル比)、110℃に加熱して溶融させることで電気アルミニウムめっき液を調製した。このめっき液を使用して、実施例5と同様のバレル方式でのめっき処理を行い、鉄球の表面にアルミニウムめっき被膜(厚み:約40μm)を形成した。表面にアルミニウムめっき被膜を有する鉄球の断面観察の結果を図12に示す。図12から明らかなように、鉄球の表面に形成されたアルミニウムめっき被膜は、層状に形成されており、かつ、層と層の間で剥離が生じた不均一なものであることがわかった。実施例5のめっき液と比較例8のめっき液の電気伝導性を図13に示す。図13から明らかなように、実施例5のめっき液と比較例8のめっき液の電気伝導性は大きく異なり、この電気伝導性の相違が鉄球の表面に形成されたアルミニウムめっき被膜の性状に反映していること、めっき液が塩化テトラメチルアンモニウムを含有することで、電気伝導性が向上することがわかった(分極曲線の勾配が大きいほど電気伝導性が高い)。
Claims (6)
- ジメチルスルホン10.0molに対してアルミニウムハロゲン化物を1.5~4.0mol含有し、かつ、アルミニウムハロゲン化物に対して塩化アンモニウムをモル比で1/15~1/4含有するか、または、塩化テトラアルキルアンモニウムをモル比で1/15~1/2含有することを特徴とする電気アルミニウムめっき液。
- アルミニウムハロゲン化物が塩化アルミニウムであることを特徴とする請求項1記載の電気アルミニウムめっき液。
- アルミニウムハロゲン化物が無水物であることを特徴とする請求項1記載の電気アルミニウムめっき液。
- 塩化テトラアルキルアンモニウムが塩化テトラメチルアンモニウムであることを特徴とする請求項1記載の電気アルミニウムめっき液。
- 請求項1記載の電気アルミニウムめっき液中に被めっき物を陰極として設置し、通電を行うことで被めっき物の表面にアルミニウムめっき被膜を形成することを特徴とするアルミニウムめっき被膜の形成方法。
- 請求項5記載のアルミニウムめっき被膜の形成方法によって表面にアルミニウムめっき被膜が形成されてなることを特徴とする物品。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980146014.1A CN102216499B (zh) | 2008-10-15 | 2009-07-31 | 电镀铝液以及铝镀膜的形成方法 |
JP2010506725A JP4530111B2 (ja) | 2008-10-15 | 2009-07-31 | 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 |
US13/123,760 US9068270B2 (en) | 2008-10-15 | 2009-07-31 | Aluminum electroplating solution and method for forming aluminum plating film |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-266131 | 2008-10-15 | ||
JP2008266131 | 2008-10-15 | ||
JP2009056413 | 2009-03-10 | ||
JP2009-056413 | 2009-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010044305A1 true WO2010044305A1 (ja) | 2010-04-22 |
Family
ID=42106472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063671 WO2010044305A1 (ja) | 2008-10-15 | 2009-07-31 | 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9068270B2 (ja) |
JP (1) | JP4530111B2 (ja) |
CN (1) | CN102216499B (ja) |
WO (1) | WO2010044305A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011001932A1 (ja) * | 2009-06-29 | 2011-01-06 | 日立金属株式会社 | アルミニウム箔の製造方法 |
WO2012063920A1 (ja) * | 2010-11-11 | 2012-05-18 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JP2012136736A (ja) * | 2010-12-27 | 2012-07-19 | Hitachi Metals Ltd | 引張強度に優れる複合金属箔 |
KR20140081890A (ko) * | 2011-10-27 | 2014-07-01 | 히타치 긴조쿠 가부시키가이샤 | 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101951069B1 (ko) | 2012-02-29 | 2019-02-21 | 히타치 긴조쿠 가부시키가이샤 | 저융점의 전기 알루미늄 도금용 도금액의 조제 방법, 전기 알루미늄 도금용 도금액, 알루미늄박의 제조 방법, 및 전기 알루미늄 도금용 도금액의 융점을 저하시키는 방법 |
JP2016027190A (ja) * | 2014-06-24 | 2016-02-18 | 住友電気工業株式会社 | アルミニウムめっき液、アルミニウム膜の製造方法、及びアルミニウム多孔体 |
US10208391B2 (en) | 2014-10-17 | 2019-02-19 | Ut-Battelle, Llc | Aluminum trihalide-neutral ligand ionic liquids and their use in aluminum deposition |
EP3088571B1 (en) | 2015-04-28 | 2021-06-02 | The Boeing Company | Environmentally friendly aluminum coatings as sacrificial coatings for high strength steel alloys |
US10340552B1 (en) | 2017-12-22 | 2019-07-02 | Industrial Technology Research Institute | Electrolyte composition and metal-ion battery employing the same |
US11661665B2 (en) | 2020-04-30 | 2023-05-30 | The Boeing Company | Aluminum and aluminum alloy electroplated coatings |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004346372A (ja) * | 2003-05-22 | 2004-12-09 | Ishikawajima Harima Heavy Ind Co Ltd | アルミナ皮膜による表面改質部品及びその製造方法 |
JP2006161154A (ja) * | 2004-11-09 | 2006-06-22 | Hitachi Metals Ltd | 電解アルミニウムめっき液 |
JP2008195989A (ja) * | 2007-02-09 | 2008-08-28 | Dipsol Chem Co Ltd | 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0274774B1 (en) | 1986-12-04 | 1992-01-15 | Shell Internationale Researchmaatschappij B.V. | Electrodeposition of aluminium |
JP2678984B2 (ja) | 1988-04-26 | 1997-11-19 | 日新製鋼株式会社 | 電気アルミニウムめっき浴およびその浴によるめっき方法 |
US5041194A (en) * | 1989-05-18 | 1991-08-20 | Mitsubishi Petrochemical Co., Ltd. | Aluminum electroplating method |
US6083647A (en) * | 1992-08-14 | 2000-07-04 | Sony Corporation | Non-aqueous electrolyte comprising an aluminum compound and a method for the electrodeposition of aluminum from the electrolyte |
JP2004076031A (ja) | 2002-08-09 | 2004-03-11 | Ishikawajima Harima Heavy Ind Co Ltd | 電解めっき用めっき浴及び複合めっき用めっき浴並びにこれらの製造方法 |
CN1247822C (zh) | 2003-11-07 | 2006-03-29 | 苏州大学 | 非水溶剂无氰镀金液 |
JP4986122B2 (ja) | 2006-03-31 | 2012-07-25 | 日立金属株式会社 | 電解アルミニウムめっき液およびアルミニウムめっき膜 |
JP5170681B2 (ja) * | 2008-10-06 | 2013-03-27 | 日立金属株式会社 | 電気アルミニウムめっき液およびアルミニウムめっき膜 |
-
2009
- 2009-07-31 WO PCT/JP2009/063671 patent/WO2010044305A1/ja active Application Filing
- 2009-07-31 JP JP2010506725A patent/JP4530111B2/ja active Active
- 2009-07-31 US US13/123,760 patent/US9068270B2/en active Active
- 2009-07-31 CN CN200980146014.1A patent/CN102216499B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004346372A (ja) * | 2003-05-22 | 2004-12-09 | Ishikawajima Harima Heavy Ind Co Ltd | アルミナ皮膜による表面改質部品及びその製造方法 |
JP2006161154A (ja) * | 2004-11-09 | 2006-06-22 | Hitachi Metals Ltd | 電解アルミニウムめっき液 |
JP2008195989A (ja) * | 2007-02-09 | 2008-08-28 | Dipsol Chem Co Ltd | 溶融塩電気アルミニウムめっき浴及びそれを用いためっき方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9219279B2 (en) | 2009-06-29 | 2015-12-22 | Hitachi Metals, Ltd. | Method for producing aluminum foil |
CN102471909A (zh) * | 2009-06-29 | 2012-05-23 | 日立金属株式会社 | 铝箔的制造方法 |
WO2011001932A1 (ja) * | 2009-06-29 | 2011-01-06 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JPWO2011001932A1 (ja) * | 2009-06-29 | 2012-12-13 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JP5403053B2 (ja) * | 2009-06-29 | 2014-01-29 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JP2014051743A (ja) * | 2009-06-29 | 2014-03-20 | Hitachi Metals Ltd | アルミニウム箔 |
WO2012063920A1 (ja) * | 2010-11-11 | 2012-05-18 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JP5516751B2 (ja) * | 2010-11-11 | 2014-06-11 | 日立金属株式会社 | アルミニウム箔の製造方法 |
US9267216B2 (en) | 2010-11-11 | 2016-02-23 | Hitachi Metals Ltd. | Method for producing aluminum foil |
JP2012136736A (ja) * | 2010-12-27 | 2012-07-19 | Hitachi Metals Ltd | 引張強度に優れる複合金属箔 |
US20140272598A1 (en) * | 2011-10-27 | 2014-09-18 | Hitachi Metals, Ltd. | Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electrical storage devices, electrode for electrical storage devices, and electrical storage device |
KR20140081890A (ko) * | 2011-10-27 | 2014-07-01 | 히타치 긴조쿠 가부시키가이샤 | 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스 |
US9812700B2 (en) * | 2011-10-27 | 2017-11-07 | Hitachi Metals, Ltd. | Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electrical storage devices, electrode for electrical storage devices, and electrical storage device |
KR101958507B1 (ko) * | 2011-10-27 | 2019-03-14 | 히타치 긴조쿠 가부시키가이샤 | 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010044305A1 (ja) | 2012-03-15 |
JP4530111B2 (ja) | 2010-08-25 |
CN102216499B (zh) | 2014-06-25 |
CN102216499A (zh) | 2011-10-12 |
US20110253543A1 (en) | 2011-10-20 |
US9068270B2 (en) | 2015-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4530111B2 (ja) | 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 | |
US10895016B2 (en) | Electrolytic generation of manganese (III) ions in strong sulfuric acid | |
US20090211914A1 (en) | Trivalent Chromium Electroplating Solution and an Operational Method Thereof | |
KR101749947B1 (ko) | 강한 황산 중의 망간(ⅲ) 이온의 전기분해적 생성 | |
JP4756462B2 (ja) | 電解アルミニウムめっき液 | |
JP5170681B2 (ja) | 電気アルミニウムめっき液およびアルミニウムめっき膜 | |
CN110846662B (zh) | 一种镀铜/石墨烯的镁合金复合材料及其制备方法 | |
TWI500582B (zh) | 使用改良的陽極,在強硫酸中電解產生三價錳離子 | |
JP2013189660A (ja) | マグネシウムまたはマグネシウム合金成形体とその製造方法 | |
BR102022011647A2 (pt) | Composição de um revestimento e respectivo processo de aplicação em substratos metálicos | |
TWI802731B (zh) | 適於從電解池的電解質溶液電鍍或電澱積金屬用之電極及其製法,以及從電解質溶液電鍍或電澱積金屬用之未分隔電解池,和從電解質溶液電鍍或電澱積金屬之製法 | |
Zhu et al. | Copper coating electrodeposited directly onto AZ31 magnesium alloy | |
JP4609779B2 (ja) | マグネシウム合金部材およびその高耐食被膜形成方法 | |
JP2010174315A (ja) | 被膜を有するマグネシウム合金部材およびその製造方法 | |
JP2012233216A (ja) | 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法 | |
JP5246539B2 (ja) | マグネシウム合金部材およびその高耐食被膜形成方法 | |
WO2022266739A1 (pt) | Composição de um revestimento e respectivo processo de aplicação em substratos metálicos | |
Azumi et al. | Corrosion prevention of magnesium alloys: 12. Plating techniques to protect magnesium (Mg) alloys from corrosion | |
KR20160149522A (ko) | 알루미늄 박막의 코팅방법과 이에 의해 제조된 알루미늄 코팅제품 | |
Azumi et al. | Plating techniques to protect magnesium (Mg) alloys from corrosion | |
JPH06330330A (ja) | アルミニウム無電解メッキ法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980146014.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010506725 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09820483 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13123760 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09820483 Country of ref document: EP Kind code of ref document: A1 |