WO2015125900A1 - 電解アルミニウム箔およびその製造方法、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス - Google Patents
電解アルミニウム箔およびその製造方法、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス Download PDFInfo
- Publication number
- WO2015125900A1 WO2015125900A1 PCT/JP2015/054696 JP2015054696W WO2015125900A1 WO 2015125900 A1 WO2015125900 A1 WO 2015125900A1 JP 2015054696 W JP2015054696 W JP 2015054696W WO 2015125900 A1 WO2015125900 A1 WO 2015125900A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum foil
- electrolytic aluminum
- cathode drum
- foil
- plating solution
- Prior art date
Links
- 239000011888 foil Substances 0.000 title claims abstract description 220
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 213
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 206
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 238000003860 storage Methods 0.000 title claims abstract description 40
- 238000007747 plating Methods 0.000 claims abstract description 107
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000011248 coating agent Substances 0.000 claims abstract description 21
- 238000000576 coating method Methods 0.000 claims abstract description 21
- -1 aluminum halide Chemical class 0.000 claims description 33
- 238000012545 processing Methods 0.000 claims description 21
- 230000003746 surface roughness Effects 0.000 claims description 18
- 230000005611 electricity Effects 0.000 claims description 16
- 150000003457 sulfones Chemical class 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 229910000039 hydrogen halide Inorganic materials 0.000 claims description 10
- 239000012433 hydrogen halide Chemical class 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 150000001450 anions Chemical class 0.000 claims description 4
- 238000005868 electrolysis reaction Methods 0.000 claims description 4
- 150000003141 primary amines Chemical class 0.000 claims description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 150000003335 secondary amines Chemical class 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 94
- 238000005259 measurement Methods 0.000 description 12
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 9
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000005486 organic electrolyte Substances 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002845 discoloration Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000005703 Trimethylamine hydrochloride Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- SZYJELPVAFJOGJ-UHFFFAOYSA-N trimethylamine hydrochloride Chemical compound Cl.CN(C)C SZYJELPVAFJOGJ-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- NJQFCQXFOHVYQJ-PMACEKPBSA-N BF 4 Chemical compound C1([C@@H]2CC(=O)C=3C(O)=C(C)C4=C(C=3O2)[C@H](C(C)C)C2=C(O4)C(C)=C(C(C2=O)(C)C)OC)=CC=CC=C1 NJQFCQXFOHVYQJ-PMACEKPBSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- HBOOMWHZBIPTMN-UHFFFAOYSA-N 1-hexylsulfonylhexane Chemical compound CCCCCCS(=O)(=O)CCCCCC HBOOMWHZBIPTMN-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- JEXYCADTAFPULN-UHFFFAOYSA-N 1-propylsulfonylpropane Chemical compound CCCS(=O)(=O)CCC JEXYCADTAFPULN-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BICAGYDGRXJYGD-UHFFFAOYSA-N hydrobromide;hydrochloride Chemical compound Cl.Br BICAGYDGRXJYGD-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- UPOHIXYDQZCJLR-UHFFFAOYSA-J tetraethylazanium tetrafluoride Chemical compound C(C)[N+](CC)(CC)CC.[F-].[F-].[F-].[F-].C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC UPOHIXYDQZCJLR-UHFFFAOYSA-J 0.000 description 1
- DDFYFBUWEBINLX-UHFFFAOYSA-M tetramethylammonium bromide Chemical compound [Br-].C[N+](C)(C)C DDFYFBUWEBINLX-UHFFFAOYSA-M 0.000 description 1
- RXMRGBVLCSYIBO-UHFFFAOYSA-M tetramethylazanium;iodide Chemical compound [I-].C[N+](C)(C)C RXMRGBVLCSYIBO-UHFFFAOYSA-M 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/20—Separation of the formed objects from the electrodes with no destruction of said electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/42—Electroplating: Baths therefor from solutions of light metals
- C25D3/44—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
- C25D3/665—Electroplating: Baths therefor from melts from ionic liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
- H01G9/045—Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/055—Etched foil electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an electrolytic aluminum foil that can be used as a positive electrode current collector of an electricity storage device such as a lithium ion secondary battery or a super capacitor (such as an electric double layer capacitor, a redox capacitor, or a lithium ion capacitor), and a manufacturing method thereof. Moreover, this invention relates also to the electrical power collector for electrical storage devices using this electrolytic aluminum foil, the electrode for electrical storage devices, and an electrical storage device.
- an electricity storage device such as a lithium ion secondary battery or a super capacitor (such as an electric double layer capacitor, a redox capacitor, or a lithium ion capacitor)
- this invention relates also to the electrical power collector for electrical storage devices using this electrolytic aluminum foil, the electrode for electrical storage devices, and an electrical storage device.
- lithium-ion secondary batteries with large energy density and no significant reduction in discharge capacity are used as the power source for mobile tools such as mobile phones and laptop computers.
- mobile tools such as mobile phones and laptop computers.
- miniaturization of lithium ion secondary batteries attached to the tools.
- new applications of supercapacitors with large energy density such as electric double layer capacitors, redox capacitors and lithium ion capacitors will be developed. Accelerating, and further higher energy density is required.
- An electricity storage device such as a lithium ion secondary battery or a supercapacitor has a positive electrode and a negative electrode made of polyolefin in an organic electrolyte containing a fluorine-containing compound such as LiPF 6 or NR 4 .BF 4 (R is an alkyl group) as an electrolyte. It has a structure that is arranged through a separator consisting of.
- the positive electrode is composed of a positive electrode active material such as LiCoO 2 (lithium cobaltate) and activated carbon and a positive electrode current collector
- the negative electrode is composed of a negative electrode active material such as graphite and activated carbon and a negative electrode current collector, and each shape is a current collector.
- an active material is applied to the surface of the material and formed into a sheet shape.
- it is immersed in an organic electrolyte containing a highly corrosive fluorine-containing compound, so that the material of the positive electrode current collector is particularly excellent in electrical conductivity and resistance. It is required to be excellent in corrosiveness.
- the material of the positive electrode current collector aluminum that is a good electrical conductor and has excellent corrosion resistance by forming a passive film on the surface is adopted as the material of the positive electrode current collector. ing.
- the material for the negative electrode current collector include copper and nickel.
- One method for reducing the size and increasing the energy density of an electricity storage device is to reduce the thickness of a current collector that constitutes a sheet-shaped electrode.
- an aluminum foil produced by a rolling method and having a thickness of about 15 to 20 ⁇ m is generally used for the positive electrode current collector. Therefore, by reducing the thickness of the aluminum foil, the object can be achieved. Can be achieved.
- the rolling method it is difficult to further reduce the thickness of the foil on an industrial production scale. Therefore, as a method for producing an aluminum foil in place of the rolling method, a method for producing an aluminum foil by an electrolytic method, that is, a method for producing an electrolytic aluminum foil, has been attracting attention.
- the electrolytic aluminum foil is peeled off from the base material. Proposes a manufacturing method.
- the step of forming an aluminum coating on the surface of the substrate and the step of peeling the coating from the substrate are performed continuously using a cathode drum rather than batchwise. It is desirable to do this.
- the production of electrolytic aluminum foil using a cathode drum is, for example, after an aluminum film is formed on the surface of the cathode drum by applying a current between the cathode drum partially immersed in the plating solution and the anode plate immersed in the plating solution.
- the aluminum film raised from the liquid surface by rotating the cathode drum is peeled off from the cathode drum, and can be performed using an electrolytic aluminum foil manufacturing apparatus as described in Patent Document 2. .
- the aluminum coating peeled off from the cathode drum is washed with water as an electrolytic aluminum foil and then dried, and can be used for various applications.
- the electrolytic aluminum foil manufacturing apparatus described in Patent Document 2 is suitable for manufacturing an electrolytic aluminum foil on an industrial scale.
- the present inventors analyzed the properties of the electrolytic aluminum foil produced using such an electrolytic aluminum foil production apparatus, one surface of the electrolytic aluminum foil partially turned dark and the other surface and properties were analyzed. Turned out to be very different. If the properties of the electrolytic aluminum foil are greatly different on one side and the other side, it is not desirable in terms of stabilizing the discharge and charging efficiency of the electricity storage device using the electrolytic aluminum foil as a current collector. It is not desirable as an appearance.
- an object of this invention is to provide the electrolytic aluminum foil and its manufacturing method with which there is not a big difference in a property on one side and the other side. Another object of the present invention is to provide a current collector for an electricity storage device, an electrode for an electricity storage device, and an electricity storage device using the electrolytic aluminum foil.
- the present inventors investigated why the partial discoloration of one surface of the electrolytic aluminum foil produced using the cathode drum occurs, and after forming an aluminum coating on the surface of the cathode drum,
- the surface of the foil that is in contact with the plating solution (the surface that is in contact with the cathode drum)
- the surface on the side in contact with the plating solution is abbreviated as “surface on the plating solution side” and the surface on the side in contact with the cathode drum is abbreviated as “surface on the cathode drum side”).
- the electrolytic aluminum foil of the present invention made on the basis of the above knowledge is that the L * value in the L * a * b * color system (SCI method) on the surface of the foil is 86.00 or more on both sides.
- SCI method color system
- the electrolytic aluminum foil is desirably an electrolytic aluminum foil produced by peeling an aluminum coating formed on the surface of the cathode drum in the plating solution by an electrolysis method from the cathode drum.
- the above electrolytic aluminum foil has an a * value of 1.00 or less and a b * value of 5.00 or less in the L * a * b * color system (SCI method) of the surface on the plating solution side of the foil. It is desirable.
- the electrolytic aluminum foil has a surface roughness Ra of 0.50 ⁇ m or more on the surface of the foil on the cathode drum side, and an L * value of 87.00 to 90 in the L * a * b * color system (SCI method). 0.00 is desirable.
- the above electrolytic aluminum foil has an a * value of 1.00 or less and a b * value of 5.00 or less in the L * a * b * color system (SCI method) on the surface of the foil on the cathode drum side.
- the method for producing an electrolytic aluminum foil of the present invention comprises forming an aluminum film on the surface of the cathode drum by applying an electric current between the cathode drum partly immersed in the plating solution and the anode plate immersed in the plating solution, A method for producing an electrolytic aluminum foil by peeling an aluminum film raised from a liquid surface by rotating a cathode drum from the cathode drum, wherein the aluminum film is peeled from the cathode drum to obtain an electrolytic aluminum foil
- the dew point of the atmosphere is controlled to be ⁇ 50.0 ° C. or lower.
- the plating solution is preferably a plating solution containing at least a dialkyl sulfone, an aluminum halide, and a nitrogen-containing compound.
- the nitrogen-containing compound is ammonium halide, primary amine hydrogen halide salt, secondary amine hydrogen halide salt, tertiary amine hydrogen halide salt, general formula: R A quaternary ammonium salt represented by 1 R 2 R 3 R 4 N ⁇ X (where R 1 to R 4 are the same or different alkyl groups, X represents a counter anion with respect to a quaternary ammonium cation), from a nitrogen-containing aromatic compound Desirably, at least one selected from the group consisting of: Moreover, the electrical power collector for electrical storage devices of this invention consists of said electrolytic aluminum foil.
- the electrode for an electricity storage device of the present invention is characterized in that an electrode active material is supported on the electrolytic aluminum foil.
- an electrolytic aluminum foil having no significant difference in properties between one surface and the other surface and a method for producing the same.
- the electrical power collector for electrical storage devices using this electrolytic aluminum foil, the electrode for electrical storage devices, and an electrical storage device can also be provided.
- FIG. 6 is a graph showing the relationship between the dew point of the processing atmosphere when manufacturing the electrolytic aluminum foil and the L * value of the surface of the foil on the cathode drum side. It is the Al2p spectrum of the surface at the side of the plating solution of the electrolytic aluminum foil of the present invention in Experiment 2 (Example 1).
- FIG. 13 is a cross section taken along the line AA in FIG. 12.
- the electrolytic aluminum foil of the present invention is characterized in that the L * value in the L * a * b * color system (SCI method) on the surface of the foil is 86.00 or more on both sides.
- the electrolytic aluminum foil of the present invention is, for example, a method of peeling an aluminum coating formed on the surface of a cathode drum in a plating solution by an electrolysis method from the cathode drum, specifically, the electrolytic aluminum foil production described in Patent Document 2
- the cathode drum is rotated.
- the aluminum film rising from the liquid surface can be produced by a method of peeling from the cathode drum.
- FIG. 1 is a perspective view schematically showing the internal structure of the electrolytic aluminum foil manufacturing apparatus described in Patent Document 2, and FIG. 2 is a front view schematically showing the internal structure.
- the electrolytic aluminum foil manufacturing apparatus 1 includes a lid 1a, an electrolytic cell 1b, a cathode drum 1c, an anode plate 1d, a guide roll 1e, a foil drawing port 1f, a gas supply port 1g, a heater power source 1h, a heater 1i, and a plating solution circulation device. 1j, a ceiling 1k, a stirring flow guide 1m, a stirring blade 1n, and a DC power supply (not shown).
- the cathode drum 1c is made of a metal such as stainless steel, titanium, aluminum, nickel, or copper, and is disposed so that a part thereof is immersed in the plating solution L stored in the electrolytic cell 1b.
- the anode plate 1d is made of, for example, aluminum, and is disposed in the plating solution L so as to face the surface of the cathode drum 1c (the purity of aluminum is preferably 99.0% or more).
- the cathode drum 1c and the anode plate 1d are connected to a DC power source, and the cathode drum 1c is driven at a constant speed (depending on the desired thickness of the electrolytic aluminum foil, the temperature of the plating solution, the applied current density, etc.) while energizing both.
- an aluminum film is formed on the surface immersed in the plating solution L of the cathode drum 1c.
- the plating solution L is heated and held at a predetermined temperature by the heater 1i connected to the heater power source 1h.
- the plating solution L is stirred by the rotation of the stirring blade 1n, and a homogeneous flow of the plating solution L is generated between the cathode drum 1c and the anode plate 1d by the stirring flow guide 1m.
- a homogeneous aluminum coating can be formed.
- the aluminum coating formed on the surface of the cathode drum 1c rises from the liquid surface, and a new aluminum coating is formed on the surface of the cathode drum 1c newly immersed in the plating solution L. .
- the aluminum film rising from the liquid surface is guided to the guide roll 1e and peeled off from the cathode drum 1c, so that an electrolytic aluminum foil F is provided as an electrolytic aluminum foil F on the side of the apparatus from the outside of the apparatus. Pulled out.
- the formation of the aluminum film on the surface of the cathode drum 1c and the peeling of the film from the cathode drum 1c are continuously performed, and the electrolytic aluminum foil F drawn out of the apparatus is attached to the surface of the foil.
- the liquid In order to remove the liquid, it is immediately washed with water and then dried, and can be used for various purposes.
- the electrolytic aluminum foil of the present invention has a gas G having a dew point of ⁇ 50.0 ° C. or less from the gas supply port 1 g as a processing atmosphere control gas.
- a gas G having a dew point of ⁇ 50.0 ° C. or less from the gas supply port 1 g as a processing atmosphere control gas.
- it can be produced by supplying at a supply rate of 1 to 50 L / min and controlling the dew point of the processing atmosphere to ⁇ 50.0 ° C. or lower.
- the dew point of the treatment atmosphere By controlling the dew point of the treatment atmosphere to be ⁇ 50.0 ° C. or lower, the aluminum coating raised from the liquid surface was peeled off from the cathode drum 1c to obtain the electrolytic aluminum foil F, which was in contact with the plating solution L of the foil.
- Gas G having a dew point of ⁇ 50.0 ° C. or less supplied to the inside of the apparatus as a processing atmosphere control gas is not particularly limited as long as the gas has a dew point of ⁇ 50.0 ° C. or less.
- the type is preferably an inert gas such as argon gas or nitrogen gas.
- the lower limit of the dew point of the processing atmosphere is, for example, ⁇ 80.0 ° C. in view of the ease of preparation of the processing atmosphere control gas.
- the plating solution adhering to the surface on the plating solution side of the foil reacts with moisture in the processing atmosphere, so that an aluminum oxide film or hydroxide film is formed on the surface of the foil.
- the L * value in the L * a * b * color system (SCI method) of the surface on the plating solution side of the foil is the cathode drum side of the foil.
- the L * value of the surface (surface to which no plating solution adheres) is 86.00 or more, which is 86.00 or more, and both surfaces have a uniform white appearance.
- L * a * b * L * values in the color system means the brightness is a numerical value ranging from 0 (black) to 100 (white).
- the L * value of the surface on the plating solution side of the electrolytic aluminum foil of the present invention is approximately 86.00 to 88.00.
- the L * value of the surface of the foil on the cathode drum side varies depending on the surface roughness Ra of the surface of the foil on the cathode drum reflecting the surface roughness Ra of the cathode drum, but is approximately 87.00 to 96.00. is there.
- the difference between the L * value of the plating solution side surface of the foil and the L * value of the cathode drum side surface is preferably 9.00 or less, It is more desirably 7.00 or less, and further desirably 5.00 or less.
- the L * value of the surface on the cathode drum side of an electrolytic aluminum foil manufactured using a cathode drum having a surface roughness Ra of 0.50 to 0.60 ⁇ m is approximately 87.00 to 90.00 (surface roughness
- the thickness Ra reflects the surface roughness Ra of the surface on the cathode drum side), and approximates the L * value of the surface on the plating solution side.
- both the plating solution side surface and the cathode drum side surface of the electrolytic aluminum foil of the present invention have an a * value of 1.00 or less in the L * a * b * color system (SCI method) and b *.
- the value is desirably 5.00 or less.
- the a * value means the red direction on the + side and the green direction on the-side.
- the + side means the yellow direction and the-side means the blue direction.
- the L * a * b * color system measurement methods include the SCI method, which is a method that includes specular reflection light, and the SCE method, which measures only diffuse reflection light by removing specular reflection light.
- an SCI method is employed that can evaluate the color of the material itself regardless of the surface state of the measurement object.
- the aluminum content of the electrolytic aluminum foil of the present invention is desirably 98.00 mass% or more.
- the volume resistivity decreases, so the advantage that the storage efficiency of the storage device can be increased by using it as the current collector of the storage device, and the heat dissipation is improved, so excellent heat dissipation is required.
- the ductility is high when the content of aluminum is high, there is also an advantage that the coating is not easily broken when the aluminum coating is peeled from the cathode drum.
- the aluminum content of the electrolytic aluminum foil of this invention it is more desirable that it is 99.00 mass% or more.
- the upper limit is often 99.90 mass%, but as described above, both the plating solution side surface and the cathode drum side surface of the foil exhibit a uniform white appearance.
- the thickness of the electrolytic aluminum foil of the present invention is, for example, 1 to 20 ⁇ m.
- the plating solution used for producing the electrolytic aluminum foil of the present invention is not particularly limited as long as it can be used for producing an aluminum foil by an electrolytic method.
- the plating solution proposed at least in literature 1 containing at least a dialkyl sulfone, an aluminum halide, and a nitrogen-containing compound is desirable in that a high-purity electrolytic aluminum foil rich in ductility can be produced at a high film formation rate.
- dialkyl sulfone examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, dihexyl sulfone, and methylethyl sulfone having an alkyl group of 1 to 6 carbon atoms (which may be linear or branched).
- dimethyl sulfone can be suitably employed from the viewpoint of good electrical conductivity and availability.
- Examples of the aluminum halide include aluminum chloride and aluminum bromide, but from the viewpoint of minimizing the amount of moisture contained in the plating solution which is a factor that hinders the precipitation of aluminum.
- the halide is preferably anhydrous.
- nitrogen-containing compound examples include ammonium halide, hydrogen halide salt of primary amine, hydrogen halide salt of secondary amine, hydrogen halide salt of tertiary amine, general formula: R 1 R 2 R 3 R 4 N.
- a quaternary ammonium salt represented by X R 1 to R 4 are the same or different alkyl groups, X represents a counter anion for a quaternary ammonium cation), at least one selected from the group consisting of nitrogen-containing aromatic compounds It is desirable that A nitrogen-containing compound may be used independently and may be used in mixture of multiple types.
- ammonium halide examples include ammonium chloride and ammonium bromide.
- the carbon number of the alkyl group such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, hexylamine, methylethylamine, etc.
- Examples are those having 1 to 6 (which may be linear or branched).
- Examples of the hydrogen halide include hydrogen chloride and hydrogen bromide.
- R 1 to R 4 are the same or different alkyl groups, X represents a counter anion for the quaternary ammonium cation
- alkyl group represented by -R 4 include those having 1 to 6 carbon atoms (which may be linear or branched) such as methyl group, ethyl group, propyl group, and hexyl group.
- the X Other halide ions such as chloride ion or bromide ion and iodide ion, BF 4 - and PF 6 - and the like can be exemplified.
- the compound examples include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, and tetraethylammonium tetrafluoride.
- nitrogen-containing aromatic compounds include phenanthroline and aniline.
- Suitable nitrogen-containing compounds include tertiary amine hydrochlorides, such as trimethylamine hydrochloride, in terms of facilitating the production of a high purity electrolytic aluminum foil having high ductility at a high film formation rate.
- the blending ratio of the dialkyl sulfone, the aluminum halide, and the nitrogen-containing compound is, for example, preferably 1.5 to 6.0 mol, more preferably 2.0 to 5.0 mol of the aluminum halide with respect to 10 mol of the dialkyl sulfone. 2.5 to 4.0 moles is more desirable.
- the nitrogen-containing compound is desirably 0.001 to 2.0 mol, more desirably 0.005 to 0.2 mol, and further desirably 0.01 to 0.1 mol. If the blending amount of aluminum halide is less than 1.5 moles relative to 10 moles of dialkyl sulfone, the formed aluminum film may be darkened (a phenomenon called burning), or the film formation efficiency may be lowered. .
- the plating solution may become too hot and decompose due to excessively high resistance of the plating solution.
- the effect of blending when the blending amount of the nitrogen-containing compound is less than 0.001 mole with respect to 10 moles of dialkyl sulfone, that is, realization of the plating treatment with high current density application based on the improvement of the electrical conductivity of the plating solution It is difficult to obtain effects such as improving the film formation rate, improving the purity of the electrolytic aluminum foil, and improving the ductility, and the electrolytic aluminum foil takes in impurities such as carbon, sulfur, and chlorine, especially carbon. There is a risk that the purity may decrease.
- the composition of the plating solution may change essentially, and aluminum may not be deposited.
- Dialkyl sulfone, aluminum halide, and nitrogen-containing compound are mixed at a predetermined mixing ratio in an inert gas atmosphere such as argon gas or nitrogen gas, and then heated to the melting point of dialkyl sulfone (in the case of dimethyl sulfone). It is desirable to prepare a plating solution by dissolving an aluminum halide and a nitrogen-containing compound in molten dialkyl sulfone at about 110 ° C.).
- Examples of the plating conditions include a plating solution temperature of 60 to 150 ° C. and an applied current density of 0.25 to 20 A / dm 2 .
- the lower limit of the temperature of the plating solution should be determined in consideration of the melting point of the plating solution, and is desirably 80 ° C., more desirably 95 ° C. (Because the plating solution is solidified below the melting point of the plating solution, plating is performed. Processing is no longer possible).
- the temperature of the plating solution exceeds 150 ° C., the reaction between the aluminum coating formed on the surface of the cathode drum and the plating solution is activated, and many impurities such as carbon, sulfur, and chlorine are taken into the electrolytic aluminum foil.
- the upper limit of the temperature of the plating solution is desirably 125 ° C, more desirably 115 ° C, and even more desirably 110 ° C.
- the film formation efficiency may be reduced.
- it exceeds 20 A / dm 2 there is a risk that stable plating treatment cannot be performed due to decomposition of the nitrogen-containing compound or a high-purity electrolytic aluminum foil rich in ductility cannot be obtained, and the electrolytic aluminum foil plating solution
- Applied current density is desirably 5 ⁇ 17A / dm 2, and more preferably 10 ⁇ 15A / dm 2.
- the electrolytic aluminum foil of the present invention has a smaller elastic modulus on both surface portions than the central portion in the thickness direction of the foil, and the elasticity of the central portion of the foil and each surface portion in the measurement by the nanoindentation method. It is desirable that the difference in rate is 8.0 GPa or less because it has excellent flexibility and does not cause trouble in winding due to bending or twisting of the foil.
- the fact that both surface portions have a smaller elastic modulus than the center portion in the thickness direction of the foil means that the elongation ratio is greater on both surface portions than the center portion in the thickness direction of the foil, and thus the flexibility is excellent. means. In the measurement by the nanoindentation method, when the difference in elastic modulus between the central portion of the foil and each surface portion exceeds 8.0 GPa, the difference in elastic modulus is too large, which adversely affects the flexibility of the foil.
- Experiment 1 Production of electrolytic aluminum foil and evaluation of its properties Under a nitrogen gas atmosphere, dimethylsulfone, anhydrous aluminum chloride, and trimethylamine hydrochloride were blended at a molar ratio of 10: 3.8: 0.05, and 110 ° C. To prepare an electrolytic aluminum plating solution. Electrolytic aluminum foil manufacturing apparatus described in Patent Document 2 shown in FIG. 1 and FIG.
- cathode drum diameter: 140 mm ⁇ width: 200 mm made of titanium, surface roughness Ra: 0.07 ⁇ m, anode plate: purity 99.0%
- An aluminum coating was formed on the surface of the cathode drum while rotating the cathode drum at a rotation speed of 15 rad / h under the plating conditions of a plating solution temperature of 100 ° C. and an applied current density of 10 A / dm 2 . Thereafter, the aluminum film rising from the liquid surface was peeled off from the cathode drum to obtain an electrolytic aluminum foil (height of the guide roll: 45 mm from the surface of the plating solution).
- the processing atmosphere was controlled by supplying nitrogen gas having various dew points inside the apparatus at a supply rate of 30 L / min.
- the electrolytic aluminum foil drawn out of the apparatus is immediately washed with water on both sides, then submerged in a water bath and then secondary washed. And dried to obtain an electrolytic aluminum foil of length: 400 mm ⁇ width: 200 mm ⁇ thickness: 12 ⁇ m.
- the aluminum content of the foil was measured using a carbon / sulfur analyzer EMIA-820W manufactured by HORIBA, Ltd. Was used to measure the chlorine content of the foil, and the remainder was taken as the aluminum content.
- Table 1 shows the L * value, a * value, b * value, appearance, and aluminum content of the foil on the plating solution side surface and the cathode drum side surface of each foil.
- the relationship between the dew point of the processing atmosphere when manufacturing the foil and the L * value of the surface on the plating solution side of the foil is shown in FIG. 3, and the relationship between the dew point of the processing atmosphere and the L * value of the surface on the cathode drum side of the foil Each is shown in FIG.
- the L * value of the surface of the electrolytic aluminum foil on the plating solution side correlates with the dew point of the processing atmosphere when manufacturing the foil, and the lower the dew point temperature.
- the L * value was large, and by controlling the dew point to ⁇ 50.0 ° C. or less, the L * value was 86.00 or more, and a uniform white appearance was exhibited.
- the dew point exceeded ⁇ 50.0 ° C., the L * value of the surface of the electrolytic aluminum foil on the plating solution side was less than 86.00, and an appearance in which a partially dark discoloration was observed was exhibited.
- An electrolytic aluminum foil manufactured in a treatment atmosphere in which the dew point is controlled to -50.0 ° C. or less has an aluminum content of 99.90 mass% or less, and a foil produced in a treatment atmosphere in which the dew point exceeds -50.0 ° C.
- the L * value on the plating solution side of the foil was large.
- the L * value of the surface of the electrolytic aluminum foil on the cathode drum side has no correlation with the dew point of the processing atmosphere when manufacturing the foil, and the L * value is 90.00 or more even at any dew point. A white appearance was obtained.
- the difference between the L * value on the plating solution side surface and the L * value on the cathode drum side surface of the electrolytic aluminum foil produced in a treatment atmosphere in which the dew point is controlled to -50.0 ° C. or less is 9.00 or less.
- the a * value of the surface on the plating solution side of the foil is 0.00 or less and the b * value is 3.00 or less, and the a * value of the surface on the cathode drum side of the foil was 1.00 or less and the b * value was 1.00 or less.
- each electrolytic aluminum foil was measured using Hysitron Inc. as an analyzer (nanoindenter). Using a Tribodenter made by the company, and measured under the following conditions, both foils have a smaller elastic modulus on both surface parts than the center part in the thickness direction of the foil, and the center part and each surface part of the foil The difference in elastic modulus was 8.0 GPa or less.
- Each electrolytic aluminum foil was bent 180 degrees until both ends of a 50 mm long foil were in contact, and a 180-degree bending test was performed to visually observe the presence or absence of breakage. Even if it was bent 180 degrees and the crease was pressed, no breakage occurred.
- dimethylsulfone, anhydrous aluminum chloride, and trimethylamine hydrochloride are added in an amount of 2.0 to 5.0 mol of anhydrous aluminum chloride and 0.005 of trimethylamine hydrochloride with respect to 10 mol of dimethylsulfone.
- an electrolytic aluminum foil is manufactured using a plating solution prepared by blending various proportions in the range of ⁇ 0.2 mol or a plating solution prepared by blending various nitrogen-containing compounds different from trimethylamine hydrochloride
- the L * value of the surface on the plating solution side of the foil has a correlation with the dew point of the processing atmosphere when manufacturing the foil, and the L * value is 86.degree. It became 00 or more and exhibited a uniform white appearance.
- Experiment 2 X-ray photoelectron spectroscopy analysis of electrolytic aluminum foil
- Sample No. 1 of the present invention obtained in Experiment 1 1.
- Sample No. of Comparative Example X-ray photoelectron spectroscopy (XPS) analysis of the properties of the plating solution side surface of each of the electrolytic aluminum foils of No. 10 (the portion of the electrolytic aluminum foil of sample No. 10 that is darkly discolored) (Equipment: ESCA-5400R manufactured by ULVAC-PHI).
- X-ray source MgK ⁇ ray (15.0 kV, 26.7 mA (400 W) was used.
- the take-off angle was 45 °.
- the analysis area was 800 ⁇ m ⁇ .
- the sputtering conditions were an acceleration voltage of 3 kV, a raster size of 4 ⁇ 4 mm, and a sputtering rate of 2.5 nm / min (SiO 2 conversion value).
- Sample No. of the present invention 1.
- Sample No. of Comparative Example The Al2p spectrum (68 to 88 eV) of the surface of each of the 10 foils on the plating solution side is shown in FIG. 5, FIG. 6, and FIG.
- the measurement result of the uppermost stage of each figure means the measurement result of the surface of foil, and means the measurement result of the part dug down by sputtering sequentially.
- the peak near 73 eV indicates the presence of metallic aluminum
- the peak near 76 eV indicates the presence of aluminum oxide or hydroxide.
- the intensity of the peak means the degree of its existence. As apparent from FIGS. 5, 6, and 7, the presence of oxides or hydroxides of aluminum was recognized on the surface of each foil. 1 and sample no. In the foil of No. 7, the presence of metallic aluminum was recognized at the same time. In the foil No. 10, the presence of metallic aluminum was hardly observed. When the measurement results in the third stage from the top are compared, the sample No. 1 and sample no. In the foil of No. 7, the peak intensity of the metal aluminum was larger than that of the oxide or hydroxide of aluminum. In the foil No. 10, the intensity of the peak of the oxide or hydroxide of aluminum was larger than that of metal aluminum.
- sample No. of the present invention 1. Sample No. 1 of the present invention. 7. Sample No. of Comparative Example
- the O1s spectrum (523 to 543 eV) of the surface of each electrolytic aluminum foil on the plating solution side is shown in FIG. 8, FIG. 9, and FIG.
- the measurement result of the uppermost stage of each figure means the measurement result of the surface of foil, and means the measurement result of the part dug down by sputtering sequentially.
- the peak near 532.3 eV indicates the presence of aluminum oxide
- the peak near 532.8 eV indicates the presence of aluminum hydroxide.
- the intensity of the peak means the degree of its existence.
- Comparative Sample No. The surface on the plating solution side of the electrolytic aluminum foil of No. 10 is the sample No. 10 of the present invention. 1 and sample no. 7 that the properties of the electrolytic aluminum foil of Fig. 7 are clearly different from the surface on the plating solution side, and a thick aluminum oxide film is formed, and an aluminum hydroxide film is also formed. * It was thought that the value was lowered and the appearance deteriorated. In addition, such an aluminum oxide film or hydroxide film is formed on the surface of the foil on the plating solution side because the aluminum drum is formed on the surface of the cathode drum and then rotated from the liquid surface by rotating the cathode drum.
- the plating solution adhering to the surface of the foil on the plating solution side is considered to be formed by reacting with moisture in the processing atmosphere. It was.
- the electrolytic aluminum foil of No. 7 is controlled by controlling the dew point of the processing atmosphere when manufacturing the foil to ⁇ 50.0 ° C. or lower, so that the plating solution adhering to the surface of the foil on the plating solution side It was considered that the formation of an aluminum oxide film or hydroxide film on the surface of the foil was suppressed due to the suppression of moisture reaction.
- Experiment 3 Examination of the relationship between the surface roughness Ra and L * value of the surface on the cathode drum side of the electrolytic aluminum foil Diameter: 140 mm ⁇ width: 200 mm made of titanium and having various surface roughness Ra, FIG.
- the electrolytic aluminum foil was manufactured in the same manner as in Experiment 1 except that it was mounted on the electrolytic aluminum foil manufacturing apparatus described in Patent Document 2 shown in FIG. 2 and the dew point of the treatment atmosphere was controlled at ⁇ 60.0 ° C.
- Table 2 and FIG. 11 show the relationship between the surface roughness Ra (reflecting the surface roughness Ra of the cathode drum) and the L * value of the surface of the obtained electrolytic aluminum foil on the cathode drum side.
- the L * value of the surface of the electrolytic aluminum foil on the cathode drum side has a correlation with the surface roughness Ra, and the L * value increases as the surface roughness Ra decreases. all right.
- the surface roughness Ra of the surface of the electrolytic aluminum foil on the cathode drum side is 0.50 to 0.60 ⁇ m, that is, using the cathode drum having the surface roughness Ra of 0.50 to 0.60 ⁇ m
- electrolytic aluminum When the foil is manufactured, the L * value of the surface of the obtained electrolytic aluminum foil on the cathode drum side is approximately 87.00 to 90.00, which may be approximate to the L * value of the surface on the plating solution side. all right.
- Application Example 1 Production of an electricity storage device using the electrolytic aluminum foil of the invention as a positive electrode current collector for an electricity storage device Sample No. 1 of the invention obtained in Experiment 1 Using the electrolytic aluminum foil of No. 1 as a positive electrode current collector and using a positive electrode active material coated on the surface thereof as a positive electrode, the electricity storage device shown in FIG. 12 was produced.
- the electricity storage device 100 has a configuration in which an organic electrolyte solution 7 containing a fluorine compound is filled in a housing 10 and an electrode unit 8 is immersed in the organic electrolyte solution.
- the electrode unit 8 has a structure in which a strip-like positive electrode, negative electrode, and separator are laminated in the order of positive electrode-separator-negative electrode-separator to form a laminate, and this laminate is wound.
- the housing 10 is made of a metal material, and an insulating layer 4 is formed on the inside thereof. Further, the casing 10 is formed with a positive electrode terminal 5 and a negative electrode terminal 6 which are connection terminals with an external device, and a positive electrode 11 including the positive electrode terminal 5 and the electrode unit 8 is connected to a negative electrode 12 including the negative electrode terminal 6 and the electrode unit 8. Are electrically connected to each other.
- FIG. 13 is a cross section taken along the line AA of FIG.
- the separator 3 is made of a porous material through which the organic electrolyte 7 can permeate, and the positive electrode 11 and the negative electrode 12 are electrically connected via the organic electrolyte 7.
- the present invention has industrial applicability in that it can provide an electrolytic aluminum foil and a method for producing the same that are not significantly different in properties from one surface to the other. Moreover, this invention has industrial applicability in the point which can also provide the electrical power collector for electrical storage devices, the electrode for electrical storage devices, and an electrical storage device using this electrolytic aluminum foil.
- Electrolytic aluminum foil manufacturing apparatus 1a Lid 1b Electrolysis tank 1c Cathode drum 1d Anode plate 1e Guide roll 1f Foil extraction port 1g Gas supply port 1h Heater power source 1i Heater 1j Plating solution circulation device 1k Ceiling part 1m Stir flow guide 1n Stir blade F Electrolytic aluminum foil G Processing atmosphere control gas L Plating solution 3 Separator 4 Insulating layer 5 Positive electrode terminal 6 Negative electrode terminal 7 Organic electrolyte 8 Electrode unit 10 Housing 11 Positive electrode 12 Negative electrode 100 Power storage device
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
リチウムイオン二次電池やスーパーキャパシターといった蓄電デバイスは、例えば、電解質としてLiPF6やNR4・BF4(Rはアルキル基)などの含フッ素化合物を含んだ有機電解液中に、正極と負極がポリオレフィンなどからなるセパレータを介して配された構造を持つ。正極はLiCoO2(コバルト酸リチウム)や活性炭などの正極活物質と正極集電体からなるとともに、負極はグラファイトや活性炭などの負極活物質と負極集電体からなり、それぞれの形状は集電体の表面に活物質を塗布してシート状に成型したものが一般的である。各電極とも、大きな電圧がかかることに加え、腐食性が高い含フッ素化合物を含んだ有機電解液に浸漬されることから、特に、正極集電体の材料は、電気伝導性に優れるとともに、耐腐食性に優れることが求められる。このような事情から、現在、正極集電体の材料としては、ほぼ100%に、電気良導体であり、かつ、表面に不働態膜を形成することで優れた耐腐食性を有するアルミニウムが採用されている。なお、負極集電体の材料としては銅やニッケルなどが挙げられる。
そこで圧延法にかわるアルミニウム箔を製造する方法として、アルミニウム箔を電解法によって製造する方法、即ち、電解アルミニウム箔を製造する方法が注目されており、本発明者らの研究グループは、特許文献1において、ジアルキルスルホン、アルミニウムハロゲン化物、含窒素化合物を少なくとも含むめっき液を用いた電解法によって基材の表面にアルミニウム被膜を形成した後、当該被膜を基材から剥離することで、電解アルミニウム箔を製造する方法を提案している。
そこで本発明は、一方の面と他方の面で性状に大きな違いがない電解アルミニウム箔およびその製造方法を提供することを目的とする。また、本発明は、この電解アルミニウム箔を用いた蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイスを提供することも目的とする。
上記の電解アルミニウム箔は、両面のL*値の差が9.00以下であることが望ましい。
上記の電解アルミニウム箔は、電解法によってめっき液中で陰極ドラムの表面に形成したアルミニウム被膜を、陰極ドラムから剥離することで製造される電解アルミニウム箔であることが望ましい。
上記の電解アルミニウム箔は、箔のめっき液側の面のL*a*b*表色系(SCI方式)におけるa*値が1.00以下であってb*値が5.00以下であることが望ましい。
上記の電解アルミニウム箔は、箔の陰極ドラム側の面の表面粗さRaが0.50μm以上であり、L*a*b*表色系(SCI方式)におけるL*値が87.00~90.00であることが望ましい。
上記の電解アルミニウム箔は、箔の陰極ドラム側の面のL*a*b*表色系(SCI方式)におけるa*値が1.00以下であってb*値が5.00以下であることが望ましい。
また、本発明の電解アルミニウム箔の製造方法は、めっき液に一部が浸漬した陰極ドラムとめっき液に浸漬した陽極板の間に電流を印加することで陰極ドラムの表面にアルミニウム被膜を形成した後、陰極ドラムを回転させることで液面からせり上がったアルミニウム被膜を陰極ドラムから剥離することによる電解アルミニウム箔の製造方法であって、アルミニウム被膜を陰極ドラムから剥離して電解アルミニウム箔を得る際の処理雰囲気の露点を-50.0℃以下に制御することを特徴とする。
上記の電解アルミニウム箔の製造方法は、めっき液が、ジアルキルスルホン、アルミニウムハロゲン化物、含窒素化合物を少なくとも含むめっき液であることが望ましい。
上記の電解アルミニウム箔の製造方法は、含窒素化合物が、ハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:R1R2R3R4N・X(R1~R4は同一または異なるアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩、含窒素芳香族化合物からなる群から選択される少なくとも1つであることが望ましい。
また、本発明の蓄電デバイス用集電体は、上記の電解アルミニウム箔からなることを特徴とする。
また、本発明の蓄電デバイス用電極は、上記の電解アルミニウム箔に電極活物質を担持させてなることを特徴とする。
また、本発明の蓄電デバイスは、上記の蓄電デバイス用電極を用いて構成されてなることを特徴とする。
窒素ガスの雰囲気下で、ジメチルスルホン、無水塩化アルミニウム、トリメチルアミン塩酸塩をモル比で10:3.8:0.05の割合で配合し、110℃で溶解させて電解アルミニウムめっき液を調製した。図1と図2に示す特許文献2に記載の電解アルミニウム箔製造装置(陰極ドラム:直径:140mm×幅:200mmのチタン製で表面粗さRaが0.07μm、陽極板:純度99.0%のアルミニウム製)を用い、めっき液の温度が100℃、印加電流密度が10A/dm2のめっき条件で、陰極ドラムを15rad/hの回転速度で回転させながら、その表面にアルミニウム被膜を形成した後、液面からせり上がったアルミニウム被膜を陰極ドラムから剥離して電解アルミニウム箔を得た(ガイドロールの高さ:めっき液の液面から45mm)。この際、装置の内部に様々な露点を有する窒素ガスを30L/minの供給量で供給して処理雰囲気を制御した。装置の外部に引き出した電解アルミニウム箔は、箔の表面に付着しているめっき液を除去するために、すぐに両面に水を吹き付けて1次洗浄した後、水槽に水没させて2次洗浄し、乾燥させて、長さ:400mm×幅:200mm×厚さ:12μmの電解アルミニウム箔を得た。
(電解アルミニウム箔の弾性率の測定条件)
・ 仕様圧子:Berkovich(三角錐型)
・ 測定方法:単一押し込み測定
・ 温度:室温(25℃)
・ 押し込み深さ設定:100nm
・ 測定位置:各表面部(めっき液側の面(表面部)と陰極ドラム側の面(裏面部))からそれぞれ深さ方向に2μmの位置および中央部の計3ヶ所
実験1において得た、本発明の試料No.1、本発明の試料No.7、比較例の試料No.10のそれぞれの電解アルミニウム箔のめっき液側の面(試料No.10の電解アルミニウム箔については薄黒く変色している部分)の性状を、X線光電子分光(X-ray Photoelectron Spectroscopy:XPS)分析によって調べた(装置:アルバック・ファイ社製のESCA-5400R)。なお、X線源にはMgKα線(15.0kV、26.7mA(400W))を用いた。取り出し角は45°とした。分析領域は800μmφとした。スパッタ条件(Ar+)は、加速電圧を3kV、ラスターサイズを4×4mmとし、スパッタ速度を2.5nm/min(SiO2換算値)とした。本発明の試料No.1、本発明の試料No.7、比較例の試料No.10のそれぞれの箔のめっき液側の面のAl2pスペクトル(68~88eV)を、図5、図6、図7に示す。なお、各図の最上段の測定結果は、箔の表面の測定結果を意味し、順次、スパッタすることによって掘り下げた箇所の測定結果を意味する。73eV付近のピークは金属アルミニウムの存在を示すものであり、76eV付近のピークはアルミニウムの酸化物や水酸化物の存在を示すものである。ピークの強度はその存在の程度を意味する。図5、図6、図7から明らかなように、いずれの箔も、表面にアルミニウムの酸化物や水酸化物の存在が認められたが、本発明の試料No.1と試料No.7の箔は金属アルミニウムの存在が同時に認められたのに対し、比較例の試料No.10の箔は金属アルミニウムの存在がほとんど認められなかった。上から3段目の測定結果を比較すると、本発明の試料No.1と試料No.7の箔はアルミニウムの酸化物や水酸化物よりも金属アルミニウムの方がピークの強度が大きかったのに対し、比較例の試料No.10の箔は金属アルミニウムよりもアルミニウムの酸化物や水酸化物の方がピークの強度が大きかった。
直径:140mm×幅:200mmのチタン製で各種の表面粗さRaを有する陰極ドラムを、図1と図2に示す特許文献2に記載の電解アルミニウム箔製造装置に装着し、処理雰囲気の露点を-60.0℃に制御すること以外は実験1と同様にして電解アルミニウム箔を製造した。得られた電解アルミニウム箔の陰極ドラム側の面の表面粗さRa(陰極ドラムの表面粗さRaを反映)とL*値の関係を表2と図11に示す。
実験1において得た本発明の試料No.1の電解アルミニウム箔を正極集電体として利用し、その表面に正極活物質を塗布したものを正極として、図12に示す蓄電デバイスを作製した。蓄電デバイス100は、筐体10の内部にフッ素化合物を含んだ有機電解液7が充填され、その有機電解液中に電極ユニット8が浸漬された構成を有する。電極ユニット8は、薄い箔で帯状の正極、負極、セパレータを、正極-セパレータ-負極-セパレータの順に重ねて積層体とし、この積層体を倦回した構造である。筐体10は金属材料からなり、その内側には絶縁層4が形成されている。また、筐体10には外部機器との接続端子となる正極端子5と負極端子6が形成され、正極端子5と電極ユニット8からなる正極11が、負極端子6と電極ユニット8からなる負極12と、それぞれ電気的に接続されている。図13は図12のA-A断面である。正極11と負極12はセパレータ3によって物理的に隔離されているので両者は直接通電しない。しかしながら、セパレータ3は有機電解液7が透過しうる多孔質な材質からなり、正極11と負極12は有機電解液7を介して電気的に接続された状態である。
1a 蓋部
1b 電解槽
1c 陰極ドラム
1d 陽極板
1e ガイドロール
1f 箔引出し口
1g ガス供給口
1h ヒーター電源
1i ヒーター
1j めっき液循環装置
1k 天井部
1m 撹拌流ガイド
1n 撹拌羽根
F 電解アルミニウム箔
G 処理雰囲気制御ガス
L めっき液
3 セパレータ
4 絶縁層
5 正極端子
6 負極端子
7 有機電解液
8 電極ユニット
10 筐体
11 正極
12 負極
100 蓄電デバイス
Claims (12)
- 箔の表面のL*a*b*表色系(SCI方式)におけるL*値が、両面いずれも86.00以上であることを特徴とする電解アルミニウム箔。
- 両面のL*値の差が9.00以下であることを特徴とする請求項1記載の電解アルミニウム箔。
- 電解法によってめっき液中で陰極ドラムの表面に形成したアルミニウム被膜を、陰極ドラムから剥離することで製造される電解アルミニウム箔であることを特徴とする請求項1記載の電解アルミニウム箔。
- 箔のめっき液に接していた側の面のL*a*b*表色系(SCI方式)におけるa*値が1.00以下であってb*値が5.00以下であることを特徴とする請求項3記載の電解アルミニウム箔。
- 箔の陰極ドラムに接していた側の面の表面粗さRaが0.50μm以上であり、L*a*b*表色系(SCI方式)におけるL*値が87.00~90.00であることを特徴とする請求項3記載の電解アルミニウム箔。
- 箔の陰極ドラムに接していた側の面のL*a*b*表色系(SCI方式)におけるa*値が1.00以下であってb*値が5.00以下であることを特徴とする請求項3記載の電解アルミニウム箔。
- めっき液に一部が浸漬した陰極ドラムとめっき液に浸漬した陽極板の間に電流を印加することで陰極ドラムの表面にアルミニウム被膜を形成した後、陰極ドラムを回転させることで液面からせり上がったアルミニウム被膜を陰極ドラムから剥離することによる電解アルミニウム箔の製造方法であって、アルミニウム被膜を陰極ドラムから剥離して電解アルミニウム箔を得る際の処理雰囲気の露点を-50.0℃以下に制御することを特徴とする電解アルミニウム箔の製造方法。
- めっき液が、ジアルキルスルホン、アルミニウムハロゲン化物、含窒素化合物を少なくとも含むめっき液であることを特徴とする請求項7記載の電解アルミニウム箔の製造方法。
- 含窒素化合物が、ハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:R1R2R3R4N・X(R1~R4は同一または異なるアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩、含窒素芳香族化合物からなる群から選択される少なくとも1つであることを特徴とする請求項8記載の電解アルミニウム箔の製造方法。
- 請求項1記載の電解アルミニウム箔からなることを特徴とする蓄電デバイス用集電体。
- 請求項1記載の電解アルミニウム箔に電極活物質を担持させてなることを特徴とする蓄電デバイス用電極。
- 請求項11記載の蓄電デバイス用電極を用いて構成されてなることを特徴とする蓄電デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15751513.1A EP3109345B1 (en) | 2014-02-20 | 2015-02-19 | Electrolytic aluminum foil, production method therefor, collector for power storage device, electrode for power storage device, and power storage device |
US14/917,807 US9991519B2 (en) | 2014-02-20 | 2015-02-19 | Electrolytic aluminum foil, production method therefor, current collector for electrical storage device, electrode for electrical storage device, and electrical storage device |
KR1020167006717A KR102265234B1 (ko) | 2014-02-20 | 2015-02-19 | 전해알루미늄박 및 그 제조방법, 축전 디바이스용 집전체, 축전 디바이스용 전극, 축전 디바이스 |
CN201580001877.5A CN105531403B (zh) | 2014-02-20 | 2015-02-19 | 电解铝箔及其制造方法、蓄电设备用集电体、蓄电设备用电极、蓄电设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014031068A JP6318689B2 (ja) | 2014-02-20 | 2014-02-20 | 電解アルミニウム箔およびその製造方法、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
JP2014-031068 | 2014-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125900A1 true WO2015125900A1 (ja) | 2015-08-27 |
Family
ID=53878397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054696 WO2015125900A1 (ja) | 2014-02-20 | 2015-02-19 | 電解アルミニウム箔およびその製造方法、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
Country Status (6)
Country | Link |
---|---|
US (1) | US9991519B2 (ja) |
EP (1) | EP3109345B1 (ja) |
JP (1) | JP6318689B2 (ja) |
KR (1) | KR102265234B1 (ja) |
CN (1) | CN105531403B (ja) |
WO (1) | WO2015125900A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017048453A (ja) * | 2015-09-05 | 2017-03-09 | 株式会社Uacj | アルミニウム箔の製造方法 |
WO2017038992A1 (ja) * | 2015-09-05 | 2017-03-09 | 株式会社Uacj | 電解アルミニウム箔の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6709498B2 (ja) * | 2015-12-21 | 2020-06-17 | 日立金属株式会社 | アルミニウム箔の製造方法およびアルミニウム箔製造用陰極ドラム |
JP6694578B2 (ja) * | 2015-12-21 | 2020-05-20 | 日立金属株式会社 | アルミニウム箔の製造方法およびアルミニウム箔製造用陰極ドラム |
CN110062972B (zh) * | 2016-12-02 | 2022-07-01 | 日产化学株式会社 | 薄膜和储能器件电极用底涂箔 |
JP6860339B2 (ja) * | 2016-12-16 | 2021-04-14 | 株式会社Uacj | 電解アルミニウム箔の製造方法および製造装置 |
JP1595451S (ja) * | 2017-06-20 | 2018-01-22 | ||
JP2019137902A (ja) * | 2018-02-14 | 2019-08-22 | 日立金属株式会社 | アルミニウム箔 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104791A (ja) * | 1987-10-17 | 1989-04-21 | Nisshin Steel Co Ltd | アルミニウム電解箔の製造方法 |
WO2011001932A1 (ja) * | 2009-06-29 | 2011-01-06 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JP2012201961A (ja) * | 2011-03-28 | 2012-10-22 | Hitachi Metals Ltd | 多孔質アルミニウム箔の製造方法 |
JP2012246561A (ja) * | 2011-05-31 | 2012-12-13 | Hitachi Metals Ltd | 電解アルミニウム箔製造装置 |
JP2012251210A (ja) * | 2011-06-03 | 2012-12-20 | Sumitomo Electric Ind Ltd | 金属多孔体及びそれを用いた電極材料、電池 |
WO2013129479A1 (ja) * | 2012-02-29 | 2013-09-06 | 日立金属株式会社 | 低融点な電気アルミニウムめっき用めっき液の調製方法、電気アルミニウムめっき用めっき液、アルミニウム箔の製造方法、および、電気アルミニウムめっき用めっき液の融点を低下させる方法 |
JP2014001460A (ja) * | 2013-09-06 | 2014-01-09 | Hitachi Metals Ltd | 電解アルミニウム箔製造装置、及び、電解アルミニウム箔製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7452454B2 (en) * | 2001-10-02 | 2008-11-18 | Henkel Kgaa | Anodized coating over aluminum and aluminum alloy coated substrates |
EP1837333B1 (en) * | 2005-01-12 | 2013-04-10 | Otsuka Chemical Co., Ltd. | Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device |
JP4470917B2 (ja) * | 2006-06-29 | 2010-06-02 | ソニー株式会社 | 電極集電体、電池用電極及び二次電池 |
JP2008195990A (ja) | 2007-02-09 | 2008-08-28 | Dipsol Chem Co Ltd | 電気アルミニウムめっき浴及びそれを用いためっき方法 |
US20110159312A1 (en) * | 2009-12-24 | 2011-06-30 | Panasonic Corporation | Aluminum foil for aluminum electrolytic capacitor electrode and method for manufacturing the same |
KR101827241B1 (ko) * | 2010-11-11 | 2018-02-07 | 히타치 긴조쿠 가부시키가이샤 | 알루미늄박의 제조방법 |
JP2012144763A (ja) * | 2011-01-11 | 2012-08-02 | Sumitomo Electric Ind Ltd | アルミニウム構造体の製造方法およびアルミニウム構造体 |
KR101958507B1 (ko) * | 2011-10-27 | 2019-03-14 | 히타치 긴조쿠 가부시키가이샤 | 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스 |
DE112013004539T5 (de) * | 2012-09-18 | 2015-05-28 | Sumitomo Electric Industries, Ltd. | Verfahren zur Herstellung eines Aluminiumfilms und Verfahren zur Herstellung einer Aluminiumfolie |
KR101929635B1 (ko) * | 2013-08-29 | 2018-12-14 | 제이엑스금속주식회사 | 표면 처리 금속재, 캐리어 부착 금속박, 커넥터, 단자, 적층체, 실드 테이프, 실드재, 프린트 배선판, 금속 가공 부재, 전자 기기, 및 프린트 배선판의 제조 방법 |
JP6427893B2 (ja) * | 2014-02-20 | 2018-11-28 | 日立金属株式会社 | 電解アルミニウム箔、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス |
-
2014
- 2014-02-20 JP JP2014031068A patent/JP6318689B2/ja active Active
-
2015
- 2015-02-19 CN CN201580001877.5A patent/CN105531403B/zh active Active
- 2015-02-19 WO PCT/JP2015/054696 patent/WO2015125900A1/ja active Application Filing
- 2015-02-19 KR KR1020167006717A patent/KR102265234B1/ko active IP Right Grant
- 2015-02-19 US US14/917,807 patent/US9991519B2/en active Active
- 2015-02-19 EP EP15751513.1A patent/EP3109345B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104791A (ja) * | 1987-10-17 | 1989-04-21 | Nisshin Steel Co Ltd | アルミニウム電解箔の製造方法 |
WO2011001932A1 (ja) * | 2009-06-29 | 2011-01-06 | 日立金属株式会社 | アルミニウム箔の製造方法 |
JP2012201961A (ja) * | 2011-03-28 | 2012-10-22 | Hitachi Metals Ltd | 多孔質アルミニウム箔の製造方法 |
JP2012246561A (ja) * | 2011-05-31 | 2012-12-13 | Hitachi Metals Ltd | 電解アルミニウム箔製造装置 |
JP2012251210A (ja) * | 2011-06-03 | 2012-12-20 | Sumitomo Electric Ind Ltd | 金属多孔体及びそれを用いた電極材料、電池 |
WO2013129479A1 (ja) * | 2012-02-29 | 2013-09-06 | 日立金属株式会社 | 低融点な電気アルミニウムめっき用めっき液の調製方法、電気アルミニウムめっき用めっき液、アルミニウム箔の製造方法、および、電気アルミニウムめっき用めっき液の融点を低下させる方法 |
JP2014001460A (ja) * | 2013-09-06 | 2014-01-09 | Hitachi Metals Ltd | 電解アルミニウム箔製造装置、及び、電解アルミニウム箔製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017048453A (ja) * | 2015-09-05 | 2017-03-09 | 株式会社Uacj | アルミニウム箔の製造方法 |
WO2017038992A1 (ja) * | 2015-09-05 | 2017-03-09 | 株式会社Uacj | 電解アルミニウム箔の製造方法 |
US10590555B2 (en) | 2015-09-05 | 2020-03-17 | Uacj Corporation | Method for producing electrolytic aluminum foil |
Also Published As
Publication number | Publication date |
---|---|
KR102265234B1 (ko) | 2021-06-15 |
US20160233514A1 (en) | 2016-08-11 |
JP2015155565A (ja) | 2015-08-27 |
CN105531403A (zh) | 2016-04-27 |
JP6318689B2 (ja) | 2018-05-09 |
KR20160124074A (ko) | 2016-10-26 |
EP3109345A1 (en) | 2016-12-28 |
US9991519B2 (en) | 2018-06-05 |
EP3109345B1 (en) | 2020-07-29 |
CN105531403B (zh) | 2019-07-05 |
EP3109345A4 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6318689B2 (ja) | 電解アルミニウム箔およびその製造方法、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス | |
JP6427893B2 (ja) | 電解アルミニウム箔、蓄電デバイス用集電体、蓄電デバイス用電極、蓄電デバイス | |
JP5403053B2 (ja) | アルミニウム箔の製造方法 | |
JP6260860B2 (ja) | 電解アルミニウム箔、それを用いた電池用電極、及び蓄電デバイス、並びに電解アルミニウム箔の製造方法 | |
JP6044546B2 (ja) | 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス | |
JP5482646B2 (ja) | 粗面を有するアルミニウム箔 | |
US9382634B2 (en) | Method for preparing low-melting-point plating solution for aluminum electroplating, plating solution for aluminum electroplating, method for producing aluminum foil, and method for lowering melting point of plating solution for aluminum electroplating | |
JP6252832B2 (ja) | アルミニウム箔、及びそれを用いた電極、並びに蓄電デバイス | |
JP5929000B2 (ja) | 多孔質アルミニウム箔の製造方法 | |
JP7323022B2 (ja) | アルミニウム箔の製造方法 | |
JP2019137902A (ja) | アルミニウム箔 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201580001877.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15751513 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14917807 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167006717 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015751513 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015751513 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |