WO2010113715A1 - 半導体装置の製造方法及び半導体装置 - Google Patents

半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2010113715A1
WO2010113715A1 PCT/JP2010/055042 JP2010055042W WO2010113715A1 WO 2010113715 A1 WO2010113715 A1 WO 2010113715A1 JP 2010055042 W JP2010055042 W JP 2010055042W WO 2010113715 A1 WO2010113715 A1 WO 2010113715A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
silicon substrate
source
drain
semiconductor device
Prior art date
Application number
PCT/JP2010/055042
Other languages
English (en)
French (fr)
Inventor
徹 伊森
順一 伊藤
元 桃井
智宏 柴田
修二 池田
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Priority to JP2011507116A priority Critical patent/JP5449326B2/ja
Priority to US13/260,948 priority patent/US20120104502A1/en
Publication of WO2010113715A1 publication Critical patent/WO2010113715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28537Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66643Lateral single gate silicon transistors with source or drain regions formed by a Schottky barrier or a conductor-insulator-semiconductor structure

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device and a semiconductor device, and more particularly to a method for manufacturing a field effect transistor using a Schottky junction for a source / drain.
  • a semiconductor device integrated circuit in which a large number of circuit elements (for example, transistors) and wirings are formed on a single substrate is known.
  • a semiconductor element that constitutes the semiconductor device for example, a pair of source / drain formed in the element region defined on the surface layer of the silicon substrate with the channel region interposed therebetween, and a poly insulator via a gate insulating film on the channel region.
  • FET field effect transistor
  • Non-Patent Document 1 a technique has been proposed in which the source / drain of the FET is not composed of a diffusion layer formed by doping a silicon substrate with impurities, but is composed of metal (for example, Non-Patent Document 1). According to this technique, it is easy to form a shallow junction as compared with the case where the source / drain is formed of a diffusion layer, and the resistance can be significantly reduced.
  • the FET in which the source / drain is realized by a Schottky junction using a metal / silicon substrate is called a Schottky junction FET.
  • FIG. 2 is an explanatory view showing an example of a manufacturing process of a conventional Schottky junction FET.
  • FIG. 2 shows the formation of the source / drain after the gate 212 is formed on the silicon substrate 201.
  • the gate 212 of the Schottky junction FET 20 is formed on the silicon substrate 101 by a general semiconductor device manufacturing process.
  • the gate 212 includes a gate insulating film 203, a gate electrode 204, and an insulating film 205 covering the gate electrode.
  • the gate electrode 204 functions as a so-called gate for controlling the movement of electrons formed of a metal or a compound having metallic conductivity (for example, Ni, Co, Pt, or an alloy thereof). Electrode.
  • FIG. 2A after the gate insulating film 203, the gate electrode 204, and the insulating film 205 are formed on the entire surface of the silicon substrate 201, unnecessary portions of the gate electrode 204 and the insulating film 205 are removed by a photoetching process using the resist pattern 206 as a mask. Shows the state. After removing the gate electrode 204 and the insulating film 205 as shown in FIG. 2A, the gate insulating film 203 is further removed. Then, the silicon substrate 201 is etched by a predetermined depth by self-alignment (FIG. 2B). A source / drain is formed on the etching region 201a.
  • a silicon nitride film 207 is formed on the entire surface of the substrate (FIG. 2C). Then, the silicon nitride film 207 is etched back by anisotropic etching to form a sidewall 207a on the side surface of the gate 212 (FIG. 2D).
  • a resist pattern 208 provided with an opening 208a is formed by a photolithography process so that the etching region 201a of the silicon substrate 201 is exposed (FIG. 2E).
  • a metal film (for example, Ni) is formed on the entire surface by physical vapor deposition (PVD: Physical Vapor Deposition) such as sputtering (FIG. 2F), and the resist pattern 208 is peeled off (FIG. 2G).
  • PVD Physical Vapor Deposition
  • FIG. 2F physical vapor deposition
  • the resist pattern 208 is peeled off
  • the invention described in claim 1 includes a first step of forming a gate in an element region defined on the surface of the silicon substrate by the element isolation region; A second step of etching the silicon substrate by self-alignment using the gate and the element isolation region as a mask; A third step of forming an insulating film on the side surface of the gate; And a fourth step of selectively forming a metal film to be a source / drain in an etching region of the silicon substrate by an electroless plating method.
  • the metal film is a kind selected from the group consisting of gold, platinum, silver, copper, palladium, nickel, cobalt, and ruthenium. Or an alloy containing a combination of two or more kinds or an alloy containing at least one kind.
  • a gate is formed in an element region defined on a surface of a silicon substrate by an element isolation region, and is formed in an etching region of the silicon substrate etched using the gate and the element isolation region as a mask.
  • the source / drain is made of a metal film selectively formed by an electroless plating method.
  • the metal film is a kind of metal selected from the group consisting of gold, platinum, silver, copper, palladium, nickel, cobalt, ruthenium, or two. It is an alloy containing a combination of at least one species or an alloy containing at least one species.
  • the process of forming the source / drain of the Schottky junction FET is simplified, the yield of the semiconductor device can be improved and the price can be reduced. Specifically, the conventional photolithography process can be omitted.
  • the metal film to be the source / drain is formed by electroless plating instead of PVD, the interface with the silicon substrate becomes smooth, and improvement in device characteristics can be expected.
  • FIG. 1 is an explanatory diagram showing an example of a manufacturing process of the Schottky junction FET according to the present embodiment.
  • FIG. 1 shows the formation of the source / drain after the gate 111 is formed on the silicon substrate 101. That is, in the previous stage shown in FIG. 1A, the gate 111 of the Schottky junction FET 10 is formed on the silicon substrate 101 by a general semiconductor device manufacturing process.
  • an element isolation region 102 made of a silicon oxide film having a depth of 300 to 400 nm is formed in a predetermined region on the p-type silicon substrate 101.
  • An element region is defined by the element isolation region 102.
  • a gate insulating film (oxide film) 103 having a thickness of 5 nm is formed on the entire surface of the substrate, and a gate electrode 104 and an insulating film 105 made of polycrystalline silicon, metal film or silicide film having a thickness of 100 to 150 nm are formed thereon.
  • the gate electrode 104 and the insulating film 105 are removed by a photoetching process using the resist pattern 106 as a mask, leaving a portion to be a gate.
  • the gate insulating film 103 is further removed. Then, the silicon substrate 101 is etched by a predetermined depth (for example, 10 to 100 nm) by self-alignment (FIG. 1B). Source / drains are formed in the etching region 101a.
  • the self-aligned etching means etching using an existing pattern (as a mask) without using a photomask. In this embodiment, since the source / drain regions are etched using the gate 111 and the isolation oxide film (element isolation region) 102 as a mask, the etching is performed by self-alignment.
  • a silicon nitride film 107 having a thickness of 10 nm or less is formed on the entire surface of the substrate (FIG. 1C). Then, by performing etch back by anisotropic etching on the silicon nitride film 107, a sidewall 107a is formed on the side surface of the gate 111 (FIG. 1D). The steps up to this step are the same as in the conventional example (see FIG. 2).
  • a metal film (eg, Ni) 108 having a thickness of 10 to 100 ⁇ m is selectively formed in the etching region 101a by an electroless plating method (FIG. 1E).
  • a metal is formed on silicon by autocatalytic reaction of silicon. Therefore, the metal film 108 is formed only in the etching region 101 a of the silicon substrate 101.
  • the semiconductor device 10 is immersed in this electroless nickel plating solution at 70 ° C. for 2 minutes. As a result, a nickel film (metal film) 108 having a thickness of about 50 nm is formed.
  • the metal film formed by the electroless plating method for example, a kind of metal selected from the group of gold, platinum, silver, copper, palladium, cobalt, ruthenium or An alloy combining two or more kinds or an alloy containing at least one kind can be used. If these metals are used, a metal film can be easily formed by an electroless plating method and is also suitable as a source / drain material. Through the above steps, the Schottky junction FET 10 is obtained. The metal film 108 formed on both sides of the gate 111 becomes the source / drain 109 and 110 and forms a Schottky junction with the silicon substrate 101.
  • the gate (111) is formed in the element region defined on the surface layer of the silicon substrate (101) by the element isolation region (102) (first step, FIG. 1A), and the gate (111 ) And the element isolation region (102) as a mask, the silicon substrate (101) is etched by self-alignment (second step, FIG. 1B).
  • an insulating film silicon nitride film 107, sidewall 107a
  • a source / source is formed in the etching region (101a) of the silicon substrate (101).
  • a metal film (108) to be the drain (109, 110) is selectively formed by an electroless plating method (fourth step, FIG. 1E).
  • the metal film (108) formed in the fourth step includes at least one kind of metal selected from the group consisting of gold, platinum, silver, copper, palladium, nickel, cobalt, and ruthenium, or an alloy obtained by combining two or more kinds. Composed of alloy. Thereby, the source / drain can be easily formed by the electroless plating method.
  • the Schottky junction FET is formed on the silicon substrate.
  • the present invention can also be applied to the case where the Schottky junction FET is formed on an SOI (silicononinsulator) substrate.

Abstract

 ショットキー接合FETのソース/ドレインを簡単な工程で形成できるとともに、デバイス特性を向上しうる半導体装置の製造方法を提供する。 素子分離領域によりシリコン基板表層に画成された素子領域にゲートを形成し(第1工程)、ゲート及び素子分離領域をマスクとして自己整合によりシリコン基板をエッチングし(第2工程)、ゲートの側面に絶縁膜を形成する(第3工程)。 そして、シリコン基板のエッチング領域に、ソース/ドレインとなる金属膜を、無電解めっき法により選択的に形成する(第4工程)。

Description

半導体装置の製造方法及び半導体装置
本発明は、半導体装置の製造方法及び半導体装置に関し、特に、ソース/ドレインにショットキー接合を利用した電界効果トランジスタの製造方法に関する。
 従来、一枚の基板上に多数の回路素子(例えば、トランジスタ)と配線が作り込まれた半導体装置(集積回路)が知られている。この半導体装置を構成する半導体素子としては、例えば、シリコン基板表層に画成された素子領域にチャネル領域を隔てて形成された一対のソース/ドレインと、チャネル領域上にゲート絶縁膜を介してポリシリコン層が形成されたゲートと、を備えた電界効果トランジスタ(FET:FieldEffectTransistor)が知られている。
 半導体装置の分野においては、高速化・高集積化を実現するために半導体素子の微細化が要求され、例えば、FETのゲート長を短くしたり、ゲート絶縁膜をさらに薄くしたりすることにより微細化が図られている。
 また、FETのソース/ドレインを、シリコン基板に不純物をドープして形成される拡散層で構成するのではなく、金属によって構成する技術が提案されている(例えば、非特許文献1)。かかる技術によれば、ソース/ドレインを拡散層で構成する場合に比較して、浅い接合を形成することが容易で、しかも圧倒的に低抵抗とすることが可能となる。
 このようにソース/ドレインを、金属/シリコン基板によるショットキー接合で実現したFETは、ショットキー接合FETと呼ばれている。
 以下、従来利用されているショットキー接合FETの製造方法の典型例について、図面を参照して説明する。
 図2は、従来のショットキー接合FETの製造過程の一例について示す説明図である。
 図2には、シリコン基板201上にゲート212を形成した後のソース/ドレインの形成について示している。すなわち、図2Aに示す前段において、一般的な半導体装置の製造工程によりシリコン基板101上にショットキー接合FET20のゲート212が形成されている。
 なお、ゲート212は、ゲート絶縁膜203、ゲート電極204、ゲート電極をカバーする絶縁膜205で構成されている。ここで、ゲート電極204は、金属若しくは金属的な導電性を持つ化合物(例えば、Ni,Co,Pt又はこれらの合金)により形成された、電子の移動を制御するためのいわゆるゲートの役割をする電極である。
 図2Aは、シリコン基板201の全面にゲート絶縁膜203、ゲート電極204及び絶縁膜205を形成した後、フォトエッチング工程により、レジストパターン206をマスクとしてゲート電極204及び絶縁膜205の不要部分を除去した状態を示している。
 図2Aに示すようにゲート電極204及び絶縁膜205を除去した後、さらにゲート絶縁膜203を除去する。そして、シリコン基板201を自己整合により所定の深さだけエッチングする(図2B)。このエッチング領域201aの上部にソース/ドレインが形成される。
 次いで、レジストパターン206を剥離した後、基板全面に、例えば、シリコン窒化膜207を形成する(図2C)。そして、このシリコン窒化膜207に対して異方性エッチングによるエッチバックを行うことにより、ゲート212の側面にサイドウォール207aを形成する(図2D)。
 サイドウォール207aを形成した後、フォトリソグラフィ工程により、シリコン基板201のエッチング領域201aが露出するように開口部208aを設けたレジストパターン208を形成する(図2E)。スパッタリング等の物理気相成長(PVD:PhysicalVaporDeposition)により金属膜(例えば、Ni)を全面に形成し(図2F)、レジストパターン208を剥離する(図2G)。
 以上の工程により、ショットキー接合FET20が得られる。ゲート212の両側に形成された金属膜209がソース/ドレイン210,211となり、シリコン基板201との間でショットキー接合を形成する。
木下敦寛、他2名、「不純物偏析ショットキー接合トランジスタ」、東芝レビュー、Vol.59No.12(2004)
 しかしながら、上述した従来のショットキー接合FETの製造方法では、シリコン基板201のエッチング領域201aにソース/ドレイン210,211を形成するために、フォトリソグラフィ工程等の複雑な工程が必要となる。そのため、半導体装置の歩留まりの向上や低価格化を図るのに不利となっている。
 また、シリコン基板201のエッチング領域201aにPVDにより金属膜209を蒸着させるため、シリコン基板201と金属膜209の界面に凹凸が形成されやすく、デバイス特性の低下を招く虞がある。
 本発明は、ショットキー接合FETのソース/ドレインを簡単な工程で形成できるとともに、デバイス特性を向上しうる半導体装置の製造方法を提供することを目的とする。
 上記目的を達成するため、請求項1に記載の発明は、素子分離領域によりシリコン基板表層に画成された素子領域にゲートを形成する第1工程と、
 前記ゲート及び素子分離領域をマスクとして自己整合により前記シリコン基板をエッチングする第2工程と、
 前記ゲートの側面に絶縁膜を形成する第3工程と、
 前記シリコン基板のエッチング領域に、ソース/ドレインとなる金属膜を、無電解めっき法により選択的に形成する第4工程と、を備えることを特徴とする半導体装置の製造方法である。
 請求項2に記載の発明は、請求項1に記載の半導体装置の製造方法において、前記金属膜は、金、白金、銀、銅、パラジウム、ニッケル、コバルト、ルテニウ ムの群から選ばれた一種の金属若しくは二種以上を組み合わせた合金又は少なくとも一種を含む合金であることを特徴とする。
 請求項3に記載の発明は、素子分離領域によりシリコン基板表層に画成された素子領域に形成されたゲートと、前記ゲート及び素子分離領域をマスクとしてエッチングされた前記シリコン基板のエッチング領域に形成されたソース/ドレインと、を備えた半導体素子において、前記ソース・ドレインは、無電解めっき法により選択的に形成された金属膜からなることを特徴とする。
 請求項4に記載の発明は、請求項3に記載の半導体装置において、前記金属膜は、金、白金、銀、銅、パラジウム、ニッケル、コバルト、ルテニウムの群から選ばれた一種の金属若しくは二種以上を組み合わせた合金又は少なくとも一種を含む合金であることを特徴とする。
 本発明によれば、ショットキー接合FETのソース/ドレインを形成する工程が簡素化されるので、半導体装置の歩留まりの向上や低価格化を図ることができる。具体的には、従来のフォトリソグラフィ工程を省略することができる。
 また、ソース/ドレインとなる金属膜をPVDではなく無電解めっき法により形成するので、シリコン基板との界面が滑らかとなり、デバイス特性の向上を期待できる。
本実施形態に係るショットキー接合FETの製造過程の一例について示す説明図である。 本実施形態に係るショットキー接合FETの製造過程の一例について示す説明図である。 本実施形態に係るショットキー接合FETの製造過程の一例について示す説明図である。 本実施形態に係るショットキー接合FETの製造過程の一例について示す説明図である。 本実施形態に係るショットキー接合FETの製造過程の一例について示す説明図である。 従来のショットキー接合FETの製造過程の一例について示す説明図である。 従来のショットキー接合FETの製造過程の一例について示す説明図である。 従来のショットキー接合FETの製造過程の一例について示す説明図である。 従来のショットキー接合FETの製造過程の一例について示す説明図である。 従来のショットキー接合FETの製造過程の一例について示す説明図である。 従来のショットキー接合FETの製造過程の一例について示す説明図である。 従来のショットキー接合FETの製造過程の一例について示す説明図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 図1は、本実施形態に係るショットキー接合FETの製造過程の一例について示す説明図である。
 図1には、シリコン基板101上にゲート111を形成した後のソース/ドレインの形成について示している。
 すなわち、図1Aに示す前段において、一般的な半導体装置の製造工程によりシリコン基板101上にショットキー接合FET10のゲート111が形成されている。
 簡単に説明すると、p型シリコン基板101上の所定の領域に、深さ300~400nmのシリコン酸化膜からなる素子分離領域102を形成する。この素子分離領域102により素子領域が画成される。
 基板全面に厚さ5nmのゲート絶縁膜(酸化膜)103を形成し、この上に厚さ100~150nmの多結晶シリコン、金属膜又はシリサイド膜からなるゲート電極104及び絶縁膜105を形成する。そして、フォトエッチング工程により、レジストパターン106をマスクとして、ゲートとなる部分を残してゲート電極104及び絶縁膜105を除去する。
 以上の工程により図1Aに示す状態が得られる。
 図1Aに示すようにゲート電極104及び絶縁膜105を除去した後、さらにゲート絶縁膜103を除去する。そして、シリコン基板101を自己整合により所定の深さ(例えば、10~100nm)だけエッチングする(図1B)。このエッチング領域101aにソース/ドレインが形成される。
 ここで、自己整合によるエッチングとは、ホトマスクを使わずに、既存のパターンを利用して(マスクとして)エッチング加工することをいう。本実施形態では、ゲート111及びアイソレーションの酸化膜(素子分離領域)102をマスクとしてソース/ドレイン領域をエッチングしているので、自己整合によるエッチングとなる。
 次いで、レジストパターン106を剥離した後、基板全面に、厚さ10nm以下のシリコン窒化膜107を形成する(図1C)。そして、このシリコン窒化膜107に対して異方性エッチングによるエッチバックを行うことにより、ゲート111の側面にサイドウォール107aを形成する(図1D)。
 なお、この工程までは従来例(図2参照)と同じである。
 サイドウォール107aを形成した後、無電解めっき法により厚さ10~100μmの金属膜(例えば、Ni)108をエッチング領域101aに選択的に形成する(図1E)。無電解めっき法を利用すると、シリコン上では、シリコンの自触媒反応により金属が形成される。したがって、シリコン基板101のエッチング領域101aにだけ金属膜108が形成される。
 具体的には、硫酸ニッケル0.08M、クエン酸0.10M、ホスフィン酸0.20Mを主成分とする無電解ニッケルめっき液をpH=9.5に調整する。そして、この無電解ニッケルめっき液に半導体装置10を70℃で2分間浸漬させる。これにより、厚さ約50nmのニッケル膜(金属膜)108が形成される。
 なお、無電解めっき法により形成する金属膜の一例としてニッケルを用いた場合について示しているが、例えば、金、白金、銀、銅、パラジウム、コバルト、ルテニウムの群から選ばれた一種の金属若しくは二種以上を組み合わせた合金又は少なくとも一種を含む合金を用いることができる。これらの金属であれば無電解めっき法により容易に金属膜を形成することができる上、ソース/ドレイン材料としても好適である。
 以上の工程によって、ショットキー接合FET10が得られる。ゲート111の両側に形成された金属膜108がソース/ドレイン109,110となり、シリコン基板101との間でショットキー接合を形成する。
 上述したように、本実施形態では、素子分離領域(102)によりシリコン基板(101)表層に画成された素子領域にゲート(111)を形成し(第1工程、図1A)、ゲート(111)及び素子分離領域(102)をマスクとして自己整合によりシリコン基板(101)をエッチングする(第2工程、図1B)。
 次いで、ゲート(111)の側面に絶縁膜(シリコン窒化膜107、サイドウォール107a)を形成し(第3工程、図1C、D)、シリコン基板(101)のエッチング領域(101a)に、ソース/ドレイン(109,110)となる金属膜(108)を、無電解めっき法により選択的に形成する(第4工程、図1E)。
 これにより、ショットキー接合FETのソース/ドレインを形成する工程が簡素化されるので、半導体装置の歩留まりの向上や低価格化を図ることができる。具体的には、従来のフォトリソグラフィ工程を省略することができる。
 また、ソース/ドレインとなる金属膜をPVDではなく無電解めっき法により形成するので、シリコン基板との界面が滑らかとなり、デバイス特性の向上を期待できる。
 第4工程で形成する金属膜(108)は、金、白金、銀、銅、パラジウム、ニッケル、コバルト、ルテニウムの群から選ばれた一種の金属若しくは二種以上を組み合わせた合金又は少なくとも一種を含む合金で構成される。これにより、無電解めっき法により容易にソース/ドレインを形成することができる。
 以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
 上記実施形態では、シリコン基板上にショットキー接合FETを形成する場合について説明したが、SOI(silicononinsulator)基板上にショットキー接合FETを形成する場合にも本発明を適用することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10  ショットキー接合FET
101 シリコン基板
102 素子分離領域
103 ゲート絶縁膜
104 ゲート電極
105 絶縁膜
106 レジストパターン
107 シリコン窒化膜(絶縁膜)
108 金属膜
109,110 ソース/ドレイン
111 ゲート

Claims (4)

  1.  素子分離領域によりシリコン基板表層に画成された素子領域にゲートを形成する第1工程と、
     前記ゲート及び素子分離領域をマスクとして自己整合により前記シリコン基板をエッチングする第2工程と、
     前記ゲートの側面に絶縁膜を形成する第3工程と、
     前記シリコン基板のエッチング領域に、ソース/ドレインとなる金属膜を、無電解めっき法により選択的に形成する第4工程と、を備えることを特徴とする半導体装置の製造方法。
  2.  前記金属膜は、金、白金、銀、銅、パラジウム、ニッケル、コバルト、ルテニウムの群から選ばれた一種の金属若しくは二種以上を組み合わせた合金又は少なくとも一種を含む合金であることを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  素子分離領域によりシリコン基板表層に画成された素子領域に形成されたゲートと、
     前記ゲート及び素子分離領域をマスクとしてエッチングされた前記シリコン基板のエッチング領域に形成されたソース/ドレインと、を備えた半導体素子において、
     前記ソース・ドレインは、無電解めっき法により選択的に形成された金属膜からなることを特徴とする半導体装置。
  4.  前記金属膜は、金、白金、銀、銅、パラジウム、ニッケル、コバルト、ルテニウムの群から選ばれた一種の金属若しくは二種以上を組み合わせた合金又は少なくとも一種を含む合金であることを特徴とする請求項3に記載の半導体装置。
PCT/JP2010/055042 2009-03-31 2010-03-24 半導体装置の製造方法及び半導体装置 WO2010113715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011507116A JP5449326B2 (ja) 2009-03-31 2010-03-24 ショットキー接合fetの製造方法
US13/260,948 US20120104502A1 (en) 2009-03-31 2010-03-24 Method of producing semiconductor device, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009086020 2009-03-31
JP2009-086020 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113715A1 true WO2010113715A1 (ja) 2010-10-07

Family

ID=42828010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055042 WO2010113715A1 (ja) 2009-03-31 2010-03-24 半導体装置の製造方法及び半導体装置

Country Status (4)

Country Link
US (1) US20120104502A1 (ja)
JP (1) JP5449326B2 (ja)
TW (1) TWI467664B (ja)
WO (1) WO2010113715A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168580A (ja) * 2016-03-15 2017-09-21 東芝メモリ株式会社 半導体装置及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9202903B2 (en) * 2013-03-01 2015-12-01 Cree, Inc. Tunnel junction field effect transistors having self-aligned source and gate electrodes and methods of forming the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148380A (en) * 1975-06-14 1976-12-20 Fujitsu Ltd Manufacturing method of electric field semiconductor device
JPS62154668A (ja) * 1985-12-27 1987-07-09 Toshiba Corp 半導体装置
JPH03102819A (ja) * 1989-09-18 1991-04-30 Nissan Motor Co Ltd 半導体装置の製造方法
JPH0766404A (ja) * 1993-08-25 1995-03-10 Hitachi Ltd 半導体装置及びその製造方法
JPH1117172A (ja) * 1997-06-20 1999-01-22 Sanyo Electric Co Ltd 電界効果型半導体装置、電界効果トランジスタおよびその製造方法
JPH11510967A (ja) * 1996-06-14 1999-09-21 コミツサリア タ レネルジー アトミーク 量子ドット型mosトランジスタおよびその製造方法
JP2000216382A (ja) * 1999-01-22 2000-08-04 Nec Corp 半導体装置の製造方法
JP2005536047A (ja) * 2002-08-12 2005-11-24 エイコーン・テクノロジイズ・インコーポレーテッド チャネルに対するパッシブト・ショットキー障壁を有する絶縁ゲート型電界効果トランジスタ
JP2006054423A (ja) * 2004-07-13 2006-02-23 Toshiba Corp 半導体装置及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550489A (en) * 1981-11-23 1985-11-05 International Business Machines Corporation Heterojunction semiconductor
JPH0445543A (ja) * 1990-06-13 1992-02-14 Mitsubishi Electric Corp 半導体装置の製造方法
KR930001452A (ko) * 1991-06-21 1993-01-16 김광호 트렌치형 소스/드레인 mosfet 및 그 제조방법
US6015747A (en) * 1998-12-07 2000-01-18 Advanced Micro Device Method of metal/polysilicon gate formation in a field effect transistor
JP2001015735A (ja) * 1999-06-29 2001-01-19 Nec Corp 半導体装置及びその製造方法
US6303479B1 (en) * 1999-12-16 2001-10-16 Spinnaker Semiconductor, Inc. Method of manufacturing a short-channel FET with Schottky-barrier source and drain contacts
TW463384B (en) * 2000-06-15 2001-11-11 Shr Min Thin film transistor having subgate and Schottky source/drain and the manufacturing method thereof
US6645557B2 (en) * 2001-10-17 2003-11-11 Atotech Deutschland Gmbh Metallization of non-conductive surfaces with silver catalyst and electroless metal compositions
EP1683193A1 (en) * 2003-10-22 2006-07-26 Spinnaker Semiconductor, Inc. Dynamic schottky barrier mosfet device and method of manufacture
JP4415653B2 (ja) * 2003-11-19 2010-02-17 セイコーエプソン株式会社 薄膜トランジスタの製造方法
US7256498B2 (en) * 2004-03-23 2007-08-14 Taiwan Semiconductor Manufacturing Co., Ltd. Resistance-reduced semiconductor device and methods for fabricating the same
US20050212058A1 (en) * 2004-03-23 2005-09-29 Yi-Chun Huang Resistance-reduced semiconductor device and fabrication thereof
US7329582B1 (en) * 2005-06-15 2008-02-12 Advanced Micro Devices, Inc. Methods for fabricating a semiconductor device, which include selectively depositing an electrically conductive material
JP2007036148A (ja) * 2005-07-29 2007-02-08 Toshiba Corp 半導体装置製造方法
US7655972B2 (en) * 2005-11-21 2010-02-02 International Business Machines Corporation Structure and method for MOSFET with reduced extension resistance
US20070141798A1 (en) * 2005-12-20 2007-06-21 Intel Corporation Silicide layers in contacts for high-k/metal gate transistors
KR100836763B1 (ko) * 2006-12-28 2008-06-10 삼성전자주식회사 반도체 소자 및 그 형성 방법
KR100922915B1 (ko) * 2007-08-27 2009-10-22 주식회사 동부하이텍 반도체소자 및 이의 제조방법
US7615831B2 (en) * 2007-10-26 2009-11-10 International Business Machines Corporation Structure and method for fabricating self-aligned metal contacts
US20090315185A1 (en) * 2008-06-20 2009-12-24 Boyan Boyanov Selective electroless metal deposition for dual salicide process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148380A (en) * 1975-06-14 1976-12-20 Fujitsu Ltd Manufacturing method of electric field semiconductor device
JPS62154668A (ja) * 1985-12-27 1987-07-09 Toshiba Corp 半導体装置
JPH03102819A (ja) * 1989-09-18 1991-04-30 Nissan Motor Co Ltd 半導体装置の製造方法
JPH0766404A (ja) * 1993-08-25 1995-03-10 Hitachi Ltd 半導体装置及びその製造方法
JPH11510967A (ja) * 1996-06-14 1999-09-21 コミツサリア タ レネルジー アトミーク 量子ドット型mosトランジスタおよびその製造方法
JPH1117172A (ja) * 1997-06-20 1999-01-22 Sanyo Electric Co Ltd 電界効果型半導体装置、電界効果トランジスタおよびその製造方法
JP2000216382A (ja) * 1999-01-22 2000-08-04 Nec Corp 半導体装置の製造方法
JP2005536047A (ja) * 2002-08-12 2005-11-24 エイコーン・テクノロジイズ・インコーポレーテッド チャネルに対するパッシブト・ショットキー障壁を有する絶縁ゲート型電界効果トランジスタ
JP2006054423A (ja) * 2004-07-13 2006-02-23 Toshiba Corp 半導体装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168580A (ja) * 2016-03-15 2017-09-21 東芝メモリ株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
TW201108330A (en) 2011-03-01
US20120104502A1 (en) 2012-05-03
TWI467664B (zh) 2015-01-01
JPWO2010113715A1 (ja) 2012-10-11
JP5449326B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
US9812572B2 (en) Reacted conductive gate electrodes and methods of making the same
KR100966384B1 (ko) 니켈 실리사이드 접촉 영역을 포함한 집적 회로 및 그 제조방법
JP5182703B2 (ja) 半導体装置
JPH10173177A (ja) Misトランジスタの製造方法
JP2009509325A (ja) 半導体デバイスおよびその製造方法
JP2001015453A (ja) 金属シリサイド層の形成方法
JP5449326B2 (ja) ショットキー接合fetの製造方法
JP2010212531A (ja) 半導体装置の製造方法
KR20080043000A (ko) 반도체 소자 및 그 제조 방법
JP2005519468A (ja) 半導体デバイス中の異なるシリコン含有領域上に、異なるシリサイド部分を形成する方法
JP2014049768A (ja) 半導体デバイスおよびその製造方法
JP2006352127A (ja) 複数の熱処理によって自己整列されたシリサイド膜を形成する方法
KR100992631B1 (ko) 반도체 소자의 제조방법
JP2010212532A (ja) 半導体装置の製造方法
WO2006003579A1 (en) Field effect transistor method and device
JP2001102583A (ja) Mosfetの製造を目的とした置き換えゲートとしてシリコンゲルマニウムおよびその他の合金の使用
TW200905747A (en) Thin film and method for manufacturing semiconductor device using the thin film
JPH056345B2 (ja)
JP2009246381A (ja) 半導体装置の製造方法及びmisトランジスタ
KR101012241B1 (ko) 반도체 소자의 실리사이드 형성 방법
JP2010192735A (ja) 半導体素子及びその製造方法
JP3349413B2 (ja) 半導体装置の製造方法
JP2005333155A (ja) Misトランジスタ
JP2008108875A (ja) 半導体装置及びその製造方法
JPH09293722A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758489

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011507116

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13260948

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10758489

Country of ref document: EP

Kind code of ref document: A1