WO2010098440A1 - 高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法 - Google Patents

高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法 Download PDF

Info

Publication number
WO2010098440A1
WO2010098440A1 PCT/JP2010/053068 JP2010053068W WO2010098440A1 WO 2010098440 A1 WO2010098440 A1 WO 2010098440A1 JP 2010053068 W JP2010053068 W JP 2010053068W WO 2010098440 A1 WO2010098440 A1 WO 2010098440A1
Authority
WO
WIPO (PCT)
Prior art keywords
essential oil
monoterpene component
component
monoterpene
atmosphere
Prior art date
Application number
PCT/JP2010/053068
Other languages
English (en)
French (fr)
Inventor
金子 俊彦
田中 雄一
大平 辰朗
直之 松井
Original Assignee
日本かおり研究所株式会社
独立行政法人森林総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本かおり研究所株式会社, 独立行政法人森林総合研究所 filed Critical 日本かおり研究所株式会社
Priority to US13/203,591 priority Critical patent/US9005336B2/en
Priority to EP10746319.2A priority patent/EP2402423B8/en
Priority to JP2011501667A priority patent/JP5508388B2/ja
Publication of WO2010098440A1 publication Critical patent/WO2010098440A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/02Recovery or refining of essential oils from raw materials
    • C11B9/027Recovery of volatiles by distillation or stripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/013Deodorant compositions containing animal or plant extracts, or vegetable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/21Organic compounds not provided for in groups B01D2251/206 or B01D2251/208
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes

Definitions

  • the present invention relates to a high monoterpene-containing essential oil containing a monoterpene compound at an extremely high concentration, a production method using coniferous leaves as a raw material, and a method for purifying environmental pollutants using the essential oil.
  • the forest has been poorly maintained due to lack of successors and falling timber prices, and its devastation has been a major problem.
  • the maintenance of this forest is mainly thinning and pruning, but if there is no economic value for the thinned wood and the branches and leaves that were dropped by pruning, and it only costs money, this kind of maintenance is neglected. It is natural to become.
  • exhaust gas containing various chemical substances including nitrogen oxides (NOx) and sulfur oxides (SOx) is being emitted with the operation of boilers in power plants and factories, or garbage incineration plants.
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • NOx and SOx are not only harmful to the human body, but also cause acid rain.
  • photochemical smog is generated. This photochemical smog is a phenomenon in which hydrocarbons and NOx in the atmosphere absorb ultraviolet rays to cause a photochemical reaction and generate photochemical oxidants that are harmful substances.
  • measures have been delayed for NOx, particularly NOx caused by movement sources such as automobiles, which is a serious problem.
  • VOC organic solvents
  • adhesives are frequently used in building materials and furniture used in the construction of houses or interiors of buildings, and from the viewpoint of performance, cost, and convenience, they are often used especially as wooden materials.
  • Resin adhesives, melamine / urea cocondensation resin adhesives, phenol resin adhesives, and the like are known. Since these adhesives use formaldehyde as a raw material, they are also called formaldehyde adhesives, and formaldehyde is emitted in the air.
  • curing of the adhesive proceeds by generation of a methylol group by addition reaction of formaldehyde, generation of methylene bond and dimethylene ether bond by condensation reaction.
  • Formaldehyde emission is generated not only from such a curing process but also from the cured adhesive. That is, the formaldehyde removal reaction also occurs by the decomposition of the methylol group and the progress of the condensation reaction from the dimethylene ether bond to the methylene bond. In this way, formaldehyde is also diffused over a long period of time from the cured urea resin adhesive.
  • Such a phenomenon is the same with other adhesives except for a phenol resin which emits very little formaldehyde.
  • NOx removal methods include passing through an absorbent such as carboxylic acid or alkaline solution, or passing through a special machine.
  • a method has been developed. However, all of these methods are laborious and expensive.
  • Patent Document 1 discloses an essential oil containing an essential oil obtained by steam distillation of a plant, a water-soluble fraction obtained at the time of steam distillation, and an aqueous solution containing plant essential oil comprising water.
  • Patent Document 2 discloses that a terpene compound having a conjugated double bond, such as ⁇ -terpinene, myrcene, and alloocimene, is in a gaseous state and dispersed in the air. Methods have been reported to include NOx in terpene compounds to remove NOx.
  • the present inventors (a) sucked air containing formaldehyde into the first container and brought it into contact with a complex of volatile aroma components extracted from the leaves of the tree in the container. (B) a step of removing ozone from the air that has passed through the previous step, (c) a step of removing ozone from the air that has been subjected to the ozone removal treatment on a silica gel coated with 2,4-dinitrophenylhydrazine. It discloses a method for collecting formaldehyde, which comprises a step of contacting and further collecting formaldehyde in the air (Patent Document 3).
  • Patent Documents 1, 2, and 3 all use components distilled by steam distillation, those obtained by steam distillation contain a large amount of components that generate pungent odors such as phenol. Therefore, it cannot be sprayed into the atmosphere as it is. Purification for removing these irritating components is necessary for spraying into the atmosphere. However, such purification increases the cost and causes a problem in economy.
  • an object of the present invention is to develop a means for efficiently extracting a terpene compound contained in the leaves of a tree and utilizing this particularly for the removal of environmental pollutants.
  • the inventors of the present invention conducted intensive studies on the effective utilization of tree branches and leaves that are rarely used when cutting thinned wood and pruning. By distilling these under certain conditions, a specific terpene was obtained. It has been found that an essential oil component containing a very large amount of a compound can be obtained, and that it can be used to remove environmental pollutants very efficiently, leading to the present invention.
  • the present invention is a high monoterpene component-containing essential oil containing 90% or more of a monoterpene component.
  • the present invention is a method for producing an essential oil containing a high monoterpene component, characterized in that the leaves of coniferous trees are heated and distilled to collect an oily fraction that is a distillate obtained.
  • the present invention is a method for removing an environmental pollutant, characterized in that the high monoterpene component-containing essential oil is brought into contact with the atmosphere containing the environmental pollutant.
  • the high monoterpene component-containing essential oil of the present invention is obtained from tree branches and leaves that are produced when cutting thinned wood and pruning, and contains 90% or more of a monoterpene component, with a very low content of sesquiterpene and diterpene components It is.
  • the apparatus used in the method of the present invention is smaller than a general steam distillation apparatus and can be used with a commercial power supply, it can be installed at a timber cutting site and operated at low cost. .
  • the high monoterpene component-containing essential oil containing 90% or more of the monoterpene component of the present invention is obtained by distilling a coniferous leaf by heating under reduced pressure (hereinafter referred to as “vacuum steam distillation method”). By collecting the extracted fraction, it can be obtained without requiring re-purification.
  • the leaves of conifers that are raw materials are not particularly limited, but hinoki, taiwan hinoki, bay hiba, sawara, lawson hinoki, chabo hiba, peacock hiba, oxon chabo hiba, water lily hiba, ithiba, oxon hiyoku hiba, shinobhiba, ogon shinobhiba, cyrus Trees of the genus Cypress family of cypresses; Trees of the genus Cypress family of cypresses such as scented cypress, Nezuko; Trees of cypresses such as cypress, Asunaro, Hinoki Asunaro, Asokaro Asunaro; Hyabixin, Rats, Emphibacine, Okinawaheine Trees belonging to the genus Cypress, cedar, Japanese cedar, Enkousugi, Joresugi, O
  • Heating by the reduced-pressure steam distillation method used to obtain essential oils containing high monoterpene components from the leaves of the above-mentioned coniferous trees may be heated by a heater, but microwaves directly heat water molecules by irradiation with microwaves. It is preferable to employ a method (hereinafter referred to as “microwave vacuum steam distillation method”) in which essential oils are extracted only with water originally contained in raw materials such as leaves.
  • a microwave vacuum steam distillation apparatus In order to carry out this microwave vacuum steam distillation method, a microwave vacuum steam distillation apparatus is required. An outline of one embodiment of this apparatus is shown in FIG.
  • 1 is a microwave distillation apparatus
  • 2 is a distillation tank
  • 3 is a microwave heating apparatus
  • 4 is a stirring splash
  • 5 is an airflow inflow pipe
  • 6 is a distillate outflow pipe
  • 7 is a cooling apparatus
  • 8 heating control.
  • Device 9 is a pressure reducing pump
  • 10 is a pressure regulating valve
  • 11 is a pressure control device
  • 12 is a distillation object
  • 13 is an extract.
  • a microwave heating apparatus provided on the upper surface of the distillation tank 2 while putting the raw material (the leaves of conifers in the present invention) to be extracted 12 into the distillation tank 2 and stirring with the stirring spring 4.
  • the microwave is radiated from 3 to heat the raw material.
  • the distillation tank 2 communicates with the air flow inlet 5 and the distillate outflow pipe 6.
  • the airflow inlet pipe 5 introduces an inert gas such as air or nitrogen gas into the reaction tank 2, and this airflow is introduced from the lower part of the reaction tank 2.
  • the distillate outflow pipe 6 leads the distillate from the raw material to the outside from the upper part of the reaction tank 2.
  • the temperature and pressure of the inside of the reaction tank 2 are measured by a temperature sensor and a pressure sensor (both not shown) attached to the reaction tank 2, and a heating control device 8, a pressure control device 11, and a pressure adjusting valve are measured. 10 are adjusted respectively.
  • the gaseous distillate flowing out from the distillation tank 2 through the distillate outflow pipe 6 is replaced with a liquid by the cooling device 7 and obtained as an extract 13.
  • the extract 13 includes an aqueous fraction 13b and an oily fraction 13a.
  • the oily fraction 13a is an essential oil.
  • the pressure in the distillation tank 2 may be set to 10 to 95 kilopascals, preferably 20 to 80 kilopascals, more preferably about 30 to 60 kilopascals. 40 ° C to 100 ° C.
  • the distillation time may be about 0.2 to 8 hours, preferably about 0.4 to 6 hours. If it is 0.2 hours or less, sufficient distillation cannot be performed, and if it is distilled for 8 hours or more, not only the yield is improved, but also the content of impurities such as sesquiterpenes and diterpenes increases.
  • the gas introduced into the distillation tank 2 may be air, but an inert gas such as nitrogen gas, helium gas, or argon gas is preferable, and the flow rate per minute is the distillation tank 2. It may be about 0.001 to 0.1 times the capacity.
  • the high monoterpene component containing essential oil of this invention obtained in this way has the characteristic of containing 90% or more of monoterpene components.
  • the essential oil obtained by conventional steam distillation contains a considerable amount of sesquiterpene and diterpene, as shown in the examples below. It became clear that
  • the high monoterpene component-containing essential oil of the present invention can be advantageously used to remove environmental pollutants. That is, since harmful oxides such as NOx and SOx, formaldehyde and the like can be effectively removed, it can be used as an environmental material removing agent.
  • a high monoterpene component-containing essential oil is impregnated into a filter composed of paper (pulp), nonwoven fabric, resin sheet, wood sheet, wood powder, resin beads, etc., and air containing NOx and SOx passes through this filter NOx and SOx in the atmosphere can be brought into contact with the active ingredient by a method of contacting with the active ingredient, a method of bringing the air containing NOx and SOx into contact with the active ingredient by bubbling the air containing the high monoterpene component-containing essential oil. It is possible to remove.
  • the removal of the environmental pollutants containing the high monoterpene component-containing essential oil of the present invention is described, It is possible to remove an environmental pollutant from normal living space by these methods.
  • the high monoterpene component-containing essential oil of the present invention is a component of a perfume and contains a high concentration of a monoterpene component that has no danger to the human body. Therefore, even if this is contacted or sprayed into the atmosphere of the living space, it does not cause discomfort or adverse effects on humans or other animals and plants.
  • the high monoterpene component-containing essential oil of the present invention contains 90% or more of the monoterpene component, it can be used as a raw material for individual monoterpenes.
  • Example 1 Using cedar leaves as a raw material, a cedar essential oil was obtained as follows. That is, about 50 kg of cedar leaves pulverized with a crushing type crusher (manufactured by KYB Seisakusho) is put into the distillation tank of the microwave steam distillation apparatus shown in FIG. The essential oil was distilled by microwave irradiation for 1 hour (vapor temperature was about 67 ° C.). The amount of the essential oil obtained was 180 mL, and the ratio of the essential oil to the input sample was 0.34%.
  • a crushing type crusher manufactured by KYB Seisakusho
  • cedar essential oil was obtained by the following steam distillation method. That is, about 101 g of cedar leaves pulverized by a pressure pulverizer (manufactured by KYB Mfg. Co., Ltd.) were placed in a Pyrex (registered trademark) glass flask, 5 to 8 times the amount of water was added, and then the flask was placed in a hot water bath. Heat to ⁇ 100 ° C and boil. The essential oil sampling tube was filled with water up to the baseline before heating.
  • a pressure pulverizer manufactured by KYB Mfg. Co., Ltd.
  • Example 2 Essential oil was obtained in the same manner as in Example 1 except that the leaves of the plant were changed from cedar to Todomatsu. Table 2 shows the terpene composition in the obtained essential oil.
  • Example 3 Essential oil was obtained in the same manner as in Example 1 except that the leaves of the plant were changed from cedar to cypress. Table 3 shows the terpene composition in the obtained essential oil.
  • Test example 1 Nitrogen dioxide concentration reduction test: A glass tube having an inner diameter of 5 mm ⁇ was filled with about 0.1 g of a paper waste, and the paper waste was impregnated with the removal agent of the present invention in the amount shown in Table 1 below. One end of this glass tube was connected to a Tedlar bag containing 8.5 ppm of nitrogen dioxide, and the other end was connected to a gas detector tube for nitrogen dioxide (manufactured by Gastec). The other of the gas detection tubes was connected to a suction syringe.
  • Removal rate (%) (BA) / B ⁇ 100
  • Example 4 Formaldehyde concentration reduction test: The essential oil 1 obtained in Examples 1 to 3 was adjusted to 5% with n-hexane, and 3 ml was put into an impinger. One mouth of the impinger was connected to a Tedlar bag containing formaldehyde (0.95 ppm) and the other mouth was connected to a DNPH cartridge for aldehyde detection, and suction was performed at 100 ml / min. After aspiration for 30 minutes, the adsorbed component was eluted from the DNPH cartridge by a predetermined method and analyzed by HPLC to measure the formaldehyde concentration. The removal rate of formaldehyde was calculated by the following equation using the formaldehyde concentration when only n-hexane was passed as a control. The results are shown in Table 5.
  • Removal rate (%) (BA) / B ⁇ 100
  • Example 5 Using the essential oils obtained in Examples 1 to 3, the nitrogen dioxide removal effect in the gaseous state was confirmed by the following method.
  • Example 6 Particle formation by reaction of nitrogen dioxide with essential oil components: Into a 1 L Tedlar bag, 1 L of cylinder air and 50 ⁇ L of cedar leaf essential oil obtained in Example 1 were injected and allowed to stand at 40 ° C. for 10 minutes. Thereafter, the entire head space of the cedar leaf essential oil volatilized in a 20 L Tedlar bag was injected and filled with clean air until it reached 20 L. Nitrogen dioxide (6.2 ppm) was injected into this, and the particle size 3 minutes after the injection was measured using a particle counter (Wide-Range Particle Spectrometer MODEL1000XP: manufactured by MSP, USA). As a blank, nitrogen dioxide alone and cedar leaf essential oil alone (before nitrogen dioxide mixing) were measured by the same method. The results are shown in FIGS.
  • Example 7 Nitrogen dioxide oxidation reaction suppression confirmation test (1) Based on the inhibition rate of linoleic acid peroxide production, the effect of suppressing the oxidation ability of nitrogen dioxide by the essential oil of the present invention was confirmed by the following procedure.
  • a chloroform solution containing 10% linoleic acid was dropped on a petri dish having a diameter of about 9 cm, and the solvent was volatilized while gently rotating to uniformly apply linoleic acid to the bottom of the petri dish.
  • a corner of a 10 L Tedlar bag was cut and opened, and after opening the petri dish, the opening was heat sealed.
  • a cedar leaf essential oil which is an essential oil containing the high monoterpene component of the present invention, is injected into a 1 L tedlar bag, filled with cylinder air, and then left in a constant temperature bath at 40 ° C. for 10 minutes to leave the headspace of cedar leaf essential oil Created a Tedlar bag.
  • 1 L of cedar leaf essential oil headspace was poured into a bag containing the above-prepared linoleic acid-coated petri dish, and then 150 mL of 100 ppm of nitrogen dioxide was added, and then fully inflated with cylinder air and left in a constant temperature bath at 40 ° C. .
  • Example 8 Nitrogen dioxide oxidation reaction suppression confirmation test (2): The effect of suppressing oxidation ability when the essential oil of the present invention was contacted with nitrogen dioxide for 24 hours was confirmed by the following procedure.
  • cedar leaf essential oil 50 ⁇ L of cedar leaf essential oil was injected into a 1 L Tedlar bag.
  • the tedlar bag was filled with cylinder air and left in a constant temperature bath at 40 ° C. for 10 minutes to prepare a cedar leaf essential oil headspace tedlar bag.
  • Each 1 L of cedar leaf essential oil headspace was poured into a 10 L Tedlar bag, and then 1350 mL of 100 ppm of nitrogen dioxide was added, and then fully inflated with cylinder air and left in a constant temperature bath at 40 ° C. for 24 hours.
  • a petri dish to which linoleic acid was uniformly applied was prepared by performing the same operation as in Example 7, and was placed in a 10 L Tedlar bag, and the opening was heat sealed. Each gas prepared 24 hours ago was poured into this Tedlar bag and left in a constant temperature bath at 40 ° C. The petri dish was taken out after 90 minutes, the same operation as in the previous test was performed, the absorbance of red (500 nm) was measured with an absorptiometer, and the amount of peroxide increased or decreased was evaluated using the formula of Example 7.
  • Example 9 The cedar leaf essential oil 10 mass% obtained in Example 1 was mix
  • the obtained harmful oxide removal agent for space spraying is sprayed into the space using an ultrasonic atomizer (Echotech Co., Ltd.), harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides are removed. Removed. Moreover, this thing could give a refreshing fragrance to space.
  • Comparative Example 2 The cedar leaf essential oil 10 mass% obtained by the comparative example 1 was mix
  • the obtained harmful oxide remover for space spraying is sprayed into the space using an ultrasonic atomizer (Echotech Co., Ltd.), it removes harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides. did. However, a wood vinegar-like odor remained in the space after spraying.
  • Example 10 50 mass% of cypress leaf essential oil obtained in Example 2 was blended with 50 mass% of 3-methoxy-3-methyl-1-butanol to produce a harmful oxide removing agent for space spray.
  • this harmful oxide removing agent was sprayed into the space using a heat transpiration device (deodorant plug manufactured by Este Co., Ltd.), harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides were removed.
  • Comparative Example 3 To 50% by mass of 3-methoxy-3-methyl-1-butanol, 50% by mass of todomatsu leaf essential oil obtained by the same method as in Comparative Example 1 was used except for using Todomatsu leaves instead of cedar leaves. A harmful oxide remover was produced. When this harmful oxide removing agent was sprayed into the space using a heat transpiration device (deodorant plug manufactured by Este Co., Ltd.), harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides were removed. However, a strong phenol-like odor remained in the space after spraying.
  • a heat transpiration device deodorant plug manufactured by Este Co., Ltd.
  • Example 11 2 mass% of hinoki leaf essential oil obtained in Example 3 was solubilized in water with 5 mass% of a surfactant (polyoxyethylene alkyl ether) to produce a harmful oxide removing agent for space spray.
  • a surfactant polyoxyethylene alkyl ether
  • this harmful oxide removing agent was sprayed into the space using a commercially available pump spray, harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides were removed.
  • Example 12 A toxic cypress leaf essential oil obtained in Example 3 was dispersed in 99.9% by mass of water to produce a harmful oxide removing agent for space spraying. When this harmful oxide removing agent was sprayed into the space using an ultrasonic atomizer (Echotech Co., Ltd.), harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides were removed.
  • an ultrasonic atomizer Echotech Co., Ltd.
  • Example 13 In a mixed solution of 3.0 g of cedar essential oil, 10 g of propylene glycol and 84 g of water obtained in Example 1, 3 g of ⁇ -carrageenan was dispersed as a gelling agent, heated and dispersed at about 60 ° C., and then a cup-shaped container with an open top surface. And solidified by cooling to produce a gel-like harmful oxide removal agent for space volatilization. When this was installed in an indoor space using a petroleum stove and volatilized, harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides were removed for about one month.
  • harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides were removed for about one month.
  • Example 14 A space volatilization harmful oxide removal agent was manufactured by solubilizing 2% by mass of the todomatsu leaf essential oil obtained in Example 2 with water by 5% by mass of a surfactant (polyoxyethylene alkyl ether).
  • a surfactant polyoxyethylene alkyl ether
  • Example 15 The hinoki essential oil obtained in Example 3 was sprayed at a rate of 5 ml / min for 8 hours using a pressurized air atomization spray device as shown in FIG.
  • the concentration of harmful oxides such as formaldehyde, nitrogen oxides and sulfur oxides after 8 hours decreased compared to before use.
  • the high monoterpene component-containing essential oil of the present invention can be obtained from the leaves of conifers. And this essential oil can be used as an environmental pollutant removal agent or a raw material for producing individual monoterpenes.
  • the present invention can be used in resource recycling, forestry management, etc., as a technique for producing economical substances from the leaves of conifers that have been almost discarded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 木の葉の中に含まれるテルペン化合物を有効に利用する手段を見出し、間伐や枝打ちで生じる枝葉を有用資源化することを目的とし、モノテルペン成分を90%以上含有する高モノテルペン成分含有精油、針葉樹の葉を、マイクロ波水蒸気蒸留法に付し、得られた蒸留物を採取する上記高モノテルペン成分含有精油の製造方法および上記高モノテルペン成分含有精油を、環境汚染物質を含有する大気と接触させる環境汚染物質の除去方法を提供する。

Description

高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法
 本発明は、モノテルペン化合物を極めて高い濃度で含有する高モノテルペン含有精油、針葉樹の葉を原料とするその製造法および当該精油を用いる環境汚染物質の浄化方法に関する。
 以前より、後継者不足や、木材価格の下落により、山林を手入れが行き届かなくなり、その荒廃が大きな問題とされている。この山林の手入れは、主に間伐と枝打ちであるが、間伐材や、枝打ちで落とされた枝葉に何の経済的価値もなく、逆に経費がかかるのみであれば、このような手入れがおろそかになるのは当然のことである。
 そこで近年、間伐等の対象となった木材を加工し、有用資源とする試みが行われている。例えば、間伐材をチップとした後、これを蒸煮し、家畜用の飼料とすることが行われている。
 しかしながら、上記した方法は、チップ化や蒸煮に大きな設備が必要であり、どこでも簡単に採用できるというものではない。また、木材自体はともかく、枝葉の部分についての有効な利用方法が知られているわけではない。
 一方、発電所や工場のボイラー、あるいはごみの焼却場の稼動に伴い、窒素酸化物(NOx)や、硫黄酸化物(SOx)を含む種々の化学物質を含む排煙が排出されていることが知られている。また、自動車排気ガスにも、特にNOx、SOxなどの各種の人体に有害な化学物質が含まれていることが知られている。
 これらのNOxおよびSOxは、単に人体に有害であるだけでなく、酸性雨の原因ともなっている。更に、NOxと非メタン系炭化水素とが存在する状態で、太陽光による光化学反応が発生すると、光化学スモッグが発生する。この光化学スモッグは、大気中の炭化水素やNOxが紫外線を吸収して光化学反応を起こし、有害物質である光化学オキシダントなどを生成する現象とされている。しかしながらNOx、特に自動車等の移動発生源に起因するNOxについては対策が遅れており、深刻な問題となっている。
 また、屋内においても、壁紙をはじめとする内装材には、種々の揮発性有機溶媒が使用されているために、これらの有機溶媒(VOC)が揮発することが知られている。すなわち、家屋の建造あるいは建造物の内装に使用される建材、家具類には、接着剤が繁用されており、性能、コスト、利便性の見地から特に木質材に多用されるものとして、ユリア樹脂接着剤、メラミン・ユリア共縮合樹脂接着剤、フェノ-ル樹脂接着剤等が知られている。そして、これらの接着剤は原料のうちにホルムアルデヒドを使用しているので、ホルムアルデヒド系接着剤とも称されていて、ホルムアルデヒドの気中放散が発生する。
 例えば、前記ユリア樹脂接着剤の場合、接着剤の硬化はホルムアルデヒドの付加反応によるメチロ-ル基の生成、縮合反応によるメチレン結合およびジメチレンエ-テル結合の生成により進行する。そして、ホルムアルデヒドの放散はこのような硬化過程のみならず、硬化した接着剤からも発生する。すなわち、メチロ-ル基の分解およびジメチレンエ-テル結合からメチレン結合への縮合反応の進行によっても脱ホルムアルデヒド反応が起こる。このようにして、硬化したユリア樹脂接着剤からも長期間にわたりホルムアルデヒドが放散されることになる。このような現象は、ホルムアルデヒドの放散が極めて少ないフェノ-ル樹脂を除き、他の接着剤でも同様である。
 上記したような、NOx、SOxやホルムアルデヒド等の環境汚染物質を除去する方法のうち、NOxの除去方法としては、カルボン酸やアルカリ液といった吸収液の中を通したり、特殊な機械の中を通す方法が開発されている。しかしながら、それらの方法はいずれも手間や費用がかかる。また、これと別な方法として、特許文献1には、植物を水蒸気蒸留して得た精油と、水蒸気蒸留の際に得られた水溶性画分と、水からなる植物精油含有水溶液を有効成分とする有害化学物質除去剤が、特許文献2には、α-テルピネン、ミルセン、アロオシメンなどの共役二重結合を有するテルペン化合物を、ガス状にして、空気中に散布することにより、空気中のNOxをテルペン化合物中に包含させて、NOxを除去する方法が報告されている。
 また、ホルムアルデヒドに関して本発明者らは、(a)ホルムアルデヒド類を含む空気を第1の容器内に吸引し、この容器内の樹木葉から抽出した揮発性香気成分の複合体に接触させてホルムアルデヒド類を捕集する工程、(b)前工程を経た空気からオゾンを除去する工程、(c)オゾン除去処理後の空気を2,4-ジニトロフェニルヒドラジン(2,4-Dinitrophenylhydrazine)をコーテイングしたシリカゲルに接触させて、さらに気中のホルムアルデヒド類を捕集する工程からなるホルムアルデヒド類の捕集方法について開示している(特許文献3)
 しかし、上記特許文献1、2及び3はいずれも水蒸気蒸留により蒸留した成分を利用しているが、水蒸気蒸留で得られたものには、フェノールなどの刺激臭を発生する成分を大量に含んでいるため、そのままで大気に散布することはできない。大気に散布するためにはこれらの刺激性成分を取り除くための精製が必要であるが、このような精製を行うとコストアップになってしまい、経済性で問題となる。
 植物の葉の中にはテルペン化合物があることは知られているから、この葉に含まれるテルペン化合物を、最終的に環境汚染物質の除去に利用できれば、間伐や枝打ちで生じる枝葉の有用資源化が可能であるが、現在に至るまでこのような手段は知られていなかった。
特開2000-210526 特開平6-327934 特許3498133号
 従って、本発明の課題は、樹木の葉に含まれるテルペン化合物を、効率よく取り出し、これを特に、環境汚染物質の除去に利用する手段を開発することである。
 本発明者らは、ほとんど利用されていない、間伐材を切り出す際や枝打ちの際に生じる樹木の枝葉の有効利用について鋭意研究を行ったところ、これらをある条件で蒸留することにより、特定のテルペン化合物を極めて多量に含有する精油分が得られること、そしてこのものを利用すれば、非常に効率よく環境汚染物質が除去しうることを見出し、本発明に至った。
 すなわち本発明は、モノテルペン成分を90%以上含有する高モノテルペン成分含有精油である。
 また本発明は、針葉樹の葉を減圧下で加熱して蒸留を行い、得られた蒸留物である油性画分を採取することを特徴とする上記高モノテルペン成分含有精油の製造方法である。
 更に本発明は、上記高モノテルペン成分含有精油を、環境汚染物質を含有する大気と接触させることを特徴とする環境汚染物質の除去方法である。
 本発明の高モノテルペン成分含有精油は、間伐材を切り出す際や枝打ちの際に生じる木の枝葉から得られ、モノテルペン成分を90%以上含み、セスキテルペン成分およびジテルペン成分の含量が極めて少ないものである。
 そしてこのものは、NOxやSOxなどの有害酸化物や、ホルマリンなどの環境汚染物質を有効に除去することのできるので、これらの除去剤として利用可能である。また、テルペン系香料成分の安価な原料としても有用なものである。
 更に本発明方法で使用する装置は、一般の水蒸気蒸留装置に比べ小型であり、しかも商用電源があれば利用することができるので、木材の伐採現場に設置し、低コストで運用することもできる。
本発明方法で使用するマイクロ波減圧水蒸気蒸留装置の構成を模式的に示した図面である。 実施例9で用いた揮散装置を示す図面である。 実施例10で用いた加圧空気霧化噴霧装置を示す図面である。 二酸化窒素の粒子径の分布 スギ葉精油ヘッドスペース及びスギ葉精油ヘッドスペースに二酸化窒素を混合した後の粒子径の分布
 本発明のモノテルペン成分を90%以上含有する高モノテルペン成分含有精油は、針葉樹の葉を、減圧下で加熱して蒸留を行い(以下、「減圧水蒸気蒸留法」という)、得られた油性抽出画分を採取することにより特に再度の精製を要することなく得ることができる。
 原料である針葉樹の葉としては、特に限定されないが、ヒノキ、タイワンヒノキ、ベイヒバ、サワラ、ローソンヒノキ、チャボヒバ、クジャクヒバ、オウゴンチャボヒバ、スイリュウヒバ、イトヒバ、オウゴンヒヨクヒバ、シノブヒバ、オウゴンシノブヒバ、ヒムロスギ等のヒノキ科ヒノキ属の樹木;ニオイヒバ、ネズコ等のヒノキ科クロベ属の樹木;ヒバ、アスナロ、ヒノキアスナロ、ホソバアスナロ等のヒノキ科アスナロ属の樹木;ハイビャクシン、ネズミサシ、エンピツビャクシン、オキナワハイネズ等のヒノキ科ビャクシン属の樹木;スギ、アシウスギ、エンコウスギ、ヨレスギ、オウゴンスギ、セッカスギ、ミドリスギ等のヒノキ科スギ属の樹木;トドマツ、モミ、ウラジロモミ、シラビソ、オオシラビソ、シラベ、バルサムファー、ミツミネモミ、ホワイトファー、アマビリスファー、アオトドマツ、カリフォルニアレッドファー、グランドファー、ノーブルファー等のマツ科モミ属の樹木;ヒマラヤスギ等のマツ科ヒマラヤスギ属の樹木、アカエゾマツ、トウヒ等のマツ科トウヒ属の樹木;アカマツ、ダイオウショウ、ストローブマツ、ハイマツ等のマツ科マツ属の樹木;カラマツ等のマツ科カラマツ属の樹木;ツガ等のマツ科ツガ属の樹木;コウヤマキ等のコウヤマキ科コウヤマキ属の樹木;カヤ等のイチイ科カヤ属の樹木等からの葉がそれぞれ挙げられる。これらの葉は、間伐材や、枝打ちで得た枝葉をそのまま用いても良いが、好ましくは、粉砕機や圧砕機等により粉砕・圧砕して使用される。
 上記針葉樹の葉から高モノテルペン成分含有精油を得るために用いられる減圧水蒸気蒸留法での加熱は、ヒーターによる加熱でもかまわないが、マイクロ波を照射することにより、マイクロ波が水分子を直接加熱する性質を利用して、葉等の原料中に元から含まれている水分のみで精油の抽出を行う方法(以下、「マイクロ波減圧水蒸気蒸留法」という)を採用することが好ましい。
 このマイクロ波減圧水蒸気蒸留法を実施するには、マイクロ波減圧水蒸気蒸留装置が必要であるが、この装置の一態様の概要を図1に示す。図中、1はマイクロ波蒸留装置、2は蒸留槽、3はマイクロ波加熱装置、4は撹拌はね、5は気流流入管、6は蒸留物流出管、7は冷却装置、8は加熱制御装置、9は減圧ポンプ、10は圧力調整弁、11は圧力制御装置、12は蒸留対象物、13は抽出物をそれぞれ示す。
 この装置1では、抽出対象物12となる原料(本発明では針葉樹の葉)を蒸留槽2中に入れ、撹拌はね4で撹拌しながら、蒸留槽2の上面に設けられたマイクロ波加熱装置3からマイクロ波を放射し、原料を加熱する。この蒸留槽2は、気流流入口5および蒸留物流出管6と連通されている。気流流入管5は、空気あるいは窒素ガス等の不活性ガスを反応槽2中に導入するものであり、この気流は、反応槽2の下部から導入される。また、蒸留物流出管6は、原料からの蒸留物を、反応槽2の上部から外に導出するものである。
 上記反応槽2内部は、これに取り付けられた温度センサおよび圧力センサ(共に図示せず)により温度および圧力が測定されるようになっており、加熱制御装置8および圧力制御装置11、圧力調整弁10を介してそれぞれ調整されるようになっている。
 また、蒸留物流出管6を介して蒸留槽2から流出した気体状の蒸留物は、冷却装置7により液体に代えられ、抽出物13として得られる。この抽出物13には、水性画分13bと油性画分13aとがあるが、このうち油性画分13aが精油となる。
 本発明方法においては、上記蒸留槽2内の圧力を、10ないし95キロパスカル、好ましくは、20ないし80キロパスカル、さらに好ましくは30ないし60キロパスカル程度として行なえば良く、その際の蒸気温度は40℃から100℃になる。圧力が10キロパスカル以下では精油の収率が著しく少なくなってしまい、95キロパスカル以上ではモノテルペン含有率が低くなってしまう。また、蒸留時間は、0.2ないし8時間程度、好ましくは、0.4ないし6時間程度とすれば良い。0.2時間以下では十分な蒸留が行えず、8時間以上蒸留しても収率は向上しないばかりか、セスキテルペンやジテルペンをはじめとする不純物の含有率が多くなってしまう。
 更に、蒸留槽2内に導入する気体としては、空気でもかまわないが、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガスが好ましく、その流量としては、1分当たりの流量が、蒸留槽2の0.001ないし0.1容量倍程度とすれば良い。
 かくして得られる本発明の高モノテルペン成分含有精油は、モノテルペン成分を90%以上含有するという特徴を有するものである。これに対し、従来の水蒸気蒸留で得た精油では、後記実施例でも示すように、相当量のセスキテルペンやジテルペンを含むものであり、同じ原料を用いても蒸留手段により異なる構成のテルペンが得られることが明らかになった。
 本発明の高モノテルペン成分含有精油は、環境汚染物質の除去に有利に利用することができる。すなわち、NOxやSOxなどの有害酸化物や、ホルムアルデヒド等を有効に除去できるので、環境物質除去剤として利用することができる。すなわち、高モノテルペン成分含有精油を紙(パルプ)、不織布、樹脂シート、木材シート、木粉、樹脂ビーズ等で構成されたフィルターに含浸させ、このフィルター中に、NOx、SOxを含む空気を通過させ、有効成分と接触させる方法や、NOx、SOxを含む空気を、高モノテルペン成分含有精油を含む除去剤中でバブリングさせることにより有効成分と接触させる方法等により、大気中のNOx、SOxを除去することが可能である。
 また、本発明の高モノテルペン成分含有精油を大気と接触させ、大気中の環境汚染物質を除去する方法の別の例としては、本発明の高モノテルペン成分含有精油を含有する環境汚染物質除去剤をそのままあるいは適当な揮散装置を用いて揮散させる方法、ポンプスプレー、エアゾール、超音波振動子、加圧液噴霧スプレー、加圧空気霧化噴霧装置等の霧化装置を用い、霧化させた状態で揮散させる方法等が挙げられ、これらの方法により、通常の生活空間中から環境汚染物質を除去させることが可能である。
 前記したように、本発明の高モノテルペン成分含有精油は、何れも香料の成分であり、人体への危険性もないモノテルペン成分を高濃度で含むものである。従って、これを生活空間の大気中に接触や噴霧した場合であっても、人間やその他の動植物に不快感や悪影響を及ぼすことがない。
 また、本発明の高モノテルペン成分含有精油は、モノテルペン成分を90%以上含有するものであるから、これを個々のモノテルペンの原料として利用することもできるものである。
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。
実 施 例 1
 原料として、スギの葉を用い、以下のようにしてスギ精油を得た。すなわち、スギ葉を圧砕式粉砕機(KYB製作所製)で粉砕したもの約50kgを、図1に示すマイクロ波水蒸気蒸留装置の蒸留槽に投入し、攪拌しながら蒸留槽内の圧力を、約20KPaの減圧条件下に保持し、(蒸気温度は約67℃)1時間マイクロ波照射し精油を蒸留した。得られた精油の量は180mLであり、投入試料に対する精油の割合は、0.34%であった。
 得られたスギ精油中のテルペン構成を、ガスクロマトグラフ/質量分析計を用いて測定したところ、後記表1の通りであった。
比 較 例 1
 実施例1と同じスギの葉を用い、以下の水蒸気蒸留法により、スギ精油を得た。すなわち、圧搾式粉砕機(KYB製作所製)で粉砕したスギ葉約101gをパイレックス(登録商標)ガラス製フラスコに入れ、5~8倍量の水を加えた後、当該フラスコを湯浴中で90~100℃に加熱し沸騰させる。精油採取管には加熱前に基準線まで水を入れておいた。
 6時間煮沸を続けて精油を蒸留したところ、精油を0.8mLが得られた。投入資料に対する精油の割合は、0.79%であった。得られた精油のテルペン組成について実施例1と同様にして測定したところ、表1のような結果となった。
Figure JPOXMLDOC01-appb-T000001
 この結果から、同じ針葉樹の葉(スギ葉)を原料として用いても、マイクロ波減圧水蒸気蒸留装置を用いて得た精油と、一般の水蒸気蒸留で得た精油では、その構成が大きく違うことが明らかになった。
実 施 例 2
 植物の葉を、スギからトドマツに代える以外は実施例1と同様にして精油を取得した。得られた精油中のテルペン構成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実 施 例 3
 植物の葉を、スギからヒノキに代える以外は実施例1と同様にして精油を取得した。得られた精油中のテルペン構成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1ないし3から、マイクロ波減圧水蒸気蒸留装置を用いて得た精油は、何れもモノテルペンの含量が極めて高いことが明らかになった。
試 験 例 1
(1)二酸化窒素の濃度低減性試験:
 内径が5mmΦのガラス管内に、紙製のウエス約0.1gを充填し、この紙製ウエスに下記表1に示す量の本発明の除去剤を含浸させた。このガラス管の一方の端を8.5ppmの二酸化窒素を入れたテドラーバックと連結し、他方の端を二酸化窒素用ガス検知管(ガステック社製)に連結した。ガス検知管の他方には、吸引用シリンジに接続した。
 この状態で、吸引用シリンジによりテドラーバック内の二酸化窒素を吸引し、ガラス管内で除去されなかった二酸化窒素濃度をガス検知管で測定した。なお、ブランクとしては、紙製のウエスに除去剤を含浸させないものを用い、以下の式により二酸化窒素除去効果を確認した。この結果を下記の表4に示す。
    除去率(%)= (B-A)/ B × 100
       A:除去剤を通過させた後の二酸化窒素濃度
       B:ブランクを通過させた後の二酸化窒素濃度
(2)二酸化硫黄の濃度低減性試験:
 8.5ppmの二酸化窒素を4.2ppmの二酸化硫黄にかえ、検知管として二酸化硫黄用ガス検知管(ガステック社製)を利用する以外は、上記(1)と同様にして試験を行った。二酸化窒素濃度を二酸化硫黄濃度に代えた上記式を用い、二酸化硫黄の除去効果を確認した。この結果も表4に示す。
Figure JPOXMLDOC01-appb-T000004
実 施 例 4
   ホルムアルデヒドの濃度低減性試験:
 実施例1~3で得た精油1をn―ヘキサンで5%に調整し、インピンジャーに3ml入れた。インピンジャーの一方の口を、ホルムアルデヒド(0.95ppm)の入っているテドラーバックに接続し、他方の口をアルデヒド検出用のDNPHカートリッジに接続して、100ml/分で吸引した。30分間吸引後、DNPHカートリッジより吸着成分を所定の方法で溶出させHPLCにて分析してホルムアルデヒド濃度を測定した。ホルムアルデヒドの除去率は、n―ヘキサンのみを通過させたときのホルムアルデヒド濃度をコントロールとして下記の式により算出した。この結果を表5に示す。
    除去率(%)= (B-A)/ B × 100
       A:サンプル通過後のホルムアルデヒド濃度
       B:このトロールのホルムアルデヒド濃度
Figure JPOXMLDOC01-appb-T000005
実 施 例 5
 実施例1から3で得た精油を用いて、気体状態における二酸化窒素の除去効果を、下記方法により確認した。
 まず、1Lのテドラーバック内にボンベ空気1Lと本発明の精油50μLを注入し、40℃の恒温装置内に10分以上放置し、精油のヘッドスペース(本発明ガス)を作成した。
 次いで、上記本発明ガスの全量を、20Lのテドラーバッグ内に注入し、清浄空気にて20Lになるまで満たした。これに二酸化窒素(6.2ppm)を注入し、注入3分後、および30分後の二酸化窒素濃度を検知管で測定し二酸化窒素除去率を算出した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
実 施 例 6
  二酸化窒素と精油成分の反応による粒子の生成:
 1Lのテドラーバッグ内に、ボンベ空気1Lと実施例1で得たスギ葉精油50μLを注入し、40℃にて10分間放置した。その後、20Lのテドラーバッグ内に揮発したスギ葉精油のヘッドスペースを全量注入し、清浄空気にて20Lになるまで満たした。これに二酸化窒素(6.2ppm)を注入し、注入3分後の粒子径をパーティクルカウンター(Wide-Range Particle Spectrometer)MODEL1000XP:米国MSP社製)を用いて測定した。なおブランクとして、二酸化窒素単独およびスギ葉精油単独を注入したもの(二酸化窒素混合前のもの)を同様の方法により測定した。結果を図4及び図5に示す。
 以上の結果より、二酸化窒素単独および本発明のスギ葉精油単独を注入したものについては3分経過後もより大きな粒子の生成は確認できなかった。それと比較して、本発明のスギ葉精油に二酸化窒素を注入したものは、3分経過後には大きな径の粒子の生成が確認できた。すなわち、本発明のスギ葉精油は気体状態で二酸化窒素と混合することにより速やかに径の大きな粒子を生成することで二酸化窒素の反応性を抑制しているものと考えられた。
実 施 例 7
   二酸化窒素の酸化反応抑制確認試(1)
 リノール酸の過酸化物の生成の阻害率により、本発明の精油による二酸化窒素の酸化能抑制効果を以下の手順にて確認した。
 リノール酸10%を含有するクロロホルム溶液を直径約9cmのシャーレに0.1mL滴下し、緩やかに回転させながら溶媒を揮散させて、シャーレ底面にリノール酸を均一に塗布した。10Lのテドラーバッグの一角を切断して開口し、このシャーレを入れた後に開口部を熱シールした。
 一方、1Lのテドラーバッグに、本発明の高モノテルペン成分含有精油であるスギ葉精油50μLを注入し、ボンベ空気で満杯にした後、40℃恒温槽に10分放置してスギ葉精油のヘッドスペーステドラーバッグを作成した。スギ葉精油ヘッドスペース1Lを、上記で調製したリノール酸塗布シャーレの入ったバッグに注入し、ついで100ppmの二酸化窒素を150mL加えた後、ボンベ空気で満杯に膨らませ40℃の恒温槽内に放置した。
 90分経過後にシャーレを取り出し、シャーレ底面のリノール酸を、エタノール2.5mLを用いてバイアル内に洗い込んだ。このエタノール溶液16μLを計り取って、75%エタノール4mL、30%チオシアン酸アンモニウム水溶液41μL、さらに0.02M塩化鉄(II)の3.5%塩酸溶液41μLを加えて充分に混合した。塩化鉄溶液を加えてから正確に3分後に、吸光度計にて赤色(500nm)の吸光度を測定した。なお、コントロールとして二酸化窒素のみで測定した吸光度及びブランクとして、二酸化窒素および本発明の除去剤を添加しないもの(空気のみ)で測定した吸光度を求め、以下の式により過酸化物量増減を評価した。
                   (A-A
  過酸化物生成阻害率(%)=(1- ―――――― )×100
                   (A-A

      A:ブランクの吸光度
      A:二酸化窒素のみで測定した吸光度
      A:本発明の除去剤を添加した際の吸光度
 この結果、過酸化物生成阻害率は、72%であった。この結果は、スギ葉精油ヘッドスペースを二酸化窒素に添加することでリノール酸の過酸化生成は阻害されることを示している。すなわち本発明の精油であるスギ葉精油は二酸化窒素の酸化能を抑制していることがわかる。
実 施 例 8
   二酸化窒素の酸化反応抑制確認試(2):
 本発明の精油と二酸化窒素を24時間接触した場合の酸化能抑制効果を以下の手順にて確認した。
 1Lのテドラーバッグにスギ葉精油50μLを注入した。このテドラーバッグを、ボンベ空気で満杯にして40℃恒温槽に10分放置し、スギ葉精油のヘッドスペーステドラーバッグを作成した。このスギ葉精油のヘッドスペース1Lをそれぞれ10Lのテドラーバッグに注入し、ついで100ppmの二酸化窒素を1350mL加えた後、ボンベ空気で満杯に膨らませ40℃の恒温槽内に24時間放置した。
 一方、実施例7と同様の操作を行ってリノール酸を均一に塗布したシャーレを用意し、10Lのテドラーバッグ内に入れ、開口部を熱シールしたものを用意した。このテドラーバッグに、24時間前に調製したそれぞれの気体を注入し40℃の恒温槽に放置した。90分経過後にシャーレを取り出し、前試験の方法と同様の操作を行って、吸光度計にて赤色(500nm)の吸光度を測定し、実施例7の式を用いて過酸化物量増減を評価した。
 この結果、本発明の精油と二酸化窒素を混合後、24時間経過した気体では、リノール酸の過酸化物生成は100%阻害された。つまり、本発明の精油と二酸化窒素を24時間混合後は二酸化窒素の酸化能を完全に抑制していることがわかった。
実 施 例 9
 ジプロピレングリコール90質量%に、実施例1で得たスギ葉精油10質量%を配合し、空間噴霧用有害酸化物除去剤を製造した。得られた空間噴霧用有害酸化物除去剤を、超音波霧化装置(エコーテック(株)製)を用いて空間に噴霧したところ、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。またこのものは空間に対し、さわやかな芳香を付与することができた。
比 較 例 2
 ジプロピレングリコール90質量%に、比較例1で得たスギ葉精油10質量%を配合し、空間噴霧用有害酸化物除去剤を製造した。得られた空間噴霧用有害酸化物除去剤を超音波霧化装置(エコーテック(株)製)を用いて空間に噴霧したところ、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。しかし、噴霧後の空間には、木酢様の臭気が残存してしまった。
実 施 例 10
 3-メトキシ-3-メチル-1-ブタノール50質量%に、実施例2で得たヒノキ葉精油50質量%を配合し、空間噴霧用有害酸化物除去剤を製造した。この有害酸化物除去剤を加熱蒸散装置(エステー(株)社製消臭プラグ)を用いて空間に噴霧したところ、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。
比 較 例 3
 3-メトキシ-3-メチル-1-ブタノール50質量%に、スギ葉に代えトドマツ葉を用いた以外は比較例1と同様の方法で得たトドマツ葉精油50質量%を配合し、空間噴霧用有害酸化物除去剤を製造した。この有害酸化物除去剤を加熱蒸散装置(エステー(株)社製消臭プラグ)を用いて空間に噴霧したところ、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。しかし、噴霧後の空間には強いフェノール様の臭気が残存してしまった。
実 施 例 11
 実施例3で得たヒノキ葉精油2質量%を、界面活性剤(ポリオキシエチレンアルキルエーテル)5質量%で水に可溶化させて、空間噴霧用有害酸化物除去剤を製造した。この有害酸化物除去剤を市販のポンプスプレーを用いて空間に噴霧したところ、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。
実 施 例 12
 実施例3で得たヒノキ葉精油0.1質量%を、水99.9質量%に分散させて、空間噴霧用有害酸化物除去剤を製造した。この有害酸化物除去剤を超音波霧化装置(エコーテック(株)製)を用いて空間に噴霧したところ、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。
実 施 例 13
 実施例1で得たスギ精油3.0g、プロピレングリコール10gおよび水84gの混合液中に、ゲル化剤としてκ-カラギーナン3gを分散させ、約60℃に加熱分散後、上面開放のカップ型容器に充填し、冷却固化してゲル状の空間揮散用有害酸化物除去剤を製造した。このものを石油ストーブを使用する室内空間に設置し、揮散させたところ、約1ヶ月間、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。
実 施 例 14
 実施例2で得たトドマツ葉精油2質量%を、界面活性剤(ポリオキシエチレンアルキルエーテル)5質量%で水に可溶化させて、空間揮散有害酸化物除去剤を製造した。この有害酸化物除去剤を図2に示すような揮散装置を用い石油ストーブを使用する室内空間に設置し、揮散させたところ、約3ヶ月間、ホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物を除去した。
実 施 例 15
 実施例3で得たヒノキ精油を、図3に示すような加圧空気霧化噴霧装置を用い、石油ストーブを使用している室内に5ml/分で8時間噴霧した。使用前に比べ8時間後のホルムアルデヒドや窒素酸化物、硫黄酸化物等の有害酸化物の濃度は低下した。
 本発明の高モノテルペン成分含有精油は、針葉樹の葉から得ることができるものである。そして、この精油は環境汚染物質除去剤や、個々のモノテルペンを製造するための原料として利用できるものである。
 従って、本発明は、ほとんど廃棄されていた針葉樹の葉から経済性のある物質を生産する技術として、資源のリサイクルや林業経営等において利用可能なものである。
   1 … … マイクロ波蒸留装置
   2 … … 蒸留槽
   3 … … マイクロ波加熱装置
   4 … … 撹拌はね
   5 … … 気流流入管
   6 … … 蒸留物流出管
   7 … … 冷却装置
   8 … … 加熱制御装置
   9 … … 減圧ポンプ
  10 … … 圧力調整弁
  11 … … 圧力制御装置
  12 … … 蒸留対象物
  13 … … 抽出物
  21 … … 揮散装置
  22 … … 揮散体
  23 … … 吸上芯
  24 … … 容器
  25 … … 除去剤
  30 … … 加圧空気霧化噴霧装置
  31 … … 気液混合噴霧ノズル
  32 … … 2液流量調整供給装置
  33 … … コンプレッサ
  34 … … 精油
  35 … … 水
  36 … … 空気

Claims (12)

  1.  モノテルペン成分を90%以上含有する高モノテルペン成分含有精油。
  2.  針葉樹の葉を、減圧下で加熱して得られた油性画分を採取することにより得られたものである請求項第1項記載の高モノテルペン成分含有精油。
  3.  針葉樹の葉が、スギ、ヒノキ、トドマツの葉から選ばれたものである請求項第1項または第2項記載の高モノテルペン成分含有精油。
  4.  針葉樹の葉を、減圧下で加熱し、揮発性成分を冷却することにより得られた油性画分を採取することを特徴とするモノテルペン成分を90%以上含有する高モノテルペン成分含有精油の製造方法。
  5.  減圧水蒸気蒸留を、10ないし95キロパスカルの圧力で行う請求項第4項記載のモノテルペン成分を90%以上含有する高モノテルペン成分含有精油の製造方法。
  6.  加熱が、マイクロ波による加熱である請求項第5項記載のモノテルペン成分を90%以上含有する高モノテルペン成分含有精油の製造方法。
  7.  モノテルペン成分を90%以上含有する高モノテルペン成分含有精油を、環境汚染物質を含有する大気と接触させることを特徴とする環境汚染物質の除去方法。
  8.  モノテルペン成分を90%以上含有する高モノテルペン成分含有精油と、環境汚染物質を含有する大気との接触を、当該高モノテルペン成分含有精油を含浸させたフィルター中を環境汚染物質を含有する大気を通過させることにより行う請求項第7項記載の大気中の環境汚染物質の除去方法。
  9.  モノテルペン成分を90%以上含有する高モノテルペン成分含有精油と、環境汚染物質を含有する大気との接触を、当該高モノテルペン成分含有精油を含有する溶液中で環境汚染物質を含有する大気をバブリングすることにより行う請求項第7項記載の大気中の環境汚染物質の除去方法。
  10.  モノテルペン成分を90%以上含有する高モノテルペン成分含有精油と、環境汚染物質を含有する大気との接触を、当該高モノテルペン成分含有精油を含有する溶液を環境汚染物質を含有する大気中に揮散させることにより行う請求項第7項記載の大気中の環境汚染物質の除去方法。
  11.  モノテルペン成分を90%以上含有する高モノテルペン成分含有精油を、霧化させた状態で揮散させる請求項第10項記載の大気中の環境汚染物質の除去方法。
  12.  モノテルペン成分を90%以上含有する高モノテルペン成分含有精油の霧化を、ポンプスプレー、エアゾール、超音波振動子、加圧液噴霧スプレーまたは加圧空気霧化噴霧装置を用いて行う請求項第11項記載の大気中の環境汚染物質の除去方法。
PCT/JP2010/053068 2009-02-26 2010-02-26 高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法 WO2010098440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/203,591 US9005336B2 (en) 2009-02-26 2010-02-26 Monoterpene component-rich essential oil, method for producing same and method for remediating environmental pollutants using the essential oil
EP10746319.2A EP2402423B8 (en) 2009-02-26 2010-02-26 Method for producing monoterpene component-rich essential oil
JP2011501667A JP5508388B2 (ja) 2009-02-26 2010-02-26 高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009043709 2009-02-26
JP2009-043709 2009-02-26

Publications (1)

Publication Number Publication Date
WO2010098440A1 true WO2010098440A1 (ja) 2010-09-02

Family

ID=42665644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053068 WO2010098440A1 (ja) 2009-02-26 2010-02-26 高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法

Country Status (4)

Country Link
US (1) US9005336B2 (ja)
EP (1) EP2402423B8 (ja)
JP (2) JP5508388B2 (ja)
WO (1) WO2010098440A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062374A (ja) * 2010-09-14 2012-03-29 Kaori Kk 天然香気成分の抽出方法
WO2012077635A1 (ja) * 2010-12-10 2012-06-14 日本かおり研究所株式会社 有害酸化物の除去剤および当該除去剤を利用する有害酸化物の除去方法
JP2013100520A (ja) * 2009-02-26 2013-05-23 Japan Aroma Laboratory Co Ltd 抽出装置及び抽出方法
JP2015030704A (ja) * 2013-08-02 2015-02-16 エステー株式会社 アレルゲン活性低減化剤及びこれを利用したアレルゲン活性低減化方法
CN104524946A (zh) * 2014-12-31 2015-04-22 桂林市世环废气处理设备有限公司 一种芍药提取物生产中废气的处理方法
JP2015157780A (ja) * 2014-02-24 2015-09-03 エステー株式会社 防虫剤
JP2017039677A (ja) * 2015-08-21 2017-02-23 エステー株式会社 ダニ用忌避剤及びダニの忌避方法
CN108970189A (zh) * 2018-07-24 2018-12-11 国网福建省电力有限公司 一种电力用油光伏转换微波再生装置的处理方法
CN111051484A (zh) * 2017-08-31 2020-04-21 弗门尼舍有限公司 从植物生物质中微波辅助提取精油
JP6834074B1 (ja) * 2020-08-06 2021-02-24 杭州▲しん▼華信息科技有限公司 多方式操作可能なアルデヒド除去装置
JP2021046377A (ja) * 2019-09-19 2021-03-25 エステー株式会社 筋硬度低減剤
CN114292700A (zh) * 2021-12-03 2022-04-08 安徽扬子生物科技有限公司 一种柏木精油制备加工设备
WO2022123989A1 (ja) * 2020-12-08 2022-06-16 エステー株式会社 排泄物処理材およびこれを利用した排泄物の消臭方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3052602A4 (en) 2013-10-04 2017-06-14 Natural Extraction Services, LLC Method and apparatus for extracting botanical oils
JP6959594B2 (ja) * 2014-11-12 2021-11-02 三笠製薬株式会社 抗炎症外用剤
JP6535853B2 (ja) * 2014-11-12 2019-07-03 三笠製薬株式会社 抗炎症外用剤
CN104524945B (zh) * 2014-12-31 2017-01-25 桂林市世环废气处理设备有限公司 一种银杏提取物生产中废气的处理方法
JP2017148303A (ja) * 2016-02-25 2017-08-31 株式会社東通研 殺菌装置
WO2017184642A1 (en) * 2016-04-18 2017-10-26 Morrow Kenneth Michael Isolation of plant extracts
CN106281695B (zh) * 2016-08-12 2019-06-04 黑龙江大三源乳品机械有限公司 一种芳香油连续提取方法
JP2017008111A (ja) * 2016-10-17 2017-01-12 エステー株式会社 芳香組成物およびこれを利用した芳香剤、消臭剤並びに抗菌剤
EP3548019A4 (en) * 2016-12-01 2020-08-26 Natural Extraction Systems, LLC FAST VEGETABLE OIL DISTILLER WITH A MICROWAVE AGENT
CN107574017A (zh) * 2017-08-21 2018-01-12 长沙新气象自动化技术有限公司 一种山胡椒精油提取装置
US10822320B2 (en) 2018-08-10 2020-11-03 Natural Extraction Systems, LLC Methods to purify cannabinoids
US10669248B2 (en) 2018-08-10 2020-06-02 Natural Extraction Systems, LLC Methods to chemically modify cannabinoids
US10953344B2 (en) 2018-11-09 2021-03-23 Delta Team Holdings Llc Extraction system
JP2020105099A (ja) * 2018-12-27 2020-07-09 大倉工業株式会社 竹の水溶性画分の製造方法
CN110613947A (zh) * 2019-09-24 2019-12-27 倪洪娥 一种精馏设备
TWI693027B (zh) * 2019-10-28 2020-05-11 嘉藥學校財團法人嘉南藥理大學 氣味保存裝置
KR102207915B1 (ko) * 2020-03-17 2021-01-26 다윈그룹(주) 쌀을 이용한 화장료 조성물 제조방법 및 이에 사용되는 스팀 증류기
JP2022030442A (ja) * 2020-08-07 2022-02-18 エステー株式会社 睡眠の質改善剤
KR102603214B1 (ko) * 2021-07-27 2023-11-16 주식회사 피톤웰니스 살균효과 증대를 위한 편백오일 인라인 추출 자동화장치
CN115011409B (zh) * 2022-05-17 2024-01-30 厦门大昌生物技术服务有限公司 一种复合精油的包被方法及包被装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172096A (ja) * 1986-01-25 1987-07-29 住友精化株式会社 針葉樹精油の抽出法
JPH06327934A (ja) 1993-05-22 1994-11-29 Yasuhara Chem Kk NOxの除去方法
JPH08512337A (ja) * 1993-05-11 1996-12-24 アルシメクス 溶媒を用いない天然生成物のマイクロ波抽出方法および装置
JP2000210526A (ja) 1999-01-20 2000-08-02 Cosmo Ace:Kk 有害化学物質除去剤
JP3498133B2 (ja) 1998-04-09 2004-02-16 独立行政法人森林総合研究所 ホルムアルデヒド類の捕集方法と捕収装置。

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB765752A (en) * 1954-07-08 1957-01-09 Exxon Research Engineering Co Process for the manufacture of a solvent
JPS59135101U (ja) * 1983-03-01 1984-09-10 関西熱化学株式会社 減圧濃縮装置
US5338557A (en) * 1989-05-16 1994-08-16 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of The Environment Microwave extraction of volatile oils
JPH059300U (ja) * 1991-07-26 1993-02-09 株式会社横山エンジニアリング 酒粕の減圧蒸留乾燥装置
JPH0663304A (ja) * 1992-08-19 1994-03-08 Tsukada Fuainesu:Kk 真空蒸留装置
FR2702159B1 (fr) * 1993-03-05 1995-04-28 Raymond Berchotteau Appareil pour introduire et diffuser de l'air ou un gaz dans un liquide.
US7001629B1 (en) 1993-05-11 2006-02-21 Archimex Method and plant for solvent-free microwave extraction of natural products
FR2717492B1 (fr) * 1994-03-15 1996-04-12 Commissariat Energie Atomique Procédé et installation d'extraction d'une huile essentielle à partir de végétaux.
JP2002512198A (ja) 1998-04-16 2002-04-23 アイダ ディベロップメント アクティーゼルスカブ アルピニアガランガ中に存在する芳香族化合物及びテルペノイドを含む新規相乗組成物
US6538164B1 (en) * 1999-09-30 2003-03-25 E. I. Du Pont De Nemours And Company Recovery process for volatile compounds from solids in aqueous solution
GB2372714B (en) * 2001-02-27 2003-03-19 Essence Biotechnology Ltd Method of distilling a volatile constituent from plant material
JP2005046806A (ja) * 2003-07-31 2005-02-24 Kazuko Kuboyama 抽出装置
CN2675123Y (zh) * 2004-01-09 2005-02-02 陈晓东 用于中药提取的减压提取装置
JP5508388B2 (ja) * 2009-02-26 2014-05-28 エステー株式会社 高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172096A (ja) * 1986-01-25 1987-07-29 住友精化株式会社 針葉樹精油の抽出法
JPH08512337A (ja) * 1993-05-11 1996-12-24 アルシメクス 溶媒を用いない天然生成物のマイクロ波抽出方法および装置
JPH06327934A (ja) 1993-05-22 1994-11-29 Yasuhara Chem Kk NOxの除去方法
JP3498133B2 (ja) 1998-04-09 2004-02-16 独立行政法人森林総合研究所 ホルムアルデヒド類の捕集方法と捕収装置。
JP2000210526A (ja) 1999-01-20 2000-08-02 Cosmo Ace:Kk 有害化学物質除去剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GEN'ICHI INDO: "Gosei Koryo Kagaku to Shohin Chishiki", THE CHEMICAL DAILY CO., LTD.,, 6 March 1996 (1996-03-06), pages 17 *
See also references of EP2402423A4 *
TAKAHIRO MORI ET AL.: "Kennaisan Sugi Chushutsu Seibun no Koritsuteki Chushutsu Oyobi Sono Zansa no Riyo ni Kansuru Kenkyu (Kentan)", GIFU PREFECTURAL RESEARCH INSTITUTE FOR FORESTS, HEISEI 11 NENDO GYOMU HOKOKU, 2000, pages 39 - 42 *
TATSURO OHIRA ET AL.: "Koritsuteki Kokateki na Micro-ha Gen'atsu Suijoki Joryuho no Kaihatsu, - Sugiha no Seiyu Seibun no Rikatsuyo ni Mukete", FORESTY AND FOREST PRODUCTS RESEARCH INSTITUTE HEISEI 21 NENBAN KENKYU SEIKA SENSHU, 10 March 2010 (2010-03-10), Retrieved from the Internet <URL:http://www.ffpri.affrc.go.jp/labs/kouho/seika/2009-seika/p50-51.pdf> [retrieved on 20100310] *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100520A (ja) * 2009-02-26 2013-05-23 Japan Aroma Laboratory Co Ltd 抽出装置及び抽出方法
JP2012062374A (ja) * 2010-09-14 2012-03-29 Kaori Kk 天然香気成分の抽出方法
WO2012077635A1 (ja) * 2010-12-10 2012-06-14 日本かおり研究所株式会社 有害酸化物の除去剤および当該除去剤を利用する有害酸化物の除去方法
JP2012121004A (ja) * 2010-12-10 2012-06-28 Japan Aroma Laboratory Co Ltd 有害酸化物の除去剤および当該除去剤を利用する有害酸化物の除去方法
JP2015030704A (ja) * 2013-08-02 2015-02-16 エステー株式会社 アレルゲン活性低減化剤及びこれを利用したアレルゲン活性低減化方法
JP2015157780A (ja) * 2014-02-24 2015-09-03 エステー株式会社 防虫剤
CN104524946A (zh) * 2014-12-31 2015-04-22 桂林市世环废气处理设备有限公司 一种芍药提取物生产中废气的处理方法
JP7126803B2 (ja) 2015-08-21 2022-08-29 エステー株式会社 ダニ用忌避剤及びダニの忌避方法
JP2017039677A (ja) * 2015-08-21 2017-02-23 エステー株式会社 ダニ用忌避剤及びダニの忌避方法
CN111051484A (zh) * 2017-08-31 2020-04-21 弗门尼舍有限公司 从植物生物质中微波辅助提取精油
JP2020531667A (ja) * 2017-08-31 2020-11-05 フイルメニツヒ ソシエテ アノニムFirmenich Sa 植物バイオマスからの精油のマイクロ波支援型抽出
JP7358336B2 (ja) 2017-08-31 2023-10-10 フイルメニツヒ ソシエテ アノニム 植物バイオマスからの精油のマイクロ波支援型抽出
CN108970189A (zh) * 2018-07-24 2018-12-11 国网福建省电力有限公司 一种电力用油光伏转换微波再生装置的处理方法
JP2021046377A (ja) * 2019-09-19 2021-03-25 エステー株式会社 筋硬度低減剤
JP7326085B2 (ja) 2019-09-19 2023-08-15 エステー株式会社 筋硬度低減剤
JP2022031040A (ja) * 2020-08-06 2022-02-18 杭州▲しん▼華信息科技有限公司 多方式操作可能なアルデヒド除去装置
JP6834074B1 (ja) * 2020-08-06 2021-02-24 杭州▲しん▼華信息科技有限公司 多方式操作可能なアルデヒド除去装置
WO2022123989A1 (ja) * 2020-12-08 2022-06-16 エステー株式会社 排泄物処理材およびこれを利用した排泄物の消臭方法
CN114292700A (zh) * 2021-12-03 2022-04-08 安徽扬子生物科技有限公司 一种柏木精油制备加工设备

Also Published As

Publication number Publication date
JPWO2010098440A1 (ja) 2012-09-06
EP2402423A4 (en) 2012-09-12
JP5661092B2 (ja) 2015-01-28
JP5508388B2 (ja) 2014-05-28
US9005336B2 (en) 2015-04-14
JP2013100520A (ja) 2013-05-23
EP2402423B1 (en) 2014-02-19
EP2402423A1 (en) 2012-01-04
US20120012002A1 (en) 2012-01-19
EP2402423B8 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5508388B2 (ja) 高モノテルペン成分含有精油、その製造方法および当該精油を用いた環境汚染物質浄化方法
JP5804561B2 (ja) 有害酸化物の除去剤および当該除去剤を利用する有害酸化物の除去方法
CN105582805B (zh) 一种高效植物除臭剂
Huang et al. Effects of essential oils on the formation of formaldehyde and secondary organic aerosols in an aromatherapy environment
CN105126778B (zh) 几种常见植物提取物的制备及其用途
CN111318152A (zh) 植物提取液除臭剂
KR100481202B1 (ko) 대기오염(악취) 물질 제거용 목(죽)초액 탈취제의 생산과 이용 방법 및 시스템
JP6254457B2 (ja) 有害酸化物除去剤及びこれを用いる有害酸化物の除去方法
CN113663510A (zh) 一种装修后室内除味剂及其制备方法
JP5787293B2 (ja) 有害酸化物の除去剤および当該除去剤を利用する有害酸化物の除去方法
CN105946077A (zh) 一种木材除虫加香的方法
CN102389582A (zh) 含s化合物除异味液
JP2015117197A (ja) 鼻症状改善剤
JP6116794B2 (ja) 有害酸化物の除去剤および当該除去剤を利用する有害酸化物の除去方法
CN103055341B (zh) 一种异味分子控制剂
CN113750281A (zh) 一种基于植物除臭剂雾化技术的废气除臭方法
JP2005248079A (ja) 広葉樹精油の分散液およびその製造方法
CN102698308A (zh) 一种长效喷雾型清新剂
JP2000210526A (ja) 有害化学物質除去剤
CN105233318A (zh) 一种voc促溶剂
Wu et al. A field-scale evaluation of the removal of odorous gases by a plant material-based deodorant
JP2024012104A (ja) 有害酸化物除去剤および有害酸化物の除去方法
Poppendieck et al. Jingle bells, what are those smells? Indoor VOC emissions from a live Christmas tree
CN108913355A (zh) 一种抑制异味的清新植物精油及其制备方法
KR20190044257A (ko) 유해가스 제거제 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13203591

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010746319

Country of ref document: EP