WO2010098246A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2010098246A1
WO2010098246A1 PCT/JP2010/052411 JP2010052411W WO2010098246A1 WO 2010098246 A1 WO2010098246 A1 WO 2010098246A1 JP 2010052411 W JP2010052411 W JP 2010052411W WO 2010098246 A1 WO2010098246 A1 WO 2010098246A1
Authority
WO
WIPO (PCT)
Prior art keywords
host material
group
ring
formula
compound
Prior art date
Application number
PCT/JP2010/052411
Other languages
English (en)
French (fr)
Inventor
徹 浅利
広幸 林田
白石 和人
隆之 清水
靖 小石川
和明 吉村
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN201080009261.XA priority Critical patent/CN102326273B/zh
Priority to JP2011501562A priority patent/JP5433677B2/ja
Priority to US13/201,610 priority patent/US8795852B2/en
Priority to EP10746127.9A priority patent/EP2403028B1/en
Publication of WO2010098246A1 publication Critical patent/WO2010098246A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/18Light sources with substantially two-dimensional radiating surfaces characterised by the nature or concentration of the activator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic electroluminescent device exhibiting a high luminance rate by using a phosphorescent dopant material and a host material in combination.
  • An organic electroluminescence element (organic EL element) is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. When an electric field is applied between the electrodes, electrons are injected from the cathode and holes are injected from the anode, and these recombine in the light emitting layer to generate excitons, whose energy level returns from the conduction band to the valence band. It uses the phenomenon of emitting light as energy.
  • Organic EL elements are classified into fluorescent organic EL elements and phosphorescent organic EL elements depending on the light emission mechanism.
  • the light emitting layer of the phosphorescent organic EL device is generally composed of a phosphorescent dopant material and a host material. If such a phosphorescent dopant material is used for light emission, a triplet state exciton having a generation probability of 75% can be used. Therefore, a fluorescent organic EL element using a singlet exciton having a generation probability of 25% It can have higher luminous efficiency.
  • low molecular weight host materials have been actively researched and developed as host materials used in the light emitting layer.
  • low-molecular compounds used as host materials are easily purified by purification techniques such as sublimation, column chromatography, and recrystallization.
  • the high-purity low molecular host material reduces the number of impurity-derived energy trap sites and minimizes thermal deactivation of electrons, holes, or excitons injected from the electrode, resulting in high performance.
  • the low molecular weight host material has characteristics that are generally found in low molecular weight compounds, such that the higher the purity, the higher the crystallinity.
  • the light emitting layer using a high-purity low-molecular host material is partially crystallized by the weak heat generated during device operation, and the amorphous characteristics of the light emitting layer are impaired. is there.
  • This characteristic has a more significant effect when the light emitting layer is formed by wet process. This is presumably because in wet process film formation, after a solution of a low molecular weight host compound is applied, a high concentration solution is temporarily formed during the drying step of evaporating the solvent, and crystallization is likely to occur. This is a major problem that a low molecular weight host material exhibiting high performance in the vapor deposition process cannot be applied to the wet process.
  • a method for ensuring the amorphous stability of the light-emitting layer by mixing at least one other low-molecular host material with a low-molecular host material serving as a base is disclosed.
  • a method of mixing amorphous polymer materials (Patent Document 1) and a method of mixing charge injection and charge transport auxiliary materials (Patent Documents 2 to 6) are disclosed.
  • Japanese Patent Laid-Open No. 2002-203684 Japanese Patent Laid-Open No. 11-354279 Japanese Patent Laid-Open No. 2003-068466 JP 2004-335204 A JP 2006-135295 A JP 2006-148045 A
  • IP ionization potential
  • EA electron affinity
  • T1 triplet excitation energy level
  • the object of the present invention is to crystallize a material by weak heat generated during operation of a phosphorescent organic EL device using a low molecular weight host material while maintaining an electron / hole injection balance and an efficient phosphorescent light emitting mechanism. It is an object of the present invention to provide a low-molecular host material capable of suppressing crystallization and to provide a highly reliable organic electroluminescent element in the case of forming a wet process by suppressing the above.
  • the present invention is an organic electroluminescent device having a light emitting layer formed by a wet process between an anode and a cathode, wherein the light emitting layer contains a phosphorescent dopant material and a host material having a molecular weight of 10,000 or less, and the host material Comprises a second host material different from the first host material and the first host material has a weight ratio of 90:10 to 10:90 of the first host material and the second host material,
  • IP ionization potential
  • EA electron affinity
  • T1 value is The present invention relates to an organic electroluminescent element characterized by being 0.1 eV or less.
  • Preferred examples of the first host material or the second host material include heterocyclic compounds selected from the group consisting of indolocarbazole derivatives and triazine derivatives.
  • ring A represents an aromatic ring represented by formula (1a) which is condensed with an adjacent ring at an arbitrary position
  • ring B is represented by formula (1b) which is condensed with an adjacent ring at an arbitrary position.
  • R in the formulas (1) and (1a) is independently hydrogen or a monovalent substituent, and adjacent substituents may be combined to form a ring.
  • L 1 in the formula (1b) independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • L represents an n-valent aromatic hydrocarbon group or aromatic heterocyclic group, and n is 1 to 4.
  • n is 2 or more, the condensed heterocycles containing rings A and B may be the same or different.
  • first host material or the second host material is preferably a heterocyclic compound represented by the following formula (2) or (3).
  • ring A, ring B, and R is synonymous with Formula (1)
  • X is each independently C-H, N, either C-L 2.
  • L 2 independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • ring A, ring B and R are the same as in formula (1), and the condensed heterocycles containing rings A and B may be the same or different.
  • Ar independently represents a phenylene group or a divalent aromatic heterocyclic group. m is 1-5.
  • the present invention also relates to an organic electroluminescent device in which the first host material and the second host material are two kinds of heterocyclic compounds selected from the heterocyclic compounds represented by the formula (2) or (3). .
  • the weight ratio of the first host material and the second host material is preferably 75:25 to 25:75.
  • the organic EL device of the present invention has an anode (also referred to as an anode layer) and a cathode (also referred to as a cathode layer), and an organic layer sandwiched between the anode and the cathode. At least one of the organic layers is a light emitting layer.
  • the layer structure of the element is not particularly limited, and a typical element structure is as shown in FIG.
  • the organic EL device of the present invention includes the substrate 1, the anode 2, the light emitting layer 5, and the cathode 7 as essential layers, but the device performance can be improved by providing other layers as necessary.
  • the substrate 1 is laminated in the order of the substrate 1, the anode 2, the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6 and the cathode 7, but is indispensable if necessary. Layers other than the layers may be omitted, and layers other than those described above may be added or replaced as necessary.
  • the light emitting layer of the organic EL device of the present invention contains a phosphorescent dopant material and a host material having a molecular weight of 10,000 or less, and the host material is composed of a first host material and a second host material.
  • the second host material is at least one host material different from the first host material.
  • the host material selected first is referred to as a first host material
  • the other host material is referred to as a second host material.
  • the second host material may contain two or more compounds, but is preferably one. When two or more kinds of compounds are included, the IP, EA, and T1 values of the compounds satisfy the following requirements with respect to the first host material.
  • the second host material is effective for suppressing crystallization of the first host material. Since the IP, EA, and T1 values of the host material have already been adjusted to appropriate values in the high brightness factor element, the second host material is mixed from the viewpoint of maintaining the high brightness rate.
  • the IP, EA and T1 values of the second host material are preferably the same values as the IP, EA and T1 values of the first host material, but these values are unique values calculated from the molecular structure. In fact, there is no compound that has the same three values. However, if the difference between the IP, EA, and T1 values of the first host material and the second host material is 0.10 eV or less, crystallization of the light-emitting layer is suppressed while maintaining the device characteristics with high luminance rate. In addition, it has been found that good light emission characteristics can be maintained for a long time.
  • the IP and EA values of the first host material and the second host material are calculated as values inherent to the compound based on the molecular structure of the compound serving as the host material, and sequentially changing the signs of the HOMO energy and the LUMO energy. be able to.
  • This relationship is defined as Koopmans' theorem under the Hartree-Fock approximation and as the Yanak's theorem in density functional theory.
  • the values of HOMO energy and LUMO energy (eV unit converted value) can be calculated by structure optimization calculation using the density functional theory (DFT) method using the molecular orbital method program Gaussian03rev.C02.
  • DFT density functional theory
  • the T1 value can be calculated as the lowest value of the excitation triplet excitation energy calculated as a value unique to the compound based on the molecular structure of the compound serving as the host material.
  • the excitation triplet excitation energy value is based on the optimized structure after the structure optimization using the density functional theory (DFT) calculation using, for example, the molecular orbital method program Gaussian03rev.C02. And time-dependent density functional theory (TD-DFT) calculation.
  • DFT density functional theory
  • TD-DFT time-dependent density functional theory
  • the calculation method of the IP, EA, and T1 values is not particularly limited, but the same calculation method is used for the first host material and the second host material in order to avoid errors due to the calculation method.
  • the compound serving as the first host material or the second host material is not particularly limited as long as it is applicable to the host material of the organic EL element.
  • Compounds useful as host materials are known from many patent documents and the like, and are selected and used.
  • a compound suitable as the first host material or the second host material is a charge transporting heterocyclic compound having a carbazole group, an indolocarbazole group, an oxadiazole group, a triazine group, or the like.
  • the heterocyclic compound chosen from the group which consists of an indolocarbazole derivative and a triazine derivative is mentioned.
  • the indolocarbazole derivative is a compound having an indolocarbazole skeleton and can have one or more substituents.
  • a preferable substituent is a substituent having a triazine ring.
  • the triazine derivative is a compound having a triazine ring and can have one or more substituents. Note that an indolocarbazole derivative having a triazine ring as a substituent is also a triazine derivative.
  • a compound represented by the above formula (1) can be preferably used, and more preferably a compound represented by the formula (2) or (3). It is.
  • Ring A is an aromatic ring represented by Formula (1a)
  • Ring B is a heterocycle represented by Formula (1b).
  • the heterocyclic ring represented by ring B is 2,3- And 4,5-positions and vice versa, and the 1,2-, 2,3- and 3,4-positions of the adjacent carbazole ring.
  • isomers in the condensed heterocyclic ring including ring A and ring B in 1), (2) or (3).
  • This fused heterocycle is an indolocarbazole ring.
  • L represents an n-valent aromatic hydrocarbon group or an aromatic heterocyclic group, preferably an n-valent aromatic hydrocarbon group having 6 to 100 carbon atoms or an n-valent carbon group having 3 to 100 carbon atoms. And an n-valent aromatic hydrocarbon group having 6 to 36 carbon atoms or an n-valent aromatic heterocyclic group having 3 to 35 carbon atoms is more preferable.
  • aromatic hydrocarbon groups or aromatic heterocyclic groups may have a substituent, and when they have two or more substituents, they may be the same or different. The calculation of the carbon number includes the carbon number of these substituents.
  • Preferred aromatic hydrocarbon groups or aromatic heterocyclic groups include benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, tridene, fluoranthene, acephenanthrylene, and acanthrylene.
  • More preferred is a group formed by removing n hydrogens from benzene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, indole, carbazole or an aromatic compound in which a plurality of these aromatic rings are connected.
  • the aromatic ring is a group derived from a linked aromatic compound, the number to be linked is preferably 2 to 10, more preferably 2 to 5, and the linked aromatic rings may be the same. It may be different.
  • the bond position of the aromatic compound in which a plurality of N and aromatic rings of the indolocarbazole ring including rings A and B are connected is not limited, and even in the terminal portion of the connected aromatic ring, the central portion The ring may be Moreover, when an aromatic heterocyclic ring is contained in the connected aromatic ring, it includes in an aromatic heterocyclic group.
  • the aromatic ring is a generic term for an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • Specific examples of the group formed by connecting a plurality of the aromatic rings include, for example, biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, terpyridine, bistriazylbenzene, dicarbazolylbenzene, carbazolylbiphenyl, dicarbazolylbiphenyl.
  • Gerare more preferably benzene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, indole, aromatic ring selected from carbazole groups resulting by removing n hydrogen from an aromatic compound linked.
  • the total number of substituents is 1 to 10, preferably 1 to 6, and more preferably 1 to 4.
  • the group which arises from the aromatic compound with which multiple aromatic rings were connected can also have a substituent.
  • Preferred substituents are alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, alkylthio groups having 1 to 20 carbon atoms, alkyl-substituted amino groups having 1 to 20 carbon atoms, and acyls having 2 to 20 carbon atoms.
  • n 1 to 4, preferably 1 or 2.
  • the substituent in the case where L 1 has a substituent is the same as the substituent described for L in the formula (1).
  • R is independently hydrogen or a monovalent substituent, but in the case of a monovalent substituent, an aromatic hydrocarbon group having 6 to 26 carbon atoms, 3 carbon atoms
  • it is an aromatic hydrocarbon group having 6 to 26 carbon atoms, an aromatic heterocyclic group having 3 to 25 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 12 to 24 carbon atoms.
  • phenyl group pyridyl group, pyrimidyl group, triazyl group, indolyl group, carbazolyl group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, Examples thereof include t-butyl group, methoxy group, ethoxy group, n-propoxy group, i-propoxy group, diphenylamino group and the like.
  • R When a plurality of R are present, they may be the same or different.
  • ring A, ring B and R are the same as in formula (1).
  • X independently represents N, C—H or C—L 2 , preferably N is 1 to 3, more preferably N is 2 to 3, and still more preferably N is 3.
  • L 2 independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • L 2 is an aromatic hydrocarbon group or an aromatic heterocyclic group having a substituent, it is the same as the substituent described for the substituent of L in formula (1).
  • Ar independently represents a phenylene group or a divalent aromatic heterocyclic group, and is preferably a group obtained by removing two hydrogens from benzene, pyridine, pyrimidine, triazine, indole, and carbazole. .
  • Ar has a substituent, it is the same as the case where R described for R in the formulas (1) and (1a) is a monovalent substituent.
  • m represents the number of Ar repeats, and m is 1 to 5, preferably 1 to 3. When m is 2 or more, Ar may be the same or different.
  • a compound suitable as the first host material or the second host material is, for example, 4,4′-N, N′-dicarbazole biphenyl (CBP) other than the formula (1), (2) or (3). ), 3- (4′-tert-butylphenyl) -4-phenyl-5- (4′-biphenyl) -1,2,4-triazole (TAZ).
  • CBP N′-dicarbazole biphenyl
  • TEZ 3-
  • the first host material is first selected from the compounds that can be used as the host material as described above, and then the compound that becomes the second host material is selected.
  • the IP value of the first host material is IP (1)
  • the EA value is EA (1)
  • the T1 value is T1 (1)
  • the IP value of the second host material is IP (2)
  • the EA value is EA ( 2) If the T1 value is T1 (2), IP (1) -IP (2), EA (1) -EA (2) and T1 (1) -T1 (2) are all ⁇ 0. It is selected to be within the range of 10 eV.
  • the compound serving as the first host material and the compound serving as the second host material are preferably compounds having similar basic skeletons.
  • the first host material and the second host material preferably use two kinds of compounds represented by the formula (1), and use two kinds of compounds represented by the formula (2) or (3) More preferably.
  • the light emitting layer of the organic EL device of the present invention includes a host material and a phosphorescent dopant material, and the host material includes a first host material and a second host material.
  • the use ratio (weight ratio) of the first host material and the second host material is 90:10 to 10:90, preferably 75:25 to 25:75, more preferably 2: 1 to 1: 2. It is.
  • the ratio of the host material contained in the light emitting layer is not particularly limited, but is preferably in the range of 50 to 99% by weight.
  • the phosphorescent dopant material is not limited in the emission color and molecular structure, but preferably includes complexes having a noble metal element such as iridium, platinum, ruthenium or the like as a central metal. Further, the ratio of the phosphorescent dopant material contained in the light emitting layer is not particularly limited, but is preferably in the range of 1 to 50% by weight, preferably 5 to 30% by weight.
  • the phosphorescent dopant material is preferably a phosphorescent dopant having a maximum emission wavelength of 580 nm or less.
  • film formation method by the wet process of the light emitting layer there is no particular limitation on the film formation method by the wet process of the light emitting layer, but film formation by a wet process such as a spin coating method, a spray method, a dip method, or a doctor blade method may be selected.
  • a wet process such as a spin coating method, a spray method, a dip method, or a doctor blade method.
  • the wet process is a method in which a coating liquid is prepared by dissolving an organic EL element material such as a host material in a solvent, and this is applied to a substrate or an organic layer on the substrate and dried.
  • the preparation method of the coating liquid can be prepared, for example, by mixing and stirring an organic EL element material such as a host material and a solvent.
  • an organic EL element material such as a host material
  • a solvent such as a solvent
  • the concentration of the coating liquid is not particularly limited, but is preferably 0.01 to 50 wt%, more preferably 0.1 to 10 wt%.
  • the film forming method using the above coating liquid is not particularly limited, and examples thereof include a spin coating method, a slit coating method, a capillary coating method, a spray method, an ink jet method, a dip method, and a doctor blade method.
  • a drying method For example, the method of heating a board
  • the drying temperature varies depending on the solvent used, but is preferably 0 to 200 ° C, more preferably 50 to 150 ° C.
  • the solvent used for the coating liquid is not particularly limited as long as the mixture of the first host material, the second host material, and the dopant material, which are constituent materials of the light emitting layer, can be dissolved so that no solid matter remains. Two or more solvents may be mixed and used.
  • the melting point is preferably 0 ° C. or lower and the boiling point is 30 ° C. or higher.
  • the substrate 1 is not particularly limited as long as it is a substrate used in a general organic electroluminescence device, but is an organic substrate or a transparent plastic substrate excellent in transparency, surface smoothness, ease of handling and waterproofness, It is preferable to use a glass substrate.
  • the anode 2 is not particularly limited as long as it is a material used in a general organic electroluminescence device, and is preferably a metal or metal oxide that is transparent and excellent in electrical conductivity.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • the hole injection layer 3 is formed by forming a HIL substance into a thin film having a thickness of 5 to 500 nm on the upper part of the anode.
  • the HIL substance is not particularly limited as long as it is a material used in a general organic electroluminescence device.
  • copper phthalocyanine (CuPc) or poly (3,4-ethylenedioxy) thiophene / polystyrene sulfonic acid (PEDOT / PSS) ) Etc. can be used.
  • the thin film formation method there are no particular restrictions on the thin film formation method, and not only the deposition process represented by the vacuum deposition method, but also the wet process such as the spin coating method, slit coating method, capillary coating method, spray method, ink jet method, dipping method, doctor blade method, etc.
  • a film-forming method can be used.
  • the hole transport layer 4 is formed by forming an HTL material into a thin film having a thickness of 5 to 500 nm on the hole injection layer.
  • the HTL material is not particularly limited as long as it is a material used in a general organic electroluminescence device.
  • N, N'-di (naphthalen-1-yl) -N, N' -diphenyl (1,1'-biphenyl) -4,4'-diamine ( ⁇ -NPD) can be used.
  • a polymer material such as polyvinyl carbazole (PVK) can also be used.
  • PVK polyvinyl carbazole
  • the thin film formation method there are no particular restrictions on the thin film formation method, and not only the deposition process represented by the vacuum deposition method, but also the wet process such as the spin coating method, slit coating method, capillary coating method, spray method, ink jet method, dipping method, doctor blade method, etc.
  • a film-forming method can be used.
  • the electron transport layer 6 is formed by forming an ETL material in the form of a thin film having a thickness of 5 to 500 nm on the light emitting layer.
  • the ETL substance is not particularly limited as long as it is a material used in a general organic electroluminescence device.
  • the thin film formation method there are no particular restrictions on the thin film formation method, and not only the deposition process represented by the vacuum deposition method, but also the wet process such as the spin coating method, slit coating method, capillary coating method, spray method, ink jet method, dipping method, doctor blade method, etc.
  • a film-forming method can be used.
  • the cathode 7 is not particularly limited as long as it is a material used in a general organic electroluminescence device, and a metal material excellent in electrical conductivity is preferable.
  • metals such as Al, Cs, Er, alloys such as MgAg, AlLi, AlLi, AlMg, CsTe, or Ca / Al, MgAl, Li / Al, Cs / Al, Cs2O / Al, LiF / Al, ErF3 /
  • a laminated structure such as Al can be used.
  • Synthesis example 1 Synthesis of Compound 2-9 Into a degassed nitrogen-substituted 1 L four-necked flask, 28.53 g (111.4 mmol) of indolo [2,3-a] carbazole, 21.56 g (156.02 mmol) of potassium carbonate, copper powder 35 .41 g (557.21 mmol), 1-bromo-3,5-di-t-butylbenzene 30.00 g (111.4 mmol) and tetraethylene glycol dimethyl ether 450 g were added, and the mixture was stirred at an internal temperature of 205 ° C. for 24 hours.
  • the reaction mixture was dropped into 1000 g of distilled water that was vigorously stirred, and the precipitated solid was collected by filtration. This solid content was washed with methanol, and then dried under reduced pressure at 80 ° C. for a whole day and night to obtain 6.29 g of a crude product. This crude product was recrystallized and purified to obtain 3.36 g of white crystals. When the FD-MS spectrum of this white crystal was measured, a peak of 675 (M +, base) was observed, and it was confirmed that this white crystal was compound 2-9.
  • Synthesis example 2 Synthesis of Compound 2-10 Into a 500 mL three-necked flask purged with degassed nitrogen, 9.84 g (38.4 mmol) of indolo [2,3-a] carbazole, 15.94 g (115.33 mmol) of potassium carbonate, copper powder 12 .22 g (192.22 mmol), 4-tert-butyliodobenzene 10.00 g (38.4 mmol) and 1,3-dimethyl-2-imidazolidinone 150 g were added, and the mixture was stirred at an internal temperature of 205 ° C. for 20 hours.
  • the reaction mixture was dropped into 260 g of distilled water that was vigorously stirred, and the precipitated solid was collected by filtration. This solid content was reslurry washed with methanol at 50 ° C. for 3 hours, and then dried under reduced pressure at 80 ° C. for 24 hours to obtain 8.39 g of a crude product. This crude product was recrystallized and purified with dichloromethane to obtain 3.31 g of slightly yellow crystals. In the FD-MS spectrum of the slightly yellow crystals, a peak of 620 (MH +, base) was observed, confirming that the slightly yellow crystals were compound 2-10.
  • Synthesis example 3 Synthesis of Compound 3-4 Into a degassed nitrogen-substituted 1 L four-necked flask, 45.0 g (0.176 mol) of indolo [2,3-a] carbazole, 72.9 g (0.527 mol) of potassium carbonate, copper powder 55 9.9 g (0.879 mol), 1,3-diiodobenzene 29.0 g (0.088 mol), and tetraethylene glycol dimethyl ether 638 g were added and stirred at an internal temperature of 205 ° C. for 18 hours. After cooling to room temperature, the solid content was filtered off using a filter aid.
  • the obtained filtrate was transferred to a separatory funnel, 1400 g of 10 wt% hydrochloric acid was added, and the mixture was extracted with 2100 g of ethyl acetate.
  • the ethyl acetate layer was washed successively with distilled water and saturated brine, and the magnesium sulfate dried and absorbed with magnesium sulfate was removed by suction filtration, and the solvent was evaporated under reduced pressure.
  • the residue was subjected to dichloromethane reslurry and toluene reslurry in order, and dried at 80 ° C. under reduced pressure to obtain 29.08 g of a white solid.
  • the white solid had an FD-MS spectrum of 587 (MH +, base).
  • Synthesis example 5 Synthesis of Compound 3-9
  • 36.96 g (0.112 mol) of 1,3-diiodobenzene, 45.00 g (0.224 mol) of 3-bromophenylboronic acid, tetrakis (Triphenylphosphine) palladium (0) 4.27 g (3.7 mmol), ethanol 225 ml, toluene 603 ml were added and stirred at room temperature.
  • 142.2 g (1.342 mol) of sodium carbonate and 297 g of distilled water were charged, and stirred at an internal temperature of 75 ° C. for 19 hours.
  • the obtained filtrate was transferred to a separatory funnel, 1000 ml of 10 wt% hydrochloric acid was added, and the mixture was extracted with 700 g of ethyl acetate.
  • the ethyl acetate layer was washed sequentially with saturated brine, dried over magnesium sulfate, and the magnesium sulfate absorbed was removed by suction filtration, and the solvent was evaporated under reduced pressure.
  • the residue was washed with dichloromethane reslurry and dried at 80 ° C. under reduced pressure to obtain 13.24 g of a white solid.
  • the white solid had an FD-MS spectrum of 738 (M +, base).
  • Synthesis example 7 Synthesis of Compound A Compound A was synthesized in the same manner as described in JP-A-2005-239703. When an FD-MS spectrum was measured, a peak of 524 (M +, base) was observed, confirming that it was Compound A.
  • Synthesis example 8 Synthesis of Compound B Compound B was synthesized according to the method described in Example 4 of WO08-056746.
  • IP, EA and T1 value was calculated.
  • the IP, EA, and T1 values were calculated by structure optimization calculation using the density functional theory (DFT) method using the molecular orbital method program Gaussian03rev.C02.
  • the IP value and the EA value were values obtained by changing the sign of the HOMO energy and the LUMO energy calculated by performing the structural optimization calculation at the B3LYP / 6-31G * level (eV unit converted value).
  • Example 1 (comparison) In FIG. 1, an organic EL device having a configuration in which the hole transport layer was omitted and an electron injection layer was added was produced. A 20 wt% ethanol solution of PEDOT / PSS (Baytron P CH8000) as a hole injection layer was formed on a glass substrate on which an anode made of ITO having a film thickness of 150 nm passed through UV ozone cleaning and drying processes was rotated at 3000 rpm. For 60 seconds, and dried at 200 ° C. for 60 minutes. The film thickness at this time was 25 nm.
  • PEDOT / PSS Boytron P CH8000
  • the host material is compound 2-1 (38.0 parts by weight)
  • the phosphorescent dopant material is tris (2-phenylpyridine) iridium (Ir (ppy) 3) (2.0 parts by weight)
  • dichloromethane A mixed solution of (2840 parts by weight) was spin-coated at a rotation speed of 4000 rpm for 30 seconds and dried at 120 ° C. for 30 minutes.
  • the film thickness of the light emitting layer at this time was 70 nm.
  • tris (8-hydroxyquinoline) aluminum (Alq3) was formed by a vacuum deposition method at a deposition rate of 0.1 nm / sec to a thickness of 35 nm.
  • lithium fluoride (LiF) was formed to a thickness of 0.5 nm by vacuum deposition.
  • Al aluminum
  • an external power source was connected to the device, a DC voltage was applied so that a current of 100 mA / cm 2 flowed, and current efficiency (cd / A) at that time was measured. Further, as a lifetime characteristic of the element, a DC voltage was applied so that the constant current amount was 20 mA / cm 2, and the time until the initial luminance was reduced by half (luminance half-life) was measured. This was converted to an initial luminance of 1000 cd / m 2 . The current efficiency was 5.7 cd / A, and the luminance half life was 32 hr.
  • Example 2 As the host material, the first host material and the second host material are used, the compound 2-1 (17.3 parts by weight) as the first host material and the compound 2-9 (20. 7 parts by weight) was used, and an organic EL device was prepared by performing the same operation as in Example 1 except that a light emitting layer having a thickness of 70 nm was obtained.
  • Example 3 In Example 2, the compound 2-1 (18.0 parts by weight) as the first host material and the compound 2-10 (20.0 parts by weight) as the second host material were used, and a light emitting layer having a thickness of 70 nm was used. Except having obtained, organic EL element was produced by performing the same operation and element evaluation was performed.
  • Example 4 In Example 2, the compound 2-1 (13.3 parts by weight) was used as the first host material and the compound 3-4 (24.7 parts by weight) was used as the second host material, and a light-emitting layer having a thickness of 70 nm Except having obtained, all the same operations were performed, the organic EL element was produced, and element evaluation was performed.
  • Example 5 In Example 2, the compound 2-1 (12.1 parts by weight) was used as the first host material and the compound 3-9 (25.9 parts by weight) was used as the second host material, and a light-emitting layer having a thickness of 70 nm Except having obtained, all the same operations were performed, the organic EL element was produced, and element evaluation was performed.
  • Example 6 In Example 2, the compound 2-1 (23.6 parts by weight) was used as the first host material and the compound 3-4 (14.4 parts by weight) was used as the second host material, and a light-emitting layer having a thickness of 70 nm Except having obtained, all the same operations were performed, the organic EL element was produced, and element evaluation was performed.
  • Example 7 (comparison) In Example 2, Compound 2-1 (19.7 parts by weight) was used as the first host material and Compound A (18.3 parts by weight) was used as the second host material to obtain a light-emitting layer having a thickness of 70 nm. Except for the above, the same operation was performed to produce an organic EL device, and the device was evaluated.
  • Example 8 (comparison) In Example 2, Compound 2-1 (16.7 parts by weight) was used as the first host material and Compound B (21.3 parts by weight) was used as the second host material to obtain a light-emitting layer having a thickness of 70 nm. Except for the above, the same operation was performed to produce an organic EL device, and the device was evaluated.
  • Example 9 (comparison) In Example 2, Compound 2-1 (14.2 parts by weight) was used as the first host material and Compound C (23.8 parts by weight) was used as the second host material to obtain a light-emitting layer having a thickness of 70 nm. Except for the above, the same operation was performed to produce an organic EL device, and the device was evaluated.
  • Example 10 (comparison) In Example 1, except that Compound 3-1 was used as a host material and a light emitting layer having a thickness of 70 nm was obtained, all the same operations were performed to produce an organic EL device, and device evaluation was performed. The current efficiency was 10.8 cd / A, and the luminance half-life was 48 hours.
  • Example 11 In Example 2, a compound 3-1 (16.6 parts by weight) was used as the first host material and a compound 3-4 (21.4 parts by weight) was used as the second host material, and a light emitting layer having a thickness of 70 nm Except having obtained, all the same operations were performed, the organic EL element was produced, and element evaluation was performed.
  • Example 12 In Example 2, a compound 3-1 (20.8 parts by weight) was used as the first host material and a compound 2-9 (17.2 parts by weight) was used as the second host material, and a light-emitting layer having a thickness of 70 nm Except having obtained, all the same operations were performed, the organic EL element was produced, and element evaluation was performed.
  • Example 13 In Example 2, a compound 3-1 (17.4 parts by weight) was used as the first host material and a compound 3-14 (20.6 parts by weight) was used as the second host material, and a light emitting layer having a thickness of 70 nm was used. Except having obtained, all the same operations were performed, the organic EL element was produced, and element evaluation was performed.
  • Example 14 (comparison) In Example 2, Compound 3-1 (14.8 parts by weight) was used as the first host material and Compound A (23.2 parts by weight) was used as the second host material to obtain a light-emitting layer having a thickness of 70 nm. Except for the above, the same operation was performed to produce an organic EL device, and the device was evaluated.
  • Example 15 (Comparison) In Example 2, Compound 3-1 (20.2 parts by weight) was used as the first host material and Compound B (17.8 parts by weight) was used as the second host material to obtain a light-emitting layer having a thickness of 70 nm. Except for the above, the same operation was performed to produce an organic EL device, and the device was evaluated.
  • Example 16 (Comparison) In Example 2, Compound 3-1 (17.7 parts by weight) was used as the first host material and Compound C (20.3 parts by weight) was used as the second host material to obtain a light-emitting layer having a thickness of 70 nm. Except for the above, the same operation was performed to produce an organic EL device, and the device was evaluated.
  • Table 2 shows the results of Examples 1 to 6. The current efficiency and luminance half-life of each example are expressed as relative values when Example 1 is 100.
  • H1 represents the first host material
  • H2 represents the second host material.
  • Table 3 shows the results of Example 10 to Example 16. The current efficiency and luminance half-life of each example are expressed as relative values when the value of Example 10 is 100.
  • H1 represents the first host material
  • H2 represents the second host material.
  • a highly reliable organic electric field can be obtained by suppressing crystallization of the material due to weak heat generated during operation of the device while maintaining an electron / hole injection balance and an efficient phosphorescence emission mechanism.
  • a light-emitting element can be provided.
  • an organic electroluminescent device having a high luminance rate and high reliability can be provided by suppressing crystallization in the drying step.
  • the organic EL device of the present invention can maintain good light emission characteristics for a long period of time.

Abstract

 低分子ホスト材料を用いる燐光有機EL素子において、電子・正孔の注入バランスと効率的な燐光発光機構を保ちながら、信頼性の高い有機電界発光素子を堤供する。 この有機電界発光素子は、陽極層及び陰極層の両電極層間に発光層を有し、発光層がりん光ドーパント材料と分子量10,000以下のホスト材料を含有し、前記ホスト材料は第一のホスト材料と第一のホスト材料とは異なる第二のホスト材料からなり、第一のホスト材料と第二のホスト材料のイオン化ポテンシャル(IP)値の差が0.1eV以下、電子親和力(EA)値の差が0.1eV以下、かつ三重項エネルギー(T1)値の差が0.1eV以下であるホスト材料を用いる。

Description

有機電界発光素子
 本発明は、燐光ドーパント材料とホスト材料を併用することにより高輝度率を示す有機電界発光素子に関する。
 有機電界発光素子(有機EL素子)は、その最も簡単な構造として発光層及び該層を挟んだ一対の対向電極から構成される。この両電極間に電界を印加すると陰極から電子が、陽極から正孔が注入され、これらが発光層において再結合することでエキシトンを生成し、そのエネルギー準位が伝導帯から価電子帯に戻る際にエネルギーとして光を放出する現象を利用する。
 有機EL素子は、その発光メカニズムによって、蛍光有機EL素子と燐光有機EL素子とに分類される。燐光有機EL素子の発光層は、一般的に燐光ドーパント材料とホスト材料により構成される。このような燐光ドーパント材料を発光に利用すれば、75%の生成確率を有する三重項状態のエキシトンを利用することができるため、25%の生成確率を有する一重項エキシトンを利用する蛍光有機EL素子より高い発光効率を有しうる。
 近年、このような高い発光効率を有しうる燐光有機EL素子分野において、その発光層に用いられるホスト材料として低分子ホスト材料が盛んに研究・開発されている。その大きな理由の一つとして、ホスト材料として使用される低分子化合物は昇華、カラムクロマトグラフィー、再結晶等の精製手法により高純度化しやすい点が挙げられる。低分子ホスト材料は、高純度化することで不純物由来のエネルギートラップサイトが減少し、電極から注入された電子や正孔、あるいはエキシトンの熱失活が最小限に抑制され、その結果、高性能な素子となるが、一方で低分子ホスト材料は、高純度化するほど結晶性が高くなるという低分子化合物全般にみられる特性をもっている。そのため、高純度な低分子ホスト材料を用いた発光層は、素子作動時に発生する微弱な熱により一部が微細結晶化し、発光層のアモルファス性が損なわれることで素子特性が低下する問題点がある。この特性は、発光層をウェットプロセス製膜する場合に、より顕著に影響する。これは、ウェットプロセス製膜では、低分子ホスト化合物の溶液を塗布後、溶媒を蒸発させる乾燥工程の際に一時的に高濃度溶液となり結晶化が起きやすい状態を経るためと考えられている。このことが、蒸着プロセスでは高性能を示す低分子ホスト材料がウェットプロセスには適用できない大きな問題点となっている。
 これらの問題点を解決するために、ベースとなる低分子ホスト材料に、少なくとも1つ以上の他の低分子ホスト材料を混合して発光層のアモルファス安定性を確保する方法が開示されている。例えば、非晶質ポリマー材料を混合する方法(特許文献1)や、電荷注入及び電荷輸送補助材料(特許文献2~6)を混合する方法が開示されている。
特開2002-203674号公報 特開平11-354279号公報 特開2003-068466号公報 特開2004-335204号公報 特開2006-135295号公報 特開2006-148045号公報
 しかしながら、これらの方法では、第二のホスト材料の分子パラメーターであるイオン化ポテンシャル(以下、IPという)、電子親和力(以下、EAという)、三重項励起エネルギー準位(以下、T1という)が、第一のホスト材料のIP、EA、T1値と異なるため、第二のホスト材料の混合により電子・正孔の注入量が大きく変化したり、T1値の低い第二のホスト材料が混合されることにより本来の発光色が維持できないなどの素子特性低下を生じる問題点がある。
 本発明の目的は、低分子ホスト材料を用いる燐光有機EL素子において、電子・正孔の注入バランスと効率的な燐光発光機構を保ちながら、素子の作動時に発生する微弱な熱による材料の結晶化を抑制することにより、ウェットプロセス製膜する場合において、結晶化を抑制することが可能な低分子ホスト材料を提供し、信頼性の高い有機電界発光素子を提供することにある。
 本発明は、陽極及び陰極の間にウェットプロセスにより製膜された発光層を有する有機電界発光素子であって、発光層がりん光ドーパント材料と分子量10,000以下のホスト材料を含有し、前記ホスト材料は第一のホスト材料と第一のホスト材料とは異なる第二のホスト材料からなり、第一のホスト材料と第二のホスト材料の重量比が90:10~10:90であり、第一のホスト材料と第二のホスト材料のイオン化ポテンシャル(IP)値の差が0.1eV以下、かつ電子親和力(EA)値の差が0.1eV以下、かつ三重項エネルギー(T1)値の差が0.1eV以下であることを特徴とする有機電界発光素子に関する。
 上記第一のホスト材料又は第二のホスト材料としては、インドロカルバゾール誘導体及びトリアジン誘導体からなる群れから選ばれる複素環化合物が好ましく挙げられる。
 上記複素環化合物としては、下記式(1)で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000004
 
 式(1)中、環Aは隣接環と任意の位置で縮合する式(1a)で表される芳香環を表し、環Bは隣接環と任意の位置で縮合する式(1b)で表される複素環を表す。式(1)、(1a)中のRは、独立に水素又は1価の置換基であり、隣接する置換基が一体となって環を形成してもよい。式(1b)中のLは、独立に芳香族炭化水素基又は芳香族複素環基を示す。Lは、n価の芳香族炭化水素基又は芳香族複素環基を示し、nは1~4である。nが2以上の場合は、環A、Bを含む縮合複素環は同一であっても異なっていても良い。
 また、第一のホスト材料又は第二のホスト材料としては、下記式(2)又は(3)で表わされる複素環化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-I000005
 
 式(2)中、環A、環B、及びRは式(1)と同意であり、Xは各々独立にC-H、N、C-Lの何れかである。ここで、Lは、独立に芳香族炭化水素基又は芳香族複素環基を表す。
Figure JPOXMLDOC01-appb-I000006
 
 式(3)中、環A、環B、及びRは式(1)と同意であり、環A、Bを含む縮合複素環は同一であっても異なっていても良い。Arは、独立にフェニレン基又は2価の芳香族複素環基を表す。mは1~5である。
 また、本発明は、第一のホスト材料と第二のホスト材料が、式(2)又は(3)で表される複素環化合物から選ばれる2種の複素環化合物である有機電界発光素子に関する。
 第一のホスト材料と第二のホスト材料の重量比は、75:25~25:75であることが好ましい。
本発明の有機EL素子の一例を示す模式図である。
 本発明の有機EL素子は、陽極(陽極層ともいう)及び陰極(陰極層ともいう)と、陽極及び陰極間に挟まれた有機層を有する。そして、有機層の少なくとも1層は発光層である。素子の層構成としては特に限定されず、代表的な素子構成として図1に示すような構成が挙げられる。本発明の有機EL素子では、基板1、陽極2、発光層5及び陰極7を必須の層として有するが、その他の層を必要に応じて設けることにより素子性能を向上させることができる。図1に示す有機EL素子は、基板1、陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6及び陰極7の順に積層されているが、必要により必須の層以外は省略されてもよく、また必要により上記以外の層が追加又は置換されてもよい。
 本発明の有機EL素子の発光層は、燐光ドーパント材料と分子量10,000以下のホスト材料を含有し、ホスト材料は第一のホスト材料と第二のホスト材料からなる。第二のホスト材料は第一のホスト材料とは異なる少なくとも1種のホスト材料である。そして、説明の都合上、最初に選択されるホスト材料を第一のホスト材料とし、他のホスト材料を第二のホスト材料という。第二のホスト材料は2種以上の化合物を含んでもよいが、1種であることが好ましい。2種以上の化合物を含む場合は、いずれの化合物も第一のホスト材料に対してIP、EA、T1値が下記要件を満足する。
 第二のホスト材料は、第一のホスト材料の結晶化を抑制するために有効である。高輝度率の素子は、ホスト材料のIP、EA、T1値が適正な値に既に調整されているため、第二のホスト材料の混合の際には、高輝度率を維持する観点から、第二のホスト材料のIP、EA及びT1値は、第一のホスト材料のIP、EA及びT1値と同じ値であることが望ましいが、これらの値は分子構造から算出される固有の値であり、この3つの値が全て同じ化合物は実際には存在しない。しかし、第一のホスト材料と第二のホスト材料のIP、EA及びT1値の差が各々0.10eV以下であれば、高輝度率な素子特性を維持しながら、発光層の結晶化を抑制し、良好な発光特性を長期間保持することができることが見出された。
 第一ホスト材料及び第二のホスト材料のIP及びEA値は、ホスト材料となる化合物の分子構造を基に、化合物固有の値として、順にHOMOエネルギー、LUMOエネルギーの符号をかえた値として算出することができる。この関係は、ハートリー-フォック近似下ではクープマンズの定理(Koopmans' theorem)、密度汎関数理論においてはヤナックの定理(Janak theorem)として定義されている。例えば、HOMOエネルギー、LUMOエネルギーの値(eV単位換算値)は、分子軌道法プログラムGaussian03rev.C02を使用して密度汎関数理論(DFT)法を用いた構造最適化計算により算出することができる。また、T1値は、ホスト材料となる化合物の分子構造を基に、化合物固有の値として算出される励起3重項の励起エネルギーの最も低い値として算出することができる。励起3重項の励起エネルギーの値は、例えば、分子軌道法プログラムGaussian03rev.C02を使用し、密度汎関数理論(DFT)計算を用いて構造最適化を行った後、最適化された構造を基に時間依存密度汎関数理論(TD-DFT)計算を行うことで算出することができる。本発明において、IP、EA、T1値の算出方法については特に制限されないが、計算手法による誤差を避けるため、第一のホスト材料と第二のホスト材料は同一の計算方法を用いる。
 第一のホスト材料又は第二のホスト材料となる化合物は、有機EL素子のホスト材料に適用可能であれば特に制限されない。分子量10,000以下の低分子化合物であり、好ましくは500~5,000である。ホスト材料として有用な化合物は多くの特許文献等により知られており、これらから選択されて使用される。
 第一のホスト材料又は第二のホスト材料として適した化合物は、カルバゾール基、インドロカルバゾール基、オキサジアゾール基、トリアジン基等を有する電荷輸送性の複素環化合物である。好ましくは、インドロカルバゾール誘導体及びトリアジン誘導体からなる群から選ばれる複素環化合物が挙げられる。ここで、インドロカルバゾール誘導体はインドロカルバゾール骨格を有する化合物であり1以上の置換基を有することができる。好ましい置換基としてトリアジン環を有する置換基がある。また、トリアジン誘導体は、トリアジン環を有する化合物であり1以上の置換基を有することができる。なお、置換基としてトリアジン環を有するインドロカルバゾール誘導体は、トリアジン誘導体でもある。
 第一のホスト材料又は第二のホスト材料として適した複素環化合物としては、上記式(1)で表わされる化合物が好適に使用でき、より好ましくは式(2)又は(3)で表わされる化合物である。式(1)、(2)又は(3)において、環Aは式(1a)で表される芳香環であり、環Bは式(1b)で表される複素環である。そして、環Aと環Aより下側のインドール環とで構成される3環の縮合環をカルバゾール環とすれば、環Bで表される複素環は、Nを1位とすると2,3-位、4,5-位、及びその逆の位置と、隣接するカルバゾール環の1,2-位、2,3-位、及び3,4-位の位置で縮合することができるので、式(1)、(2)又は(3)の環A、環Bを含む縮合複素環には5種類の異性体がある。この縮合複素環はインドロカルバゾール環である。
 式(1)において、Lはn価の芳香族炭化水素基又は芳香族複素環基を示し、好ましくはn価の炭素数6~100の芳香族炭化水素基又はn価の炭素数3~100の芳香族複素環基であり、n価の炭素数6~36の芳香族炭化水素基又はn価の炭素数3~35の芳香族複素環基がより好ましい。これら芳香族炭化水素基又は芳香族複素環基は置換基を有していてもよく、2つ以上の置換基を有する場合は、同一であっても異なっていても良い。炭素数の計算にはそれら置換基の炭素数を含む。
 好ましい芳香族炭化水素基又は芳香族複素環基としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、オバレン、コラヌレン、フルミネン、アンタントレン、ゼトレン、テリレン、ナフタセノナフタセン、トルキセン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、インドロカルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、テベニジン、キンドリン、キニンドリン、アクリンドリン、フタロペリン、トリフェノジチアジン、トリフェノジオキサジン、フェナントラジン、アントラジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール又はこれら芳香環が複数連結された芳香族化合物からn個の水素を除いて生じる基等が挙げられる。より好ましくはベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドール、カルバゾール又はこれら芳香環が複数連結された芳香族化合物からn個の水素を除いて生じる基が挙げられる。なお、芳香環が複数連結された芳香族化合物から生じる基である場合、連結される数は2~10が好ましく、より好ましくは2~5であり、連結される芳香環は同一であっても異なっていても良い。その場合、環A、Bを含むインドロカルバゾール環のNと芳香環が複数連結された芳香族化合物の結合位置は限定されず、連結された芳香環の末端部の環であっても中央部の環であってもよい。また、連結された芳香環に芳香族複素環が含まれる場合、芳香族複素環基に含める。ここで、芳香環は芳香族炭化水素環及び芳香族複素環を総称する意味である。
 ここで、芳香環が複数連結されて生じる基は、n=1の場合、例えば、下記式で表わされる。
Figure JPOXMLDOC01-appb-I000007
 
(Ar~Arは、置換又は無置換の芳香環を示す)
 上記芳香環が複数連結されて生じる基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、ビストリアジルベンゼン、ジカルバゾリルベンゼン、カルバゾリルビフェニル、ジカルバゾリルビフェニル、インドロカルバゾリルトリアジン、フェニルターフェニル、カルバゾリルターフェニル、ビナフタレン、フェニルピリジン、フェニルカルバゾール、ジフェニルカルバゾール、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン、インドロカルバゾリルベンゼン、インドロカルバゾリルピリジン、インドロカルバゾリルトリアジン等からn個の水素を除いて生じる基が挙げられ、より好ましくはベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドール、カルバゾールから選ばれる芳香環が連結された芳香族化合物からn個の水素を除いて生じる基が挙げられる。
 前記芳香族炭化水素基又は芳香族複素環基が置換基を有する場合、置換基の総数は1~10、好ましくは1~6であり、より好ましくは1~4である。なお、芳香環が複数連結された芳香族化合物から生じる基も同様に置換基を有することができる。好ましい置換基としては炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数12~24のジアリールアミノ基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基、シアノ基、ニトロ基、水酸基等が挙げられる。より好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、ジフェニルアミノ基があげられる。
 式(1)中、nは1~4を示すが、好ましくは1又は2である。
 式(1b)中、Lは独立に芳香族炭化水素基又は芳香族複素環基を示すが、これらは前記式(1)中のL(n=1の場合)で説明したと同様である。Lが置換基を有する場合の置換基も前記式(1)中のLで説明した置換基と同様である。
 式(1)、(1a)中、Rは、独立に水素又は1価の置換基であるが、1価の置換基の場合は、炭素数6~26の芳香族炭化水素基、炭素数3~25の芳香族複素環基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数12~24のジアリールアミノ基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基、シアノ基、ニトロ基、水酸基等が挙げられる。より好ましくは炭素数6~26の芳香族炭化水素基、炭素数3~25の芳香族複素環基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数12~24のジアリールアミノ基であり、具体例としてはフェニル基、ピリジル基、ピリミジル基、トリアジル基、インドリル基、カルバゾリル基、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、ジフェニルアミノ基等があげられる。Rが複数存在する場合は、同一であっても異なっていても良い。
 式(2)、(3)において、環A、環B、Rは式(1)と同意である。式(2)において、Xは独立にN、C-H又はC-Lを示すが、好ましくはNが1~3であり、より好ましくはNが2~3であり、更に好ましくはNが3である。
 ここで、式(2)中のXがC-Lである場合、Lは独立に芳香族炭化水素基又は芳香族複素環基を示す。好ましいLの具体例は、前記式(1)中のLで説明したn=1の場合の芳香族炭化水素基又は芳香族複素環基が同様に例示できる。また、Lが置換基を有する芳香族炭化水素基又は芳香族複素環基の場合、式(1)中のLの置換基で説明した置換基と同様である。
 式(3)において、Arは、独立にフェニレン基又は2価の芳香族複素環基を示し、好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、インドール、カルバゾールから2個の水素を除いた基である。Arが置換基を有する場合は、前記式(1)、(1a)中のRで説明したRが1価の置換基である場合と同様である。mはArの繰り返し数を示し、mは1~5であり、好ましくは1~3である。mが2以上の場合、Arは同一であっても異なっていても良い。
 以下に、式(1)~(3)で表わされる化合物の具体例を挙げるが、これらに限定されるものではない。化学式に付された番号は化合物番号である。
 式(1)で表わされる化合物を次に示す。
Figure JPOXMLDOC01-appb-I000008
 
 式(2)で表わされる化合物を次に示す。
Figure JPOXMLDOC01-appb-I000009
 
 式(3)で表わされる化合物を次に示す。
Figure JPOXMLDOC01-appb-I000010
 
 第一のホスト材料又は第二のホスト材料として適した化合物は、式(1)、(2)又は(3)以外には、例えば、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、3-(4'-tert-ブチルフェニル)-4-フェニル-5-(4'-ビフェニル)-1,2,4-トリアゾール(TAZ)が例示される。
 第一のホスト材料が上記のようなホスト材料として使用可能な化合物から最初に選択され、次に第二のホスト材料となる化合物が選択される。第一のホスト材料のIP値をIP(1)、EA値をEA(1)、T1値をT1(1)とし、第二のホスト材料のIP値をIP(2)、EA値をEA(2)、T1値をT1(2)とすれば、IP(1)-IP(2)、EA(1)-EA(2)及びT1(1)-T1(2)は、いずれも±0.10eVの範囲内となるように選択される。このような関係を全て同時に満たすためには、第一のホスト材料となる化合物と、第二のホスト材料となる化合物は基本骨格が類似する化合物であることが好ましい。そして、これらのIP値、EA値、T1値は、上記のように化合物の構造式から算出可能である。
 第一のホスト材料及び第二のホスト材料が、式(1)で表される化合物から2種を使用することが好ましく、式(2)又は(3)で表される化合物から2種を使用することがより好ましい。
 本発明の有機EL素子の発光層は、ホスト材料と燐光ドーパント材料を含み、ホスト材料は第一のホスト材料と第二のホスト材料を含む。
 第一のホスト材料と第二のホスト材料の使用割合(重量比)は、90:10~10:90であり、好ましくは75:25~25:75、更に好ましくは2:1~1:2である。ホスト材料が発光層中に含有される割合は特に制限はないが、50~99重量%の範囲にあることが好ましい。
 燐光ドーパント材料は、発光色、分子構造に何ら制限はないが、好ましくはイリジウム、白金、ルテニウム等の貴金属元素を中心金属として有する錯体類が挙げられる。また、燐光ドーパント材料が発光層中に含有される割合は特に制限はないが、1~50重量%、好ましくは5~30重量%の範囲にあることがよい。
 以下に、燐光ドーパント材料の具体例を挙げるが、これらに限定されるものではないが、使用される燐光発光ドーパントは580nm以下に最大発光波長を有するものが好ましい。
Figure JPOXMLDOC01-appb-I000011
 
 発光層のウェットプロセスによる製膜方法について特に制限はないが、スピンコート法、スプレー法、ディップ法、ドクターブレード法などのウェットプロセスによる製膜を選択してもよい。第一のホスト材料と第二のホスト材料を使用することにより、特にウェットプロセスによる製膜の際のホスト材料の結晶化を抑制することができ、素子性能を高めることができる。
 ここで、ウェットプロセスは、ホスト材料等の有機EL素子材料を溶媒に溶解させた塗液を作り、これを基板又は基板上の有機層の上に塗布、乾燥する方法である。
 塗液の作製方法は、例えば、ホスト材料等の有機EL素子材料と溶媒を混合・攪拌することで作製することができる。ここで、加熱、超音波照射など材料の溶解を促す処理を行ってもよい。塗液の濃度は特に制限はないが、0.01~50wt%が好ましく、より好ましくは0.1~10wt%である。また、必要に応じて、増粘剤、消泡剤、界面活性剤などを添加してもよい。
 上記塗液を用いた製膜方法としては特に制限はないが、スピンコート法、スリットコート法、キャピラリーコート法、スプレー法、インクジェット法、ディップ法、ドクターブレード法などが挙げられる。乾燥方法としては特に制限はなく、例えば、ホットプレート上で基板を加熱する方法が挙げられる。乾燥温度は、使用する溶媒により異なるが、好ましくは0~200℃であり、より好ましくは50~150℃である。
 塗液に使用する溶媒としては、発光層の構成材料である第一のホスト材料、第二のホスト材料およびドーパント材料の混合物を、固形物が残らないように溶解させることができれば特に制限はなく、2種以上の溶媒を混合して使用してもよい。融点が0℃以下かつ沸点が30℃以上であることが好ましい。
 以下に、溶媒の具体例を挙げるが、何らこれらに限定されるものではない。シクロヘキサン、四塩化炭素、テトラクロロエタン、オクチルベンゼン、ドデシルベンゼン、トルエン、キシレン、メシチレン、インダン、メチルナフタレン、デカリン、クロロベンゼン、ジクロロベンゼン、N-メチル-2-ピロリジノン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジイソプロピルエーテル、ジブチルエーテル、エチレングリコール、プロピレングリコール、トリエチレングリコール、ジエチレングリコール、グリセロール、アニソール、フェネトール、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジブチルエーテル、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソホロン、アセトン、シクロヘキサノン、シクロペンタノン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、2-ヘプタノン、テトラロン、クロロホルム、ジクロロメタン、ジクロロエタン、ガンマブチロラクトン、酢酸エチル、炭酸ジエチル、炭酸プロピレン、キノリン、ピリジン、4-エチルモルホリン、アセトニトリル、ブチロニトリル、ニトロエタン、ニトロベンゼン、フルオロベンゼン、ヘキサメチルジシロキサン、ブチルセロソルブ、二硫化炭素、テルピネオール、及びイオン交換水(純水)。
 次に、本発明の有機EL素子における発光層以外の各層について説明する。
 基板1としては、一般的な有機電界発光素子で使われる基板であれば特に制限はないが、透明性、表面の平滑性、取扱の容易性及び防水性に優れた有機基板又は透明プラスチック基板、ガラス基板を用いることが好ましい。
 陽極2は、一般的な有機電界発光素子で使われる材料であれば特に制限はなく、透明かつ電気伝導性に優れた金属又は金属酸化物が好ましい。例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化スズ(SnO)、酸化亜鉛(ZnO)などを使用することができる。
 正孔注入層3は、陽極の上部にHIL物質を膜厚5~500nmの薄膜状に形成される。HIL物質は、一般的な有機電界発光素子で使われる材料であれば特に制限はなく、例えば、銅フタロシアニン(CuPc)又はポリ(3,4-エチレンジオキシ)チオフェン・ポリスチレンスルホン酸(PEDOT・PSS)等を使用することができる。薄膜形成方法について特に制限はなく、真空蒸着法に代表される蒸着プロセスはもとより、スピンコート法、スリットコート法、キャピラリーコート法、スプレー法、インクジェット法、ディップ法、ドクターブレード法などのウェットプロセスによる製膜方法を使用することができる。
 正孔輸送層4は、正孔注入層の上部にHTL物質を膜厚5~500nmの薄膜状に形成される。HTL材料としては、一般的な有機電界発光素子で使われる材料であれば特に制限はなく、例えば、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N ’-ジフェニル(1,1’-ビフェニル)-4,4’-ジアミン(α-NPD)を使用することができる。また、ポリビニルカルバゾール(PVK)等の高分子材料を使用することもできる。薄膜形成方法について特に制限はなく、真空蒸着法に代表される蒸着プロセスはもとより、スピンコート法、スリットコート法、キャピラリーコート法、スプレー法、インクジェット法、ディップ法、ドクターブレード法などのウェットプロセスによる製膜方法を使用することができる。
 電子輸送層6は、発光層の上部にETL物質を膜厚5~500nmの薄膜状に形成する。ETL物質としては、一般的な有機電界発光素子で使われる材料であれば特に制限はなく、例えば、2-(4-ビフェニル)-5-(p-tブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、2,9―ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)、バソフェナントロリン(Bphen)、トリス(8-ヒドロキシキノレート)アルミニウム(Alq3)、ビス(2-メチル-8-ヒドロキシキノレート)-(4-フェニルフェノレート)アルミニウム(Balq)を使用することができる。薄膜形成方法について特に制限はなく、真空蒸着法に代表される蒸着プロセスはもとより、スピンコート法、スリットコート法、キャピラリーコート法、スプレー法、インクジェット法、ディップ法、ドクターブレード法などのウェットプロセスによる製膜方法を使用することができる。
 陰極7は、一般的な有機電界発光素子で使われる材料であれば特に制限はなく、電気伝導性に優れた金属材料が好ましい。例えば、Al、Cs、Erなどの金属や、MgAg、AlLi、AlLi、AlMg、CsTeなどの合金、あるいはCa/Al、MgAl、Li/Al、Cs/Al、Cs2O/Al、LiF/Al、ErF3/Alなどの積層構造体を使用することができる。
 以下に、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例の記載に何ら限定されるものではない。
 なお、以下の合成例1~5で使用するインドロ[2,3-a]カルバゾール、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン、及び実施例1の化合物2-1については、WO08―056746号公報に記載の方法に従い合成した。また、化合物3-1については、WO07―063754号公報に記載の方法に従い合成した。
合成例1
化合物2-9の合成
 脱気窒素置換した1L四ッ口フラスコに、インドロ[2,3-a]カルバゾール28.53g(111.4mmol)、炭酸カリウム21.56g(156.02mmol)、銅粉末35.41g(557.21mmol)、1-ブロモ-3,5-ジ-t-ブチルベンゼン30.00g(111.4mmol)、テトラエチレングリコールジメチルエーテル450gを入れ、内温205℃で24時間攪拌した。室温まで冷却後、ろ過助剤を用いて固形分をろ別し、ろ液を減圧下濃縮した。次いで、シリカゲルカラムにて分画・精製し、白色固体7.42gを得た。この白色固体のFD-MSスペクトルは、445(MH+、base)であった。
 次に、脱気窒素置換した300mlナスフラスコに、得られた白色固体7.42g(16.71mmol)、脱水ジメチルホルムアミド150gを入れ、水素化ナトリウム1.36g(58.8%inオイル、33.4mmol)を数回に分けて投入した。水素発生がおさまった後、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン4.69g(17.55mmol)の50gジメチルホルムアミド溶液を滴下した。滴下終了後、室温下で48時間攪拌した。蒸留水で過剰の水素化ナトリウムをクエンチした。この反応混液を、激しく攪拌している蒸留水1000g中に滴下し、析出した固形物をろ取した。この固形分をメタノールで洗浄した後、減圧下80℃で一昼夜乾燥し、粗生成物6.29gを得た。この粗生成物を再結晶精製し、白色結晶3.36gを得た。この白色結晶のFD-MSスペクトルを測定したところ、675(M+、base)のピークが観測され、この白色結晶が化合物2-9であることを確認した。
合成例2 
化合物2-10の合成
 脱気窒素置換した500mL三ッ口フラスコに、インドロ[2,3-a]カルバゾール9.84g(38.4mmol)、炭酸カリウム15.94g(115.33mmol)、銅粉末12.22g(192.22mmol)、4-t-ブチルヨードベンゼン10.00g(38.4mmol)、1,3-ジメチル-2-イミダゾリジノン150gを入れ、内温205℃で20時間攪拌した。室温まで冷却後、ろ過助剤を用いて固形分をろ別し、ろ液を減圧下濃縮した。ろ液を分液ロートに移し、酢酸エチル700ml、10%塩酸を加えて、0.5時間静置し、下層を廃棄した。上層を蒸留水、飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、溶媒を減圧留去し、褐色固体を得た。シリカゲルカラムにて精製後、ジクロロメタン-エタノールで再結晶を行い、白色結晶6.30gを得た。この白色固体のFD-MSスペクトルは、389(MH+、base)であった。
 次に、脱気窒素置換した1Lナスフラスコに、得られた白色固体6.30g(16.24mmol)、脱水ジメチルホルムアミド200gを入れ、水素化ナトリウム0.72g(60.2%inオイル、17.86mmol)を数回に分けて投入した。水素発生がおさまった後、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン4.78g(17.86mmol)の50gジメチルホルムアミド溶液を滴下した。滴下終了後、室温下で72時間攪拌した。蒸留水で過剰の水素化ナトリウムをクエンチした。この反応混液を、激しく攪拌している蒸留水260g中に滴下し、析出した固形物をろ取した。この固形分をメタノールで50℃で3時間リスラリー洗浄した後、減圧下80℃で一昼夜乾燥し、粗生成物8.39gを得た。この粗生成物をジクロロメタンで再結晶精製し、微黄色結晶3.31gを得た。この微黄色結晶のFD-MSスペクトルにて、620(MH+、base)のピークが観測され、この微黄色結晶が化合物2-10であることを確認した。
合成例3
化合物3-4の合成
 脱気窒素置換した1L四ツ口フラスコに、インドロ[2,3-a]カルバゾール45.0g(0.176mol)、炭酸カリウム72.9g(0.527mol)、銅粉末55.9g(0.879mol)、1,3-ジヨードベンゼン29.0g(0.088mol)、テトラエチレングリコールジメチルエーテル638gを入れ、内温205℃で18時間攪拌した。室温まで冷却後、ろ過助剤を用いて固形分をろ別した。得られたろ液を分液ロートに移し、10重量%塩酸1400gを加えた後、酢酸エチル2100gで抽出した。酢酸エチル層を蒸留水、飽和食塩水で順に洗浄した後、硫酸マグネシウムで乾燥、吸水した硫酸マグネシウムを吸引ろ過で除去後、溶媒を減圧留去した。残渣をジクロロメタンリスラリー、トルエンリスラリーを順に行い、減圧下80℃で乾燥し、白色固体29.08gを得た。この白色固体のFD-MSスペクトルは、587(MH+、base)であった。
 次に、脱気窒素置換した1L四ッ口フラスコに、得られた白色固体27.09g(46.23mmol)、脱水ジメチルホルムアミド600gを入れ、水素化ナトリウム7.40g(60.0%inオイル、0.185mol)を数回に分けて投入した。水素発生がおさまった後、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン25.97g(0.097mol)の200gジメチルホルムアミド溶液を滴下した。滴下終了後、室温下で20時間攪拌した。蒸留水で過剰の水素化ナトリウムをクエンチした。次いで蒸留水400gを装入し、析出した固形物をろ取した。この固形物をトルエンで再結晶し、微黄色結晶12.69gを得た。この微黄色結晶のFD-MSスペクトルを測定したところ、1049(MH+、base)のピークが観測され、この白色結晶が化合物3-4であることを確認した。
合成例5 
化合物3-9の合成
 脱気窒素置換した2L四ッ口フラスコに、1,3-ジヨードベンゼン36.96g(0.112mol)、3-ブロモフェニルボロン酸45.00g(0.224mol)、テトラキス(トリフェニルホスフィン)パラジウム(0)4.27g(3.7mmol)、エタノール225ml、トルエン603mlを入れ、室温で攪拌した。この溶液に、炭酸ナトリウム142.2g(1.342mol)、蒸留水297gを装入し、内温75℃にて19時間攪拌した。室温まで冷却し、水層を抜き出した後、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥、吸水した硫酸マグネシウムを吸引ろ過で除去後、溶媒を減圧留去した。シリカゲルカラムにて精製し、茶色油状物42.13gを得た。これを0.2kPaの減圧下にて蒸留精製し、留出温度220~234℃を分画し、無色油状物21.55gを得た。FD-MSスペクトルにて、386、388、390(M+、base、1:2:1強度比)のピークが観測され、1,3-ビス(3-ブロモフェニル)ベンゼンであることを確認した。
 脱気窒素置換した500mL三ツ口フラスコに、インドロ[2,3-a]カルバゾール20.0g(78.1mmol)、炭酸カリウム31.11g(225.1mmol)、銅粉末24.85g(391.0mmol)、1,3-ビス(3-ブロモフェニル)ベンゼン15.21g(39.2mmol)、1,3-ジメチル-2-イミダゾリジノン300gを入れ、内温210℃で23時間攪拌した。室温まで冷却後、ろ過助剤を用いて固形分をろ別した。得られたろ液を分液ロートに移し、10重量%塩酸1000mlを加えた後、酢酸エチル700gで抽出した。酢酸エチル層を飽和食塩水で順に洗浄した後、硫酸マグネシウムで乾燥、吸水した硫酸マグネシウムを吸引ろ過で除去後、溶媒を減圧留去した。残渣をジクロロメタンリスラリー洗浄を行い、減圧下80℃で乾燥し、白色固体13.24gを得た。この白色固体のFD-MSスペクトルは、738(M+、base)であった。
 次に、脱気窒素置換した1L四ッ口フラスコに、上記白色固体13.15g(17.82mmol)、1,3-ジメチル-2-イミダゾリジノン280gを入れ、水素化ナトリウム2.84g(60.2%inオイル、71.28mmol)を数回に分けて投入した。水素発生がおさまった後、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン11.92g(44.56mmol)の60gの1,3-ジメチル-2-イミダゾリジノン溶液を滴下した。滴下終了後、室温下で20時間攪拌した。蒸留水で過剰の水素化ナトリウムをクエンチした。反応混液を分液ロートに移し、蒸留水700gを入れた後、酢酸エチル700gで抽出した。酢酸エチル層を蒸留水700gで2回洗浄し、硫酸マグネシウムで乾燥、吸水した硫酸マグネシウムを吸引ろ過で除去後、溶媒を減圧留去した。シリカゲルカラムにて精製後、減圧下80℃で一夜乾燥し、アモルファス状白色固体10.72gを得た。この固体をテトラヒドロフラン-アセトニトリルにて再結晶精製を行い、微黄色結晶3.16gを得た。この微黄色結晶のFD-MSスペクトルを測定したところ、1201(MH+、base)のピークが観測され、この結晶が化合物3-9であることを確認した。
合成例6 
化合物3-14の合成
 WO07―063754号公報記載の化合物3-1の合成方法において、フェニルボロン酸を(3,5-ジフェニル)フェニルボロン酸に変更した以外は同様にして、化合物3-14を合成した。FD-MSスペクトルを測定したところ、970(M+、base)のピークが観測され、化合物3-14であることを確認した。
合成例7
化合物Aの合成
Figure JPOXMLDOC01-appb-I000012
 
 特開2005-239703号公報に記載の方法と同様にして、化合物Aを合成した。FD-MSスペクトルを測定したところ、524(M+、base)のピークが観測され、化合物Aであることを確認した。
合成例8
化合物Bの合成
Figure JPOXMLDOC01-appb-I000013
 
 WO08―056746号公報の実施例4記載の方法に従い、化合物Bを合成した。
合成例9
化合物Cの合成
Figure JPOXMLDOC01-appb-I000014
 
 WO07―063754号公報記載の化合物3-1の合成方法において、フェニルボロン酸をピレンー2-イルボロン酸に変更した以外は同様にして、化合物Cを合成した。FD-MSスペクトルを測定したところ、941(M+、base)のピークが観測され、化合物Cであることを確認した。
参考例1 
 前述の合成例で得た化合物2-9、2-10、3-4、3-9、3-14、化合物2-1、3-1、及び化合物A、B、Cについて、IP、EA及びT1値を算出した。
 IP、EA、T1値は、分子軌道法プログラムGaussian03rev.C02を使用して、密度汎関数理論(DFT)法を用いた構造最適化計算により計算した。IP値、EA値は、B3LYP/6-31G*レベルの構造最適化計算を行うことにより計算されたHOMOエネルギー、LUMOエネルギーの符号をかえた値(eV単位換算値)とした。T1値は、B3LYP/6-31G*レベルの構造最適化計算を行った後、最適化された構造を基にTD-B3LYP/6-31G*レベルで励起3重項の最も低い励起エネルギーを算出した。各化合物の計算値は、表1に示した。
Figure JPOXMLDOC01-appb-T000015
 
実施例1(比較)
 図1において正孔輸送層を省略し、電子注入層を追加した構成の有機EL素子を作製した。UVオゾン洗浄及び乾燥工程を経た膜厚150nmのITOからなる陽極が形成されたガラス基板上に、正孔注入層として、PEDOT・PSS(Baytron P CH8000)の20重量%エタノール溶液を、回転数3000rpmで60秒間スピンコート製膜し、200℃で60分間乾燥した。このときの膜厚は25nmであった。次に、発光層として、ホスト材料が化合物2-1(38.0重量部)、燐光ドーパント材料がトリス(2-フェニルピリジン)イリジウム(Ir(ppy)3)(2.0重量部)、ジクロロメタン(2840重量部)の混合溶液を、回転数4000rpmで30秒間スピンコート製膜し、120℃にて30分間乾燥した。このときの発光層の膜厚は70nmであった。次に、電子輸送層として、トリス(8-ヒドロキシキノリン)アルミニウム(Alq3)を真空蒸着法にて、蒸着レート0.1nm/secにて35nmの厚さで製膜した。更に電子注入層として、真空蒸着法にてフッ化リチウム(LiF)を0.5nmの厚さに形成した。最後に電子注入層上に電極として、真空蒸着法にてアルミニウム(Al)を170nmの厚さに形成し、有機EL素子を作製した。
 得られた有機EL素子の初期特性として、素子に外部電源を接続して100mA/cmの電流が流れるように直流電圧を印加し、そのときの電流効率(cd/A)を測定した。また、素子の寿命特性として、定電流量20mA/cmとなるように直流電圧を印加し、初期輝度が半減するまでの時間(輝度半減期)を測定した。それを初期輝度1000cd/mの場合に換算した。電流効率は5.7cd/A、輝度半減期は32hrであった。
実施例2 
 ホスト材料として、第一のホスト材料と第二のホスト材料を使用し、第一のホスト材料として化合物2-1(17.3重量部)と第二のホスト材料として化合物2-9(20.7重量部)を使用し、70nm膜厚の発光層を得た以外は、実施例1と同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例3
 実施例2において、第一のホスト材料として化合物2-1(18.0重量部)と第二のホスト材料が化合物2-10(20.0重量部)を使用し、70nm膜厚の発光層を得た以外は、同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例4
 実施例2において、第一のホスト材料として化合物2-1(13.3重量部)と第二のホスト材料として化合物3-4(24.7重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例5
 実施例2において、第一のホスト材料として化合物2-1(12.1重量部)と第二のホスト材料として化合物3-9(25.9重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例6 
 実施例2において、第一のホスト材料として化合物2-1(23.6重量部)と第二のホスト材料として化合物3-4(14.4重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例7(比較)
 実施例2において、第一のホスト材料として化合物2-1(19.7重量部)と第二のホスト材料として化合物A(18.3重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例8(比較)
 実施例2において、第一のホスト材料として化合物2-1(16.7重量部)と第二のホスト材料として化合物B(21.3重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例9(比較)
 実施例2において、第一のホスト材料として化合物2-1(14.2重量部)と第二のホスト材料として化合物C(23.8重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例10(比較)
 実施例1において、ホスト材料として化合物3-1を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。電流効率は10.8cd/A、輝度半減期は48hrであった。
実施例11
 実施例2において、第一のホスト材料として化合物3-1(16.6重量部)と第二のホスト材料として化合物3-4(21.4重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例12
 実施例2において、第一のホスト材料として化合物3-1(20.8重量部)と第二のホスト材料として化合物2-9(17.2重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例13
 実施例2において、第一のホスト材料として化合物3-1(17.4重量部)と第二のホスト材料として化合物3-14(20.6重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例14(比較)
 実施例2において、第一のホスト材料として化合物3-1(14.8重量部)と第二のホスト材料として化合物A(23.2重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例15(比較)
 実施例2において、第一のホスト材料として化合物3-1(20.2重量部)と第二のホスト材料として化合物B(17.8重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
実施例16(比較)
 実施例2において、第一のホスト材料として化合物3-1(17.7重量部)と第二のホスト材料として化合物C(20.3重量部)を使用し、70nm膜厚の発光層を得た以外は、全て同様の操作を行って有機EL素子を作製し、素子評価を行った。
 表2に、実施例1~実施例6の結果を示す。各実施例の電流効率及び輝度半減期は、実施例1を100としたときの相対値で表している。表中、H1は第一のホスト材料を示し、H2は第二のホスト材料を示す。
Figure JPOXMLDOC01-appb-T000016
 
 表3に、実施例10~実施例16の結果を示す。各実施例の電流効率及び輝度半減期は、実施例10の値を100としたときの相対値で表している。表中、H1は第一のホスト材料を示し、H2は第二のホスト材料を示す。
Figure JPOXMLDOC01-appb-T000017
 
産業上の利用の可能性
 本発明によれば、電子・正孔の注入バランスと効率的な燐光発光機構を保ちつつ、素子の作動時に発生する微弱な熱による材料の結晶化を抑制することにより、信頼性の高い有機電界発光素子を提供することができる。特に、ウェットプロセス製膜により発光層を形成する場合、その乾燥工程における結晶化を抑制することにより、高輝度率かつ信頼性の高い有機電界発光素子を提供することができる。本発明の有機EL素子は、良好な発光特性を長期間保持することができる。

Claims (7)

  1.  陽極及び陰極の間にウェットプロセスにより製膜された発光層を有する有機電界発光素子であって、発光層がりん光ドーパント材料と分子量10,000以下のホスト材料を含有し、前記ホスト材料は第一のホスト材料と第一のホスト材料とは異なる第二のホスト材料からなり、第一のホスト材料と第二のホスト材料の重量比が90:10~10:90であり、第一のホスト材料と第二のホスト材料のイオン化ポテンシャル(IP)値の差が0.1eV以下、かつ電子親和力(EA)値の差が0.1eV以下、かつ三重項エネルギー(T1)値の差が0.1eV以下であることを特徴とする有機電界発光素子。
  2.  第一のホスト材料又は第二のホスト材料が、インドロカルバゾール誘導体及びトリアジン誘導体からなる群から選ばれる複素環化合物である請求項1に記載の有機電界発光素子。
  3.  第一のホスト材料又は第二のホスト材料が、下記式(1)で表わされる複素環化合物である請求項1記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000001
     
     式(1)中、環Aは隣接環と任意の位置で縮合する式(1a)で表される芳香環を表し、環Bは隣接環と任意の位置で縮合する式(1b)で表される複素環を表す。式(1)、(1a)中のRは、独立に水素又は1価の置換基であり、隣接する置換基が一体となって環を形成してもよい。式(1b)中のLは、独立に芳香族炭化水素基又は芳香族複素環基を示す。Lは、n価の芳香族炭化水素基又は芳香族複素環基を示し、nは1~4である。nが2以上の場合は、環A及びBを含む縮合複素環は同一であっても異なっていても良い。
  4.  第一のホスト材料又は第二のホスト材料が、下記式(2)又は(3)で表わされる複素環化合物である請求項1記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000002
     
     式(2)中、環A、環B、及びRは式(1)と同意であり、Xは各々独立にC-H、N又はC-Lの何れかである。ここで、Lは独立に芳香族炭化水素基又は芳香族複素環基を表す。
    Figure JPOXMLDOC01-appb-I000003
     
     式(3)中、環A、環B、及びRは式(1)と同意であり、Arは独立にフェニレン基又は2価の芳香族複素環基を表す。mは1~5である。
  5.  第一のホスト材料と第二のホスト材料が、式(2)又は(3)で表される複素環化合物から選ばれる2種の複素環化合物である請求項4記載の有機電界発光素子。
  6.  第一のホスト材料と第二のホスト材料の重量比が75:25~25:75である請求項1に記載の有機電界発光素子。
  7.  陽極及び陰極の間に発光層を含む有機層を有し、発光層がりん光ドーパント材料と分子量10,000以下のホスト材料を含有する有機電界発光素子の製造方法であって、ホスト材料とりん光ドーパント材料を用意すること、ここで、ホスト材料が、第一のホスト材料と第一のホスト材料とは異なる第二のホスト材料からなり、第一のホスト材料と第二のホスト材料の重量比が90:10~10:90であり、第一のホスト材料と第二のホスト材料のイオン化ポテンシャル(IP)値の差が0.1eV以下、かつ電子親和力(EA)値の差が0.1eV以下、かつ三重項エネルギー(T1)値の差が0.1eV以下であること、ホスト材料とりん光ドーパント材料を溶媒に溶解して塗液を形成すること、この塗液を発光層に隣接する有機層上に塗布、乾燥して製膜する工程を含むことを特徴とする有機電界発光素子の製造方法。
PCT/JP2010/052411 2009-02-27 2010-02-18 有機電界発光素子 WO2010098246A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080009261.XA CN102326273B (zh) 2009-02-27 2010-02-18 有机电致发光元件
JP2011501562A JP5433677B2 (ja) 2009-02-27 2010-02-18 有機電界発光素子
US13/201,610 US8795852B2 (en) 2009-02-27 2010-02-18 Organic electroluminescent device with host materials having same or similar IP, EA and T1 values
EP10746127.9A EP2403028B1 (en) 2009-02-27 2010-02-18 Organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009046473 2009-02-27
JP2009-046473 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098246A1 true WO2010098246A1 (ja) 2010-09-02

Family

ID=42665455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052411 WO2010098246A1 (ja) 2009-02-27 2010-02-18 有機電界発光素子

Country Status (7)

Country Link
US (1) US8795852B2 (ja)
EP (1) EP2403028B1 (ja)
JP (1) JP5433677B2 (ja)
KR (1) KR101596906B1 (ja)
CN (1) CN102326273B (ja)
TW (1) TWI471404B (ja)
WO (1) WO2010098246A1 (ja)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035853A1 (ja) * 2010-09-13 2012-03-22 新日鐵化学株式会社 含窒素芳香族化合物、有機半導体材料及び有機電子デバイス
WO2012087955A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Compositions for electronic applications
WO2013002053A1 (ja) * 2011-06-27 2013-01-03 新日鉄住金化学株式会社 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
WO2013042446A1 (ja) * 2011-09-21 2013-03-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2013062075A1 (ja) * 2011-10-26 2013-05-02 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
JPWO2011080972A1 (ja) * 2009-12-28 2013-05-09 新日鉄住金化学株式会社 有機電界発光素子
WO2013069338A1 (ja) * 2011-11-11 2013-05-16 三菱化学株式会社 有機電界発光素子及び有機電界発光デバイス
EP2610937A1 (en) * 2011-12-26 2013-07-03 Samsung Display Co., Ltd. Organic light emitting device with enhanced lifespan
WO2013146645A1 (ja) * 2012-03-30 2013-10-03 新日鉄住金化学株式会社 有機電界発光素子
EP2665342A1 (en) * 2011-01-11 2013-11-20 Mitsubishi Chemical Corporation Composition for organic electroluminescent element, organic electroluminescent element, display device, and illuminator
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
JP2014500612A (ja) * 2010-10-14 2014-01-09 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセントデバイス用配合物
CN103620808A (zh) * 2011-06-24 2014-03-05 出光兴产株式会社 有机电致发光元件
JP2014509068A (ja) * 2010-12-20 2014-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子技術応用のための電気活性組成物
JP2014511568A (ja) * 2011-02-14 2014-05-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性組成物
WO2014097813A1 (ja) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子
WO2014122937A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 有機エレクトロルミネッセンス素子
WO2015020217A1 (ja) * 2013-08-09 2015-02-12 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
JP2015207657A (ja) * 2014-04-21 2015-11-19 新日鉄住金化学株式会社 有機電界発光素子
JP2016009824A (ja) * 2014-06-26 2016-01-18 新日鉄住金化学株式会社 有機電界発光素子
WO2016042997A1 (ja) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子
JP2016072378A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
JP2016072377A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
WO2016158363A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子
US9496506B2 (en) 2009-10-29 2016-11-15 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
CN106935712A (zh) * 2015-12-29 2017-07-07 三星显示有限公司 有机发光器件
WO2017199622A1 (ja) * 2016-05-19 2017-11-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20170137036A (ko) 2015-03-30 2017-12-12 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
JP2018501660A (ja) * 2014-12-31 2018-01-18 北京維信諾科技有限公司 有機エレクトロルミネッセンス素子
US9893290B2 (en) 2013-07-01 2018-02-13 Cheil Industries, Inc. Composition and organic optoelectric device and display device
WO2018123783A1 (ja) * 2016-12-27 2018-07-05 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
US10050212B2 (en) 2013-10-11 2018-08-14 Cheil Industries, Inc. Organic optoelectric device and display device
US10308735B2 (en) 2014-12-18 2019-06-04 Samsung Electronics Co., Ltd. Material for organic light-emitting device and organic light-emitting device including the same
US10319912B2 (en) 2015-01-29 2019-06-11 Samsung Electronics Co., Ltd. Charge-transporting material and organic light-emitting device including the same
JP2021010021A (ja) * 2013-08-20 2021-01-28 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料、及びデバイス
WO2021200243A1 (ja) 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
JP2023515163A (ja) * 2020-03-03 2023-04-12 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477613B1 (ko) * 2009-03-31 2014-12-30 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전자 소자
KR20110009920A (ko) * 2009-07-23 2011-01-31 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101556822B1 (ko) * 2013-02-25 2015-10-01 주식회사 두산 유기 전계 발광 소자
US9859508B2 (en) * 2013-02-28 2018-01-02 Nippon Kayaku Kabushiki Kaisha Condensed polycyclic aromatic compound and use thereof
KR102050484B1 (ko) 2013-03-04 2019-12-02 삼성디스플레이 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
CN103232843B (zh) * 2013-04-18 2015-02-25 烟台万润精细化工股份有限公司 一种电致发光材料及其应用
KR102107106B1 (ko) 2013-05-09 2020-05-07 삼성디스플레이 주식회사 스티릴계 화합물 및 이를 포함한 유기 발광 소자
JP2014227399A (ja) * 2013-05-24 2014-12-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アリールアミン誘導体及びそれを正孔輸送材料に用いた有機電界発光素子
KR102269131B1 (ko) 2013-07-01 2021-06-25 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
KR101686078B1 (ko) * 2013-08-12 2016-12-13 제일모직 주식회사 조성물, 유기 광전자 소자 및 표시 장치
KR101671561B1 (ko) * 2013-09-25 2016-11-01 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN104518121B (zh) * 2013-09-30 2017-08-01 北京鼎材科技有限公司 一种有机电致发光器件
CN104518167B (zh) * 2013-09-30 2017-08-01 北京鼎材科技有限公司 一种有机电致发光器件
US10062850B2 (en) 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
KR101802861B1 (ko) 2014-02-14 2017-11-30 삼성디스플레이 주식회사 유기 발광 소자
KR20150132795A (ko) 2014-05-16 2015-11-26 삼성디스플레이 주식회사 유기 발광 소자
KR102327086B1 (ko) 2014-06-11 2021-11-17 삼성디스플레이 주식회사 유기 발광 소자
KR102273047B1 (ko) * 2014-06-30 2021-07-06 삼성디스플레이 주식회사 유기 발광 소자
KR102256932B1 (ko) 2014-09-18 2021-05-28 삼성디스플레이 주식회사 유기 발광 소자
KR102321379B1 (ko) 2014-09-24 2021-11-04 삼성디스플레이 주식회사 유기 발광 소자
KR102432080B1 (ko) * 2014-12-08 2022-08-16 엘지디스플레이 주식회사 유기전계발광소자
EP3032605B1 (en) 2014-12-08 2019-08-21 LG Display Co., Ltd. Organic light emitting display device
WO2016105036A1 (ko) * 2014-12-22 2016-06-30 주식회사 두산 유기 전계 발광 소자
KR102343145B1 (ko) 2015-01-12 2021-12-27 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR20170102014A (ko) * 2015-01-13 2017-09-06 광저우 차이나레이 옵토일렉트로닉 머티리얼즈 엘티디. 화합물, 이를 포함하는 혼합물, 조성물 및 유기 전자 장치
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) * 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
CN106328816B (zh) * 2015-06-16 2018-11-13 昆山国显光电有限公司 一种有机电致发光器件及其制备方法
WO2017080323A1 (zh) * 2015-11-12 2017-05-18 广州华睿光电材料有限公司 印刷组合物及其应用
CN105870350B (zh) * 2016-06-17 2018-01-30 武汉华星光电技术有限公司 有机发光器件
CN105895820B (zh) * 2016-06-21 2019-01-22 武汉华星光电技术有限公司 有机发光器件及其显示器
KR20180007617A (ko) * 2016-07-13 2018-01-23 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20180010533A (ko) * 2016-07-21 2018-01-31 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
JP6894913B2 (ja) * 2016-09-30 2021-06-30 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
CN106916171B (zh) * 2017-01-11 2019-02-26 华南师范大学 含有吲哚并[3,2-b]咔唑结构单元的压致变色材料及其应用
EP3571730B1 (en) * 2017-01-18 2022-09-21 Lunalec AB Light-emitting electrochemical cell, method for producing and method for operating same
JP7124818B2 (ja) * 2017-03-21 2022-08-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
KR20180137772A (ko) 2017-06-19 2018-12-28 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
WO2020035365A1 (en) * 2018-08-13 2020-02-20 Cynora Gmbh Organic molecules for optoelectronic devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
KR20200115795A (ko) 2019-03-26 2020-10-08 삼성디스플레이 주식회사 유기 발광 소자 및 전자 장치

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354279A (ja) 1989-07-21 1991-03-08 Catalysts & Chem Ind Co Ltd シリカ系被膜形成用塗布液の製造方法
JP2002203674A (ja) 2000-10-30 2002-07-19 Fuji Name Plate Kk 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2003068466A (ja) 2001-06-15 2003-03-07 Canon Inc 発光素子及び発光素子の製造方法
JP2004335204A (ja) 2003-05-02 2004-11-25 Toyama Univ 有機電界発光素子の作製方法、有機電界発光素子、及び有機電界発光層
JP2005239703A (ja) 2004-01-30 2005-09-08 Koei Chem Co Ltd 2,7−ビス(カルバゾール−9−イル)フルオレン類。
JP2006135295A (ja) 2004-11-05 2006-05-25 Samsung Sdi Co Ltd 有機電界発光素子
JP2006148045A (ja) 2004-11-17 2006-06-08 Samsung Sdi Co Ltd 低分子有機電界発光素子及びその製造方法
WO2006112265A1 (ja) * 2005-04-14 2006-10-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
JP2008288344A (ja) * 2007-05-16 2008-11-27 Nippon Hoso Kyokai <Nhk> 有機el素子
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354279A (ja) 1998-06-09 1999-12-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2002089210A1 (en) * 2001-04-26 2002-11-07 Koninklijke Philips Electronics N.V. Organic electroluminescent device and a method of manufacturing thereof
KR100695106B1 (ko) * 2002-12-24 2007-03-14 삼성에스디아이 주식회사 청색 발광 고분자 및 이를 채용한 유기 전계 발광 소자
US7795801B2 (en) * 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
US20060194076A1 (en) * 2005-02-28 2006-08-31 Fuji Photo Film Co., Ltd. Organic electroluminescent element
US8034465B2 (en) * 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354279A (ja) 1989-07-21 1991-03-08 Catalysts & Chem Ind Co Ltd シリカ系被膜形成用塗布液の製造方法
JP2002203674A (ja) 2000-10-30 2002-07-19 Fuji Name Plate Kk 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2003068466A (ja) 2001-06-15 2003-03-07 Canon Inc 発光素子及び発光素子の製造方法
JP2004335204A (ja) 2003-05-02 2004-11-25 Toyama Univ 有機電界発光素子の作製方法、有機電界発光素子、及び有機電界発光層
JP2005239703A (ja) 2004-01-30 2005-09-08 Koei Chem Co Ltd 2,7−ビス(カルバゾール−9−イル)フルオレン類。
JP2006135295A (ja) 2004-11-05 2006-05-25 Samsung Sdi Co Ltd 有機電界発光素子
JP2006148045A (ja) 2004-11-17 2006-06-08 Samsung Sdi Co Ltd 低分子有機電界発光素子及びその製造方法
WO2006112265A1 (ja) * 2005-04-14 2006-10-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
JP2008288344A (ja) * 2007-05-16 2008-11-27 Nippon Hoso Kyokai <Nhk> 有機el素子
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2403028A4

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496506B2 (en) 2009-10-29 2016-11-15 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
JP5596706B2 (ja) * 2009-12-28 2014-09-24 新日鉄住金化学株式会社 有機電界発光素子
JPWO2011080972A1 (ja) * 2009-12-28 2013-05-09 新日鉄住金化学株式会社 有機電界発光素子
WO2012035853A1 (ja) * 2010-09-13 2012-03-22 新日鐵化学株式会社 含窒素芳香族化合物、有機半導体材料及び有機電子デバイス
CN103108875A (zh) * 2010-09-13 2013-05-15 新日铁住金化学株式会社 含氮芳香族化合物、有机半导体材料及有机电子器件
JP2014500612A (ja) * 2010-10-14 2014-01-09 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセントデバイス用配合物
JP2017011275A (ja) * 2010-10-14 2017-01-12 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセントデバイス用配合物
WO2012087955A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Compositions for electronic applications
US9293716B2 (en) 2010-12-20 2016-03-22 Ei Du Pont De Nemours And Company Compositions for electronic applications
JP2014509067A (ja) * 2010-12-20 2014-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子技術応用のための組成物
JP2014509068A (ja) * 2010-12-20 2014-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子技術応用のための電気活性組成物
EP2665342A1 (en) * 2011-01-11 2013-11-20 Mitsubishi Chemical Corporation Composition for organic electroluminescent element, organic electroluminescent element, display device, and illuminator
KR20190126454A (ko) * 2011-01-11 2019-11-11 미쯔비시 케미컬 주식회사 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
KR102101248B1 (ko) * 2011-01-11 2020-04-16 미쯔비시 케미컬 주식회사 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
KR20140043048A (ko) * 2011-01-11 2014-04-08 미쯔비시 가가꾸 가부시끼가이샤 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
KR101983401B1 (ko) * 2011-01-11 2019-05-28 미쯔비시 케미컬 주식회사 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
EP2665342A4 (en) * 2011-01-11 2017-09-13 Mitsubishi Chemical Corporation Composition for organic electroluminescent element, organic electroluminescent element, display device, and illuminator
US9899606B2 (en) 2011-01-11 2018-02-20 Mitsubishi Chemical Corporation Composition for organic electroluminescent element, organic electroluminescent element, display and lighting
EP2676305A4 (en) * 2011-02-14 2015-11-11 Du Pont ELECTROACTIVE COMPOSITION
JP2014511568A (ja) * 2011-02-14 2014-05-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性組成物
KR101573125B1 (ko) 2011-02-14 2015-11-30 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 조성물
CN103620808A (zh) * 2011-06-24 2014-03-05 出光兴产株式会社 有机电致发光元件
JPWO2012176818A1 (ja) * 2011-06-24 2015-02-23 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2013002053A1 (ja) * 2011-06-27 2013-01-03 新日鉄住金化学株式会社 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
JPWO2013002053A1 (ja) * 2011-06-27 2015-02-23 新日鉄住金化学株式会社 有機電界発光素子用重合体及びそれを用いた有機電界発光素子
CN103688383A (zh) * 2011-06-27 2014-03-26 新日铁住金化学株式会社 有机电致发光元件用聚合物及使用了其的有机电致发光元件
JPWO2013042446A1 (ja) * 2011-09-21 2015-03-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2013042446A1 (ja) * 2011-09-21 2013-03-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
EP2760059A4 (en) * 2011-09-21 2015-08-05 Konica Minolta Inc ORGANIC ELECTROLUMINESCENE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
US10707434B2 (en) 2011-10-26 2020-07-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, and material for organic electroluminescence element
WO2013062075A1 (ja) * 2011-10-26 2013-05-02 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
US10128456B2 (en) 2011-10-26 2018-11-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, and material for organic electroluminescence element
WO2013069338A1 (ja) * 2011-11-11 2013-05-16 三菱化学株式会社 有機電界発光素子及び有機電界発光デバイス
US9525009B2 (en) 2011-11-11 2016-12-20 Mitsubishi Chemical Corporation Organic electroluminescent element and organic electroluminescent device
JPWO2013069338A1 (ja) * 2011-11-11 2015-04-02 三菱化学株式会社 有機電界発光素子及び有機電界発光デバイス
EP2610937A1 (en) * 2011-12-26 2013-07-03 Samsung Display Co., Ltd. Organic light emitting device with enhanced lifespan
US9515280B2 (en) 2011-12-26 2016-12-06 Samsung Display Co., Ltd. Organic light emitting device with enhanced lifespan
KR20150003223A (ko) 2012-03-30 2015-01-08 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
US20150115240A1 (en) * 2012-03-30 2015-04-30 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
JPWO2013146645A1 (ja) * 2012-03-30 2015-12-14 新日鉄住金化学株式会社 有機電界発光素子
US10340460B2 (en) * 2012-03-30 2019-07-02 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
WO2013146645A1 (ja) * 2012-03-30 2013-10-03 新日鉄住金化学株式会社 有機電界発光素子
KR20150097703A (ko) 2012-12-17 2015-08-26 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자
WO2014097813A1 (ja) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子
JPWO2014122937A1 (ja) * 2013-02-08 2017-01-26 ソニー株式会社 有機エレクトロルミネッセンス素子
WO2014122937A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 有機エレクトロルミネッセンス素子
US9893290B2 (en) 2013-07-01 2018-02-13 Cheil Industries, Inc. Composition and organic optoelectric device and display device
JPWO2015020217A1 (ja) * 2013-08-09 2017-03-02 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
US10833281B2 (en) 2013-08-09 2020-11-10 Idemitsu Kosan Co., Ltd. Organic electroluminescence composition, material for organic electroluminescence element, solution of material for organic electroluminescence element, and organic electroluminescence element
WO2015020217A1 (ja) * 2013-08-09 2015-02-12 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
JP2021010021A (ja) * 2013-08-20 2021-01-28 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料、及びデバイス
JP6999772B2 (ja) 2013-08-20 2022-01-19 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料、及びデバイス
US10050212B2 (en) 2013-10-11 2018-08-14 Cheil Industries, Inc. Organic optoelectric device and display device
JP2015207657A (ja) * 2014-04-21 2015-11-19 新日鉄住金化学株式会社 有機電界発光素子
JP2016009824A (ja) * 2014-06-26 2016-01-18 新日鉄住金化学株式会社 有機電界発光素子
JP2021040142A (ja) * 2014-09-17 2021-03-11 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2016042997A1 (ja) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子
JPWO2016042997A1 (ja) * 2014-09-17 2017-06-29 新日鉄住金化学株式会社 有機電界発光素子
KR20170059985A (ko) 2014-09-17 2017-05-31 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자
JP2016072378A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
JP2016072377A (ja) * 2014-09-29 2016-05-09 新日鉄住金化学株式会社 有機電界発光素子
US10308735B2 (en) 2014-12-18 2019-06-04 Samsung Electronics Co., Ltd. Material for organic light-emitting device and organic light-emitting device including the same
US10566542B2 (en) 2014-12-31 2020-02-18 Beijing Visionox Technology Co., Ltd. Organic electroluminescent device
JP2018501660A (ja) * 2014-12-31 2018-01-18 北京維信諾科技有限公司 有機エレクトロルミネッセンス素子
US10319912B2 (en) 2015-01-29 2019-06-11 Samsung Electronics Co., Ltd. Charge-transporting material and organic light-emitting device including the same
KR20170137036A (ko) 2015-03-30 2017-12-12 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
WO2016158363A1 (ja) * 2015-03-30 2016-10-06 新日鉄住金化学株式会社 有機電界発光素子
JPWO2016158363A1 (ja) * 2015-03-30 2018-03-15 新日鉄住金化学株式会社 有機電界発光素子
KR20170134490A (ko) 2015-03-30 2017-12-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
CN106935712A (zh) * 2015-12-29 2017-07-07 三星显示有限公司 有机发光器件
US11329231B2 (en) 2015-12-29 2022-05-10 Samsung Display Co., Ltd. Organic light-emitting device
JPWO2017199622A1 (ja) * 2016-05-19 2019-03-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2021193735A (ja) * 2016-05-19 2021-12-23 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2017199622A1 (ja) * 2016-05-19 2017-11-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP7238044B2 (ja) 2016-05-19 2023-03-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20190097009A (ko) 2016-12-27 2019-08-20 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자용 재료 및 유기 전계 발광 소자
WO2018123783A1 (ja) * 2016-12-27 2018-07-05 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
KR20230024436A (ko) 2016-12-27 2023-02-20 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자용 재료 및 유기 전계 발광 소자
JP2023515163A (ja) * 2020-03-03 2023-04-12 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
JP7427318B2 (ja) 2020-03-03 2024-02-05 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
WO2021200243A1 (ja) 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
KR20220161305A (ko) 2020-03-31 2022-12-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자

Also Published As

Publication number Publication date
CN102326273B (zh) 2014-03-12
TW201100518A (en) 2011-01-01
EP2403028A4 (en) 2013-03-20
US8795852B2 (en) 2014-08-05
EP2403028B1 (en) 2014-11-12
JP5433677B2 (ja) 2014-03-05
CN102326273A (zh) 2012-01-18
JPWO2010098246A1 (ja) 2012-08-30
KR20110134885A (ko) 2011-12-15
US20120001158A1 (en) 2012-01-05
EP2403028A1 (en) 2012-01-04
KR101596906B1 (ko) 2016-03-07
TWI471404B (zh) 2015-02-01

Similar Documents

Publication Publication Date Title
JP5433677B2 (ja) 有機電界発光素子
KR101800869B1 (ko) 유기 전계 발광 소자
EP2977378B1 (en) Condensed cyclic compound and organic light-emitting device including the same
EP2650941B1 (en) Organic electroluminescent element
WO2011081061A1 (ja) 有機電界発光素子
JP4701818B2 (ja) トリアジン化合物および有機エレクトロルミネッセンス素子用組成物並びに有機エレクトロルミネッセンス素子
KR20100131939A (ko) 인돌로카바졸 유도체 및 이를 이용한 유기전계발광소자
JP5390441B2 (ja) 有機電界発光素子
KR20200011383A (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
KR20200096158A (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
JP5577122B2 (ja) 有機電界発光素子
WO2021045178A1 (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料
JP2024028707A (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、光電変換素子、塗料組成物、有機エレクトロルミネッセンス素子用材料
KR101960977B1 (ko) N-사이클로알킬알킬 트리스카바졸
KR20220006313A (ko) 안트라센계 화합물, 이를 포함하는 코팅조성물 및 유기 발광 소자
KR20190087327A (ko) 신규한 유기전기발광 화합물, 이를 포함하는 유기전기발광소자 및 전자 기기
KR102629455B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
JP2024024318A (ja) ヘキサヒドロピリミドピリミジン化合物およびそれを用いた有機薄膜、有機半導体素子
KR20200042808A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20200117762A (ko) 신규한 고분자 및 이를 포함하는 유기 발광 소자
KR20200042806A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20200042807A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009261.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746127

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011501562

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13201610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117022278

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010746127

Country of ref document: EP