WO2013146645A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2013146645A1
WO2013146645A1 PCT/JP2013/058515 JP2013058515W WO2013146645A1 WO 2013146645 A1 WO2013146645 A1 WO 2013146645A1 JP 2013058515 W JP2013058515 W JP 2013058515W WO 2013146645 A1 WO2013146645 A1 WO 2013146645A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
ring
aromatic
aromatic hydrocarbon
Prior art date
Application number
PCT/JP2013/058515
Other languages
English (en)
French (fr)
Inventor
敬之 福松
勝秀 野口
匡志 多田
坂井 満
徹 浅利
白石 和人
孝弘 甲斐
泰裕 高橋
佑生 寺尾
大志 辻
裕介 中島
結城 敏尚
Original Assignee
新日鉄住金化学株式会社
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社, パイオニア株式会社, 東北パイオニア株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2014507852A priority Critical patent/JP6154802B2/ja
Priority to US14/389,003 priority patent/US10340460B2/en
Priority to KR1020147030197A priority patent/KR102045766B1/ko
Priority to CN201380017072.0A priority patent/CN104247072B/zh
Publication of WO2013146645A1 publication Critical patent/WO2013146645A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers

Definitions

  • the present invention relates to an organic electroluminescent device (hereinafter, referred to as an organic EL device). Specifically, by using a compound having a specific structure in combination, a high efficiency and a long life can be achieved with a low voltage. It is related with the organic EL element which can be performed.
  • an organic EL element has a light emitting layer and a pair of counter electrodes sandwiching the layer as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and light is emitted as energy when they are recombined in the light emitting layer. Use the phenomenon.
  • organic EL elements using organic thin films have been developed.
  • the type of electrode is optimized for the purpose of improving the efficiency of carrier injection from the electrode, and from the hole transport layer made of aromatic diamine and 8-hydroxyquinoline aluminum complex (hereinafter referred to as Alq3).
  • Alq3 aromatic diamine and 8-hydroxyquinoline aluminum complex
  • Examples of the host material used for the light emitting layer of the organic EL element include carbazole compounds introduced in Patent Documents 1 and 2, oxazole compounds and triazole compounds introduced in Patent Document 3, Neither efficiency nor life was practical.
  • Patent Documents 4 and 5 disclose indolocarbazole compounds, but their use as hole transport materials is recommended, there is no disclosure of use as mixed host materials, and indolocarbazole compounds are mixed. It does not teach usefulness as a host material.
  • Patent Document 6 discloses the use of an indolocarbazole compound as a host material, but does not teach the usefulness of the indolocarbazole compound as a mixed host material.
  • Patent Documents 7 and 8 disclose use of indolocarbazole compounds as mixed hosts, they do not teach that useful effects are manifested in combination with specific carbazole compounds.
  • Patent Documents 9, 10 and 11 disclose use as a mixed host of an indolocarbazole compound and a carbazole compound, but a combination of a specific indolocarbazole compound and a specific carbazole compound as in the present invention. It does not teach useful effects.
  • an object of the present invention is to provide a practically useful organic EL device having high efficiency and high driving stability while being low in voltage.
  • the present invention relates to an organic electroluminescent device comprising one or more light emitting layers between an anode and a cathode facing each other, wherein at least one light emitting layer contains two host materials and at least one light emitting dopant, Of the two host materials, one is a host material selected from the compounds represented by any one of the following general formulas (1) to (2), and the other is a compound represented by the following general formula (3).
  • the present invention relates to an organic electroluminescent element characterized by being a selected host material.
  • ring a represents an aromatic ring or heterocyclic ring represented by formula (a1) fused at an arbitrary position of two adjacent rings
  • X 1 represents CR or N
  • ring b represents two A heterocyclic ring represented by the formula (b1) that is condensed at an arbitrary position of the adjacent ring
  • Ar 1 and Ar 2 are each an aromatic hydrocarbon group having 6 to 22 carbon atoms or a monocyclic ring having 3 to 6 carbon atoms
  • L 1 represents an aromatic heterocyclic group
  • L 1 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aromatic heterocyclic group having 3 to 16 carbon atoms, or a group having 2 to 10 linked groups thereof
  • Ar 1 , Ar 2 and L 1 may have a substituent
  • p represents an integer of 0 to 7, where p is 2 or more.
  • L 1 and R 1 may be the same or different, and R and R 1 to R 3 are independently hydrogen, an alkyl group having 1 to 20 carbon atoms, or 7 to 3 carbon atoms.
  • Aralkylamino group C2-C20 acyl group, C2-C20 acyloxy group, C1-C20 alkoxy group, C2-C20 alkoxycarbonyl group, C2-C20 alkoxycarbonyloxy Group, an alkylsulfonyl group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 22 carbon atoms, or an aromatic heterocyclic group having 3 to 16 carbon atoms, each of which may have a substituent. .
  • ring c and ring c ′ represent an aromatic ring or a heterocyclic ring represented by the formula (c1) fused at an arbitrary position of the adjacent ring, and ring d and ring d ′ are an arbitrary position of the adjacent ring.
  • X 2 represents C—R ′ or N.
  • Z represents an aromatic hydrocarbon having 6 to 22 carbon atoms Group, an aromatic heterocyclic group having 3 to 16 carbon atoms, or a divalent linking group formed by linking them with 2 to 10, the group connected to N is an aromatic hydrocarbon group having 6 to 22 carbon atoms Or a monocyclic aromatic heterocyclic group having 3 to 6 carbon atoms, Ar 3 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, a monocyclic aromatic heterocyclic group having 3 to 6 carbon atoms, L 2 represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aromatic heterocyclic group having 3 to 16 carbon atoms, or a group formed by linking them with 2 to 10.
  • R ′ and R 4 to R 8 may be independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 38 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a carbon number.
  • R 9 to R 12 independently represent hydrogen, an alkyl group having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, an alkoxy group having 2 to 20 carbon atoms, and l and m are 1 or N represents an integer of 2.
  • n represents an integer of 1 to 6
  • R 13 and R 14 independently represent hydrogen, an alkyl group having 1 to 20 carbon atoms
  • X 3 to X 5 independently represent C—H or N.
  • R 13 , R 14 and X 3 to X 5 may be the same or different.
  • one of the two host materials is a host material selected from the compounds represented by any one of the general formulas (1) to (2), Another is a host material selected from the compound represented by the general formula (3), and the difference in electron affinity ( ⁇ EA) between the two host materials is larger than 0.1 eV, It is.
  • At least one of Ar 1 or Ar 2 is a substituted or unsubstituted aromatic monocyclic heterocyclic group having 3 to 6 carbon atoms, and X 1 in the formula (a1) is C—R It is preferable that In the general formula (2), X 2 in the formula (c1) is preferably CR ′.
  • Another embodiment of the present invention is an organic phosphorescent dopant in which the light-emitting dopant is an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold.
  • An electroluminescent element is an organic phosphorescent dopant in which the light-emitting dopant is an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device including one or more light emitting layers between an anode and a cathode facing each other, and at least one light emission in an organic electroluminescent device including one or more light emitting layers.
  • the layer contains two host materials and at least one light-emitting dopant, and one of the two host materials is selected from the compounds represented by any of the following general formulas (1) to (2)
  • the other is a host material selected from a compound represented by the following general formula (3).
  • ring a, ring c, and ring c ′ are aromatic rings or heterocycles represented by formulas (a1) and (c1) that are fused at any position of two adjacent rings.
  • X 1 represents CR or N, and is preferably CR.
  • X 2 represents CR ′ or N, preferably CR ′.
  • ring b, ring d, and ring d ' represent heterocycles represented by formulas (b1) and (d1) that are condensed at arbitrary positions of two adjacent rings.
  • ring c and ring c ', and ring d and ring d' may be the same or different.
  • the aromatic hydrocarbon ring or heterocyclic ring represented by the formula (a1) or (c1) must be condensed with two adjacent rings at any position. However, there is a position that cannot be condensed structurally.
  • the aromatic hydrocarbon ring or heterocyclic ring represented by the formula (a1) or (c1) has six sides, but is not condensed with two adjacent rings at two adjacent sides.
  • the heterocyclic ring represented by the formula (b1) or (d1) can be condensed with two adjacent rings at any position, but cannot be structurally condensed. There is.
  • the heterocyclic ring represented by the formula (b1) or (d1) has five sides, but the two adjacent sides do not condense with two adjacent rings, and the side containing a nitrogen atom. There is no condensation with adjacent rings. Therefore, the types of isomers of the compounds represented by the general formulas (1) and (2) are limited.
  • Ar 1 to Ar 3 are each an aromatic hydrocarbon group having 6 to 22 carbon atoms, or a monocyclic aromatic group having 3 to 6 carbon atoms. Represents a heterocyclic group, and each of these aromatic hydrocarbon groups or aromatic heterocyclic groups may have a substituent.
  • Ar 1 to Ar 3 are preferably an aromatic hydrocarbon group having 6 to 22 carbon atoms or a monocyclic aromatic heterocyclic group having 3 to 6 carbon atoms, more preferably an aromatic group having 6 to 18 carbon atoms. It is a hydrocarbon group or a monocyclic aromatic heterocyclic group having 3 to 5 carbon atoms, and the monocyclic aromatic heterocyclic group is preferably a 6-membered ring.
  • Ar 1 and Ar 2 are p + 1 valent groups, and Ar 3 is a q + 1 valent group.
  • Ar 1 to Ar 3 include benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, tridene, fluoranthene, acephenanthrylene, acanthrylene, triphenylene.
  • Preferable examples include a group formed by removing p + 1 or q + 1 hydrogen from benzene, naphthalene, anthracene, pyridine, pyrazine, pyrimidine, pyridazine, or triazine.
  • formula (b1), and formula (d1), L 1 and L 2 are each an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aromatic heterocyclic group having 3 to 16 carbon atoms, or These are groups formed by connecting 2 to 10 groups, and these groups each may have a substituent.
  • L 1 and L 2 are preferably an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aromatic heterocyclic group having 3 to 16 carbon atoms, or a group formed by connecting 2 to 10 thereof, more preferably. Is an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic heterocyclic group having 3 to 16 carbon atoms, or a group formed by linking them with 2 to 7 carbon atoms.
  • L 1 and L 2 include benzene, pentalene, indene, naphthalene, azulene, heptalene, octalene, indacene, acenaphthylene, phenalene, phenanthrene, anthracene, tridene, fluoranthene, acephenanthrylene, acanthrylene, triphenylene, Pyrene, chrysene, tetraphen, tetracene, pleiaden, picene, perylene, pentaphen, pentacene, tetraphenylene, cholanthrylene, helicene, hexaphene, rubicene, coronene, trinaphthylene, heptaphene, pyranthrene, furan, benzofuran, isobenzofuran, xanthene, oxatolene, Dibenzofuran, per
  • Ar 11 to Ar 16 represent a substituted or unsubstituted aromatic ring.
  • the aromatic ring means a ring of an aromatic hydrocarbon compound or an aromatic heterocyclic compound, and can be a monovalent or higher valent group.
  • the term “aromatic rings are linked” means that the aromatic rings are linked by a direct bond. When the aromatic ring is a substituted aromatic ring, the substituent is not an aromatic ring.
  • Z represents an aromatic hydrocarbon group having 6 to 22 carbon atoms, an aromatic heterocyclic group having 3 to 16 carbon atoms, or a divalent linking group formed by linking them with 2 to 10 carbon atoms.
  • the group linked to N is an aromatic hydrocarbon group having 6 to 22 carbon atoms or a monocyclic aromatic heterocyclic group having 3 to 6 carbon atoms.
  • it is an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic heterocyclic group having 3 to 16 carbon atoms, or a divalent linking group formed by connecting 2 to 7 thereof, and a group connected to N
  • the monocyclic aromatic heterocyclic group is preferably a 6-membered ring.
  • Each aromatic ring may independently have a substituent.
  • Z include divalent groups generated by removing two hydrogens from the aromatic compounds exemplified in the specific examples of L 1 and L 2 , or aromatic compounds in which a plurality of these are linked.
  • the group linked to N is an aromatic hydrocarbon group having 6 to 22 carbon atoms or a monocyclic aromatic heterocyclic group having 3 to 6 carbon atoms.
  • Ar 21 and Ar 23 are each having 6 to 22 carbon atoms.
  • Ar 21 to Ar 26 represent a substituted or unsubstituted aromatic ring.
  • the formula (b1), and the formula (d1), p and q represent an integer of 0 to 7. Preferably it is 0 to 5, more preferably 0 to 3.
  • Ar 1 to Ar 3 , Z, and L 1 and L 2 each represent an aromatic hydrocarbon group, an aromatic heterocyclic group or a group to which these groups are linked, and these groups have a substituent.
  • substituents include alkyl groups having 1 to 20 carbon atoms, aralkyl groups having 7 to 38 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, and 2 to 40 carbon atoms.
  • the number of substituents is 0-5, preferably 0-2.
  • substituents include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, phenyl Methyl, phenylethyl, phenylicosyl, naphthylmethyl, anthranylmethyl, phenanthrenylmethyl, pyrenylmethyl, vinyl, propenyl, butenyl, pentenyl, decenyl, icocenyl, ethynyl, propargyl, butynyl, pentynyl, decynyl, icosinyl, di
  • C1-12 alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, phenylmethyl, phenylethyl, naphthylmethyl, anthranylmethyl, phenanthrenylmethyl, pyrenylmethyl C7-20 aralkyl groups such as methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy, nonyloxy, deoxy, etc., C1-10 alkoxy groups, diphenylamino, naphthylphenylamino, dinaphthylamino, dianthranyl And diarylamino groups having two C6-15 aromatic hydrocarbon groups such as amino and diphenanthrenylamino.
  • formula (a1), general formula (2), and formula (c1), R, R ′, and R 1 to R 8 are independently hydrogen, an alkyl group having 1 to 20 carbon atoms, 7-38 aralkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C2-C40 dialkylamino group, C12-44 diarylamino group, C14-76 A diaralkylamino group having 2 to 20 carbon atoms, an acyloxy group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, an alkoxy group having 2 to 20 carbon atoms A carbonyloxy group, an alkylsulfonyl group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 22 carbon atoms, or an aromatic heterocyclic group having 3 to 16 carbon atoms, preferably hydrogen, 1 to 10 carbon atoms Alkyl group
  • an alkyl group having 1 to 10 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, phenylmethyl, phenylethyl, naphthylmethyl, anthranylmethyl, phenanthrenylmethyl
  • An aralkyl group having 7 to 17 carbon atoms such as pyrenylmethyl, an alkoxy group having 1 to 10 carbon atoms such as methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, octoxy, nonyloxy, detoxyl, diphenylamino, naphthylphenylamino, Examples thereof include diarylamino groups having 12 to 28 carbon atoms such as dinaphthylamino, dianthranylamino, diphenanthrenylamino and the like.
  • aromatic hydrocarbon group having 6 to 22 carbon atoms or the aromatic heterocyclic group having 3 to 16 carbon atoms include benzene, pentalene, indene, naphthalene, azulene, indacene, acenaphthylene, phenalene, phenanthrene, Anthracene, tridene, fluoranthene, acephenanthrylene, aceanthrylene, triphenylene, pyrene, chrysene, tetraphen, tetracene, pleiaden, picene, perylene, pentaphen, pentacene, tetraphenylene, colanthrylene, furan, benzofuran, isobenzofuran, xanthene , Oxatolene, dibenzofuran, perixanthenoxanthene, thiophene, thioxanthene, thianthrene, phenoxathiin,
  • the formula (a1), the general formula (2), and the formula (c1), R, R ′, and R 1 to R 8 are groups other than hydrogen, and the group has a substituent.
  • Substituents in the above are alkyl groups having 1 to 20 carbon atoms, aralkyl groups having 7 to 38 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, and dialkylamino groups having 2 to 40 carbon atoms.
  • it is an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 24 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a diarylamino group having 12 to 36 carbon atoms, or an aromatic hydrocarbon having 6 to 18 carbon atoms.
  • the number of substituents is preferably 0 to 3 and more preferably 0 to 2 per one of R, R ′ and R 1 to R 8 .
  • R 9 to R 12 independently represent hydrogen, an alkyl group having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, or an alkoxy group having 2 to 20 carbon atoms, preferably hydrogen, 1 to An alkyl group having 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms.
  • R 13 and R 14 are independently hydrogen and an alkyl group having 1 to 20 carbon atoms, preferably hydrogen and an alkyl group having 1 to 10 carbon atoms.
  • n represents an integer of 1 to 6, preferably 3 or 4.
  • X 3 to X 5 independently represent C—H or N, and preferably C—H.
  • R 13 , R 14 and X 3 to X 5 may be independently changed.
  • the connecting position of each ring may be ortho, meta or para, and is not limited.
  • the EA difference between the two host materials is more than 0.1 eV.
  • Mixing hosts with an EA difference of 0.1 eV or less does not change the charge balance, so the stability of the thin film can be improved without damaging the original device characteristics, but hosts with an EA difference of more than 0.1 eV are mixed.
  • the electron flow path can be limited to the larger EA of the two hosts that mix, and the flow of electrons in the light emitting layer can be suppressed.
  • the EA difference is in the range of 0.2 to 1.5 eV.
  • the EA value is obtained by measuring the ionization potential value obtained by photoelectron spectroscopy in the host material thin film and the absorption spectrum in the ultraviolet-visible region, and using the energy gap value obtained from the absorption edge. Can be calculated.
  • the measurement method is not limited to this.
  • the two host materials may be mixed before the device is formed and vapor-deposited using one vapor deposition source, or mixed at the time of producing the device by an operation such as co-evaporation using a plurality of vapor deposition sources. It doesn't matter.
  • the mixing ratio (weight ratio) of the host material is not particularly limited, but is preferably in the range of 95: 5 to 5:95, more preferably in the range of 90:10 to 10:90.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic EL element used in the present invention, where 1 is a substrate, 2 is an anode, 3 is a hole injection layer, Reference numeral 4 denotes a hole transport layer, 5 denotes a light emitting layer, 6 denotes an electron transport layer, 7 denotes an electron injection layer, and 8 denotes a cathode.
  • the organic EL device of the present invention has an anode, a light emitting layer, an electron transport layer and a cathode as essential layers, but other layers may be provided as necessary. Examples of other layers include, but are not limited to, a hole injection transport layer, an electron blocking layer, and a hole blocking layer.
  • a positive hole injection transport layer means either a positive hole injection layer, a positive hole transport layer, or both.
  • the substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet is used.
  • glass plates and smooth and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are preferred.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also one of preferable methods.
  • Anode An anode 2 is provided on the substrate 1, and the anode plays a role of hole injection into the hole transport layer.
  • This anode is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as an oxide of indium and / or tin, an oxide of indium and / or zinc, or a halogen such as copper iodide.
  • Metal oxide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode is often formed by a sputtering method, a vacuum deposition method, or the like.
  • anode can also be formed by coating.
  • a conductive polymer a thin film can be directly formed on a substrate by electrolytic polymerization, or an anode can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett., 60). (Vol. 2711, 1992).
  • the anode can be formed by stacking different materials. The thickness of the anode varies depending on the required transparency.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness is usually 5 to 1000 nm, preferably 10 to 10%. It is about 500 nm.
  • the anode may be the same as the substrate. Furthermore, it is also possible to laminate different conductive materials on the anode.
  • the hole transport layer 4 is provided on the anode 2.
  • a hole injection layer 3 can also be provided between them.
  • the material of the hole transport layer it is necessary that the material has a high hole injection efficiency from the anode and can efficiently transport the injected holes.
  • the ionization potential is low, the transparency to visible light is high, the hole mobility is high, the stability is high, and impurities that become traps are unlikely to be generated during manufacturing or use.
  • the light emitting layer 5 it is required not to quench the light emitted from the light emitting layer or to form an exciplex with the light emitting layer to reduce the efficiency.
  • the element is further required to have heat resistance. Therefore, a material having a Tg value of 85 ° C. or higher is desirable.
  • hole transporting material that can be used in the present invention
  • known compounds conventionally used in this layer can be used.
  • an aromatic diamine containing two or more tertiary amines and having two or more condensed aromatic rings substituted with nitrogen atoms Japanese Patent Laid-Open No. 5-234681
  • 4,4 ', 4 "-tris (1- Aromatic amine compounds having a starburst structure such as naphthylphenylamino) triphenylamine
  • aromatic amine compounds comprising a tetramer of triphenylamine
  • spiro compounds such as 2,2 ', 7,7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, 91, 209) Page, 1997), etc. These compounds may be used alone or in combination as necessary.
  • polyarylene ether sulfone Polym. Adv. Tech
  • polyvinylcarbazole polyvinyltriphenylamine
  • tetraphenylbenzidine as a material for the hole transport layer. ., Vol. 7, p. 33, 1996).
  • the hole transport layer When forming the hole transport layer by a coating method, one or more hole transport materials and, if necessary, an additive such as a binder resin or a coating property improving agent that does not trap holes are added, Dissolve to prepare a coating solution, apply onto the anode by a method such as spin coating, and dry to form a hole transport layer.
  • the binder resin include polycarbonate, polyarylate, and polyester.
  • the hole transport material When forming by vacuum evaporation, put the hole transport material in a crucible installed in a vacuum vessel, evacuate the vacuum vessel to about 10 -4 Pa with a suitable vacuum pump, then heat the crucible The hole transport material is evaporated, and a hole transport layer is formed on the substrate on which the anode is formed, facing the crucible.
  • the thickness of the hole transport layer is usually 1 to 300 nm, preferably 5 to 100 nm. In order to uniformly form such a thin film, a vacuum deposition method is generally used.
  • the hole injection layer is provided between the hole transport layer 4 and the anode 2. 3 is also inserted.
  • the driving voltage of the initial element is lowered, and at the same time, an increase in voltage when the element is continuously driven with a constant current is suppressed.
  • the conditions required for the material used for the hole injection layer are that the contact with the anode is good and a uniform thin film can be formed, which is thermally stable, that is, the glass transition temperature is high, and the glass transition temperature is 100 ° C. or higher. Is required. Furthermore, the ionization potential is low, hole injection from the anode is easy, and the hole mobility is high.
  • phthalocyanine compounds such as copper phthalocyanine (Japanese Patent Laid-Open No. 63-295695), polyaniline (Appl. Phys. Lett., 64, 1245, 1994), polythiophene (Optical Materials, (9, 125, 1998) organic compounds such as sputtered carbon films (Synth. Met., 91, 73, 1997), metals such as vanadium oxide, ruthenium oxide, molybdenum oxide P-types such as oxides (J. Phys. D, Vol.
  • a thin film can be formed in the same manner as the hole transport layer, but in the case of an inorganic material, a sputtering method, an electron beam evaporation method, or a plasma CVD method is further used.
  • the thickness of the hole injection layer formed as described above is usually 1 to 300 nm, preferably 5 to 100 nm.
  • the light-emitting layer 5 is provided on the hole transport layer 4.
  • the light emitting layer may be formed from a single light emitting layer, or may be formed by laminating a plurality of light emitting layers so as to be in direct contact with each other.
  • the light-emitting layer is configured as two host materials and a fluorescent light-emitting material or a phosphorescent light-emitting material, and the two host materials include the compound represented by the general formula (1) or (2) and the general formulas (1) to (3).
  • a combination of the compounds is good, and a combination of the compound of the general formula (1) or (2) and the general formula (3) is particularly preferable.
  • condensed ring derivatives such as perylene and rubrene, quinacridone derivatives, phenoxazone 660, DCM1, perinone, coumarin derivatives, pyromethene (diazaindacene) derivatives, cyanine dyes and the like can be used.
  • a material containing an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold is preferable. Specific examples include compounds described in the following patent publications, but are not limited to these compounds.
  • Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as Ir (bt) 2 ⁇ acac3, and complexes such as PtOEt3. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of the phosphorescent dopant contained in the light emitting layer is 2 to 40% by weight, preferably 5 to 30% by weight.
  • the film thickness of the light emitting layer is not particularly limited, but is usually 1 to 300 nm, preferably 5 to 100 nm, and is formed into a thin film by the same method as the hole transport layer.
  • Electron Transport Layer 6 An electron transport layer 6 is provided between the light emitting layer 5 and the cathode 8 for the purpose of further improving the light emission efficiency of the device.
  • an electron transport material capable of smoothly injecting electrons from the cathode is preferable, and any commonly used material can be used.
  • metal complexes such as Alq3 (JP 59-194393A), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3 -Or 5-hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene (USP 5,645,948), quinoxaline compound (JP6-207169A), phenanthroline derivative (JP5-331459A), 2-t-butyl- 9,10-N, N′-dicyanoanthraquinone diimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like.
  • Alq3 JP 59-194393A
  • the film thickness of the electron transport layer is usually 1 to 300 nm, preferably 5 to 100 nm.
  • the electron transport layer is formed by laminating on the light emitting layer by a coating method or a vacuum deposition method in the same manner as the hole transport layer. Usually, a vacuum deposition method is used.
  • the cathode 8 plays a role of injecting electrons into the electron transport layer 6.
  • the material used for the anode 2 can be used.
  • a metal having a low work function is preferable for efficient electron injection, and tin, magnesium, indium, calcium, aluminum
  • a suitable metal such as silver or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the thickness of the cathode is usually the same as that of the anode.
  • a metal layer having a high work function and stable to the atmosphere on the cathode increases the stability of the device.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • inserting an ultra-thin insulating film (0.1-5 nm) such as LiF, MgF 2 , Li 2 O between the cathode 8 and the electron transport layer 6 as the electron injection layer 7 is effective in improving the efficiency of the device. Is the method.
  • a cathode 8 an electron injection layer 7, an electron transport layer 6, a light emitting layer 5, a hole transport layer 4, a hole injection layer 3, and an anode 2 are laminated on the substrate 1 in this order. It is also possible to provide the organic EL element of the present invention between two substrates, at least one of which is highly transparent as described above. Also in this case, layers can be added or omitted as necessary.
  • the organic EL element of the present invention can be any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • the light emitting layer is a mixed host composed of two host materials, and a specific compound is used as at least one of the host materials, so that the luminous efficiency is high even at a low voltage.
  • a device with greatly improved driving stability can be obtained, and excellent performance can be exhibited in application to full-color or multi-color panels.
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 150 nm was formed.
  • copper phthalocyanine (CuPc) is formed to a thickness of 20 nm on ITO as a hole injection layer, and then 4,4-bis [N- (1-naphthyl) -N-phenylamino] is formed as a hole transport layer.
  • Biphenyl (NPB) was formed to a thickness of 20 nm.
  • compound 1-4 as the first host, compound 3-37 as the second host, and tris (2-phenylpyridine) iridium (III) (Ir (PPy) 3 ) as the light emitting layer guest, respectively.
  • co-deposited from different deposition sources and formed to a thickness of 30 nm.
  • the deposition rate ratio of the first host, the second host, and Ir (PPy) 3 (volume rate ratio of the vaporized product) was 47: 47: 6.
  • aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (BAlq) was formed to a thickness of 10 nm as a hole blocking layer.
  • Example 1 the organic EL element was produced like Example 1 except having used the compound described in Table 1 as a light emitting layer 2nd host.
  • an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 517 nm was observed from any organic EL element, and light emission from Ir (PPy) 3 was obtained.
  • Table 1 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL device produced.
  • Example 11-15 (comparison) In Example 1, an organic EL device was produced in the same manner as in Example 1 except that the compound described in Table 1 was used alone as the light emitting layer host. The host amount was the same as the total of the first host and the second host in Example 1, and the guest amount was the same. When a power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 517 nm was observed from any organic EL element, and light emission from Ir (PPy) 3 was obtained. all right. Table 1 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL device produced.
  • Table 1 shows the luminance, external quantum efficiency (initial characteristics), and luminance half-life (life characteristics) of the produced organic EL elements.
  • the luminance and the external quantum efficiency are values when the driving current is 2.5 mA / cm 2
  • the luminance half time is a value when the initial luminance is 1000 cd / m 2 .
  • Compound No. is the number given to the above chemical formula.
  • Example 5 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 150 nm was formed.
  • CuPc was formed to a thickness of 20 nm on ITO as a hole injection layer
  • NPB was formed to a thickness of 20 nm as a hole transport layer.
  • Compound 2-5 as a first host, Compound 3-37 as a second host, and Ir (PPy) 3 as a light emitting guest were co-deposited from different vapor deposition sources as a light emitting layer, respectively, to a thickness of 30 nm. Formed.
  • the deposition rate ratio of the first host, the second host, and Ir (PPy) 3 was 47: 47: 6.
  • BAlq was formed to a thickness of 10 nm as a hole blocking layer.
  • Alq 3 was formed to a thickness of 40nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 0.5 nm as an electron injection layer.
  • Al was formed as a cathode to a thickness of 100 nm on the electron injection layer, and an organic EL device was produced.
  • Example 5 the organic EL element was produced like Example 5 except having used the compound described in Table 2 as a light emitting layer 2nd host. When an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 517 nm was observed from any organic EL element, and light emission from Ir (PPy) 3 was obtained. I understood. Table 2 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL device produced.
  • Example 16-19 an organic EL device was produced in the same manner as in Example 5 except that the compound described in Table 2 was used alone as the light emitting layer host.
  • the host amount was the same as the sum of the first host and the two hosts in Example 5.
  • an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 517 nm was observed from any organic EL element, and light emission from Ir (PPy) 3 was obtained. I understood.
  • Table 2 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL device produced.
  • the luminance and the external quantum efficiency are values when the driving current is 2.5 mA / cm 2
  • the luminance half time is a value when the initial luminance is 1000 cd / m 2 .
  • Example 20 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 150 nm was formed.
  • CuPc was formed to a thickness of 20 nm on ITO as a hole injection layer
  • NPB was formed to a thickness of 20 nm as a hole transport layer.
  • Compound 2-5 as a first host
  • Compound A shown below as a second host and Ir (PPy) 3 as a light emitting layer guest were co-deposited from different deposition sources as a light emitting layer, and the thickness was 30 nm. Formed.
  • the deposition rate ratio of the first host, the second host, and Ir (PPy) 3 was 47: 47: 6.
  • BAlq was formed to a thickness of 10 nm as a hole blocking layer.
  • Alq 3 was formed to a thickness of 40nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 0.5 nm as an electron injection layer.
  • Al was formed as a cathode to a thickness of 100 nm to produce an organic EL element.
  • the organic EL element which used the following compound A alone as a light emitting layer host was produced similarly.
  • an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 517 nm was observed from both organic EL elements, and it was found that light emission from Ir (PPy) 3 was obtained. It was.
  • Table 2 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL device produced.
  • Example 8 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 150 nm was formed.
  • CuPc is formed as a hole injection layer on ITO to a thickness of 25 nm
  • NPB is formed as a first hole transport layer to a thickness of 10 nm
  • 4, 4 as a second hole transport layer.
  • ', 4''-Tris (N-carbazolyl) -triphenylamine (TCTA) was formed to a thickness of 10 nm.
  • compound 1-90 as the first host compound 3-4 as the second host, tris [1- (4′-cyanophenyl) -3-methylbenzimidazole-2- Iriden-C 2 , C 2 ′ ] -iridium (III) (Ir (cn-pmic) 3 ) was co-deposited from different deposition sources to form a thickness of 30 nm.
  • the deposition rate ratio of the first host, the second host, and Ir (cn-pmic) 3 was 45:45:10.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Alq 3 was formed to a thickness of 25 nm as an electron transport layer. Further, on the electron transport layer, lithium fluoride (LiF) was formed to a thickness of 0.5 nm as an electron injection layer. Finally, on the electron injection layer, aluminum (Al) was formed as a cathode to a thickness of 100 nm to produce an organic EL element. When an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 460 nm was observed, and it was found that light emission from Ir (cn-pmic) 3 was obtained. Table 3 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL elements produced.
  • Example 21 (comparison) In Example 8, an organic EL device was produced in the same manner as in Example 8 except that only Compound 1-90 was used as the light emitting layer host. The host amount was the same as the total of the first host and the second host in Example 8. When an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 460 nm was observed from any organic EL element, and light emission from Ir (cn-pmic) 3 was obtained. I found out. Table 3 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL elements produced.
  • Example 22 (comparison) In Example 8, an organic EL device was produced in the same manner as in Example 8 except that only the compound 3-4 was used as the light emitting layer host. The host amount was the same as the total of the first host and the second host in Example 8. When an external power source was connected to the obtained organic EL element and a DC voltage was applied, an emission spectrum with a maximum wavelength of 460 nm was observed from any organic EL element, and light emission from Ir (cn-pmic) 3 was obtained. I found out.
  • Table 3 shows the luminance, external quantum efficiency, and luminance half-life of the organic EL elements produced.
  • the luminance and the external quantum efficiency are values when the driving current is 2.5 mA / cm 2
  • the luminance half time is a value when the initial luminance is 1000 cd / m 2 .
  • Example 8 of the present invention when Example 8 of the present invention is compared with Examples 21 to 22, by using two kinds of compounds having a specific skeleton as the light emitting layer host, the luminance and external quantum efficiency are improved, and the luminance half time is reduced. It turns out that it extends remarkably. From these results, it became clear that according to the present invention, an organic EL phosphor element exhibiting high efficiency and good lifetime characteristics can be realized.
  • the organic EL device of the present invention has a minimum excited triplet energy sufficiently high to confine the lowest excited triplet energy of a phosphorescent molecule by using a specific compound as a mixed host, while being at a low voltage. Therefore, there is no outflow of energy from the light emitting layer, and high efficiency and long life can be achieved.
  • flat panel displays mobile phone display elements, in-vehicle display elements, OA computer display elements, televisions, etc.
  • surface light emitters In the application to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display panels, marker lamps, and the like, the technical value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 低電圧でありながら高効率かつ高い駆動安定性を有した実用上有用な有機電界発光素子(有機EL素子)を提供する。 この有機電界発光素子は、対向する陽極と陰極の間に発光層を含み、発光層が2つのホスト材料と少なくとも1つの発光性ドーパントを含有し、該2つのホスト材料のうち、1つがインドロカルバゾール環を1つ有するインドロカルバゾール化合物又はインドロカルバゾール環を2つ有するインドロカルバゾール化合物から選ばれるホスト材料であり、他の1つがカルバゾール化合物から選ばれるホスト材料である。

Description

有機電界発光素子
 本発明は有機電界発光素子(以下、有機EL素子という)に関するものであり、詳しくは、特定の構造を有する化合物を混合して用いることにより、低電圧でありながら高効率かつ、長寿命を達成できる有機EL素子に関するものである。
 一般に、有機EL素子は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合される際にエネルギーとして光を放出する現象を利用する。
 近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層兼電子輸送層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用を目指して進められてきた。
 素子の発光効率を上げる試みとして、蛍光発光材料ではなく燐光発光材料を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。その後、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。この燐光発光を利用した研究は、燐光発光ドーパントとしては、特許文献1に挙げられるようなイリジウム錯体等の有機金属錯体を中心に研究が多数行われており、高効率に発光するものも見出されてきている。
WO01/041512A 特開2001-313178号公報 特開2002-352957号公報 特開平11-162650号公報 特開平11-176578号公報 WO2008-056746号公報 WO2009-136596号公報 WO2010-098246号公報 WO2011-132683号公報 WO2011-132684号公報 特開2012-028634号公報
 有機EL素子の発光層に用いるホスト材料としては、特許文献1及び2で紹介されているカルバゾール系化合物や特許文献3で紹介されているオキサゾール系化合物、トリアゾール系化合物などが挙げられるが、いずれも効率、寿命共に実用に耐えうるものではなかった。
 また、特許文献4及び5でインドロカルバゾール化合物の開示がなされているが、正孔輸送材料としての使用が推奨されており、混合ホスト材料としての使用の開示はなく、インドロカルバゾール化合物の混合ホスト材料としての有用性を教えるものではない。
  また、特許文献6でインドロカルバゾール化合物について、ホスト材料としての使用を開示しているが、インドロカルバゾール化合物の混合ホスト材料としての有用性を教えるものではない。
 また、特許文献7、8でインドロカルバゾール化合物の混合ホストとしての使用を開示しているが、特定のカルバゾール化合物との組み合わせで有用な効果が発現することを教えるものではない。
 また、特許文献9、10、11でインドロカルバゾール化合物とカルバゾール化合物の混合ホストとしての使用を開示しているが、本発明のような特定のインドロカルバゾール化合物と特定のカルバゾール化合物との組み合わせの有用な効果を教えるものではない。
  有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、低電圧でありながら高効率かつ高い駆動安定性を有した実用上有用な有機EL素子を提供することを目的とする。
 本発明は、対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が2つのホスト材料と少なくとも1つの発光性ドーパントを含有し、該2つのホスト材料のうち、1つが下記一般式(1)~(2)のいずれかで表される化合物から選ばれるホスト材料であり、他の1つが下記一般式(3)で表される化合物から選ばれるホスト材料であることを特徴とする有機電界発光素子に関する。
Figure JPOXMLDOC01-appb-I000004
 
(ここで、環aは2つの隣接環の任意の位置で縮合する式(a1)で表される芳香環又は複素環を示し、XはC-R又はNを示す。環bは2つの隣接環の任意の位置で縮合する式(b1)で表される複素環を示し、Ar、Ar2は炭素数6~22の芳香族炭化水素基、又は炭素数3~6の単環の芳香族複素環基を示し、Lは炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結された基を示す。Ar、ArおよびLにおけるこれらの芳香族炭化水素基又は芳香族複素環基は、置換基を有してもよい。pは0~7の整数を示す。ここで、pが2以上の場合、L1はそれぞれ同一でも異なってもよい。R、R~Rは独立に、水素、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、炭素数6~22の芳香族炭化水素基、又は炭素数3~16の芳香族複素環基を示し、これらはそれぞれ置換基を有してもよい。)
Figure JPOXMLDOC01-appb-I000005
 
(式中、環c、環c’は隣接環の任意の位置で縮合する式(c1)で表される芳香環又は複素環を表し、環d、環d’は隣接環の任意の位置で縮合する式(d1)で表される複素環を表し、同一であっても異なっていても良い。XはC-R’又はNを示す。Zは炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結してなる2価の連結基を表すが、Nに連結する基は炭素数6~22の芳香族炭化水素基または炭素数3~6の単環の芳香族複素環基である。Arは炭素数6~22の芳香族炭化水素基、炭素数3~6の単環の芳香族複素環基を表し、Lは炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結してなる基を示す。Z、ArおよびLにおけるこれらの芳香族炭化水素基又は芳香族複素環基は、置換基を有してもよい。qは0~7の整数を示す。ここで、qが2以上の場合、Lはそれぞれ同一でも異なってもよい。R’、R~Rは独立に、水素、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、炭素数6~22の芳香族炭化水素基、又は炭素数3~16の芳香族複素環基を示し、これらはそれぞれ置換基を有してもよい。)
Figure JPOXMLDOC01-appb-I000006
 
(ここで、R~R12は独立に、水素、炭素数1~20のアルキル基、炭素数2~20のアシル基、炭素数2~20のアルコキシ基を表し、l、mは1または2の整数を示す。nは1~6の整数を示し、R13、R14は独立に、水素、炭素数1~20のアルキル基を、X~Xは独立に、C-H又はNを示す。nが2以上の場合、R13、R14およびX~Xは、それぞれ同一でも異なってもよい。)
 また本発明の他の態様は、上記有機電界発光素子において、2つのホスト材料のうち1つが前記一般式(1)~(2)のいずれかで表される化合物から選ばれるホスト材料であり、他の1つが前記一般式(3)で表される化合物から選ばれるホスト材料であって、2つのホスト材料の電子親和力の差(ΔEA)が0.1eVより大きいことを特徴とする有機電界発光素子である。
 上記一般式(1)中、ArまたはArの少なくとも一つが置換または未置換の炭素数3~6の芳香族単環複素環基であり、かつ式(a1)におけるXがC-Rであることが好ましい。また、上記一般式(2)中、式(c1)におけるXがC-R’であることが好ましい。
 また本発明の他の態様は、発光性ドーパントがルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体からなる燐光発光ドーパントである有機電界発光素子である。
有機EL素子の一例を示した模式断面図。
 本発明の有機電界発光素子は、対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が2つのホスト材料と少なくとも1つの発光性ドーパントを含有するものであり、該2つのホスト材料のうち、1つが下記一般式(1)~(2)のいずれかで表される化合物から選ばれるホスト材料であり、他の1つが下記一般式(3)で表される化合物から選ばれるホスト材料である。
 上記一般式(1)又は(2)において、環a、環c、環c’は2つの隣接環の任意の位置で縮合する式(a1)、(c1)で表される芳香環又は複素環を示す。ここで、(a1)おいて、XはC-R又はNを示すが、C-Rであることが好ましい。また、(c1)において、XはC-R’又はNを示すが、C-R’であることが好ましい。
 上記一般式(1)、(2)において、環b、環d、環d’は2つの隣接環の任意の位置で縮合する式(b1)、(d1)で表される複素環を示す。ここで、環cと環c’、環dと環d’は同一であっても異なっていても良い。
 一般式(1)または(2)で表される化合物において、式(a1)または(c1)で表される芳香族炭化水素環または複素環は、2つの隣接環と任意の位置で縮合することができるが、構造的に縮合できない位置がある。式(a1)または(c1)で表される芳香族炭化水素環または複素環は、6つの辺を有するが、隣接する2つの辺で2つの隣接環と縮合することはない。また、一般式(1)、(2)において、式(b1)または(d1)で表される複素環は2つの隣接環と任意の位置で縮合することができるが、構造的に縮合できない位置がある。すなわち、式(b1)または(d1)で表される複素環は、5つの辺を有するが、隣接する2つの辺で2つの隣接環と縮合することはなく、また、窒素原子を含む辺で隣接環と縮合することはない。したがって、一般式(1)、(2)で表される化合物の異性体の骨格の種類は限られる。
 上記一般式(1)、式(b1)、及び式(d1)において、Ar~Arは、炭素数6~22の芳香族炭化水素基、又は炭素数3~6の単環の芳香族複素環基を示し、これらの芳香族炭化水素基、又は芳香族複素環基はそれぞれ置換基を有してもよい。
 Ar~Arは、炭素数6~22の芳香族炭化水素基又は炭素数3~6の単環の芳香族複素環基であることが好ましく、より好ましくは炭素数6~18の芳香族炭化水素基又は炭素数3~5の単環の芳香族複素環基であり、単環の芳香族複素環基は6員環であることが好ましい。Ar、Arはp+1価の基であり、Arはq+1価の基である。    
 これらAr~Arの具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、チオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、チアジアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、又はトリアジンからp+1個またはq+1個の水素を除いて生じる基が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、ピリジン、ピラジン、ピリミジン、ピリダジン、又はトリアジンからp+1個またはq+1個の水素を除いて生じる基が挙げられる。
 一般式(1)、式(b1)、式(d1)において、L、Lは、それぞれ炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結してなる基を示し、これらの基は各々置換基を有してもよい。
 L、Lは、炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結してなる基であることが好ましく、より好ましくは炭素数6~18の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~7連結してなる基である。
 L、Lの具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、又はベンゾイソチアゾール、又はこれら芳香族化合物の芳香環が複数連結された芳香族化合物から1個の水素を除いて生じる基が挙げられる。
 ここで、LおよびLが複数の芳香族化合物の芳香環が複数連結された基としては、例えば下記で示すような連結様式が挙げられる。
Figure JPOXMLDOC01-appb-I000007
 
 式(4)~(6)中、Ar11~Ar16は置換または未置換の芳香環を示す。芳香環は芳香族炭化水素化合物、または芳香族複素環化合物の環を意味し、1価以上の基であることができる。芳香環が連結するとは、芳香環が直接結合で結合して連結することを意味する。芳香環が置換の芳香環である場合、置換基が芳香環であることはない。
  上記式(4)~(6)の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、フェニルターフェニル、ビナフタレン、フェニルピリジン、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン、カルバゾリルベンゼン、ビスカルバゾリルベンゼン、ビスカルバゾリルトリアジン、ジベンゾフラニルベンゼン、ビスジベンゾフラニルベンゼン、ジベンゾチオフェニルベンゼン、ビスジベンゾチオフェニルベンゼン等から水素を除いて生じる基が挙げられる。
 一般式(2)中、Zは、炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結してなる2価の連結基を示すが、Nに連結する基は炭素数6~22の芳香族炭化水素基または炭素数3~6の単環の芳香族複素環基である。好ましくは、炭素数6~18の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~7連結してなる2価の連結基であり、Nに連結する基は炭素数6~18の芳香族炭化水素基または炭素数3~5の単環の芳香族複素環基であり、単環の芳香族複素環基は6員環であることが好ましい。各々の芳香環は独立に置換基を有してもよい。
 Zの具体例としては、L、Lの具体例で例示した芳香族化合物、又はこれらが複数連結された芳香族化合物等から2個の水素を除いて生じる2価の基が挙げられるが、Nに連結する基は炭素数6~22の芳香族炭化水素基または炭素数3~6の単環の芳香族複素環基である。
 ここで、Zが複数の芳香族炭化水素基又は芳香族複素環基から構成される場合、例えば下記で示すような連結様式が挙げられ、この場合Ar21、Ar23は炭素数6~22の芳香族炭化水素基または炭素数3~6の単環の芳香族複素環基である。また、化学式中で示された連結手を有する基に代わり、式(7)ではAr22、式(8)ではAr22、Ar24、式(9)ではAr24、Ar25、Ar26、が連結手を有することも可能であり、その場合は連結手を有する基が炭素数6~22の芳香族炭化水素基または炭素数3~6の単環の芳香族複素環基である。
Figure JPOXMLDOC01-appb-I000008
 
(式(7)~(9)中、Ar21~Ar26は置換または未置換の芳香環を示す。)
 一般式(1)、式(b1)、式(d1)において、pおよびqは0~7の整数を示す。好ましくは0~5であり、より好ましくは0~3である。
 Ar~Ar、Z、およびL、Lは上記のような芳香族炭化水素基、芳香族複素環基又はこれらが連結された基を示すが、これらの基は置換基を有することができる。この場合、置換基としては、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、又は炭素数1~20のアルキルスルホニル基であるが、好ましくは、炭素数1~10のアルキル基、炭素数7~24のアラルキル基、炭素数1~10のアルコキシ基、又は炭素数12~36のジアリールアミノ基である。なお、置換基の数は0~5、好ましくは0~2が好ましい。
 上記置換基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル、フェニルメチル、フェニルエチル、フェニルイコシル、ナフチルメチル、アントラニルメチル、フェナンスレニルメチル、ピレニルメチル、ビニル、プロペニル、ブテニル、ペンテニル、デセニル、イコセニル、エチニル、プロパルギル、ブチニル、ペンチニル、デシニル、イコシニル、ジメチルアミノ、エチルメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチニルアミノ、ジデシルアミノ、ジイコシルアミノ、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、ジピレニルアミノ、ジフェニルメチルアミノ、ジフェニルエチルアミノ、フェニルメチルフェニルエチルアミノ、ジナフチルメチルアミノ、ジアントラニルメチルアミノ、ジフェナンスレニルメチルアミノ、アセチル、プロピオニル、ブチリル、バレリル、ベンゾイル、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、バレリルオキシ、ベンゾイルオキシ、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノニロキシ、デトキシ、ウンデシルオキシ、ドデトキシ、トリデトキシ、テトラデトキシ、ペンタデトキシ、ヘキサデトキシ、ヘプタデトキシ、オクタデトキシ、ノナデトキシ、イコキシ、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペントキシカルボニル、メトキシカルボニルオキシ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシ、ペントキシカルボニルオキシ、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル等が挙げられる。好ましくは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル等のC1~12のアルキル基、フェニルメチル、フェニルエチル、ナフチルメチル、アントラニルメチル、フェナンスレニルメチル、ピレニルメチル等のC7~20のアラルキル基、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノニロキシ、デトキシ等のC1~10のアルコキシ基、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ等のC6~15の芳香族炭化水素基を2つ有するジアリールアミノ基が挙げられる。
 一般式(1)、式(a1)、一般式(2)、式(c1)において、R、R’、R~Rは独立に、水素、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、炭素数6~22の芳香族炭化水素基又は炭素数3~16の芳香族複素環基であり、好ましくは、水素、炭素数1~10のアルキル基、炭素数7~24のアラルキル基、炭素数1~10のアルコキシ基、炭素数12~36のジアリールアミノ基、炭素数6~18の芳香族炭化水素基又は炭素数3~16の芳香族複素環基であり、より好ましくは、水素、炭素数6~18の芳香族炭化水素基又は炭素数3~16の芳香族複素環基である。なお、水素以外の基である場合は、それぞれの基は置換基を有してもよい。
 炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル、フェニルメチル、フェニルエチル、フェニルイコシル、ナフチルメチル、アントラニルメチル、フェナンスレニルメチル、ピレニルメチル、ビニル、プロペニル、ブテニル、ペンテニル、デセニル、イコセニル、エチニル、プロパルギル、ブチニル、ペンチニル、デシニル、イコシニル、ジメチルアミノ、エチルメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチニルアミノ、ジデシルアミノ、ジイコシルアミノ、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、ジピレニルアミノ、ジフェニルメチルアミノ、ジフェニルエチルアミノ、フェニルメチルフェニルエチルアミノ、ジナフチルメチルアミノ、ジアントラニルメチルアミノ、ジフェナンスレニルメチルアミノ、アセチル、プロピオニル、ブチリル、バレリル、ベンゾイル、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、バレリルオキシ、ベンゾイルオキシ、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノニロキシ、デトキシ、ウンデシルオキシ、ドデトキシ、トリデトキシ、テトラデトキシ、ペンタデトキシ、ヘキサデトキシ、ヘプタデトキシ、オクタデトキシ、ノナデトキシ、イコキシ、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペントキシカルボニル、メトキシカルボニルオキシ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシ、ペントキシカルボニルオキシ、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル等が挙げられる。好ましくは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル等の炭素数1~10のアルキル基、フェニルメチル、フェニルエチル、ナフチルメチル、アントラニルメチル、フェナンスレニルメチル、ピレニルメチル等の炭素数7~17のアラルキル基、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノニロキシ、デトキシ等の炭素数1~10のアルコキシ基、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ等の炭素数12~28のジアリールアミノ基が挙げられる。
 炭素数6~22の芳香族炭化水素基又は炭素数3~16の芳香族複素環基である場合の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、チアジアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、又はベンゾイソチアゾールから水素を除いて生じる基が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、イソインドール、インダゾール、プリン、イソキノリン、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、インドール、カルバゾール、ジベンゾフラン、又はジベンゾチオフェンから水素を除いて生じる基が挙げられる。
 一般式(1)、式(a1)、一般式(2)、式(c1)において、R、R’、R~Rが水素以外の基であって、その基が置換基を有する場合の置換基は、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、炭素数6~22の芳香族炭化水素基又は炭素数3~16の芳香族複素環基である。好ましくは、炭素数1~10のアルキル基、炭素数7~24のアラルキル基、炭素数1~10のアルコキシ基、炭素数12~36のジアリールアミノ基、炭素数6~18の芳香族炭化水素基又は炭素数3~16の芳香族複素環基であり、より好ましくは、炭素数6~18の芳香族炭化水素基ならびに炭素数3~16の芳香族複素環基である。なお、置換基の数はR、R’、R~Rの1つ当たり、0~3が好ましく、0~2がより好ましい。
 上記炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、炭素数6~22の芳香族炭化水素基ならびに炭素数3~16の芳香族複素環基の具体例は、上記R、R’、R~Rの具体例と同様である。
  前記一般式(1)及び(2)で表される化合物の好ましい具体例を以下に示すが、これらに限定するものではない。
Figure JPOXMLDOC01-appb-I000009
 
Figure JPOXMLDOC01-appb-I000010
 
Figure JPOXMLDOC01-appb-I000011
 
Figure JPOXMLDOC01-appb-I000012
 
Figure JPOXMLDOC01-appb-I000013
 
Figure JPOXMLDOC01-appb-I000014
 
Figure JPOXMLDOC01-appb-I000015
 
Figure JPOXMLDOC01-appb-I000016
 
Figure JPOXMLDOC01-appb-I000017
 
Figure JPOXMLDOC01-appb-I000018
 
Figure JPOXMLDOC01-appb-I000019
 
 一般式(3)において、l、mは1または2の整数を示す。R~R12は独立に、水素、炭素数1~20のアルキル基、炭素数2~20のアシル基、炭素数2~20のアルコキシ基を表すが、好ましくは、水素、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基である。
 一般式(3)において、R13、R14は独立に、水素、炭素数1~20のアルキル基であるが、好ましくは、水素、炭素数1~10のアルキル基である。
 一般式(3)において、nは1~6のいずれかの整数を示し、好ましくは3または4である。
 一般式(3)において、X~Xは独立に、C―H又はNを示すが、C-Hであることが好ましい。
 一般式(3)において、nが2以上の整数の場合、R13、R14およびX~Xは、独立して、変化してもよい。また、それぞれの環の連結位置はオルト位、メタ位であってもパラ位であっても良く、限定されない。
 前記一般式(3)で表される化合物の好ましい具体例を以下に示すが、これらに限定するものではない。
Figure JPOXMLDOC01-appb-I000020
 
Figure JPOXMLDOC01-appb-I000021
 
Figure JPOXMLDOC01-appb-I000022
 
 また、2つのホスト材料のEA差が0.1eVより離れていると良い結果を与える。EA差が0.1eV以下のホスト同士の混合では電荷バランスがほとんど変わらないことから、本来の素子特性を損なうことなく、薄膜安定性を向上できるが、EA差が0.1eVより離れているホストを混合することで、逆に電子の流れる経路を混合する2つのホストのEAが大きい方に制限することができ、発光層内の電子の流れを抑制することが出来る。その結果、発光層内への電子の閉じ込めが容易になり、高効率でありながら長寿命な素子を提供することができる。好ましくは、EA差が0.2~1.5eVの範囲にあることがよい。尚、EAの値は、ホスト材料薄膜での、光電子分光法により得られたイオン化ポテンシャルの値と、紫外-可視域の吸収スペクトルを測定し、その吸収端から求めたエネルギーギャップの値を用いて算出することができる。但し、測定方法はこれに限定されない。
 2つのホスト材料は、素子を作成する前に混合して1つの蒸着源を用いて蒸着しても構わないし、複数の蒸着源を用いた共蒸着等の操作により素子を作成する時点で混合しても構わない。ホスト材料の混合比(重量比)について、特に制限はないが、95:5~5:95の範囲が好ましく、より好ましくは90:10~10:90の範囲である。
  次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
(1)有機EL素子の構成
  図1は本発明に用いられる一般的な有機EL素子の構造例を模式的に示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は電子注入層、8は陰極を各々示す。本発明の有機EL素子では、陽極、発光層、電子輸送層及び陰極を必須の層として有するが、必要により他の層を設けてもよい。他の層とは、例えば正孔注入輸送層や電子阻止層及び正孔阻止層が挙げられるが、これらに限定されるものではない。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味する。
(2)基板
 基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの平滑で透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。 
(3)陽極
 基板1上には陽極2が設けられるが、陽極は正孔輸送層への正孔注入の役割を果たすものである。この陽極は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物、インジウム及び/又は亜鉛の酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、あるいは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板上に塗布することにより陽極を形成することもできる。更に、導電性高分子の場合は電解重合により直接基板上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。陽極は異なる物質で積層して形成することも可能である。陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常、60%以上、好ましくは80%以上とすることが望ましく、この場合、厚みは、通常、5~1000nm、好ましくは10~500nm程度である。不透明でよい場合には、陽極は基板と同一でもよい。また、更には上記の陽極の上に異なる導電材料を積層することも可能である。
(4)正孔輸送層
 陽極2の上に正孔輸送層4が設けられる。両者の間には、正孔注入層3を設けることもできる。正孔輸送層の材料に要求される条件としては、陽極からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが必要である。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、更に安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。また、発光層5に接するために発光層からの発光を消光したり、発光層との間でエキサイプレックスを形成して効率を低下させないことが求められる。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子には更に耐熱性が要求される。従って、Tgとして85℃以上の値を有する材料が望ましい。 
 本発明で使用できる正孔輸送材料としては、従来この層に用いられている公知の化合物を用いることができる。例えば、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4',4"-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J. Lumin., 72-74巻、985頁、1997年)、トリフェニルアミンの四量体からなる芳香族アミン化合物(Chem.Commun., 2175頁、1996年)、2,2',7,7'-テトラキス-(ジフェニルアミノ)-9,9'-スピロビフルオレン等のスピロ化合物(Synth. Metals, 91巻、209頁、1997年)等が挙げられる。これらの化合物は、単独で用いてもよいし、必要に応じて、各々、混合して用いてもよい。
 また、上記の化合物以外に、正孔輸送層の材料として、ポリビニルカルバゾール、ポリビニルトリフェニルアミン(特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym. Adv. Tech., 7巻、33頁、1996年)等の高分子材料が挙げられる。
 正孔輸送層を塗布法で形成する場合は、正孔輸送材料を1種又は2種以上と、必要により正孔のトラップにならないバインダー樹脂や塗布性改良剤などの添加剤とを添加し、溶解して塗布溶液を調製し、スピンコート法などの方法により陽極上に塗布し、乾燥して正孔輸送層を形成する。バインダー樹脂としては、ポリカーボネート、ポリアリレート、ポリエステル等が挙げられる。バインダー樹脂は添加量が多いと正孔移動度を低下させるので、少ない方が望ましく、通常、50重量%以下が好ましい。
 真空蒸着法で形成する場合は、正孔輸送材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、ルツボを加熱して、正孔輸送材料を蒸発させ、ルツボと向き合って置かれた、陽極が形成された基板上に正孔輸送層を形成させる。正孔輸送層の膜厚は、通常、1~300nm、好ましくは 5~100nmである。この様に薄い膜を一様に形成するためには、一般に真空蒸着法がよく用いられる。
(5)正孔注入層
 正孔注入の効率を更に向上させ、かつ、有機層全体の陽極への付着力を改善させる目的で、正孔輸送層4と陽極2との間に正孔注入層3を挿入することも行われている。正孔注入層を挿入することで、初期の素子の駆動電圧が下がると同時に、素子を定電流で連続駆動した時の電圧上昇も抑制される効果がある。正孔注入層に用いられる材料に要求される条件としては、陽極とのコンタクトがよく均一な薄膜が形成でき、熱的に安定、すなわち、ガラス転移温度が高く、ガラス転移温度としては100℃以上が要求される。更に、イオン化ポテンシャルが低く陽極からの正孔注入が容易なこと、正孔移動度が大きいことが挙げられる。
 この目的のために、これまでに銅フタロシアニン等のフタロシアニン化合物(特開昭63-295695号公報)、ポリアニリン(Appl. Phys. Lett., 64巻、1245頁,1994年)、ポリチオフェン(Optical Materials, 9巻、125頁、1998年)等の有機化合物や、スパッタ・カーボン膜(Synth. Met., 91巻、73頁、1997年)や、バナジウム酸化物、ルテニウム酸化物、モリブデン酸化物等の金属酸化物(J.Phys. D, 29巻、2750頁、1996年)、1,4,5,8-ナフタレンテトラカルボン酸二無水物(NTCDA)やヘキサニトリルヘキサアザトリフェニレン(HAT)などのP型有機物(WO2005-109542号公報)が報告されている。これらの化合物は、単独で用いてもよいし、必要に応じて、混合して用いてもよい。正孔注入層の場合も、正孔輸送層と同様にして薄膜形成可能であるが、無機物の場合には、更に、スパッタ法や電子ビーム蒸着法、プラズマCVD法が用いられる。以上の様にして形成される正孔注入層の膜厚は、通常、1~300nm、好ましくは 5~100nmである。 
(6)発光層
  正孔輸送層4の上に発光層5が設けられる。発光層は、単一の発光層から形成されていてもよいし、複数の発光層を直接接するように積層して構成されていてもよい。発光層は、2つのホスト材料と蛍光性発光材料又は燐光性発光材料として構成され、2つのホスト材料は、一般式(1)又は(2)の化合物と一般式(1)~(3)の化合物の組み合わせが良く、特に一般式(1)又は(2)の化合物と一般式(3)の組み合わせがよい。     
 ホスト材料に添加する蛍光性発光材料としては、ペリレン、ルブレンなどの縮合環誘導体、キナクリドン誘導体、フェノキサゾン660、DCM1、ペリノン、クマリン誘導体、ピロメテン(ジアザインダセン)誘導体、シアニン色素などが使用できる。
 ホスト材料に添加する燐光性発光材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金などから選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。具体的には以下の特許公報に記載されている化合物が挙げられるが、これらの化合物に限定されない。
 WO2009-073245号公報、WO2009-046266号公報、WO2007-095118号公報、WO2008-156879号公報、WO2008-140657号公報、US2008-261076号公報、特表2008-542203号公報、WO2008-054584号公報、特表2008-505925号公報、特表2007-522126号公報、特表2004-506305号公報、特表2006-513278号公報、特表2006-50596号公報、WO2006-046980号公報、WO2005113704号公報、US2005-260449号公報、US2005-2260448号公報、US2005-214576号公報、WO2005-076380号公報、US2005-119485号公報、WO2004-045001号公報、WO2004-045000号公報、WO2006-100888号公報、WO2007-004380号公報、WO2007-023659号公報、WO2008-035664号公報、特開2003-272861号公報、特開2004-111193号公報、特開2004-319438号公報、特開2007-2080号公報、特開2007-9009号公報、特開2007-227948号公報、特開2008-91906号公報、特開2008-311607号公報、特開2009-19121号公報、特開2009-46601号公報、特開2009-114369号公報、特開2003-253128号公報、特開2003-253129号公報、特開2003-253145号公報、特開2005-38847号公報、特開2005-82598号公報、特開2005-139185号公報、特開2005-187473号公報、特開2005-220136号公報、特開2006-63080号公報、特開2006-104201号公報、特開2006-111623号公報、特開2006-213720号公報、特開2006-290891号公報、特開2006-298899号公報、特開2006-298900号公報、WO2007-018067号公報、WO2007/058080号公報、WO2007-058104号公報、特開2006-131561号公報、特開2008-239565号公報、特開2008-266163号公報、特開2009-57367号公報、特開2002-117978号公報、特開2003-123982号公報、特開2003-133074号公報、特開2006-93542号公報、特開2006-131524号公報、特開2006-261623号公報、特開2006-303383号公報、特開2006-303394号公報、特開2006-310479号公報、特開2007-88105号公報、特開2007-258550号公報、特開2007-324309号公報、特開2008-270737号公報、特開2009-96800号公報、特開2009-161524号公報、WO2008-050733号公報、特開2003-73387号公報、特開2004-59433号公報、特開2004-155709号公報、特開2006-104132号公報、特開2008-37848号公報、特開2008-133212号公報、特開2009-57304号公報、特開2009-286716号公報、特開2010-83852号公報、特表2009-532546号公報、特表2009-536681号公報、特表2009-542026号公報等。
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
Figure JPOXMLDOC01-appb-I000023
 
 
  前記燐光発光ドーパントが発光層中に含有される量は、2~40重量%、好ましくは5~30重量%の範囲にあることがよい。
  発光層の膜厚については特に制限はないが、通常、1~300nm、好ましくは5~100nmであり、正孔輸送層と同様の方法にて薄膜形成される。
(7)電子輸送層
 素子の発光効率を更に向上させることを目的として、発光層5と陰極8の間に、電子輸送層6が設けられる。電子輸送層としては、陰極からスムーズに電子を注入できる電子輸送性材料が好ましく、一般的に使用される任意の材料を用いることができる。このような条件を満たす電子輸送材料としては、Alq3などの金属錯体(JP 59-194393A)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-又は5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(USP 5,645,948)、キノキサリン化合物(JP6-207169A)、フェナントロリン誘導体(JP5-331459A)、2-t-ブチル-9,10-N,N'-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 電子輸送層の膜厚は、通常、1~300nm、好ましくは5~100 nmである。電子輸送層は、正孔輸送層と同様にして塗布法あるいは真空蒸着法により発光層上に積層することにより形成される。通常は、真空蒸着法が用いられる。 
(8)陰極
 陰極8は、電子輸送層6に電子を注入する役割を果たす。陰極として用いられる材料は、前記陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数合金電極が挙げられる。
 陰極の膜厚は通常、陽極と同様である。低仕事関数金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
 更に、電子注入層7として、陰極8と電子輸送層6の間にLiF 、MgF2、Li2O等の極薄絶縁膜(0.1~5nm)を挿入することも素子の効率を向上させる有効な方法である。
  なお、図1とは逆の構造、すなわち、基板1上に陰極8、電子注入層7、電子輸送層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能であり、既述したように少なくとも一方が透明性の高い2枚の基板の間に本発明の有機EL素子を設けることも可能である。この場合も、必要により層を追加したり、省略したりすることが可能である。
  本発明の有機EL素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれでもあることができる。本発明の有機EL素子によれば、発光層を2つのホスト材料からなる混合ホストとし、そのホスト材料の内少なくとも一つに特定の化合物を用いることで、低い電圧であっても発光効率が高くかつ駆動安定性においても大きく改善された素子が得られ、フルカラーあるいはマルチカラーのパネルへの応用において優れた性能を発揮できる。
  以下、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
実施例1
  膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-4Paで積層させた。まず、ITO上に正孔注入層として銅フタロシアニン(CuPc)を20nmの厚さに形成し、次に正孔輸送層として4,4-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を20nmの厚さに形成した。次に発光層として、第一ホストとして化合物1-4を、第二ホストとして化合物3-37を、発光層ゲストとしてトリス(2-フェニルピリジン)イリジウム(III)(Ir(PPy))をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに形成した。この時、第一ホストと第二ホストとIr(PPy)の蒸着速度比(気化物の体積速度比)は、47:47:6であった。次に、正孔阻止層としてアルミニウム(III)ビス(2-メチル-8-キノリナト)4-フェニルフェノラート(BAlq)を10nmの厚さに形成した。次に、電子輸送層としてトリス-(8-ヒドロキシキノリナト)アルミニウム(III)(Alq)を40nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を0.5nmの厚さに形成した。最後に、電子注入層上に、陰極としてアルミニウム(Al)を100nmの厚さに形成し、有機EL素子を作製した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、極大波長517nmの発光スペクトルが観測され、Ir(PPy)からの発光が得られていることがわかった。表1に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
実施例2~4
  実施例1において、発光層第二ホストとして表1に記載した化合物を用いた以外は実施例1と同様にして有機EL素子を作製した。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)からの発光が得られていることがわかった。表1に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
例11~15(比較)
  実施例1において、発光層ホストとして表1に記載した化合物を単独で用いた以外は実施例1と同様にして有機EL素子を作製した。なお、ホスト量は、実施例1における第1ホストと第2ホストの合計と同じ量とし、ゲスト量は同様とした。得られた有機EL素子に電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)からの発光が得られていることがわかった。表1に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
 表1に、作製した有機EL素子の輝度、外部量子効率(初期特性)及び輝度半減寿命(寿命特性)を示す。輝度及び外部量子効率は、駆動電流2.5mA/cmの時の値であり、輝度半減時間は、初期輝度1000cd/mの時の値である。化合物No.は上記化学式に付した番号である。
Figure JPOXMLDOC01-appb-T000025
 
 表1において、本発明の実施例1~4と例11~15とを比較すると、特定骨格を有する二種類の化合物を発光層ホストとして用いることにより、輝度及び外部量子効率が向上し、輝度半減時間が著しく伸長することがわかる。これらの結果より、本発明によれば、高効率、かつ、良好な寿命特性を示す有機EL燐光素子を実現可能であることが明らかとなった。
実施例5
  膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-4Paで積層させた。まず、ITO上に正孔注入層としてCuPcを20nmの厚さに形成し、次に正孔輸送層としてNPBを20nmの厚さに形成した。次に発光層として、第一ホストとして化合物2-5を、第二ホストとして化合物3-37を、発光層ゲストとしてIr(PPy)をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに形成した。この時、第一ホストと第二ホストとIr(PPy)の蒸着速度比は、47:47:6であった。次に、正孔阻止層としてBAlqを10nmの厚さに形成した。次に、電子輸送層としてAlqを40nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を0.5nmの厚さに形成した。最後に、電子注入層上に、陰極としてアルミニウム(Al)を100nmの厚さに形成し、有機EL素子を作製した。
 得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、極大波長517nmの発光スペクトルが観測され、Ir(PPy)からの発光が得られていることがわかった。
 表2に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
実施例6~7
 実施例5において、発光層第二ホストとして表2に記載してある化合物を用いた以外は実施例5と同様にして有機EL素子を作製した。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)からの発光が得られていることがわかった。表2に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
例16~19(比較)
  実施例5において、発光層ホストとして表2に記載してある化合物を単独で用いた以外は実施例5と同様にして有機EL素子を作製した。なお、ホスト量は、実施例5における第1ホストと2ホストの合計と同じ量とした。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)からの発光が得られていることがわかった。
 表2に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。輝度及び外部量子効率は、駆動電流2.5mA/cmの時の値であり、輝度半減時間は、初期輝度1000cd/mの時の値である。
Figure JPOXMLDOC01-appb-T000026
 
 表2において、本発明の実施例5~7と例16~19とを比較すると、特定骨格を有する二種類の化合物を発光層ホストとして用いることにより、輝度及び外部量子効率が向上し、輝度半減時間が著しく伸長することがわかる。これらの結果より、本発明によれば、高効率、かつ、良好な寿命特性を示す有機EL燐光素子を実現可能であることが明らかとなった。
例20(比較)
 膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-4 Paで積層させた。まず、ITO上に正孔注入層としてCuPcを20nmの厚さに形成し、次に正孔輸送層としてNPBを20nmの厚さに形成した。次に発光層として、第一ホストとして化合物2-5を、第二ホストとして以下に示す化合物Aを、発光層ゲストとしてIr(PPy)をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに形成した。この時、第一ホストと第二ホストとIr(PPy)の蒸着速度比は、47:47:6であった。次に、正孔阻止層としてBAlqを10nmの厚さに形成した。次に、電子輸送層としてAlqを40nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を0.5nmの厚さに形成した。最後に、電子注入層上に、陰極としてアルミニウム(Al)を100nmの厚さに形成し、有機EL素子を作製した。
 また、発光層ホストとして下記化合物Aを単独で用いた有機EL素子も同様に作製した。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、両有機EL素子から極大波長517nmの発光スペクトルが観測され、Ir(PPy)からの発光が得られていることがわかった。表2に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
Figure JPOXMLDOC01-appb-I000027
 
 表2より、化合物2-5と化合物Aとの混合ホストと、化合物A単独ホスト及び化合物2-5単独ホスト(例16)とを比較すると、化合物2-5と化合物Aとの混合ホストを発光層ホストに用いることにより、輝度及び外部量子効率は向上するが、輝度半減時間は短縮してしまったことがわかる。この結果より、特定骨格以外の化合物の混合ホストを発光層ホストとして用いた場合には、駆動寿命特性が劣化する場合があることが判った。
実施例8
  膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-4Paで積層させた。まず、ITO上に正孔注入層としてCuPcを25nmの厚さに形成し、次に第一正孔輸送層としてNPBを10nmの厚さに形成し、さらに第二正孔輸送層として4,4',4''-トリス(N-カルバゾリル)-トリフェニルアミン(TCTA)を10nmの厚さに形成した。次に発光層として、第一ホストとして化合物1-90を、第二ホストとして化合物3-4を、発光層ゲストとしてトリス[1-(4′-シアノフェニル)-3-メチルベンゾイミダゾール-2-イリデン-C2,C2']-イリジウム(III)(Ir(cn-pmic))をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに形成した。この時、第一ホストと第二ホストとIr(cn-pmic)の蒸着速度比は、45:45:10であった。次に、正孔阻止層として2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を10nmの厚さに形成した。次に、電子輸送層としてAlqを25nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を0.5nmの厚さに形成した。最後に、電子注入層上に、陰極としてアルミニウム(Al)を100nmの厚さに形成し、有機EL素子を作製した。
 得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、極大波長460nmの発光スペクトルが観測され、Ir(cn-pmic)からの発光が得られていることがわかった。表3に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
例21(比較)
 実施例8において、発光層ホストとして化合物1-90のみを使用した以外は、実施例8と同様にして有機EL素子を作製した。ホスト量は、実施例8における第1ホストと第2ホストの合計と同じ量とした。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長460nmの発光スペクトルが観測され、Ir(cn-pmic)からの発光が得られていることがわかった。表3に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。
例22(比較)
  実施例8において、発光層ホストとして化合物3-4のみを使用した以外は、実施例8と同様にして有機EL素子を作成した。ホスト量は、実施例8における第1ホストと第2ホストの合計と同じ量とした。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長460nmの発光スペクトルが観測され、Ir(cn-pmic)からの発光が得られていることがわかった。
 表3に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。輝度及び外部量子効率は、駆動電流2.5mA/cmの時の値であり、輝度半減時間は、初期輝度1000cd/mの時の値である。
Figure JPOXMLDOC01-appb-T000028
 
 表3において、本発明の実施例8と例21~22とを比較すると、特定骨格を有する二種類の化合物を発光層ホストとして用いることにより、輝度及び外部量子効率が向上し、輝度半減時間が著しく伸長することがわかる。これらの結果より、本発明によれば、高効率、かつ、良好な寿命特性を示す有機EL燐光素子を実現可能であることが明らかとなった。
産業上の利用の可能性
 本発明の有機EL素子は、特定の化合物を混合ホストとして用いることで、低電圧でありながら、燐光発光分子の最低励起三重項エネルギーを閉じ込めるのに十分高い最低励起三重項エネルギーを有していることから、発光層内からのエネルギー流出がなく、高効率かつ長寿命を達成でき、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (6)

  1.  対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が2つのホスト材料と少なくとも1つの発光性ドーパントを含有し、該2つのホスト材料のうち、1つが下記一般式(1)~(2)のいずれかで表される化合物から選ばれるホスト材料であり、他の1つが下記一般式(3)で表される化合物から選ばれるホスト材料であることを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000001
     ここで、環aは2つの隣接環の任意の位置で縮合する式(a1)で表される芳香環又は複素環を示し、XはC-R又はNを示す。環bは2つの隣接環の任意の位置で縮合する式(b1)で表される複素環を示し、Ar、Ar2は炭素数6~22の芳香族炭化水素基、又は炭素数3~6の単環の芳香族複素環基を示し、Lは炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結された基を示し、Ar、ArおよびLにおけるこれらの芳香族炭化水素基又は芳香族複素環基は、置換基を有してもよい。pは0~7の整数を示す。ここで、pが2以上の場合、L1はそれぞれ同一でも異なってもよい。R、R~Rは独立に、水素、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、炭素数6~22の芳香族炭化水素基、又は炭素数3~16の芳香族複素環基を示し、それぞれ置換基を有してもよい;
    Figure JPOXMLDOC01-appb-I000002
     
     ここで、環c、環c’は隣接環の任意の位置で縮合する式(c1)で表される芳香環又は複素環を表し、環d、環d’は隣接環の任意の位置で縮合する式(d1)で表される複素環を表し、同一であっても異なっていても良い。XはC-R’又はNを示す。Zは炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結してなる2価の連結基を表すが、Nに連結する基は炭素数6~22の芳香族炭化水素基または炭素数3~6の単環の芳香族複素環基である。Arは炭素数6~22の芳香族炭化水素基、又は炭素数3~6の単環の芳香族複素環基を表し、Lは炭素数6~22の芳香族炭化水素基、炭素数3~16の芳香族複素環基、又はそれらが2~10連結してなる基を示し、Z、ArおよびLにおけるこれらの芳香族炭化水素基又は芳香族複素環基は、置換基を有してもよい。qは0~7の整数を示す。ここで、qが2以上の場合、Lはそれぞれ同一でも異なってもよい。R’、R~Rは独立に、水素、炭素数1~20のアルキル基、炭素数7~38のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数2~40のジアルキルアミノ基、炭素数12~44のジアリールアミノ基、炭素数14~76のジアラルキルアミノ基、炭素数2~20のアシル基、炭素数2~20のアシルオキシ基、炭素数1~20のアルコキシ基、炭素数2~20のアルコキシカルボニル基、炭素数2~20のアルコキシカルボニルオキシ基、炭素数1~20のアルキルスルホニル基、炭素数6~22の芳香族炭化水素基、又は炭素数3~16の芳香族複素環基を示し、それぞれ置換基を有してもよい;
    Figure JPOXMLDOC01-appb-I000003
     
     ここで、R~R12は独立に、水素、炭素数1~20のアルキル基、炭素数2~20のアシル基、炭素数2~20のアルコキシ基を表し、l、mは1または2の整数を示す。nは1~6の整数を示し、R13、R14は独立に、水素、炭素数1~20のアルキル基を、X~Xは独立に、C-H又はNを示す。nが2以上の場合、R13、R14およびX~Xは、それぞれ同一でも異なってもよい。
  2.  2つのホスト材料のうち1つが前記一般式(1)~(2)のいずれかで表される化合物から選ばれるホスト材料であり、他の1つが前記一般式(3)で表される化合物から選ばれるホスト材料であって、2つのホスト材料の電子親和力の差(ΔEA)が0.1eVより大きいことを特徴とする請求項1に記載の有機電界発光素子。
  3.  一般式(1)中、ArまたはArの少なくとも一つが置換または未置換の炭素数3~6の単環の芳香族複素環基であり、かつ式(a1)におけるXがC-Rであることを特徴とする請求項1に記載の有機電界発光素子。
  4.  一般式(2)中、式(c1)におけるXがC-R’であることを特徴とする請求項1に記載の有機電界発光素子。
  5.  一般式(3)中、nが3または4であることを特徴とする請求項1に記載の有機電界発光素子。
  6.  発光性ドーパントがルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体からなる燐光発光ドーパントであることを特徴とする請求項1に記載の有機電界発光素子。
PCT/JP2013/058515 2012-03-30 2013-03-25 有機電界発光素子 WO2013146645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014507852A JP6154802B2 (ja) 2012-03-30 2013-03-25 有機電界発光素子
US14/389,003 US10340460B2 (en) 2012-03-30 2013-03-25 Organic electroluminescent element
KR1020147030197A KR102045766B1 (ko) 2012-03-30 2013-03-25 유기 전계 발광 소자
CN201380017072.0A CN104247072B (zh) 2012-03-30 2013-03-25 有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-080154 2012-03-30
JP2012080154 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146645A1 true WO2013146645A1 (ja) 2013-10-03

Family

ID=49259896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058515 WO2013146645A1 (ja) 2012-03-30 2013-03-25 有機電界発光素子

Country Status (6)

Country Link
US (1) US10340460B2 (ja)
JP (1) JP6154802B2 (ja)
KR (1) KR102045766B1 (ja)
CN (1) CN104247072B (ja)
TW (1) TWI585091B (ja)
WO (1) WO2013146645A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020217A1 (ja) * 2013-08-09 2015-02-12 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2015167259A1 (en) * 2014-04-29 2015-11-05 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
KR20150124902A (ko) 2014-04-29 2015-11-06 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR20170018946A (ko) * 2014-06-18 2017-02-20 메르크 파텐트 게엠베하 전자 소자용 조성물
WO2017169497A1 (ja) * 2016-03-28 2017-10-05 新日鉄住金化学株式会社 有機電界発光素子
JPWO2016158363A1 (ja) * 2015-03-30 2018-03-15 新日鉄住金化学株式会社 有機電界発光素子
JP2018520513A (ja) * 2015-06-26 2018-07-26 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 多成分ホスト材料及びそれを含む有機電界発光デバイス
JPWO2017169785A1 (ja) * 2016-03-28 2019-02-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
JP2020105153A (ja) * 2018-12-28 2020-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. 化合物、組成物、液状組成物、有機エレクトロルミネッセンス素子用材料、および有機エレクトロルミネッセンス素子
US11450813B2 (en) 2017-06-19 2022-09-20 Samsung Sdi Co., Ltd. Organic optoelectronic diode and display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102593644B1 (ko) * 2014-11-11 2023-10-26 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
EP3306693B1 (en) * 2015-05-29 2020-04-08 NIPPON STEEL Chemical & Material Co., Ltd. Organic electroluminescent element
WO2018012780A1 (ko) * 2016-07-14 2018-01-18 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018021737A1 (ko) * 2016-07-29 2018-02-01 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102001478B1 (ko) 2016-08-11 2019-07-24 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR102109545B1 (ko) * 2016-12-22 2020-05-12 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR102664397B1 (ko) 2019-02-26 2024-05-08 삼성전자주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
US20210087179A1 (en) * 2019-09-19 2021-03-25 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device, and display device
KR20210075283A (ko) * 2019-12-12 2021-06-23 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치
KR20210143379A (ko) * 2020-05-19 2021-11-29 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135295A (ja) * 2004-11-05 2006-05-25 Samsung Sdi Co Ltd 有機電界発光素子
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
JP2009055010A (ja) * 2007-07-27 2009-03-12 Fujifilm Corp 有機電界発光素子
WO2010098246A1 (ja) * 2009-02-27 2010-09-02 新日鐵化学株式会社 有機電界発光素子
JP2011071459A (ja) * 2009-01-06 2011-04-07 Fujifilm Corp 有機電界発光素子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942340A (en) 1997-10-02 1999-08-24 Xerox Corporation Indolocarbazole electroluminescent devices
US5952115A (en) 1997-10-02 1999-09-14 Xerox Corporation Electroluminescent devices
AU1807201A (en) 1999-12-01 2001-06-12 Trustees Of Princeton University, The Complexes of form L2MX as phosphorescent dopants for organic leds
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
TW200541401A (en) * 2004-02-13 2005-12-16 Idemitsu Kosan Co Organic electroluminescent device
CN101321755B (zh) * 2005-12-01 2012-04-18 新日铁化学株式会社 有机电致发光元件用化合物及有机电致发光元件
CN101511834B (zh) * 2006-11-09 2013-03-27 新日铁化学株式会社 有机场致发光元件用化合物及有机场致发光元件
US8221905B2 (en) * 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
CN101959857B (zh) * 2008-03-24 2014-02-19 新日铁住金化学株式会社 有机场致发光元件用化合物及使用其的有机场致发光元件
WO2009136596A1 (ja) 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子
TWI468494B (zh) * 2009-03-31 2015-01-11 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
KR101311934B1 (ko) * 2009-06-08 2013-09-26 제일모직주식회사 유기광전소자용 조성물 및 이를 이용한 유기광전소자
CN102421772B (zh) 2010-04-20 2015-11-25 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件
EP2564438B1 (en) * 2010-04-28 2016-10-19 Universal Display Corporation Depositing premixed materials
JP2013201153A (ja) * 2010-06-08 2013-10-03 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2012028634A (ja) 2010-07-26 2012-02-09 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
TW201231459A (en) * 2010-12-20 2012-08-01 Du Pont Electroactive compositions for electronic applications
WO2012087955A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Compositions for electronic applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135295A (ja) * 2004-11-05 2006-05-25 Samsung Sdi Co Ltd 有機電界発光素子
WO2007063796A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
JP2009055010A (ja) * 2007-07-27 2009-03-12 Fujifilm Corp 有機電界発光素子
JP2011071459A (ja) * 2009-01-06 2011-04-07 Fujifilm Corp 有機電界発光素子
WO2010098246A1 (ja) * 2009-02-27 2010-09-02 新日鐵化学株式会社 有機電界発光素子

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10833281B2 (en) 2013-08-09 2020-11-10 Idemitsu Kosan Co., Ltd. Organic electroluminescence composition, material for organic electroluminescence element, solution of material for organic electroluminescence element, and organic electroluminescence element
JPWO2015020217A1 (ja) * 2013-08-09 2017-03-02 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2015020217A1 (ja) * 2013-08-09 2015-02-12 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2015167259A1 (en) * 2014-04-29 2015-11-05 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
KR20150124902A (ko) 2014-04-29 2015-11-06 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR102491209B1 (ko) * 2014-04-29 2023-01-26 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR20170018946A (ko) * 2014-06-18 2017-02-20 메르크 파텐트 게엠베하 전자 소자용 조성물
JP2017523270A (ja) * 2014-06-18 2017-08-17 メルク パテント ゲーエムベーハー 電子デバイス用の組成物
KR102537035B1 (ko) * 2014-06-18 2023-05-26 메르크 파텐트 게엠베하 전자 소자용 조성물
US10847727B2 (en) 2014-06-18 2020-11-24 Merck Patent Gmbh Compositions for electronic devices
JPWO2016158363A1 (ja) * 2015-03-30 2018-03-15 新日鉄住金化学株式会社 有機電界発光素子
EP3279963A4 (en) * 2015-03-30 2018-11-21 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
JP2018520513A (ja) * 2015-06-26 2018-07-26 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 多成分ホスト材料及びそれを含む有機電界発光デバイス
JPWO2017169497A1 (ja) * 2016-03-28 2019-03-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
JPWO2017169785A1 (ja) * 2016-03-28 2019-02-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2017169497A1 (ja) * 2016-03-28 2017-10-05 新日鉄住金化学株式会社 有機電界発光素子
US11450813B2 (en) 2017-06-19 2022-09-20 Samsung Sdi Co., Ltd. Organic optoelectronic diode and display device
JP2020105153A (ja) * 2018-12-28 2020-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. 化合物、組成物、液状組成物、有機エレクトロルミネッセンス素子用材料、および有機エレクトロルミネッセンス素子
JP7396795B2 (ja) 2018-12-28 2023-12-12 三星電子株式会社 化合物、組成物、液状組成物、有機エレクトロルミネッセンス素子用材料、および有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
KR20150003223A (ko) 2015-01-08
KR102045766B1 (ko) 2019-11-18
CN104247072B (zh) 2016-11-09
TWI585091B (zh) 2017-06-01
US10340460B2 (en) 2019-07-02
CN104247072A (zh) 2014-12-24
JP6154802B2 (ja) 2017-06-28
US20150115240A1 (en) 2015-04-30
TW201400487A (zh) 2014-01-01
JPWO2013146645A1 (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6154802B2 (ja) 有機電界発光素子
JP6357422B2 (ja) 有機電界発光素子
JP6731908B2 (ja) 有機電界発光素子
JP6789209B2 (ja) 有機電界発光素子
JP6436658B2 (ja) 有機電界発光素子
JP6746688B2 (ja) 有機電界発光素子
JP6307332B2 (ja) 有機電界発光素子
WO2019181465A1 (ja) 有機電界発光素子
JP6883018B2 (ja) 有機電界発光素子
JP6378993B2 (ja) 有機電界発光素子
WO2017169785A1 (ja) 有機電界発光素子
JP6383623B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507852

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147030197

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13768293

Country of ref document: EP

Kind code of ref document: A1