WO2021045178A1 - 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料 - Google Patents

有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料 Download PDF

Info

Publication number
WO2021045178A1
WO2021045178A1 PCT/JP2020/033542 JP2020033542W WO2021045178A1 WO 2021045178 A1 WO2021045178 A1 WO 2021045178A1 JP 2020033542 W JP2020033542 W JP 2020033542W WO 2021045178 A1 WO2021045178 A1 WO 2021045178A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
thin film
layer
group
compound
Prior art date
Application number
PCT/JP2020/033542
Other languages
English (en)
French (fr)
Inventor
弘彦 深川
清水 貴央
翼 佐々木
拓 大野
宗弘 長谷川
森井 克行
裕樹 福留
Original Assignee
日本放送協会
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本放送協会, 株式会社日本触媒 filed Critical 日本放送協会
Priority to US17/640,240 priority Critical patent/US20220310937A1/en
Priority to EP20860625.1A priority patent/EP4026881A4/en
Priority to KR1020227005967A priority patent/KR20220035956A/ko
Priority to JP2021544040A priority patent/JPWO2021045178A1/ja
Priority to CN202080062595.7A priority patent/CN114375506A/zh
Publication of WO2021045178A1 publication Critical patent/WO2021045178A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron

Definitions

  • the present invention relates to an organic thin film, a method for producing an organic thin film, an organic electroluminescence (hereinafter, electroluminescence (electroluminescence) may be referred to as "EL") element, a display device, a lighting device, an organic thin film solar cell, and a thin film.
  • electroluminescence electroluminescence
  • EL organic electroluminescence
  • Photoelectric conversion elements coating compositions, materials for organic electroluminescence elements.
  • Organic EL devices are thin, flexible and flexible. Further, a display device using an organic EL element is capable of high-luminance and high-definition display as compared with the liquid crystal display device and the plasma display device which are currently mainstream. Further, the display device using the organic EL element has a wider viewing angle than the liquid crystal display device. Therefore, display devices using organic EL elements are expected to be widely used as displays for televisions and mobile phones in the future. Further, the organic EL element is also expected to be used as a lighting device.
  • the organic EL element is a stack of a cathode, a light emitting layer, and an anode.
  • the work function of the anode and the highest occupied orbital (HOMO) energy difference of the light emitting layer are smaller than the work function of the cathode and the lowest unoccupied orbital (LUMO) energy difference of the light emitting layer. Therefore, it is difficult to inject electrons into the light emitting layer from the cathode as compared to injecting holes from the anode. Therefore, in the conventional organic EL element, an electron injection layer is arranged between the cathode and the light emitting layer to promote the injection of electrons from the cathode to the light emitting layer.
  • Examples of the electron injection layer of the organic EL device include an inorganic oxide layer (see, for example, Non-Patent Document 3).
  • the inorganic oxide layer has insufficient electron injection property.
  • Non-Patent Document 4 describes an organic EL device having an electron injection layer made of polyethyleneimine.
  • Non-Patent Document 5 describes that amines are effective in improving the electron injection rate.
  • Non-Patent Documents 6, 7 and 8 describe the effect of an amino group on electron injection at the interface between an electrode and an organic layer.
  • 201304163 Stephen Forful, 4 outsiders “Advanced Materials", 2014, DOI: 10.1002 / adma. 2013046666 Stephan Forful, 5 outsiders “Advanced Materials", Vol. 26, 2014, DOI: 10.1002 / adma. 201400332 Penway, 3 outsiders "Journal of the American Chemical Society", Vol. 132, 2010, p8852
  • the present invention has been made in view of the above circumstances, and when producing an organic thin film capable of obtaining excellent electron injection and electron transport properties when used in an electron injection layer of an organic EL element, this organic thin film is produced. It is an object of the present invention to provide a coating composition that can be suitably used for organic EL devices, and a material for an organic EL device that is a raw material for these organic thin films and coating compositions. Further, the present invention provides an organic EL element using the organic thin film of the present invention, a display device and a lighting device provided with the organic EL element, an organic thin film solar cell including the organic thin film of the present invention, a photoelectric conversion element and an organic thin film transistor. The challenge is to provide.
  • the present inventors have focused on basic organic materials as materials used for the electron injection layer of organic EL devices.
  • an organic thin film containing a hexahydropyrimidyrimidine compound having a predetermined structure which is an organic material having an acid dissociation constant pKa of 1 or more, and a material for transporting electrons may be used as the electron injection layer of the organic EL device. It turned out.
  • the organic material having a pKa of 1 or more has an ability to extract protons (H +) from other materials. Therefore, in the organic EL device having the electron injection layer made of the above organic thin film, an organic material having a pKa of 1 or more extracts a proton (H + ) from the material that transports electrons, so that a negative charge is generated and electron injection occurs. It is presumed that the sex will improve.
  • a single membrane containing a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1) and a second material for transporting electrons, or the first material.
  • An organic thin film which is a laminated film of a film containing the above-mentioned second material and a film containing the second material.
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • [3] A laminated film composed of an oxide layer and a layer of an organic thin film according to [1] or [2] formed on the oxide layer.
  • the organic electroluminescence device having a light emitting layer between the cathode and the anode, and the organic thin film according to [1] or [2] or the organic thin film according to [3] between the cathode and the light emitting layer.
  • An organic electroluminescence device characterized by having a laminated film of.
  • a laminated film of a film containing the first material and the second material and a film containing the second material is provided between the cathode and the light emitting layer [4] or [ 5]
  • a material for an organic electroluminescence device which comprises a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1).
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • An organic electroluminescence device having a light emitting layer between a cathode and an anode, and having a layer containing the material for an organic electroluminescence device according to [11] between the cathode and the anode. Characterized organic electroluminescence element.
  • a display device comprising the organic electroluminescence element according to any one of [4] to [10] and [12] to [14].
  • a lighting device including the organic electroluminescence element according to any one of [4] to [10] and [12] to [14].
  • a material for an organic thin-film solar cell which comprises a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1).
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • a material for a photoelectric conversion element which comprises a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1).
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • a material for a thin film transistor which comprises a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1).
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • a thin film transistor comprising either the organic thin film according to [1] or [2], the laminated film according to [3], or a layer containing the thin film transistor material according to [21].
  • a coating composition comprising a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1) and a second material which transports electrons.
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • a coating composition comprising a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1).
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • a single film containing a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1) and a second material for transporting electrons is formed on the surface to be formed.
  • a method for producing an organic thin film which comprises a step of forming a film containing the first material and a film containing the second material in order on a surface to be formed.
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • a method for producing an organic thin film which comprises a step of forming a film containing a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1) on a surface to be formed.
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • the organic thin film of the present invention includes a first material made of a specific organic material having an acid dissociation constant pKa of at least 1 and a second material for transporting electrons. Therefore, when the organic thin film of the present invention is used, for example, in the electron injection layer of an organic EL element, excellent electron injection and electron transport properties can be obtained. Since the organic EL device of the present invention has the organic thin film of the present invention between the cathode and the light emitting layer, excellent electron injection and electron transport properties can be obtained by the organic thin film.
  • the organic thin film of the present invention containing a first material composed of a specific hexahydropyrimidyrimidine compound having an acid dissociation constant pKa of 1 or more and a second material for transporting electrons can be obtained by either coating or vapor deposition. Since it can be formed, there are few process restrictions when manufacturing an organic EL device containing the organic thin film of the present invention, and it is easy to use as a material for a layer constituting the organic EL device.
  • the method for producing an organic thin film of the present invention is such a method for producing an organic thin film of the present invention.
  • the coating composition of the present invention includes a first material composed of a specific organic material having an acid dissociation constant pKa of 1 or more, and a second material that transports electrons. Therefore, by applying the coating composition of the present invention on the surface to be formed of the organic thin film, an organic thin film suitable for the electron injection layer of the organic EL element can be obtained.
  • the material for an organic EL element of the present invention is a useful material used for the organic thin film and the coating composition of the present invention used for producing an organic EL element and the like.
  • this material is also useful in that it can be used alone as an electron injection layer or an electron transport layer.
  • the display device and the lighting device of the present invention include the organic EL element of the present invention, the drive voltage is low and they have excellent characteristics. Further, since the organic thin film solar cell, the photoelectric conversion element and the organic thin film transistor of the present invention contain the organic thin film of the present invention, they have excellent characteristics.
  • Example 6 is a graph showing the relationship between the applied voltage and the brightness of the organic EL elements produced in Example 16 and Comparative Examples 8 and 9. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 17, Comparative Examples 10 and 11. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 18, Comparative Examples 12 and 13. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 19 and Comparative Example 15. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 20 and Comparative Example 14.
  • the organic thin film of the present invention contains a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1), and a second material which transports electrons.
  • the organic thin film of the present invention may be a single-layer film containing a first material and a second material, or is a laminated film in which a layer containing the first material and a layer containing the second material are laminated. May be good.
  • R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
  • N is an integer of 1 to 4).
  • the first material constituting the organic thin film of the present invention is the organic material having a pKa of 1 or more, it has an ability to extract protons (H +) from the second material.
  • the first material preferably has a pKa of 5 or more, and more preferably 11 or more. The higher the pKa of the first material, the higher the ability to extract protons from the second material.
  • the organic thin film is used as, for example, the electron injection layer of the organic EL element, excellent electron injection property and electron transport property can be obtained.
  • the organic thin film of the present invention can be used not only for an element composed of only an organic compound but also for an element composed of an organic compound and an inorganic compound, and has electron injectability and atmospheric stability. Can exert the effect of increasing.
  • the fact that the work function of the inorganic compound can be reduced also improves the efficiency of electron extraction from the organic compound used in the active layer that absorbs light and generates electrons generated in an organic thin-film solar cell or a photoelectric conversion element. It means that you can do it.
  • One of the features of the organic thin film of the present invention is that it contains a hexahydropyrimidopyrimidine compound having a structure represented by the above general formula (1) as a first material, and the organic thin film of the present invention is used as an electron injection layer. When used, excellent electron injection and electron transport properties can be obtained.
  • a material for an organic EL device containing a hexahydropyrimidopyrimidine compound having a structure represented by the above general formula (1), which exhibits such excellent effects, is also one of the present inventions, and the present material can be used. Excellent electron injecting property and electron transporting property can be obtained even when the electron injecting layer or the electron transporting layer is used alone.
  • "pKa” usually means “acid dissociation constant in water", but what cannot be measured in water means “acid dissociation constant in dimethyl sulfoxide (DMSO)" and cannot be measured even in DMSO.
  • DMSO dimethyl sulfoxide
  • R 1 in the above general formula (1) is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, or a cyclic hydrocarbon group. , A group formed by combining two or more of these groups, and a group formed by combining one or two or more of these groups with a nitrogen atom.
  • aromatic hydrocarbon group and the aromatic heterocyclic group those having 3 to 30 carbon atoms are preferable, those having 4 to 24 carbon atoms are more preferable, and those having 5 to 20 carbon atoms are further preferable.
  • aromatic hydrocarbon group a compound consisting of only one aromatic ring such as benzene; a compound in which a plurality of aromatic rings such as biphenyl and diphenylbenzene are directly bonded to each other by one carbon atom; naphthalene, anthracene, phenanthrene, pyrene and the like. Examples thereof include a group formed by removing 1 to 4 hydrogen atoms from any of the aromatic rings of the fused ring aromatic hydrocarbon compound.
  • aromatic heterocyclic group a compound consisting of only one aromatic heterocycle such as thiophene, furan, pyrrol, oxazole, oxadiazole, thiazole, thiadiazol, imidazole, pyridine, pyrimidine, pyrazine, triazine; one of these.
  • the 2- to tetravalent chain or cyclic hydrocarbon group those having 1 to 12 carbon atoms are preferable, those having 1 to 6 carbon atoms are more preferable, and those having 1 to 4 carbon atoms are further preferable.
  • the chain hydrocarbon group may be linear or branched.
  • R 1 may be a group formed by combining two or more of the above-mentioned aromatic hydrocarbon group, aromatic heterocyclic group, arylalkylene group and 2- to tetravalent chain hydrocarbon group.
  • R 1 is a group formed by combining one or more of the above-mentioned aromatic hydrocarbon group, aromatic heterocyclic group, arylalkylene group, and 2- to tetravalent chain hydrocarbon group with a nitrogen atom. You may. Examples of such a group include a trialkylamine such as trimethylamine and a group formed by removing 1 to 4 hydrogen atoms from triphenylamine.
  • the aromatic hydrocarbon group, aromatic heterocyclic group, or arylalkylene group may have one or more monovalent substituents.
  • the monovalent substituent includes a fluorine atom; a haloalkyl group such as a fluoromethyl group, a difluoromethyl group and a trifluoromethyl group; a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group and a tert-butyl group.
  • Linear or branched alkoxy group having 1 to 20 carbon atoms such as group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group; nitro group; cyano Group; Alkylamino group having an alkyl group having 1 to 10 carbon atoms such as methylamino group, ethylamino group, dimethylamino group and diethylamino group; cyclic amino group such as pyrrolidino group, piperidino group and morpholino group; diphenylamino group, Diaryla
  • a heterocyclic group containing any one or more of a nitrogen atom, a sulfur atom and an oxygen atom having 4 to 20 carbon atoms which may be substituted with 20 alkyl groups, alkoxy groups, amino groups and the like (the heterocyclic group is 1). It may be composed of only one ring, a compound composed of only one aromatic heterocycle may be a compound in which a plurality of carbon atoms are directly bonded to each other, or a fused heterocyclic group may be used. Specific examples of the heterocyclic group include specific examples of the above aromatic heterocyclic group.); Examples thereof include an ester group and a thioether group. These groups may be substituted with a halogen atom, a hetero element, an alkyl group, an aromatic ring or the like.
  • n in the general formula (1) is an integer of 1 to 4, it is preferably 2 or 3.
  • Specific examples of the hexahydropyrimidopyrimidine compound having the structure represented by the general formula (1) include compounds represented by the following formulas (2-1) to (2-34).
  • the compound represented by the general formula (1) is a Ullmann coupling reaction using a halogen compound having iodine, bromine, chlorine and fluorine and hexahydropyrimidyrimidine as raw materials. , Butchwald-Halide amination reaction, nucleophilic substitution reaction and the like.
  • the second material may be any material that transports electrons, and is preferably an organic material. More preferably, it is an organic material having a minimum unoccupied orbital (LUMO) level of 2.0 eV to 4.0 eV, and among them, an n-type organic semiconductor material having a LUMO level of 2.5 eV to 3.5 eV.
  • LUMO minimum unoccupied orbital
  • any of the conventionally known materials shown below may be used as the material of the electron transport layer of the organic EL element, and among these, a material satisfying the above LUMO level requirement is preferable.
  • the second material include phosphine oxide derivatives such as phenyl-dipyrenylphosphine oxide (POPy 2 ), tris-1,3,5- (3'-(pyridine-3''-yl)).
  • Phenyl) benzene TmPhPyB
  • 1,3,5-tris (6- (3- (pyridin-3-yl) phenyl) pyridine-2-yl) benzene, 8,9-diphenyl-7,10- (3-) (Pyridin-3-yl)) pyridine derivatives
  • fluorantene quinoline derivatives such as (2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), 2-phenyl-4,6-bis (3).
  • Aromatic ring tetracarboxylic acid anhydride a compound having a heterocycle containing a carbonyl group such as a compound represented by the formula (24) described later, bis [2- (2-hydroxyphenyl) benzothiazolato] zinc (Zn (BTZ) 2 ).
  • phosphine oxide derivatives such as POPy 2
  • boron-containing compounds such as compounds represented by the following formulas (4) to (7)
  • metal complexes such as Alq 3, and TmPhPyB.
  • a pyridine derivative a triazine derivative such as TmPhPyTZ.
  • the second material is a boron-containing compound or a triazine derivative. Note that n 1 in equation (6) represents an integer of 1 or more.
  • a uniform organic thin film can be easily obtained by a method of applying a coating composition containing the first material and the second material.
  • a coating composition containing the first material represented by the general formula (1) and the second material for transporting electrons is also one of the present inventions.
  • the coating composition contains the first material and does not contain the second material. Is also useful.
  • a coating composition containing a hexahydropyrimidyrimidine compound, which is the first material represented by the general formula (1), is also one of the present inventions.
  • the boron-containing compound and the triazine derivative have a deep minimum unoccupied orbital (LUMO) energy, they are suitable as a material as an electron injection layer of an organic EL device. Therefore, an organic thin film containing a boron-containing compound as a second material is particularly suitable as an electron injection layer for an organic EL device.
  • LUMO deep minimum unoccupied orbital
  • the ratio of the first material to the second material contained in the organic thin film of the present invention is not particularly limited, and can be appropriately determined according to the type of the compound used for each of the first material and the second material.
  • the ratio of the first material to the second material is preferably 0.1: 99.9 to 20: 1 in terms of mass ratio (first material: second material). More preferably, it is 0.5:99 to 10: 1.
  • the ratio of the first material to the second material is also used. Is preferably such a mass ratio. In the case of the above ratio, the effect of improving the electron transport property and the electron injection property due to the inclusion of the first material and the second material in the organic thin film becomes remarkable.
  • the organic thin film in the present invention may be a single film containing the first material and the second material, or may be a laminated film of a film containing at least the first material and a film containing at least the second material. Good.
  • a laminated film it may be a laminated film of a film containing only the first material and a film containing only the second material, a film containing the first material and the second material, and the first material and the second material. It may be a laminated film with a film containing only one of the materials.
  • the film contains only one of the first material and the second material.
  • the film may contain either the first material or the second material, but it is preferable that the film contains the second material. Further, when such an organic thin film is used as a layer constituting the organic electroluminescence element, a film containing only one of the first material and the second material and a film containing only one of the first material and the second material are used. Whichever may be on the cathode side, it is preferable that the film containing only one of the first material and the second material is on the cathode side.
  • both of the two laminated films contain the first material.
  • the first material contained in the two films may be the same or different.
  • the organic thin film in the present invention is a laminated film of a film containing the first material and the second material and a film containing only the second material
  • the second material is applied to both of the two laminated films.
  • the second material contained in the two films may be the same or different.
  • the organic thin film of the present invention comprises a first material composed of a hexahydropyrimidyrimidine compound having an acid dissociation constant pKa of 1 or more and having a structure represented by the above general formula (1), and a second material for transporting electrons. Is included. Due to the relatively large molecular weight of both the first material and the second material, the organic thin film of the present invention can be formed not only by coating but also by vapor deposition.
  • the organic thin film is manufactured by thin-film deposition, it can be carried out by the same method as when the other layers constituting the organic EL element are manufactured by thin-film deposition, and the first material and the second material may be vapor-deposited at the same time, in order. It may be vapor-deposited.
  • first material or the second material may be vapor-deposited first.
  • either one may be vapor-deposited first and then both may be co-deposited, or both may be co-deposited and then either one may be vapor-deposited.
  • the first material which is a hexahydropyrimidopyrimidine compound having the structure represented by the general formula (1), and the second material for transporting electrons are simultaneously vapor-deposited on the surface to be formed of the organic thin film.
  • the method for producing an organic thin film including a step is one of the preferred embodiments of the method for producing an organic thin film of the present invention. Further, a method for producing an organic thin film, or a method for producing an organic thin film, which comprises a step of first depositing either the first material or the second material on the surface to be formed of the organic thin film, and then a step of depositing the other or both materials.
  • the method for producing an organic thin film containing the mixture is also one of the preferred embodiments of the method for producing an organic thin film of the present invention.
  • the organic thin film of the present invention can also be produced by coating, and in this case as well, a coating composition containing a first material and a second material that transports electrons is prepared, and the coating composition is used.
  • An organic thin film can be produced by applying or preparing a coating composition containing a first material and a coating composition containing a second material, and applying these in order. When applying in order, either the coating composition containing the first material or the coating composition containing the second material may be applied first. Further, the coating composition containing only one of the materials may be applied, and then the coating composition containing both of these materials may be applied, and after the coating composition containing both of these materials is applied, either of them may be applied. A paint composition containing only one of the materials may be applied.
  • a coating composition containing such a first material which is a hexahydropyrimidopyrimidine compound having a structure represented by the above general formula (1) and a second material which transports electrons is formed on the surface to be formed of an organic thin film.
  • the method for producing an organic thin film including the step of applying it on is one of the preferred embodiments of the method for producing an organic thin film of the present invention. Further, a step of first applying either a coating composition containing only the first material or a coating composition containing only the second material onto the surface to be formed of the organic thin film, and a step of applying the coating film formed by the step.
  • a method for producing an organic thin film which comprises a step of applying a coating composition containing the other or both materials, or a step of applying a coating composition containing both the first material and the second material, and the same.
  • the method for producing an organic thin film which comprises a step of applying a coating composition containing only one of the first material or the second material on the coating film formed by the step, is also a method for producing an organic thin film of the present invention. Is one of the preferred embodiments of.
  • a coating composition containing a first material composed of a hexahydropyrimidopyrimidine compound having a structure represented by a specific general formula (1) having pKa of 1 or more and a second material for transporting electrons is described.
  • a method for producing an organic thin film by producing and applying the coating composition will be described.
  • the coating composition for example, a predetermined amount of the first material and the second material are supplied to the solvent contained in the container, or the solvent is supplied to the first material and the second material contained in the container, and the mixture is stirred and dissolved. Obtained by the method.
  • the solvent used for dissolving the first material and the second material for example, an inorganic solvent, an organic solvent, or a mixed solvent containing these can be used.
  • the inorganic solvent include nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, phosphoric acid, hydrochloric acid and the like.
  • organic solvent examples include methyl ethyl ketone (MEK), acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MICK), diisobutyl ketone, 3,5,5-trimethylcyclohexanone, diacetone alcohol, cyclopentanone, and cyclohexanone.
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • MICK methyl isopropyl ketone
  • diisobutyl ketone 3,5,5-trimethylcyclohexanone
  • diacetone alcohol cyclopentanone
  • cyclopentanone and cyclohexanone.
  • Ketone solvents such as methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), alcohol solvents such as glycerin, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran.
  • Ether-based solvents such as (THF), tetrahydropyran (THP), anisole, diethylene glycol dimethyl ether (digrim), diethylene glycol ethyl ether (carbitol), cellosolve solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, hexane, pentane, heptane , Aliper hydrocarbon solvents such as cyclohexane, aromatic hydrocarbon solvents such as toluene, xylene, benzene, aromatic heterocyclic solvents such as pyridine, pyrazine, furan, pyrrole, thiophene, methylpyrrolidone, N, N -Amid solvents such as dimethylformamide (DMF), N, N-dimethylacetamide (DMA), halogen compound solvents such as chlorobenzene, dichloromethane, chloroform, 1,2-dichloroethane,
  • Ester solvent sulfur compound solvent such as dimethyl sulfoxide (DMSO), sulfolane, nitrile solvent such as acetonitrile, propionitrile, acrylonitrile, organic acid solvent such as formic acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, triethylamine, pyridine
  • organic solvents such as organic amine-based solvents such as diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, and carbonate-based solvents such as propylene carbonate, and among these, methyl ethyl ketone (MEK), acetone, diethyl ketone, and methyl isobutyl ketone.
  • MEK methyl ethyl ketone
  • Ketone-based solvents such as (MIBK), methylisopropylketone (MICK), diisobutylketone, 3,5,5-trimethylcyclohexanone, diacetone alcohol, and cyclopentanone are preferable.
  • Examples of the method for applying the coating composition containing the first material and the second material include a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, and a wire bar coating method.
  • Various coating methods such as a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.
  • the conditions for the annealing treatment are preferably 70 to 200 ° C. for 0.1 to 5 hours in a nitrogen atmosphere or the atmosphere. By performing such an annealing treatment, the solvent can be vaporized to form an organic thin film.
  • hexahydropyrimidyrimidine compound which is the first material represented by the above general formula (1)
  • an organic thin film containing the first material and not containing the second material is also available. It is useful as a material for organic EL elements and the like.
  • a method for producing an organic thin film which comprises a step of forming a film containing a hexahydropyrimidyrimidine compound having a structure represented by the general formula (1) on a surface to be formed, is also one of the present inventions.
  • the method for producing an organic thin film includes a step of forming a film containing a hexahydropyrimidyrimidine compound having a structure represented by the general formula (1) on a surface to be formed containing a second material. It is one of the embodiments.
  • Organic EL element The present invention also has a light emitting layer between the cathode and the anode, and further comprises a layer of the organic thin film of the present invention, a layer of a laminated film of the organic thin film layer and a metal oxide layer, or the organic of the present invention. It is also an organic electroluminescence (EL) device that includes any of the layers containing materials for electroluminescence devices.
  • EL organic electroluminescence
  • the organic thin film layer, the laminated film layer of the organic thin film layer and the metal oxide layer, and the layer containing the material for the organic electroluminescence device of the present invention all have a cathode and light emission in the organic EL device of the present invention.
  • the layer containing the material for an organic electroluminescence device of the present invention may contain other components as long as it contains a hexahydropyrimidyrimidine compound having a structure represented by the above-mentioned general formula (1). , It is preferable that the layer is composed of only the hexahydropyrimidopyrimidine compound.
  • the present invention is also an organic electroluminescence device having a light emitting layer between a cathode and an anode, and a layer of the organic thin film of the present invention between the cathode and the anode, or a layer of the organic thin film and a metal oxide. It is also an organic electroluminescence (EL) device that includes a layer of a laminated film with a layer and the light emitting layer contains a second material. Further, the present invention includes a layer of the organic thin film of the present invention or a layer of a laminated film of the organic thin film layer and a metal oxide layer between the cathode and the anode, and the organic thin film or the laminated film serves as a light emitting layer.
  • EL organic electroluminescence
  • EL organic electroluminescence
  • the hexahydropyrimidyrimidine compound which is the first material of the present invention, has extremely excellent electron injectability, it is possible to directly inject electrons into the light emitting material and the host material used for the light emitting layer. Therefore, by using the first material of the present invention for the electron injection layer, it is possible to reduce the number of materials used or the number of layers to be laminated to obtain an organic EL device having a simpler structure. ..
  • the element using the organic thin film or the laminated film of the present invention is an element in which the layer containing the first material, the layer containing the second material, and the light emitting layer are adjacent to each other, and the light emitting layer is used as the material of the layer containing the second material. Even when the light emitting material or host material used in the above is used, it is possible to inject electrons from the layer containing the first material, and by doing so, the layer containing the second material and the light emitting layer are common. Since it can be formed using materials, the number of materials used can be reduced.
  • the second material may be either a light emitting material or a host material for the light emitting layer.
  • the layer containing the second material is formed by using the light emitting material or the host material of the light emitting layer and used as the light emitting layer, it is not necessary to separately provide the light emitting layer. It is possible to use an organic EL element having a simple structure. Further, if the second material is used as the material of the layer adjacent to the anode side of the light emitting layer, the number of layers to be laminated can be further reduced to obtain an organic EL element having a simpler structure. Therefore, it is preferable that the light emitting layer contains the second material and that the light emitting layer has a layer containing the second material between the anode and the light emitting layer, both of which are suitable for the organic electroluminescence (EL) device of the present invention. It is one of the embodiments.
  • FIG. 1 is a schematic cross-sectional view for explaining an example of the organic EL device of the present invention.
  • the organic EL element 1 of the present invention shown in FIG. 1 has a light emitting layer 6 between the cathode 3 and the anode 9.
  • the organic EL device 1 shown in FIG. 1 has an electron injection layer 5 made of the organic thin film of the present invention or the material for the organic electroluminescence device of the present invention between the cathode 3 and the light emitting layer 6.
  • an oxide layer 4 is provided between the cathode 3 and the electron injection layer 5 made of the organic thin film of the present invention or the material for the organic electroluminescence device of the present invention, and the oxide layer 4 is the electron injection layer 5. Is adjacent to. All of these are preferred embodiments of the organic EL device of the present invention.
  • the organic EL element 1 of the present invention has a cathode 3, an inorganic oxide layer 4, an electron injection layer 5, an electron transport layer 10, a light emitting layer 6, and a hole transport layer 7 on a substrate 2. It has a laminated structure in which the hole injection layer 8 and the anode 9 are formed in this order.
  • having an inorganic oxide layer between the cathode and the layer of the organic thin film or the layer of the material for the organic electroluminescence device of the present invention is one of the preferred embodiments of the organic EL device of the present invention. Is.
  • the organic EL element 1 shown in FIG. 1 is an organic EL element having an inverted structure in which a cathode 3 is arranged between a substrate 2 and a light emitting layer 6. Further, the organic EL element 1 shown in FIG. 1 is an organic-inorganic hybrid type organic electroluminescent element (at least an inorganic oxide layer 4) formed by using an inorganic compound. HOILED element).
  • the organic EL element 1 shown in FIG. 1 may be a top-emission type that extracts light on the side opposite to the substrate 2, or may be a bottom-emission type that extracts light on the substrate 2 side.
  • FIG. 2 is a diagram showing an example of an element configuration in the case where the organic EL element of the present invention is an organic EL element having a forward structure in which a light emitting layer 6 is arranged between the substrate 2 and the cathode 3.
  • the hexahydropyrimidyrimidine compound of the present invention is extremely excellent in electron injectability, it is possible to directly inject electrons into the material used for the light emitting layer. Therefore, when the material for an organic EL device containing the hexahydropyrimidyrimidine compound of the present invention is used, for example, as shown in FIG. 3, the electron transport layer 10 is formed of the material used for the light emitting layer, and the light emitting layer 6 and the electrons are formed.
  • the organic EL element uses the organic thin film of the present invention.
  • the organic EL device in which the light emitting layer of the present invention contains the second material is not limited to the one having a forward structure, and may have a reverse structure. Good.
  • an organic EL element having an inverted structure will be described as an example, but the organic EL element of the present invention has a forward structure in which an anode is arranged between a substrate and a light emitting layer. You may. Even when the organic EL element of the present invention has a forward structure, the organic thin film is provided between the cathode and the light emitting layer as in the case of the reverse structure. In the case of the reverse structure, the electron injection layer may be called an organic buffer layer. All of the contents described below can be applied to organic EL devices having a forward structure.
  • substrate examples of the material of the substrate 2 include a resin material and a glass material.
  • the resin material used for the substrate 2 include polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyether sulfone, polymethylmethacrylate, polycarbonate, polyarylate and the like.
  • the organic EL element 1 having excellent flexibility can be obtained, which is preferable.
  • the glass material used for the substrate 2 include quartz glass and soda glass.
  • a transparent substrate is used as the material of the substrate 2.
  • an opaque substrate may be used as the material of the substrate 2.
  • the opaque substrate include a substrate made of a ceramic material such as alumina, a substrate having an oxide film (insulating film) formed on the surface of a metal plate such as stainless steel, and a substrate made of a resin material.
  • the average thickness of the substrate 2 can be determined according to the material of the substrate 2, and is preferably 0.1 to 30 mm, more preferably 0.1 to 10 mm.
  • the average thickness of the substrate 2 can be measured with a digital multimeter and a caliper.
  • the cathode 3 is formed in direct contact with the substrate 2.
  • the material of the cathode 3 include oxides such as ITO (indium tin oxide), IZO (indium zinc oxide), FTO (fluorinated tin oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , and Al-containing ZnO.
  • oxides such as ITO (indium tin oxide), IZO (indium zinc oxide), FTO (fluorinated tin oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , and Al-containing ZnO.
  • examples thereof include conductive materials of Al, Au, Pt, Ag, Cu or alloys containing these.
  • ITO, IZO, and FTO as the material of the cathode 3.
  • the average thickness of the cathode 3 is not particularly limited, but is preferably 10 to 500 nm, more preferably 100 to 200 nm.
  • the inorganic oxide layer 4 has a function as an electron injection layer and / or a function as a cathode.
  • the oxide layer 4 is a layer of a semiconductor or insulator laminated thin film.
  • the oxide layer 4 is a layer in which one or both of a layer made of a single metal oxide, a layer made of a mixture of two or more kinds of metal oxides, and a layer made of a single metal oxide are laminated. , It may be any of the layers in which two or more kinds of metal oxides are mixed.
  • Metal elements forming the metal oxide forming the oxide layer 4 include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, indium, gallium, etc. Examples include iron, cobalt, nickel, copper, zinc, cadmium, aluminum and silicon.
  • the oxide layer 4 contains a layer in which two or more kinds of metal oxides are mixed, at least one of the metal elements constituting the metal oxide is composed of magnesium, aluminum, calcium, zirconium, hafnium, silicon, titanium, and zinc. It is preferable that the layer is composed of.
  • the oxide layer 4 is a layer made of a single metal oxide, a layer made of a metal oxide selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, and zinc oxide. Is preferable.
  • the oxide layer 4 is a layer in which one or both of a layer in which two or more types of metal oxides are mixed and a layer composed of a single metal oxide are laminated, or a layer in which two or more types of metal oxides are mixed.
  • Oxide layer 4 may include a 12CaO ⁇ 7Al 2 O 3 is an oxide semiconductor IGZO (indium gallium zinc oxide) and / or electride exhibiting good characteristics as a special composition.
  • the average thickness of the oxide layer 4 is not particularly limited, but is preferably 1 to 1000 nm, and more preferably 2 to 100 nm.
  • the average thickness of the oxide layer 4 can be measured by a stylus type step meter and spectroscopic ellipsometry.
  • the electron injection layer 5 improves the speed and electron transportability of electron injection from the cathode to the light emitting layer 6.
  • the electron injection layer 5 is made of the above organic thin film.
  • the average thickness of the electron injection layer 5 is preferably 0.5 to 100 nm, more preferably 1 to 100 nm, further preferably 5 to 100 nm, and particularly preferably 10 to 50 nm. ..
  • a method of applying a coating composition containing a first material and a second material, a coating composition containing the first material, and a coating material containing the second material are examples of the average thickness of the electron injection layer 5 is 0.5 nm or more.
  • An electron-injected layer having a smooth surface is formed by forming the electron-injected layer 5 by using either a method of applying the composition in order or a method of laminating and forming a film of the first material and the second material, respectively. 5 is obtained, and leakage during manufacturing of the organic EL element 1 can be sufficiently prevented. Further, when the average thickness of the electron injection layer 5 is 100 nm or less, an increase in the drive voltage of the organic EL element 1 due to the provision of the electron injection layer 5 can be sufficiently suppressed. Further, the electron injection layer 5 may be formed by thin-film deposition, such as a method of simultaneously vapor-depositing the first material and the second material, or after vapor-filming one of the first material and the second material.
  • a method of depositing one can be used.
  • any of the structures shown in FIGS. 5-1 to 11-1 in the case of a forward structure, FIGS. 5-2 to 11-2 is used.
  • the film may be composed of the single layer, and the entire film may constitute an electron injection layer (FIGS. 5-1 and 5-2), and the film is composed of only the first material and only the second material.
  • One of the films may be formed adjacent to the cathode or oxide, and the other may be formed adjacent to the film (FIGS. 6-1 and 6-2, 7-1 and 7-2). ).
  • a film containing the first material and the second material may be formed adjacent to the cathode or the oxide, and a film composed of only the second material may be formed adjacent to the film (FIG. 8-Fig. 8-). 1, 8-2), a film consisting of only the second material, which does not contain the first material, is formed adjacent to the cathode and oxide, and the film containing the first material and the second material is used as the film. Films may be formed adjacent to each other (FIGS. 9-1 and 9-2). Further, a film having a three-layer structure in which a film composed of only the first material or a film containing the first material and the second material is sandwiched between the films composed of only the second material (FIGS. 10-1, 10-2, FIG.
  • the film may be formed so as to have the structure of 11-1 and 11-2).
  • a film having any structure shown in FIGS. 5-1 to 11-1 and 5-2 to 11-2 is included in the present invention.
  • the second material is applied to both of two adjacent films or two or more films having a three-layer structure.
  • the second material contained in these two or more films may be the same or different.
  • FIGS. 6-1 and 6-2, 7-1 and 7-2, and FIGS. 10-1 and 10-2 including the layer composed of only the first material are shown.
  • the layer made of only the first material can be regarded as a layer formed from the organic thin film of the present invention (an organic thin film containing only the first material and not containing the second material).
  • the average thickness of the electron injection layer 5 can be measured by, for example, a stylus type step meter or spectroscopic ellipsometry.
  • the organic thin film of the present invention is formed on the oxide layer 4.
  • the first material is an organic material having a pKa of 1 or more, is a material having an ability to extract protons (H + ) from other materials
  • the organic thin film of the present invention is formed on the oxide layer 4.
  • the electron injection layer 5 has a concentration distribution such that the concentration of the first material decreases from the oxide layer 4 side toward the electron transport layer 10 side.
  • an organic electroluminescent device having an inverse structure as a method of forming an electron injection layer having such a concentration distribution, a solution containing the first material is applied onto the oxide layer 4 to form a coating film, and then a first A method of applying a solution containing two materials onto a coating film of the first material can be mentioned, but the process is not limited to this process as long as a concentration distribution can be formed.
  • the organic thin film of the present invention is formed adjacent to the cathode 3, it is preferable that more first material is present on the cathode 3 side in order to sufficiently promote electron injection from the cathode 3.
  • the electron injection layer 5 has a concentration distribution such that the concentration of the first material decreases from the cathode 3 side toward the electron transport layer 10 side.
  • a solution containing a second material is applied onto the electron transport layer 10 to form a coating film, and then a first method is formed.
  • a method of applying a solution containing a material onto a coating film of a second material can be mentioned, but the process is not limited to this process as long as a concentration distribution can be formed.
  • the concentration distribution can be measured by TOF-SIMS (time-of-flight secondary ion mass spectrometry) or the like.
  • a layer of the first material is formed on the oxide layer 4, and the first material and the second material are formed on the layer.
  • a layer containing the above may be formed.
  • a layer of a second material may be formed on the electron transport layer 10, and a layer containing the first material and the second material may be formed on the layer. In this case, either coating or thin film deposition can be used as a method for forming these layers.
  • the first material which is an organic material having a pKa of 1 or more, is a material having an ability to extract protons (H + ) from other materials, and is preferably arranged at a defect portion of an inorganic compound (oxide). It hinders the reaction at the interface with oxygen and water that enter from the outside. The effect can be obtained even if the organic thin film of the present invention is not formed adjacent to the cathode or the oxide layer, but the organic thin film of the present invention can sufficiently exert the effect of the organic thin film of the present invention. , It is preferable to form a layer adjacent to the cathode or oxide layer.
  • a film having a laminated structure thus obtained that is, a laminated film composed of an oxide layer and a layer of an organic thin film of the present invention formed adjacent to the oxide layer, a cathode, and the cathode.
  • a laminated film composed of adjacent layers of the organic thin film of the present invention is also one of the present inventions.
  • the organic EL element includes an oxide layer and a layer of an organic thin film of the present invention formed adjacent to the oxide layer between the cathode and the light emitting layer in the laminated structure, or the cathode and the cathode.
  • the organic EL element is configured to include the organic thin film of the present invention, and also includes the laminated film of the present invention. It can also be said that it is configured.
  • An organic EL device configured by including the organic thin film or laminated film of the present invention between such a cathode and a light emitting layer is also one of the present inventions.
  • an organic EL device composed of the organic thin film of the present invention or a laminated film composed of a cathode and a layer of the organic thin film of the present invention formed adjacent to the cathode is also one of the present inventions. Is.
  • the organic EL device of the present invention has an electron injection layer having a laminated film as shown in FIGS. 8-1, 8-2, 9-1, 9-2 or 11-1, 11-2. May be good. That is, it is preferable that the organic EL device of the present invention has a laminated film of a film containing the first material and the second material and a film containing the second material between the cathode and the light emitting layer. It is one of the embodiments. In this case, an organic EL device having a layer containing the second material between the light emitting layer and the film containing the first material and the second material, a cathode, and the first material and the second material are included. Any of the organic EL devices having a layer containing a second material between the film and the organic EL device is one of the preferred embodiments of the organic EL device of the present invention.
  • Electrode transport material any material that can be usually used as the material of the electron transport layer may be used.
  • a phosphine oxide derivative such as phenyl-dipyrenylphosphine oxide (POPy 2 ), Tris-1,3,5- (3'-(pyridine-3''-) Il) phenyl) pyridine derivatives such as benzene (TmPhPyB), quinoline derivatives such as (2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), 2-phenyl-4,6-bis (3,) 5-Dipyridylphenyl) Pyrimidine derivatives such as pyrimidine (BPyPPM), pyrazine derivatives, phenanthroline derivatives such as vasophenantroline (BPhen), 2,4-bis (4-biphenyl) -6- (4'-(2-pyridinyl) ) -4-
  • POPy 2 phenyl-dipyrenylphos
  • 2012-228460 Japanese Patent Application No. 2012-228460.
  • Examples thereof include the boron-containing compounds described in Japanese Patent Application No. 2015-503053, Japanese Patent Application No. 2015-053872, Japanese Patent Application No. 2015-0811108, and Japanese Patent Application No. 2015-0811109, and one or more of these can be used.
  • phosphine oxide derivatives such as Popy 2, metal complexes such as Alq 3
  • pyridine derivatives such as TmPhPyB.
  • the organic EL element of the present invention can be used as long as the organic EL element exerts its function, such as the organic EL element formed by using the light emitting material or the host material in which the layer containing the second material described above is used for the light emitting layer. It is not necessary to have an electron transport layer using the above electron transport material in the laminated structure.
  • the average thickness of the electron transport layer 10 is not particularly limited, but is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the average thickness of the electron transport layer 10 can be measured by a stylus type step meter and spectroscopic ellipsometry.
  • Light emitting layer As the material for forming the light emitting layer 6, any material that can be usually used as the material for the light emitting layer 6 may be used, or these may be mixed and used. Specifically, for example, as the light emitting layer 6, bis [2- (2-benzothiazolyl) phenolato] zinc (II) (Zn (BTZ) 2 ) and tris [1-phenylisoquinoline] iridium (III) (Ir ( It can include piq) 3) and. Further, the material forming the light emitting layer 6 may be a low molecular weight compound or a high molecular weight compound. In the present invention, the low molecular weight material means a material that is not a high molecular weight material (polymer), and does not necessarily mean an organic compound having a low molecular weight.
  • polymer material forming the light emitting layer 6 examples include polyacetylene compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), and poly (alkylphenylacetylene) (PAPA); poly.
  • polyacetylene compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), and poly (alkylphenylacetylene) (PAPA); poly.
  • PPV poly (2,5-dialkoxy-para-phenylene vinylene)
  • RO-PPV cyano-substituted-poly
  • CN-PPV cyano-substituted-poly
  • Polyparaphenylene vinylene compounds such as -dimethyloctylsilyl-para-phenylene vinylene) (DMOS-PPV), poly (2-methoxy, 5- (2'-ethylhexoxy) -para-phenylene vinylene) (MEH-PPV)
  • Polythiophene compounds such as poly (3-alkylthiophene) (PAT), poly (oxypropylene) triol (POPT); poly (9,9-dialkylfluorene) (PDAF), poly (dioctylfluorene-alto-benzothiazole) ) (F8BT), ⁇ , ⁇ -bis [N, N'-di (methylphenyl) aminophenyl] -poly [
  • Examples of the low molecular weight material forming the light emitting layer 6 include a tricoordinated iridium complex having 2,2'-bipyridine-4,4'-dicarboxylic acid as a ligand, and factories (2-phenylpyridine).
  • Examples of the host material for the light emitting layer include carbazole compounds such as 4,4'-bis (9H-carbazole-9-yl) biphenyl (CPB); silicon compounds; phenanthroline compounds; triphenylene compounds and the like.
  • the average thickness of the light emitting layer 6 is not particularly limited, but is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the average thickness of the light emitting layer 6 may be measured by a stylus type step meter or may be measured by a crystal oscillator film thickness meter at the time of film formation of the light emitting layer 6.
  • hole transport layer As the hole-transporting organic material used for the hole-transporting layer 7, various p-type polymer materials (organic polymers) and various p-type low-molecular-weight materials can be used alone or in combination. Specifically, as a material for the hole transport layer 7, for example, N, N'-di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine ( ⁇ ).
  • the material of these hole transport layers 7 can also be used as a mixture with other compounds.
  • polythiophene used as a material for the hole transport layer 7 poly (3,4-ethylenedioxythiophene / styrenesulfonic acid) (PEDOT / PSS) and the like can be mentioned.
  • PEDOT / PSS poly (3,4-ethylenedioxythiophene / styrenesulfonic acid)
  • the organic EL device of the present invention does not have to have the hole transport layer using the hole transport material as described above.
  • the average thickness of the hole transport layer 7 is not particularly limited, but is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the average thickness of the hole transport layer 7 can be measured by, for example, a stylus type profilometer or spectroscopic ellipsometry.
  • the hole injection layer 8 may be made of an inorganic material or an organic material. Since the inorganic material is more stable than the organic material, it is easy to obtain high resistance to oxygen and water as compared with the case where the organic material is used.
  • the inorganic material is not particularly limited, and for example, one or more metal oxides such as vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 3 ), and ruthenium oxide (RuO 2) may be used. it can.
  • Organic materials include dipyrazino [2,3-f: 2', 3'-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) and 2,3,5. 6-Tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4-TCNQ), fullerene, Heraeus hole injection material "Clevios HIL1.3N” and the like can be used.
  • the average thickness of the hole injection layer 8 is not particularly limited, but is preferably 1 to 1000 nm, and more preferably 5 to 50 nm.
  • the average thickness of the hole injection layer 8 can be measured at the time of film formation with a crystal oscillator film thickness meter or a stylus type step meter.
  • anode examples of the material used for the anode 9 include ITO, IZO, Au, Pt, Ag, Cu, Al, and alloys containing these. Among these, it is preferable to use ITO, IZO, Au, Ag, Al as the material of the anode 9.
  • the average thickness of the anode 9 is not particularly limited, but is preferably 10 to 1000 nm, more preferably 30 to 150 nm. Further, even when an opaque material is used as the material of the anode 9, for example, by setting the average thickness to about 10 to 30 nm, it can be used as a transparent anode in a top emission type organic EL element.
  • the average thickness of the anode 9 can be measured by a crystal oscillator film thickness meter at the time of film formation of the anode 9.
  • the organic EL element 1 shown in FIG. 1 may be sealed if necessary.
  • the organic EL element 1 shown in FIG. 1 is provided by a sealing container (not shown) having a concave space for accommodating the organic EL element 1 and an adhesive that adheres the edge of the sealing container to the substrate 2. It may be sealed.
  • the organic EL element 1 may be housed in a sealing container and sealed by filling it with a sealing material made of an ultraviolet (UV) curable resin or the like.
  • the organic EL element 1 shown in FIG. 1 includes a plate member (not shown) arranged on the anode 9 and a frame member (not shown) arranged along the edge of the plate member facing the anode 9.
  • the sealing member (not shown) may be sealed with an adhesive that adheres between the plate member and the frame member and between the frame member and the substrate 2.
  • a desiccant that absorbs moisture may be arranged in the sealing container or inside the sealing member. Further, a material that absorbs moisture may be used as the sealing container or the sealing member. Further, a space may be formed in the sealed sealing container or inside the sealing member.
  • a resin material, a glass material, or the like can be used as the material of the sealing container or sealing member used when sealing the organic EL element 1 shown in FIG. 1.
  • the resin material and the glass material used for the sealing container or the sealing member include the same materials as those used for the substrate 2.
  • a second material composed of the contained compound for example, as compared with the case where an alkali metal, which is an unstable material in the atmosphere, is used as the electron-injected layer.
  • Excellent durability can be obtained. Therefore, if the water vapor transmittance of the sealing container or the sealing member is about 10 -4 to 10 -3 orders (g / m 2 / day), the deterioration of the organic EL element 1 can be sufficiently suppressed.
  • the cathode 3 is formed on the substrate 2.
  • the cathode 3 can be formed by a sputtering method, a vacuum vapor deposition method, a sol-gel method, a spray pyrolysis (SPD) method, an atomic layer deposition (ALD) method, a vapor phase deposition method, a liquid phase film formation method, or the like.
  • a method of joining metal foils may be used for forming the cathode 3.
  • the inorganic oxide layer 4 is formed on the cathode 3.
  • the oxide layer 4 is formed by using, for example, a spray pyrolysis method, a sol-gel method, a sputtering method, a vacuum vapor deposition method, or the like.
  • the surface of the oxide layer 4 thus formed may be uneven rather than smooth.
  • the electron injection layer 5 is formed on the oxide layer 4.
  • the electron injection layer 5 can be formed by the above-mentioned method for producing an organic thin film.
  • the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 are formed on the electron injection layer 5 in this order.
  • the method for forming the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 is not particularly limited, and conventionally, the method of forming the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 is matched to the characteristics of the materials used for each of the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7.
  • Various known forming methods can be appropriately used.
  • examples include a coating method for coating, a vacuum vapor deposition method, and an ESDUS (Evolaactive Spray Depositionion from Ultra-dilute Solution) method.
  • the solvent solubility of the organic compounds forming the electron transport layer 10 the light emitting layer 6 and the hole transport layer 7 is low, it is preferable to use the vacuum vapor deposition method or the ESDUS method.
  • the organic compounds to be the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 are each dissolved in a solvent.
  • an organic compound solution containing an organic compound serving as an electron transport layer 10, a light emitting layer 6, and a hole transport layer 7 is formed.
  • Examples of the solvent used for dissolving the organic compound that becomes the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 include aromatics such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, and tetramethylbenzene.
  • aromatics such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, and tetramethylbenzene.
  • Group hydrocarbon solvents, aromatic heterocyclic solvent such as pyridine, pyrazine, furan, pyrrole, thiophene and methylpyrrolidone, aliphatic hydrocarbon solvents such as hexane, pentane, heptane and cyclohexane are preferable, and these alone are used alone. Alternatively, they can be mixed and used.
  • Examples of the method for applying the organic compound solution containing the organic compound to be the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 include a spin coat method, a casting method, a micro gravure coat method, a gravure coat method, and a bar coat method.
  • Various coating methods such as a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.
  • the hole injection layer 8 and the anode 9 are formed on the hole transport layer 7 in this order.
  • the hole injection layer 8 is made of an inorganic material
  • the hole injection layer 8 can be formed in the same manner as the oxide layer 4, for example.
  • the hole transport layer 9 is made of an organic material
  • the hole injection layer 8 can be formed in the same manner as, for example, the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7.
  • the anode 9 can be formed in the same manner as the cathode 3, for example.
  • the organic EL element 1 of the present embodiment has an electron injection layer 5 made of an organic thin film containing the above-mentioned first material having a pKa of 1 or more and the second material for transporting electrons.
  • the first material extracts a proton (H + ) from the second material, a negative charge is generated and excellent electron injection property can be obtained. Therefore, the organic EL element 1 has a high electron injection / electron transport speed from the cathode 3 to the light emitting layer 6 and a low drive voltage.
  • the organic thin film containing the above-mentioned first material which is an organic material having a pKa of 1 or more and the second material which transports electrons is a laminated film, and a layer formed by the second material.
  • the organic EL device 1 which is a layer different from the electron injection layer formed by the first material is also another embodiment of the organic EL device of the present invention. Even in the organic EL element of such an embodiment, the organic EL element 1 has a high speed of electron injection / electron transport from the cathode 3 to the light emitting layer 6 and a low drive voltage.
  • the organic EL device of the present invention is not limited to the organic EL device described in the above-described embodiment. Specifically, in the above-described embodiment, the case where the organic thin film functions as an electron injection layer has been described as an example, but the organic EL device of the present invention has an organic thin film between the cathode and the light emitting layer. You just have to have it. Therefore, the organic thin film is not limited to the electron injection layer, and may be provided as a layer that also serves as an electron injection layer and an electron transport layer, or may be provided as an electron transport layer.
  • the inorganic oxide layer 4, the electron transport layer 10, the hole transport layer 7, and the hole injection layer 8 may be formed as needed and are provided. It does not have to be. Further, each of the cathode 3, the oxide layer 4, the electron injection layer 5, the electron transport layer 10, the light emitting layer 6, the hole transport layer 7, the hole injection layer 8, and the anode 9 is formed of one layer. It may be composed of two or more layers.
  • another layer may be provided between the layers shown in FIG. Specifically, an electron blocking layer or the like may be provided, if necessary, for the purpose of further improving the characteristics of the organic EL element.
  • the organic EL element having the reverse structure in which the cathode 3 is arranged between the substrate 2 and the light emitting layer 6 has been described as an example, but the anode is arranged between the substrate and the light emitting layer. It may have a forward structure.
  • the organic EL device of the present invention can change the emission color by appropriately selecting a material such as a light emitting layer, and can also obtain a desired emission color by using a color filter or the like in combination. Therefore, it can be suitably used as a light emitting part of a display device or a lighting device.
  • the display device of the present invention includes the organic EL element of the present invention having an organic thin film between the cathode and the light emitting layer, having excellent productivity and a low driving voltage. Therefore, it is preferable as a display device.
  • the lighting device of the present invention includes the organic EL element of the present invention, which is excellent in productivity and has a low drive voltage. Therefore, it is preferable as a lighting device.
  • the present invention is not limited to the above-described embodiment, and the organic thin film of the present invention can be used for devices such as organic thin film solar cells, photoelectric conversion elements, and thin film transistors.
  • the organic thin film solar cell and the photoelectric conversion element of the present invention include an organic thin film.
  • an organic thin film is used for an electron injection layer of an organic thin film solar cell or a photoelectric conversion element, a negative charge is generated by the first material of the organic thin film extracting protons (H +) from the second material, so that electrons are generated.
  • the transportation speed is fast and high power generation efficiency can be obtained. Therefore, the organic thin-film solar cell or photoelectric conversion element containing the organic thin film of the present invention is preferable as the organic thin-film solar cell or photoelectric conversion element.
  • the thin film transistor of the present invention includes an organic thin film.
  • the organic thin film of the present invention is suitable as a material for an organic thin film solar cell, a photoelectric conversion element, and a thin film transistor, and therefore has a structure represented by the above general formula (1) constituting the organic thin film. Hexahydropyrimidopyrimidine compounds are also suitable as these materials.
  • Such a material for an organic thin-film solar cell containing a hexahydropyrimidyrimidine compound having a structure represented by the above general formula (1), a material for a photoelectric conversion element, and a material for a thin film transistor are also one of the present inventions. is there.
  • Synthesis example 2 Rac-BINAP (747 mg) and toluene (67 mL) were placed in a 200 mL three-necked flask and heated to 90 ° C. under a nitrogen atmosphere to dissolve them. After allowing to cool to room temperature, palladium acetate (180 mg) was added, and the mixture was stirred at room temperature for 1 hour. To this, 2,6-dibromopyridine (4.74 g), 1,3,4,6,7,8-hexahydro-2H-pyrimidin [1,2-a] pyrimidine (6.13 g), KOtBu (6.28 g). ) was added, and the mixture was heated and stirred at 90 ° C. overnight.
  • Synthesis example 3 Rac-BINAP (369 mg) was added to toluene (100 mL) in a 300 mL three-necked flask under a nitrogen stream at room temperature, and the mixture was heated and stirred in an oil bath at 60 ° C. until the solid was dissolved. Pd (OAc) 2 (98 mg) and 6-bromo-2,2'-bipyridine (5.00 g) were added to the mixture returned to room temperature, and the mixture was stirred again in an oil bath at 60 ° C. for 20 minutes.
  • Synthesis example 4 Rac-BINAP (357 mg) was added to toluene (97 mL) in a three-necked flask under a nitrogen stream at room temperature, and the mixture was heated and stirred in an oil bath at 60 ° C. until the solid was dissolved. Palladium acetate (86 mg) and 2-bromo-1,10-phenanthroline (4.40 g) were added to the mixture returned to room temperature, and the mixture was stirred again in an oil bath at 60 ° C. for 30 minutes.
  • Synthesis example 5 Rac-BINAP (301 mg) was added to toluene (80 mL) in a flask under a nitrogen stream at room temperature, and the mixture was heated and stirred in an oil bath at 60 ° C. until the solid was dissolved. Palladium acetate (78 mg) and 6,6'-dibromo-2,2'-bipyridine (5.00 g) were added to the mixture returned to room temperature, and the mixture was stirred again in an oil bath at 60 ° C. for 20 minutes.
  • 1,3,4,6,7,8-hexahydro-2H-pyrimidin [1,2-a] pyrimidine (4.90 g) and KOtBu (8.95 g) were added to the mixture returned to room temperature, and the oil bath was 110 ° C. Was stirred for 6 hours. Diethyl ether was added to the mixture returned to room temperature, and the insoluble material was filtered off. The insoluble material was rinsed with a mixed solvent of chloroform-ethyl acetate, and the combined filtrate was concentrated under reduced pressure. Methanol was added to the residue, and the precipitate was collected by filtration.
  • the obtained solid (3.60 g) was washed by heating with methanol (50 mL), returned to room temperature, and the precipitated solid was collected by filtration again.
  • the obtained solid (2.20 g) was sublimated and purified to obtain a compound (1.45 g, 21.0%) of the following formula (2-5) as a white solid.
  • Synthesis example 7 Put rac-BINAP (0.213 g, 0.342 mmol) and toluene (20 mL) in a 100 mL reaction vessel, raise the temperature to 70 ° C. and completely dissolve, then add palladium acetate (51 mg, 0.228 mmol) to room temperature. Stirred while allowing to cool. To this, 2,4,6-tribromopyridine (1.2 g, 3.8 mmol), KOtBu (1.8 g, 16.0 mmol), 1,3,4,6,7,8-hexahydro2H-pyrimidine [1] , 2-a] Pyrimidine (1.9 g, 13.7 mmol) was added, and the mixture was heated and stirred at 100 ° C. for 14 hours. The reaction solution was allowed to cool to room temperature, filtered through Celite, and the filtrate was concentrated to obtain 2.2 g of the compound of the following formula (2-11).
  • Synthesis example 8 Rac-BINAP (0.238 g, 0.383 mmol) and dehydrated toluene (55 mL) were placed in a 200 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.054 g, 0.24 mmol) was added, and the inside of the reaction vessel was replaced with argon.
  • Synthesis example 9 Rac-BINAP (0.138 g, 0.221 mmol) and dehydrated toluene (35 mL) were placed in a 100 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.0331, 0.148 mmol) was added, and the inside of the reaction vessel was replaced with argon.
  • Synthesis example 10 Rac-BINAP (1.21 g, 1.95 mmol) and dehydrated toluene (350 mL) were placed in a 500 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.345, 1.54 mmol) was added, and the inside of the reaction vessel was replaced with argon.
  • Synthesis example 11 Rac-BINAP (0.407 g, 0.653 mmol) and dehydrated toluene (60 mL) were placed in a 100 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.124, 0.551 mmol) was added, and the inside of the reaction vessel was replaced with argon.
  • Synthesis example 12 Rac-BINAP (1.60 g, 2.57 mmol) and dehydrated toluene (350 mL) were placed in a 500 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.395 g, 1.76 mmol) was added, and the inside of the reaction vessel was replaced with argon.
  • Synthesis example 13 The boron-containing compound represented by the following formula (4) was synthesized by the same method as in Synthesis Examples 1 to 3 of International Publication No. 2016/181705.
  • Synthesis example 14 ⁇ Synthesis of Monomer for Boron-Containing Polymer Synthesis> Compound (3.96 g) represented by the following formula (8), 4-pyridineboronic acid (1.03 g), Pd (PPh 3 ) 4 (0.24 g), sodium carbonate (2.24 g) in a 300 mL reaction vessel. ), Toluene (40 mL), distilled water (40 mL) and ethanol (20 mL) were added. The obtained suspension was stirred for 10 minutes while argon bubbling, heated to 95 ° C. in an oil bath, and heated and stirred at the same temperature for 18 hours.
  • Example 1 An organic EL device having the reverse structure of the laminated structure shown in FIG. 1 was produced as follows.
  • the substrate 2 a commercially available transparent glass substrate having an average thickness of 0.7 mm and having an electrode (cathode 3) patterned with a width of 3 mm made of ITO having a thickness of 150 nm was prepared.
  • the substrate 2 having the cathode 3 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes.
  • the substrate 2 having the cathode 3 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
  • the substrate 2 on which the cathode 3 washed in [1] was formed was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure in the chamber of the sputtering apparatus to a pressure of about 1 ⁇ 10 -4 Pa, sputtering is performed with argon and oxygen introduced, and a zinc oxide layer having a film thickness of about 3 nm is placed on the cathode 3 of the substrate 2. An oxide layer 4) was prepared. When the zinc oxide layer was produced, zinc oxide was prevented from being formed on a part of the ITO electrode (cathode 3) in order to take out the electrode.
  • the substrate 2 on which the oxide layer 4 was formed was annealed in the atmosphere at 400 ° C. for 1 hour.
  • an organic thin film containing the first material and the second material was formed on the oxide layer 4 as the electron injection layer 5 by the method shown below.
  • the boron-containing compound represented by the formula (4) and the compound of the formula (2-2) are dissolved in cyclopentanone (concentration is 0.5% by weight) to form a coating material. I got something.
  • the substrate 2 on which the cathode 3 and the oxide layer 4 produced in [2] were formed was placed on the spin coater.
  • the substrate 2 was rotated at 3000 rpm for 30 seconds to form a coating film. Then, an electron injection layer 5 was formed by subjecting it to annealing treatment at 150 ° C. for 1 hour in a nitrogen atmosphere using a hot plate. The average thickness of the obtained electron injection layer 5 was 15 nm. [4] Next, the substrate 2 on which each layer up to the electron injection layer 5 was formed was fixed to the substrate holder of the vacuum vapor deposition apparatus.
  • the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and the electron transport layer 10, the light emitting layer 6, the hole transport layer 7, and the hole are injected by the vacuum vapor deposition method by resistance heating.
  • the layer 8 and the anode 9 were continuously formed.
  • an electron transport layer 10 having a thickness of 10 nm made of Zn (BTZ) 2 was formed.
  • Zn (BTZ) 2 was used as a host and Ir (piq) 3 was used as a dopant for co-depositing at 20 nm to form a light emitting layer 6.
  • the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer 6.
  • a 50 nm film of ⁇ -NPD was formed on the substrate 2 on which the light emitting layer 6 was formed to form the hole transport layer 7.
  • HAT-CN was formed into a 10 nm film to form a hole injection layer 8.
  • an anode 9 made of aluminum having a film thickness of 100 nm was formed on the substrate 2 on which the hole injection layer 8 was formed by a vacuum vapor deposition method.
  • the anode 9 was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
  • the substrate 2 on which each layer up to the anode 9 is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) curable resin.
  • UV ultraviolet
  • Example 2 In the same manner as in Example 1 except that the compound of formula (2-4) was used instead of the compound of formula (2-2) in the step of [3] of Example 1, the organic of Example 2 was used. An EL element was obtained.
  • Comparative Example 1 In the step [3] of Example 1, only the boron-containing compound represented by the formula (4) was dissolved in cyclopentanone without using the compound of the formula (2-2) (concentration was 0.5% by weight). An organic EL device of Comparative Example 1 was obtained in the same manner as in Example 1 except that the above-mentioned coating composition was used.
  • Example 3 In the step [3] of Example 1, the boron-containing compound represented by the formula (4) and the compound of the formula (2-2) (weight ratio 1: 2) were dissolved in cyclopentanone (concentration: 0.5). An organic EL device of Example 3 was obtained in the same manner as in Example 1 except that the coating composition (% by weight) was used.
  • Example 4 In the step [3] of Example 1, the boron-containing compound represented by the formula (4) and the compound of the formula (2-9) (weight ratio 1: 2) were dissolved in cyclopentanone (concentration: 0.5). An organic EL device of Example 4 was obtained in the same manner as in Example 1 except that the coating composition (% by weight) was used.
  • Comparative Example 2 In the step [3] of Example 1, the boron-containing compound represented by the formula (4) and MTBD (weight ratio 1: 2) represented by the following formula (15) are dissolved in cyclopentanone (concentration is 0). An organic EL device of Comparative Example 2 was obtained in the same manner as in Example 1 except that the coating composition (5.5% by weight) was used.
  • the brightness was measured using the device, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG. Further, FIG. 14 shows the state of light emission of these elements.
  • Example 5 An organic EL device of Example 5 was obtained in the same manner as in Example 1 except that the step of [3] of Example 1 was as shown in [3-1] below. [3-1] Using a vacuum vapor deposition apparatus, a boron-containing compound represented by the formula (4) was used as a host, and a compound of the formula (2-2) was used as a dopant for co-depositing at 10 nm to form an electron injection layer 5. .. At this time, the doping concentration was adjusted so that the compound of the formula (2-2) was 5% by mass with respect to the entire electron injection layer 5.
  • Comparative Example 3 In the step of [3-1] of Example 5, the organic EL device of Comparative Example 3 was obtained in the same manner as in Example 5 except that only the boron-containing compound represented by the formula (4) was formed into a 10 nm film. It was.
  • a voltage is applied to the organic EL elements manufactured in Example 5 and Comparative Example 3 using a "2400 type source meter” manufactured by Keithley, and brightness is increased using "LS-100” manufactured by Konica Minolta. The measurement was performed and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
  • Example 6 An organic EL device of Example 6 was obtained in the same manner as in Example 1 except that the step of [2] of Example 1 was not performed and the step of [3] was as described in [3-1] above. ..
  • Example 7 In the step of [3-1] of Example 5, a triazine compound represented by the following formula (16) described in JP-A-2018-206888 was used instead of the compound of formula (4), and of formula (2-2). An organic EL device of Example 7 was obtained in the same manner as in Example 5 except that the dope concentration was 10% by mass.
  • Example 8 An organic EL device of Example 8 was obtained in the same manner as in Example 1 except that the step of [3] of Example 1 was carried out as in [3-2] below. [3-2] Using a vacuum vapor deposition apparatus, the compound of formula (2-2) is vapor-deposited by 1 nm, and then the compound of formula (16) is vapor-deposited by 10 nm to obtain the compound of formula (2-2). An electron injection layer 5 on which the compound (16) was laminated was formed.
  • Comparative Example 4 In the step of [3-1] of Example 7, the organic EL device of Comparative Example 4 was obtained in the same manner as in Example 7 except that only the triazine compound represented by the formula (16) was formed into a 10 nm film. ..
  • Example 9 In the step of [3-1] of Example 5, a boron compound represented by the following formula (17) was used instead of the compound of the formula (4), and the doping concentration of the formula (2-2) was set to 5% by mass.
  • the organic EL element of Example 9 was obtained in the same manner as in Example 5 except for the above.
  • Example 10 An organic EL device of Example 10 was obtained in the same manner as in Example 1 except that the step of [3] of Example 1 was carried out as in [3-3] below.
  • the boron-containing polymer represented by the following formula (7) was dissolved in dimethylacetamide (concentration: 0.1% by weight) to obtain a coating composition.
  • the substrate 2 on which the cathode 3 and the oxide layer 4 produced in [2] were formed was placed on the spin coater. Then, while dropping the coating composition onto the oxide layer 4, the substrate 2 was rotated at 3000 rpm for 30 seconds to form a coating film. Then, an annealing treatment was carried out at 120 ° C.
  • this substrate 2 is fixed to the substrate holder of the vacuum vapor deposition apparatus, and the boron-containing compound represented by the formula (16) is used as a host and the compound of the formula (2-2) is used as a dopant to co-deposit 10 nm.
  • An electron injection layer 5 in which a mixed film of the compound of the formula (17) and the compound of the formula (2-2) was laminated was formed on the upper layer of 7).
  • the compound of the formula (2-2) was made to be 5% by mass with respect to the boron compound of the formula (17). ..
  • Example 11 The organic EL element 11 having a forward structure with a laminated structure shown in FIG. 20 was manufactured by the method shown below.
  • a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm (hereinafter, also simply referred to as a substrate) having an anode 9 made of an ITO film (patterned to a film thickness of 100 nm and a width of 3 mm) was prepared.
  • the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. Then, the substrate was taken out of isopropanol, dried by a nitrogen blow, and UV ozone washed for 20 minutes.
  • a hole injection layer 8 having a thickness of 30 nm made of PEDOT (Clevios HIL1.3N) was formed.
  • the substrate formed up to PEDOT is fixed to the substrate holder in the chamber of the vacuum vapor deposition apparatus, the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and resistance heating is performed.
  • the hole transport layer 7, the light emitting layer 6, the electron transport layer 10, the electron injection layer 5, the cathode 1 (cathode 3'in FIG. 20) and the cathode 2 (cathode 3 in FIG. 20) are continuously connected by the vacuum vapor deposition method according to the above. Formed.
  • a hole transport layer having a thickness of 30 nm made of ⁇ -NPD represented by the above formula (13) was formed.
  • Zn (BTZ) 2 represented by the above formula (11) was used as a host, and Ir (piq) 3 represented by the above formula (12) was used as a dopant to co-deposit 30 nm to form a light emitting layer.
  • the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer.
  • 40 nm of TmPPyTZ represented by the following formula (18) was formed on the substrate on which the light emitting layer was formed to form an electron transport layer.
  • the compound of the above formula (2-2) was formed into a 1 nm film to form an electron injection layer.
  • a cathode 1 (cathode 3'in FIG. 20) co-deposited with silver and magnesium so as to have a mass ratio of 9: 1 is formed to form 25 nm, and then a film thickness consisting of only silver.
  • a 100 nm cathode 2 (cathode 3 in FIG. 20) was formed.
  • the cathodes 1 and 2 were formed using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
  • the substrate on which each layer up to the cathode is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) cured resin.
  • a sealing material made of an ultraviolet (UV) cured resin was obtained.
  • a voltage was applied to the organic EL element produced in Example 11 and the organic EL element produced in Example 8 using a "2400 type source meter” manufactured by Caseley Co., Ltd., and "LS-100” manufactured by Konica Minolta Co., Ltd.
  • the brightness was measured using the above, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
  • Example 12 In Example 11, the element of Example 12 was produced in the same manner as in Example 11 except that the step [4] was changed to [4-1]. [4-1] Next, the substrate formed up to PEDOT is fixed to the substrate holder in the chamber of the vacuum vapor deposition apparatus, and the pressure in the chamber of the vacuum vapor deposition apparatus is reduced to 1 ⁇ 10-5 Pa. The hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, and the cathode were continuously formed by the vacuum vapor deposition method by resistance heating. First, a hole transport layer having a thickness of 40 nm made of ⁇ -NPD represented by the above formula (13) was formed.
  • Zn (BTZ) 2 represented by the above formula (11) was used as a host, and Ir (piq) 3 represented by the above formula (12) was used as a dopant to co-deposit 30 nm to form a light emitting layer.
  • the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer.
  • a boron-containing compound represented by the formula (4) was formed into a 10 nm film on the substrate on which the light emitting layer was formed to form an electron transport layer.
  • a boron-containing compound represented by the formula (4) was used as a host, and a compound of the formula (2-2) was used as a dopant for co-depositing at 35 nm to form an electron injection layer. At this time, the doping concentration was adjusted so that the compound of the formula (2-2) was 5% by mass with respect to the entire electron injection layer.
  • a cathode having a film thickness of 100 nm made of aluminum was formed on the substrate on which the electron injection layer was formed. The cathode was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
  • Example 13 In Example 12, the device of Example 13 was produced in the same manner as in Example 12 except that the doping concentration of compound (2-2) in the electron injection layer was set to 20% by mass.
  • Example 12 the device of Comparative Example 5 was produced in the same manner as in Example 12 except that the material used for the electron injection layer was only the boron-containing compound of the formula (4).
  • Comparative Example 6 In Example 12, Comparative Example 6 was carried out in the same manner as in Example 12 except that the film thickness of the boron compound (4) in the electron transport layer was 45 nm and the material used for the electron injection layer was lithium fluoride to form a film of 0.8 nm. The element of was manufactured.
  • Example 14 In Example 12, the element of Example 14 was produced in the same manner as in Example 12 except that the step [4-1] was changed to [4-2]. [4-2] Next, the substrate formed up to PEDOT is fixed to the substrate holder in the chamber of the vacuum vapor deposition apparatus, and the pressure in the chamber of the vacuum vapor deposition apparatus is reduced to 1 ⁇ 10 -5 Pa. The hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, and the cathode were continuously formed by the vacuum vapor deposition method by resistance heating. First, a hole transport layer having a thickness of 40 nm made of ⁇ -NPD represented by the above formula (13) was formed.
  • Zn (BTZ) 2 represented by the above formula (11) was used as a host, and Ir (piq) 3 represented by the above formula (12) was used as a dopant to co-deposit 30 nm to form a light emitting layer.
  • the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer.
  • a boron-containing compound represented by the formula (4) was formed into a 10 nm film on the substrate on which the light emitting layer was formed to form an electron transport layer.
  • a boron-containing compound represented by the formula (4) was used as a host, and a compound of the formula (2-2) was used as a dopant for co-deposited 35 nm. At this time, the doping concentration was adjusted so that the compound of the formula (2-2) was 5% by mass with respect to the entire electron injection layer 1. Further, a boron-containing compound represented by the formula (4) was vapor-deposited at 5 nm to form an electron injection layer which is a laminated film of a film containing the first material and the second material and a film containing only the second material. Next, a cathode having a film thickness of 100 nm made of aluminum was formed on the substrate on which the electron injection layer was formed. The cathode was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
  • the brightness was measured using the device, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
  • the time course of the brightness of the organic EL elements of Examples 13 and 6 and the time change of the brightness of the organic EL elements of Examples 12 and 14 were investigated. The results are shown in FIGS. 23 and 24.
  • Example 15 An organic EL device having a forward structure with a laminated structure shown in FIG. 25 was produced by the method shown below.
  • the ITO electrode (anode 9) of the substrate used was patterned with a width of 2 mm.
  • This substrate was ultrasonically cleaned with Clean Ace and pure water, and then steam-cleaned in isopropanol for 5 minutes. The substrate was dried by nitrogen blow and UV ozone washing was performed for 10 minutes.
  • This substrate was set on a spin coater, poly (3,4-ethylenedioxythiophene / styrene sulfonic acid) (PEDOT / PSS) (Klevios CH8000) was added dropwise, and the mixture was rotated at 2000 rpm for 60 seconds. Further, it was dried on a hot plate at 130 ° C. for 10 minutes to form a hole injection layer 8 made of PEDOT / PSS on the anode. The average thickness of the hole injection layer was 50 nm. The average thickness of the hole injection layer was measured by a stylus type step meter.
  • PEDOT / PSS poly (3,4-ethylenedioxythiophene / styrene sulfonic acid)
  • a 2% xylene solution of poly (dioctylfluorene-alto-benzothiadiazole) (F8BT) was prepared.
  • the substrate produced in the above step [2] was set in the spin coater.
  • the F8BT-xylene solution was dropped onto the hole injection layer formed in the above step [2] and rotated at 2,000 rpm for 60 seconds to form a light emitting layer 6 made of F8BT.
  • the average thickness of the light emitting layer was 20 nm.
  • the average thickness of the light emitting layer was measured by a stylus type step meter.
  • the substrate produced in the above step [3] was set in a spin coater.
  • a 1-propanol solution (1% by weight) of the compound of the formula (2-2) was added dropwise onto the light emitting layer formed in the above step [3], and the mixture was rotated at 2000 rpm for 60 seconds to be placed on the light emitting layer.
  • the electron injection layer 5 was formed.
  • the average thickness of the electron injection layer was below the measurement limit for the stylus type step type.
  • the substrate produced in the above step [4] was fixed to the substrate holder of the vacuum vapor deposition apparatus.
  • An aluminum wire (Al) was placed in an alumina crucible and set as a vapor deposition source.
  • the inside of the vacuum vapor deposition apparatus was depressurized to about 1 ⁇ 10 -4 Pa, and Al (cathode 3) was vapor-deposited on the electron injection layer so as to have an average thickness of 100 nm to prepare an organic electroluminescent device.
  • the average thickness of the cathode was measured at the time of film formation with a crystal oscillator film thickness meter.
  • a voltage is applied to the organic EL elements manufactured in Example 15 and Comparative Example 7 using a "2400 type source meter” manufactured by Keithley, and brightness is increased using "LS-100” manufactured by Konica Minolta. The measurement was performed and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
  • Examples 16 to 20 and Comparative Examples 8 to 15 An organic EL device having a forward structure was manufactured by the method shown below.
  • the elements of Examples 16 to 20 and Comparative Examples 8, 10, 12, and 14 have the laminated structure of FIG. 2, and the elements of Comparative Examples 9, 11, 13, and 15 have an electron injection layer 5 from FIG. It has a laminated structure excluding.
  • As the substrate 2 a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (anode 9) patterned with a width of 3 mm made of ITO having a thickness of 100 nm was prepared.
  • the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes. Then, the substrate 2 having the anode 9 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
  • the substrate 2 on which the anode 9 washed in [1] is formed is set on a spin coater, and a hole injection material "Clevios HIL1.3N" manufactured by Heraeus is used as a hole injection layer 8 with a film thickness of 10 nm.
  • the film was formed so as to be. Then, it was heated for 1 hour on a hot plate heated to 180 ° C.
  • fac-tris (3-methyl-2-phenylpyridinato-N, C2'-) iridium (III) (Ir (mppy) 3 ) represented by the following formula (20), and the above formula ( ⁇ -NPD represented by 13) and N3, N3''-bis (dibenzo [b, d] thiophen-4-yl) -N3, N3'''-diphenyl- [ 1,1': 2', 1'': 2'', 1'''-quaterphenyl] -3,3'''-diamine (4DBTP3Q) and formula (2-2) as the first material.
  • Various materials to be the second material (electron transport material) shown below, and Al were placed in an aluminal pot and set as a vapor deposition source.
  • the compound represented by the following formula (22) is used, and as an example of the triazine derivative, the compound represented by the following formula (23) and the compound represented by the following formula (26) are used.
  • the following formula (24) (commercially available) was used as a compound having a heterocycle containing a carbonyl group, and the compound represented by the following formula (25) was used as an example of a phenanthroline derivative.
  • the cathode 3 was formed continuously. Specifically, first, a hole transport layer 7 having a thickness of 30 nm composed of ⁇ -NPD at 20 nm and 4DBTP3Q at 10 nm was formed. Subsequently, DIC-TRZ was used as a host and Ir (mppy) 3 was used as a dopant for co-depositing at 25 nm to form a light emitting layer 6.
  • the doping concentration was such that Ir (mppy) 3 was 3% by mass with respect to the entire light emitting layer 6.
  • a 40 nm electron transport layer 10 and a 1 nm electron injection layer 5 were formed on the substrate 2 formed up to the light emitting layer 6.
  • a cathode 3 made of aluminum having a film thickness of 100 nm was formed on the substrate 2 formed up to the electron injection layer 5 by a vacuum vapor deposition method.
  • the cathode 3 was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
  • the compounds used as the second material (electron transport layer) and the first material (electron injection layer) are as follows.
  • Example 16 A compound of formula (22) was used as the second material, and a compound of formula (2-2) was used as the first material.
  • Example 17 A compound of formula (23) was used as the second material, and a compound of formula (2-2) was used as the first material.
  • Example 18 A compound of formula (24) was used as the second material, and a compound of formula (2-2) was used as the first material.
  • Example 19 A compound of formula (25) was used as the second material, and a compound of formula (2-2) was used as the first material.
  • Example 20 A compound of formula (26) was used as the second material, and a compound of formula (2-2) was used as the first material.
  • Comparative Examples 8 and 14 are as follows.
  • Comparative Example 8 The compound of the formula (22) was used as the second material, and lithium fluoride was used as the first material.
  • Comparative Example 10 The compound of the formula (23) was used as the second material, and lithium fluoride was used as the first material.
  • Comparative Example 12 The compound of the formula (24) was used as the second material, and lithium fluoride was used as the first material.
  • Comparative Example 14 The compound of the formula (26) was used as the second material, and lithium fluoride was used as the first material.
  • the compounds used as the second material (electron transport layer) in Comparative Examples 9, 11, 13, and 15 are as follows.
  • the electron injection layer (first material) was not formed, and a cathode was prepared.
  • Comparative Example 9 A compound of formula (22) was used as the second material.
  • Comparative Example 11 A compound of formula (23) was used as the second material.
  • Comparative Example 13 A compound of formula (24) was used as the second material.
  • Comparative Example 15 A compound of formula (25) was used as the second material.
  • the substrate 2 on which each layer up to the cathode 3 is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) curable resin.
  • a sealing material made of an ultraviolet (UV) curable resin was obtained by stopping.
  • the brightness was measured using the device, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIGS. 27-31. Further, the results of the time-dependent changes in the brightness of the organic EL elements of Example 20 and Comparative Example 15 under a normal temperature environment are shown in FIG. 32, and the time-lapse of the brightness of the organic EL elements of Examples 20 and 15 in an 85 ° C environment. The result of the change is shown in FIG.
  • Example 21 and 22 Comparative Example 16 An organic EL device having a forward structure was produced and evaluated by the method shown below.
  • the elements of Example 21 and Comparative Example 16 are organic EL elements having a laminated structure shown in FIG. 3, and the elements of Example 22 are organic EL elements having a laminated structure shown in FIG. [1]
  • the substrate 2 a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (anode 9) patterned with a width of 3 mm made of ITO having a thickness of 100 nm was prepared. Then, the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes. Then, the substrate 2 having the anode 9 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
  • the substrate 2 on which the anode 9 washed in [1] is formed is set in a spin coater, and a hole injection material "Clevios HIL1.3N" manufactured by Heleus is applied as a hole injection layer 8 in a film thickness.
  • a film was formed so as to have a thickness of 10 nm. Then, it was heated for 1 hour on a hot plate heated to 180 ° C.
  • the substrate 2 formed up to the hole injection layer 8 was fixed to the substrate holder of the vacuum vapor deposition apparatus. Further, DIC-TRZ, Ir (mppy) 3 , ⁇ -NPD, 4DBTP3Q, a compound represented by the formula (2-2) as the first material, lithium fluorinated, and Al are each placed in an alumina crucible. It was put in and set as a vapor deposition source. Then, the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and the hole transport layer 7, the light emitting layer 6, the electron injection layer 5, and the cathode 3 are removed by the vacuum vapor deposition method by resistance heating. Formed continuously.
  • a hole transport layer 7 having a thickness of 30 nm composed of ⁇ -NPD at 20 nm and 4DBTP3Q at 10 nm was formed.
  • DIC-TRZ was used as a host and Ir (mppy) 3 was used as a dopant for co-depositing at 25 nm to form a light emitting layer 6.
  • the doping concentration was such that Ir (mppy) 3 was 3% by mass with respect to the entire light emitting layer 6.
  • an electron transport layer 10 made of DIC-TRZ having a thickness of 40 nm and an electron injection layer 5 having a thickness of 1 nm were formed on the substrate 2 formed up to the light emitting layer 6.
  • Example 21 the compound represented by the formula (2-2) was used for the electron injection layer 5, and in Comparative Example 16, lithium fluoride, which is a general electron injection material, was used for the electron injection layer 5. Further, in Example 22, DIC-TRZ was used for the hole transport layer 7 having a thickness of 30 nm, and the other layers were the same as in Example 21.
  • FIG. 34 shows the results of measuring the luminance-voltage characteristics of the elements of Examples 21 and 22 and Comparative Example 16 by the same method as in the other Examples and Comparative Examples.
  • Example 23 Comparative Example 17
  • the light emitting layer is composed of two kinds of materials, a host and a dopant, but the simple structure shown in FIG. 4 can be realized even with an organic EL device in which the light emitting layer is made of one kind of material.
  • the elements of Example 23 and Comparative Example 17 were produced as follows.
  • a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (anode 9) patterned with a width of 3 mm made of ITO having a thickness of 100 nm was prepared. Then, the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes. Then, the substrate 2 having the anode 9 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
  • the substrate 2 was fixed to the substrate holder of the vacuum vapor deposition apparatus. Further, fullerene used as the hole injection layer 8 and (9,10-bis (4- (9Hcarbazole-9-yl) -2,6-dimethylphenyl) -9,10- represented by the following formula (27)). Diborah anthracene (CzDBA), a compound represented by the formula (2-2) as a first material, lithium quinoline, and Al were placed in an alumina crucible and set as a vapor deposition source. The molybdenum trioxide used for the injection layer 8 was placed in a tungsten board and set.
  • Example 23 the compound represented by the formula (2-2) was used for the electron injection layer 5, and in Comparative Example 17, lithium quinoline, which is a general electron injection material, was used for the electron injection layer 5.
  • FIG. 35 shows the results of measuring the luminance-voltage characteristics of the elements of Example 23 and Comparative Example 17 by the same method as in the other Examples and Comparative Examples.
  • Example 24 Comparative Example 18 In Example 24, an organic EL device was produced in the same manner as in Example 21 except that the compound represented by the formula (2-11) was used as the first material (electron injection layer 5). An organic EL device was produced in the same manner as in Example 21 except that the first material (electron injection layer 5) was not used in Comparative Example 18.
  • FIG. 36 shows the results of measuring the luminance-voltage characteristics of the elements of Example 24 and Comparative Example 18 by the same method as in the other Examples and Comparative Examples.
  • Example 25 An organic EL device having the reverse structure of the laminated structure shown in FIG. 1 was produced as follows.
  • a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (cathode 3) patterned with a width of 3 mm made of ITO having a thickness of 150 nm was prepared.
  • the substrate 2 having the cathode 3 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes.
  • the substrate 2 having the cathode 3 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
  • the substrate 2 on which the cathode 3 washed in [1] was formed was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure in the chamber of the sputtering apparatus to a pressure of about 1 ⁇ 10 -4 Pa, sputtering is performed with argon and oxygen introduced, and a zinc oxide layer having a film thickness of about 3 nm is formed on the cathode 3 of the substrate 2. Made. [3] Next, a 1.0% by weight ethanol solution of magnesium acetate was prepared.
  • the substrate on which the zinc oxide layer was prepared was set on a spin coater, a magnesium acetate solution was added dropwise, and the mixture was rotated at 1300 rpm for 60 seconds. Then, this substrate was annealed at 400 ° C. for 1 hour in the atmosphere to form a magnesium oxide film having a film thickness of 3 nm.
  • a substrate in which the oxide layer 4 in which the zinc oxide layer and the magnesium oxide layer were laminated was laminated was obtained.
  • an organic thin film containing the first material and the second material was formed on the oxide layer 4 as the electron injection layer 5 by the method shown below.
  • the boron-containing compound represented by the formula (4) and the compound of the formula (2-30) are dissolved in cyclopentanone (concentration is 1.0% by weight) to form a coating material. I got something.
  • the substrate 2 on which the cathode 3 and the oxide layer 4 produced in [2] were formed was placed on the spin coater. Then, while dropping the coating composition onto the oxide layer 4, the substrate 2 was rotated at 3000 rpm for 30 seconds to form a coating film. Then, an electron injection layer 5 was formed by subjecting it to annealing treatment at 150 ° C. for 1 hour in a nitrogen atmosphere using a hot plate. The average thickness of the obtained electron injection layer 5 was 20 nm.
  • ⁇ -NPD 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile
  • HAT-CN 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile
  • the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and the electron transport layer 10, the light emitting layer 6, the hole transport layer 7, and the hole are injected by the vacuum vapor deposition method by resistance heating.
  • the layer 8 and the anode 9 were continuously formed.
  • an electron transport layer 10 having a thickness of 10 nm made of Zn (BTZ) 2 was formed.
  • Zn (BTZ) 2 was used as a host and Ir (piq) 3 was used as a dopant for co-depositing at 20 nm to form a light emitting layer 6.
  • the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer 6.
  • a 50 nm film of ⁇ -NPD was formed on the substrate 2 on which the light emitting layer 6 was formed to form the hole transport layer 7.
  • HAT-CN was formed into a 10 nm film to form a hole injection layer 8.
  • an anode 9 made of aluminum having a film thickness of 100 nm was formed on the substrate 2 on which the hole injection layer 8 was formed by a vacuum vapor deposition method.
  • the anode 9 was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
  • the substrate 2 on which each layer up to the anode 9 is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) curable resin. It was stopped to obtain the organic EL element of Example 25.
  • Example 26 In the same manner as in Example 25, except that the compound of the formula (2-31) was used instead of the compound of the formula (2-30) in the step [4] of the example 25, the organic of the example 26 was used. An EL element was obtained.
  • Comparative Example 19 In the step [4] of Example 25, only the boron-containing compound represented by the formula (4) was dissolved in cyclopentanone (concentration: 1.0% by weight) without using the compound of the formula (2-30). An organic EL device of Comparative Example 19 was obtained in the same manner as in Example 25 except that the above-mentioned coating composition was used.
  • FIG. 37 shows the results of measuring the luminance-voltage characteristics of the elements of Examples 25 and 26 and Comparative Example 19 by the same method as in the other Examples and Comparative Examples.
  • the compounds of (2-2) and (2-4) were used as compared with the device of Comparative Example 1 in which only the boron-containing compound represented by the formula (4) was used as the material of the electron injection layer.
  • the elements of Examples 1 and 2 emit light at a lower voltage.
  • the element of 4 emits light at a lower voltage. From these results, it was confirmed that the hexahydropyrimidopyrimidine compound represented by the general formula (1) of the present invention can be used in combination with an electron transporting material to obtain an element driven at a lower voltage. Further, as shown in FIG.
  • Example 8 it can be seen that the effect is obtained even if the electron injection layer is not a mixed film of the first material and the second material but a laminated film. Furthermore, from the results of FIG. 18, in Example 9 (although there is no comparative example), the device obtained by doping the compound of formula (17) with the hexahydropyrimidyrimidine compound exhibits good properties at the same level as in Example 5. I understand. Further, from Example 10, another material (for example, a second x material) is provided between the layer which is a mixed film of the first material + the second material and the metal oxide layer 4 as constituting the electron injection layer. Even when inserted, good characteristics are exhibited as in Example 9. Further, it was confirmed from the result of FIG.
  • a second x material is provided between the layer which is a mixed film of the first material + the second material and the metal oxide layer 4 as constituting the electron injection layer. Even when inserted, good characteristics are exhibited as in Example 9. Further, it was confirmed from the result of FIG.
  • the devices of Examples 12 and 13 emit light at a lower voltage than the devices of Comparative Example 5 in which only the boron compound (4) is used for the electron injection layer.
  • the effect of using the hexahydropyrimidyrimidine compound in combination with the electron transport material was confirmed in the organic EL device having the structure.
  • the element of Example 13 is an element of the same level as the element of Comparative Example 6 in which lithium fluoride is used as an electron injection layer, which is often used in an organic EL element having a forward structure. Although it is a characteristic, it was confirmed that it has a long life.
  • Example 16 which is the result of using the compound of formula (22) as an example of using a pyridine-containing compound as the second material, paying attention to FIG. 27, a comparative example in which the compound of formula (2-2) is not used. It emits light at a voltage lower than 9, and has the same luminance-voltage characteristics as in Comparative Example 8 using lithium fluoride. From this result, even when a pyridine-containing compound is used as the second material, the element can be driven at a low voltage by using the hexahydropyrimidyrimidine compound represented by the general formula (1) of the present invention. confirmed. Therefore, it is possible to realize an organic EL element that can operate with low drive without using an alkali metal.
  • Example 17 which is the result of using the compound of formula (23) as an example of using a triazine derivative as the second material, paying attention to FIG. 28, comparative example 10 using lithium fluoride and formula (2-2) ) Is not used, and the light is emitted at a lower voltage than that of Comparative Example 11. From this result, it was confirmed that even when a triazine derivative is used as the second material, the element can be driven at a low voltage by using the hexahydropyrimidyrimidine compound represented by the general formula (1) of the present invention. Was done. It can also be seen that the hexahydropyrimidyrimidine compound has excellent electron injectability as compared with lithium fluoride.
  • Example 18 As an example of using a compound having a heterocycle containing a carbonyl group as the second material, with respect to Example 18, which is the result of using the compound of the formula (24), paying attention to FIG. 29, a comparative example using lithium fluoride. It emits light at a voltage lower than that of Comparative Example 13 in which 12 and the compound of the formula (2-2) are not used. From this result, even when a compound having a heterocycle containing a carbonyl group is used as the second material, it can be driven at a low voltage by using the hexahydropyrimidopyrimidine compound represented by the general formula (1) of the present invention. It was confirmed that it became an element to be used. It can also be seen that the hexahydropyrimidyrimidine compound has excellent electron injectability as compared with lithium fluoride.
  • Example 19 which is the result of using the compound of formula (25) as an example of using the phenanthroline derivative as the second material, paying attention to FIG. 30, Comparative Example 15 in which the compound of formula (2-2) is not used. It emits light at a lower voltage. From this result, it was confirmed that even when a phenanthroline derivative is used as the second material, the element can be driven at a low voltage by using the hexahydropyrimidyrimidine compound represented by the general formula (1) of the present invention. Was done.
  • Example 20 which is the result of using the compound of the formula (26) as the second material, from the results of FIGS. 31 and 32, the element of Example 20 is generally used as an organic EL element having a forward structure. It was confirmed that the device has the same level of device characteristics as the device of Comparative Example 14 in which lithium fluoride, which has a large amount of water, is used as an electron injection layer, but has a long life. Further, from the result of FIG. 33, it can be confirmed that the life is significantly different under high temperature (85 ° C.). From this result, it is well known that although alkali metals such as lithium fluoride have excellent electron injection properties, they diffuse into the device as, for example, Li ions, and the diffusion reduces the stability of the organic EL device.
  • alkali metals such as lithium fluoride have excellent electron injection properties, they diffuse into the device as, for example, Li ions, and the diffusion reduces the stability of the organic EL device.
  • the organic thin film and the material for the organic EL element of the present invention are materials that do not have such a problem. Further, it is considered that the diffusion of Li ions becomes stronger at a high temperature, and it can be seen that the organic thin film and the material for an organic EL device of the present invention have high resistance at a high temperature.
  • Comparative Example 16 As shown in FIG. 34 in which the luminance-voltage characteristics of the elements of Examples 21 and 22 and Comparative Example 16 were measured, in Comparative Example 16, it was driven because it was difficult to inject electrons from lithium fluoride into DIC-TRZ. It can be seen that while the voltage is high, in the 21st embodiment, electrons can be efficiently injected and the operation can be performed at a low drive voltage. Further, it can be seen that even in Example 22 in which the hole transport layer is DIC-TRZ which is the light emitting layer host, the hole transport layer operates at the same drive voltage as in Example 21. As described above, by using the material having excellent electron injection property, it is possible to simplify the structure of the organic EL element and reduce the number of required materials.
  • Example 23 As shown in FIG. 35 in which the brightness-voltage characteristics of Example 23 and Comparative Example 17 in which the light emitting layer is an organic EL element composed of one kind of material are measured, in Comparative Example 17, from lithium quinoline to CzDBA. It can be seen that in the 23rd embodiment, the electrons can be efficiently injected and the operation can be performed at a low drive voltage, while the drive voltage is high because it is difficult to inject the electrons. As described above, by using the material having excellent electron injection property, it is possible to simplify the structure of the organic EL element and reduce the number of required materials.
  • FIG. 36 which is the result of measuring the brightness-voltage characteristics of the organic EL device of the above, the device of Example 24 using the compound of the formula (2-11) as the material (first material) of the electron injection layer is the first. 1 It emits light at a lower voltage than the element of Comparative Example 18 in which no material is used. From this result, it was confirmed that the element driven by a lower voltage can be obtained by using the compound of the formula (2-11).
  • the materials of the electron injection layer are of the formulas (2-30) and (2-31).
  • the devices of Examples 25 and 26 using the compound emit light at a lower voltage than the devices of Comparative Example 19 using only the boron-containing compound represented by the formula (4). From this result, it was confirmed that the element driven by a lower voltage can be obtained by using the compounds of the formulas (2-30) and (2-31).

Abstract

本発明は、有機EL素子の電子注入層に用いた場合に、優れた電子注入性、電子輸送性が得られる有機薄膜を提供する。 本発明は、下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む単一の膜、又は、前記第1材料を含む膜と前記第2材料を含む膜との積層膜であることを特徴とする有機薄膜に関する。 (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)

Description

有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料
本発明は、有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス(以下、エレクトロルミネッセンス(電界発光)を「EL」と記す場合がある。)素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、光電変換素子、塗料組成物、有機エレクトロルミネッセンス素子用材料に関する。
 有機EL素子は、薄く、柔軟でフレキシブルである。また、有機EL素子を用いた表示装置は、現在主流となっている液晶表示装置およびプラズマ表示装置と比べて、高輝度、高精細な表示が可能である。また、有機EL素子を用いた表示装置は、液晶表示装置に比べて視野角が広い。このため、有機EL素子を用いた表示装置は、今後、テレビや携帯電話のディスプレイ等としての利用の拡大が期待されている。
また、有機EL素子は、照明装置としての利用も期待されている。
 有機EL素子は、陰極と発光層と陽極とが積層されたものである。有機EL素子では、陽極の仕事関数と発光層の最高占有軌道(HOMO)エネルギー差は、陰極の仕事関数と発光層の最低非占有軌道(LUMO)エネルギー差と比較して小さい。したがって、発光層に、陽極から正孔を注入することと比較して、陰極から電子を注入することは困難である。このため、従来の有機EL素子では、陰極と発光層との間に、電子注入層を配置して、陰極から発光層への電子の注入を促進している。また、陰極と発光層との間に配置される層にドーパントをドーピングすることで、電子注入・輸送性を改善する取り組みもなされている(例えば、非特許文献1、非特許文献2参照。)。
 有機EL素子の電子注入層としては、無機の酸化物層が挙げられる(例えば、非特許文献3参照。)。しかし、無機の酸化物層は電子注入性が不十分である。
また、無機の酸化物層の上に、さらに電子注入層を成膜することにより、有機EL素子の電子注入性を改善する技術がある。例えば、非特許文献4には、ポリエチレンイミンからなる電子注入層を有する有機EL素子が記載されている。また、非特許文献5には、アミンが電子の注入速度の改善に有効であることが記載されている。非特許文献6、7、8には、電極と有機層との界面において、アミノ基が電子注入に及ぼす効果について記載されている。
カーステン ワルツァー(Karsten Walzer)他3名「ケミカル レビュー(Chemical Review)」第107巻、2007年、p1233-1271 ペン ウェイ、外3名「ジャーナル オブ ザ アメリカン ケミカル ソサイエティ (Journal of the American Chemical Society)」、第132巻、2010年、p8852 ジャンシャン チェン(Jiangshan Chen)外6名「ジャーナル オブ マテリアルズ ケミストリー(Journal Of Materials Chemistry)」、第22巻、2012年、p5164-5170 ヒョサン チョイ(Hyosung Choi)外8名「アドバンスト マテリアルズ(Advanced Materials)」、第23巻、2011年、p2759 ウィンファ チョウ(Yinhua Zho)外21名「サイエンス(Science)」、第336巻、2012年、p327 ヨンフーン キム(Young-Hoon Kim)外5名「アドバンスト ファンクショナル マテリアルズ(Advanced Functional Materials)」、2014年、DOI:10.1002/adfm.201304163 ステファン フォーフル、外4名「アドバンスト マテリアルズ(Advanced Materials)」、2014年、DOI:10.1002/adma.201304666 ステファン フォーフル、外5名「アドバンスト マテリアルズ(Advanced Materials)」、第26巻、2014年、DOI:10.1002/adma.201400332 ペン ウェイ、外3名「ジャーナル オブ ザ アメリカン ケミカル ソサイエティ(Journal of the American Chemical Society)」、第132巻、2010年、p8852
 しかしながら、従来の電子注入層を含む有機EL素子では、電子注入性、電子輸送性をより一層向上させることが要求されていた。
 本発明は、上記事情に鑑みてなされたものであり、有機EL素子の電子注入層に用いた場合に、優れた電子注入性、電子輸送性が得られる有機薄膜、この有機薄膜を製造する際に好適に用いることができる塗料組成物、およびこれらの有機薄膜や塗料組成物の原料となる有機EL素子用材料を提供することを課題とする。
 また、本発明は、本発明の有機薄膜を用いた有機EL素子、この有機EL素子を備えた表示装置および照明装置、本発明の有機薄膜を含む有機薄膜太陽電池、光電変換素子および有機薄膜トランジスタを提供することを課題とする。
 本発明者等は、有機EL素子の電子注入層に用いる材料として、塩基性の有機材料に着目して検討した。その結果、酸解離定数pKaが1以上の有機材料である所定の構造のヘキサヒドロピリミドピリミジン化合物と、電子を輸送する材料とを含む有機薄膜を、有機EL素子の電子注入層として用いればよいことが分かった。
 すなわち、上記のpKaが1以上の有機材料は、他の材料からプロトン(H)を引き抜く能力を有する。このため、上記の有機薄膜からなる電子注入層を有する有機EL素子では、pKaが1以上の有機材料が電子を輸送する材料からプロトン(H)を引き抜くことにより、マイナス電荷が生じ、電子注入性が向上するものと推定される。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、以下のとおりである。
[1] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む単一の膜、又は、前記第1材料を含む膜と前記第2材料を含む膜との積層膜であることを特徴とする有機薄膜。
Figure JPOXMLDOC01-appb-C000010
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[2] 前記第1材料は、一般式(1)におけるnが2又は3のヘキサヒドロピリミドピリミジン化合物であることを特徴とする[1]に記載の有機薄膜。
[3] 酸化物層と、前記酸化物層上に形成された[1]又は[2]に記載の有機薄膜の層とからなる積層膜。
[4] 陰極と陽極との間に発光層を有する有機エレクトロルミネッセンス素子であって、前記陰極と前記発光層との間に[1]又は[2]に記載の有機薄膜又は[3]に記載の積層膜を有することを特徴とする有機エレクトロルミネッセンス素子。
[5] 前記陰極と前記有機薄膜との間に、無機の酸化物層を有することを特徴とする[4]に記載の有機エレクトロルミネッセンス素子。
[6] 前記陰極と前記発光層との間に、前記第1材料と第2材料とを含む膜と前記第2材料を含む膜との積層膜を有することを特徴とする[4]又は[5]に記載の有機エレクトロルミネッセンス素子。
[7] 前記発光層と前記第1材料と第2材料とを含む膜との間に、前記第2材料を含む層を有することを特徴とする[6]に記載の有機エレクトロルミネッセンス素子。
[8] 前記陰極と前記第1材料と第2材料とを含む膜との間に、前記第2材料を含む層を有することを特徴とする[6]に記載の有機エレクトロルミネッセンス素子。
[9] 前記陽極と前記発光層との間に、前記第2材料を含む層を有することを特徴とする[4]~[8]のいずれかに記載の有機エレクトロルミネッセンス素子。
[10] 前記発光層が、前記第2材料を含む、[4]~[9]のいずれかに記載の有機エレクトロルミネッセンス素子。
[11] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする有機エレクトロルミネッセンス素子用材料。
Figure JPOXMLDOC01-appb-C000011
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[12] 陰極と陽極との間に発光層を有する有機エレクトロルミネッセンス素子であって、前記陰極と前記陽極との間に[11]に記載の有機エレクトロルミネッセンス素子用材料を含む層を有することを特徴とする有機エレクトロルミネッセンス素子。
[13] 前記陰極と前記発光層との間に[11]に記載の有機エレクトロルミネッセンス素子用材料を含む層を有することを特徴とする[12]に記載の有機エレクトロルミネッセンス素子。
[14] 前記陰極と[11]に記載の有機エレクトロルミネッセンス素子用材料を含む層との間に、無機の酸化物層を有することを特徴とする[12]又は[13]に記載の有機エレクトロルミネッセンス素子。
[15] [4]~[10]、[12]~[14]のいずれかに記載の有機エレクトロルミネッセンス素子を備えることを特徴とする表示装置。
[16] [4]~[10]、[12]~[14]のいずれかに記載の有機エレクトロルミネッセンス素子を備えることを特徴とする照明装置。
[17] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする有機薄膜太陽電池用材料。
Figure JPOXMLDOC01-appb-C000012
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[18] [1]又は[2]に記載の有機薄膜、[3]に記載の積層膜又は[17]に記載の有機薄膜太陽電池用材料を含む層のいずれかを含むことを特徴とする有機薄膜太陽電池。
[19] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする光電変換素子用材料。
Figure JPOXMLDOC01-appb-C000013
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[20] [1]又は[2]に記載の有機薄膜、[3]に記載の積層膜又は[19]に記載の光電変換素子用材料を含む層のいずれかを含むことを特徴とする光電変換素子。
[21] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする薄膜トランジスタ用材料。
Figure JPOXMLDOC01-appb-C000014
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[22] [1]又は[2]に記載の有機薄膜、[3]に記載の積層膜又は[21]に記載の薄膜トランジスタ用材料を含む層のいずれかを含むことを特徴とする薄膜トランジスタ。
[23] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含むことを特徴とする塗料組成物。
Figure JPOXMLDOC01-appb-C000015
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[24] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする塗料組成物。
Figure JPOXMLDOC01-appb-C000016
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[25] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む単一の膜を被形成面上に形成する工程、又は、前記第1材料を含む膜と前記第2材料を含む膜とを被形成面上に順に形成する工程を含むことを特徴とする有機薄膜の製造方法。
Figure JPOXMLDOC01-appb-C000017
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[26] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む膜を被形成面上に形成する工程を含むことを特徴とする有機薄膜の製造方法。
Figure JPOXMLDOC01-appb-C000018
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
[27] 前記被形成面が第2材料を含むことを特徴とする[26]に記載の有機薄膜の製造方法。
本発明の有機薄膜は、少なくとも酸解離定数pKaが1以上の特定の有機材料からなる第1材料と、電子を輸送する第2材料とを含む。このため、本発明の有機薄膜を、例えば、有機EL素子の電子注入層に用いた場合、優れた電子注入性、電子輸送性が得られる。
本発明の有機EL素子は、陰極と発光層との間に本発明の有機薄膜を有するため、有機薄膜によって優れた電子注入性、電子輸送性が得られる。
また酸解離定数pKaが1以上の特定のヘキサヒドロピリミドピリミジン化合物からなる第1材料と、電子を輸送する第2材料とを含む本発明の有機薄膜は、塗布および蒸着のいずれの方法によっても形成することが可能であるため、本発明の有機薄膜を含む有機EL素子を製造する場合のプロセス上の制約が少なく、有機EL素子を構成する層の材料として使用しやすいものである。本発明の有機薄膜の製造方法は、このような本発明の有機薄膜を製造する方法である。
本発明の塗料組成物は、酸解離定数pKaが1以上の特定の有機材料からなる第1材料と、電子を輸送する第2材料とを含む。したがって、本発明の塗料組成物を有機薄膜の被形成面上に塗布することにより、有機EL素子の電子注入層に好適な有機薄膜が得られる。
 本発明の有機EL素子用材料は、有機EL素子等の作製に用いられる本発明の有機薄膜や塗料組成物に用いられる有用な材料である。また、本材料は、単独で電子注入層または電子輸送層として用いることが可能な点でも有用な材料である。
本発明の表示装置および照明装置は、本発明の有機EL素子を備えているため、駆動電圧が低く、優れた特性を有する。
 また、本発明の有機薄膜太陽電池、光電変換素子および有機薄膜トランジスタは、本発明の有機薄膜を含むものであるため、優れた特性を有する。
本発明の有機EL素子の一例を説明するための概略断面図である。 本発明の有機EL素子の一例を説明するための概略断面図である。 本発明の有機EL素子の積層構造の他の一例を示す概略断面図である。 本発明の有機EL素子の積層構造の他の一例を示す概略断面図である。 本発明の有機薄膜の一例を示す概略断面図である。 本発明の有機薄膜の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 本発明の有機薄膜の積層構造の一例を示す概略断面図である。 実施例1、2及び比較例1で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例3、4及び比較例1、2で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例3、4及び比較例1、2で作製した有機EL素子の発光の様子を示した図である。 実施例5及び比較例3で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例5、6で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例7、8及び比較例4で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例9、10で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例9、10で作製した有機EL素子の輝度の経時変化を示したグラフである。 実施例11で作製した有機EL素子の構成を示した断面図である。 実施例8、11で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例12~14、比較例5、6で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例13、比較例6で作製した有機EL素子の輝度の経時変化を示したグラフである。 実施例12、14で作製した有機EL素子の輝度の経時変化を示したグラフである。 実施例15で作製した有機EL素子の構成を示した断面図である。 実施例15、比較例7で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例16、比較例8、9で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例17、比較例10、11で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例18、比較例12、13で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例19、比較例15で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例20、比較例14で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例20、比較例14で作製した有機EL素子の常温環境下での輝度の経時変化を示したグラフである。 実施例20、比較例14で作製した有機EL素子の高温環境下(85℃)での輝度の経時変化を示したグラフである。 実施例21、22、比較例16で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例23、比較例17で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例24、比較例18で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。 実施例25、26、比較例19で作製した有機EL素子の印加電圧と輝度の関係を示したグラフである。
以下に本発明を詳述する。
「有機薄膜、有機EL素子用材料」
 本発明の有機薄膜は、下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む。本発明の有機薄膜は、第1材料と第2材料とを含む単一層の膜であってもよく、第1材料を含む層と第2材料を含む層とが積層された積層膜であってもよい。
Figure JPOXMLDOC01-appb-C000019
(一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
 本発明の有機薄膜を構成している第1材料は、pKaが1以上の上記有機材料であるため、第2材料からプロトン(H)を引き抜く能力を有する。第1材料は、pKaが5以上であることが好ましく、11以上であることがさらに好ましい。第1材料はpKaが高い材料である程、第2材料からプロトンを引き抜く能力がより高いものとなる。その結果、有機薄膜を、例えば、有機EL素子の電子注入層として用いた場合に、優れた電子注入性および電子輸送性が得られる。また、無機化合物の欠損箇所に好適に配位することから、外部から侵入する酸素や水との界面での反応を妨げ、素子の大気安定性を高める効果があることも確認されている。さらに、無機化合物と相互作用することにより、無機化合物の仕事関数を小さくすることができ、その結果、金属酸化物層の電子注入性を向上させることができる。
 したがって、本発明の有機薄膜は、有機化合物のみから構成される素子だけではなく、特に、有機化合物と無機化合物とで構成される素子に対しても用いることができ、電子注入性や大気安定性を高める効果を発揮することができる。また、無機化合物の仕事関数を小さくできるということは、有機薄膜太陽電池や光電変換素子において、光を吸収して発生した電子を生じさせる活性層に用いられる有機化合物からの電子取り出し効率も向上させることができるということである。
 本発明の有機薄膜は、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を第1材料として含むことを特徴の1つとし、本発明の有機薄膜を電子注入層に用いた場合、優れた電子注入性、電子輸送性が得られる。このような優れた効果を発揮する、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む有機EL素子用材料もまた、本発明の1つであり、本材料を単独で電子注入層や電子輸送層に用いることでも優れた電子注入性、電子輸送性が得られる。
 なお、本発明において、「pKa」は通常は「水中における酸解離定数」を意味するが、水中で測定できないものは「ジメチルスルホキシド(DMSO)中における酸解離定数」を意味し、DMSO中でも測定できないものは、「アセトニトリル中の酸解離定数」を意味する。好ましくは「水中における酸解離定数」を意味する。
上記一般式(1)におけるRは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。
芳香族炭化水素基、芳香族複素環基としては、炭素数3~30のものが好ましく、炭素数4~24のものがより好ましく、炭素数5~20のものがさらに好ましい。
芳香族炭化水素基としては、ベンゼン等の1つの芳香環のみからなる化合物;ビフェニル、ジフェニルベンゼン等の複数の芳香環が1つの炭素原子同士で直接結合した化合物;ナフタレン、アントラセン、フェナントレン、ピレン等の縮合環式芳香族炭化水素化合物のいずれかの芳香環から水素原子を1~4個除いてできる基が挙げられる。
芳香族複素環基としては、チオフェン、フラン、ピロール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、イミダゾール、ピリジン、ピリミジン、ピラジン、トリアジン等の1つの芳香族複素環のみからなる化合物;これらの1つの芳香族複素環のみからなる化合物が1つの炭素原子同士で複数直接結合した化合物(ビピリジン等);キノリン、キノキサリン、ベンゾチオフェン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、インドール、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、アクリジン、フェナントロリン等の縮合環式複素芳香族炭化水素化合物のいずれかの芳香族複素環から水素原子を1~4個除いてできる基が挙げられる。
アリールアルキレン基としては、上記芳香族炭化水素基と炭素数1~3のアルキレン基とを組み合わせた基が挙げられる。
2~4価の鎖状または環状炭化水素基としては、炭素数1~12のものが好ましく、炭素数1~6のものがより好ましく、炭素数1~4のものがさらに好ましい。鎖状炭化水素基は直鎖状のものであってもよく、分岐鎖状のものであってもよい。
また、Rは上記芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状炭化水素基を2つ以上組み合わせてできる基でもよい。
更に、Rは上記芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状炭化水素基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基であってもよい。そのような基としては、例えば、トリメチルアミン等のトリアルキルアミンやトリフェニルアミンから水素原子を1~4個除いてできる基等が挙げられる。
上記芳香族炭化水素基、芳香族複素環基、又は、アリールアルキレン基は1価の置換基を1つ又は2つ以上有していてもよい。
1価の置換基としては、フッ素原子;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等のハロアルキル基;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基等の炭素数1~20の直鎖状又は分岐鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数5~7の環状アルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等の炭素数1~20の直鎖状又は分岐鎖状アルコキシ基;ニトロ基;シアノ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等の炭素数1~10のアルキル基を有するアルキルアミノ基;ピロリジノ基、ピペリジノ基、モルホリノ基等の環状アミノ基;ジフェニルアミノ基、カルバゾリル基等のジアリールアミノ基;アセチル基、プロピオニル基、ブチリル基等のアシル基;スチリル基等の炭素数2~30のアルケニル基;フッ素原子等のハロゲン原子や炭素数1~20のアルキル基、アルコキシ基、アミノ基等で置換されていてもよい炭素数5~20のアリール基(アリール基の具体例は、上記芳香族炭化水素基と同様);フッ素原子等のハロゲン原子や炭素数1~20のアルキル基、アルコキシ基、アミノ基等で置換されていてもよい炭素数4~20の窒素原子、硫黄原子、酸素原子のいずれか1つ以上を含む複素環基(複素環基は、1つの環のみからなるものであってもよく、1つの芳香族複素環のみからなる化合物が1つの炭素原子同士で複数直接結合した化合物であってもよく、縮合複素環基であってもよい。複素環基の具体例には、上記芳香族複素環基の具体例が含まれる。);エステル基、チオエーテル基等が挙げられる。なお、これらの基は、ハロゲン原子やヘテロ元素、アルキル基、芳香環等で置換されていてもよい。
上記一般式(1)におけるnは、1~4の整数であるが、2又は3であることが好ましい。
 上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物の具体例としては、例えば、下記式(2-1)~(2-34)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
上記一般式(1)で表される化合物は、下記式(3)に示すように、よう素、臭素、塩素、フッ素を有するハロゲン化合物とヘキサヒドロピリミドピリミジンとを原料とし、Ullmannカップリング反応、Buchwald-Hartwigアミノ化反応または求核置換反応等により合成することができる。
Figure JPOXMLDOC01-appb-C000025
第2材料は、電子を輸送する材料であればよく、有機材料であることが好ましい。より好ましくは、最低非占有軌道(LUMO)準位が2.0eV~4.0eVまでの有機材料、その中でも、LUMO準位が2.5eV~3.5eVのn型有機半導体材料である。例えば、有機EL素子の電子輸送層の材料として、下記に示す従来公知のいずれの材料を用いてもよいが、これらの中でも、上記LUMO準位の要件を満たす材料が好ましい。
 第2材料としては、具体的には、フェニル-ディピレニルホスフィンオキサイド(POPy)のようなホスフィンオキサイド誘導体、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)ベンゼン(TmPhPyB)や1,3,5-トリス(6-(3-(ピリジン-3-イル)フェニル)ピリジン-2-イル)ベンゼン、8,9-ジフェニル-7,10-(3-(ピリジン-3-イル))フルオランテンのようなピリジン誘導体、(2-(3-(9-カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2-フェニル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン(BPyPPM)や2-メチル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン、9-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)-9H-カルバゾールのようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)や2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)のようなフェナントロリン誘導体、2,4-ビス(4-ビフェニル)-6-(4’-(2-ピリジニル)-4-ビフェニル)-[1,3,5]トリアジン(MPT)、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)トリアジン(TmPhPyTz)、トリス-1,3,5-([1,1’-ビフェニル]-3-イル)トリアジン、2-(3-(4,6-ジ(ピリジン-3-イル)-1,3,5-トリアジン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、9-(4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル)-9H-3,9’-ビカルバゾール、9-(4-(4,6-ジフェニル―1,3,5-トリアジン-2-イル)フェニル)-9H-カルバゾール、11-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-12-フェニル-11,12-ジヒドロインドロ[2,3-a]カルバゾール、12-(2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル)-12H-ベンゾフロ[2,3,a]-カルバゾール、9-((4-(4,6-ジピリジン-3-イル)-1,3,5-トリアジン-2-イル)フェニル)-9H-カルバゾールのようなトリアジン誘導体、3-フェニル-4-(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル-1,3,4-オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’-(1,3,5-ベントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、後述する式(24)で示す化合物のようなカルボニル基を含む複素環を有する化合物、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ))、トリス(8-ヒドロキシキノリナト)アルミニウム(Alq)などに代表される各種金属錯体、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体、特願2012-228460、特願2015-503053、特願2015-053872、特願2015-081108および特願2015-081109に記載のホウ素含有化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
また、後述する発光層の材料も第2材料として用いることができる。
 これらの第2材料の中でも、POPyのようなホスフィンオキサイド誘導体、下記式(4)~(7)で表される化合物のようなホウ素含有化合物、Alqのような金属錯体、TmPhPyBのようなピリジン誘導体、TmPhPyTzのようなトリアジン誘導体を用いることがより好ましい。これらの第2材料の中でも、特に、第2材料が、ホウ素含有化合物、トリアジン誘導体であることが好ましい。なお、式(6)のnは、1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000026
ホウ素含有化合物を、電子輸送性を有する第2材料として用いた場合、第1材料と第2材料とを含む塗料組成物を塗布する方法により容易に均一な有機薄膜が得られる。このような、上記一般式(1)で表される第1材料と電子を輸送する第2材料とを含む塗料組成物もまた、本発明の1つである。また、上記一般式(1)で表される第1材料であるヘキサヒドロピリミドピリミジン化合物は、電子注入性に極めて優れているため、第1材料を含み、第2材料を含まない塗料組成物も有用である。このような上記一般式(1)で表される第1材料であるヘキサヒドロピリミドピリミジン化合物を含む塗料組成物もまた、本発明の1つである。
 また、ホウ素含有化合物、トリアジン誘導体は、最低非占有軌道(LUMO)エネルギーが深いため、有機EL素子の電子注入層としての材料として好適である。したがって、ホウ素含有化合物を第2材料として含む有機薄膜は、特に有機EL素子の電子注入層として好適である。
 本発明の有機薄膜に含まれる第1材料と第2材料との比率は、特に限定されるものではなく、第1材料および第2材料それぞれに使用する化合物の種類に応じて適宜決定できる。第1材料と第2材料との比率は、質量比(第1材料:第2材料)で0.1:99.9~20:1であることが好ましい。より好ましくは、0.5:99~10:1である。例えば、第1材料として上記(2-2)の化合物を用い、第2材料として上記式(4)で表されるホウ素含有化合物を用いた場合にも、第1材料と第2材料との比率は、このような質量比であることが好ましい。上記比率である場合、有機薄膜に第1材料と第2材料とが含まれていることによる電子輸送性および電子注入性の向上効果が顕著となる。
本発明における有機薄膜は、第1材料と第2材料とを含む単一の膜であってもよく、第1材料を少なくとも含む膜と第2材料を少なくとも含む膜との積層膜であってもよい。積層膜である場合、第1材料のみを含む膜と第2材料のみを含む膜との積層膜であってもよく、第1材料と第2材料とを含む膜と、第1材料と第2材料のいずれか一方のみを含む膜との積層膜であってもよい。第1材料と第2材料とを含む膜と、第1材料と第2材料のいずれか一方のみを含む膜との積層膜である場合、第1材料と第2材料のいずれか一方のみを含む膜は、第1材料、第2材料のいずれを含むものであってもよいが、第2材料を含むものであることが好ましい。
また、有機エレクトロルミネッセンス素子を構成する層としてこのような有機薄膜を使用する場合、第1材料と第2材料とを含む膜と、第1材料と第2材料のいずれか一方のみを含む膜のいずれが陰極側にあってもよいが、第1材料と第2材料のいずれか一方のみを含む膜が陰極側にあるほうが好ましい。
 本発明における有機薄膜が、第1材料と第2材料とを含む膜と、第1材料のみを含む膜との積層膜である場合、積層された2つの膜の両方に第1材料が含まれることになるが、2つの膜に含まれる第1材料は同一であってもよく、異なっていてもよい。
同様に、本発明における有機薄膜が、第1材料と第2材料とを含む膜と、第2材料のみを含む膜との積層膜である場合、積層された2つの膜の両方に第2材料が含まれることになるが、2つの膜に含まれる第2材料は同一であってもよく、異なっていてもよい。
「有機薄膜の製造方法」
 次に、本発明の有機薄膜の製造方法について、例を挙げて説明する。
本発明の有機薄膜は、酸解離定数pKaが1以上の、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物からなる第1材料と、電子を輸送する第2材料とを含むものである。第1材料、第2材料ともに分子量が比較的大きいことに起因して、本発明の有機薄膜は塗布だけでなく、蒸着によっても形成することが可能である。このため、本発明の有機薄膜を含む有機EL素子を製造する場合のプロセス上の制約が少なく、有機EL素子を構成する層の材料として使用しやすいものである。
有機薄膜を蒸着により製造する場合、有機EL素子を構成する他の層を蒸着により製造する場合と同様の方法により行うことができ、第1材料、第2材料を同時に蒸着してもよく、順に蒸着してもよい。順に蒸着する場合、第1材料、第2材料のいずれを先に蒸着してもよい。また、いずれか一方を先に蒸着した後に、これら両方を共蒸着してもよく、両方を共蒸着した後に、いずれか一方を蒸着してもよい。このような、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを同時に有機薄膜の被形成面上に蒸着する工程含む有機薄膜の製造方法は、本発明の有機薄膜の製造方法の好適な実施形態の1つである。また、第1材料又は第2材料のいずれかを先に有機薄膜の被形成面上に蒸着する工程と、その後にもう一方又は両方の材料を蒸着する工程とを含む有機薄膜の製造方法、又は、第1材料と第2材料とを同時に有機薄膜の被形成面上に蒸着する工程と、その後に第1材料又は第2材料のいずれかを有機薄膜の被形成面上に蒸着する工程とを含む有機薄膜の製造方法もまた、本発明の有機薄膜の製造方法の好適な実施形態の1つである。
また、本発明の有機薄膜は塗布により製造することも可能であり、この場合も、第1材料と、電子を輸送する第2材料とを含む塗料組成物を作成して、該塗料組成物を塗布するか、又は、第1材料を含む塗料組成物、第2材料を含む塗料組成物をそれぞれ作成して、これらを順に塗布することで有機薄膜を製造することができる。順に塗布する場合、第1材料を含む塗料組成物、第2材料を含む塗料組成物のいずれを先に塗布してもよい。また、いずれか一方の材料のみを含む塗料組成物を塗布した後に、これら両方の材料を含む塗料組成物を塗布してもよく、これら両方の材料を含む塗料組成物を塗布した後に、いずれか一方の材料のみを含む塗料組成物を塗布してもよい。このような、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む塗料組成物を有機薄膜の被形成面上に塗布する工程含む有機薄膜の製造方法は、本発明の有機薄膜の製造方法の好適な実施形態の1つである。また、第1材料のみを含む塗料組成物又は第2材料のみを含む塗料組成物のいずれかを先に有機薄膜の被形成面上に塗布する工程と、該工程によって形成された塗膜の上にもう一方又は両方の材料を含む塗料組成物を塗布する工程とを含む有機薄膜の製造方法、又は、第1材料と第2材料の両方の材料を含む塗料組成物を塗布する工程と、該工程によって形成された塗膜の上に第1材料又は第2材料のいずれか一方のみを含む塗料組成物を塗布する工程とを含む有機薄膜の製造方法もまた、本発明の有機薄膜の製造方法の好適な実施形態の1つである。
以下においては、pKaが1以上の特定の一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物からなる第1材料と、電子を輸送する第2材料とを含む塗料組成物を作成して、該塗料組成物を塗布することで有機薄膜を製造する方法について説明する。
 塗料組成物は、例えば、容器に入れた溶媒中に第1材料と第2材料をそれぞれ所定量供給、または容器に入れた第1材料と第2材料に溶媒を供給して撹拌し、溶解させる方法により得られる。
 第1材料および第2材料を溶解するために用いる溶媒としては、例えば、無機溶媒や有機溶媒、またはこれらを含む混合溶媒等を用いることができる。
 無機溶媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、リン酸、塩酸等が挙げられる。
 有機溶媒としては、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、ジイソブチルケトン、3,5,5-トリメチルシクロヘキサノン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等のアミド系溶媒、クロロベンゼン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系、トリエチルアミン、ピリジン等の有機アミン系、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒のような各種有機溶媒等が挙げられ、これらの中でもメチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、ジイソブチルケトン、3,5,5-トリメチルシクロヘキサノン、ジアセトンアルコール、シクロペンタノン等のケトン系溶媒が好ましい。
 第1材料および第2材料を含む塗料組成物を塗布する方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いることができる。
 このようにして塗料組成物を塗布した後、アニール処理を施すことが好ましい。アニール処理の条件は、70~200℃で0.1~5時間、窒素雰囲気または大気下で行うことが好ましい。このようなアニール処理を施すことにより、溶媒を気化させて有機薄膜を成膜できる。
 また、上記一般式(1)で表される第1材料であるヘキサヒドロピリミドピリミジン化合物は、電子注入性に極めて優れているため、第1材料を含み、第2材料を含まない有機薄膜も有機EL素子等の材料として有用である。このような一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む膜を被形成面上に形成する工程を含む有機薄膜の製造方法もまた、本発明の1つであり、一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む膜を、第2材料を含む被形成面上に形成する工程を含むことは、該有機薄膜の製造方法の好適な実施形態の1つである。
「有機EL素子」
 本発明はまた、陰極と陽極との間に発光層を有し、更に本発明の有機薄膜の層、該有機薄膜の層と金属酸化物層との積層膜の層、又は、本発明の有機エレクトロルミネッセンス素子用材料を含む層のいずれかを含む有機エレクトロルミネッセンス(EL)素子でもある。
上記有機薄膜の層、該有機薄膜の層と金属酸化物層との積層膜の層、本発明の有機エレクトロルミネッセンス素子用材料を含む層はいずれも本発明の有機EL素子中において、陰極と発光層との間にあってもよく、陽極と発光層との間にあってもよいが、陰極と発光層との間にあることが好ましい。
また、本発明の有機エレクトロルミネッセンス素子用材料を含む層は、上述した一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む限り、その他の成分を含んでいてもよいが、ヘキサヒドロピリミドピリミジン化合物のみからなる層であることが好ましい。
本発明はまた、陰極と陽極との間に発光層を有する有機エレクトロルミネッセンス素子であって、陰極と陽極との間に本発明の有機薄膜の層、又は、該有機薄膜の層と金属酸化物層との積層膜の層を含み、発光層が第2材料を含む有機エレクトロルミネッセンス(EL)素子でもある。更に本発明は、陰極と陽極との間に本発明の有機薄膜の層、又は、該有機薄膜の層と金属酸化物層との積層膜の層を含み、有機薄膜又は積層膜が発光層に隣接し且つ第2材料として発光層に用いられる材料を含むか、又は、有機薄膜又は積層膜のうち第2材料を含む膜が発光層である有機エレクトロルミネッセンス(EL)素子でもある。
本発明の第1材料であるヘキサヒドロピリミドピリミジン化合物は、電子注入性に極めて優れているため、発光層に用いる発光材料やホスト材料に対しても直接電子を注入することが可能である。このため、本発明の第1材料を電子注入層に用いることで、使用する材料の数を減らしたり、積層する層の数を減らしてより単純な構造の有機EL素子とすることが可能となる。
すなわち、本発明の有機薄膜又は積層膜を用いた素子を、第1材料を含む層と第2材料を含む層と発光層とが隣接した素子とし、第2材料を含む層の材料として発光層に用いられる発光材料やホスト材料を用いた場合でも、第1材料を含む層から電子を注入することが可能であり、このようにすることで第2材料を含む層と発光層とを共通の材料を用いて形成することができるため、使用する材料の数を減らすことができる。この場合、第2材料は、発光材料、発光層のホスト材料のいずれであってもよい。また、第2材料を含む層を発光材料又は発光層のホスト材料を用いて形成し、これを発光層として用いると、別に発光層を設ける必要がなくなるため、積層する層の数を減らしてより単純な構造の有機EL素子とすることが可能となる。更に、発光層の陽極側に隣接する層の材料として第2材料を使用すれば、積層する層の数を更に減らして更に単純な構造の有機EL素子とすることが可能となる。したがって、発光層が第2材料を含むことや、陽極と前記発光層との間に、前記第2材料を含む層を有することは、いずれも本発明の有機エレクトロルミネッセンス(EL)素子の好適な実施形態の1つである。
次に、本発明の有機EL素子について、例を挙げて詳細に説明する。
 図1は、本発明の有機EL素子の一例を説明するための概略断面図である。図1に示す本発明の有機EL素子1は、陰極3と陽極9との間に発光層6を有する。図1に示す有機EL素子1では、陰極3と発光層6との間に、本発明の有機薄膜又は本発明の有機エレクトロルミネッセンス素子用材料からなる電子注入層5を有している。また、陰極3と本発明の有機薄膜又は本発明の有機エレクトロルミネッセンス素子用材料からなる電子注入層5との間に、酸化物層4を有しており、酸化物層4は電子注入層5と隣接している。これらはいずれも本発明の有機EL素子の好適な実施形態である。
 本発明の有機EL素子1は、基板2上に、陰極3と、無機の酸化物層4と、電子注入層5と、電子輸送層10と、発光層6と、正孔輸送層7と、正孔注入層8と、陽極9とがこの順に形成された積層構造を有する。このように、陰極と有機薄膜の層又は本発明の有機エレクトロルミネッセンス素子用材料の層との間に、無機の酸化物層を有することは本発明の有機EL素子の好適な実施形態の1つである。
 図1に示す有機EL素子1は、基板2と発光層6との間に陰極3が配置された逆構造の有機EL素子である。また、図1に示す有機EL素子1は、有機EL素子を構成する層の一部(少なくとも無機の酸化物層4)を、無機化合物を用いて形成した有機無機ハイブリッド型の有機電界発光素子(HOILED素子)である。
 図1に示す有機EL素子1は、基板2と反対側に光を取り出すトップエミッション型のものであってもよいし、基板2側に光を取り出すボトムエミッション型のものであってもよい。
 図2は、本発明の有機EL素子が、基板2と陰極3との間に発光層6が配置された順構造の有機EL素子である場合の素子構成の一例を示した図である。
上述したとおり、本発明のヘキサヒドロピリミドピリミジン化合物は、電子注入性に極めて優れているため、発光層に用いる材料に対しても直接電子を注入することが可能である。したがって、本発明のヘキサヒドロピリミドピリミジン化合物を含む有機EL素子用材料を用いる場合、例えば図3に示すように、発光層に用いられる材料で電子輸送層10を形成し、発光層6及び電子輸送層10に同じ材料を用いた単純構造の有機EL素子とした場合にも、電子注入層5にヘキサヒドロピリミドピリミジン化合物を用いることで、低い駆動電圧で動作することが可能となる。この場合、典型的な有機EL素子に比べると少なくとも1つ使用する材料を減らすことが可能となる。ここで、電子輸送層10が本発明の第2材料を含むものであれば、該有機EL素子は本発明の有機薄膜を用いているともいうことができる。
更に、正孔注入層8から発光層に用いる材料へは比較的容易に正孔が注入できるため、本発明のヘキサヒドロピリミドピリミジン化合物を含む有機EL素子用材料を電子注入層5に用いた場合には、図4に示すように、発光層に用いる材料を正孔輸送層7に用いても低い駆動電圧で動作することが可能である。この場合、典型的な有機EL素子に比べると少なくとも2つ使用する材料を減らすことが可能となる。ここで、電子輸送層10が本発明の第2材料を含むものであれば、該有機EL素子は本発明の有機薄膜を用いているともいうことができる。
 なお、ここでは順構造の有機EL素子の図を用いて説明したが、本発明の発光層が第2材料を含む有機EL素子は順構造のものに限られず、逆構造のものであってもよい。
 以下の本実施形態においては、逆構造の有機EL素子を例に挙げて説明するが、本発明の有機EL素子は、基板と発光層との間に陽極が配置された順構造のものであってもよい。本発明の有機EL素子が順構造である場合も、逆構造の場合と同様に、陰極と発光層との間に上記有機薄膜を有する。また逆構造の場合、該電子注入層を有機バッファ層と呼ぶこともある。以下に記載の内容は、全て順構造の有機EL素子にも適用することができる。
「基板」
 基板2の材料としては、樹脂材料、ガラス材料等が挙げられる。
 基板2に用いられる樹脂材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレート等が挙げられる。基板2の材料として、樹脂材料を用いた場合、柔軟性に優れた有機EL素子1が得られるため好ましい。
 基板2に用いられるガラス材料としては、石英ガラス、ソーダガラス等が挙げられる。
 有機EL素子1がボトムエミッション型のものである場合には、基板2の材料として、透明基板を用いる。
 有機EL素子1がトップエミッション型のものである場合には、基板2の材料として、透明基板だけでなく、不透明基板を用いてもよい。不透明基板としては、例えば、アルミナのようなセラミックス材料からなる基板、ステンレス鋼のような金属板の表面に酸化膜(絶縁膜)を形成した基板、樹脂材料で構成された基板等が挙げられる。
 基板2の平均厚さは、基板2の材料等に応じて決定でき、0.1~30mmであることが好ましく、0.1~10mmであることがより好ましい。基板2の平均厚さは、デジタルマルチメーター、ノギスにより測定できる。
「陰極」
 陰極3は、基板2上に直接接触して形成されている。
 陰極3の材料としては、ITO(インジウム酸化錫)、IZO(インジウム酸化亜鉛)、FTO(フッ素酸化錫)、In、SnO、Sb含有SnO、Al含有ZnO等の酸化物や、Al、Au、Pt、Ag、Cu又はこれらを含む合金の導電材料が挙げられる。この中でも、陰極3の材料として、ITO、IZO、FTOを用いることが好ましい。
 陰極3の平均厚さは、特に制限されないが、10~500nmであることが好ましく、100~200nmであることがより好ましい。
 陰極3の平均厚さは、触針式段差計、分光エリプソメトリー又は水晶振動子膜厚計により測定できる。
「酸化物層」
 無機の酸化物層4は、電子注入層としての機能および/または陰極としての機能を備えている。
 酸化物層4は、半導体もしくは絶縁体積層薄膜の層である。具体的には、酸化物層4は、単体の金属酸化物からなる層、二種類以上の金属酸化物を混合した層と単体の金属酸化物からなる層のいずれか一方または両方を積層した層、二種類以上の金属酸化物を混合した層のいずれであってもよい。
 酸化物層4を形成する金属酸化物を構成する金属元素としては、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、インジウム、ガリウム、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、アルミニウム、ケイ素が挙げられる。
 酸化物層4が、二種類以上の金属酸化物を混合した層を含む場合、金属酸化物を構成する金属元素の少なくとも一つが、マグネシウム、アルミニウム、カルシウム、ジルコニウム、ハフニウム、ケイ素、チタン、亜鉛からなる層であることが好ましい。
 酸化物層4が、単体の金属酸化物からなる層である場合、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ケイ素、酸化チタン、酸化亜鉛からなる群から選ばれる金属酸化物からなる層であることが好ましい。
 酸化物層4が、二種類以上の金属酸化物を混合した層と単体の金属酸化物からなる層のいずれか一方または両方を積層した層、または二種類以上の金属酸化物を混合した層である場合、酸化チタン/酸化亜鉛、酸化チタン/酸化マグネシウム、酸化チタン/酸化ジルコニウム、酸化チタン/酸化アルミニウム、酸化チタン/酸化ハフニウム、酸化チタン/酸化ケイ素、酸化亜鉛/酸化マグネシウム、酸化亜鉛/酸化ジルコニウム、酸化亜鉛/酸化ハフニウム、酸化亜鉛/酸化ケイ素、酸化カルシウム/酸化アルミニウムから選ばれる二種の金属酸化物の組合せを積層及び/又は混合したもの、酸化チタン/酸化亜鉛/酸化マグネシウム、酸化チタン/酸化亜鉛/酸化ジルコニウム、酸化チタン/酸化亜鉛/酸化アルミニウム、酸化チタン/酸化亜鉛/酸化ハフニウム、酸化チタン/酸化亜鉛/酸化ケイ素、酸化インジウム/酸化ガリウム/酸化亜鉛から選ばれる三種の金属酸化物の組合せを積層及び/又は混合したものなどが挙げられる。
 酸化物層4は、特殊な組成として良好な特性を示す酸化物半導体であるIGZO(酸化インジウムガリウム亜鉛)および/またはエレクトライドである12CaO・7Alを含むものであってもよい。
 酸化物層4の平均厚さは、特に限定されないが、1~1000nmであることが好ましく、2~100nmであることがより好ましい。
 酸化物層4の平均厚さは、触針式段差計、分光エリプソメトリーにより測定できる。
「電子注入層」
 電子注入層5は、陰極から発光層6への電子の注入の速度・電子輸送性を改善するものである。電子注入層5は、上記有機薄膜からなる。
 電子注入層5の平均厚さは、0.5~100nmであることが好ましく、1~100nmであることがより好ましく、5~100nmであることが更に好ましく、10~50nmであることが特に好ましい。電子注入層5の平均厚さが0.5nm以上である場合、第1材料と第2材料とを含む塗料組成物を塗布する方法、第1材料を含む塗料組成物と第2材料と含む塗料組成物とを順に塗布する方法、又は、第1材料と第2材料とをそれぞれ積層製膜する方法のいずれかを用いて、電子注入層5を形成することにより、表面の平滑な電子注入層5が得られ、有機EL素子1の製造時におけるリークを十分に防止できる。また、電子注入層5の平均厚さが100nm以下である場合、電子注入層5を設けることによる有機EL素子1の駆動電圧の上昇を十分に抑制できる。
また、上記電子注入層5の形成は、蒸着によって行ってもよく、第1材料と第2材料とを同時に蒸着する方法や、第1材料と第2材料のいずれか一方を蒸着した後、もう一方を蒸着する方法を用いることができる。
なお、上記第1材料と第2材料とを含む膜を製膜する場合、図5-1~11-1(順構造の場合は図5-2~11-2)に示すいずれの構造であってもよい。例えば、当該一層の膜からなり、当該膜全体が電子注入層を構成するものであってもよく(図5-1、5-2)、第1材料のみからなる膜、第2材料のみからなる膜のいずれか一方が陰極や酸化物に隣接して製膜され、その膜に隣接して他方が製膜されてもよい(図6-1、6-2、図7-1、7-2)。また、第1材料と第2材料とを含む膜が陰極や酸化物に隣接して製膜され、その膜に隣接して第2材料のみから成る膜が製膜されてもよく(図8-1、8-2)、第1材料を含まない、第2材料のみから成る膜が陰極や酸化物に隣接して製膜され、上記第1材料と第2材料とを含む膜がその膜に隣接して製膜されていてもよい(図9-1、9-2)。更に、第1材料のみからなる膜や第1材料と第2材料とを含む膜が、第2材料のみからなる膜に挟まれた三層構造の膜(図10-1、10-2、図11-1、11-2)の構造となるように製膜されてもよい。図5-1~11-1、図5-2~11-2に示すいずれの構造の膜も本発明に含まれる。なお、図8-1~11-1や、図8-2~11-2のように、隣接する2つの膜の両方、又は、三層構造の膜の2つ以上の膜に第2材料が含まれる場合、これら2つ以上の膜に含まれる第2材料は同一であってもよく、異なっていてもよい。また、これらの構造のうち、第1材料のみからなる層を含む図6-1、6-2、図7-1、7-2、及び、図10-1、10-2の構造については、当該第1材料のみからなる層を本発明の有機薄膜(第1材料のみを含み、第2材料を含まない有機薄膜)から形成された層とみなすこともできる。
 電子注入層5の平均厚さは、例えば、触針式段差計、分光エリプソメトリーにより測定できる。
 上述したとおり、pKaが1以上の有機材料である第1材料は、他の材料からプロトン(H)を引く抜く能力を有する材料であることから、本発明の有機薄膜が酸化物層4に隣接して形成される場合、酸化物層4からの電子注入を十分に進めるため、第1材料は酸化物層4側により多く存在することが好ましい。したがって、電子注入層5は、酸化物層4側から電子輸送層10側に向かって第1材料が濃度が薄くなってゆくような濃度分布を有することが好ましい。
逆構造の有機電界発光素子において、このような濃度分布を有する電子注入層を形成する方法としては、第1材料を含む溶液を酸化物層4上に塗布して塗膜を形成した後、第2材料を含む溶液を第1材料の塗膜上に塗布する方法が挙げられるが、濃度分布が形成できるのであれば、このプロセスに限定されるものではない。
 同様に、本発明の有機薄膜が陰極3に隣接して形成される場合、陰極3からの電子注入を十分に進めるため、第1材料は陰極3側により多く存在することが好ましい。したがって、電子注入層5は、陰極3側から電子輸送層10側に向かって第1材料が濃度が薄くなってゆくような濃度分布を有することが好ましい。
順構造の有機EL素子において、このような濃度分布を有する電子注入層を形成する方法としては、第2材料を含む溶液を電子輸送層10上に塗布して塗膜を形成した後、第1材料を含む溶液を第2材料の塗膜上に塗布する方法が挙げられるが、濃度分布が形成できるのであれば、このプロセスに限定されるものではない。
また、上記濃度分布は、TOF-SIMS(飛行時間型二次イオン質量分析法)などで測定できる。
 また上記濃度分布を有する電子注入層を形成する他に、逆構造の有機EL素子の場合、酸化物層4上に第1材料の層を形成し、その上に第1材料と第2材料とを含む層を形成してもよい。また順構造の有機EL素子の場合、電子輸送層10上に第2材料の層を形成し、その上に第1材料と第2材料とを含む層を形成してもよい。
この場合、これらの層を形成する方法として、塗布、蒸着のいずれも用いることができる。
 上記のとおり、pKaが1以上の有機材料である第1材料は、他の材料からプロトン(H)を引く抜く能力を有する材料であり、無機化合物(酸化物)の欠損箇所に好適に配位し外部から侵入する酸素や水との界面での反応を妨げる。本発明の有機薄膜は陰極又は酸化物層に隣接して形成されなくても、効果を得ることができるが、本発明の有機薄膜の効果を十分に発揮する点から、本発明の有機薄膜は、陰極又は酸化物層に隣接して層を形成することが好ましい。そのようにして得られる積層構造の膜、すなわち、酸化物層と、該酸化物層に隣接して形成された本発明の有機薄膜の層とからなる積層膜、及び、陰極と、該陰極に隣接して形成された本発明の有機薄膜の層とからなる積層膜もまた本発明の1つである。
有機EL素子が積層構造中の陰極と発光層との間に、酸化物層と、該酸化物層に隣接して形成された本発明の有機薄膜の層とを含む場合や陰極と、該陰極に隣接して形成された本発明の有機薄膜の層とを含む場合、該有機EL素子は、本発明の有機薄膜を含んで構成されているといえ、また、本発明の積層膜を含んで構成されているともいうことができる。このような陰極と発光層との間に、本発明の有機薄膜又は積層膜を含んで構成される有機EL素子もまた、本発明の1つである。更に、本発明の有機薄膜、又は、陰極と該陰極に隣接して形成された本発明の有機薄膜の層とからなる積層膜を含んで構成される有機EL素子もまた、本発明の1つである。
 本発明の有機EL素子は、電子注入層として、図8-1、8-2、図9-1、9-2又は図11-1、11-2のような積層膜を有するものであってもよい。すなわち、陰極と前記発光層との間に、前記第1材料と第2材料とを含む膜と前記第2材料を含む膜との積層膜を有することは、本発明の有機EL素子の好適な実施形態の1つである。
この場合、発光層と、第1材料と第2材料とを含む膜との間に、第2材料を含む層を有する有機EL素子、及び、陰極と、第1材料と第2材料とを含む膜との間に、第2材料を含む層を有する有機EL素子のいずれも本発明の有機EL素子の好適な実施形態の1つである。
「電子輸送材料」
 電子輸送層10としては、電子輸送層の材料として通常用いることができるいずれの材料を用いてもよい。
 具体的には、電子輸送層10の材料として、フェニル-ディピレニルホスフィンオキサイド(POPy)のようなホスフィンオキサイド誘導体、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)ベンゼン(TmPhPyB)のようなピリジン誘導体、(2-(3-(9-カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2-フェニル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン(BPyPPM)のようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)のようなフェナントロリン誘導体、2,4-ビス(4-ビフェニル)-6-(4’-(2-ピリジニル)-4-ビフェニル)-[1,3,5]トリアジン(MPT)のようなトリアジン誘導体、3-フェニル-4-(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル-1,3,4-オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’-(1,3,5-ベントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ))、トリス(8-ヒドロキシキノリナト)アルミニウム(Alq3)などに代表される各種金属錯体、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体、特願2012-228460、特願2015-503053、特願2015-053872、特願2015-081108および特願2015-081109に記載のホウ素含有化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの電子輸送層10の材料の中でも、特に、POPyのようなホスフィンオキサイド誘導体、Alqのような金属錯体、TmPhPyBのようなピリジン誘導体を用いることが好ましい。
なお、上述した第2材料を含む層を発光層に用いられる発光材料やホスト材料を用いて形成した有機EL素子のように、有機EL素子が機能を発揮する限り、本発明の有機EL素子は積層構造の中に上記のような電子輸送材料を用いた電子輸送層を有さなくてもよい。
 電子輸送層10の平均厚さは、特に限定されないが、10~150nmであることが好ましく、20~100nmであることが、より好ましい。
 電子輸送層10の平均厚さは、触針式段差計、分光エリプソメトリーにより測定できる。
「発光層」
 発光層6を形成する材料としては、発光層6の材料として通常用いることのできるいずれの材料を用いてもよく、これらを混合して用いてもよい。具体的には、例えば、発光層6として、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(Zn(BTZ))と、トリス[1-フェニルイソキノリン]イリジウム(III)(Ir(piq))とを含むものとすることができる。
 また、発光層6を形成する材料は、低分子化合物であってもよいし、高分子化合物であってもよい。なお、本発明において低分子材料とは、高分子材料(重合体)ではない材料を意味し、分子量が低い有機化合物を必ずしも意味するものではない。
 発光層6を形成する高分子材料としては、例えば、トランス型ポリアセチレン、シス型ポリアセチレン、ポリ(ジ-フェニルアセチレン)(PDPA)、ポリ(アルキルフェニルアセチレン)(PAPA)のようなポリアセチレン系化合物;ポリ(パラ-フェンビニレン)(PPV)、ポリ(2,5-ジアルコキシ-パラ-フェニレンビニレン)(RO-PPV)、シアノ-置換-ポリ(パラ-フェンビニレン)(CN-PPV)、ポリ(2-ジメチルオクチルシリル-パラ-フェニレンビニレン)(DMOS-PPV)、ポリ(2-メトキシ,5-(2’-エチルヘキソキシ)-パラ-フェニレンビニレン)(MEH-PPV)のようなポリパラフェニレンビニレン系化合物;ポリ(3-アルキルチオフェン)(PAT)、ポリ(オキシプロピレン)トリオール(POPT)のようなポリチオフェン系化合物;ポリ(9,9-ジアルキルフルオレン)(PDAF)、ポリ(ジオクチルフルオレン-アルト-ベンゾチアジアゾール)(F8BT)、α,ω-ビス[N,N’-ジ(メチルフェニル)アミノフェニル]-ポリ[9,9-ビス(2-エチルヘキシル)フルオレン-2,7-ジル](PF2/6am4)、ポリ(9,9-ジオクチル-2,7-ジビニレンフルオレニル-オルト-コ(アントラセン-9,10-ジイル)のようなポリフルオレン系化合物;ポリ(パラ-フェニレン)(PPP)、ポリ(1,5-ジアルコキシ-パラ-フェニレン)(RO-PPP)のようなポリパラフェニレン系化合物;ポリ(N-ビニルカルバゾール)(PVK)のようなポリカルバゾール系化合物;ポリ(メチルフェニルシラン)(PMPS)、ポリ(ナフチルフェニルシラン)(PNPS)、ポリ(ビフェニリルフェニルシラン)(PBPS)のようなポリシラン系化合物;更には特願2010-230995号、特願2011-6457号に記載のホウ素化合物系高分子材料等が挙げられる。
 発光層6を形成する低分子材料としては、例えば、配位子に2,2’-ビピリジン-4,4’-ジカルボン酸を持つ、3配位のイリジウム錯体、ファクトリス(2-フェニルピリジン)イリジウム(Ir(ppy))、fac-トリス(3-メチル-2-フェニルピリジナト-N,C2’-)イリジウム(III)(Ir(mppy))、8-ヒドロキシキノリンアルミニウム(Alq)、トリス(4-メチル-8キノリノレート)アルミニウム(III)(Almq)、8-ヒドロキシキノリン亜鉛(Znq)、(1,10-フェナントロリン)-トリス-(4,4,4-トリフルオロ-1-(2-チエニル)-ブタン-1,3-ジオネート)ユーロピウム(III)(Eu(TTA)(phen))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィンプラチナム(II)のような各種金属錯体;ジスチリルベンゼン(DSB)、ジアミノジスチリルベンゼン(DADSB)のようなベンゼン系化合物;ナフタレン、ナイルレッドのようなナフタレン系化合物;フェナントレンのようなフェナントレン系化合物;クリセン、6-ニトロクリセンのようなクリセン系化合物;ペリレン、N,N’-ビス(2,5-ジ-t-ブチルフェニル)-3,4,9,10-ペリレン-ジ-カルボキシイミド(BPPC)のようなペリレン系化合物;コロネンのようなコロネン系化合物;アントラセン、ビススチリルアントラセン、後述する式(27)で示される(9,10-ビス(4-(9Hカルバゾール-9-イル)-2,6-ジメチルフェニル))-9,10-ジボラアントラセン(CzDBA)のようなアントラセン系化合物;ピレンのようなピレン系化合物;4-(ジ-シアノメチレン)-2-メチル-6-(パラ-ジメチルアミノスチリル)-4H-ピラン(DCM)のようなピラン系化合物;アクリジンのようなアクリジン系化合物;スチルベンのようなスチルベン系化合物;2,5-ジベンゾオキサゾールチオフェンのようなチオフェン系化合物;ベンゾオキサゾールのようなベンゾオキサゾール系化合物;ベンゾイミダゾールのようなベンゾイミダゾール系化合物;2,2’-(パラ-フェニレンジビニレン)-ビスベンゾチアゾールのようなベンゾチアゾール系化合物;ビスチリル(1,4-ジフェニル-1,3-ブタジエン)、テトラフェニルブタジエンのようなブタジエン系化合物;ナフタルイミドのようなナフタルイミド系化合物;クマリンのようなクマリン系化合物;ペリノンのようなペリノン系化合物;オキサジアゾールのようなオキサジアゾール系化合物;アルダジン系化合物;1,2,3,4,5-ペンタフェニル-1,3-シクロペンタジエン(PPCP)のようなシクロペンタジエン系化合物;キナクリドン、キナクリドンレッドのようなキナクリドン系化合物;ピロロピリジン、チアジアゾロピリジンのようなピリジン系化合物;2,4-ジフェニル-6-ビス((12-フェニルインドロ)[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(DIC-TRZ)のようなトリアジン系化合物;2,2’,7,7’-テトラフェニル-9,9’-スピロビフルオレンのようなスピロ化合物;フタロシアニン(HPc)、銅フタロシアニンのような金属または無金属のフタロシアニン系化合物;更には特開2009-155325号公報、特開2011-184430号公報および特願2011-6458号に記載のホウ素化合物材料等が挙げられる。
また、発光層のホスト材料として4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(CPB)のようなカルバゾール化合物;ケイ素化合物;フェナントロリン化合物;トリフェニレン化合物等が挙げられる。
 発光層6の平均厚さは、特に限定されないが、10~150nmであることが好ましく、20~100nmであることがより好ましい。
 発光層6の平均厚さは、触針式段差計により測定してもよいし、水晶振動子膜厚計により発光層6の成膜時に測定してもよい。
「正孔輸送層」
 正孔輸送層7に用いる正孔輸送性有機材料としては、各種p型の高分子材料(有機ポリマー)、各種p型の低分子材料を単独または組み合わせて用いることができる。
 具体的には、正孔輸送層7の材料として、例えば、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)、N4,N4’-ビス(ジベンゾ[b,d]チオフェン-4-イル)-N4,N4’-ジフェニルビフェニルー4,4’-ジアミン(DBTPB)、N3,N3’’’-ビス(ジベンゾ[b,d]チオフェン-4-イル)-N3,N3’’’-ジフェニル-[1,1’:2’,1’’:2’’,1’’’-クアテルフェニル]-3,3’’’-ジアミン(4DBTP3Q)、ポリアリールアミン、フルオレン-アリールアミン共重合体、フルオレン-ビチオフェン共重合体、ポリ(N-ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p-フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂またはその誘導体等が挙げられる。これらの正孔輸送層7の材料は、他の化合物との混合物として用いることもできる。一例として、正孔輸送層7の材料として用いられるポリチオフェンを含有する混合物として、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。
なお、上述したように、正孔注入層から発光層に用いる材料へは比較的容易に正孔が注入できるため、発光層に用いる材料を正孔輸送層に用いても低い駆動電圧で動作することが可能である。このため、本発明の有機EL素子は上記のような正孔輸送材料を用いた正孔輸送層を有さなくてもよい。
 正孔輸送層7の平均厚さは、特に限定されないが、10~150nmであることが好ましく、20~100nmであることがより好ましい。
 正孔輸送層7の平均厚さは、例えば、触針式段差計、分光エリプソメトリーにより測定することができる。
「正孔注入層」
 正孔注入層8は、無機材料からなるものであってもよいし、有機材料からなるものであってもよい。無機材料は、有機材料と比較して安定であるため、有機材料を用いた場合と比較して、酸素や水に対する高い耐性が得られやすい。
 無機材料としては、特に制限されないが、例えば、酸化バナジウム(V)、酸化モリブテン(MoO)、酸化ルテニウム(RuO)等の金属酸化物を1種又は2種以上を用いることができる。
 有機材料としては、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)や2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノ-キノジメタン(F4-TCNQ)、フラーレン、ヘレウス社製正孔注入材料「Clevios HIL1.3N」等を用いることができる。
 正孔注入層8の平均厚さは、特に限定されないが、1~1000nmであることが好ましく、5~50nmであることがより好ましい。
 正孔注入層8の平均厚さは、水晶振動子膜厚計又は触針式段差計により成膜時に測定することができる。
「陽極」
 陽極9に用いられる材料としては、ITO、IZO、Au、Pt、Ag、Cu、Alまたはこれらを含む合金等が挙げられる。この中でも、陽極9の材料として、ITO、IZO、Au、Ag、Alを用いることが好ましい。
 陽極9の平均厚さは、特に限定されないが、10~1000nmであることが好ましく、30~150nmであることがより好ましい。また、陽極9の材料として不透過な材料を用いる場合でも、例えば、平均厚さを10~30nm程度にすることで、トップエミッション型の有機EL素子における透明な陽極として使用できる。
 陽極9の平均厚さは、水晶振動子膜厚計により陽極9の成膜時に測定できる。
「封止」
 図1に示す有機EL素子1は、必要に応じて、封止されていてもよい。
 例えば、図1に示す有機EL素子1は、有機EL素子1を収容する凹状の空間を有する封止容器(不図示)と、封止容器の縁部と基板2とを接着する接着剤とによって封止されていてもよい。また、封止容器に有機EL素子1を収容し、紫外線(UV)硬化樹脂などからなるシール材を充填することにより封止してもよい。また、例えば、図1に示す有機EL素子1は、陽極9上に配置された板部材(不図示)と、板部材の陽極9と対向する側の縁部に沿って配置された枠部材(不図示)とからなる封止部材と、板部材と枠部材との間および枠部材と基板2との間とを接着する接着剤とを用いて封止されていてもよい。
 封止容器または封止部材を用いて有機EL素子1を封止する場合、封止容器内または封止部材の内側に、水分を吸収する乾燥材を配置してもよい。また、封止容器または封止部材として、水分を吸収する材料を用いてもよい。また、封止された封止容器内または封止部材の内側には、空間が形成されていてもよい。
 図1に示す有機EL素子1を封止する場合に用いる封止容器または封止部材の材料としては、樹脂材料、ガラス材料等を用いることができる。封止容器または封止部材に用いられる樹脂材料およびガラス材料としては、基板2に用いる材料と同様のものが挙げられる。
 本実施形態の有機EL素子1において、有機薄膜として、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物からなる第1材料と、上記一般式(4)で示されるホウ素含有化合物からなる第2材料とからなるものを用いて電子注入層を形成した場合には、例えば、電子注入層として大気中で不安定な材料であるアルカリ金属を用いた場合と比較して、優れた耐久性が得られる。このため、封止容器または封止部材の水蒸気透過率が10-4~10-3オーダー(g/m/day)程度であれば、有機EL素子1の劣化を十分に抑制できる。したがって、封止容器または封止部材の材料として、水蒸気透過率が10-3オーダー(g/m/day)程度以下の樹脂材料を用いることが可能であり、柔軟性に優れた有機EL素子1を実現できる。
「有機EL素子の製造方法」
 次に、本発明の有機EL素子の製造方法の一例として、図1に示す有機EL素子1の製造方法を説明する。
 図1に示す有機EL素子1を製造するには、まず、基板2上に陰極3を形成する。
 陰極3は、スパッタ法、真空蒸着法、ゾルゲル法、スプレー熱分解(SPD)法、原子層堆積(ALD)法、気相成膜法、液相成膜法等により形成することができる。陰極3の形成には、金属箔を接合する方法を用いてもよい。
 次に、陰極3上に無機の酸化物層4を形成する。
 酸化物層4は、例えば、スプレー熱分解法、ゾルゲル法、スパッタ法、真空蒸着法等の方法を用いて形成する。このようにして形成された酸化物層4の表面は、平滑ではなく凹凸を有するものとなる場合がある。
 次に、酸化物層4上に電子注入層5を形成する。
 電子注入層5は、上述した有機薄膜の製造方法により形成できる。
 次に、電子注入層5上に、電子輸送層10、発光層6と、正孔輸送層7とをこの順で形成する。
 電子輸送層10、発光層6、正孔輸送層7の形成方法は、特に限定されず、電子輸送層10、発光層6、正孔輸送層7それぞれに用いられる材料の特性に合わせて、従来公知の種々の形成方法を適宜用いることができる。
 具体的には、電子輸送層10、発光層6、正孔輸送層7の各層を形成する方法として、電子輸送層10、発光層6、正孔輸送層7となる有機化合物を含む有機化合物溶液を塗布する塗布法、真空蒸着法、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法などが挙げられる。これらの電子輸送層10、発光層6、正孔輸送層7の形成方法の中でも特に、塗布法を用いることが好ましい。なお、電子輸送層10、発光層6、正孔輸送層7となる有機化合物の溶媒溶解性が低い場合には、真空蒸着法、ESDUS法を用いることが好ましい。
 塗布法を用いて電子輸送層10、発光層6、正孔輸送層7を形成する場合には、電子輸送層10、発光層6、正孔輸送層7となる有機化合物をそれぞれ溶媒に溶解することにより、電子輸送層10、発光層6、正孔輸送層7となる有機化合物をそれぞれ含む有機化合物溶液を形成する。
 電子輸送層10、発光層6、正孔輸送層7となる有機化合物を溶解するために用いる溶媒としては、例えば、キシレン、トルエン、シクロヘキシルベンゼン、ジハイドロベンゾフラン、トリメチルベンゼン、テトラメチルベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が好ましく、これらを単独または混合して用いることができる。
 電子輸送層10、発光層6、正孔輸送層7となる有機化合物を含む有機化合物溶液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いることができる。これらの塗布法の中でも、膜厚をより制御しやすいという点で、スピンコート法やスリットコート法を用いることが好ましい。
 次に、正孔輸送層7上に正孔注入層8と、陽極9とをこの順に形成する。
 正孔注入層8が無機材料からなるものである場合、正孔注入層8は、例えば、酸化物層4と同様にして形成できる。
 正孔輸送層9が有機材料からなるものである場合、正孔注入層8は、例えば、電子輸送層10、発光層6、正孔輸送層7と同様にして形成できる。
 陽極9は、例えば、陰極3と同様にして形成できる。
 以上の工程により、図1に示す有機EL素子1が得られる。
「封止方法」
 図1に示す有機EL素子1を封止する場合には、有機EL素子の封止に用いられる通常の方法を使用して封止できる。
 本実施形態の有機EL素子1は、上述したpKaが1以上の有機材料である第1材料と、電子を輸送する第2材料とを含む有機薄膜からなる電子注入層5を有しているため、第1材料が第2材料からプロトン(H)を引き抜くことにより、マイナス電荷が生じ、優れた電子注入性が得られる。したがって、陰極3から発光層6への電子注入・電子輸送の速度が速く、駆動電圧の低い有機EL素子1となる。
 また、上述したように、上述したpKaが1以上の有機材料である第1材料と、電子を輸送する第2材料とを含む有機薄膜が積層膜であって、第2材料によって形成される層が第1材料によって形成される電子注入層とは異なる層である有機EL素子1も本発明の有機EL素子の別の実施形態である。このような実施形態の有機EL素子においても、陰極3から発光層6への電子注入・電子輸送の速度が速く、駆動電圧の低い有機EL素子1となる。
「他の例」
 本発明の有機EL素子は、上述した実施形態において説明した有機EL素子に限定されるものではない。
 具体的には、上述した実施形態においては、有機薄膜が電子注入層として機能する場合を例に挙げて説明したが、本発明の有機EL素子は、陰極と発光層との間に有機薄膜を有していればよい。したがって、有機薄膜は、電子注入層に限定されるものではなく、電子注入層と電子輸送層とを兼ねる層として設けられていてもよいし、電子輸送層として設けられていてもよい。
 また、図1に示す有機EL素子1においては、無機の酸化物層4、電子輸送層10、正孔輸送層7、正孔注入層8は、必要に応じて形成すればよく、設けられていなくてもよい。
 また、陰極3、酸化物層4、電子注入層5、電子輸送層10、発光層6、正孔輸送層7、正孔注入層8、陽極9の各層は、1層で形成されているものであってもよいし、2層以上からなるものであってもよい。
 また、図1に示す有機EL素子1においては、図1に示す各層の間に他の層を有するものであってもよい。具体的には、有機EL素子の特性をさらに向上させる等の理由から、必要に応じて、電子阻止層などを有していてもよい。
 また、上述した実施形態では、基板2と発光層6との間に陰極3が配置された逆構造の有機EL素子を例に挙げて説明したが、基板と発光層との間に陽極が配置された順構造のものであってもよい。
「表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ」
 本発明の有機EL素子は、発光層などの材料を適宜選択することによって発光色を変化させることができるし、カラーフィルター等を併用して所望の発光色を得ることもできる。そのため、表示装置の発光部位や照明装置として好適に用いることができる。
 本発明の表示装置は、陰極と発光層との間に有機薄膜を有し、生産性に優れ、駆動電圧が低い本発明の有機EL素子を備える。このため、表示装置として好ましいものである。
 また、本発明の照明装置は、生産性に優れ、駆動電圧が低い本発明の有機EL素子を備える。このため、照明装置として好ましいものである。
 本発明は、上述した実施形態に限定されるものではなく、本発明の有機薄膜は、例えば、有機薄膜太陽電池、光電変換素子、薄膜トランジスタなどのデバイスに用いることができる。
 本発明の有機薄膜太陽電池や光電変換素子は、有機薄膜を含む。例えば、有機薄膜を有機薄膜太陽電池や光電変換素子の電子注入層に用いた場合、有機薄膜の第1材料が第2材料からプロトン(H)を引き抜くことにより、マイナス電荷が生じるため、電子輸送の速度が速く、高い発電効率が得られる。したがって、本発明の有機薄膜を含む有機薄膜太陽電池や光電変換素子は、有機薄膜太陽電池や光電変換素子として好ましいものである。
 また、本発明の薄膜トランジスタは、有機薄膜を含む。例えば、薄膜トランジスタのチャネル層を有機薄膜で形成した場合、電子移動度の高いチャネル層が得られる。
 また、電極上に該有機薄膜を形成した場合、接触抵抗の低減が期待できる。
 このように本発明の有機薄膜は、有機薄膜太陽電池、光電変換素子や薄膜トランジスタの材料として好適なものであり、したがって、該有機薄膜を構成する上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物もまた、これらの材料として好適なものである。このような、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む有機薄膜太陽電池用材料、光電変換素子用材料や薄膜トランジスタ用材料もまた、本発明の1つである。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「モル%」を意味するものとする。
合成例1
Macromolecules,45(5),p.2249-2256,2012年に記載されている方法により、下記式(2-9)の化合物を合成した。
Figure JPOXMLDOC01-appb-C000027
合成例2
200mLの三口フラスコに、rac-BINAP(747mg)、トルエン(67mL)を入れ、窒素雰囲気下90℃に加熱し溶解させた。室温まで放冷後、酢酸パラジウム(180mg)を入れ、室温で1時間撹拌した。これに2,6-ジブロモピリジン(4.74g)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(6.13g)、KOtBu(6.28g)を加え、90℃で終夜加熱撹拌した。室温まで放冷後、ジエチルエーテルを加え、析出する固体をろ別し、ろ液を濃縮した。得られた残渣にアセトンを加え、析出した固体をろ取し、下記式(2-2)の化合物(3.7g,52.5%)を得た。
Figure JPOXMLDOC01-appb-C000028
合成例3
300mL3つ口フラスコ中、窒素気流下、トルエン(100mL)にrac-BINAP(369mg)を室温にて加え、オイルバス60℃にて固体が溶解するまで加熱撹拌した。室温に戻した混合物にPd(OAc)(98mg),6-ブロモ-2,2’-ビピリジン(5.00g)を加え、再びオイルバス60℃にて20分撹拌した。室温に戻した混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(3.26g)、KOtBu(5.97g)を加え、オイルバス90℃にて3時間撹拌した。室温に戻した混合物にジエチルエーテルを加え、不溶物を濾別した。濾液を減圧濃縮し、残渣に酢酸エチル(15mL)を加えた。混合物を超音波処理することで得られた固体を濾取し、終夜減圧乾燥した。得られた固体を酢酸エチルにて再結晶後、蒸留をすることで下記式(2-3)の化合物(1.20g、19.2%)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000029
合成例4
3つ口フラスコ中、窒素気流下、トルエン(97mL)にrac-BINAP(357mg)を室温にて加え、オイルバス60℃にて固体が溶解するまで加熱撹拌した。室温に戻した混合物に酢酸パラジウム(86mg)、2-ブロモ-1,10-フェナントロリン(4.40g)を加え、再びオイルバス60℃にて30分撹拌した。室温に戻した混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(2.64g)、KOtBu(4.72g)を加え、オイルバス90℃にて4時間撹拌した。室温に戻した混合物にジエチルエーテル(150mL)を加え、不溶物を濾別した。濾液を減圧濃縮し、残渣に酢酸エチル(20mL)を加えた。析出物を濾取し、減圧乾燥した。固体にアセトン(100mL)を加えて加熱洗浄し、固体を濾取した。得られた固体を昇華精製することで下記式(2-4)の化合物(2.21g、25.6%)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000030
合成例5
フラスコ中、窒素気流下、トルエン(80mL)にrac-BINAP(301mg)を室温にて加え、オイルバス60℃にて固体が溶解するまで加熱撹拌した。室温に戻した混合物に酢酸パラジウム(78mg)、6,6’-ジブロモ-2,2’-ビピリジン(5.00g)を加え、再びオイルバス60℃にて20分撹拌した。室温に戻した混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(4.90g)、KOtBu(8.95g)を加え、オイルバス110℃にて6時間撹拌した。室温に戻した混合物にジエチルエーテルを加え、不溶物を濾別した。不溶物をクロロホルム-酢酸エチル混合溶媒にてリンスし、合わせた濾液を減圧濃縮した。残渣にメタノールを加え、析出物を濾取した。得られた固体(3.60g)にメタノール(50mL)を用いて加熱洗浄し、室温に戻してから析出した固体を再度濾取した。得られた固体(2.20g)を昇華精製することで下記式(2-5)の化合物(1.45g、21.0%)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000031
合成例6
ナスフラスコ中、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン(5.00g)とトルエン(95mL)の混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(5.72g)を室温にて加えた後にオイルバス100℃にて3時間撹拌した。室温に戻した混合物から不溶物を濾別し、濾液を減圧濃縮した。残渣にクロロホルム(25mL)を加えて超音波処理することにより析出した固体を濾取後、減圧乾燥することで下記式(2-6)の化合物(5.90g、85.2%)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000032
合成例7
100mLの反応容器にrac-BINAP(0.213g,0.342mmol)、トルエン(20mL)を入れ、70℃に昇温、完溶させた後、酢酸パラジウム(51mg,0.228mmol)を加え、室温まで放冷しながら攪拌した。これに2,4,6-トリブロモピリジン(1.2g,3.8mmol)、KOtBu(1.8g,16.0mmol)、1,3,4,6,7,8-ヘキサヒドロ2H-ピリミド[1,2-a]ピリミジン(1.9g,13.7mmol)を加え、100℃で14時間加熱攪拌した。反応溶液を室温まで放冷後、セライトろ過し、ろ液を濃縮し、下記式(2-11)の化合物を2.2g得た。
Figure JPOXMLDOC01-appb-C000033
合成例8
200mLナスフラスコにrac-BINAP(0.238g,0.383mmol)と脱水トルエン(55mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.054g,0.24mmol)を加えて、反応容器内をアルゴン置換した。1時間後、2-ブロモ-9,9’-スピロビ[9H-フルオレン](2.18g,5.52mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(0.957g,6.88mmol)、カリウムtert-ブトキシド(0.936g,8.35mmol)を加えて、再度反応容器内をアルゴン置換した後、オイルバス90℃にて加熱攪拌した。2.25時問後、室温に冷却して、ジェチルエーテル(220mL)を加えて、しばらく撹押した後、析出固体を吸引ろ過、ジエチルエーテルで洗浄した。ろ液中のジエチルエーテル分を減圧下で留去した後、残ったトルエン層を水(55mL)で洗浄した。有機層を減圧留去し得られた残渣をシリカゲルカラムクロマトグラフィーでカラム精製することにより下記式(2-30)の化合物を2.13g(4.69mmol,収率85%)得た。
別途合成していたものと合わせた下記式(2-30)の化合物2.31gをクロロホルムに溶解させ、溶媒を減圧留去した後、残漬をヘキサン(50mL)に懸濁させて30分攪拌した後、固体を吸引ろ過しヘキサンで洗浄することにより純度99.2%の下記式(2-30)の化合物を1.78g得た。
得られた化合物のH-NMR測定結果は以下の通りである。
H-NMR(500MHz CDCl):δ7.81(d,2H,J=7.5Hz),7.74(t,2H,J=8.0Hz),7.41(dd,1H,J=1.5,8.5Hz),7.36-7.29(m,3H),7.09(t,2H,J=8.0Hz),7.03(t,1H,J=7.5Hz),6.76(d,1H,J=7.5Hz),6.66(d,1H,J=1.5Hz),6.44(d,1H,J=1.5Hz),3.32(t,2H,J=5.5Hz),3.26(t,2H,J=5.5Hz),3.14(t,2H,J=6.0Hz),3.11(t,2H,J=6.5Hz),1.92(quin,2H,J=6.0Hz),1.80(quin,2H,J=6.0Hz).
Figure JPOXMLDOC01-appb-C000034
合成例9
100mLナスフラスコにrac-BINAP(0.138g,0.221mmol)と脱水トルエン(35mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.0331,0.148mmol)を加えて、反応容器内をアルゴン置換した。1時間後、2,7-ジブロモ-9,9’-スピロビ[9H-フルオレン](0.7g,1.48mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(0.452g,3.25mmol)、カリウムtert-ブトキシド(0.431g,3.84mmol)を加えて、再度反応容器内をアルゴン雰囲気下にした後、オイルバス90℃にて加熱攪拌した。3.25時間後、室温に冷却して、ジエチルエーテル(100mL)を加えて、しばらく攪拌した後、析出固体を吸引ろ過、ジェチルエーテルで洗浄した。ろ液を水(35mL)で逆抽出して、水層を減圧留去し1.09gの固体を得た。
これをアセトンに懸濁させて、室温で2時間撹押した後、固体を吸引ろ過、アセトン洗浄した。この操作を2回行い、下記式(2-31)の化合物を0.520g(0.88mmol,収率60%)の淡黄色固体として得た。
得られた化合物のH-NMR測定結果は以下の通りである。
H-NMR(500MHz CDCl):δ7.80(d,2H,J=8.0Hz),7.70(d,2H,J=8.0Hz),7.44(d,2H,J=6.5Hz),7.34(t,2H,J=7.5Hz),7.10(t,2H,J=7.5Hz),6.80(d,2H,J=7.5Hz),6.39(d,2H,J=1.5Hz),3.38-3.33(m,4H),3.28-3.25(m,4H),3.23-3.14(m,8H),1.98-1.93(m,4H),1.87-1.81(m,4H).
Figure JPOXMLDOC01-appb-C000035
合成例10
500mLナスフラスコにrac-BINAP(1.21g,1.95mmol)と脱水トルエン(350mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.345,1.54mmol)を加えて、反応容器内をアルゴン置換した。55分後、9,10-ジブロモアントラセン(5.01g,14.9mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(4.45g,32.0mmol)、カリウムtert-ブトキシド(4.26g,37.9mmol)を加えて、再度反応容器内をアルゴン雰囲気下にした後、オイルバス90℃にて加熱攪拌した。140分後、室温に冷却して、ジェチルエーテル(1L)を加えて、しばらく攪拌した後、析出固体を吸引ろ過、ジエチルエーテルで洗浄した。ろ液中のジエチルエーテル分を減圧留去後、トルエン層を水(150mL)で逆抽出して、水層を減圧留去し3.77gの橙色固体を得た。
これをアセトン(50mL)に懸濁させて、室温で終夜攪拌後、固体を吸引ろ過、アセトン洗浄して1.0gの黄色固体を得た。
さらにこの黄色固体を60℃でクロロホルム(41mL)に溶解させた後、ヘキサン(48mL)を徐々に加えた。固体の析出を確認した後、冷凍庫で終夜冷却し、固体を吸引ろ過、ヘキサン洗浄して、下記式(2-32)の化合物を0.657g(1.45mmol,収率10%)の黄色固体として得た。
得られた化合物のH-NMR測定結果は以下の通りである。
H-NMR(500MHz CDCl):δ8.03(q,4H,J=3.0Hz),7.43(q,4H,J=3.0Hz),3.59(t,4H,J=5.5Hz),3.48(t,4H,J=5.5Hz),3.36(t,4H,J=5.5Hz),3.16(t,4H,J=5.5Hz),2.29(quin,4H,J=6.0Hz),1.86(quin,4H,J=6.0Hz).
Figure JPOXMLDOC01-appb-C000036
合成例11
100mLナスフラスコにrac-BINAP(0.407g,0.653mmol)と脱水トルエン(60mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.124,0.551mmol)を加えて、反応容器内をアルゴン置換した。30分後、2,2’-ジブロモ-9,9’-スピロビ[9H-フルオレン](2.32g,4.90mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(1.47g,10.6mmol)、カリウムtert-ブトキシド(1.38g,12.3mmol)を加えて、再度反応容器内をアルゴン雰囲気下にした後、オイルバス90℃にて加熱攪拌した。21.25時間後、室温に冷却して、ジエチルエーテル(300mL)を加えて、しばらく攪拌した後、析出固体を吸引ろ過、ジェチルエーテルで洗浄した。ろ液を水(60mL)で逆抽出して水層を減圧留去し、残渣をカラムクロマトグラフィーで精製することにより、黄色アモルファス状の下記式(2-33)の化合物を1.54g(2.61mmol,収率53%)得た。
得られた化合物のH-NMR測定結果は以下の通りである。
H NMR(500MHz CDCl):δ7.70(dd,4H,J=8.0,14.0Hz),7.37(dd,2H,J=2.0,8.0Hz),7.29(t,2H,J=7.5Hz),7.01(dd,2H,J=1.0,7.5Hz),6.69(d,2H,J=8.0Hz),6.47(d,2H,J=2.0Hz),3.37-3.28(m,4H),3.24(t,4H,J=5.5Hz),3.13(t,4H,J=6.0Hz),3.09(t,4H,J=6.5Hz),1.91(quin,4H,J=6.0Hz),1.78(quin,4H,J=6.0Hz).
Figure JPOXMLDOC01-appb-C000037
合成例12
500mLナスフラスコにrac-BINAP(1.60g,2.57mmol)と脱水トルエン(350mL)を入れて、90℃で加熱溶解させた。これを度室温に冷却して、酢酸パラジウム(0.395g,1.76mmol)を加えて、反応容器内とアルゴン置換した。30分後、2,2’,7,7’-ジブロモ-9,9’-スピロビ[9H-フルオレン](4.43g,7.00mmol),1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(4.06g,29.1mmol)、カリウムtert-ブトキシド(4.08g,36.3mmol)を加えて、反応容器内を再度アルゴン雰囲気下にした後、オイルバス90℃にて加熱撹押した。22.75時間後、室温に冷却して、ジェチルエーテル(1.05L)を加えて、しばらく撹枠した後、析出固体を吸引ろ過、ジェチルエーテルで洗浄した。ろ物をクロロホルム(100mL)に溶解後、水(150mL)で逆抽出して、水層をクロロホルム(200mL)で洗浄後、水層を減圧留去し、粗体として3.29gの茶緑色アモルファス状物質を得た。
これをアセトンで懸濁後、固体を吸引ろ過、アセトン洗浄して、ろ液を減圧留去し、下記式(2-34)の化合物を2.32g(2.68mmol,収率38%)の黄色アモルファス状物質として得た。
別途合成していたものと合わせ合計2.45gをジエチルエーテル/トルエン/アセトン混合溶媒(3/1/1.25mL)で懸濁後、固体を吸引ろ過、ジエチルエーテル/トルエン/アセトン混合溶媒(3/1/1)で洗浄し2.24gの下記式(2-34)の化合物の淡黄色固体を得た。(純度74.7%)
得られた化合物のH-NMR測定結果は以下の通りである。
H NMR(500MHz CDCl):δ7.66-7.55(m,4H),7.32-7.24(m,4H),6.55-6.40(m,4H),3.35(t,8H,J=5.5Hz),3.26-3.06(m,24H),1.96-1.88(m,8H),1.88-1.74(m,8H).
Figure JPOXMLDOC01-appb-C000038
合成例13
国際公開第2016/181705号の合成例1~3と同様の方法により、下記式(4)で表されるホウ素含有化合物を合成した。
Figure JPOXMLDOC01-appb-C000039
合成例14
<ホウ素含有重合体合成用モノマーの合成>
300mLの反応容器に下記式(8)で表される化合物(3.96g)、4-ピリジンボロン酸(1.03g)、Pd(PPh(0.24g)、炭酸ナトリウム(2.24g)、トルエン(40mL)、蒸留水(40mL)、エタノール(20mL)を加えた。得られた懸濁液を、アルゴンバブリングしながら10分間撹拌後、オイルバスにて95℃に昇温し、同温で18時間加熱撹拌した。得られた黄色溶液に、水(100mL)、トルエン(100mL)を加え2層に分けた。有機層を水、飽和食塩水で順次洗浄後、濃縮した。得られた残渣をカラムクロマトグラフィーおよび分取GPCによる精製によって無色の固体を得た。これをエタノール/ヘキサンによって再結晶を行い、下記式(9)で表される化合物(0.69g)を得た。
Figure JPOXMLDOC01-appb-C000040
<ホウ素含有重合体の合成>
アルゴン雰囲気下、50mLの耐圧試験管に、上記式(9)で表される化合物(0.5g)、下記式(10)で表される化合物(0.57g)、Pd(PPh(0.1g)、炭酸ナトリウム(0.472g)、Aliquat336(0.2g)、トルエン(10mL)、蒸留水(10mL)を加えた。この懸濁液を約15分間アルゴンバブリングした後、オイルバスにて100℃で加熱しながら24時間撹拌した。これにヨードベンゼン(0.181g)を加え18時間同温で18時間撹拌後、フェニルボロン酸(0.217g)を加え、18時間撹拌した。得られた黒褐色懸濁液の有機層をセライト濾過し、ろ液を濃縮した。得られた残渣をカラム精製し、薄い茶色の粉末を得た。これにヘプタン、エタノールを加え、加熱分散洗浄し、放冷後固体を濾過してエタノールで洗浄しすることで、ホウ素含有重合体(7)を0.61g得た。
Figure JPOXMLDOC01-appb-C000041
実施例1
以下のようにして図1に示す積層構造の逆構造の有機EL素子を作製した。
[1]基板2として、厚さ150nmのITOからなる幅3mmにパターニングされた電極(陰極3)を有する平均厚さ0.7mmの市販の透明ガラス基板を用意した。そして、陰極3を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陰極3を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2][1]において洗浄した陰極3の形成されている基板2を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。スパッタ装置のチャンバー内を、約1×10-4Paの圧力となるまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、基板2の陰極3上に膜厚約3nmの酸化亜鉛層(酸化物層4)を作製した。なお、酸化亜鉛層を作製する際には、電極取り出しのために、ITO電極(陰極3)上の一部に酸化亜鉛が成膜されないようにした。酸化物層4を成膜した基板2に、大気下で400℃、1時間のアニールを行った。
[3]次に、酸化物層4上に電子注入層5として、以下に示す方法により、第1材料と第2材料とを含む有機薄膜を形成した。
まず、式(4)で表されるホウ素含有化合物と式(2-2)の化合物(重量比1:0.05)をシクロペンタノンに溶解し(濃度は0.5重量%)、塗料組成物を得た。次に、[2]で作製した陰極3および酸化物層4の形成されている基板2をスピンコーターに設置した。そして、塗料組成物を酸化物層4上に滴下しながら、基板2を毎分3000回転で30秒間回転させて塗膜を形成した。その後、ホットプレートを用いて窒素雰囲気下で150℃、1時間のアニール処理を施し、電子注入層5を形成した。得られた電子注入層5の平均厚さは15nmであった。
[4]次に、電子注入層5までの各層が形成された基板2を、真空蒸着装置の基板ホルダーに固定した。また、下記式(11)で示されるビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(Zn(BTZ))と、下記式(12)で示されるトリス[1-フェニルイソキノリン]イリジウム(III)(Ir(piq))と、下記式(13)で示されるN,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)と、下記式(14)で示される1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)と、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。
Figure JPOXMLDOC01-appb-C000042
そして、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、電子輸送層10、発光層6、正孔輸送層7、正孔注入層8、陽極9を連続して形成した。
まず、Zn(BTZ)からなる厚み10nmの電子輸送層10を形成した。続いて、Zn(BTZ)をホスト、Ir(piq)をドーパントとして20nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(piq)が発光層6全体に対して6質量%となるようにした。次に、発光層6まで形成した基板2上に、α-NPDを50nm成膜し、正孔輸送層7を形成した。さらに、HAT-CNを10nm成膜し、正孔注入層8を形成した。次に、正孔注入層8まで形成した基板2上に、真空蒸着法によりアルミニウムからなる膜厚100nmの陽極9を成膜した。
なお、陽極9は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mmとした。
[5]次に、陽極9までの各層を形成した基板2を、凹状の空間を有するガラスキャップ(封止容器)に収容し、紫外線(UV)硬化樹脂からなるシール材を充填することにより封止し、実施例1の有機EL素子を得た。
実施例2
実施例1の[3]の工程において、式(2-2)の化合物に代えて、式(2-4)の化合物を用いたこと以外は実施例1と同様にして、実施例2の有機EL素子を得た。
比較例1
実施例1の[3]の工程において、式(2-2)の化合物を用いず、式(4)で表されるホウ素含有化合物のみをシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、比較例1の有機EL素子を得た。
実施例1、2及び比較例1で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図12に示す。
実施例3
実施例1の[3]の工程において、式(4)で表されるホウ素含有化合物と式(2-2)の化合物(重量比1:2)をシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、実施例3の有機EL素子を得た。
実施例4
実施例1の[3]の工程において、式(4)で表されるホウ素含有化合物と式(2-9)の化合物(重量比1:2)をシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、実施例4の有機EL素子を得た。
比較例2
実施例1の[3]の工程において、式(4)で表されるホウ素含有化合物と下記式(15)で表されるMTBD(重量比1:2)をシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、比較例2の有機EL素子を得た。
Figure JPOXMLDOC01-appb-C000043
実施例3、4及び比較例1、2で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図13に示す。また、これらの素子の発光の様子を図14に示す。
実施例5
実施例1の[3]の工程を以下の[3-1]のようにしたこと以外は実施例1と同様にして、実施例5の有機EL素子を得た。
[3-1]真空蒸着装置を用いて、式(4)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして10nm共蒸着し、電子注入層5を成膜した。この時、ドープ濃度は、式(2-2)の化合物が電子注入層5全体に対して5質量%となるようにした。
比較例3
実施例5の[3-1]の工程において、式(4)で表されるホウ素含有化合物のみを10nm成膜したこと以外は実施例5と同様にして、比較例3の有機EL素子を得た。
実施例5及び比較例3で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図15に示す。
実施例6
実施例1の[2]の工程を行わず、[3]の工程を上記[3-1]のようにしたこと以外は実施例1と同様にして、実施例6の有機EL素子を得た。
実施例5、6で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図16に示す。
実施例7
実施例5の[3-1]の工程において、式(4)の化合物の代わりに特開2018-206889記載の下記式(16)で表されるトリアジン化合物を用い、式(2-2)のドープ濃度を10質量%としたこと以外は実施例5と同様にして、実施例7の有機EL素子を得た。
Figure JPOXMLDOC01-appb-C000044
実施例8
実施例1の[3]の工程を以下の[3-2]のようにしたこと以外は実施例1と同様にして、実施例8の有機EL素子を得た。
[3-2]真空蒸着装置を用いて、式(2-2)の化合物を1nm蒸着し、続いて式(16)の化合物を10nm蒸着することで、式(2-2)の化合物と式(16)の化合物が積層された電子注入層5を成膜した。
比較例4
実施例7の[3-1]の工程において、式(16)で表されるトリアジン化合物のみを10nm成膜したこと以外は実施例7と同様にして、比較例4の有機EL素子を得た。
実施例7、8及び比較例4で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図17に示す。
実施例9
実施例5の[3-1]の工程において、式(4)の化合物の代わりに下記式(17)で表されるホウ素化合物を用い、式(2-2)のドープ濃度を5質量%としたこと以外は実施例5と同様にして、実施例9の有機EL素子を得た。
Figure JPOXMLDOC01-appb-C000045
実施例10
実施例1の[3]の工程を以下の[3-3]のようにしたこと以外は実施例1と同様にして、実施例10の有機EL素子を得た。
[3-3]まず、下記式(7)で表されるホウ素含有重合体をジメチルアセトアミドに溶解し(濃度は0.1重量%)、塗料組成物を得た。次に、[2]で作製した陰極3および酸化物層4の形成されている基板2をスピンコーターに設置した。そして、塗料組成物を酸化物層4上に滴下しながら、基板2を毎分3000回転で30秒間回転させて塗膜を形成した。その後、ホットプレートを用いて窒素雰囲気下で120℃、2時間のアニール処理を施し、式(7)の化合物からなる第2材料の層を形成した。得られた層の平均厚さは15nmであった。次に、この基板2を、真空蒸着装置の基板ホルダーに固定し、式(16)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして10nm共蒸着し、式(7)の上層に、式(17)の化合物と式(2-2)の化合物の混合膜が積層された電子注入層5を成膜した。この時、式(17)の化合物と式(2-2)の化合物の混合膜中、式(2-2)の化合物が式(17)のホウ素化合物に対して5質量%となるようにした。
Figure JPOXMLDOC01-appb-C000046
実施例9、10で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係、及び、輝度の経時変化を調べた。結果を図18、図19に示す。
実施例11
以下に示す方法により、図20に示す積層構造の順構造の有機EL素子11を製造した。
[1]ITO膜(膜厚100nm、幅3mmにパターニング済)からなる陽極9を有する平均厚さ0.7mmの市販されているガラス製透明基板2(以下、単に基板とも称する)を用意した。
[2]次に、陽極9を有する基板2を、アセトン中およびイソプロパノール中でそれぞれ10分間超音波洗浄し、さらにイソプロパノール中で5分間煮沸した。その後、基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[3]次に、PEDOT(Clevios HIL1.3N)からなる厚み30nmの正孔注入層8を形成した。
[4]次に、PEDOTまで形成した基板を、真空蒸着装置のチャンバー内の基板ホルダーに固定し、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層7、発光層6、電子輸送層10、電子注入層5、陰極1(図20の陰極3’)および陰極2(図20の陰極3)を連続して形成した。
まず、上記式(13)で表されるα-NPDからなる厚み30nmの正孔輸送層を形成した。続いて、上記式(11)で表されるZn(BTZ)をホスト、上記式(12)で表されるIr(piq)をドーパントとして30nm共蒸着し、発光層を成膜した。この時、ドープ濃度は、Ir(piq)が発光層全体に対して6質量%となるようにした。次に、発光層まで形成した基板上に、下記式(18)で表されるTmPPyTzを40nm成膜し、電子輸送層を形成した。さらに、上記式(2-2)の化合物を1nm成膜し、電子注入層を形成した。次に、電子注入層まで形成した基板上に、銀とマグネシウムを質量比9:1となるよう共蒸着した陰極1(図20の陰極3’)を25nmを形成後、銀のみからなる膜厚100nmの陰極2(図20の陰極3)を成膜した。
なお、陰極1および2は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mmとした。
[5]次に、陰極までの各層を形成した基板を、凹状の空間を有するガラスキャップ(封止容器)に収容し、紫外線(UV)硬化樹脂からなるシール材を充填することにより封止し、実施例11の有機EL素子を得た。
Figure JPOXMLDOC01-appb-C000047
実施例11で作製した有機EL素子及び実施例8で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図21に示す。
実施例12
実施例11において、工程[4]を[4-1]にしたこと以外は実施例11と同様にして実施例12の素子を作製した。
[4-1]次に、PEDOTまで形成した基板を、真空蒸着装置のチャンバー内の基板ホルダーに固定し、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を連続して形成した。
まず、上記式(13)で表されるα-NPDからなる厚み40nmの正孔輸送層を形成した。続いて、上記式(11)で表されるZn(BTZ)をホスト、上記式(12)で表されるIr(piq)をドーパントとして30nm共蒸着し、発光層を成膜した。この時、ドープ濃度は、Ir(piq)が発光層全体に対して6質量%となるようにした。次に、発光層まで形成した基板上に、式(4)で表されるホウ素含有化合物を10nm成膜し、電子輸送層を形成した。
さらに、式(4)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして35nm共蒸着し、電子注入層を成膜した。この時、ドープ濃度は、式(2-2)の化合物が電子注入層全体に対して5質量%となるようにした。
次に、電子注入層まで形成した基板上に、アルミニウムからなる膜厚100nmの陰極を成膜した。
なお、陰極は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mmとした。
実施例13
実施例12において、電子注入層における化合物(2-2)のドープ濃度を20質量%とした以外は実施例12と同様にして実施例13の素子を作製した。
比較例5
実施例12において、電子注入層に用いる材料を式(4)のホウ素含有化合物のみとしたこと以外は実施例12と同様にして比較例5の素子を作製した。
比較例6
実施例12において、電子輸送層のホウ素化合物(4)の膜厚を45nmとし、電子注入層に用いる材料をフッ化リチウムとして0.8nm成膜した以外は実施例12と同様にして比較例6の素子を作製した。
実施例14
実施例12において、工程[4-1]を[4-2]にしたこと以外は実施例12と同様にして実施例14の素子を作製した。
[4-2] 次に、PEDOTまで形成した基板を、真空蒸着装置のチャンバー内の基板ホルダーに固定し、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を連続して形成した。
まず、上記式(13)で表されるα-NPDからなる厚み40nmの正孔輸送層を形成した。続いて、上記式(11)で表されるZn(BTZ)をホスト、上記式(12)で表されるIr(piq)をドーパントとして30nm共蒸着し、発光層を成膜した。この時、ドープ濃度は、Ir(piq)が発光層全体に対して6質量%となるようにした。次に、発光層まで形成した基板上に、式(4)で表されるホウ素含有化合物を10nm成膜し、電子輸送層を形成した。
さらに、式(4)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして35nm共蒸着した。この時、ドープ濃度は、式(2-2)の化合物が電子注入層1全体に対して5質量%となるようにした。
さらに、式(4)からなるホウ素含有化合物を5nm蒸着し、第1材料と第2材料とを含む膜と、第2材料のみを含む膜との積層膜である電子注入層を形成した。
次に、電子注入層まで形成した基板上に、アルミニウムからなる膜厚100nmの陰極を成膜した。
なお、陰極は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mmとした。
実施例12~14、比較例5、6で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図22に示す。また、実施例13と比較例6の有機EL素子の輝度の経時変化、実施例12と14の有機EL素子の輝度の経時変化を調べた。結果を図23、図24に示す。
実施例15
以下に示す方法により図25に示す積層構造の順構造の有機EL素子を作製した。
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板2を用意した。この時、基板のITO電極(陽極9)は幅2mmにパターニングされているものを用いた。この基板をクリーンエースおよび純水にて超音波洗浄後、イソプロパノール中で5分間蒸気洗浄を行った。この基板を窒素ブローにより乾燥させ、UVオゾン洗浄を10分間行った。
[2]この基板をスピンコーターにセットし、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)(クレヴィオスCH8000)を滴下し、毎分2000回転で60秒間回転させ、さらに130℃のホットプレートで10分間乾燥させて、陽極上にPEDOT/PSSからなる正孔注入層8を形成した。正孔注入層の平均厚さは50nmであった。正孔注入層の平均厚さは、触針式段差計により測定した。
[3]ポリ(ジオクチルフルオレン-アルト-ベンゾチアジアゾール)(F8BT)の2%キシレン溶液を作製した。上記工程[2]で作製した基板をスピンコーターにセットした。上記工程[2]で形成した正孔注入層の上にF8BT-キシレン溶液を滴下し、毎分2,000回転で60秒間回転させ、F8BTからなる発光層6を形成した。発光層の平均厚さは20nmであった。発光層の平均厚さは、触針式段差計により測定した。
[4]上記工程[3]で作製した基板をスピンコーターにセットした。上記工程[3]で形成した発光層の上に、式(2-2)の化合物の1ープロパノール溶液(1重量%)を滴下し、毎分2000回転で60秒間回転させ、発光層の上に電子注入層5を形成した。電子注入層の平均厚さは触針式段差形での測定限界以下であった。
[5]上記工程[4]で作製した基板を真空蒸着装置の基板ホルダーに固定した。アルミニウムワイヤー(Al)をアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、電子注入層の上にAl(陰極3)を平均厚さが100nmとなるように蒸着し、有機電界発光素子を作製した。陰極の平均厚さは、水晶振動子膜厚計により成膜時に測定した。
比較例7
実施例15の[1]から[3]までは同じ工程で作製したのち、以下の[4-1]の工程を行ない、有機EL素子を作製した。
[4-1]上記工程[3]で作製した基板を真空蒸着装置の基板ホルダーに固定した。フッ化リチウム(LiF)およびアルミニウムワイヤー(Al)をツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、LiF(電子注入層5)を平均厚さが1nmとなるように蒸着した後、Al(陰極3)を平均厚さが100nmとなるように蒸着し、有機電界発光素子を作製した。
実施例15、比較例7で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図26に示す。
実施例16~20及び比較例8~15
以下に示す方法により、順構造の有機EL素子を製造した。実施例16~20、比較例8、10、12、14の素子は、図2の積層構造を有するものであり、比較例9、11、13、15の素子は、図2から電子注入層5を除いた積層構造を有するものである。
[1]基板2として、厚さ100nmのITOからなる幅3mmにパターニングされた電極(陽極9)を有する平均厚さ0.7mmの市販の透明ガラス基板2を用意した。
そして、陽極9を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陽極9を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2][1]において洗浄した陽極9の形成されている基板2を、スピンコーターにセットし、正孔注入層8として、ヘレウス社製正孔注入材料「Clevios HIL1.3N」を膜厚10nmとなるように成膜した。その後、180℃に熱したホットプレート上で1時間加熱した。
[3]次に、正孔注入層8まで形成された基板2を、真空蒸着装置の基板ホルダーに固定した。
また、下記式(19)で示される2,4-ジフェニル-6-ビス((12-フェニルインドロ)[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(DIC-TRZ)と、下記式(20)で示されるfac-トリス(3-メチル-2-フェニルピリジナト-N,C2’-)イリジウム(III)(Ir(mppy))と、上記式(13)で示されるα-NPDと、下記式(21)で示されるN3,N3’’’-ビス(ジベンゾ[b,d]チオフェン-4-イル)-N3,N3’’’-ジフェニル-[1,1’:2’,1’’:2’’,1’’’-クアテルフェニル]-3,3’’’-ジアミン(4DBTP3Q)と、第1材料となる式(2-2)の化合物と、下記に示す第2材料(電子輸送材料)となる各種材料と、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。
Figure JPOXMLDOC01-appb-C000048
第2材料については、ピリジン含有化合物の例として、下記式(22)で示される化合物を、トリアジン誘導体の例として、下記式(23)で示される化合物及び下記式(26)で示される化合物を、カルボニル基を含む複素環を有する化合物として、下記式(24)(市販品)を、フェナントロリン誘導体の例として、下記式(25)で示される化合物をそれぞれ用いた。
Figure JPOXMLDOC01-appb-C000049
そして、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層7、発光層6、電子輸送層10、電子注入層5、陰極3を連続して形成した。
具体的には、まず、20nmのα-NPDと、10nmの4DBTP3Qからなる厚み30nmの正孔輸送層7を形成した。続いて、DIC-TRZをホスト、Ir(mppy)をドーパントとして25nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(mppy)が発光層6全体に対して3質量%となるようにした。次に、発光層6まで形成した基板2上に、40nmの電子輸送層10および1nmの電子注入層5を形成した。次に、電子注入層5まで形成した基板2上に、真空蒸着法によりアルミニウムからなる膜厚100nmの陰極3を成膜した。なお、陰極3は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mmとした。
各実施例において、第2材料(電子輸送層)および第1材料(電子注入層)として使用した化合物は、以下のとおりである。
実施例16:第2材料として式(22)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例17:第2材料として式(23)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例18:第2材料として式(24)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例19:第2材料として式(25)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例20:第2材料として式(26)の化合物を、第1材料として式(2-2)の化合物を用いた。
また、比較例8、10、12、14において、第2材料(電子輸送層)および第1材料(電子注入層)として使用した化合物は、以下のとおりである。
比較例8:第2材料として式(22)の化合物を、第1材料としてフッ化リチウムを用いた。
比較例10:第2材料として式(23)の化合物を、第1材料としてフッ化リチウムを用いた。
比較例12:第2材料として式(24)の化合物を、第1材料としてフッ化リチウムを用いた。
比較例14:第2材料として式(26)の化合物を、第1材料としてフッ化リチウムを用いた。
更に、比較例9、11、13、15において、第2材料(電子輸送層)として使用した化合物は、以下のとおりである。電子注入層(第1材料)は形成せず、陰極を作製した。
比較例9:第2材料として式(22)の化合物を用いた。
比較例11:第2材料として式(23)の化合物を用いた。
比較例13:第2材料として式(24)の化合物を用いた。
比較例15:第2材料として式(25)の化合物を用いた。
[4]次に、陰極3までの各層を形成した基板2を、凹状の空間を有するガラスキャップ(封止容器)に収容し、紫外線(UV)硬化樹脂からなるシール材を充填することにより封止し各有機EL素子を得た。
実施例16~20、比較例8~15で作製した有機EL素子に対して、ケースレー社製の「2400型ソースメーター」を用いて電圧を印加し、コニカミノルタ社製の「LS-100」を用いて輝度を測定し、印加電圧と輝度の関係を調べた。結果を図27~31に示す。また、実施例20と比較例15の有機EL素子の常温環境下での輝度の経時変化の結果を図32、実施例20と比較例15の有機EL素子の85℃環境下での輝度の経時変化の結果を図33に示す。
実施例21、22、比較例16
以下に示す方法により、順構造の有機EL素子を作製し、評価した。実施例21、比較例16の素子は、図3に示す積層構造の有機EL素子であり、実施例22の素子は図4に示す積層構造の有機EL素子である。
[1]基板2として、厚さ100nmのITOからなる幅3mmにパターニングされた電極(陽極9)を有する平均厚さ0.7mmの市販の透明ガラス基板2を用意した。
そして、陽極9を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陽極9を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2][1]において洗浄した陽極9の形成されている基板2を、スピンコーターにセットし、正孔注入層8として、へレウス社製正孔注入材料「Clevios HIL1.3N」を膜厚10nmとなるように製膜した。その後、180℃に熱したホットプレート上で一時間加熱した。
[3]次に、正孔注入層8まで形成された基板2を、真空蒸着装置の基板ホルダーに固定した。また、DIC-TRZ、Ir(mppy)と、α-NPDと、4DBTP3Qと、第1材料となる式(2-2)で表される化合物、フッ素化リチウムと、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。
そして、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層7、発光層6、電子注入層5、陰極3を連続して形成した。
具体的には、まず、20nmのα-NPDと、10nmの4DBTP3Qからなる厚み30nmの正孔輸送層7を形成した。続いて、DIC-TRZをホスト、Ir(mppy)をドーパントとして25nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(mppy)が発光層6全体に対して3質量%となるようにした。次に、発光層6まで形成した基板2上に、厚み40nmのDIC-TRZからなる電子輸送層10および厚み1nmの電子注入層5を形成した。
実施例21では電子注入層5に式(2-2)で表される化合物を、比較例16では電子注入層5に一般的な電子注入材料であるフッ化リチウムを用いた。
また、実施例22においては、厚み30nmの正孔輸送層7にDIC-TRZを用い、その他の層は実施例21と同じとした。
実施例21、22、比較例16の素子に対して、他の実施例、比較例と同様の方法により輝度-電圧特性を測定した結果を図34に示す。
実施例23、比較例17
実施例21、22は発光層がホストとドーパントの2種類の材料からなる構成であったが、発光層が1種類の材料から構成される有機EL素子でも図4に示す簡易の構造が実現可能であることを実証するため、以下のようにして実施例23、比較例17の素子を作製した。
[1]基板2として、厚さ100nmのITOからなる幅3mmにパターニングされた電極(陽極9)を有する平均厚さ0.7mmの市販の透明ガラス基板2を用意した。
そして、陽極9を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陽極9を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2]次に、基板2を、真空蒸着装置の基板ホルダーに固定した。
また、正孔注入層8として用いるフラーレンと、下記式(27)で示される(9,10-ビス(4-(9Hカルバゾール-9-イル)-2,6-ジメチルフェニル)-9,10-ジボラアントラセン(CzDBA)と、第1材料となる式(2-2)で表される化合物と、リチウムキノリンと、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。また、正孔注入層8に用いる三酸化モリブデンは、タングステンボードに入れてセットした。
Figure JPOXMLDOC01-appb-C000050
そして、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、各層を蒸着した。正孔注入層8として、三酸化モリブデン・フラーレンをそれぞれ5nm蒸着し、正孔輸送層7と発光層6と電子輸送層10とを合わせた層としてCzDBAのみを75nm蒸着し、その後、1nm膜厚の電子注入層5、陰極3を連続して形成し、有機EL素子を作製した。実施例23では電子注入層5に式(2-2)で表される化合物を、比較例17では電子注入層5に一般的な電子注入材料であるリチウムキノリンを用いた。
実施例23、比較例17の素子に対して、他の実施例、比較例と同様の方法により輝度-電圧特性を測定した結果を図35に示す。
実施例24、比較例18
実施例24では第1材料(電子注入層5)に式(2-11)で表される化合物を用いたこと以外、実施例21と同様にして有機EL素子を作製した。
比較例18では第1材料(電子注入層5)を使用しなかったこと以外、実施例21と同様にして有機EL素子を作製した。
実施例24、比較例18の素子に対して、他の実施例、比較例と同様の方法により輝度-電圧特性を測定した結果を図36に示す。
実施例25
以下のようにして図1に示す積層構造の逆構造の有機EL素子を作製した。
[1]基板2として、厚さ150nmのITOからなる幅3mmにパターニングされた電極(陰極3)を有する平均厚さ0.7mmの市販の透明ガラス基板2を用意した。そして、陰極3を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陰極3を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2][1]において洗浄した陰極3の形成されている基板2を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。スパッタ装置のチャンバー内を、約1×10-4Paの圧力となるまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、基板2の陰極3上に膜厚約3nmの酸化亜鉛層を作製した。
[3]次に、酢酸マグネシウムの1.0重量%のエタノール溶液を作製した。酸化亜鉛層を作製した基板をスピンコーターにセットし、酢酸マグネシウム溶液を滴下し、毎分1300回転で60秒間回転させた。その後、この基板に、大気下で400℃、1時間のアニールを行い、膜厚3nmの酸化マグネシウム膜を形成した。[2]と[3]の工程により、酸化亜鉛層と酸化マグネシウム層とが積層された酸化物層4を積層した基板とした。
[4]次に、酸化物層4上に電子注入層5として、以下に示す方法により、第1材料と第2材料とを含む有機薄膜を形成した。
まず、式(4)で表されるホウ素含有化合物と式(2-30)の化合物(重量比1:0.4)をシクロペンタノンに溶解し(濃度は1.0重量%)、塗料組成物を得た。次に、[2]で作製した陰極3および酸化物層4の形成されている基板2をスピンコーターに設置した。そして、塗料組成物を酸化物層4上に滴下しながら、基板2を毎分3000回転で30秒間回転させて塗膜を形成した。その後、ホットプレートを用いて窒素雰囲気下で150℃、1時間のアニール処理を施し、電子注入層5を形成した。得られた電子注入層5の平均厚さは20nmであった。
[5]次に、電子注入層5までの各層が形成された基板2を、真空蒸着装置の基板ホルダーに固定した。また、式(11)で示されるビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(Zn(BTZ))と、式(12)で示されるトリス[1-フェニルイソキノリン]イリジウム(III)(Ir(piq))と、式(13)で示されるN,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)と、式(14)で示される1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)と、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。
そして、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、電子輸送層10、発光層6、正孔輸送層7、正孔注入層8、陽極9を連続して形成した。
まず、Zn(BTZ)からなる厚み10nmの電子輸送層10を形成した。続いて、Zn(BTZ)をホスト、Ir(piq)をドーパントとして20nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(piq)が発光層6全体に対して6質量%となるようにした。次に、発光層6まで形成した基板2上に、α-NPDを50nm成膜し、正孔輸送層7を形成した。さらに、HAT-CNを10nm成膜し、正孔注入層8を形成した。次に、正孔注入層8まで形成した基板2上に、真空蒸着法によりアルミニウムからなる膜厚100nmの陽極9を成膜した。
なお、陽極9は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mmとした。
[6]次に、陽極9までの各層を形成した基板2を、凹状の空間を有するガラスキャップ(封止容器)に収容し、紫外線(UV)硬化樹脂からなるシール材を充填することにより封止し、実施例25の有機EL素子を得た。
実施例26
実施例25の[4]の工程において、式(2-30)の化合物に代えて、式(2-31)の化合物を用いたこと以外は実施例25と同様にして、実施例26の有機EL素子を得た。
比較例19
実施例25の[4]の工程において、式(2-30)の化合物を用いず、式(4)で表されるホウ素含有化合物のみをシクロペンタノンに溶解(濃度は1.0重量%)した塗料組成物を用いたこと以外は実施例25と同様にして、比較例19の有機EL素子を得た。
実施例25、26及び比較例19の素子に対して、他の実施例、比較例と同様の方法により輝度-電圧特性を測定した結果を図37に示す。
図12において、電子注入層の材料として式(4)で表されるホウ素含有化合物のみを用いた比較例1の素子に比べ、(2-2)や(2-4)の化合物を用いた実施例1、2の素子のほうがより低い電圧で発光している。また図13に示されるように、式(4)で表されるホウ素含有化合物とMTBDとを用いた場合に比べても(2-2)や(2-4)の化合物を用いた実施例3、4の素子のほうがより低い電圧で発光している。これらの結果から、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用することでより低電圧で駆動する素子となることが確認された。
また、図14に示されるように、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用した場合には、MTBDを用いた場合にみられるような発光面の欠けのない、きれいな発光面が得られた。
更に図15の結果から、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用し、蒸着により層を形成した場合にも低電圧で駆動する素子が得られることが確認され、このヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用した材料は、製造プロセスの制約なく、塗布、蒸着のいずれにより製膜しても優れた特性を発揮する素子を作製できることが確認された。
更に図16の結果から、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用した場合、この材料によって形成される電子注入層と陰極との間に金属酸化物層を形成しなくても形成した場合と同等の特性が得られることが確認され、これにより素子の構成の簡易化が可能であることが確認された。
更に図17の結果から、実施例7と比較例4から、式(4)の化合物以外でも、ヘキサヒドロピリミドピリミジン化合物をドープする効果が見て取れる。また、実施例8から、電子注入層が第1材料と第2材料の混合膜でなく、積層膜であっても効果があることがわかる。
更に図18の結果から、実施例9において(比較例はないが)、式(17)の化合物にヘキサヒドロピリミドピリミジン化合物をドープした素子は実施例5と同等レベルの良好な特性を示すことがわかる。また、実施例10から、電子注入層を構成するものとして、第1材料+第2材料の混合膜である層と、金属酸化物層4との間に別の材料(たとえば第2x材料)を挿入することでも実施例9と同様、良好な特性を示す。さらにこの構成とすることで寿命が延びることが図19の結果から確認された。これは、第1材料が金属酸化物層との相互作用で劣化することが防がれているためと推察される。
更に図21の結果から、順構造の有機EL素子である実施例11の素子において、式(2-2)の化合物を単独で電子注入層として用いることで、良好な特性が得られており、式(2-2)の化合物を単層で電子注入層とした実施例11の素子は、同じ正孔輸送材料と発光材料を用いている逆構造の有機EL素子である実施例8の素子と同等レベルの特性である。したがって、本発明の電子注入層は順構造の有機EL素子でも良好に機能することが示された。
図22の結果から、電子注入層にホウ素化合物(4)のみを用いた比較例5の素子に比べ、実施例12、13の素子の方がより低い電圧で発光していることがわかり、順構造の有機EL素子において、ヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用することの効果が確認された。
また図23の結果から、実施例13の素子は、順構造の有機EL素子で一般的に用いられることの多いフッ化リチウムを電子注入層とした比較例6の素子と比べて同等レベルの素子特性でありながら、寿命が長いことが確認された。フッ化リチウムなどのアルカリ金属は電子注入性に優れるものの、例えばLiイオンとして素子内に拡散し、その拡散が有機EL素子の安定性を低下させることがよく知られている。したがって本発明の有機薄膜および有機EL素子用材料はそのような問題の懸念がない材料であることがわかる。
また図24の結果から、実施例14では実施例10の場合と同様、第1材料+第2材料の混合膜である層と、金属電極との間に第2材料を挿入した素子であるが、第2材料を挿入していない実施例12の素子と比べて寿命が延びることが確認された。これは、順構造の素子でも第1材料と無機材料の相互作用で劣化することが防がれているためと考えられる。
更に図26の結果から、高分子発光材料を発光層の材料に用いた順構造の有機EL素子においても、(2-2)の化合物は、電子注入層の材料として一般的に用いられるLiFと同等以上の特性を示すことが確認された。
第2材料にピリジン含有化合物を用いた例として、式(22)の化合物を用いた結果である実施例16について、図27に注目すると、式(2-2)の化合物を用いていない比較例9より低い電圧で発光し、フッ化リチウムを用いた比較例8と同等の輝度-電圧特性が得られている。この結果より、第2材料にピリジン含有化合物を用いた場合でも、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を用いることで、低電圧で駆動する素子となることが確認された。したがって、アルカリ金属を用いず低い駆動で動作可能な有機EL素子を実現することができる。
第2材料にトリアジン誘導体を用いた例として、式(23)の化合物を用いた結果である実施例17について、図28に注目すると、フッ化リチウムを用いた比較例10や式(2-2)の化合物を用いていない比較例11より低い電圧で発光している。この結果より、第2材料にトリアジン誘導体を用いた場合でも、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を用いることで、低電圧で駆動する素子となることが確認された。また、ヘキサヒドロピリミドピリミジン化合物がフッ化リチウムに比べて優れた電子注入性を持つことが分かる。
第2材料にカルボニル基を含む複素環を有する化合物を用いた例として、式(24)の化合物を用いた結果である実施例18について、図29に注目すると、フッ化リチウムを用いた比較例12や式(2-2)の化合物を用いていない比較例13より低い電圧で発光している。この結果より、第2材料にカルボニル基を含む複素環を有する化合物を用いた場合でも、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を用いることで、低電圧で駆動する素子となることが確認された。また、ヘキサヒドロピリミドピリミジン化合物がフッ化リチウムに比べて優れた電子注入性を持つことが分かる。
第2材料にフェナントロリン誘導体を用いた例として、式(25)の化合物を用いた結果である実施例19について、図30に注目すると、式(2-2)の化合物を用いていない比較例15より低い電圧で発光している。この結果より、第2材料にフェナントロリン誘導体を用いた場合でも、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を用いることで、低電圧で駆動する素子となることが確認された。
第2材料に式(26)の化合物を用いた結果である実施例20について、図31および図32の結果から、実施例20の素子は、順構造の有機EL素子で一般的に用いられることの多いフッ化リチウムを電子注入層とした比較例14の素子と比べて同等レベルの素子特性でありながら、寿命が長いことが確認された。さらに図33の結果から、高温下(85℃)では顕著に寿命が違うことが確認できる。この結果から、フッ化リチウムなどのアルカリ金属は電子注入性に優れるものの、例えばLiイオンとして素子内に拡散し、その拡散が有機EL素子の安定性を低下させることがよく知られている。したがって本発明の有機薄膜および有機EL素子用材料はそのような問題の懸念がない材料であることがわかる。さらに、高温下ではLiイオンの拡散が強くなることが考えられ、本発明の有機薄膜および有機EL素子用材料は高温下での耐性が高いことがわかる。
実施例21、22、比較例16の素子の輝度-電圧特性を測定した図34に示されているとおり、比較例16においてはフッ化リチウムからDIC-TRZへの電子注入が困難であるため駆動電圧が高いのに対し、実施例21においては電子が効率的に注入できており、低い駆動電圧で動作できていることが分かる。さらに、正孔輸送層が発光層ホストであるDIC-TRZである実施例22においても、実施例21と同等の駆動電圧で動作していることがわかる。このように、電子注入性に優れた材料を用いることで、有機EL素子の構造を簡素化し、必要な材料の数を減らすことが可能となる。
発光層が1種類の材料から構成される有機EL素子である実施例23、比較例17の輝度-電圧特性を測定した図35に示されているとおり、比較例17においてはリチウムキノリンからCzDBAへの電子注入が困難であるため駆動電圧が高いのに対し、実施例23においては電子が効率的に注入できており、低い駆動電圧で動作できていることが分かる。このように、電子注入性に優れた材料を用いることで、有機EL素子の構造を簡素化し、必要な材料の数を減らすことが可能となる。
第1材料(電子注入層5)に式(2-11)で表される化合物を用いた実施例24の有機EL素子と、第1材料(電子注入層5)を使用しなかった比較例18の有機EL素子の輝度-電圧特性を測定した結果である図36において、電子注入層の材料(第1材料)として式(2-11)の化合物を用いた実施例24の素子のほうが、第1材料を用いていない比較例18の素子より低い電圧で発光している。この結果から、式(2-11)の化合物でも使用することで、より低電圧で駆動する素子となることが確認された。
実施例25、26及び比較例19の素子の輝度-電圧特性を測定した結果の図37において、電子注入層の材料(第1材料)として式(2-30)、式(2-31)の化合物を用いた実施例25、26の素子のほうが、式(4)で表されるホウ素含有化合物のみを用いた比較例19の素子より低い電圧で発光している。この結果から、式(2-30)、式(2-31)の化合物でも使用することでより低電圧で駆動する素子となることが確認された。
1:有機EL素子、2:基板、3:陰極(陰極2)、3’:陰極1、4:酸化物層、5:電子注入層、6:発光層、7:正孔輸送層、8:正孔注入層、9:陽極、10:電子輸送層。

Claims (27)

  1. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む単一の膜、又は、前記第1材料を含む膜と前記第2材料を含む膜との積層膜であることを特徴とする有機薄膜。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  2. 前記第1材料は、一般式(1)におけるnが2又は3のヘキサヒドロピリミドピリミジン化合物であることを特徴とする請求項1に記載の有機薄膜。
  3. 酸化物層と、前記酸化物層上に形成された請求項1又は2に記載の有機薄膜の層とからなる積層膜。
  4. 陰極と陽極との間に発光層を有する有機エレクトロルミネッセンス素子であって、
    前記陰極と前記発光層との間に請求項1又は2に記載の有機薄膜又は請求項3に記載の積層膜を有することを特徴とする有機エレクトロルミネッセンス素子。
  5. 前記陰極と前記有機薄膜との間に、無機の酸化物層を有することを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
  6. 前記陰極と前記発光層との間に、前記第1材料と第2材料とを含む膜と前記第2材料を含む膜との積層膜を有することを特徴とする請求項4又は5に記載の有機エレクトロルミネッセンス素子。
  7. 前記発光層と前記第1材料と第2材料とを含む膜との間に、前記第2材料を含む層を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
  8. 前記陰極と前記第1材料と第2材料とを含む膜との間に、前記第2材料を含む層を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
  9. 前記陽極と前記発光層との間に、前記第2材料を含む層を有することを特徴とする請求項4~8のいずれかに記載の有機エレクトロルミネッセンス素子。
  10. 前記発光層が、前記第2材料を含むことを特徴とする請求項4~9のいずれかに記載の有機エレクトロルミネッセンス素子。
  11. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする有機エレクトロルミネッセンス素子用材料。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  12. 陰極と陽極との間に発光層を有する有機エレクトロルミネッセンス素子であって、
    前記陰極と前記陽極との間に請求項11に記載の有機エレクトロルミネッセンス素子用材料を含む層を有することを特徴とする有機エレクトロルミネッセンス素子。
  13. 前記陰極と前記発光層との間に請求項11に記載の有機エレクトロルミネッセンス素子用材料を含む層を有することを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子。
  14. 前記陰極と請求項11に記載の有機エレクトロルミネッセンス素子用材料を含む層との間に、無機の酸化物層を有することを特徴とする請求項12又は13に記載の有機エレクトロルミネッセンス素子。
  15. 請求項4~10、12~14のいずれかに記載の有機エレクトロルミネッセンス素子を備えることを特徴とする表示装置。
  16. 請求項4~10、12~14のいずれかに記載の有機エレクトロルミネッセンス素子を備えることを特徴とする照明装置。
  17. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする有機薄膜太陽電池用材料。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  18. 請求項1又は2に記載の有機薄膜、請求項3に記載の積層膜又は請求項17に記載の有機薄膜太陽電池用材料を含む層のいずれかを含むことを特徴とする有機薄膜太陽電池。
  19. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする光電変換素子用材料。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  20. 請求項1又は2に記載の有機薄膜、請求項3に記載の積層膜又は請求項19に記載の光電変換素子用材料を含む層のいずれかを含むことを特徴とする光電変換素子。
  21. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする薄膜トランジスタ用材料。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  22. 請求項1又は2に記載の有機薄膜、請求項3に記載の積層膜又は請求項21に記載の薄膜トランジスタ用材料を含む層のいずれかを含むことを特徴とする薄膜トランジスタ。
  23. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含むことを特徴とする塗料組成物。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  24. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含むことを特徴とする塗料組成物。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  25. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む単一の膜を被形成面上に形成する工程、又は、
    前記第1材料を含む膜と前記第2材料を含む膜とを被形成面上に順に形成する工程を含むことを特徴とする有機薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  26. 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む膜を被形成面上に形成する工程を含むことを特徴とする有機薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (一般式(1)中、Rは、置換基を有していてもよい芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状または環状炭化水素基、又は、これらの基を2つ以上組み合わせてできる基、これらの基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基を表す。nは、1~4の整数である。)
  27. 前記被形成面が第2材料を含むことを特徴とする請求項26に記載の有機薄膜の製造方法。
     
PCT/JP2020/033542 2019-09-06 2020-09-04 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料 WO2021045178A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/640,240 US20220310937A1 (en) 2019-09-06 2020-09-04 Organic thin film and method for producing organic thin film, organic electroluminescent element, display device, lighting device, organic thin film solar cell, photoelectric conversion element, thin film transistor, coating composition and material for organic electroluminescent elements
EP20860625.1A EP4026881A4 (en) 2019-09-06 2020-09-04 ORGANIC THIN FILM AND METHOD FOR PRODUCTION OF ORGANIC THIN FILM, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, ORGANIC THIN FILM SOLAR CELL, PHOTOELECTRIC CONVERSION ELEMENT, THIN FILM TRANSISTOR, COATING COMPOSITION AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENTS
KR1020227005967A KR20220035956A (ko) 2019-09-06 2020-09-04 유기 박막 및 유기 박막의 제조 방법, 유기 일렉트로 루미네선스 소자, 표시 장치, 조명 장치, 유기 박막 태양 전지, 광전 변환 소자, 박막 트랜지스터, 도료 조성물, 유기 일렉트로 루미네선스 소자용 재료
JP2021544040A JPWO2021045178A1 (ja) 2019-09-06 2020-09-04
CN202080062595.7A CN114375506A (zh) 2019-09-06 2020-09-04 有机薄膜和有机薄膜的制造方法、有机电致发光元件、显示装置、照明装置、有机薄膜太阳能电池、光电转换元件、薄膜晶体管、涂料组合物、有机电致发光元件用材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019163279 2019-09-06
JP2019-163279 2019-09-06
JP2020104737 2020-06-17
JP2020-104737 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021045178A1 true WO2021045178A1 (ja) 2021-03-11

Family

ID=74852220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033542 WO2021045178A1 (ja) 2019-09-06 2020-09-04 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料

Country Status (7)

Country Link
US (1) US20220310937A1 (ja)
EP (1) EP4026881A4 (ja)
JP (1) JPWO2021045178A1 (ja)
KR (1) KR20220035956A (ja)
CN (1) CN114375506A (ja)
TW (1) TW202116776A (ja)
WO (1) WO2021045178A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139444A1 (ja) * 2022-01-21 2023-07-27 株式会社半導体エネルギー研究所 発光デバイス
WO2023175442A1 (ja) * 2022-03-18 2023-09-21 株式会社半導体エネルギー研究所 表示装置、電子機器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155325A (ja) 2007-12-06 2009-07-16 Kyoto Univ 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子
JP2010230995A (ja) 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd 光消色性材料層用感光性組成物
JP2011006457A (ja) 2005-10-04 2011-01-13 Rohm & Haas Co 殺微生物組成物
JP2011184430A (ja) 2010-02-10 2011-09-22 Kyoto Univ ホウ素含有化合物及びその製造方法
JP2012228460A (ja) 2011-04-27 2012-11-22 Olympus Corp 計測方法
JP2013258144A (ja) * 2012-06-11 2013-12-26 Samsung Display Co Ltd 有機発光表示装置及びその製造方法
JP2015503053A (ja) 2011-11-25 2015-01-29 エッレ エ エンメ ソチエタ ぺル アチオーニ リヴォルーション エナジー メーカー 再生可能なソースからのエネルギー生産のためのシステム
US20150076456A1 (en) * 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
JP2015053872A (ja) 2013-09-10 2015-03-23 株式会社日立製作所 光合成微生物培養槽および光合成微生物培養装置
JP2015081109A (ja) 2013-10-21 2015-04-27 不二精機株式会社 食物収納包装方法
JP2015081108A (ja) 2013-10-21 2015-04-27 不二精機株式会社 食物収納袋形成方法
WO2016181705A1 (ja) 2015-05-11 2016-11-17 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物
JP2018206889A (ja) 2017-06-01 2018-12-27 日本放送協会 有機エレクトロルミネッセンス素子、表示装置、照明装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006457A (ja) 2005-10-04 2011-01-13 Rohm & Haas Co 殺微生物組成物
JP2011006458A (ja) 2005-10-04 2011-01-13 Rohm & Haas Co 殺微生物組成物
JP2009155325A (ja) 2007-12-06 2009-07-16 Kyoto Univ 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子
JP2010230995A (ja) 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd 光消色性材料層用感光性組成物
JP2011184430A (ja) 2010-02-10 2011-09-22 Kyoto Univ ホウ素含有化合物及びその製造方法
JP2012228460A (ja) 2011-04-27 2012-11-22 Olympus Corp 計測方法
JP2015503053A (ja) 2011-11-25 2015-01-29 エッレ エ エンメ ソチエタ ぺル アチオーニ リヴォルーション エナジー メーカー 再生可能なソースからのエネルギー生産のためのシステム
JP2013258144A (ja) * 2012-06-11 2013-12-26 Samsung Display Co Ltd 有機発光表示装置及びその製造方法
JP2015053872A (ja) 2013-09-10 2015-03-23 株式会社日立製作所 光合成微生物培養槽および光合成微生物培養装置
US20150076456A1 (en) * 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
JP2015081109A (ja) 2013-10-21 2015-04-27 不二精機株式会社 食物収納包装方法
JP2015081108A (ja) 2013-10-21 2015-04-27 不二精機株式会社 食物収納袋形成方法
WO2016181705A1 (ja) 2015-05-11 2016-11-17 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物
JP2018206889A (ja) 2017-06-01 2018-12-27 日本放送協会 有機エレクトロルミネッセンス素子、表示装置、照明装置

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ALSARRAF, J. ET AL.: "Cyclic guanidines as efficient organocatalysts for the synthesis of polyurethanes", MACROMOLECULES, vol. 45, 21 February 2012 (2012-02-21), pages 2249 - 2256, XP055440014, DOI: 10.1021/ma2026258 *
HYOSUNG CHOI, ADVANCED MATERIALS, vol. 23, 2011, pages 2759
JIANGSHAN CHEN, JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 5164 - 5170
KARSTEN WALZER, CHEMICAL REVIEW, vol. 107, 2007, pages 1233 - 1271
MACROMOLECULES, vol. 45, no. 5, 2012, pages 2249 - 2256
PENG WEI, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, 2010, pages 8852
SCHWAMM RYAN J., VIANELLO ROBERT, MARŠAVELSKI ALEKSANDRA, GARCÍA M. ÁNGELES, CLARAMUNT ROSA M., ALKORTA IBON, SAAME JAAN, LEITO IV: "15N NMR spectroscopy, x-ray and neutron diffraction, quantum-chemical calculations, and UV/vis-spectrophotometric titrations as complementary techniques for the analysis of pyridine-supported bicyclic guanidine superbases", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 81, no. 17, 5 August 2016 (2016-08-05), pages 7612 - 7625, XP055799352, DOI: 10.1021/acs.joc.6b01330 *
See also references of EP4026881A4
STEFAN HOFLE, ADVANCED MATERIALS, vol. 26, 2014
YINHUA ZHO, SCIENCE, vol. 336, 2012, pages 327
YOUNG-HOON KIM, ADVANCED FUNCTIONAL MATERIALS, 2014

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139444A1 (ja) * 2022-01-21 2023-07-27 株式会社半導体エネルギー研究所 発光デバイス
WO2023175442A1 (ja) * 2022-03-18 2023-09-21 株式会社半導体エネルギー研究所 表示装置、電子機器

Also Published As

Publication number Publication date
KR20220035956A (ko) 2022-03-22
CN114375506A (zh) 2022-04-19
EP4026881A1 (en) 2022-07-13
JPWO2021045178A1 (ja) 2021-03-11
TW202116776A (zh) 2021-05-01
US20220310937A1 (en) 2022-09-29
EP4026881A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP6900425B2 (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物
JP5810417B2 (ja) イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP5433677B2 (ja) 有機電界発光素子
KR20140117401A (ko) 이리듐 착물 화합물 그리고 그 화합물을 함유하는 용액 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
US20220069238A1 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
US20210257564A1 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
WO2021045178A1 (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料
Pu et al. Solution-processable bipolar hosts based on triphenylamine and oxadiazole derivatives: Synthesis and application in phosphorescent light-emitting diodes
JP2024028707A (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、光電変換素子、塗料組成物、有機エレクトロルミネッセンス素子用材料
EP4349814A1 (en) Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same
JP2021166280A (ja) 有機薄膜及び有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、並びに、有機エレクトロルミネッセンス素子用材料
JP2022097348A (ja) 有機電界発光素子の製造方法、有機電界発光素子、表示装置、照明装置
JP2021061316A (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2022131355A1 (ja) 有機電界発光素子、表示装置、照明装置、有機電界発光素子の製造方法
WO2024034301A1 (ja) フェナントロリン化合物およびそれを用いた有機薄膜、有機半導体素子
JP2012119471A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2022255428A1 (ja) 芳香族化合物、有機電界発光素子、組成物及び有機電界発光素子の製造方法
WO2023136252A1 (ja) イリジウム錯体化合物、有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置
JP2021166281A (ja) 有機薄膜及び有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、並びに、有機エレクトロルミネッセンス素子用材料
JP2024024318A (ja) ヘキサヒドロピリミドピリミジン化合物およびそれを用いた有機薄膜、有機半導体素子
JP2022165780A (ja) 有機電界発光素子、表示装置、照明装置
JP2020087965A (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物
JP2022190619A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2021127325A (ja) 芳香族ジアミン誘導体
JP2019179871A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544040

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227005967

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860625

Country of ref document: EP

Effective date: 20220406