WO2021045178A1 - 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料 - Google Patents
有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料 Download PDFInfo
- Publication number
- WO2021045178A1 WO2021045178A1 PCT/JP2020/033542 JP2020033542W WO2021045178A1 WO 2021045178 A1 WO2021045178 A1 WO 2021045178A1 JP 2020033542 W JP2020033542 W JP 2020033542W WO 2021045178 A1 WO2021045178 A1 WO 2021045178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- thin film
- layer
- group
- compound
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 523
- 239000010409 thin film Substances 0.000 title claims abstract description 200
- 239000008199 coating composition Substances 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 238000006243 chemical reaction Methods 0.000 title claims description 34
- 239000010408 film Substances 0.000 claims abstract description 177
- 230000032258 transport Effects 0.000 claims abstract description 82
- -1 hexahydropyrimidopyrimidine compound Chemical class 0.000 claims abstract description 65
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 43
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims abstract description 29
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims abstract description 28
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 23
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 23
- 238000005401 electroluminescence Methods 0.000 claims description 283
- 150000001875 compounds Chemical class 0.000 claims description 211
- 125000001424 substituent group Chemical group 0.000 claims description 22
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 13
- 238000002347 injection Methods 0.000 abstract description 177
- 239000007924 injection Substances 0.000 abstract description 177
- 125000003118 aryl group Chemical group 0.000 abstract description 7
- 125000002947 alkylene group Chemical group 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 572
- 239000000758 substrate Substances 0.000 description 119
- 230000000052 comparative effect Effects 0.000 description 92
- 238000000034 method Methods 0.000 description 81
- 238000007740 vapor deposition Methods 0.000 description 61
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 54
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 51
- 239000000203 mixture Substances 0.000 description 50
- 230000005525 hole transport Effects 0.000 description 49
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 40
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 40
- 239000007787 solid Substances 0.000 description 39
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 37
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 31
- 229910052796 boron Inorganic materials 0.000 description 31
- 238000007789 sealing Methods 0.000 description 27
- 238000000576 coating method Methods 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 23
- 229910044991 metal oxide Inorganic materials 0.000 description 22
- 150000004706 metal oxides Chemical class 0.000 description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 239000002904 solvent Substances 0.000 description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000011787 zinc oxide Substances 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 18
- 239000011368 organic material Substances 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 239000011701 zinc Substances 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 17
- 239000011521 glass Substances 0.000 description 16
- 239000003921 oil Substances 0.000 description 16
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 15
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 14
- CECAIMUJVYQLKA-UHFFFAOYSA-N iridium 1-phenylisoquinoline Chemical compound [Ir].C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12 CECAIMUJVYQLKA-UHFFFAOYSA-N 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000002019 doping agent Substances 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 13
- 150000002894 organic compounds Chemical class 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 12
- 238000000151 deposition Methods 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 12
- 229910010272 inorganic material Inorganic materials 0.000 description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 10
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 150000001639 boron compounds Chemical class 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000010494 dissociation reaction Methods 0.000 description 9
- 230000005593 dissociations Effects 0.000 description 9
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 8
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 125000000623 heterocyclic group Chemical group 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 150000003918 triazines Chemical class 0.000 description 8
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 7
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 150000002484 inorganic compounds Chemical class 0.000 description 7
- YERGTYJYQCLVDM-UHFFFAOYSA-N iridium(3+);2-(4-methylphenyl)pyridine Chemical compound [Ir+3].C1=CC(C)=CC=C1C1=CC=CC=N1.C1=CC(C)=CC=C1C1=CC=CC=N1.C1=CC(C)=CC=C1C1=CC=CC=N1 YERGTYJYQCLVDM-UHFFFAOYSA-N 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 6
- 235000002597 Solanum melongena Nutrition 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000036962 time dependent Effects 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 5
- 229920000265 Polyparaphenylene Polymers 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 239000012300 argon atmosphere Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 239000002198 insoluble material Substances 0.000 description 5
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 5
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 5
- 150000003222 pyridines Chemical class 0.000 description 5
- 239000003566 sealing material Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000009751 slip forming Methods 0.000 description 5
- 238000000391 spectroscopic ellipsometry Methods 0.000 description 5
- 150000003613 toluenes Chemical class 0.000 description 5
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 4
- POSWICCRDBKBMH-UHFFFAOYSA-N 3,3,5-trimethylcyclohexan-1-one Chemical compound CC1CC(=O)CC(C)(C)C1 POSWICCRDBKBMH-UHFFFAOYSA-N 0.000 description 4
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 4
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000000427 thin-film deposition Methods 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 description 4
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 3
- OEBXWWBYZJNKRK-UHFFFAOYSA-N 1-methyl-2,3,4,6,7,8-hexahydropyrimido[1,2-a]pyrimidine Chemical compound C1CCN=C2N(C)CCCN21 OEBXWWBYZJNKRK-UHFFFAOYSA-N 0.000 description 3
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 3
- SNTWKPAKVQFCCF-UHFFFAOYSA-N 2,3-dihydro-1h-triazole Chemical compound N1NC=CN1 SNTWKPAKVQFCCF-UHFFFAOYSA-N 0.000 description 3
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 3
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 3
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 238000007611 bar coating method Methods 0.000 description 3
- UZVGSSNIUNSOFA-UHFFFAOYSA-N dibenzofuran-1-carboxylic acid Chemical compound O1C2=CC=CC=C2C2=C1C=CC=C2C(=O)O UZVGSSNIUNSOFA-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 229910003472 fullerene Inorganic materials 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- ANYCDYKKVZQRMR-UHFFFAOYSA-N lithium;quinoline Chemical compound [Li].N1=CC=CC2=CC=CC=C21 ANYCDYKKVZQRMR-UHFFFAOYSA-N 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 3
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 3
- 150000005041 phenanthrolines Chemical class 0.000 description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 3
- 229920001197 polyacetylene Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- CJGUQZGGEUNPFQ-UHFFFAOYSA-L zinc;2-(1,3-benzothiazol-2-yl)phenolate Chemical compound [Zn+2].[O-]C1=CC=CC=C1C1=NC2=CC=CC=C2S1.[O-]C1=CC=CC=C1C1=NC2=CC=CC=C2S1 CJGUQZGGEUNPFQ-UHFFFAOYSA-L 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 2
- WMZCREDANYEXRT-UHFFFAOYSA-N 1-[phenyl(pyren-1-yl)phosphoryl]pyrene Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1P(C=1C2=CC=C3C=CC=C4C=CC(C2=C43)=CC=1)(=O)C1=CC=CC=C1 WMZCREDANYEXRT-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- XNCMQRWVMWLODV-UHFFFAOYSA-N 1-phenylbenzimidazole Chemical compound C1=NC2=CC=CC=C2N1C1=CC=CC=C1 XNCMQRWVMWLODV-UHFFFAOYSA-N 0.000 description 2
- HBEDSQVIWPRPAY-UHFFFAOYSA-N 2,3-dihydrobenzofuran Chemical compound C1=CC=C2OCCC2=C1 HBEDSQVIWPRPAY-UHFFFAOYSA-N 0.000 description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 2
- CRGSMSNUTNRNQM-UHFFFAOYSA-N 2-(4-tert-butylphenyl)-1,3,4-oxadiazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=CO1 CRGSMSNUTNRNQM-UHFFFAOYSA-N 0.000 description 2
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 2
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 2
- PHTRCMKPPKUMTQ-UHFFFAOYSA-N 9-(3-quinolin-2-ylphenyl)carbazole Chemical compound C1=CC=CC2=NC(C=3C=CC=C(C=3)N3C4=CC=CC=C4C4=CC=CC=C43)=CC=C21 PHTRCMKPPKUMTQ-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical class C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 2
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 229910001867 inorganic solvent Inorganic materials 0.000 description 2
- 239000003049 inorganic solvent Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 2
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical compound [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- UOHMMEJUHBCKEE-UHFFFAOYSA-N prehnitene Chemical compound CC1=CC=C(C)C(C)=C1C UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 150000003216 pyrazines Chemical class 0.000 description 2
- 150000003248 quinolines Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005118 spray pyrolysis Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 2
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- YGLVWOUNCXBPJF-UHFFFAOYSA-N (2,3,4,5-tetraphenylcyclopenta-1,4-dien-1-yl)benzene Chemical compound C1=CC=CC=C1C1C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 YGLVWOUNCXBPJF-UHFFFAOYSA-N 0.000 description 1
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical compound C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- UPJLZKCEPFAKSH-UHFFFAOYSA-N 2',7'-dibromo-9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC(Br)=CC=C1C1=CC=C(Br)C=C12 UPJLZKCEPFAKSH-UHFFFAOYSA-N 0.000 description 1
- OZZSXAWYZYTWQD-UHFFFAOYSA-N 2,2'-dibromo-9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=C(Br)C=C2C21C1=CC=CC=C1C1=CC=C(Br)C=C12 OZZSXAWYZYTWQD-UHFFFAOYSA-N 0.000 description 1
- WALXYTCBNHJWER-UHFFFAOYSA-N 2,4,6-tribromopyridine Chemical compound BrC1=CC(Br)=NC(Br)=C1 WALXYTCBNHJWER-UHFFFAOYSA-N 0.000 description 1
- FEYDZHNIIMENOB-UHFFFAOYSA-N 2,6-dibromopyridine Chemical compound BrC1=CC=CC(Br)=N1 FEYDZHNIIMENOB-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- RCAFEQWFDGXVLJ-UHFFFAOYSA-N 2-(2-methylpyran-4-ylidene)propanedinitrile Chemical class CC1=CC(=C(C#N)C#N)C=CO1 RCAFEQWFDGXVLJ-UHFFFAOYSA-N 0.000 description 1
- FXPLCAKVOYHAJA-UHFFFAOYSA-N 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1 FXPLCAKVOYHAJA-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PORKWWLSRFDCLR-UHFFFAOYSA-N 2-[2-[4-[2-(1,3-benzothiazol-2-yl)ethenyl]phenyl]ethenyl]-1,3-benzothiazole Chemical compound C1=CC=C2SC(C=CC=3C=CC(C=CC=4SC5=CC=CC=C5N=4)=CC=3)=NC2=C1 PORKWWLSRFDCLR-UHFFFAOYSA-N 0.000 description 1
- UTMBURFHCCZQCN-UHFFFAOYSA-N 2-[3,5-bis[6-(3-pyridin-3-ylphenyl)pyridin-2-yl]phenyl]-6-(3-pyridin-3-ylphenyl)pyridine Chemical compound N1=CC(=CC=C1)C=1C=C(C=CC=1)C1=CC=CC(=N1)C1=CC(=CC(=C1)C1=NC(=CC=C1)C1=CC(=CC=C1)C=1C=NC=CC=1)C1=NC(=CC=C1)C1=CC(=CC=C1)C=1C=NC=CC=1 UTMBURFHCCZQCN-UHFFFAOYSA-N 0.000 description 1
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 1
- ZRJUDAZGVGIDLP-UHFFFAOYSA-N 2-bromo-1,10-phenanthroline Chemical compound C1=CN=C2C3=NC(Br)=CC=C3C=CC2=C1 ZRJUDAZGVGIDLP-UHFFFAOYSA-N 0.000 description 1
- WZVWSOXTTOJQQQ-UHFFFAOYSA-N 2-bromo-6-(6-bromopyridin-2-yl)pyridine Chemical compound BrC1=CC=CC(C=2N=C(Br)C=CC=2)=N1 WZVWSOXTTOJQQQ-UHFFFAOYSA-N 0.000 description 1
- NCRIDSGPLISUEU-UHFFFAOYSA-N 2-bromo-6-pyridin-2-ylpyridine Chemical compound BrC1=CC=CC(C=2N=CC=CC=2)=N1 NCRIDSGPLISUEU-UHFFFAOYSA-N 0.000 description 1
- ONCCVJKFWKAZAE-UHFFFAOYSA-N 2-bromo-9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=C(Br)C=C12 ONCCVJKFWKAZAE-UHFFFAOYSA-N 0.000 description 1
- DDGPPAMADXTGTN-UHFFFAOYSA-N 2-chloro-4,6-diphenyl-1,3,5-triazine Chemical compound N=1C(Cl)=NC(C=2C=CC=CC=2)=NC=1C1=CC=CC=C1 DDGPPAMADXTGTN-UHFFFAOYSA-N 0.000 description 1
- WGRSVHBSCVGKDP-UHFFFAOYSA-N 2-ethyl-9h-carbazole-1-carbaldehyde Chemical compound C1=CC=C2C3=CC=C(CC)C(C=O)=C3NC2=C1 WGRSVHBSCVGKDP-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- VEQJRCRMCYYJMV-UHFFFAOYSA-N 3,4-bis(2-phenylethenyl)benzene-1,2-diamine Chemical compound C=1C=CC=CC=1C=CC1=C(N)C(N)=CC=C1C=CC1=CC=CC=C1 VEQJRCRMCYYJMV-UHFFFAOYSA-N 0.000 description 1
- GPJPKLJGNHKZJF-UHFFFAOYSA-N 3,5,6,7,8,8a-hexahydropyrimido[5,4-d]pyrimidine Chemical class N1C=NC=C2NCNCC21 GPJPKLJGNHKZJF-UHFFFAOYSA-N 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- JBSGZQMUNSLKLU-UHFFFAOYSA-N 4,6-bis(3,5-dipyridin-2-ylphenyl)-2-methylpyrimidine Chemical compound N=1C(C)=NC(C=2C=C(C=C(C=2)C=2N=CC=CC=2)C=2N=CC=CC=2)=CC=1C(C=1)=CC(C=2N=CC=CC=2)=CC=1C1=CC=CC=N1 JBSGZQMUNSLKLU-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- BRUOAURMAFDGLP-UHFFFAOYSA-N 9,10-dibromoanthracene Chemical compound C1=CC=C2C(Br)=C(C=CC=C3)C3=C(Br)C2=C1 BRUOAURMAFDGLP-UHFFFAOYSA-N 0.000 description 1
- CUNRCBBBPBWPTM-UHFFFAOYSA-N 9-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]carbazole Chemical compound C1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)=N1 CUNRCBBBPBWPTM-UHFFFAOYSA-N 0.000 description 1
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- JRLALOMYZVOMRI-UHFFFAOYSA-N BPPC Chemical compound BPPC JRLALOMYZVOMRI-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- SQOUJJXRZVAQON-UHFFFAOYSA-N C(c1ccc(CN2C3=NCCCN3CCC2)cc1)N1C2=NCCCN2CCC1 Chemical compound C(c1ccc(CN2C3=NCCCN3CCC2)cc1)N1C2=NCCCN2CCC1 SQOUJJXRZVAQON-UHFFFAOYSA-N 0.000 description 1
- BJZXPEXGZYZDDL-UHFFFAOYSA-N Cc1c(B(c2ccccc22)c3ccccc3B2c(c(C)c2)c(C)cc2-[n]2c3ccccc3c3c2cccc3)c(C)cc(-[n]2c3ccccc3c3c2cccc3)c1 Chemical compound Cc1c(B(c2ccccc22)c3ccccc3B2c(c(C)c2)c(C)cc2-[n]2c3ccccc3c3c2cccc3)c(C)cc(-[n]2c3ccccc3c3c2cccc3)c1 BJZXPEXGZYZDDL-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 238000006887 Ullmann reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- JRXXLCKWQFKACW-UHFFFAOYSA-N biphenylacetylene Chemical group C1=CC=CC=C1C#CC1=CC=CC=C1 JRXXLCKWQFKACW-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 239000003660 carbonate based solvent Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- SKCNIGRBPJIUBQ-UHFFFAOYSA-N chloroform;ethyl acetate Chemical compound ClC(Cl)Cl.CCOC(C)=O SKCNIGRBPJIUBQ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 150000001882 coronenes Chemical class 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical class C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 125000004986 diarylamino group Chemical group 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 1
- LNBHUCHAFZUEGJ-UHFFFAOYSA-N europium(3+) Chemical compound [Eu+3] LNBHUCHAFZUEGJ-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000005446 heptyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- VPUGDVKSAQVFFS-UHFFFAOYSA-N hexabenzobenzene Natural products C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- NKVDKFWRVDHWGC-UHFFFAOYSA-N iridium(3+);1-phenylisoquinoline Chemical compound [Ir+3].C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12 NKVDKFWRVDHWGC-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LAQFLZHBVPULPL-UHFFFAOYSA-N methyl(phenyl)silicon Chemical compound C[Si]C1=CC=CC=C1 LAQFLZHBVPULPL-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- RKCAIXNGYQCCAL-UHFFFAOYSA-N porphin Chemical compound N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 RKCAIXNGYQCCAL-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- RCYFOPUXRMOLQM-UHFFFAOYSA-N pyrene-1-carbaldehyde Chemical compound C1=C2C(C=O)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 RCYFOPUXRMOLQM-UHFFFAOYSA-N 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- QLULGIRFKAWHOJ-UHFFFAOYSA-N pyridin-4-ylboronic acid Chemical compound OB(O)C1=CC=NC=C1 QLULGIRFKAWHOJ-UHFFFAOYSA-N 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 125000002112 pyrrolidino group Chemical group [*]N1C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- GNHGQOQUCKGFCV-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1 GNHGQOQUCKGFCV-UHFFFAOYSA-N 0.000 description 1
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- JFLKFZNIIQFQBS-FNCQTZNRSA-N trans,trans-1,4-Diphenyl-1,3-butadiene Chemical compound C=1C=CC=CC=1\C=C\C=C\C1=CC=CC=C1 JFLKFZNIIQFQBS-FNCQTZNRSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N trans-stilbene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- SXXNJJQVBPWGTP-UHFFFAOYSA-K tris[(4-methylquinolin-8-yl)oxy]alumane Chemical compound [Al+3].C1=CC=C2C(C)=CC=NC2=C1[O-].C1=CC=C2C(C)=CC=NC2=C1[O-].C1=CC=C2C(C)=CC=NC2=C1[O-] SXXNJJQVBPWGTP-UHFFFAOYSA-K 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/85—Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/655—Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/322—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
Definitions
- the present invention relates to an organic thin film, a method for producing an organic thin film, an organic electroluminescence (hereinafter, electroluminescence (electroluminescence) may be referred to as "EL") element, a display device, a lighting device, an organic thin film solar cell, and a thin film.
- electroluminescence electroluminescence
- EL organic electroluminescence
- Photoelectric conversion elements coating compositions, materials for organic electroluminescence elements.
- Organic EL devices are thin, flexible and flexible. Further, a display device using an organic EL element is capable of high-luminance and high-definition display as compared with the liquid crystal display device and the plasma display device which are currently mainstream. Further, the display device using the organic EL element has a wider viewing angle than the liquid crystal display device. Therefore, display devices using organic EL elements are expected to be widely used as displays for televisions and mobile phones in the future. Further, the organic EL element is also expected to be used as a lighting device.
- the organic EL element is a stack of a cathode, a light emitting layer, and an anode.
- the work function of the anode and the highest occupied orbital (HOMO) energy difference of the light emitting layer are smaller than the work function of the cathode and the lowest unoccupied orbital (LUMO) energy difference of the light emitting layer. Therefore, it is difficult to inject electrons into the light emitting layer from the cathode as compared to injecting holes from the anode. Therefore, in the conventional organic EL element, an electron injection layer is arranged between the cathode and the light emitting layer to promote the injection of electrons from the cathode to the light emitting layer.
- Examples of the electron injection layer of the organic EL device include an inorganic oxide layer (see, for example, Non-Patent Document 3).
- the inorganic oxide layer has insufficient electron injection property.
- Non-Patent Document 4 describes an organic EL device having an electron injection layer made of polyethyleneimine.
- Non-Patent Document 5 describes that amines are effective in improving the electron injection rate.
- Non-Patent Documents 6, 7 and 8 describe the effect of an amino group on electron injection at the interface between an electrode and an organic layer.
- 201304163 Stephen Forful, 4 outsiders “Advanced Materials", 2014, DOI: 10.1002 / adma. 2013046666 Stephan Forful, 5 outsiders “Advanced Materials", Vol. 26, 2014, DOI: 10.1002 / adma. 201400332 Penway, 3 outsiders "Journal of the American Chemical Society", Vol. 132, 2010, p8852
- the present invention has been made in view of the above circumstances, and when producing an organic thin film capable of obtaining excellent electron injection and electron transport properties when used in an electron injection layer of an organic EL element, this organic thin film is produced. It is an object of the present invention to provide a coating composition that can be suitably used for organic EL devices, and a material for an organic EL device that is a raw material for these organic thin films and coating compositions. Further, the present invention provides an organic EL element using the organic thin film of the present invention, a display device and a lighting device provided with the organic EL element, an organic thin film solar cell including the organic thin film of the present invention, a photoelectric conversion element and an organic thin film transistor. The challenge is to provide.
- the present inventors have focused on basic organic materials as materials used for the electron injection layer of organic EL devices.
- an organic thin film containing a hexahydropyrimidyrimidine compound having a predetermined structure which is an organic material having an acid dissociation constant pKa of 1 or more, and a material for transporting electrons may be used as the electron injection layer of the organic EL device. It turned out.
- the organic material having a pKa of 1 or more has an ability to extract protons (H +) from other materials. Therefore, in the organic EL device having the electron injection layer made of the above organic thin film, an organic material having a pKa of 1 or more extracts a proton (H + ) from the material that transports electrons, so that a negative charge is generated and electron injection occurs. It is presumed that the sex will improve.
- a single membrane containing a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1) and a second material for transporting electrons, or the first material.
- An organic thin film which is a laminated film of a film containing the above-mentioned second material and a film containing the second material.
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- [3] A laminated film composed of an oxide layer and a layer of an organic thin film according to [1] or [2] formed on the oxide layer.
- the organic electroluminescence device having a light emitting layer between the cathode and the anode, and the organic thin film according to [1] or [2] or the organic thin film according to [3] between the cathode and the light emitting layer.
- An organic electroluminescence device characterized by having a laminated film of.
- a laminated film of a film containing the first material and the second material and a film containing the second material is provided between the cathode and the light emitting layer [4] or [ 5]
- a material for an organic electroluminescence device which comprises a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1).
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- An organic electroluminescence device having a light emitting layer between a cathode and an anode, and having a layer containing the material for an organic electroluminescence device according to [11] between the cathode and the anode. Characterized organic electroluminescence element.
- a display device comprising the organic electroluminescence element according to any one of [4] to [10] and [12] to [14].
- a lighting device including the organic electroluminescence element according to any one of [4] to [10] and [12] to [14].
- a material for an organic thin-film solar cell which comprises a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1).
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- a material for a photoelectric conversion element which comprises a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1).
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- a material for a thin film transistor which comprises a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1).
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- a thin film transistor comprising either the organic thin film according to [1] or [2], the laminated film according to [3], or a layer containing the thin film transistor material according to [21].
- a coating composition comprising a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1) and a second material which transports electrons.
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- a coating composition comprising a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1).
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- a single film containing a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1) and a second material for transporting electrons is formed on the surface to be formed.
- a method for producing an organic thin film which comprises a step of forming a film containing the first material and a film containing the second material in order on a surface to be formed.
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- a method for producing an organic thin film which comprises a step of forming a film containing a hexahydropyrimidopyrimidine compound having a structure represented by the following general formula (1) on a surface to be formed.
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- the organic thin film of the present invention includes a first material made of a specific organic material having an acid dissociation constant pKa of at least 1 and a second material for transporting electrons. Therefore, when the organic thin film of the present invention is used, for example, in the electron injection layer of an organic EL element, excellent electron injection and electron transport properties can be obtained. Since the organic EL device of the present invention has the organic thin film of the present invention between the cathode and the light emitting layer, excellent electron injection and electron transport properties can be obtained by the organic thin film.
- the organic thin film of the present invention containing a first material composed of a specific hexahydropyrimidyrimidine compound having an acid dissociation constant pKa of 1 or more and a second material for transporting electrons can be obtained by either coating or vapor deposition. Since it can be formed, there are few process restrictions when manufacturing an organic EL device containing the organic thin film of the present invention, and it is easy to use as a material for a layer constituting the organic EL device.
- the method for producing an organic thin film of the present invention is such a method for producing an organic thin film of the present invention.
- the coating composition of the present invention includes a first material composed of a specific organic material having an acid dissociation constant pKa of 1 or more, and a second material that transports electrons. Therefore, by applying the coating composition of the present invention on the surface to be formed of the organic thin film, an organic thin film suitable for the electron injection layer of the organic EL element can be obtained.
- the material for an organic EL element of the present invention is a useful material used for the organic thin film and the coating composition of the present invention used for producing an organic EL element and the like.
- this material is also useful in that it can be used alone as an electron injection layer or an electron transport layer.
- the display device and the lighting device of the present invention include the organic EL element of the present invention, the drive voltage is low and they have excellent characteristics. Further, since the organic thin film solar cell, the photoelectric conversion element and the organic thin film transistor of the present invention contain the organic thin film of the present invention, they have excellent characteristics.
- Example 6 is a graph showing the relationship between the applied voltage and the brightness of the organic EL elements produced in Example 16 and Comparative Examples 8 and 9. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 17, Comparative Examples 10 and 11. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 18, Comparative Examples 12 and 13. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 19 and Comparative Example 15. It is a graph which showed the relationship between the applied voltage and the brightness of the organic EL element produced in Example 20 and Comparative Example 14.
- the organic thin film of the present invention contains a first material which is a hexahydropyrimidyrimidine compound having a structure represented by the following general formula (1), and a second material which transports electrons.
- the organic thin film of the present invention may be a single-layer film containing a first material and a second material, or is a laminated film in which a layer containing the first material and a layer containing the second material are laminated. May be good.
- R 1 is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, and the like. Alternatively, it represents a group formed by combining two or more of these groups, or a group formed by combining one or two or more of these groups with a nitrogen atom.
- N is an integer of 1 to 4).
- the first material constituting the organic thin film of the present invention is the organic material having a pKa of 1 or more, it has an ability to extract protons (H +) from the second material.
- the first material preferably has a pKa of 5 or more, and more preferably 11 or more. The higher the pKa of the first material, the higher the ability to extract protons from the second material.
- the organic thin film is used as, for example, the electron injection layer of the organic EL element, excellent electron injection property and electron transport property can be obtained.
- the organic thin film of the present invention can be used not only for an element composed of only an organic compound but also for an element composed of an organic compound and an inorganic compound, and has electron injectability and atmospheric stability. Can exert the effect of increasing.
- the fact that the work function of the inorganic compound can be reduced also improves the efficiency of electron extraction from the organic compound used in the active layer that absorbs light and generates electrons generated in an organic thin-film solar cell or a photoelectric conversion element. It means that you can do it.
- One of the features of the organic thin film of the present invention is that it contains a hexahydropyrimidopyrimidine compound having a structure represented by the above general formula (1) as a first material, and the organic thin film of the present invention is used as an electron injection layer. When used, excellent electron injection and electron transport properties can be obtained.
- a material for an organic EL device containing a hexahydropyrimidopyrimidine compound having a structure represented by the above general formula (1), which exhibits such excellent effects, is also one of the present inventions, and the present material can be used. Excellent electron injecting property and electron transporting property can be obtained even when the electron injecting layer or the electron transporting layer is used alone.
- "pKa” usually means “acid dissociation constant in water", but what cannot be measured in water means “acid dissociation constant in dimethyl sulfoxide (DMSO)" and cannot be measured even in DMSO.
- DMSO dimethyl sulfoxide
- R 1 in the above general formula (1) is an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group, an arylalkylene group, a di4-valent chain or cyclic hydrocarbon group, or a cyclic hydrocarbon group. , A group formed by combining two or more of these groups, and a group formed by combining one or two or more of these groups with a nitrogen atom.
- aromatic hydrocarbon group and the aromatic heterocyclic group those having 3 to 30 carbon atoms are preferable, those having 4 to 24 carbon atoms are more preferable, and those having 5 to 20 carbon atoms are further preferable.
- aromatic hydrocarbon group a compound consisting of only one aromatic ring such as benzene; a compound in which a plurality of aromatic rings such as biphenyl and diphenylbenzene are directly bonded to each other by one carbon atom; naphthalene, anthracene, phenanthrene, pyrene and the like. Examples thereof include a group formed by removing 1 to 4 hydrogen atoms from any of the aromatic rings of the fused ring aromatic hydrocarbon compound.
- aromatic heterocyclic group a compound consisting of only one aromatic heterocycle such as thiophene, furan, pyrrol, oxazole, oxadiazole, thiazole, thiadiazol, imidazole, pyridine, pyrimidine, pyrazine, triazine; one of these.
- the 2- to tetravalent chain or cyclic hydrocarbon group those having 1 to 12 carbon atoms are preferable, those having 1 to 6 carbon atoms are more preferable, and those having 1 to 4 carbon atoms are further preferable.
- the chain hydrocarbon group may be linear or branched.
- R 1 may be a group formed by combining two or more of the above-mentioned aromatic hydrocarbon group, aromatic heterocyclic group, arylalkylene group and 2- to tetravalent chain hydrocarbon group.
- R 1 is a group formed by combining one or more of the above-mentioned aromatic hydrocarbon group, aromatic heterocyclic group, arylalkylene group, and 2- to tetravalent chain hydrocarbon group with a nitrogen atom. You may. Examples of such a group include a trialkylamine such as trimethylamine and a group formed by removing 1 to 4 hydrogen atoms from triphenylamine.
- the aromatic hydrocarbon group, aromatic heterocyclic group, or arylalkylene group may have one or more monovalent substituents.
- the monovalent substituent includes a fluorine atom; a haloalkyl group such as a fluoromethyl group, a difluoromethyl group and a trifluoromethyl group; a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group and a tert-butyl group.
- Linear or branched alkoxy group having 1 to 20 carbon atoms such as group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group; nitro group; cyano Group; Alkylamino group having an alkyl group having 1 to 10 carbon atoms such as methylamino group, ethylamino group, dimethylamino group and diethylamino group; cyclic amino group such as pyrrolidino group, piperidino group and morpholino group; diphenylamino group, Diaryla
- a heterocyclic group containing any one or more of a nitrogen atom, a sulfur atom and an oxygen atom having 4 to 20 carbon atoms which may be substituted with 20 alkyl groups, alkoxy groups, amino groups and the like (the heterocyclic group is 1). It may be composed of only one ring, a compound composed of only one aromatic heterocycle may be a compound in which a plurality of carbon atoms are directly bonded to each other, or a fused heterocyclic group may be used. Specific examples of the heterocyclic group include specific examples of the above aromatic heterocyclic group.); Examples thereof include an ester group and a thioether group. These groups may be substituted with a halogen atom, a hetero element, an alkyl group, an aromatic ring or the like.
- n in the general formula (1) is an integer of 1 to 4, it is preferably 2 or 3.
- Specific examples of the hexahydropyrimidopyrimidine compound having the structure represented by the general formula (1) include compounds represented by the following formulas (2-1) to (2-34).
- the compound represented by the general formula (1) is a Ullmann coupling reaction using a halogen compound having iodine, bromine, chlorine and fluorine and hexahydropyrimidyrimidine as raw materials. , Butchwald-Halide amination reaction, nucleophilic substitution reaction and the like.
- the second material may be any material that transports electrons, and is preferably an organic material. More preferably, it is an organic material having a minimum unoccupied orbital (LUMO) level of 2.0 eV to 4.0 eV, and among them, an n-type organic semiconductor material having a LUMO level of 2.5 eV to 3.5 eV.
- LUMO minimum unoccupied orbital
- any of the conventionally known materials shown below may be used as the material of the electron transport layer of the organic EL element, and among these, a material satisfying the above LUMO level requirement is preferable.
- the second material include phosphine oxide derivatives such as phenyl-dipyrenylphosphine oxide (POPy 2 ), tris-1,3,5- (3'-(pyridine-3''-yl)).
- Phenyl) benzene TmPhPyB
- 1,3,5-tris (6- (3- (pyridin-3-yl) phenyl) pyridine-2-yl) benzene, 8,9-diphenyl-7,10- (3-) (Pyridin-3-yl)) pyridine derivatives
- fluorantene quinoline derivatives such as (2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), 2-phenyl-4,6-bis (3).
- Aromatic ring tetracarboxylic acid anhydride a compound having a heterocycle containing a carbonyl group such as a compound represented by the formula (24) described later, bis [2- (2-hydroxyphenyl) benzothiazolato] zinc (Zn (BTZ) 2 ).
- phosphine oxide derivatives such as POPy 2
- boron-containing compounds such as compounds represented by the following formulas (4) to (7)
- metal complexes such as Alq 3, and TmPhPyB.
- a pyridine derivative a triazine derivative such as TmPhPyTZ.
- the second material is a boron-containing compound or a triazine derivative. Note that n 1 in equation (6) represents an integer of 1 or more.
- a uniform organic thin film can be easily obtained by a method of applying a coating composition containing the first material and the second material.
- a coating composition containing the first material represented by the general formula (1) and the second material for transporting electrons is also one of the present inventions.
- the coating composition contains the first material and does not contain the second material. Is also useful.
- a coating composition containing a hexahydropyrimidyrimidine compound, which is the first material represented by the general formula (1), is also one of the present inventions.
- the boron-containing compound and the triazine derivative have a deep minimum unoccupied orbital (LUMO) energy, they are suitable as a material as an electron injection layer of an organic EL device. Therefore, an organic thin film containing a boron-containing compound as a second material is particularly suitable as an electron injection layer for an organic EL device.
- LUMO deep minimum unoccupied orbital
- the ratio of the first material to the second material contained in the organic thin film of the present invention is not particularly limited, and can be appropriately determined according to the type of the compound used for each of the first material and the second material.
- the ratio of the first material to the second material is preferably 0.1: 99.9 to 20: 1 in terms of mass ratio (first material: second material). More preferably, it is 0.5:99 to 10: 1.
- the ratio of the first material to the second material is also used. Is preferably such a mass ratio. In the case of the above ratio, the effect of improving the electron transport property and the electron injection property due to the inclusion of the first material and the second material in the organic thin film becomes remarkable.
- the organic thin film in the present invention may be a single film containing the first material and the second material, or may be a laminated film of a film containing at least the first material and a film containing at least the second material. Good.
- a laminated film it may be a laminated film of a film containing only the first material and a film containing only the second material, a film containing the first material and the second material, and the first material and the second material. It may be a laminated film with a film containing only one of the materials.
- the film contains only one of the first material and the second material.
- the film may contain either the first material or the second material, but it is preferable that the film contains the second material. Further, when such an organic thin film is used as a layer constituting the organic electroluminescence element, a film containing only one of the first material and the second material and a film containing only one of the first material and the second material are used. Whichever may be on the cathode side, it is preferable that the film containing only one of the first material and the second material is on the cathode side.
- both of the two laminated films contain the first material.
- the first material contained in the two films may be the same or different.
- the organic thin film in the present invention is a laminated film of a film containing the first material and the second material and a film containing only the second material
- the second material is applied to both of the two laminated films.
- the second material contained in the two films may be the same or different.
- the organic thin film of the present invention comprises a first material composed of a hexahydropyrimidyrimidine compound having an acid dissociation constant pKa of 1 or more and having a structure represented by the above general formula (1), and a second material for transporting electrons. Is included. Due to the relatively large molecular weight of both the first material and the second material, the organic thin film of the present invention can be formed not only by coating but also by vapor deposition.
- the organic thin film is manufactured by thin-film deposition, it can be carried out by the same method as when the other layers constituting the organic EL element are manufactured by thin-film deposition, and the first material and the second material may be vapor-deposited at the same time, in order. It may be vapor-deposited.
- first material or the second material may be vapor-deposited first.
- either one may be vapor-deposited first and then both may be co-deposited, or both may be co-deposited and then either one may be vapor-deposited.
- the first material which is a hexahydropyrimidopyrimidine compound having the structure represented by the general formula (1), and the second material for transporting electrons are simultaneously vapor-deposited on the surface to be formed of the organic thin film.
- the method for producing an organic thin film including a step is one of the preferred embodiments of the method for producing an organic thin film of the present invention. Further, a method for producing an organic thin film, or a method for producing an organic thin film, which comprises a step of first depositing either the first material or the second material on the surface to be formed of the organic thin film, and then a step of depositing the other or both materials.
- the method for producing an organic thin film containing the mixture is also one of the preferred embodiments of the method for producing an organic thin film of the present invention.
- the organic thin film of the present invention can also be produced by coating, and in this case as well, a coating composition containing a first material and a second material that transports electrons is prepared, and the coating composition is used.
- An organic thin film can be produced by applying or preparing a coating composition containing a first material and a coating composition containing a second material, and applying these in order. When applying in order, either the coating composition containing the first material or the coating composition containing the second material may be applied first. Further, the coating composition containing only one of the materials may be applied, and then the coating composition containing both of these materials may be applied, and after the coating composition containing both of these materials is applied, either of them may be applied. A paint composition containing only one of the materials may be applied.
- a coating composition containing such a first material which is a hexahydropyrimidopyrimidine compound having a structure represented by the above general formula (1) and a second material which transports electrons is formed on the surface to be formed of an organic thin film.
- the method for producing an organic thin film including the step of applying it on is one of the preferred embodiments of the method for producing an organic thin film of the present invention. Further, a step of first applying either a coating composition containing only the first material or a coating composition containing only the second material onto the surface to be formed of the organic thin film, and a step of applying the coating film formed by the step.
- a method for producing an organic thin film which comprises a step of applying a coating composition containing the other or both materials, or a step of applying a coating composition containing both the first material and the second material, and the same.
- the method for producing an organic thin film which comprises a step of applying a coating composition containing only one of the first material or the second material on the coating film formed by the step, is also a method for producing an organic thin film of the present invention. Is one of the preferred embodiments of.
- a coating composition containing a first material composed of a hexahydropyrimidopyrimidine compound having a structure represented by a specific general formula (1) having pKa of 1 or more and a second material for transporting electrons is described.
- a method for producing an organic thin film by producing and applying the coating composition will be described.
- the coating composition for example, a predetermined amount of the first material and the second material are supplied to the solvent contained in the container, or the solvent is supplied to the first material and the second material contained in the container, and the mixture is stirred and dissolved. Obtained by the method.
- the solvent used for dissolving the first material and the second material for example, an inorganic solvent, an organic solvent, or a mixed solvent containing these can be used.
- the inorganic solvent include nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, phosphoric acid, hydrochloric acid and the like.
- organic solvent examples include methyl ethyl ketone (MEK), acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MICK), diisobutyl ketone, 3,5,5-trimethylcyclohexanone, diacetone alcohol, cyclopentanone, and cyclohexanone.
- MEK methyl ethyl ketone
- MIBK methyl isobutyl ketone
- MICK methyl isopropyl ketone
- diisobutyl ketone 3,5,5-trimethylcyclohexanone
- diacetone alcohol cyclopentanone
- cyclopentanone and cyclohexanone.
- Ketone solvents such as methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), alcohol solvents such as glycerin, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran.
- Ether-based solvents such as (THF), tetrahydropyran (THP), anisole, diethylene glycol dimethyl ether (digrim), diethylene glycol ethyl ether (carbitol), cellosolve solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, hexane, pentane, heptane , Aliper hydrocarbon solvents such as cyclohexane, aromatic hydrocarbon solvents such as toluene, xylene, benzene, aromatic heterocyclic solvents such as pyridine, pyrazine, furan, pyrrole, thiophene, methylpyrrolidone, N, N -Amid solvents such as dimethylformamide (DMF), N, N-dimethylacetamide (DMA), halogen compound solvents such as chlorobenzene, dichloromethane, chloroform, 1,2-dichloroethane,
- Ester solvent sulfur compound solvent such as dimethyl sulfoxide (DMSO), sulfolane, nitrile solvent such as acetonitrile, propionitrile, acrylonitrile, organic acid solvent such as formic acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, triethylamine, pyridine
- organic solvents such as organic amine-based solvents such as diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, and carbonate-based solvents such as propylene carbonate, and among these, methyl ethyl ketone (MEK), acetone, diethyl ketone, and methyl isobutyl ketone.
- MEK methyl ethyl ketone
- Ketone-based solvents such as (MIBK), methylisopropylketone (MICK), diisobutylketone, 3,5,5-trimethylcyclohexanone, diacetone alcohol, and cyclopentanone are preferable.
- Examples of the method for applying the coating composition containing the first material and the second material include a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, and a wire bar coating method.
- Various coating methods such as a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.
- the conditions for the annealing treatment are preferably 70 to 200 ° C. for 0.1 to 5 hours in a nitrogen atmosphere or the atmosphere. By performing such an annealing treatment, the solvent can be vaporized to form an organic thin film.
- hexahydropyrimidyrimidine compound which is the first material represented by the above general formula (1)
- an organic thin film containing the first material and not containing the second material is also available. It is useful as a material for organic EL elements and the like.
- a method for producing an organic thin film which comprises a step of forming a film containing a hexahydropyrimidyrimidine compound having a structure represented by the general formula (1) on a surface to be formed, is also one of the present inventions.
- the method for producing an organic thin film includes a step of forming a film containing a hexahydropyrimidyrimidine compound having a structure represented by the general formula (1) on a surface to be formed containing a second material. It is one of the embodiments.
- Organic EL element The present invention also has a light emitting layer between the cathode and the anode, and further comprises a layer of the organic thin film of the present invention, a layer of a laminated film of the organic thin film layer and a metal oxide layer, or the organic of the present invention. It is also an organic electroluminescence (EL) device that includes any of the layers containing materials for electroluminescence devices.
- EL organic electroluminescence
- the organic thin film layer, the laminated film layer of the organic thin film layer and the metal oxide layer, and the layer containing the material for the organic electroluminescence device of the present invention all have a cathode and light emission in the organic EL device of the present invention.
- the layer containing the material for an organic electroluminescence device of the present invention may contain other components as long as it contains a hexahydropyrimidyrimidine compound having a structure represented by the above-mentioned general formula (1). , It is preferable that the layer is composed of only the hexahydropyrimidopyrimidine compound.
- the present invention is also an organic electroluminescence device having a light emitting layer between a cathode and an anode, and a layer of the organic thin film of the present invention between the cathode and the anode, or a layer of the organic thin film and a metal oxide. It is also an organic electroluminescence (EL) device that includes a layer of a laminated film with a layer and the light emitting layer contains a second material. Further, the present invention includes a layer of the organic thin film of the present invention or a layer of a laminated film of the organic thin film layer and a metal oxide layer between the cathode and the anode, and the organic thin film or the laminated film serves as a light emitting layer.
- EL organic electroluminescence
- EL organic electroluminescence
- the hexahydropyrimidyrimidine compound which is the first material of the present invention, has extremely excellent electron injectability, it is possible to directly inject electrons into the light emitting material and the host material used for the light emitting layer. Therefore, by using the first material of the present invention for the electron injection layer, it is possible to reduce the number of materials used or the number of layers to be laminated to obtain an organic EL device having a simpler structure. ..
- the element using the organic thin film or the laminated film of the present invention is an element in which the layer containing the first material, the layer containing the second material, and the light emitting layer are adjacent to each other, and the light emitting layer is used as the material of the layer containing the second material. Even when the light emitting material or host material used in the above is used, it is possible to inject electrons from the layer containing the first material, and by doing so, the layer containing the second material and the light emitting layer are common. Since it can be formed using materials, the number of materials used can be reduced.
- the second material may be either a light emitting material or a host material for the light emitting layer.
- the layer containing the second material is formed by using the light emitting material or the host material of the light emitting layer and used as the light emitting layer, it is not necessary to separately provide the light emitting layer. It is possible to use an organic EL element having a simple structure. Further, if the second material is used as the material of the layer adjacent to the anode side of the light emitting layer, the number of layers to be laminated can be further reduced to obtain an organic EL element having a simpler structure. Therefore, it is preferable that the light emitting layer contains the second material and that the light emitting layer has a layer containing the second material between the anode and the light emitting layer, both of which are suitable for the organic electroluminescence (EL) device of the present invention. It is one of the embodiments.
- FIG. 1 is a schematic cross-sectional view for explaining an example of the organic EL device of the present invention.
- the organic EL element 1 of the present invention shown in FIG. 1 has a light emitting layer 6 between the cathode 3 and the anode 9.
- the organic EL device 1 shown in FIG. 1 has an electron injection layer 5 made of the organic thin film of the present invention or the material for the organic electroluminescence device of the present invention between the cathode 3 and the light emitting layer 6.
- an oxide layer 4 is provided between the cathode 3 and the electron injection layer 5 made of the organic thin film of the present invention or the material for the organic electroluminescence device of the present invention, and the oxide layer 4 is the electron injection layer 5. Is adjacent to. All of these are preferred embodiments of the organic EL device of the present invention.
- the organic EL element 1 of the present invention has a cathode 3, an inorganic oxide layer 4, an electron injection layer 5, an electron transport layer 10, a light emitting layer 6, and a hole transport layer 7 on a substrate 2. It has a laminated structure in which the hole injection layer 8 and the anode 9 are formed in this order.
- having an inorganic oxide layer between the cathode and the layer of the organic thin film or the layer of the material for the organic electroluminescence device of the present invention is one of the preferred embodiments of the organic EL device of the present invention. Is.
- the organic EL element 1 shown in FIG. 1 is an organic EL element having an inverted structure in which a cathode 3 is arranged between a substrate 2 and a light emitting layer 6. Further, the organic EL element 1 shown in FIG. 1 is an organic-inorganic hybrid type organic electroluminescent element (at least an inorganic oxide layer 4) formed by using an inorganic compound. HOILED element).
- the organic EL element 1 shown in FIG. 1 may be a top-emission type that extracts light on the side opposite to the substrate 2, or may be a bottom-emission type that extracts light on the substrate 2 side.
- FIG. 2 is a diagram showing an example of an element configuration in the case where the organic EL element of the present invention is an organic EL element having a forward structure in which a light emitting layer 6 is arranged between the substrate 2 and the cathode 3.
- the hexahydropyrimidyrimidine compound of the present invention is extremely excellent in electron injectability, it is possible to directly inject electrons into the material used for the light emitting layer. Therefore, when the material for an organic EL device containing the hexahydropyrimidyrimidine compound of the present invention is used, for example, as shown in FIG. 3, the electron transport layer 10 is formed of the material used for the light emitting layer, and the light emitting layer 6 and the electrons are formed.
- the organic EL element uses the organic thin film of the present invention.
- the organic EL device in which the light emitting layer of the present invention contains the second material is not limited to the one having a forward structure, and may have a reverse structure. Good.
- an organic EL element having an inverted structure will be described as an example, but the organic EL element of the present invention has a forward structure in which an anode is arranged between a substrate and a light emitting layer. You may. Even when the organic EL element of the present invention has a forward structure, the organic thin film is provided between the cathode and the light emitting layer as in the case of the reverse structure. In the case of the reverse structure, the electron injection layer may be called an organic buffer layer. All of the contents described below can be applied to organic EL devices having a forward structure.
- substrate examples of the material of the substrate 2 include a resin material and a glass material.
- the resin material used for the substrate 2 include polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyether sulfone, polymethylmethacrylate, polycarbonate, polyarylate and the like.
- the organic EL element 1 having excellent flexibility can be obtained, which is preferable.
- the glass material used for the substrate 2 include quartz glass and soda glass.
- a transparent substrate is used as the material of the substrate 2.
- an opaque substrate may be used as the material of the substrate 2.
- the opaque substrate include a substrate made of a ceramic material such as alumina, a substrate having an oxide film (insulating film) formed on the surface of a metal plate such as stainless steel, and a substrate made of a resin material.
- the average thickness of the substrate 2 can be determined according to the material of the substrate 2, and is preferably 0.1 to 30 mm, more preferably 0.1 to 10 mm.
- the average thickness of the substrate 2 can be measured with a digital multimeter and a caliper.
- the cathode 3 is formed in direct contact with the substrate 2.
- the material of the cathode 3 include oxides such as ITO (indium tin oxide), IZO (indium zinc oxide), FTO (fluorinated tin oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , and Al-containing ZnO.
- oxides such as ITO (indium tin oxide), IZO (indium zinc oxide), FTO (fluorinated tin oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , and Al-containing ZnO.
- examples thereof include conductive materials of Al, Au, Pt, Ag, Cu or alloys containing these.
- ITO, IZO, and FTO as the material of the cathode 3.
- the average thickness of the cathode 3 is not particularly limited, but is preferably 10 to 500 nm, more preferably 100 to 200 nm.
- the inorganic oxide layer 4 has a function as an electron injection layer and / or a function as a cathode.
- the oxide layer 4 is a layer of a semiconductor or insulator laminated thin film.
- the oxide layer 4 is a layer in which one or both of a layer made of a single metal oxide, a layer made of a mixture of two or more kinds of metal oxides, and a layer made of a single metal oxide are laminated. , It may be any of the layers in which two or more kinds of metal oxides are mixed.
- Metal elements forming the metal oxide forming the oxide layer 4 include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, indium, gallium, etc. Examples include iron, cobalt, nickel, copper, zinc, cadmium, aluminum and silicon.
- the oxide layer 4 contains a layer in which two or more kinds of metal oxides are mixed, at least one of the metal elements constituting the metal oxide is composed of magnesium, aluminum, calcium, zirconium, hafnium, silicon, titanium, and zinc. It is preferable that the layer is composed of.
- the oxide layer 4 is a layer made of a single metal oxide, a layer made of a metal oxide selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide, and zinc oxide. Is preferable.
- the oxide layer 4 is a layer in which one or both of a layer in which two or more types of metal oxides are mixed and a layer composed of a single metal oxide are laminated, or a layer in which two or more types of metal oxides are mixed.
- Oxide layer 4 may include a 12CaO ⁇ 7Al 2 O 3 is an oxide semiconductor IGZO (indium gallium zinc oxide) and / or electride exhibiting good characteristics as a special composition.
- the average thickness of the oxide layer 4 is not particularly limited, but is preferably 1 to 1000 nm, and more preferably 2 to 100 nm.
- the average thickness of the oxide layer 4 can be measured by a stylus type step meter and spectroscopic ellipsometry.
- the electron injection layer 5 improves the speed and electron transportability of electron injection from the cathode to the light emitting layer 6.
- the electron injection layer 5 is made of the above organic thin film.
- the average thickness of the electron injection layer 5 is preferably 0.5 to 100 nm, more preferably 1 to 100 nm, further preferably 5 to 100 nm, and particularly preferably 10 to 50 nm. ..
- a method of applying a coating composition containing a first material and a second material, a coating composition containing the first material, and a coating material containing the second material are examples of the average thickness of the electron injection layer 5 is 0.5 nm or more.
- An electron-injected layer having a smooth surface is formed by forming the electron-injected layer 5 by using either a method of applying the composition in order or a method of laminating and forming a film of the first material and the second material, respectively. 5 is obtained, and leakage during manufacturing of the organic EL element 1 can be sufficiently prevented. Further, when the average thickness of the electron injection layer 5 is 100 nm or less, an increase in the drive voltage of the organic EL element 1 due to the provision of the electron injection layer 5 can be sufficiently suppressed. Further, the electron injection layer 5 may be formed by thin-film deposition, such as a method of simultaneously vapor-depositing the first material and the second material, or after vapor-filming one of the first material and the second material.
- a method of depositing one can be used.
- any of the structures shown in FIGS. 5-1 to 11-1 in the case of a forward structure, FIGS. 5-2 to 11-2 is used.
- the film may be composed of the single layer, and the entire film may constitute an electron injection layer (FIGS. 5-1 and 5-2), and the film is composed of only the first material and only the second material.
- One of the films may be formed adjacent to the cathode or oxide, and the other may be formed adjacent to the film (FIGS. 6-1 and 6-2, 7-1 and 7-2). ).
- a film containing the first material and the second material may be formed adjacent to the cathode or the oxide, and a film composed of only the second material may be formed adjacent to the film (FIG. 8-Fig. 8-). 1, 8-2), a film consisting of only the second material, which does not contain the first material, is formed adjacent to the cathode and oxide, and the film containing the first material and the second material is used as the film. Films may be formed adjacent to each other (FIGS. 9-1 and 9-2). Further, a film having a three-layer structure in which a film composed of only the first material or a film containing the first material and the second material is sandwiched between the films composed of only the second material (FIGS. 10-1, 10-2, FIG.
- the film may be formed so as to have the structure of 11-1 and 11-2).
- a film having any structure shown in FIGS. 5-1 to 11-1 and 5-2 to 11-2 is included in the present invention.
- the second material is applied to both of two adjacent films or two or more films having a three-layer structure.
- the second material contained in these two or more films may be the same or different.
- FIGS. 6-1 and 6-2, 7-1 and 7-2, and FIGS. 10-1 and 10-2 including the layer composed of only the first material are shown.
- the layer made of only the first material can be regarded as a layer formed from the organic thin film of the present invention (an organic thin film containing only the first material and not containing the second material).
- the average thickness of the electron injection layer 5 can be measured by, for example, a stylus type step meter or spectroscopic ellipsometry.
- the organic thin film of the present invention is formed on the oxide layer 4.
- the first material is an organic material having a pKa of 1 or more, is a material having an ability to extract protons (H + ) from other materials
- the organic thin film of the present invention is formed on the oxide layer 4.
- the electron injection layer 5 has a concentration distribution such that the concentration of the first material decreases from the oxide layer 4 side toward the electron transport layer 10 side.
- an organic electroluminescent device having an inverse structure as a method of forming an electron injection layer having such a concentration distribution, a solution containing the first material is applied onto the oxide layer 4 to form a coating film, and then a first A method of applying a solution containing two materials onto a coating film of the first material can be mentioned, but the process is not limited to this process as long as a concentration distribution can be formed.
- the organic thin film of the present invention is formed adjacent to the cathode 3, it is preferable that more first material is present on the cathode 3 side in order to sufficiently promote electron injection from the cathode 3.
- the electron injection layer 5 has a concentration distribution such that the concentration of the first material decreases from the cathode 3 side toward the electron transport layer 10 side.
- a solution containing a second material is applied onto the electron transport layer 10 to form a coating film, and then a first method is formed.
- a method of applying a solution containing a material onto a coating film of a second material can be mentioned, but the process is not limited to this process as long as a concentration distribution can be formed.
- the concentration distribution can be measured by TOF-SIMS (time-of-flight secondary ion mass spectrometry) or the like.
- a layer of the first material is formed on the oxide layer 4, and the first material and the second material are formed on the layer.
- a layer containing the above may be formed.
- a layer of a second material may be formed on the electron transport layer 10, and a layer containing the first material and the second material may be formed on the layer. In this case, either coating or thin film deposition can be used as a method for forming these layers.
- the first material which is an organic material having a pKa of 1 or more, is a material having an ability to extract protons (H + ) from other materials, and is preferably arranged at a defect portion of an inorganic compound (oxide). It hinders the reaction at the interface with oxygen and water that enter from the outside. The effect can be obtained even if the organic thin film of the present invention is not formed adjacent to the cathode or the oxide layer, but the organic thin film of the present invention can sufficiently exert the effect of the organic thin film of the present invention. , It is preferable to form a layer adjacent to the cathode or oxide layer.
- a film having a laminated structure thus obtained that is, a laminated film composed of an oxide layer and a layer of an organic thin film of the present invention formed adjacent to the oxide layer, a cathode, and the cathode.
- a laminated film composed of adjacent layers of the organic thin film of the present invention is also one of the present inventions.
- the organic EL element includes an oxide layer and a layer of an organic thin film of the present invention formed adjacent to the oxide layer between the cathode and the light emitting layer in the laminated structure, or the cathode and the cathode.
- the organic EL element is configured to include the organic thin film of the present invention, and also includes the laminated film of the present invention. It can also be said that it is configured.
- An organic EL device configured by including the organic thin film or laminated film of the present invention between such a cathode and a light emitting layer is also one of the present inventions.
- an organic EL device composed of the organic thin film of the present invention or a laminated film composed of a cathode and a layer of the organic thin film of the present invention formed adjacent to the cathode is also one of the present inventions. Is.
- the organic EL device of the present invention has an electron injection layer having a laminated film as shown in FIGS. 8-1, 8-2, 9-1, 9-2 or 11-1, 11-2. May be good. That is, it is preferable that the organic EL device of the present invention has a laminated film of a film containing the first material and the second material and a film containing the second material between the cathode and the light emitting layer. It is one of the embodiments. In this case, an organic EL device having a layer containing the second material between the light emitting layer and the film containing the first material and the second material, a cathode, and the first material and the second material are included. Any of the organic EL devices having a layer containing a second material between the film and the organic EL device is one of the preferred embodiments of the organic EL device of the present invention.
- Electrode transport material any material that can be usually used as the material of the electron transport layer may be used.
- a phosphine oxide derivative such as phenyl-dipyrenylphosphine oxide (POPy 2 ), Tris-1,3,5- (3'-(pyridine-3''-) Il) phenyl) pyridine derivatives such as benzene (TmPhPyB), quinoline derivatives such as (2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), 2-phenyl-4,6-bis (3,) 5-Dipyridylphenyl) Pyrimidine derivatives such as pyrimidine (BPyPPM), pyrazine derivatives, phenanthroline derivatives such as vasophenantroline (BPhen), 2,4-bis (4-biphenyl) -6- (4'-(2-pyridinyl) ) -4-
- POPy 2 phenyl-dipyrenylphos
- 2012-228460 Japanese Patent Application No. 2012-228460.
- Examples thereof include the boron-containing compounds described in Japanese Patent Application No. 2015-503053, Japanese Patent Application No. 2015-053872, Japanese Patent Application No. 2015-0811108, and Japanese Patent Application No. 2015-0811109, and one or more of these can be used.
- phosphine oxide derivatives such as Popy 2, metal complexes such as Alq 3
- pyridine derivatives such as TmPhPyB.
- the organic EL element of the present invention can be used as long as the organic EL element exerts its function, such as the organic EL element formed by using the light emitting material or the host material in which the layer containing the second material described above is used for the light emitting layer. It is not necessary to have an electron transport layer using the above electron transport material in the laminated structure.
- the average thickness of the electron transport layer 10 is not particularly limited, but is preferably 10 to 150 nm, more preferably 20 to 100 nm.
- the average thickness of the electron transport layer 10 can be measured by a stylus type step meter and spectroscopic ellipsometry.
- Light emitting layer As the material for forming the light emitting layer 6, any material that can be usually used as the material for the light emitting layer 6 may be used, or these may be mixed and used. Specifically, for example, as the light emitting layer 6, bis [2- (2-benzothiazolyl) phenolato] zinc (II) (Zn (BTZ) 2 ) and tris [1-phenylisoquinoline] iridium (III) (Ir ( It can include piq) 3) and. Further, the material forming the light emitting layer 6 may be a low molecular weight compound or a high molecular weight compound. In the present invention, the low molecular weight material means a material that is not a high molecular weight material (polymer), and does not necessarily mean an organic compound having a low molecular weight.
- polymer material forming the light emitting layer 6 examples include polyacetylene compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), and poly (alkylphenylacetylene) (PAPA); poly.
- polyacetylene compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), and poly (alkylphenylacetylene) (PAPA); poly.
- PPV poly (2,5-dialkoxy-para-phenylene vinylene)
- RO-PPV cyano-substituted-poly
- CN-PPV cyano-substituted-poly
- Polyparaphenylene vinylene compounds such as -dimethyloctylsilyl-para-phenylene vinylene) (DMOS-PPV), poly (2-methoxy, 5- (2'-ethylhexoxy) -para-phenylene vinylene) (MEH-PPV)
- Polythiophene compounds such as poly (3-alkylthiophene) (PAT), poly (oxypropylene) triol (POPT); poly (9,9-dialkylfluorene) (PDAF), poly (dioctylfluorene-alto-benzothiazole) ) (F8BT), ⁇ , ⁇ -bis [N, N'-di (methylphenyl) aminophenyl] -poly [
- Examples of the low molecular weight material forming the light emitting layer 6 include a tricoordinated iridium complex having 2,2'-bipyridine-4,4'-dicarboxylic acid as a ligand, and factories (2-phenylpyridine).
- Examples of the host material for the light emitting layer include carbazole compounds such as 4,4'-bis (9H-carbazole-9-yl) biphenyl (CPB); silicon compounds; phenanthroline compounds; triphenylene compounds and the like.
- the average thickness of the light emitting layer 6 is not particularly limited, but is preferably 10 to 150 nm, more preferably 20 to 100 nm.
- the average thickness of the light emitting layer 6 may be measured by a stylus type step meter or may be measured by a crystal oscillator film thickness meter at the time of film formation of the light emitting layer 6.
- hole transport layer As the hole-transporting organic material used for the hole-transporting layer 7, various p-type polymer materials (organic polymers) and various p-type low-molecular-weight materials can be used alone or in combination. Specifically, as a material for the hole transport layer 7, for example, N, N'-di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine ( ⁇ ).
- the material of these hole transport layers 7 can also be used as a mixture with other compounds.
- polythiophene used as a material for the hole transport layer 7 poly (3,4-ethylenedioxythiophene / styrenesulfonic acid) (PEDOT / PSS) and the like can be mentioned.
- PEDOT / PSS poly (3,4-ethylenedioxythiophene / styrenesulfonic acid)
- the organic EL device of the present invention does not have to have the hole transport layer using the hole transport material as described above.
- the average thickness of the hole transport layer 7 is not particularly limited, but is preferably 10 to 150 nm, more preferably 20 to 100 nm.
- the average thickness of the hole transport layer 7 can be measured by, for example, a stylus type profilometer or spectroscopic ellipsometry.
- the hole injection layer 8 may be made of an inorganic material or an organic material. Since the inorganic material is more stable than the organic material, it is easy to obtain high resistance to oxygen and water as compared with the case where the organic material is used.
- the inorganic material is not particularly limited, and for example, one or more metal oxides such as vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 3 ), and ruthenium oxide (RuO 2) may be used. it can.
- Organic materials include dipyrazino [2,3-f: 2', 3'-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) and 2,3,5. 6-Tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4-TCNQ), fullerene, Heraeus hole injection material "Clevios HIL1.3N” and the like can be used.
- the average thickness of the hole injection layer 8 is not particularly limited, but is preferably 1 to 1000 nm, and more preferably 5 to 50 nm.
- the average thickness of the hole injection layer 8 can be measured at the time of film formation with a crystal oscillator film thickness meter or a stylus type step meter.
- anode examples of the material used for the anode 9 include ITO, IZO, Au, Pt, Ag, Cu, Al, and alloys containing these. Among these, it is preferable to use ITO, IZO, Au, Ag, Al as the material of the anode 9.
- the average thickness of the anode 9 is not particularly limited, but is preferably 10 to 1000 nm, more preferably 30 to 150 nm. Further, even when an opaque material is used as the material of the anode 9, for example, by setting the average thickness to about 10 to 30 nm, it can be used as a transparent anode in a top emission type organic EL element.
- the average thickness of the anode 9 can be measured by a crystal oscillator film thickness meter at the time of film formation of the anode 9.
- the organic EL element 1 shown in FIG. 1 may be sealed if necessary.
- the organic EL element 1 shown in FIG. 1 is provided by a sealing container (not shown) having a concave space for accommodating the organic EL element 1 and an adhesive that adheres the edge of the sealing container to the substrate 2. It may be sealed.
- the organic EL element 1 may be housed in a sealing container and sealed by filling it with a sealing material made of an ultraviolet (UV) curable resin or the like.
- the organic EL element 1 shown in FIG. 1 includes a plate member (not shown) arranged on the anode 9 and a frame member (not shown) arranged along the edge of the plate member facing the anode 9.
- the sealing member (not shown) may be sealed with an adhesive that adheres between the plate member and the frame member and between the frame member and the substrate 2.
- a desiccant that absorbs moisture may be arranged in the sealing container or inside the sealing member. Further, a material that absorbs moisture may be used as the sealing container or the sealing member. Further, a space may be formed in the sealed sealing container or inside the sealing member.
- a resin material, a glass material, or the like can be used as the material of the sealing container or sealing member used when sealing the organic EL element 1 shown in FIG. 1.
- the resin material and the glass material used for the sealing container or the sealing member include the same materials as those used for the substrate 2.
- a second material composed of the contained compound for example, as compared with the case where an alkali metal, which is an unstable material in the atmosphere, is used as the electron-injected layer.
- Excellent durability can be obtained. Therefore, if the water vapor transmittance of the sealing container or the sealing member is about 10 -4 to 10 -3 orders (g / m 2 / day), the deterioration of the organic EL element 1 can be sufficiently suppressed.
- the cathode 3 is formed on the substrate 2.
- the cathode 3 can be formed by a sputtering method, a vacuum vapor deposition method, a sol-gel method, a spray pyrolysis (SPD) method, an atomic layer deposition (ALD) method, a vapor phase deposition method, a liquid phase film formation method, or the like.
- a method of joining metal foils may be used for forming the cathode 3.
- the inorganic oxide layer 4 is formed on the cathode 3.
- the oxide layer 4 is formed by using, for example, a spray pyrolysis method, a sol-gel method, a sputtering method, a vacuum vapor deposition method, or the like.
- the surface of the oxide layer 4 thus formed may be uneven rather than smooth.
- the electron injection layer 5 is formed on the oxide layer 4.
- the electron injection layer 5 can be formed by the above-mentioned method for producing an organic thin film.
- the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 are formed on the electron injection layer 5 in this order.
- the method for forming the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 is not particularly limited, and conventionally, the method of forming the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 is matched to the characteristics of the materials used for each of the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7.
- Various known forming methods can be appropriately used.
- examples include a coating method for coating, a vacuum vapor deposition method, and an ESDUS (Evolaactive Spray Depositionion from Ultra-dilute Solution) method.
- the solvent solubility of the organic compounds forming the electron transport layer 10 the light emitting layer 6 and the hole transport layer 7 is low, it is preferable to use the vacuum vapor deposition method or the ESDUS method.
- the organic compounds to be the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 are each dissolved in a solvent.
- an organic compound solution containing an organic compound serving as an electron transport layer 10, a light emitting layer 6, and a hole transport layer 7 is formed.
- Examples of the solvent used for dissolving the organic compound that becomes the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 include aromatics such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, and tetramethylbenzene.
- aromatics such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, and tetramethylbenzene.
- Group hydrocarbon solvents, aromatic heterocyclic solvent such as pyridine, pyrazine, furan, pyrrole, thiophene and methylpyrrolidone, aliphatic hydrocarbon solvents such as hexane, pentane, heptane and cyclohexane are preferable, and these alone are used alone. Alternatively, they can be mixed and used.
- Examples of the method for applying the organic compound solution containing the organic compound to be the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7 include a spin coat method, a casting method, a micro gravure coat method, a gravure coat method, and a bar coat method.
- Various coating methods such as a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.
- the hole injection layer 8 and the anode 9 are formed on the hole transport layer 7 in this order.
- the hole injection layer 8 is made of an inorganic material
- the hole injection layer 8 can be formed in the same manner as the oxide layer 4, for example.
- the hole transport layer 9 is made of an organic material
- the hole injection layer 8 can be formed in the same manner as, for example, the electron transport layer 10, the light emitting layer 6, and the hole transport layer 7.
- the anode 9 can be formed in the same manner as the cathode 3, for example.
- the organic EL element 1 of the present embodiment has an electron injection layer 5 made of an organic thin film containing the above-mentioned first material having a pKa of 1 or more and the second material for transporting electrons.
- the first material extracts a proton (H + ) from the second material, a negative charge is generated and excellent electron injection property can be obtained. Therefore, the organic EL element 1 has a high electron injection / electron transport speed from the cathode 3 to the light emitting layer 6 and a low drive voltage.
- the organic thin film containing the above-mentioned first material which is an organic material having a pKa of 1 or more and the second material which transports electrons is a laminated film, and a layer formed by the second material.
- the organic EL device 1 which is a layer different from the electron injection layer formed by the first material is also another embodiment of the organic EL device of the present invention. Even in the organic EL element of such an embodiment, the organic EL element 1 has a high speed of electron injection / electron transport from the cathode 3 to the light emitting layer 6 and a low drive voltage.
- the organic EL device of the present invention is not limited to the organic EL device described in the above-described embodiment. Specifically, in the above-described embodiment, the case where the organic thin film functions as an electron injection layer has been described as an example, but the organic EL device of the present invention has an organic thin film between the cathode and the light emitting layer. You just have to have it. Therefore, the organic thin film is not limited to the electron injection layer, and may be provided as a layer that also serves as an electron injection layer and an electron transport layer, or may be provided as an electron transport layer.
- the inorganic oxide layer 4, the electron transport layer 10, the hole transport layer 7, and the hole injection layer 8 may be formed as needed and are provided. It does not have to be. Further, each of the cathode 3, the oxide layer 4, the electron injection layer 5, the electron transport layer 10, the light emitting layer 6, the hole transport layer 7, the hole injection layer 8, and the anode 9 is formed of one layer. It may be composed of two or more layers.
- another layer may be provided between the layers shown in FIG. Specifically, an electron blocking layer or the like may be provided, if necessary, for the purpose of further improving the characteristics of the organic EL element.
- the organic EL element having the reverse structure in which the cathode 3 is arranged between the substrate 2 and the light emitting layer 6 has been described as an example, but the anode is arranged between the substrate and the light emitting layer. It may have a forward structure.
- the organic EL device of the present invention can change the emission color by appropriately selecting a material such as a light emitting layer, and can also obtain a desired emission color by using a color filter or the like in combination. Therefore, it can be suitably used as a light emitting part of a display device or a lighting device.
- the display device of the present invention includes the organic EL element of the present invention having an organic thin film between the cathode and the light emitting layer, having excellent productivity and a low driving voltage. Therefore, it is preferable as a display device.
- the lighting device of the present invention includes the organic EL element of the present invention, which is excellent in productivity and has a low drive voltage. Therefore, it is preferable as a lighting device.
- the present invention is not limited to the above-described embodiment, and the organic thin film of the present invention can be used for devices such as organic thin film solar cells, photoelectric conversion elements, and thin film transistors.
- the organic thin film solar cell and the photoelectric conversion element of the present invention include an organic thin film.
- an organic thin film is used for an electron injection layer of an organic thin film solar cell or a photoelectric conversion element, a negative charge is generated by the first material of the organic thin film extracting protons (H +) from the second material, so that electrons are generated.
- the transportation speed is fast and high power generation efficiency can be obtained. Therefore, the organic thin-film solar cell or photoelectric conversion element containing the organic thin film of the present invention is preferable as the organic thin-film solar cell or photoelectric conversion element.
- the thin film transistor of the present invention includes an organic thin film.
- the organic thin film of the present invention is suitable as a material for an organic thin film solar cell, a photoelectric conversion element, and a thin film transistor, and therefore has a structure represented by the above general formula (1) constituting the organic thin film. Hexahydropyrimidopyrimidine compounds are also suitable as these materials.
- Such a material for an organic thin-film solar cell containing a hexahydropyrimidyrimidine compound having a structure represented by the above general formula (1), a material for a photoelectric conversion element, and a material for a thin film transistor are also one of the present inventions. is there.
- Synthesis example 2 Rac-BINAP (747 mg) and toluene (67 mL) were placed in a 200 mL three-necked flask and heated to 90 ° C. under a nitrogen atmosphere to dissolve them. After allowing to cool to room temperature, palladium acetate (180 mg) was added, and the mixture was stirred at room temperature for 1 hour. To this, 2,6-dibromopyridine (4.74 g), 1,3,4,6,7,8-hexahydro-2H-pyrimidin [1,2-a] pyrimidine (6.13 g), KOtBu (6.28 g). ) was added, and the mixture was heated and stirred at 90 ° C. overnight.
- Synthesis example 3 Rac-BINAP (369 mg) was added to toluene (100 mL) in a 300 mL three-necked flask under a nitrogen stream at room temperature, and the mixture was heated and stirred in an oil bath at 60 ° C. until the solid was dissolved. Pd (OAc) 2 (98 mg) and 6-bromo-2,2'-bipyridine (5.00 g) were added to the mixture returned to room temperature, and the mixture was stirred again in an oil bath at 60 ° C. for 20 minutes.
- Synthesis example 4 Rac-BINAP (357 mg) was added to toluene (97 mL) in a three-necked flask under a nitrogen stream at room temperature, and the mixture was heated and stirred in an oil bath at 60 ° C. until the solid was dissolved. Palladium acetate (86 mg) and 2-bromo-1,10-phenanthroline (4.40 g) were added to the mixture returned to room temperature, and the mixture was stirred again in an oil bath at 60 ° C. for 30 minutes.
- Synthesis example 5 Rac-BINAP (301 mg) was added to toluene (80 mL) in a flask under a nitrogen stream at room temperature, and the mixture was heated and stirred in an oil bath at 60 ° C. until the solid was dissolved. Palladium acetate (78 mg) and 6,6'-dibromo-2,2'-bipyridine (5.00 g) were added to the mixture returned to room temperature, and the mixture was stirred again in an oil bath at 60 ° C. for 20 minutes.
- 1,3,4,6,7,8-hexahydro-2H-pyrimidin [1,2-a] pyrimidine (4.90 g) and KOtBu (8.95 g) were added to the mixture returned to room temperature, and the oil bath was 110 ° C. Was stirred for 6 hours. Diethyl ether was added to the mixture returned to room temperature, and the insoluble material was filtered off. The insoluble material was rinsed with a mixed solvent of chloroform-ethyl acetate, and the combined filtrate was concentrated under reduced pressure. Methanol was added to the residue, and the precipitate was collected by filtration.
- the obtained solid (3.60 g) was washed by heating with methanol (50 mL), returned to room temperature, and the precipitated solid was collected by filtration again.
- the obtained solid (2.20 g) was sublimated and purified to obtain a compound (1.45 g, 21.0%) of the following formula (2-5) as a white solid.
- Synthesis example 7 Put rac-BINAP (0.213 g, 0.342 mmol) and toluene (20 mL) in a 100 mL reaction vessel, raise the temperature to 70 ° C. and completely dissolve, then add palladium acetate (51 mg, 0.228 mmol) to room temperature. Stirred while allowing to cool. To this, 2,4,6-tribromopyridine (1.2 g, 3.8 mmol), KOtBu (1.8 g, 16.0 mmol), 1,3,4,6,7,8-hexahydro2H-pyrimidine [1] , 2-a] Pyrimidine (1.9 g, 13.7 mmol) was added, and the mixture was heated and stirred at 100 ° C. for 14 hours. The reaction solution was allowed to cool to room temperature, filtered through Celite, and the filtrate was concentrated to obtain 2.2 g of the compound of the following formula (2-11).
- Synthesis example 8 Rac-BINAP (0.238 g, 0.383 mmol) and dehydrated toluene (55 mL) were placed in a 200 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.054 g, 0.24 mmol) was added, and the inside of the reaction vessel was replaced with argon.
- Synthesis example 9 Rac-BINAP (0.138 g, 0.221 mmol) and dehydrated toluene (35 mL) were placed in a 100 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.0331, 0.148 mmol) was added, and the inside of the reaction vessel was replaced with argon.
- Synthesis example 10 Rac-BINAP (1.21 g, 1.95 mmol) and dehydrated toluene (350 mL) were placed in a 500 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.345, 1.54 mmol) was added, and the inside of the reaction vessel was replaced with argon.
- Synthesis example 11 Rac-BINAP (0.407 g, 0.653 mmol) and dehydrated toluene (60 mL) were placed in a 100 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.124, 0.551 mmol) was added, and the inside of the reaction vessel was replaced with argon.
- Synthesis example 12 Rac-BINAP (1.60 g, 2.57 mmol) and dehydrated toluene (350 mL) were placed in a 500 mL eggplant flask and dissolved by heating at 90 ° C. This was cooled to room temperature, palladium acetate (0.395 g, 1.76 mmol) was added, and the inside of the reaction vessel was replaced with argon.
- Synthesis example 13 The boron-containing compound represented by the following formula (4) was synthesized by the same method as in Synthesis Examples 1 to 3 of International Publication No. 2016/181705.
- Synthesis example 14 ⁇ Synthesis of Monomer for Boron-Containing Polymer Synthesis> Compound (3.96 g) represented by the following formula (8), 4-pyridineboronic acid (1.03 g), Pd (PPh 3 ) 4 (0.24 g), sodium carbonate (2.24 g) in a 300 mL reaction vessel. ), Toluene (40 mL), distilled water (40 mL) and ethanol (20 mL) were added. The obtained suspension was stirred for 10 minutes while argon bubbling, heated to 95 ° C. in an oil bath, and heated and stirred at the same temperature for 18 hours.
- Example 1 An organic EL device having the reverse structure of the laminated structure shown in FIG. 1 was produced as follows.
- the substrate 2 a commercially available transparent glass substrate having an average thickness of 0.7 mm and having an electrode (cathode 3) patterned with a width of 3 mm made of ITO having a thickness of 150 nm was prepared.
- the substrate 2 having the cathode 3 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes.
- the substrate 2 having the cathode 3 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
- the substrate 2 on which the cathode 3 washed in [1] was formed was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure in the chamber of the sputtering apparatus to a pressure of about 1 ⁇ 10 -4 Pa, sputtering is performed with argon and oxygen introduced, and a zinc oxide layer having a film thickness of about 3 nm is placed on the cathode 3 of the substrate 2. An oxide layer 4) was prepared. When the zinc oxide layer was produced, zinc oxide was prevented from being formed on a part of the ITO electrode (cathode 3) in order to take out the electrode.
- the substrate 2 on which the oxide layer 4 was formed was annealed in the atmosphere at 400 ° C. for 1 hour.
- an organic thin film containing the first material and the second material was formed on the oxide layer 4 as the electron injection layer 5 by the method shown below.
- the boron-containing compound represented by the formula (4) and the compound of the formula (2-2) are dissolved in cyclopentanone (concentration is 0.5% by weight) to form a coating material. I got something.
- the substrate 2 on which the cathode 3 and the oxide layer 4 produced in [2] were formed was placed on the spin coater.
- the substrate 2 was rotated at 3000 rpm for 30 seconds to form a coating film. Then, an electron injection layer 5 was formed by subjecting it to annealing treatment at 150 ° C. for 1 hour in a nitrogen atmosphere using a hot plate. The average thickness of the obtained electron injection layer 5 was 15 nm. [4] Next, the substrate 2 on which each layer up to the electron injection layer 5 was formed was fixed to the substrate holder of the vacuum vapor deposition apparatus.
- the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and the electron transport layer 10, the light emitting layer 6, the hole transport layer 7, and the hole are injected by the vacuum vapor deposition method by resistance heating.
- the layer 8 and the anode 9 were continuously formed.
- an electron transport layer 10 having a thickness of 10 nm made of Zn (BTZ) 2 was formed.
- Zn (BTZ) 2 was used as a host and Ir (piq) 3 was used as a dopant for co-depositing at 20 nm to form a light emitting layer 6.
- the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer 6.
- a 50 nm film of ⁇ -NPD was formed on the substrate 2 on which the light emitting layer 6 was formed to form the hole transport layer 7.
- HAT-CN was formed into a 10 nm film to form a hole injection layer 8.
- an anode 9 made of aluminum having a film thickness of 100 nm was formed on the substrate 2 on which the hole injection layer 8 was formed by a vacuum vapor deposition method.
- the anode 9 was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
- the substrate 2 on which each layer up to the anode 9 is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) curable resin.
- UV ultraviolet
- Example 2 In the same manner as in Example 1 except that the compound of formula (2-4) was used instead of the compound of formula (2-2) in the step of [3] of Example 1, the organic of Example 2 was used. An EL element was obtained.
- Comparative Example 1 In the step [3] of Example 1, only the boron-containing compound represented by the formula (4) was dissolved in cyclopentanone without using the compound of the formula (2-2) (concentration was 0.5% by weight). An organic EL device of Comparative Example 1 was obtained in the same manner as in Example 1 except that the above-mentioned coating composition was used.
- Example 3 In the step [3] of Example 1, the boron-containing compound represented by the formula (4) and the compound of the formula (2-2) (weight ratio 1: 2) were dissolved in cyclopentanone (concentration: 0.5). An organic EL device of Example 3 was obtained in the same manner as in Example 1 except that the coating composition (% by weight) was used.
- Example 4 In the step [3] of Example 1, the boron-containing compound represented by the formula (4) and the compound of the formula (2-9) (weight ratio 1: 2) were dissolved in cyclopentanone (concentration: 0.5). An organic EL device of Example 4 was obtained in the same manner as in Example 1 except that the coating composition (% by weight) was used.
- Comparative Example 2 In the step [3] of Example 1, the boron-containing compound represented by the formula (4) and MTBD (weight ratio 1: 2) represented by the following formula (15) are dissolved in cyclopentanone (concentration is 0). An organic EL device of Comparative Example 2 was obtained in the same manner as in Example 1 except that the coating composition (5.5% by weight) was used.
- the brightness was measured using the device, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG. Further, FIG. 14 shows the state of light emission of these elements.
- Example 5 An organic EL device of Example 5 was obtained in the same manner as in Example 1 except that the step of [3] of Example 1 was as shown in [3-1] below. [3-1] Using a vacuum vapor deposition apparatus, a boron-containing compound represented by the formula (4) was used as a host, and a compound of the formula (2-2) was used as a dopant for co-depositing at 10 nm to form an electron injection layer 5. .. At this time, the doping concentration was adjusted so that the compound of the formula (2-2) was 5% by mass with respect to the entire electron injection layer 5.
- Comparative Example 3 In the step of [3-1] of Example 5, the organic EL device of Comparative Example 3 was obtained in the same manner as in Example 5 except that only the boron-containing compound represented by the formula (4) was formed into a 10 nm film. It was.
- a voltage is applied to the organic EL elements manufactured in Example 5 and Comparative Example 3 using a "2400 type source meter” manufactured by Keithley, and brightness is increased using "LS-100” manufactured by Konica Minolta. The measurement was performed and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
- Example 6 An organic EL device of Example 6 was obtained in the same manner as in Example 1 except that the step of [2] of Example 1 was not performed and the step of [3] was as described in [3-1] above. ..
- Example 7 In the step of [3-1] of Example 5, a triazine compound represented by the following formula (16) described in JP-A-2018-206888 was used instead of the compound of formula (4), and of formula (2-2). An organic EL device of Example 7 was obtained in the same manner as in Example 5 except that the dope concentration was 10% by mass.
- Example 8 An organic EL device of Example 8 was obtained in the same manner as in Example 1 except that the step of [3] of Example 1 was carried out as in [3-2] below. [3-2] Using a vacuum vapor deposition apparatus, the compound of formula (2-2) is vapor-deposited by 1 nm, and then the compound of formula (16) is vapor-deposited by 10 nm to obtain the compound of formula (2-2). An electron injection layer 5 on which the compound (16) was laminated was formed.
- Comparative Example 4 In the step of [3-1] of Example 7, the organic EL device of Comparative Example 4 was obtained in the same manner as in Example 7 except that only the triazine compound represented by the formula (16) was formed into a 10 nm film. ..
- Example 9 In the step of [3-1] of Example 5, a boron compound represented by the following formula (17) was used instead of the compound of the formula (4), and the doping concentration of the formula (2-2) was set to 5% by mass.
- the organic EL element of Example 9 was obtained in the same manner as in Example 5 except for the above.
- Example 10 An organic EL device of Example 10 was obtained in the same manner as in Example 1 except that the step of [3] of Example 1 was carried out as in [3-3] below.
- the boron-containing polymer represented by the following formula (7) was dissolved in dimethylacetamide (concentration: 0.1% by weight) to obtain a coating composition.
- the substrate 2 on which the cathode 3 and the oxide layer 4 produced in [2] were formed was placed on the spin coater. Then, while dropping the coating composition onto the oxide layer 4, the substrate 2 was rotated at 3000 rpm for 30 seconds to form a coating film. Then, an annealing treatment was carried out at 120 ° C.
- this substrate 2 is fixed to the substrate holder of the vacuum vapor deposition apparatus, and the boron-containing compound represented by the formula (16) is used as a host and the compound of the formula (2-2) is used as a dopant to co-deposit 10 nm.
- An electron injection layer 5 in which a mixed film of the compound of the formula (17) and the compound of the formula (2-2) was laminated was formed on the upper layer of 7).
- the compound of the formula (2-2) was made to be 5% by mass with respect to the boron compound of the formula (17). ..
- Example 11 The organic EL element 11 having a forward structure with a laminated structure shown in FIG. 20 was manufactured by the method shown below.
- a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm (hereinafter, also simply referred to as a substrate) having an anode 9 made of an ITO film (patterned to a film thickness of 100 nm and a width of 3 mm) was prepared.
- the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes, and then boiled in isopropanol for 5 minutes. Then, the substrate was taken out of isopropanol, dried by a nitrogen blow, and UV ozone washed for 20 minutes.
- a hole injection layer 8 having a thickness of 30 nm made of PEDOT (Clevios HIL1.3N) was formed.
- the substrate formed up to PEDOT is fixed to the substrate holder in the chamber of the vacuum vapor deposition apparatus, the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and resistance heating is performed.
- the hole transport layer 7, the light emitting layer 6, the electron transport layer 10, the electron injection layer 5, the cathode 1 (cathode 3'in FIG. 20) and the cathode 2 (cathode 3 in FIG. 20) are continuously connected by the vacuum vapor deposition method according to the above. Formed.
- a hole transport layer having a thickness of 30 nm made of ⁇ -NPD represented by the above formula (13) was formed.
- Zn (BTZ) 2 represented by the above formula (11) was used as a host, and Ir (piq) 3 represented by the above formula (12) was used as a dopant to co-deposit 30 nm to form a light emitting layer.
- the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer.
- 40 nm of TmPPyTZ represented by the following formula (18) was formed on the substrate on which the light emitting layer was formed to form an electron transport layer.
- the compound of the above formula (2-2) was formed into a 1 nm film to form an electron injection layer.
- a cathode 1 (cathode 3'in FIG. 20) co-deposited with silver and magnesium so as to have a mass ratio of 9: 1 is formed to form 25 nm, and then a film thickness consisting of only silver.
- a 100 nm cathode 2 (cathode 3 in FIG. 20) was formed.
- the cathodes 1 and 2 were formed using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
- the substrate on which each layer up to the cathode is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) cured resin.
- a sealing material made of an ultraviolet (UV) cured resin was obtained.
- a voltage was applied to the organic EL element produced in Example 11 and the organic EL element produced in Example 8 using a "2400 type source meter” manufactured by Caseley Co., Ltd., and "LS-100” manufactured by Konica Minolta Co., Ltd.
- the brightness was measured using the above, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
- Example 12 In Example 11, the element of Example 12 was produced in the same manner as in Example 11 except that the step [4] was changed to [4-1]. [4-1] Next, the substrate formed up to PEDOT is fixed to the substrate holder in the chamber of the vacuum vapor deposition apparatus, and the pressure in the chamber of the vacuum vapor deposition apparatus is reduced to 1 ⁇ 10-5 Pa. The hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, and the cathode were continuously formed by the vacuum vapor deposition method by resistance heating. First, a hole transport layer having a thickness of 40 nm made of ⁇ -NPD represented by the above formula (13) was formed.
- Zn (BTZ) 2 represented by the above formula (11) was used as a host, and Ir (piq) 3 represented by the above formula (12) was used as a dopant to co-deposit 30 nm to form a light emitting layer.
- the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer.
- a boron-containing compound represented by the formula (4) was formed into a 10 nm film on the substrate on which the light emitting layer was formed to form an electron transport layer.
- a boron-containing compound represented by the formula (4) was used as a host, and a compound of the formula (2-2) was used as a dopant for co-depositing at 35 nm to form an electron injection layer. At this time, the doping concentration was adjusted so that the compound of the formula (2-2) was 5% by mass with respect to the entire electron injection layer.
- a cathode having a film thickness of 100 nm made of aluminum was formed on the substrate on which the electron injection layer was formed. The cathode was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
- Example 13 In Example 12, the device of Example 13 was produced in the same manner as in Example 12 except that the doping concentration of compound (2-2) in the electron injection layer was set to 20% by mass.
- Example 12 the device of Comparative Example 5 was produced in the same manner as in Example 12 except that the material used for the electron injection layer was only the boron-containing compound of the formula (4).
- Comparative Example 6 In Example 12, Comparative Example 6 was carried out in the same manner as in Example 12 except that the film thickness of the boron compound (4) in the electron transport layer was 45 nm and the material used for the electron injection layer was lithium fluoride to form a film of 0.8 nm. The element of was manufactured.
- Example 14 In Example 12, the element of Example 14 was produced in the same manner as in Example 12 except that the step [4-1] was changed to [4-2]. [4-2] Next, the substrate formed up to PEDOT is fixed to the substrate holder in the chamber of the vacuum vapor deposition apparatus, and the pressure in the chamber of the vacuum vapor deposition apparatus is reduced to 1 ⁇ 10 -5 Pa. The hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, and the cathode were continuously formed by the vacuum vapor deposition method by resistance heating. First, a hole transport layer having a thickness of 40 nm made of ⁇ -NPD represented by the above formula (13) was formed.
- Zn (BTZ) 2 represented by the above formula (11) was used as a host, and Ir (piq) 3 represented by the above formula (12) was used as a dopant to co-deposit 30 nm to form a light emitting layer.
- the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer.
- a boron-containing compound represented by the formula (4) was formed into a 10 nm film on the substrate on which the light emitting layer was formed to form an electron transport layer.
- a boron-containing compound represented by the formula (4) was used as a host, and a compound of the formula (2-2) was used as a dopant for co-deposited 35 nm. At this time, the doping concentration was adjusted so that the compound of the formula (2-2) was 5% by mass with respect to the entire electron injection layer 1. Further, a boron-containing compound represented by the formula (4) was vapor-deposited at 5 nm to form an electron injection layer which is a laminated film of a film containing the first material and the second material and a film containing only the second material. Next, a cathode having a film thickness of 100 nm made of aluminum was formed on the substrate on which the electron injection layer was formed. The cathode was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
- the brightness was measured using the device, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
- the time course of the brightness of the organic EL elements of Examples 13 and 6 and the time change of the brightness of the organic EL elements of Examples 12 and 14 were investigated. The results are shown in FIGS. 23 and 24.
- Example 15 An organic EL device having a forward structure with a laminated structure shown in FIG. 25 was produced by the method shown below.
- the ITO electrode (anode 9) of the substrate used was patterned with a width of 2 mm.
- This substrate was ultrasonically cleaned with Clean Ace and pure water, and then steam-cleaned in isopropanol for 5 minutes. The substrate was dried by nitrogen blow and UV ozone washing was performed for 10 minutes.
- This substrate was set on a spin coater, poly (3,4-ethylenedioxythiophene / styrene sulfonic acid) (PEDOT / PSS) (Klevios CH8000) was added dropwise, and the mixture was rotated at 2000 rpm for 60 seconds. Further, it was dried on a hot plate at 130 ° C. for 10 minutes to form a hole injection layer 8 made of PEDOT / PSS on the anode. The average thickness of the hole injection layer was 50 nm. The average thickness of the hole injection layer was measured by a stylus type step meter.
- PEDOT / PSS poly (3,4-ethylenedioxythiophene / styrene sulfonic acid)
- a 2% xylene solution of poly (dioctylfluorene-alto-benzothiadiazole) (F8BT) was prepared.
- the substrate produced in the above step [2] was set in the spin coater.
- the F8BT-xylene solution was dropped onto the hole injection layer formed in the above step [2] and rotated at 2,000 rpm for 60 seconds to form a light emitting layer 6 made of F8BT.
- the average thickness of the light emitting layer was 20 nm.
- the average thickness of the light emitting layer was measured by a stylus type step meter.
- the substrate produced in the above step [3] was set in a spin coater.
- a 1-propanol solution (1% by weight) of the compound of the formula (2-2) was added dropwise onto the light emitting layer formed in the above step [3], and the mixture was rotated at 2000 rpm for 60 seconds to be placed on the light emitting layer.
- the electron injection layer 5 was formed.
- the average thickness of the electron injection layer was below the measurement limit for the stylus type step type.
- the substrate produced in the above step [4] was fixed to the substrate holder of the vacuum vapor deposition apparatus.
- An aluminum wire (Al) was placed in an alumina crucible and set as a vapor deposition source.
- the inside of the vacuum vapor deposition apparatus was depressurized to about 1 ⁇ 10 -4 Pa, and Al (cathode 3) was vapor-deposited on the electron injection layer so as to have an average thickness of 100 nm to prepare an organic electroluminescent device.
- the average thickness of the cathode was measured at the time of film formation with a crystal oscillator film thickness meter.
- a voltage is applied to the organic EL elements manufactured in Example 15 and Comparative Example 7 using a "2400 type source meter” manufactured by Keithley, and brightness is increased using "LS-100” manufactured by Konica Minolta. The measurement was performed and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIG.
- Examples 16 to 20 and Comparative Examples 8 to 15 An organic EL device having a forward structure was manufactured by the method shown below.
- the elements of Examples 16 to 20 and Comparative Examples 8, 10, 12, and 14 have the laminated structure of FIG. 2, and the elements of Comparative Examples 9, 11, 13, and 15 have an electron injection layer 5 from FIG. It has a laminated structure excluding.
- As the substrate 2 a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (anode 9) patterned with a width of 3 mm made of ITO having a thickness of 100 nm was prepared.
- the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes. Then, the substrate 2 having the anode 9 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
- the substrate 2 on which the anode 9 washed in [1] is formed is set on a spin coater, and a hole injection material "Clevios HIL1.3N" manufactured by Heraeus is used as a hole injection layer 8 with a film thickness of 10 nm.
- the film was formed so as to be. Then, it was heated for 1 hour on a hot plate heated to 180 ° C.
- fac-tris (3-methyl-2-phenylpyridinato-N, C2'-) iridium (III) (Ir (mppy) 3 ) represented by the following formula (20), and the above formula ( ⁇ -NPD represented by 13) and N3, N3''-bis (dibenzo [b, d] thiophen-4-yl) -N3, N3'''-diphenyl- [ 1,1': 2', 1'': 2'', 1'''-quaterphenyl] -3,3'''-diamine (4DBTP3Q) and formula (2-2) as the first material.
- Various materials to be the second material (electron transport material) shown below, and Al were placed in an aluminal pot and set as a vapor deposition source.
- the compound represented by the following formula (22) is used, and as an example of the triazine derivative, the compound represented by the following formula (23) and the compound represented by the following formula (26) are used.
- the following formula (24) (commercially available) was used as a compound having a heterocycle containing a carbonyl group, and the compound represented by the following formula (25) was used as an example of a phenanthroline derivative.
- the cathode 3 was formed continuously. Specifically, first, a hole transport layer 7 having a thickness of 30 nm composed of ⁇ -NPD at 20 nm and 4DBTP3Q at 10 nm was formed. Subsequently, DIC-TRZ was used as a host and Ir (mppy) 3 was used as a dopant for co-depositing at 25 nm to form a light emitting layer 6.
- the doping concentration was such that Ir (mppy) 3 was 3% by mass with respect to the entire light emitting layer 6.
- a 40 nm electron transport layer 10 and a 1 nm electron injection layer 5 were formed on the substrate 2 formed up to the light emitting layer 6.
- a cathode 3 made of aluminum having a film thickness of 100 nm was formed on the substrate 2 formed up to the electron injection layer 5 by a vacuum vapor deposition method.
- the cathode 3 was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
- the compounds used as the second material (electron transport layer) and the first material (electron injection layer) are as follows.
- Example 16 A compound of formula (22) was used as the second material, and a compound of formula (2-2) was used as the first material.
- Example 17 A compound of formula (23) was used as the second material, and a compound of formula (2-2) was used as the first material.
- Example 18 A compound of formula (24) was used as the second material, and a compound of formula (2-2) was used as the first material.
- Example 19 A compound of formula (25) was used as the second material, and a compound of formula (2-2) was used as the first material.
- Example 20 A compound of formula (26) was used as the second material, and a compound of formula (2-2) was used as the first material.
- Comparative Examples 8 and 14 are as follows.
- Comparative Example 8 The compound of the formula (22) was used as the second material, and lithium fluoride was used as the first material.
- Comparative Example 10 The compound of the formula (23) was used as the second material, and lithium fluoride was used as the first material.
- Comparative Example 12 The compound of the formula (24) was used as the second material, and lithium fluoride was used as the first material.
- Comparative Example 14 The compound of the formula (26) was used as the second material, and lithium fluoride was used as the first material.
- the compounds used as the second material (electron transport layer) in Comparative Examples 9, 11, 13, and 15 are as follows.
- the electron injection layer (first material) was not formed, and a cathode was prepared.
- Comparative Example 9 A compound of formula (22) was used as the second material.
- Comparative Example 11 A compound of formula (23) was used as the second material.
- Comparative Example 13 A compound of formula (24) was used as the second material.
- Comparative Example 15 A compound of formula (25) was used as the second material.
- the substrate 2 on which each layer up to the cathode 3 is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) curable resin.
- a sealing material made of an ultraviolet (UV) curable resin was obtained by stopping.
- the brightness was measured using the device, and the relationship between the applied voltage and the brightness was investigated. The results are shown in FIGS. 27-31. Further, the results of the time-dependent changes in the brightness of the organic EL elements of Example 20 and Comparative Example 15 under a normal temperature environment are shown in FIG. 32, and the time-lapse of the brightness of the organic EL elements of Examples 20 and 15 in an 85 ° C environment. The result of the change is shown in FIG.
- Example 21 and 22 Comparative Example 16 An organic EL device having a forward structure was produced and evaluated by the method shown below.
- the elements of Example 21 and Comparative Example 16 are organic EL elements having a laminated structure shown in FIG. 3, and the elements of Example 22 are organic EL elements having a laminated structure shown in FIG. [1]
- the substrate 2 a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (anode 9) patterned with a width of 3 mm made of ITO having a thickness of 100 nm was prepared. Then, the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes. Then, the substrate 2 having the anode 9 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
- the substrate 2 on which the anode 9 washed in [1] is formed is set in a spin coater, and a hole injection material "Clevios HIL1.3N" manufactured by Heleus is applied as a hole injection layer 8 in a film thickness.
- a film was formed so as to have a thickness of 10 nm. Then, it was heated for 1 hour on a hot plate heated to 180 ° C.
- the substrate 2 formed up to the hole injection layer 8 was fixed to the substrate holder of the vacuum vapor deposition apparatus. Further, DIC-TRZ, Ir (mppy) 3 , ⁇ -NPD, 4DBTP3Q, a compound represented by the formula (2-2) as the first material, lithium fluorinated, and Al are each placed in an alumina crucible. It was put in and set as a vapor deposition source. Then, the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and the hole transport layer 7, the light emitting layer 6, the electron injection layer 5, and the cathode 3 are removed by the vacuum vapor deposition method by resistance heating. Formed continuously.
- a hole transport layer 7 having a thickness of 30 nm composed of ⁇ -NPD at 20 nm and 4DBTP3Q at 10 nm was formed.
- DIC-TRZ was used as a host and Ir (mppy) 3 was used as a dopant for co-depositing at 25 nm to form a light emitting layer 6.
- the doping concentration was such that Ir (mppy) 3 was 3% by mass with respect to the entire light emitting layer 6.
- an electron transport layer 10 made of DIC-TRZ having a thickness of 40 nm and an electron injection layer 5 having a thickness of 1 nm were formed on the substrate 2 formed up to the light emitting layer 6.
- Example 21 the compound represented by the formula (2-2) was used for the electron injection layer 5, and in Comparative Example 16, lithium fluoride, which is a general electron injection material, was used for the electron injection layer 5. Further, in Example 22, DIC-TRZ was used for the hole transport layer 7 having a thickness of 30 nm, and the other layers were the same as in Example 21.
- FIG. 34 shows the results of measuring the luminance-voltage characteristics of the elements of Examples 21 and 22 and Comparative Example 16 by the same method as in the other Examples and Comparative Examples.
- Example 23 Comparative Example 17
- the light emitting layer is composed of two kinds of materials, a host and a dopant, but the simple structure shown in FIG. 4 can be realized even with an organic EL device in which the light emitting layer is made of one kind of material.
- the elements of Example 23 and Comparative Example 17 were produced as follows.
- a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (anode 9) patterned with a width of 3 mm made of ITO having a thickness of 100 nm was prepared. Then, the substrate 2 having the anode 9 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes. Then, the substrate 2 having the anode 9 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
- the substrate 2 was fixed to the substrate holder of the vacuum vapor deposition apparatus. Further, fullerene used as the hole injection layer 8 and (9,10-bis (4- (9Hcarbazole-9-yl) -2,6-dimethylphenyl) -9,10- represented by the following formula (27)). Diborah anthracene (CzDBA), a compound represented by the formula (2-2) as a first material, lithium quinoline, and Al were placed in an alumina crucible and set as a vapor deposition source. The molybdenum trioxide used for the injection layer 8 was placed in a tungsten board and set.
- Example 23 the compound represented by the formula (2-2) was used for the electron injection layer 5, and in Comparative Example 17, lithium quinoline, which is a general electron injection material, was used for the electron injection layer 5.
- FIG. 35 shows the results of measuring the luminance-voltage characteristics of the elements of Example 23 and Comparative Example 17 by the same method as in the other Examples and Comparative Examples.
- Example 24 Comparative Example 18 In Example 24, an organic EL device was produced in the same manner as in Example 21 except that the compound represented by the formula (2-11) was used as the first material (electron injection layer 5). An organic EL device was produced in the same manner as in Example 21 except that the first material (electron injection layer 5) was not used in Comparative Example 18.
- FIG. 36 shows the results of measuring the luminance-voltage characteristics of the elements of Example 24 and Comparative Example 18 by the same method as in the other Examples and Comparative Examples.
- Example 25 An organic EL device having the reverse structure of the laminated structure shown in FIG. 1 was produced as follows.
- a commercially available transparent glass substrate 2 having an average thickness of 0.7 mm and having an electrode (cathode 3) patterned with a width of 3 mm made of ITO having a thickness of 150 nm was prepared.
- the substrate 2 having the cathode 3 was ultrasonically washed in acetone and isopropanol for 10 minutes each, and boiled in isopropanol for 5 minutes.
- the substrate 2 having the cathode 3 was taken out from isopropanol, dried by nitrogen blow, and UV ozone washing was performed for 20 minutes.
- the substrate 2 on which the cathode 3 washed in [1] was formed was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure in the chamber of the sputtering apparatus to a pressure of about 1 ⁇ 10 -4 Pa, sputtering is performed with argon and oxygen introduced, and a zinc oxide layer having a film thickness of about 3 nm is formed on the cathode 3 of the substrate 2. Made. [3] Next, a 1.0% by weight ethanol solution of magnesium acetate was prepared.
- the substrate on which the zinc oxide layer was prepared was set on a spin coater, a magnesium acetate solution was added dropwise, and the mixture was rotated at 1300 rpm for 60 seconds. Then, this substrate was annealed at 400 ° C. for 1 hour in the atmosphere to form a magnesium oxide film having a film thickness of 3 nm.
- a substrate in which the oxide layer 4 in which the zinc oxide layer and the magnesium oxide layer were laminated was laminated was obtained.
- an organic thin film containing the first material and the second material was formed on the oxide layer 4 as the electron injection layer 5 by the method shown below.
- the boron-containing compound represented by the formula (4) and the compound of the formula (2-30) are dissolved in cyclopentanone (concentration is 1.0% by weight) to form a coating material. I got something.
- the substrate 2 on which the cathode 3 and the oxide layer 4 produced in [2] were formed was placed on the spin coater. Then, while dropping the coating composition onto the oxide layer 4, the substrate 2 was rotated at 3000 rpm for 30 seconds to form a coating film. Then, an electron injection layer 5 was formed by subjecting it to annealing treatment at 150 ° C. for 1 hour in a nitrogen atmosphere using a hot plate. The average thickness of the obtained electron injection layer 5 was 20 nm.
- ⁇ -NPD 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile
- HAT-CN 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile
- the inside of the chamber of the vacuum vapor deposition apparatus is depressurized to a pressure of 1 ⁇ 10-5 Pa, and the electron transport layer 10, the light emitting layer 6, the hole transport layer 7, and the hole are injected by the vacuum vapor deposition method by resistance heating.
- the layer 8 and the anode 9 were continuously formed.
- an electron transport layer 10 having a thickness of 10 nm made of Zn (BTZ) 2 was formed.
- Zn (BTZ) 2 was used as a host and Ir (piq) 3 was used as a dopant for co-depositing at 20 nm to form a light emitting layer 6.
- the doping concentration was such that Ir (piq) 3 was 6% by mass with respect to the entire light emitting layer 6.
- a 50 nm film of ⁇ -NPD was formed on the substrate 2 on which the light emitting layer 6 was formed to form the hole transport layer 7.
- HAT-CN was formed into a 10 nm film to form a hole injection layer 8.
- an anode 9 made of aluminum having a film thickness of 100 nm was formed on the substrate 2 on which the hole injection layer 8 was formed by a vacuum vapor deposition method.
- the anode 9 was formed by using a stainless steel vapor deposition mask so that the vapor deposition surface had a band shape with a width of 3 mm, and the light emitting area of the produced organic EL element was 9 mm 2 .
- the substrate 2 on which each layer up to the anode 9 is formed is housed in a glass cap (sealing container) having a concave space, and sealed by filling with a sealing material made of an ultraviolet (UV) curable resin. It was stopped to obtain the organic EL element of Example 25.
- Example 26 In the same manner as in Example 25, except that the compound of the formula (2-31) was used instead of the compound of the formula (2-30) in the step [4] of the example 25, the organic of the example 26 was used. An EL element was obtained.
- Comparative Example 19 In the step [4] of Example 25, only the boron-containing compound represented by the formula (4) was dissolved in cyclopentanone (concentration: 1.0% by weight) without using the compound of the formula (2-30). An organic EL device of Comparative Example 19 was obtained in the same manner as in Example 25 except that the above-mentioned coating composition was used.
- FIG. 37 shows the results of measuring the luminance-voltage characteristics of the elements of Examples 25 and 26 and Comparative Example 19 by the same method as in the other Examples and Comparative Examples.
- the compounds of (2-2) and (2-4) were used as compared with the device of Comparative Example 1 in which only the boron-containing compound represented by the formula (4) was used as the material of the electron injection layer.
- the elements of Examples 1 and 2 emit light at a lower voltage.
- the element of 4 emits light at a lower voltage. From these results, it was confirmed that the hexahydropyrimidopyrimidine compound represented by the general formula (1) of the present invention can be used in combination with an electron transporting material to obtain an element driven at a lower voltage. Further, as shown in FIG.
- Example 8 it can be seen that the effect is obtained even if the electron injection layer is not a mixed film of the first material and the second material but a laminated film. Furthermore, from the results of FIG. 18, in Example 9 (although there is no comparative example), the device obtained by doping the compound of formula (17) with the hexahydropyrimidyrimidine compound exhibits good properties at the same level as in Example 5. I understand. Further, from Example 10, another material (for example, a second x material) is provided between the layer which is a mixed film of the first material + the second material and the metal oxide layer 4 as constituting the electron injection layer. Even when inserted, good characteristics are exhibited as in Example 9. Further, it was confirmed from the result of FIG.
- a second x material is provided between the layer which is a mixed film of the first material + the second material and the metal oxide layer 4 as constituting the electron injection layer. Even when inserted, good characteristics are exhibited as in Example 9. Further, it was confirmed from the result of FIG.
- the devices of Examples 12 and 13 emit light at a lower voltage than the devices of Comparative Example 5 in which only the boron compound (4) is used for the electron injection layer.
- the effect of using the hexahydropyrimidyrimidine compound in combination with the electron transport material was confirmed in the organic EL device having the structure.
- the element of Example 13 is an element of the same level as the element of Comparative Example 6 in which lithium fluoride is used as an electron injection layer, which is often used in an organic EL element having a forward structure. Although it is a characteristic, it was confirmed that it has a long life.
- Example 16 which is the result of using the compound of formula (22) as an example of using a pyridine-containing compound as the second material, paying attention to FIG. 27, a comparative example in which the compound of formula (2-2) is not used. It emits light at a voltage lower than 9, and has the same luminance-voltage characteristics as in Comparative Example 8 using lithium fluoride. From this result, even when a pyridine-containing compound is used as the second material, the element can be driven at a low voltage by using the hexahydropyrimidyrimidine compound represented by the general formula (1) of the present invention. confirmed. Therefore, it is possible to realize an organic EL element that can operate with low drive without using an alkali metal.
- Example 17 which is the result of using the compound of formula (23) as an example of using a triazine derivative as the second material, paying attention to FIG. 28, comparative example 10 using lithium fluoride and formula (2-2) ) Is not used, and the light is emitted at a lower voltage than that of Comparative Example 11. From this result, it was confirmed that even when a triazine derivative is used as the second material, the element can be driven at a low voltage by using the hexahydropyrimidyrimidine compound represented by the general formula (1) of the present invention. Was done. It can also be seen that the hexahydropyrimidyrimidine compound has excellent electron injectability as compared with lithium fluoride.
- Example 18 As an example of using a compound having a heterocycle containing a carbonyl group as the second material, with respect to Example 18, which is the result of using the compound of the formula (24), paying attention to FIG. 29, a comparative example using lithium fluoride. It emits light at a voltage lower than that of Comparative Example 13 in which 12 and the compound of the formula (2-2) are not used. From this result, even when a compound having a heterocycle containing a carbonyl group is used as the second material, it can be driven at a low voltage by using the hexahydropyrimidopyrimidine compound represented by the general formula (1) of the present invention. It was confirmed that it became an element to be used. It can also be seen that the hexahydropyrimidyrimidine compound has excellent electron injectability as compared with lithium fluoride.
- Example 19 which is the result of using the compound of formula (25) as an example of using the phenanthroline derivative as the second material, paying attention to FIG. 30, Comparative Example 15 in which the compound of formula (2-2) is not used. It emits light at a lower voltage. From this result, it was confirmed that even when a phenanthroline derivative is used as the second material, the element can be driven at a low voltage by using the hexahydropyrimidyrimidine compound represented by the general formula (1) of the present invention. Was done.
- Example 20 which is the result of using the compound of the formula (26) as the second material, from the results of FIGS. 31 and 32, the element of Example 20 is generally used as an organic EL element having a forward structure. It was confirmed that the device has the same level of device characteristics as the device of Comparative Example 14 in which lithium fluoride, which has a large amount of water, is used as an electron injection layer, but has a long life. Further, from the result of FIG. 33, it can be confirmed that the life is significantly different under high temperature (85 ° C.). From this result, it is well known that although alkali metals such as lithium fluoride have excellent electron injection properties, they diffuse into the device as, for example, Li ions, and the diffusion reduces the stability of the organic EL device.
- alkali metals such as lithium fluoride have excellent electron injection properties, they diffuse into the device as, for example, Li ions, and the diffusion reduces the stability of the organic EL device.
- the organic thin film and the material for the organic EL element of the present invention are materials that do not have such a problem. Further, it is considered that the diffusion of Li ions becomes stronger at a high temperature, and it can be seen that the organic thin film and the material for an organic EL device of the present invention have high resistance at a high temperature.
- Comparative Example 16 As shown in FIG. 34 in which the luminance-voltage characteristics of the elements of Examples 21 and 22 and Comparative Example 16 were measured, in Comparative Example 16, it was driven because it was difficult to inject electrons from lithium fluoride into DIC-TRZ. It can be seen that while the voltage is high, in the 21st embodiment, electrons can be efficiently injected and the operation can be performed at a low drive voltage. Further, it can be seen that even in Example 22 in which the hole transport layer is DIC-TRZ which is the light emitting layer host, the hole transport layer operates at the same drive voltage as in Example 21. As described above, by using the material having excellent electron injection property, it is possible to simplify the structure of the organic EL element and reduce the number of required materials.
- Example 23 As shown in FIG. 35 in which the brightness-voltage characteristics of Example 23 and Comparative Example 17 in which the light emitting layer is an organic EL element composed of one kind of material are measured, in Comparative Example 17, from lithium quinoline to CzDBA. It can be seen that in the 23rd embodiment, the electrons can be efficiently injected and the operation can be performed at a low drive voltage, while the drive voltage is high because it is difficult to inject the electrons. As described above, by using the material having excellent electron injection property, it is possible to simplify the structure of the organic EL element and reduce the number of required materials.
- FIG. 36 which is the result of measuring the brightness-voltage characteristics of the organic EL device of the above, the device of Example 24 using the compound of the formula (2-11) as the material (first material) of the electron injection layer is the first. 1 It emits light at a lower voltage than the element of Comparative Example 18 in which no material is used. From this result, it was confirmed that the element driven by a lower voltage can be obtained by using the compound of the formula (2-11).
- the materials of the electron injection layer are of the formulas (2-30) and (2-31).
- the devices of Examples 25 and 26 using the compound emit light at a lower voltage than the devices of Comparative Example 19 using only the boron-containing compound represented by the formula (4). From this result, it was confirmed that the element driven by a lower voltage can be obtained by using the compounds of the formulas (2-30) and (2-31).
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
また、有機EL素子は、照明装置としての利用も期待されている。
また、無機の酸化物層の上に、さらに電子注入層を成膜することにより、有機EL素子の電子注入性を改善する技術がある。例えば、非特許文献4には、ポリエチレンイミンからなる電子注入層を有する有機EL素子が記載されている。また、非特許文献5には、アミンが電子の注入速度の改善に有効であることが記載されている。非特許文献6、7、8には、電極と有機層との界面において、アミノ基が電子注入に及ぼす効果について記載されている。
また、本発明は、本発明の有機薄膜を用いた有機EL素子、この有機EL素子を備えた表示装置および照明装置、本発明の有機薄膜を含む有機薄膜太陽電池、光電変換素子および有機薄膜トランジスタを提供することを課題とする。
[1] 下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む単一の膜、又は、前記第1材料を含む膜と前記第2材料を含む膜との積層膜であることを特徴とする有機薄膜。
[16] [4]~[10]、[12]~[14]のいずれかに記載の有機エレクトロルミネッセンス素子を備えることを特徴とする照明装置。
本発明の有機EL素子は、陰極と発光層との間に本発明の有機薄膜を有するため、有機薄膜によって優れた電子注入性、電子輸送性が得られる。
また酸解離定数pKaが1以上の特定のヘキサヒドロピリミドピリミジン化合物からなる第1材料と、電子を輸送する第2材料とを含む本発明の有機薄膜は、塗布および蒸着のいずれの方法によっても形成することが可能であるため、本発明の有機薄膜を含む有機EL素子を製造する場合のプロセス上の制約が少なく、有機EL素子を構成する層の材料として使用しやすいものである。本発明の有機薄膜の製造方法は、このような本発明の有機薄膜を製造する方法である。
また、本発明の有機薄膜太陽電池、光電変換素子および有機薄膜トランジスタは、本発明の有機薄膜を含むものであるため、優れた特性を有する。
「有機薄膜、有機EL素子用材料」
本発明の有機薄膜は、下記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを含む。本発明の有機薄膜は、第1材料と第2材料とを含む単一層の膜であってもよく、第1材料を含む層と第2材料を含む層とが積層された積層膜であってもよい。
したがって、本発明の有機薄膜は、有機化合物のみから構成される素子だけではなく、特に、有機化合物と無機化合物とで構成される素子に対しても用いることができ、電子注入性や大気安定性を高める効果を発揮することができる。また、無機化合物の仕事関数を小さくできるということは、有機薄膜太陽電池や光電変換素子において、光を吸収して発生した電子を生じさせる活性層に用いられる有機化合物からの電子取り出し効率も向上させることができるということである。
本発明の有機薄膜は、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を第1材料として含むことを特徴の1つとし、本発明の有機薄膜を電子注入層に用いた場合、優れた電子注入性、電子輸送性が得られる。このような優れた効果を発揮する、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む有機EL素子用材料もまた、本発明の1つであり、本材料を単独で電子注入層や電子輸送層に用いることでも優れた電子注入性、電子輸送性が得られる。
なお、本発明において、「pKa」は通常は「水中における酸解離定数」を意味するが、水中で測定できないものは「ジメチルスルホキシド(DMSO)中における酸解離定数」を意味し、DMSO中でも測定できないものは、「アセトニトリル中の酸解離定数」を意味する。好ましくは「水中における酸解離定数」を意味する。
芳香族炭化水素基、芳香族複素環基としては、炭素数3~30のものが好ましく、炭素数4~24のものがより好ましく、炭素数5~20のものがさらに好ましい。
芳香族炭化水素基としては、ベンゼン等の1つの芳香環のみからなる化合物;ビフェニル、ジフェニルベンゼン等の複数の芳香環が1つの炭素原子同士で直接結合した化合物;ナフタレン、アントラセン、フェナントレン、ピレン等の縮合環式芳香族炭化水素化合物のいずれかの芳香環から水素原子を1~4個除いてできる基が挙げられる。
芳香族複素環基としては、チオフェン、フラン、ピロール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、イミダゾール、ピリジン、ピリミジン、ピラジン、トリアジン等の1つの芳香族複素環のみからなる化合物;これらの1つの芳香族複素環のみからなる化合物が1つの炭素原子同士で複数直接結合した化合物(ビピリジン等);キノリン、キノキサリン、ベンゾチオフェン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、インドール、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、アクリジン、フェナントロリン等の縮合環式複素芳香族炭化水素化合物のいずれかの芳香族複素環から水素原子を1~4個除いてできる基が挙げられる。
アリールアルキレン基としては、上記芳香族炭化水素基と炭素数1~3のアルキレン基とを組み合わせた基が挙げられる。
2~4価の鎖状または環状炭化水素基としては、炭素数1~12のものが好ましく、炭素数1~6のものがより好ましく、炭素数1~4のものがさらに好ましい。鎖状炭化水素基は直鎖状のものであってもよく、分岐鎖状のものであってもよい。
また、R1は上記芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状炭化水素基を2つ以上組み合わせてできる基でもよい。
更に、R1は上記芳香族炭化水素基、芳香族複素環基、アリールアルキレン基、2~4価の鎖状炭化水素基の1つ若しくは2つ以上と窒素原子とを組み合わせてできる基であってもよい。そのような基としては、例えば、トリメチルアミン等のトリアルキルアミンやトリフェニルアミンから水素原子を1~4個除いてできる基等が挙げられる。
1価の置換基としては、フッ素原子;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等のハロアルキル基;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基等の炭素数1~20の直鎖状又は分岐鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数5~7の環状アルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等の炭素数1~20の直鎖状又は分岐鎖状アルコキシ基;ニトロ基;シアノ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等の炭素数1~10のアルキル基を有するアルキルアミノ基;ピロリジノ基、ピペリジノ基、モルホリノ基等の環状アミノ基;ジフェニルアミノ基、カルバゾリル基等のジアリールアミノ基;アセチル基、プロピオニル基、ブチリル基等のアシル基;スチリル基等の炭素数2~30のアルケニル基;フッ素原子等のハロゲン原子や炭素数1~20のアルキル基、アルコキシ基、アミノ基等で置換されていてもよい炭素数5~20のアリール基(アリール基の具体例は、上記芳香族炭化水素基と同様);フッ素原子等のハロゲン原子や炭素数1~20のアルキル基、アルコキシ基、アミノ基等で置換されていてもよい炭素数4~20の窒素原子、硫黄原子、酸素原子のいずれか1つ以上を含む複素環基(複素環基は、1つの環のみからなるものであってもよく、1つの芳香族複素環のみからなる化合物が1つの炭素原子同士で複数直接結合した化合物であってもよく、縮合複素環基であってもよい。複素環基の具体例には、上記芳香族複素環基の具体例が含まれる。);エステル基、チオエーテル基等が挙げられる。なお、これらの基は、ハロゲン原子やヘテロ元素、アルキル基、芳香環等で置換されていてもよい。
上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物の具体例としては、例えば、下記式(2-1)~(2-34)で表される化合物が挙げられる。
第2材料としては、具体的には、フェニル-ディピレニルホスフィンオキサイド(POPy2)のようなホスフィンオキサイド誘導体、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)ベンゼン(TmPhPyB)や1,3,5-トリス(6-(3-(ピリジン-3-イル)フェニル)ピリジン-2-イル)ベンゼン、8,9-ジフェニル-7,10-(3-(ピリジン-3-イル))フルオランテンのようなピリジン誘導体、(2-(3-(9-カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2-フェニル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン(BPyPPM)や2-メチル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン、9-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)-9H-カルバゾールのようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)や2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)のようなフェナントロリン誘導体、2,4-ビス(4-ビフェニル)-6-(4’-(2-ピリジニル)-4-ビフェニル)-[1,3,5]トリアジン(MPT)、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)トリアジン(TmPhPyTz)、トリス-1,3,5-([1,1’-ビフェニル]-3-イル)トリアジン、2-(3-(4,6-ジ(ピリジン-3-イル)-1,3,5-トリアジン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、9-(4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル)-9H-3,9’-ビカルバゾール、9-(4-(4,6-ジフェニル―1,3,5-トリアジン-2-イル)フェニル)-9H-カルバゾール、11-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-12-フェニル-11,12-ジヒドロインドロ[2,3-a]カルバゾール、12-(2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル)-12H-ベンゾフロ[2,3,a]-カルバゾール、9-((4-(4,6-ジピリジン-3-イル)-1,3,5-トリアジン-2-イル)フェニル)-9H-カルバゾールのようなトリアジン誘導体、3-フェニル-4-(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル-1,3,4-オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’-(1,3,5-ベントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、後述する式(24)で示す化合物のようなカルボニル基を含む複素環を有する化合物、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ)2)、トリス(8-ヒドロキシキノリナト)アルミニウム(Alq3)などに代表される各種金属錯体、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体、特願2012-228460、特願2015-503053、特願2015-053872、特願2015-081108および特願2015-081109に記載のホウ素含有化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
また、後述する発光層の材料も第2材料として用いることができる。
また、ホウ素含有化合物、トリアジン誘導体は、最低非占有軌道(LUMO)エネルギーが深いため、有機EL素子の電子注入層としての材料として好適である。したがって、ホウ素含有化合物を第2材料として含む有機薄膜は、特に有機EL素子の電子注入層として好適である。
また、有機エレクトロルミネッセンス素子を構成する層としてこのような有機薄膜を使用する場合、第1材料と第2材料とを含む膜と、第1材料と第2材料のいずれか一方のみを含む膜のいずれが陰極側にあってもよいが、第1材料と第2材料のいずれか一方のみを含む膜が陰極側にあるほうが好ましい。
同様に、本発明における有機薄膜が、第1材料と第2材料とを含む膜と、第2材料のみを含む膜との積層膜である場合、積層された2つの膜の両方に第2材料が含まれることになるが、2つの膜に含まれる第2材料は同一であってもよく、異なっていてもよい。
次に、本発明の有機薄膜の製造方法について、例を挙げて説明する。
本発明の有機薄膜は、酸解離定数pKaが1以上の、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物からなる第1材料と、電子を輸送する第2材料とを含むものである。第1材料、第2材料ともに分子量が比較的大きいことに起因して、本発明の有機薄膜は塗布だけでなく、蒸着によっても形成することが可能である。このため、本発明の有機薄膜を含む有機EL素子を製造する場合のプロセス上の制約が少なく、有機EL素子を構成する層の材料として使用しやすいものである。
有機薄膜を蒸着により製造する場合、有機EL素子を構成する他の層を蒸着により製造する場合と同様の方法により行うことができ、第1材料、第2材料を同時に蒸着してもよく、順に蒸着してもよい。順に蒸着する場合、第1材料、第2材料のいずれを先に蒸着してもよい。また、いずれか一方を先に蒸着した後に、これら両方を共蒸着してもよく、両方を共蒸着した後に、いずれか一方を蒸着してもよい。このような、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物である第1材料と、電子を輸送する第2材料とを同時に有機薄膜の被形成面上に蒸着する工程含む有機薄膜の製造方法は、本発明の有機薄膜の製造方法の好適な実施形態の1つである。また、第1材料又は第2材料のいずれかを先に有機薄膜の被形成面上に蒸着する工程と、その後にもう一方又は両方の材料を蒸着する工程とを含む有機薄膜の製造方法、又は、第1材料と第2材料とを同時に有機薄膜の被形成面上に蒸着する工程と、その後に第1材料又は第2材料のいずれかを有機薄膜の被形成面上に蒸着する工程とを含む有機薄膜の製造方法もまた、本発明の有機薄膜の製造方法の好適な実施形態の1つである。
以下においては、pKaが1以上の特定の一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物からなる第1材料と、電子を輸送する第2材料とを含む塗料組成物を作成して、該塗料組成物を塗布することで有機薄膜を製造する方法について説明する。
第1材料および第2材料を溶解するために用いる溶媒としては、例えば、無機溶媒や有機溶媒、またはこれらを含む混合溶媒等を用いることができる。
無機溶媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、リン酸、塩酸等が挙げられる。
本発明はまた、陰極と陽極との間に発光層を有し、更に本発明の有機薄膜の層、該有機薄膜の層と金属酸化物層との積層膜の層、又は、本発明の有機エレクトロルミネッセンス素子用材料を含む層のいずれかを含む有機エレクトロルミネッセンス(EL)素子でもある。
上記有機薄膜の層、該有機薄膜の層と金属酸化物層との積層膜の層、本発明の有機エレクトロルミネッセンス素子用材料を含む層はいずれも本発明の有機EL素子中において、陰極と発光層との間にあってもよく、陽極と発光層との間にあってもよいが、陰極と発光層との間にあることが好ましい。
また、本発明の有機エレクトロルミネッセンス素子用材料を含む層は、上述した一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む限り、その他の成分を含んでいてもよいが、ヘキサヒドロピリミドピリミジン化合物のみからなる層であることが好ましい。
本発明の第1材料であるヘキサヒドロピリミドピリミジン化合物は、電子注入性に極めて優れているため、発光層に用いる発光材料やホスト材料に対しても直接電子を注入することが可能である。このため、本発明の第1材料を電子注入層に用いることで、使用する材料の数を減らしたり、積層する層の数を減らしてより単純な構造の有機EL素子とすることが可能となる。
すなわち、本発明の有機薄膜又は積層膜を用いた素子を、第1材料を含む層と第2材料を含む層と発光層とが隣接した素子とし、第2材料を含む層の材料として発光層に用いられる発光材料やホスト材料を用いた場合でも、第1材料を含む層から電子を注入することが可能であり、このようにすることで第2材料を含む層と発光層とを共通の材料を用いて形成することができるため、使用する材料の数を減らすことができる。この場合、第2材料は、発光材料、発光層のホスト材料のいずれであってもよい。また、第2材料を含む層を発光材料又は発光層のホスト材料を用いて形成し、これを発光層として用いると、別に発光層を設ける必要がなくなるため、積層する層の数を減らしてより単純な構造の有機EL素子とすることが可能となる。更に、発光層の陽極側に隣接する層の材料として第2材料を使用すれば、積層する層の数を更に減らして更に単純な構造の有機EL素子とすることが可能となる。したがって、発光層が第2材料を含むことや、陽極と前記発光層との間に、前記第2材料を含む層を有することは、いずれも本発明の有機エレクトロルミネッセンス(EL)素子の好適な実施形態の1つである。
図1は、本発明の有機EL素子の一例を説明するための概略断面図である。図1に示す本発明の有機EL素子1は、陰極3と陽極9との間に発光層6を有する。図1に示す有機EL素子1では、陰極3と発光層6との間に、本発明の有機薄膜又は本発明の有機エレクトロルミネッセンス素子用材料からなる電子注入層5を有している。また、陰極3と本発明の有機薄膜又は本発明の有機エレクトロルミネッセンス素子用材料からなる電子注入層5との間に、酸化物層4を有しており、酸化物層4は電子注入層5と隣接している。これらはいずれも本発明の有機EL素子の好適な実施形態である。
本発明の有機EL素子1は、基板2上に、陰極3と、無機の酸化物層4と、電子注入層5と、電子輸送層10と、発光層6と、正孔輸送層7と、正孔注入層8と、陽極9とがこの順に形成された積層構造を有する。このように、陰極と有機薄膜の層又は本発明の有機エレクトロルミネッセンス素子用材料の層との間に、無機の酸化物層を有することは本発明の有機EL素子の好適な実施形態の1つである。
図1に示す有機EL素子1は、基板2と反対側に光を取り出すトップエミッション型のものであってもよいし、基板2側に光を取り出すボトムエミッション型のものであってもよい。
上述したとおり、本発明のヘキサヒドロピリミドピリミジン化合物は、電子注入性に極めて優れているため、発光層に用いる材料に対しても直接電子を注入することが可能である。したがって、本発明のヘキサヒドロピリミドピリミジン化合物を含む有機EL素子用材料を用いる場合、例えば図3に示すように、発光層に用いられる材料で電子輸送層10を形成し、発光層6及び電子輸送層10に同じ材料を用いた単純構造の有機EL素子とした場合にも、電子注入層5にヘキサヒドロピリミドピリミジン化合物を用いることで、低い駆動電圧で動作することが可能となる。この場合、典型的な有機EL素子に比べると少なくとも1つ使用する材料を減らすことが可能となる。ここで、電子輸送層10が本発明の第2材料を含むものであれば、該有機EL素子は本発明の有機薄膜を用いているともいうことができる。
更に、正孔注入層8から発光層に用いる材料へは比較的容易に正孔が注入できるため、本発明のヘキサヒドロピリミドピリミジン化合物を含む有機EL素子用材料を電子注入層5に用いた場合には、図4に示すように、発光層に用いる材料を正孔輸送層7に用いても低い駆動電圧で動作することが可能である。この場合、典型的な有機EL素子に比べると少なくとも2つ使用する材料を減らすことが可能となる。ここで、電子輸送層10が本発明の第2材料を含むものであれば、該有機EL素子は本発明の有機薄膜を用いているともいうことができる。
なお、ここでは順構造の有機EL素子の図を用いて説明したが、本発明の発光層が第2材料を含む有機EL素子は順構造のものに限られず、逆構造のものであってもよい。
基板2の材料としては、樹脂材料、ガラス材料等が挙げられる。
基板2に用いられる樹脂材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレート等が挙げられる。基板2の材料として、樹脂材料を用いた場合、柔軟性に優れた有機EL素子1が得られるため好ましい。
基板2に用いられるガラス材料としては、石英ガラス、ソーダガラス等が挙げられる。
有機EL素子1がトップエミッション型のものである場合には、基板2の材料として、透明基板だけでなく、不透明基板を用いてもよい。不透明基板としては、例えば、アルミナのようなセラミックス材料からなる基板、ステンレス鋼のような金属板の表面に酸化膜(絶縁膜)を形成した基板、樹脂材料で構成された基板等が挙げられる。
陰極3は、基板2上に直接接触して形成されている。
陰極3の材料としては、ITO(インジウム酸化錫)、IZO(インジウム酸化亜鉛)、FTO(フッ素酸化錫)、In3O3、SnO2、Sb含有SnO2、Al含有ZnO等の酸化物や、Al、Au、Pt、Ag、Cu又はこれらを含む合金の導電材料が挙げられる。この中でも、陰極3の材料として、ITO、IZO、FTOを用いることが好ましい。
陰極3の平均厚さは、特に制限されないが、10~500nmであることが好ましく、100~200nmであることがより好ましい。
陰極3の平均厚さは、触針式段差計、分光エリプソメトリー又は水晶振動子膜厚計により測定できる。
無機の酸化物層4は、電子注入層としての機能および/または陰極としての機能を備えている。
酸化物層4は、半導体もしくは絶縁体積層薄膜の層である。具体的には、酸化物層4は、単体の金属酸化物からなる層、二種類以上の金属酸化物を混合した層と単体の金属酸化物からなる層のいずれか一方または両方を積層した層、二種類以上の金属酸化物を混合した層のいずれであってもよい。
酸化物層4を形成する金属酸化物を構成する金属元素としては、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、インジウム、ガリウム、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、アルミニウム、ケイ素が挙げられる。
酸化物層4が、単体の金属酸化物からなる層である場合、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ケイ素、酸化チタン、酸化亜鉛からなる群から選ばれる金属酸化物からなる層であることが好ましい。
酸化物層4の平均厚さは、特に限定されないが、1~1000nmであることが好ましく、2~100nmであることがより好ましい。
酸化物層4の平均厚さは、触針式段差計、分光エリプソメトリーにより測定できる。
電子注入層5は、陰極から発光層6への電子の注入の速度・電子輸送性を改善するものである。電子注入層5は、上記有機薄膜からなる。
電子注入層5の平均厚さは、0.5~100nmであることが好ましく、1~100nmであることがより好ましく、5~100nmであることが更に好ましく、10~50nmであることが特に好ましい。電子注入層5の平均厚さが0.5nm以上である場合、第1材料と第2材料とを含む塗料組成物を塗布する方法、第1材料を含む塗料組成物と第2材料と含む塗料組成物とを順に塗布する方法、又は、第1材料と第2材料とをそれぞれ積層製膜する方法のいずれかを用いて、電子注入層5を形成することにより、表面の平滑な電子注入層5が得られ、有機EL素子1の製造時におけるリークを十分に防止できる。また、電子注入層5の平均厚さが100nm以下である場合、電子注入層5を設けることによる有機EL素子1の駆動電圧の上昇を十分に抑制できる。
また、上記電子注入層5の形成は、蒸着によって行ってもよく、第1材料と第2材料とを同時に蒸着する方法や、第1材料と第2材料のいずれか一方を蒸着した後、もう一方を蒸着する方法を用いることができる。
なお、上記第1材料と第2材料とを含む膜を製膜する場合、図5-1~11-1(順構造の場合は図5-2~11-2)に示すいずれの構造であってもよい。例えば、当該一層の膜からなり、当該膜全体が電子注入層を構成するものであってもよく(図5-1、5-2)、第1材料のみからなる膜、第2材料のみからなる膜のいずれか一方が陰極や酸化物に隣接して製膜され、その膜に隣接して他方が製膜されてもよい(図6-1、6-2、図7-1、7-2)。また、第1材料と第2材料とを含む膜が陰極や酸化物に隣接して製膜され、その膜に隣接して第2材料のみから成る膜が製膜されてもよく(図8-1、8-2)、第1材料を含まない、第2材料のみから成る膜が陰極や酸化物に隣接して製膜され、上記第1材料と第2材料とを含む膜がその膜に隣接して製膜されていてもよい(図9-1、9-2)。更に、第1材料のみからなる膜や第1材料と第2材料とを含む膜が、第2材料のみからなる膜に挟まれた三層構造の膜(図10-1、10-2、図11-1、11-2)の構造となるように製膜されてもよい。図5-1~11-1、図5-2~11-2に示すいずれの構造の膜も本発明に含まれる。なお、図8-1~11-1や、図8-2~11-2のように、隣接する2つの膜の両方、又は、三層構造の膜の2つ以上の膜に第2材料が含まれる場合、これら2つ以上の膜に含まれる第2材料は同一であってもよく、異なっていてもよい。また、これらの構造のうち、第1材料のみからなる層を含む図6-1、6-2、図7-1、7-2、及び、図10-1、10-2の構造については、当該第1材料のみからなる層を本発明の有機薄膜(第1材料のみを含み、第2材料を含まない有機薄膜)から形成された層とみなすこともできる。
電子注入層5の平均厚さは、例えば、触針式段差計、分光エリプソメトリーにより測定できる。
逆構造の有機電界発光素子において、このような濃度分布を有する電子注入層を形成する方法としては、第1材料を含む溶液を酸化物層4上に塗布して塗膜を形成した後、第2材料を含む溶液を第1材料の塗膜上に塗布する方法が挙げられるが、濃度分布が形成できるのであれば、このプロセスに限定されるものではない。
同様に、本発明の有機薄膜が陰極3に隣接して形成される場合、陰極3からの電子注入を十分に進めるため、第1材料は陰極3側により多く存在することが好ましい。したがって、電子注入層5は、陰極3側から電子輸送層10側に向かって第1材料が濃度が薄くなってゆくような濃度分布を有することが好ましい。
順構造の有機EL素子において、このような濃度分布を有する電子注入層を形成する方法としては、第2材料を含む溶液を電子輸送層10上に塗布して塗膜を形成した後、第1材料を含む溶液を第2材料の塗膜上に塗布する方法が挙げられるが、濃度分布が形成できるのであれば、このプロセスに限定されるものではない。
また、上記濃度分布は、TOF-SIMS(飛行時間型二次イオン質量分析法)などで測定できる。
この場合、これらの層を形成する方法として、塗布、蒸着のいずれも用いることができる。
有機EL素子が積層構造中の陰極と発光層との間に、酸化物層と、該酸化物層に隣接して形成された本発明の有機薄膜の層とを含む場合や陰極と、該陰極に隣接して形成された本発明の有機薄膜の層とを含む場合、該有機EL素子は、本発明の有機薄膜を含んで構成されているといえ、また、本発明の積層膜を含んで構成されているともいうことができる。このような陰極と発光層との間に、本発明の有機薄膜又は積層膜を含んで構成される有機EL素子もまた、本発明の1つである。更に、本発明の有機薄膜、又は、陰極と該陰極に隣接して形成された本発明の有機薄膜の層とからなる積層膜を含んで構成される有機EL素子もまた、本発明の1つである。
この場合、発光層と、第1材料と第2材料とを含む膜との間に、第2材料を含む層を有する有機EL素子、及び、陰極と、第1材料と第2材料とを含む膜との間に、第2材料を含む層を有する有機EL素子のいずれも本発明の有機EL素子の好適な実施形態の1つである。
電子輸送層10としては、電子輸送層の材料として通常用いることができるいずれの材料を用いてもよい。
具体的には、電子輸送層10の材料として、フェニル-ディピレニルホスフィンオキサイド(POPy2)のようなホスフィンオキサイド誘導体、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)ベンゼン(TmPhPyB)のようなピリジン誘導体、(2-(3-(9-カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2-フェニル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン(BPyPPM)のようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)のようなフェナントロリン誘導体、2,4-ビス(4-ビフェニル)-6-(4’-(2-ピリジニル)-4-ビフェニル)-[1,3,5]トリアジン(MPT)のようなトリアジン誘導体、3-フェニル-4-(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル-1,3,4-オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’-(1,3,5-ベントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ)2)、トリス(8-ヒドロキシキノリナト)アルミニウム(Alq3)などに代表される各種金属錯体、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体、特願2012-228460、特願2015-503053、特願2015-053872、特願2015-081108および特願2015-081109に記載のホウ素含有化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの電子輸送層10の材料の中でも、特に、POPy2のようなホスフィンオキサイド誘導体、Alq3のような金属錯体、TmPhPyBのようなピリジン誘導体を用いることが好ましい。
なお、上述した第2材料を含む層を発光層に用いられる発光材料やホスト材料を用いて形成した有機EL素子のように、有機EL素子が機能を発揮する限り、本発明の有機EL素子は積層構造の中に上記のような電子輸送材料を用いた電子輸送層を有さなくてもよい。
電子輸送層10の平均厚さは、触針式段差計、分光エリプソメトリーにより測定できる。
発光層6を形成する材料としては、発光層6の材料として通常用いることのできるいずれの材料を用いてもよく、これらを混合して用いてもよい。具体的には、例えば、発光層6として、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(Zn(BTZ)2)と、トリス[1-フェニルイソキノリン]イリジウム(III)(Ir(piq)3)とを含むものとすることができる。
また、発光層6を形成する材料は、低分子化合物であってもよいし、高分子化合物であってもよい。なお、本発明において低分子材料とは、高分子材料(重合体)ではない材料を意味し、分子量が低い有機化合物を必ずしも意味するものではない。
また、発光層のホスト材料として4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(CPB)のようなカルバゾール化合物;ケイ素化合物;フェナントロリン化合物;トリフェニレン化合物等が挙げられる。
発光層6の平均厚さは、触針式段差計により測定してもよいし、水晶振動子膜厚計により発光層6の成膜時に測定してもよい。
正孔輸送層7に用いる正孔輸送性有機材料としては、各種p型の高分子材料(有機ポリマー)、各種p型の低分子材料を単独または組み合わせて用いることができる。
具体的には、正孔輸送層7の材料として、例えば、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)、N4,N4’-ビス(ジベンゾ[b,d]チオフェン-4-イル)-N4,N4’-ジフェニルビフェニルー4,4’-ジアミン(DBTPB)、N3,N3’’’-ビス(ジベンゾ[b,d]チオフェン-4-イル)-N3,N3’’’-ジフェニル-[1,1’:2’,1’’:2’’,1’’’-クアテルフェニル]-3,3’’’-ジアミン(4DBTP3Q)、ポリアリールアミン、フルオレン-アリールアミン共重合体、フルオレン-ビチオフェン共重合体、ポリ(N-ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p-フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂またはその誘導体等が挙げられる。これらの正孔輸送層7の材料は、他の化合物との混合物として用いることもできる。一例として、正孔輸送層7の材料として用いられるポリチオフェンを含有する混合物として、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。
なお、上述したように、正孔注入層から発光層に用いる材料へは比較的容易に正孔が注入できるため、発光層に用いる材料を正孔輸送層に用いても低い駆動電圧で動作することが可能である。このため、本発明の有機EL素子は上記のような正孔輸送材料を用いた正孔輸送層を有さなくてもよい。
正孔輸送層7の平均厚さは、例えば、触針式段差計、分光エリプソメトリーにより測定することができる。
正孔注入層8は、無機材料からなるものであってもよいし、有機材料からなるものであってもよい。無機材料は、有機材料と比較して安定であるため、有機材料を用いた場合と比較して、酸素や水に対する高い耐性が得られやすい。
無機材料としては、特に制限されないが、例えば、酸化バナジウム(V2O5)、酸化モリブテン(MoO3)、酸化ルテニウム(RuO2)等の金属酸化物を1種又は2種以上を用いることができる。
有機材料としては、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)や2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノ-キノジメタン(F4-TCNQ)、フラーレン、ヘレウス社製正孔注入材料「Clevios HIL1.3N」等を用いることができる。
正孔注入層8の平均厚さは、水晶振動子膜厚計又は触針式段差計により成膜時に測定することができる。
陽極9に用いられる材料としては、ITO、IZO、Au、Pt、Ag、Cu、Alまたはこれらを含む合金等が挙げられる。この中でも、陽極9の材料として、ITO、IZO、Au、Ag、Alを用いることが好ましい。
陽極9の平均厚さは、特に限定されないが、10~1000nmであることが好ましく、30~150nmであることがより好ましい。また、陽極9の材料として不透過な材料を用いる場合でも、例えば、平均厚さを10~30nm程度にすることで、トップエミッション型の有機EL素子における透明な陽極として使用できる。
陽極9の平均厚さは、水晶振動子膜厚計により陽極9の成膜時に測定できる。
図1に示す有機EL素子1は、必要に応じて、封止されていてもよい。
例えば、図1に示す有機EL素子1は、有機EL素子1を収容する凹状の空間を有する封止容器(不図示)と、封止容器の縁部と基板2とを接着する接着剤とによって封止されていてもよい。また、封止容器に有機EL素子1を収容し、紫外線(UV)硬化樹脂などからなるシール材を充填することにより封止してもよい。また、例えば、図1に示す有機EL素子1は、陽極9上に配置された板部材(不図示)と、板部材の陽極9と対向する側の縁部に沿って配置された枠部材(不図示)とからなる封止部材と、板部材と枠部材との間および枠部材と基板2との間とを接着する接着剤とを用いて封止されていてもよい。
次に、本発明の有機EL素子の製造方法の一例として、図1に示す有機EL素子1の製造方法を説明する。
図1に示す有機EL素子1を製造するには、まず、基板2上に陰極3を形成する。
陰極3は、スパッタ法、真空蒸着法、ゾルゲル法、スプレー熱分解(SPD)法、原子層堆積(ALD)法、気相成膜法、液相成膜法等により形成することができる。陰極3の形成には、金属箔を接合する方法を用いてもよい。
酸化物層4は、例えば、スプレー熱分解法、ゾルゲル法、スパッタ法、真空蒸着法等の方法を用いて形成する。このようにして形成された酸化物層4の表面は、平滑ではなく凹凸を有するものとなる場合がある。
電子注入層5は、上述した有機薄膜の製造方法により形成できる。
電子輸送層10、発光層6、正孔輸送層7の形成方法は、特に限定されず、電子輸送層10、発光層6、正孔輸送層7それぞれに用いられる材料の特性に合わせて、従来公知の種々の形成方法を適宜用いることができる。
正孔注入層8が無機材料からなるものである場合、正孔注入層8は、例えば、酸化物層4と同様にして形成できる。
正孔輸送層9が有機材料からなるものである場合、正孔注入層8は、例えば、電子輸送層10、発光層6、正孔輸送層7と同様にして形成できる。
陽極9は、例えば、陰極3と同様にして形成できる。
以上の工程により、図1に示す有機EL素子1が得られる。
図1に示す有機EL素子1を封止する場合には、有機EL素子の封止に用いられる通常の方法を使用して封止できる。
また、上述したように、上述したpKaが1以上の有機材料である第1材料と、電子を輸送する第2材料とを含む有機薄膜が積層膜であって、第2材料によって形成される層が第1材料によって形成される電子注入層とは異なる層である有機EL素子1も本発明の有機EL素子の別の実施形態である。このような実施形態の有機EL素子においても、陰極3から発光層6への電子注入・電子輸送の速度が速く、駆動電圧の低い有機EL素子1となる。
本発明の有機EL素子は、上述した実施形態において説明した有機EL素子に限定されるものではない。
具体的には、上述した実施形態においては、有機薄膜が電子注入層として機能する場合を例に挙げて説明したが、本発明の有機EL素子は、陰極と発光層との間に有機薄膜を有していればよい。したがって、有機薄膜は、電子注入層に限定されるものではなく、電子注入層と電子輸送層とを兼ねる層として設けられていてもよいし、電子輸送層として設けられていてもよい。
また、陰極3、酸化物層4、電子注入層5、電子輸送層10、発光層6、正孔輸送層7、正孔注入層8、陽極9の各層は、1層で形成されているものであってもよいし、2層以上からなるものであってもよい。
本発明の有機EL素子は、発光層などの材料を適宜選択することによって発光色を変化させることができるし、カラーフィルター等を併用して所望の発光色を得ることもできる。そのため、表示装置の発光部位や照明装置として好適に用いることができる。
また、本発明の照明装置は、生産性に優れ、駆動電圧が低い本発明の有機EL素子を備える。このため、照明装置として好ましいものである。
本発明の有機薄膜太陽電池や光電変換素子は、有機薄膜を含む。例えば、有機薄膜を有機薄膜太陽電池や光電変換素子の電子注入層に用いた場合、有機薄膜の第1材料が第2材料からプロトン(H+)を引き抜くことにより、マイナス電荷が生じるため、電子輸送の速度が速く、高い発電効率が得られる。したがって、本発明の有機薄膜を含む有機薄膜太陽電池や光電変換素子は、有機薄膜太陽電池や光電変換素子として好ましいものである。
また、本発明の薄膜トランジスタは、有機薄膜を含む。例えば、薄膜トランジスタのチャネル層を有機薄膜で形成した場合、電子移動度の高いチャネル層が得られる。
また、電極上に該有機薄膜を形成した場合、接触抵抗の低減が期待できる。
このように本発明の有機薄膜は、有機薄膜太陽電池、光電変換素子や薄膜トランジスタの材料として好適なものであり、したがって、該有機薄膜を構成する上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物もまた、これらの材料として好適なものである。このような、上記一般式(1)で表される構造を有するヘキサヒドロピリミドピリミジン化合物を含む有機薄膜太陽電池用材料、光電変換素子用材料や薄膜トランジスタ用材料もまた、本発明の1つである。
Macromolecules,45(5),p.2249-2256,2012年に記載されている方法により、下記式(2-9)の化合物を合成した。
200mLの三口フラスコに、rac-BINAP(747mg)、トルエン(67mL)を入れ、窒素雰囲気下90℃に加熱し溶解させた。室温まで放冷後、酢酸パラジウム(180mg)を入れ、室温で1時間撹拌した。これに2,6-ジブロモピリジン(4.74g)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(6.13g)、KOtBu(6.28g)を加え、90℃で終夜加熱撹拌した。室温まで放冷後、ジエチルエーテルを加え、析出する固体をろ別し、ろ液を濃縮した。得られた残渣にアセトンを加え、析出した固体をろ取し、下記式(2-2)の化合物(3.7g,52.5%)を得た。
300mL3つ口フラスコ中、窒素気流下、トルエン(100mL)にrac-BINAP(369mg)を室温にて加え、オイルバス60℃にて固体が溶解するまで加熱撹拌した。室温に戻した混合物にPd(OAc)2(98mg),6-ブロモ-2,2’-ビピリジン(5.00g)を加え、再びオイルバス60℃にて20分撹拌した。室温に戻した混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(3.26g)、KOtBu(5.97g)を加え、オイルバス90℃にて3時間撹拌した。室温に戻した混合物にジエチルエーテルを加え、不溶物を濾別した。濾液を減圧濃縮し、残渣に酢酸エチル(15mL)を加えた。混合物を超音波処理することで得られた固体を濾取し、終夜減圧乾燥した。得られた固体を酢酸エチルにて再結晶後、蒸留をすることで下記式(2-3)の化合物(1.20g、19.2%)を白色固体として得た。
3つ口フラスコ中、窒素気流下、トルエン(97mL)にrac-BINAP(357mg)を室温にて加え、オイルバス60℃にて固体が溶解するまで加熱撹拌した。室温に戻した混合物に酢酸パラジウム(86mg)、2-ブロモ-1,10-フェナントロリン(4.40g)を加え、再びオイルバス60℃にて30分撹拌した。室温に戻した混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(2.64g)、KOtBu(4.72g)を加え、オイルバス90℃にて4時間撹拌した。室温に戻した混合物にジエチルエーテル(150mL)を加え、不溶物を濾別した。濾液を減圧濃縮し、残渣に酢酸エチル(20mL)を加えた。析出物を濾取し、減圧乾燥した。固体にアセトン(100mL)を加えて加熱洗浄し、固体を濾取した。得られた固体を昇華精製することで下記式(2-4)の化合物(2.21g、25.6%)を白色固体として得た。
フラスコ中、窒素気流下、トルエン(80mL)にrac-BINAP(301mg)を室温にて加え、オイルバス60℃にて固体が溶解するまで加熱撹拌した。室温に戻した混合物に酢酸パラジウム(78mg)、6,6’-ジブロモ-2,2’-ビピリジン(5.00g)を加え、再びオイルバス60℃にて20分撹拌した。室温に戻した混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(4.90g)、KOtBu(8.95g)を加え、オイルバス110℃にて6時間撹拌した。室温に戻した混合物にジエチルエーテルを加え、不溶物を濾別した。不溶物をクロロホルム-酢酸エチル混合溶媒にてリンスし、合わせた濾液を減圧濃縮した。残渣にメタノールを加え、析出物を濾取した。得られた固体(3.60g)にメタノール(50mL)を用いて加熱洗浄し、室温に戻してから析出した固体を再度濾取した。得られた固体(2.20g)を昇華精製することで下記式(2-5)の化合物(1.45g、21.0%)を白色固体として得た。
ナスフラスコ中、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン(5.00g)とトルエン(95mL)の混合物に1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(5.72g)を室温にて加えた後にオイルバス100℃にて3時間撹拌した。室温に戻した混合物から不溶物を濾別し、濾液を減圧濃縮した。残渣にクロロホルム(25mL)を加えて超音波処理することにより析出した固体を濾取後、減圧乾燥することで下記式(2-6)の化合物(5.90g、85.2%)を白色固体として得た。
100mLの反応容器にrac-BINAP(0.213g,0.342mmol)、トルエン(20mL)を入れ、70℃に昇温、完溶させた後、酢酸パラジウム(51mg,0.228mmol)を加え、室温まで放冷しながら攪拌した。これに2,4,6-トリブロモピリジン(1.2g,3.8mmol)、KOtBu(1.8g,16.0mmol)、1,3,4,6,7,8-ヘキサヒドロ2H-ピリミド[1,2-a]ピリミジン(1.9g,13.7mmol)を加え、100℃で14時間加熱攪拌した。反応溶液を室温まで放冷後、セライトろ過し、ろ液を濃縮し、下記式(2-11)の化合物を2.2g得た。
200mLナスフラスコにrac-BINAP(0.238g,0.383mmol)と脱水トルエン(55mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.054g,0.24mmol)を加えて、反応容器内をアルゴン置換した。1時間後、2-ブロモ-9,9’-スピロビ[9H-フルオレン](2.18g,5.52mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(0.957g,6.88mmol)、カリウムtert-ブトキシド(0.936g,8.35mmol)を加えて、再度反応容器内をアルゴン置換した後、オイルバス90℃にて加熱攪拌した。2.25時問後、室温に冷却して、ジェチルエーテル(220mL)を加えて、しばらく撹押した後、析出固体を吸引ろ過、ジエチルエーテルで洗浄した。ろ液中のジエチルエーテル分を減圧下で留去した後、残ったトルエン層を水(55mL)で洗浄した。有機層を減圧留去し得られた残渣をシリカゲルカラムクロマトグラフィーでカラム精製することにより下記式(2-30)の化合物を2.13g(4.69mmol,収率85%)得た。
別途合成していたものと合わせた下記式(2-30)の化合物2.31gをクロロホルムに溶解させ、溶媒を減圧留去した後、残漬をヘキサン(50mL)に懸濁させて30分攪拌した後、固体を吸引ろ過しヘキサンで洗浄することにより純度99.2%の下記式(2-30)の化合物を1.78g得た。
得られた化合物の1H-NMR測定結果は以下の通りである。
1H-NMR(500MHz CDCl3):δ7.81(d,2H,J=7.5Hz),7.74(t,2H,J=8.0Hz),7.41(dd,1H,J=1.5,8.5Hz),7.36-7.29(m,3H),7.09(t,2H,J=8.0Hz),7.03(t,1H,J=7.5Hz),6.76(d,1H,J=7.5Hz),6.66(d,1H,J=1.5Hz),6.44(d,1H,J=1.5Hz),3.32(t,2H,J=5.5Hz),3.26(t,2H,J=5.5Hz),3.14(t,2H,J=6.0Hz),3.11(t,2H,J=6.5Hz),1.92(quin,2H,J=6.0Hz),1.80(quin,2H,J=6.0Hz).
100mLナスフラスコにrac-BINAP(0.138g,0.221mmol)と脱水トルエン(35mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.0331,0.148mmol)を加えて、反応容器内をアルゴン置換した。1時間後、2,7-ジブロモ-9,9’-スピロビ[9H-フルオレン](0.7g,1.48mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(0.452g,3.25mmol)、カリウムtert-ブトキシド(0.431g,3.84mmol)を加えて、再度反応容器内をアルゴン雰囲気下にした後、オイルバス90℃にて加熱攪拌した。3.25時間後、室温に冷却して、ジエチルエーテル(100mL)を加えて、しばらく攪拌した後、析出固体を吸引ろ過、ジェチルエーテルで洗浄した。ろ液を水(35mL)で逆抽出して、水層を減圧留去し1.09gの固体を得た。
これをアセトンに懸濁させて、室温で2時間撹押した後、固体を吸引ろ過、アセトン洗浄した。この操作を2回行い、下記式(2-31)の化合物を0.520g(0.88mmol,収率60%)の淡黄色固体として得た。
得られた化合物の1H-NMR測定結果は以下の通りである。
1H-NMR(500MHz CDCl3):δ7.80(d,2H,J=8.0Hz),7.70(d,2H,J=8.0Hz),7.44(d,2H,J=6.5Hz),7.34(t,2H,J=7.5Hz),7.10(t,2H,J=7.5Hz),6.80(d,2H,J=7.5Hz),6.39(d,2H,J=1.5Hz),3.38-3.33(m,4H),3.28-3.25(m,4H),3.23-3.14(m,8H),1.98-1.93(m,4H),1.87-1.81(m,4H).
500mLナスフラスコにrac-BINAP(1.21g,1.95mmol)と脱水トルエン(350mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.345,1.54mmol)を加えて、反応容器内をアルゴン置換した。55分後、9,10-ジブロモアントラセン(5.01g,14.9mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(4.45g,32.0mmol)、カリウムtert-ブトキシド(4.26g,37.9mmol)を加えて、再度反応容器内をアルゴン雰囲気下にした後、オイルバス90℃にて加熱攪拌した。140分後、室温に冷却して、ジェチルエーテル(1L)を加えて、しばらく攪拌した後、析出固体を吸引ろ過、ジエチルエーテルで洗浄した。ろ液中のジエチルエーテル分を減圧留去後、トルエン層を水(150mL)で逆抽出して、水層を減圧留去し3.77gの橙色固体を得た。
これをアセトン(50mL)に懸濁させて、室温で終夜攪拌後、固体を吸引ろ過、アセトン洗浄して1.0gの黄色固体を得た。
さらにこの黄色固体を60℃でクロロホルム(41mL)に溶解させた後、ヘキサン(48mL)を徐々に加えた。固体の析出を確認した後、冷凍庫で終夜冷却し、固体を吸引ろ過、ヘキサン洗浄して、下記式(2-32)の化合物を0.657g(1.45mmol,収率10%)の黄色固体として得た。
得られた化合物の1H-NMR測定結果は以下の通りである。
1H-NMR(500MHz CDCl3):δ8.03(q,4H,J=3.0Hz),7.43(q,4H,J=3.0Hz),3.59(t,4H,J=5.5Hz),3.48(t,4H,J=5.5Hz),3.36(t,4H,J=5.5Hz),3.16(t,4H,J=5.5Hz),2.29(quin,4H,J=6.0Hz),1.86(quin,4H,J=6.0Hz).
100mLナスフラスコにrac-BINAP(0.407g,0.653mmol)と脱水トルエン(60mL)を入れて、90℃で加熱溶解させた。これを室温に冷却して、酢酸パラジウム(0.124,0.551mmol)を加えて、反応容器内をアルゴン置換した。30分後、2,2’-ジブロモ-9,9’-スピロビ[9H-フルオレン](2.32g,4.90mmol)、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(1.47g,10.6mmol)、カリウムtert-ブトキシド(1.38g,12.3mmol)を加えて、再度反応容器内をアルゴン雰囲気下にした後、オイルバス90℃にて加熱攪拌した。21.25時間後、室温に冷却して、ジエチルエーテル(300mL)を加えて、しばらく攪拌した後、析出固体を吸引ろ過、ジェチルエーテルで洗浄した。ろ液を水(60mL)で逆抽出して水層を減圧留去し、残渣をカラムクロマトグラフィーで精製することにより、黄色アモルファス状の下記式(2-33)の化合物を1.54g(2.61mmol,収率53%)得た。
得られた化合物の1H-NMR測定結果は以下の通りである。
1H NMR(500MHz CDCl3):δ7.70(dd,4H,J=8.0,14.0Hz),7.37(dd,2H,J=2.0,8.0Hz),7.29(t,2H,J=7.5Hz),7.01(dd,2H,J=1.0,7.5Hz),6.69(d,2H,J=8.0Hz),6.47(d,2H,J=2.0Hz),3.37-3.28(m,4H),3.24(t,4H,J=5.5Hz),3.13(t,4H,J=6.0Hz),3.09(t,4H,J=6.5Hz),1.91(quin,4H,J=6.0Hz),1.78(quin,4H,J=6.0Hz).
500mLナスフラスコにrac-BINAP(1.60g,2.57mmol)と脱水トルエン(350mL)を入れて、90℃で加熱溶解させた。これを度室温に冷却して、酢酸パラジウム(0.395g,1.76mmol)を加えて、反応容器内とアルゴン置換した。30分後、2,2’,7,7’-ジブロモ-9,9’-スピロビ[9H-フルオレン](4.43g,7.00mmol),1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン(4.06g,29.1mmol)、カリウムtert-ブトキシド(4.08g,36.3mmol)を加えて、反応容器内を再度アルゴン雰囲気下にした後、オイルバス90℃にて加熱撹押した。22.75時間後、室温に冷却して、ジェチルエーテル(1.05L)を加えて、しばらく撹枠した後、析出固体を吸引ろ過、ジェチルエーテルで洗浄した。ろ物をクロロホルム(100mL)に溶解後、水(150mL)で逆抽出して、水層をクロロホルム(200mL)で洗浄後、水層を減圧留去し、粗体として3.29gの茶緑色アモルファス状物質を得た。
これをアセトンで懸濁後、固体を吸引ろ過、アセトン洗浄して、ろ液を減圧留去し、下記式(2-34)の化合物を2.32g(2.68mmol,収率38%)の黄色アモルファス状物質として得た。
別途合成していたものと合わせ合計2.45gをジエチルエーテル/トルエン/アセトン混合溶媒(3/1/1.25mL)で懸濁後、固体を吸引ろ過、ジエチルエーテル/トルエン/アセトン混合溶媒(3/1/1)で洗浄し2.24gの下記式(2-34)の化合物の淡黄色固体を得た。(純度74.7%)
得られた化合物の1H-NMR測定結果は以下の通りである。
1H NMR(500MHz CDCl3):δ7.66-7.55(m,4H),7.32-7.24(m,4H),6.55-6.40(m,4H),3.35(t,8H,J=5.5Hz),3.26-3.06(m,24H),1.96-1.88(m,8H),1.88-1.74(m,8H).
国際公開第2016/181705号の合成例1~3と同様の方法により、下記式(4)で表されるホウ素含有化合物を合成した。
<ホウ素含有重合体合成用モノマーの合成>
300mLの反応容器に下記式(8)で表される化合物(3.96g)、4-ピリジンボロン酸(1.03g)、Pd(PPh3)4(0.24g)、炭酸ナトリウム(2.24g)、トルエン(40mL)、蒸留水(40mL)、エタノール(20mL)を加えた。得られた懸濁液を、アルゴンバブリングしながら10分間撹拌後、オイルバスにて95℃に昇温し、同温で18時間加熱撹拌した。得られた黄色溶液に、水(100mL)、トルエン(100mL)を加え2層に分けた。有機層を水、飽和食塩水で順次洗浄後、濃縮した。得られた残渣をカラムクロマトグラフィーおよび分取GPCによる精製によって無色の固体を得た。これをエタノール/ヘキサンによって再結晶を行い、下記式(9)で表される化合物(0.69g)を得た。
アルゴン雰囲気下、50mLの耐圧試験管に、上記式(9)で表される化合物(0.5g)、下記式(10)で表される化合物(0.57g)、Pd(PPh3)4(0.1g)、炭酸ナトリウム(0.472g)、Aliquat336(0.2g)、トルエン(10mL)、蒸留水(10mL)を加えた。この懸濁液を約15分間アルゴンバブリングした後、オイルバスにて100℃で加熱しながら24時間撹拌した。これにヨードベンゼン(0.181g)を加え18時間同温で18時間撹拌後、フェニルボロン酸(0.217g)を加え、18時間撹拌した。得られた黒褐色懸濁液の有機層をセライト濾過し、ろ液を濃縮した。得られた残渣をカラム精製し、薄い茶色の粉末を得た。これにヘプタン、エタノールを加え、加熱分散洗浄し、放冷後固体を濾過してエタノールで洗浄しすることで、ホウ素含有重合体(7)を0.61g得た。
以下のようにして図1に示す積層構造の逆構造の有機EL素子を作製した。
[1]基板2として、厚さ150nmのITOからなる幅3mmにパターニングされた電極(陰極3)を有する平均厚さ0.7mmの市販の透明ガラス基板を用意した。そして、陰極3を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陰極3を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2][1]において洗浄した陰極3の形成されている基板2を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。スパッタ装置のチャンバー内を、約1×10-4Paの圧力となるまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、基板2の陰極3上に膜厚約3nmの酸化亜鉛層(酸化物層4)を作製した。なお、酸化亜鉛層を作製する際には、電極取り出しのために、ITO電極(陰極3)上の一部に酸化亜鉛が成膜されないようにした。酸化物層4を成膜した基板2に、大気下で400℃、1時間のアニールを行った。
[3]次に、酸化物層4上に電子注入層5として、以下に示す方法により、第1材料と第2材料とを含む有機薄膜を形成した。
まず、式(4)で表されるホウ素含有化合物と式(2-2)の化合物(重量比1:0.05)をシクロペンタノンに溶解し(濃度は0.5重量%)、塗料組成物を得た。次に、[2]で作製した陰極3および酸化物層4の形成されている基板2をスピンコーターに設置した。そして、塗料組成物を酸化物層4上に滴下しながら、基板2を毎分3000回転で30秒間回転させて塗膜を形成した。その後、ホットプレートを用いて窒素雰囲気下で150℃、1時間のアニール処理を施し、電子注入層5を形成した。得られた電子注入層5の平均厚さは15nmであった。
[4]次に、電子注入層5までの各層が形成された基板2を、真空蒸着装置の基板ホルダーに固定した。また、下記式(11)で示されるビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(Zn(BTZ)2)と、下記式(12)で示されるトリス[1-フェニルイソキノリン]イリジウム(III)(Ir(piq)3)と、下記式(13)で示されるN,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)と、下記式(14)で示される1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)と、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。
まず、Zn(BTZ)2からなる厚み10nmの電子輸送層10を形成した。続いて、Zn(BTZ)2をホスト、Ir(piq)3をドーパントとして20nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(piq)3が発光層6全体に対して6質量%となるようにした。次に、発光層6まで形成した基板2上に、α-NPDを50nm成膜し、正孔輸送層7を形成した。さらに、HAT-CNを10nm成膜し、正孔注入層8を形成した。次に、正孔注入層8まで形成した基板2上に、真空蒸着法によりアルミニウムからなる膜厚100nmの陽極9を成膜した。
なお、陽極9は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mm2とした。
[5]次に、陽極9までの各層を形成した基板2を、凹状の空間を有するガラスキャップ(封止容器)に収容し、紫外線(UV)硬化樹脂からなるシール材を充填することにより封止し、実施例1の有機EL素子を得た。
実施例1の[3]の工程において、式(2-2)の化合物に代えて、式(2-4)の化合物を用いたこと以外は実施例1と同様にして、実施例2の有機EL素子を得た。
実施例1の[3]の工程において、式(2-2)の化合物を用いず、式(4)で表されるホウ素含有化合物のみをシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、比較例1の有機EL素子を得た。
実施例1の[3]の工程において、式(4)で表されるホウ素含有化合物と式(2-2)の化合物(重量比1:2)をシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、実施例3の有機EL素子を得た。
実施例1の[3]の工程において、式(4)で表されるホウ素含有化合物と式(2-9)の化合物(重量比1:2)をシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、実施例4の有機EL素子を得た。
実施例1の[3]の工程において、式(4)で表されるホウ素含有化合物と下記式(15)で表されるMTBD(重量比1:2)をシクロペンタノンに溶解(濃度は0.5重量%)した塗料組成物を用いたこと以外は実施例1と同様にして、比較例2の有機EL素子を得た。
実施例1の[3]の工程を以下の[3-1]のようにしたこと以外は実施例1と同様にして、実施例5の有機EL素子を得た。
[3-1]真空蒸着装置を用いて、式(4)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして10nm共蒸着し、電子注入層5を成膜した。この時、ドープ濃度は、式(2-2)の化合物が電子注入層5全体に対して5質量%となるようにした。
実施例5の[3-1]の工程において、式(4)で表されるホウ素含有化合物のみを10nm成膜したこと以外は実施例5と同様にして、比較例3の有機EL素子を得た。
実施例1の[2]の工程を行わず、[3]の工程を上記[3-1]のようにしたこと以外は実施例1と同様にして、実施例6の有機EL素子を得た。
実施例5の[3-1]の工程において、式(4)の化合物の代わりに特開2018-206889記載の下記式(16)で表されるトリアジン化合物を用い、式(2-2)のドープ濃度を10質量%としたこと以外は実施例5と同様にして、実施例7の有機EL素子を得た。
実施例1の[3]の工程を以下の[3-2]のようにしたこと以外は実施例1と同様にして、実施例8の有機EL素子を得た。
[3-2]真空蒸着装置を用いて、式(2-2)の化合物を1nm蒸着し、続いて式(16)の化合物を10nm蒸着することで、式(2-2)の化合物と式(16)の化合物が積層された電子注入層5を成膜した。
実施例7の[3-1]の工程において、式(16)で表されるトリアジン化合物のみを10nm成膜したこと以外は実施例7と同様にして、比較例4の有機EL素子を得た。
実施例5の[3-1]の工程において、式(4)の化合物の代わりに下記式(17)で表されるホウ素化合物を用い、式(2-2)のドープ濃度を5質量%としたこと以外は実施例5と同様にして、実施例9の有機EL素子を得た。
実施例1の[3]の工程を以下の[3-3]のようにしたこと以外は実施例1と同様にして、実施例10の有機EL素子を得た。
[3-3]まず、下記式(7)で表されるホウ素含有重合体をジメチルアセトアミドに溶解し(濃度は0.1重量%)、塗料組成物を得た。次に、[2]で作製した陰極3および酸化物層4の形成されている基板2をスピンコーターに設置した。そして、塗料組成物を酸化物層4上に滴下しながら、基板2を毎分3000回転で30秒間回転させて塗膜を形成した。その後、ホットプレートを用いて窒素雰囲気下で120℃、2時間のアニール処理を施し、式(7)の化合物からなる第2材料の層を形成した。得られた層の平均厚さは15nmであった。次に、この基板2を、真空蒸着装置の基板ホルダーに固定し、式(16)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして10nm共蒸着し、式(7)の上層に、式(17)の化合物と式(2-2)の化合物の混合膜が積層された電子注入層5を成膜した。この時、式(17)の化合物と式(2-2)の化合物の混合膜中、式(2-2)の化合物が式(17)のホウ素化合物に対して5質量%となるようにした。
以下に示す方法により、図20に示す積層構造の順構造の有機EL素子11を製造した。
[1]ITO膜(膜厚100nm、幅3mmにパターニング済)からなる陽極9を有する平均厚さ0.7mmの市販されているガラス製透明基板2(以下、単に基板とも称する)を用意した。
[2]次に、陽極9を有する基板2を、アセトン中およびイソプロパノール中でそれぞれ10分間超音波洗浄し、さらにイソプロパノール中で5分間煮沸した。その後、基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[3]次に、PEDOT(Clevios HIL1.3N)からなる厚み30nmの正孔注入層8を形成した。
[4]次に、PEDOTまで形成した基板を、真空蒸着装置のチャンバー内の基板ホルダーに固定し、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層7、発光層6、電子輸送層10、電子注入層5、陰極1(図20の陰極3’)および陰極2(図20の陰極3)を連続して形成した。
まず、上記式(13)で表されるα-NPDからなる厚み30nmの正孔輸送層を形成した。続いて、上記式(11)で表されるZn(BTZ)2をホスト、上記式(12)で表されるIr(piq)3をドーパントとして30nm共蒸着し、発光層を成膜した。この時、ドープ濃度は、Ir(piq)3が発光層全体に対して6質量%となるようにした。次に、発光層まで形成した基板上に、下記式(18)で表されるTmPPyTzを40nm成膜し、電子輸送層を形成した。さらに、上記式(2-2)の化合物を1nm成膜し、電子注入層を形成した。次に、電子注入層まで形成した基板上に、銀とマグネシウムを質量比9:1となるよう共蒸着した陰極1(図20の陰極3’)を25nmを形成後、銀のみからなる膜厚100nmの陰極2(図20の陰極3)を成膜した。
なお、陰極1および2は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mm2とした。
[5]次に、陰極までの各層を形成した基板を、凹状の空間を有するガラスキャップ(封止容器)に収容し、紫外線(UV)硬化樹脂からなるシール材を充填することにより封止し、実施例11の有機EL素子を得た。
実施例11において、工程[4]を[4-1]にしたこと以外は実施例11と同様にして実施例12の素子を作製した。
[4-1]次に、PEDOTまで形成した基板を、真空蒸着装置のチャンバー内の基板ホルダーに固定し、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を連続して形成した。
まず、上記式(13)で表されるα-NPDからなる厚み40nmの正孔輸送層を形成した。続いて、上記式(11)で表されるZn(BTZ)2をホスト、上記式(12)で表されるIr(piq)3をドーパントとして30nm共蒸着し、発光層を成膜した。この時、ドープ濃度は、Ir(piq)3が発光層全体に対して6質量%となるようにした。次に、発光層まで形成した基板上に、式(4)で表されるホウ素含有化合物を10nm成膜し、電子輸送層を形成した。
さらに、式(4)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして35nm共蒸着し、電子注入層を成膜した。この時、ドープ濃度は、式(2-2)の化合物が電子注入層全体に対して5質量%となるようにした。
次に、電子注入層まで形成した基板上に、アルミニウムからなる膜厚100nmの陰極を成膜した。
なお、陰極は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mm2とした。
実施例12において、電子注入層における化合物(2-2)のドープ濃度を20質量%とした以外は実施例12と同様にして実施例13の素子を作製した。
実施例12において、電子注入層に用いる材料を式(4)のホウ素含有化合物のみとしたこと以外は実施例12と同様にして比較例5の素子を作製した。
実施例12において、電子輸送層のホウ素化合物(4)の膜厚を45nmとし、電子注入層に用いる材料をフッ化リチウムとして0.8nm成膜した以外は実施例12と同様にして比較例6の素子を作製した。
実施例12において、工程[4-1]を[4-2]にしたこと以外は実施例12と同様にして実施例14の素子を作製した。
[4-2] 次に、PEDOTまで形成した基板を、真空蒸着装置のチャンバー内の基板ホルダーに固定し、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を連続して形成した。
まず、上記式(13)で表されるα-NPDからなる厚み40nmの正孔輸送層を形成した。続いて、上記式(11)で表されるZn(BTZ)2をホスト、上記式(12)で表されるIr(piq)3をドーパントとして30nm共蒸着し、発光層を成膜した。この時、ドープ濃度は、Ir(piq)3が発光層全体に対して6質量%となるようにした。次に、発光層まで形成した基板上に、式(4)で表されるホウ素含有化合物を10nm成膜し、電子輸送層を形成した。
さらに、式(4)で表されるホウ素含有化合物をホスト、式(2-2)の化合物をドーパントとして35nm共蒸着した。この時、ドープ濃度は、式(2-2)の化合物が電子注入層1全体に対して5質量%となるようにした。
さらに、式(4)からなるホウ素含有化合物を5nm蒸着し、第1材料と第2材料とを含む膜と、第2材料のみを含む膜との積層膜である電子注入層を形成した。
次に、電子注入層まで形成した基板上に、アルミニウムからなる膜厚100nmの陰極を成膜した。
なお、陰極は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mm2とした。
以下に示す方法により図25に示す積層構造の順構造の有機EL素子を作製した。
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板2を用意した。この時、基板のITO電極(陽極9)は幅2mmにパターニングされているものを用いた。この基板をクリーンエースおよび純水にて超音波洗浄後、イソプロパノール中で5分間蒸気洗浄を行った。この基板を窒素ブローにより乾燥させ、UVオゾン洗浄を10分間行った。
[2]この基板をスピンコーターにセットし、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)(クレヴィオスCH8000)を滴下し、毎分2000回転で60秒間回転させ、さらに130℃のホットプレートで10分間乾燥させて、陽極上にPEDOT/PSSからなる正孔注入層8を形成した。正孔注入層の平均厚さは50nmであった。正孔注入層の平均厚さは、触針式段差計により測定した。
[3]ポリ(ジオクチルフルオレン-アルト-ベンゾチアジアゾール)(F8BT)の2%キシレン溶液を作製した。上記工程[2]で作製した基板をスピンコーターにセットした。上記工程[2]で形成した正孔注入層の上にF8BT-キシレン溶液を滴下し、毎分2,000回転で60秒間回転させ、F8BTからなる発光層6を形成した。発光層の平均厚さは20nmであった。発光層の平均厚さは、触針式段差計により測定した。
[4]上記工程[3]で作製した基板をスピンコーターにセットした。上記工程[3]で形成した発光層の上に、式(2-2)の化合物の1ープロパノール溶液(1重量%)を滴下し、毎分2000回転で60秒間回転させ、発光層の上に電子注入層5を形成した。電子注入層の平均厚さは触針式段差形での測定限界以下であった。
[5]上記工程[4]で作製した基板を真空蒸着装置の基板ホルダーに固定した。アルミニウムワイヤー(Al)をアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、電子注入層の上にAl(陰極3)を平均厚さが100nmとなるように蒸着し、有機電界発光素子を作製した。陰極の平均厚さは、水晶振動子膜厚計により成膜時に測定した。
実施例15の[1]から[3]までは同じ工程で作製したのち、以下の[4-1]の工程を行ない、有機EL素子を作製した。
[4-1]上記工程[3]で作製した基板を真空蒸着装置の基板ホルダーに固定した。フッ化リチウム(LiF)およびアルミニウムワイヤー(Al)をツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、LiF(電子注入層5)を平均厚さが1nmとなるように蒸着した後、Al(陰極3)を平均厚さが100nmとなるように蒸着し、有機電界発光素子を作製した。
以下に示す方法により、順構造の有機EL素子を製造した。実施例16~20、比較例8、10、12、14の素子は、図2の積層構造を有するものであり、比較例9、11、13、15の素子は、図2から電子注入層5を除いた積層構造を有するものである。
[1]基板2として、厚さ100nmのITOからなる幅3mmにパターニングされた電極(陽極9)を有する平均厚さ0.7mmの市販の透明ガラス基板2を用意した。
そして、陽極9を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陽極9を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
また、下記式(19)で示される2,4-ジフェニル-6-ビス((12-フェニルインドロ)[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(DIC-TRZ)と、下記式(20)で示されるfac-トリス(3-メチル-2-フェニルピリジナト-N,C2’-)イリジウム(III)(Ir(mppy)3)と、上記式(13)で示されるα-NPDと、下記式(21)で示されるN3,N3’’’-ビス(ジベンゾ[b,d]チオフェン-4-イル)-N3,N3’’’-ジフェニル-[1,1’:2’,1’’:2’’,1’’’-クアテルフェニル]-3,3’’’-ジアミン(4DBTP3Q)と、第1材料となる式(2-2)の化合物と、下記に示す第2材料(電子輸送材料)となる各種材料と、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。
具体的には、まず、20nmのα-NPDと、10nmの4DBTP3Qからなる厚み30nmの正孔輸送層7を形成した。続いて、DIC-TRZをホスト、Ir(mppy)3をドーパントとして25nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(mppy)3が発光層6全体に対して3質量%となるようにした。次に、発光層6まで形成した基板2上に、40nmの電子輸送層10および1nmの電子注入層5を形成した。次に、電子注入層5まで形成した基板2上に、真空蒸着法によりアルミニウムからなる膜厚100nmの陰極3を成膜した。なお、陰極3は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mm2とした。
実施例16:第2材料として式(22)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例17:第2材料として式(23)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例18:第2材料として式(24)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例19:第2材料として式(25)の化合物を、第1材料として式(2-2)の化合物を用いた。
実施例20:第2材料として式(26)の化合物を、第1材料として式(2-2)の化合物を用いた。
比較例8:第2材料として式(22)の化合物を、第1材料としてフッ化リチウムを用いた。
比較例10:第2材料として式(23)の化合物を、第1材料としてフッ化リチウムを用いた。
比較例12:第2材料として式(24)の化合物を、第1材料としてフッ化リチウムを用いた。
比較例14:第2材料として式(26)の化合物を、第1材料としてフッ化リチウムを用いた。
比較例9:第2材料として式(22)の化合物を用いた。
比較例11:第2材料として式(23)の化合物を用いた。
比較例13:第2材料として式(24)の化合物を用いた。
比較例15:第2材料として式(25)の化合物を用いた。
以下に示す方法により、順構造の有機EL素子を作製し、評価した。実施例21、比較例16の素子は、図3に示す積層構造の有機EL素子であり、実施例22の素子は図4に示す積層構造の有機EL素子である。
[1]基板2として、厚さ100nmのITOからなる幅3mmにパターニングされた電極(陽極9)を有する平均厚さ0.7mmの市販の透明ガラス基板2を用意した。
そして、陽極9を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陽極9を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
そして、真空蒸着装置のチャンバー内を1×10-5Paの圧力となるまで減圧して、抵抗加熱による真空蒸着法により、正孔輸送層7、発光層6、電子注入層5、陰極3を連続して形成した。
具体的には、まず、20nmのα-NPDと、10nmの4DBTP3Qからなる厚み30nmの正孔輸送層7を形成した。続いて、DIC-TRZをホスト、Ir(mppy)3をドーパントとして25nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(mppy)3が発光層6全体に対して3質量%となるようにした。次に、発光層6まで形成した基板2上に、厚み40nmのDIC-TRZからなる電子輸送層10および厚み1nmの電子注入層5を形成した。
実施例21では電子注入層5に式(2-2)で表される化合物を、比較例16では電子注入層5に一般的な電子注入材料であるフッ化リチウムを用いた。
また、実施例22においては、厚み30nmの正孔輸送層7にDIC-TRZを用い、その他の層は実施例21と同じとした。
実施例21、22は発光層がホストとドーパントの2種類の材料からなる構成であったが、発光層が1種類の材料から構成される有機EL素子でも図4に示す簡易の構造が実現可能であることを実証するため、以下のようにして実施例23、比較例17の素子を作製した。
そして、陽極9を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陽極9を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
また、正孔注入層8として用いるフラーレンと、下記式(27)で示される(9,10-ビス(4-(9Hカルバゾール-9-イル)-2,6-ジメチルフェニル)-9,10-ジボラアントラセン(CzDBA)と、第1材料となる式(2-2)で表される化合物と、リチウムキノリンと、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。また、正孔注入層8に用いる三酸化モリブデンは、タングステンボードに入れてセットした。
実施例24では第1材料(電子注入層5)に式(2-11)で表される化合物を用いたこと以外、実施例21と同様にして有機EL素子を作製した。
比較例18では第1材料(電子注入層5)を使用しなかったこと以外、実施例21と同様にして有機EL素子を作製した。
以下のようにして図1に示す積層構造の逆構造の有機EL素子を作製した。
[1]基板2として、厚さ150nmのITOからなる幅3mmにパターニングされた電極(陰極3)を有する平均厚さ0.7mmの市販の透明ガラス基板2を用意した。そして、陰極3を有する基板2を、アセトン中、イソプロパノール中でそれぞれ10分間ずつ超音波洗浄し、イソプロパノール中で5分間煮沸した。その後、陰極3を有する基板2を、イソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2][1]において洗浄した陰極3の形成されている基板2を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。スパッタ装置のチャンバー内を、約1×10-4Paの圧力となるまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、基板2の陰極3上に膜厚約3nmの酸化亜鉛層を作製した。
[3]次に、酢酸マグネシウムの1.0重量%のエタノール溶液を作製した。酸化亜鉛層を作製した基板をスピンコーターにセットし、酢酸マグネシウム溶液を滴下し、毎分1300回転で60秒間回転させた。その後、この基板に、大気下で400℃、1時間のアニールを行い、膜厚3nmの酸化マグネシウム膜を形成した。[2]と[3]の工程により、酸化亜鉛層と酸化マグネシウム層とが積層された酸化物層4を積層した基板とした。
[4]次に、酸化物層4上に電子注入層5として、以下に示す方法により、第1材料と第2材料とを含む有機薄膜を形成した。
まず、式(4)で表されるホウ素含有化合物と式(2-30)の化合物(重量比1:0.4)をシクロペンタノンに溶解し(濃度は1.0重量%)、塗料組成物を得た。次に、[2]で作製した陰極3および酸化物層4の形成されている基板2をスピンコーターに設置した。そして、塗料組成物を酸化物層4上に滴下しながら、基板2を毎分3000回転で30秒間回転させて塗膜を形成した。その後、ホットプレートを用いて窒素雰囲気下で150℃、1時間のアニール処理を施し、電子注入層5を形成した。得られた電子注入層5の平均厚さは20nmであった。
[5]次に、電子注入層5までの各層が形成された基板2を、真空蒸着装置の基板ホルダーに固定した。また、式(11)で示されるビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(Zn(BTZ)2)と、式(12)で示されるトリス[1-フェニルイソキノリン]イリジウム(III)(Ir(piq)3)と、式(13)で示されるN,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)と、式(14)で示される1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)と、Alとを、それぞれアルミナルツボに入れて蒸着源としてセットした。
まず、Zn(BTZ)2からなる厚み10nmの電子輸送層10を形成した。続いて、Zn(BTZ)2をホスト、Ir(piq)3をドーパントとして20nm共蒸着し、発光層6を成膜した。この時、ドープ濃度は、Ir(piq)3が発光層6全体に対して6質量%となるようにした。次に、発光層6まで形成した基板2上に、α-NPDを50nm成膜し、正孔輸送層7を形成した。さらに、HAT-CNを10nm成膜し、正孔注入層8を形成した。次に、正孔注入層8まで形成した基板2上に、真空蒸着法によりアルミニウムからなる膜厚100nmの陽極9を成膜した。
なお、陽極9は、ステンレス製の蒸着マスクを用いて蒸着面が幅3mmの帯状になるように形成し、作製した有機EL素子の発光面積を9mm2とした。
[6]次に、陽極9までの各層を形成した基板2を、凹状の空間を有するガラスキャップ(封止容器)に収容し、紫外線(UV)硬化樹脂からなるシール材を充填することにより封止し、実施例25の有機EL素子を得た。
実施例25の[4]の工程において、式(2-30)の化合物に代えて、式(2-31)の化合物を用いたこと以外は実施例25と同様にして、実施例26の有機EL素子を得た。
実施例25の[4]の工程において、式(2-30)の化合物を用いず、式(4)で表されるホウ素含有化合物のみをシクロペンタノンに溶解(濃度は1.0重量%)した塗料組成物を用いたこと以外は実施例25と同様にして、比較例19の有機EL素子を得た。
また、図14に示されるように、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用した場合には、MTBDを用いた場合にみられるような発光面の欠けのない、きれいな発光面が得られた。
更に図15の結果から、本発明の一般式(1)で表されるヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用し、蒸着により層を形成した場合にも低電圧で駆動する素子が得られることが確認され、このヘキサヒドロピリミドピリミジン化合物を電子輸送材料と併用した材料は、製造プロセスの制約なく、塗布、蒸着のいずれにより製膜しても優れた特性を発揮する素子を作製できることが確認された。
更に図17の結果から、実施例7と比較例4から、式(4)の化合物以外でも、ヘキサヒドロピリミドピリミジン化合物をドープする効果が見て取れる。また、実施例8から、電子注入層が第1材料と第2材料の混合膜でなく、積層膜であっても効果があることがわかる。
更に図18の結果から、実施例9において(比較例はないが)、式(17)の化合物にヘキサヒドロピリミドピリミジン化合物をドープした素子は実施例5と同等レベルの良好な特性を示すことがわかる。また、実施例10から、電子注入層を構成するものとして、第1材料+第2材料の混合膜である層と、金属酸化物層4との間に別の材料(たとえば第2x材料)を挿入することでも実施例9と同様、良好な特性を示す。さらにこの構成とすることで寿命が延びることが図19の結果から確認された。これは、第1材料が金属酸化物層との相互作用で劣化することが防がれているためと推察される。
更に図21の結果から、順構造の有機EL素子である実施例11の素子において、式(2-2)の化合物を単独で電子注入層として用いることで、良好な特性が得られており、式(2-2)の化合物を単層で電子注入層とした実施例11の素子は、同じ正孔輸送材料と発光材料を用いている逆構造の有機EL素子である実施例8の素子と同等レベルの特性である。したがって、本発明の電子注入層は順構造の有機EL素子でも良好に機能することが示された。
また図23の結果から、実施例13の素子は、順構造の有機EL素子で一般的に用いられることの多いフッ化リチウムを電子注入層とした比較例6の素子と比べて同等レベルの素子特性でありながら、寿命が長いことが確認された。フッ化リチウムなどのアルカリ金属は電子注入性に優れるものの、例えばLiイオンとして素子内に拡散し、その拡散が有機EL素子の安定性を低下させることがよく知られている。したがって本発明の有機薄膜および有機EL素子用材料はそのような問題の懸念がない材料であることがわかる。
また図24の結果から、実施例14では実施例10の場合と同様、第1材料+第2材料の混合膜である層と、金属電極との間に第2材料を挿入した素子であるが、第2材料を挿入していない実施例12の素子と比べて寿命が延びることが確認された。これは、順構造の素子でも第1材料と無機材料の相互作用で劣化することが防がれているためと考えられる。
更に図26の結果から、高分子発光材料を発光層の材料に用いた順構造の有機EL素子においても、(2-2)の化合物は、電子注入層の材料として一般的に用いられるLiFと同等以上の特性を示すことが確認された。
Claims (27)
- 前記第1材料は、一般式(1)におけるnが2又は3のヘキサヒドロピリミドピリミジン化合物であることを特徴とする請求項1に記載の有機薄膜。
- 酸化物層と、前記酸化物層上に形成された請求項1又は2に記載の有機薄膜の層とからなる積層膜。
- 陰極と陽極との間に発光層を有する有機エレクトロルミネッセンス素子であって、
前記陰極と前記発光層との間に請求項1又は2に記載の有機薄膜又は請求項3に記載の積層膜を有することを特徴とする有機エレクトロルミネッセンス素子。 - 前記陰極と前記有機薄膜との間に、無機の酸化物層を有することを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
- 前記陰極と前記発光層との間に、前記第1材料と第2材料とを含む膜と前記第2材料を含む膜との積層膜を有することを特徴とする請求項4又は5に記載の有機エレクトロルミネッセンス素子。
- 前記発光層と前記第1材料と第2材料とを含む膜との間に、前記第2材料を含む層を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
- 前記陰極と前記第1材料と第2材料とを含む膜との間に、前記第2材料を含む層を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
- 前記陽極と前記発光層との間に、前記第2材料を含む層を有することを特徴とする請求項4~8のいずれかに記載の有機エレクトロルミネッセンス素子。
- 前記発光層が、前記第2材料を含むことを特徴とする請求項4~9のいずれかに記載の有機エレクトロルミネッセンス素子。
- 陰極と陽極との間に発光層を有する有機エレクトロルミネッセンス素子であって、
前記陰極と前記陽極との間に請求項11に記載の有機エレクトロルミネッセンス素子用材料を含む層を有することを特徴とする有機エレクトロルミネッセンス素子。 - 前記陰極と前記発光層との間に請求項11に記載の有機エレクトロルミネッセンス素子用材料を含む層を有することを特徴とする請求項12に記載の有機エレクトロルミネッセンス素子。
- 前記陰極と請求項11に記載の有機エレクトロルミネッセンス素子用材料を含む層との間に、無機の酸化物層を有することを特徴とする請求項12又は13に記載の有機エレクトロルミネッセンス素子。
- 請求項4~10、12~14のいずれかに記載の有機エレクトロルミネッセンス素子を備えることを特徴とする表示装置。
- 請求項4~10、12~14のいずれかに記載の有機エレクトロルミネッセンス素子を備えることを特徴とする照明装置。
- 請求項1又は2に記載の有機薄膜、請求項3に記載の積層膜又は請求項17に記載の有機薄膜太陽電池用材料を含む層のいずれかを含むことを特徴とする有機薄膜太陽電池。
- 請求項1又は2に記載の有機薄膜、請求項3に記載の積層膜又は請求項19に記載の光電変換素子用材料を含む層のいずれかを含むことを特徴とする光電変換素子。
- 請求項1又は2に記載の有機薄膜、請求項3に記載の積層膜又は請求項21に記載の薄膜トランジスタ用材料を含む層のいずれかを含むことを特徴とする薄膜トランジスタ。
- 前記被形成面が第2材料を含むことを特徴とする請求項26に記載の有機薄膜の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/640,240 US20220310937A1 (en) | 2019-09-06 | 2020-09-04 | Organic thin film and method for producing organic thin film, organic electroluminescent element, display device, lighting device, organic thin film solar cell, photoelectric conversion element, thin film transistor, coating composition and material for organic electroluminescent elements |
JP2021544040A JPWO2021045178A1 (ja) | 2019-09-06 | 2020-09-04 | |
CN202080062595.7A CN114375506A (zh) | 2019-09-06 | 2020-09-04 | 有机薄膜和有机薄膜的制造方法、有机电致发光元件、显示装置、照明装置、有机薄膜太阳能电池、光电转换元件、薄膜晶体管、涂料组合物、有机电致发光元件用材料 |
EP20860625.1A EP4026881A4 (en) | 2019-09-06 | 2020-09-04 | ORGANIC THIN FILM AND METHOD FOR PRODUCTION OF ORGANIC THIN FILM, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, ORGANIC THIN FILM SOLAR CELL, PHOTOELECTRIC CONVERSION ELEMENT, THIN FILM TRANSISTOR, COATING COMPOSITION AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENTS |
KR1020227005967A KR20220035956A (ko) | 2019-09-06 | 2020-09-04 | 유기 박막 및 유기 박막의 제조 방법, 유기 일렉트로 루미네선스 소자, 표시 장치, 조명 장치, 유기 박막 태양 전지, 광전 변환 소자, 박막 트랜지스터, 도료 조성물, 유기 일렉트로 루미네선스 소자용 재료 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-163279 | 2019-09-06 | ||
JP2019163279 | 2019-09-06 | ||
JP2020-104737 | 2020-06-17 | ||
JP2020104737 | 2020-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021045178A1 true WO2021045178A1 (ja) | 2021-03-11 |
Family
ID=74852220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/033542 WO2021045178A1 (ja) | 2019-09-06 | 2020-09-04 | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220310937A1 (ja) |
EP (1) | EP4026881A4 (ja) |
JP (1) | JPWO2021045178A1 (ja) |
KR (1) | KR20220035956A (ja) |
CN (1) | CN114375506A (ja) |
TW (1) | TW202116776A (ja) |
WO (1) | WO2021045178A1 (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023139444A1 (ja) * | 2022-01-21 | 2023-07-27 | 株式会社半導体エネルギー研究所 | 発光デバイス |
WO2023175442A1 (ja) * | 2022-03-18 | 2023-09-21 | 株式会社半導体エネルギー研究所 | 表示装置、電子機器 |
WO2024116032A1 (ja) * | 2022-11-30 | 2024-06-06 | 株式会社半導体エネルギー研究所 | 発光デバイス |
WO2024116031A1 (ja) * | 2022-11-30 | 2024-06-06 | 株式会社半導体エネルギー研究所 | 発光デバイス |
KR20240081374A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스 |
KR20240081373A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스 |
KR20240081361A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스, 표시 장치, 표시 모듈, 전자 기기 |
KR20240081383A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치, 표시 모듈, 전자 기기 |
KR20240101461A (ko) | 2022-12-23 | 2024-07-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스, 표시 장치, 표시 모듈, 전자 기기 |
KR20240102858A (ko) | 2022-12-26 | 2024-07-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치의 제작 방법, 표시 장치, 표시 모듈, 전자 기기 |
WO2024141881A1 (ja) * | 2022-12-28 | 2024-07-04 | 株式会社半導体エネルギー研究所 | 発光デバイスおよび発光デバイスの作製方法 |
WO2024141864A1 (ja) * | 2022-12-27 | 2024-07-04 | 株式会社半導体エネルギー研究所 | 発光デバイス |
KR20240118675A (ko) | 2023-01-27 | 2024-08-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스, 표시 장치, 표시 모듈, 전자 기기 |
WO2024176058A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 有機化合物、発光デバイス、表示装置、および電子機器 |
WO2024176065A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 有機化合物、発光デバイス、表示装置、および電子機器 |
WO2024201258A1 (ja) * | 2023-03-31 | 2024-10-03 | 株式会社半導体エネルギー研究所 | 発光デバイス、表示装置、表示モジュール、電子機器 |
KR20240147564A (ko) | 2023-03-31 | 2024-10-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009155325A (ja) | 2007-12-06 | 2009-07-16 | Kyoto Univ | 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子 |
JP2010230995A (ja) | 2009-03-27 | 2010-10-14 | Sumitomo Chemical Co Ltd | 光消色性材料層用感光性組成物 |
JP2011006458A (ja) | 2005-10-04 | 2011-01-13 | Rohm & Haas Co | 殺微生物組成物 |
JP2011184430A (ja) | 2010-02-10 | 2011-09-22 | Kyoto Univ | ホウ素含有化合物及びその製造方法 |
JP2012228460A (ja) | 2011-04-27 | 2012-11-22 | Olympus Corp | 計測方法 |
JP2013258144A (ja) * | 2012-06-11 | 2013-12-26 | Samsung Display Co Ltd | 有機発光表示装置及びその製造方法 |
JP2015503053A (ja) | 2011-11-25 | 2015-01-29 | エッレ エ エンメ ソチエタ ぺル アチオーニ リヴォルーション エナジー メーカー | 再生可能なソースからのエネルギー生産のためのシステム |
US20150076456A1 (en) * | 2013-09-13 | 2015-03-19 | Samsung Display Co., Ltd. | Organic light-emitting display device and method of manufacturing the same |
JP2015053872A (ja) | 2013-09-10 | 2015-03-23 | 株式会社日立製作所 | 光合成微生物培養槽および光合成微生物培養装置 |
JP2015081109A (ja) | 2013-10-21 | 2015-04-27 | 不二精機株式会社 | 食物収納包装方法 |
JP2015081108A (ja) | 2013-10-21 | 2015-04-27 | 不二精機株式会社 | 食物収納袋形成方法 |
WO2016181705A1 (ja) | 2015-05-11 | 2016-11-17 | 日本放送協会 | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物 |
JP2018206889A (ja) | 2017-06-01 | 2018-12-27 | 日本放送協会 | 有機エレクトロルミネッセンス素子、表示装置、照明装置 |
-
2020
- 2020-09-04 CN CN202080062595.7A patent/CN114375506A/zh active Pending
- 2020-09-04 WO PCT/JP2020/033542 patent/WO2021045178A1/ja unknown
- 2020-09-04 KR KR1020227005967A patent/KR20220035956A/ko not_active Application Discontinuation
- 2020-09-04 JP JP2021544040A patent/JPWO2021045178A1/ja active Pending
- 2020-09-04 TW TW109130459A patent/TW202116776A/zh unknown
- 2020-09-04 US US17/640,240 patent/US20220310937A1/en active Pending
- 2020-09-04 EP EP20860625.1A patent/EP4026881A4/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011006458A (ja) | 2005-10-04 | 2011-01-13 | Rohm & Haas Co | 殺微生物組成物 |
JP2011006457A (ja) | 2005-10-04 | 2011-01-13 | Rohm & Haas Co | 殺微生物組成物 |
JP2009155325A (ja) | 2007-12-06 | 2009-07-16 | Kyoto Univ | 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子 |
JP2010230995A (ja) | 2009-03-27 | 2010-10-14 | Sumitomo Chemical Co Ltd | 光消色性材料層用感光性組成物 |
JP2011184430A (ja) | 2010-02-10 | 2011-09-22 | Kyoto Univ | ホウ素含有化合物及びその製造方法 |
JP2012228460A (ja) | 2011-04-27 | 2012-11-22 | Olympus Corp | 計測方法 |
JP2015503053A (ja) | 2011-11-25 | 2015-01-29 | エッレ エ エンメ ソチエタ ぺル アチオーニ リヴォルーション エナジー メーカー | 再生可能なソースからのエネルギー生産のためのシステム |
JP2013258144A (ja) * | 2012-06-11 | 2013-12-26 | Samsung Display Co Ltd | 有機発光表示装置及びその製造方法 |
JP2015053872A (ja) | 2013-09-10 | 2015-03-23 | 株式会社日立製作所 | 光合成微生物培養槽および光合成微生物培養装置 |
US20150076456A1 (en) * | 2013-09-13 | 2015-03-19 | Samsung Display Co., Ltd. | Organic light-emitting display device and method of manufacturing the same |
JP2015081109A (ja) | 2013-10-21 | 2015-04-27 | 不二精機株式会社 | 食物収納包装方法 |
JP2015081108A (ja) | 2013-10-21 | 2015-04-27 | 不二精機株式会社 | 食物収納袋形成方法 |
WO2016181705A1 (ja) | 2015-05-11 | 2016-11-17 | 日本放送協会 | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物 |
JP2018206889A (ja) | 2017-06-01 | 2018-12-27 | 日本放送協会 | 有機エレクトロルミネッセンス素子、表示装置、照明装置 |
Non-Patent Citations (11)
Title |
---|
ALSARRAF, J. ET AL.: "Cyclic guanidines as efficient organocatalysts for the synthesis of polyurethanes", MACROMOLECULES, vol. 45, 21 February 2012 (2012-02-21), pages 2249 - 2256, XP055440014, DOI: 10.1021/ma2026258 * |
HYOSUNG CHOI, ADVANCED MATERIALS, vol. 23, 2011, pages 2759 |
JIANGSHAN CHEN, JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 5164 - 5170 |
KARSTEN WALZER, CHEMICAL REVIEW, vol. 107, 2007, pages 1233 - 1271 |
MACROMOLECULES, vol. 45, no. 5, 2012, pages 2249 - 2256 |
PENG WEI, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, 2010, pages 8852 |
SCHWAMM RYAN J., VIANELLO ROBERT, MARŠAVELSKI ALEKSANDRA, GARCÍA M. ÁNGELES, CLARAMUNT ROSA M., ALKORTA IBON, SAAME JAAN, LEITO IV: "15N NMR spectroscopy, x-ray and neutron diffraction, quantum-chemical calculations, and UV/vis-spectrophotometric titrations as complementary techniques for the analysis of pyridine-supported bicyclic guanidine superbases", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 81, no. 17, 5 August 2016 (2016-08-05), pages 7612 - 7625, XP055799352, DOI: 10.1021/acs.joc.6b01330 * |
See also references of EP4026881A4 |
STEFAN HOFLE, ADVANCED MATERIALS, vol. 26, 2014 |
YINHUA ZHO, SCIENCE, vol. 336, 2012, pages 327 |
YOUNG-HOON KIM, ADVANCED FUNCTIONAL MATERIALS, 2014 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023139444A1 (ja) * | 2022-01-21 | 2023-07-27 | 株式会社半導体エネルギー研究所 | 発光デバイス |
WO2023175442A1 (ja) * | 2022-03-18 | 2023-09-21 | 株式会社半導体エネルギー研究所 | 表示装置、電子機器 |
WO2024116032A1 (ja) * | 2022-11-30 | 2024-06-06 | 株式会社半導体エネルギー研究所 | 発光デバイス |
WO2024116031A1 (ja) * | 2022-11-30 | 2024-06-06 | 株式会社半導体エネルギー研究所 | 発光デバイス |
KR20240081374A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스 |
KR20240081373A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스 |
KR20240081361A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스, 표시 장치, 표시 모듈, 전자 기기 |
KR20240081383A (ko) | 2022-11-30 | 2024-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치, 표시 모듈, 전자 기기 |
KR20240101461A (ko) | 2022-12-23 | 2024-07-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스, 표시 장치, 표시 모듈, 전자 기기 |
KR20240102858A (ko) | 2022-12-26 | 2024-07-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시 장치의 제작 방법, 표시 장치, 표시 모듈, 전자 기기 |
WO2024141864A1 (ja) * | 2022-12-27 | 2024-07-04 | 株式会社半導体エネルギー研究所 | 発光デバイス |
WO2024141881A1 (ja) * | 2022-12-28 | 2024-07-04 | 株式会社半導体エネルギー研究所 | 発光デバイスおよび発光デバイスの作製方法 |
KR20240118675A (ko) | 2023-01-27 | 2024-08-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스, 표시 장치, 표시 모듈, 전자 기기 |
WO2024176058A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 有機化合物、発光デバイス、表示装置、および電子機器 |
WO2024176065A1 (ja) * | 2023-02-24 | 2024-08-29 | 株式会社半導体エネルギー研究所 | 有機化合物、発光デバイス、表示装置、および電子機器 |
WO2024201258A1 (ja) * | 2023-03-31 | 2024-10-03 | 株式会社半導体エネルギー研究所 | 発光デバイス、表示装置、表示モジュール、電子機器 |
KR20240147564A (ko) | 2023-03-31 | 2024-10-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 디바이스 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021045178A1 (ja) | 2021-03-11 |
EP4026881A1 (en) | 2022-07-13 |
CN114375506A (zh) | 2022-04-19 |
TW202116776A (zh) | 2021-05-01 |
KR20220035956A (ko) | 2022-03-22 |
US20220310937A1 (en) | 2022-09-29 |
EP4026881A4 (en) | 2023-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021045178A1 (ja) | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、有機エレクトロルミネッセンス素子用材料 | |
JP6900425B2 (ja) | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物 | |
JP5810417B2 (ja) | イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置 | |
JP5433677B2 (ja) | 有機電界発光素子 | |
KR20140117401A (ko) | 이리듐 착물 화합물 그리고 그 화합물을 함유하는 용액 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치 | |
US20220069238A1 (en) | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device | |
US11038126B2 (en) | Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device | |
JP7538664B2 (ja) | 有機薄膜及び有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、並びに、有機エレクトロルミネッセンス素子用材料 | |
JP2024028707A (ja) | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、光電変換素子、塗料組成物、有機エレクトロルミネッセンス素子用材料 | |
EP4349814A1 (en) | Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same | |
JP2022097348A (ja) | 有機電界発光素子の製造方法、有機電界発光素子、表示装置、照明装置 | |
WO2022131355A1 (ja) | 有機電界発光素子、表示装置、照明装置、有機電界発光素子の製造方法 | |
JP2019179871A (ja) | 有機電界発光素子 | |
WO2024034301A1 (ja) | フェナントロリン化合物およびそれを用いた有機薄膜、有機半導体素子 | |
JP2012119471A (ja) | 有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明 | |
WO2022255428A1 (ja) | 芳香族化合物、有機電界発光素子、組成物及び有機電界発光素子の製造方法 | |
JP2021166281A (ja) | 有機薄膜及び有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、光電変換素子、薄膜トランジスタ、塗料組成物、並びに、有機エレクトロルミネッセンス素子用材料 | |
JP2024024318A (ja) | ヘキサヒドロピリミドピリミジン化合物およびそれを用いた有機薄膜、有機半導体素子 | |
JP2022165780A (ja) | 有機電界発光素子、表示装置、照明装置 | |
JP2020087965A (ja) | 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物 | |
JP2021127325A (ja) | 芳香族ジアミン誘導体 | |
JP2018182007A (ja) | 有機電界発光素子用材料及び有機電界発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20860625 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021544040 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227005967 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020860625 Country of ref document: EP Effective date: 20220406 |