WO2013069338A1 - 有機電界発光素子及び有機電界発光デバイス - Google Patents

有機電界発光素子及び有機電界発光デバイス Download PDF

Info

Publication number
WO2013069338A1
WO2013069338A1 PCT/JP2012/067625 JP2012067625W WO2013069338A1 WO 2013069338 A1 WO2013069338 A1 WO 2013069338A1 JP 2012067625 W JP2012067625 W JP 2012067625W WO 2013069338 A1 WO2013069338 A1 WO 2013069338A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
light emitting
organic electroluminescent
emitting layer
Prior art date
Application number
PCT/JP2012/067625
Other languages
English (en)
French (fr)
Inventor
太 田中
一郎 今田
五郎丸 英貴
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201711349623.XA priority Critical patent/CN107994062B/zh
Priority to JP2013542881A priority patent/JP6331393B2/ja
Priority to KR1020147011403A priority patent/KR102122188B1/ko
Priority to EP12848061.3A priority patent/EP2779263B1/en
Priority to CN201280055385.0A priority patent/CN103931009B/zh
Publication of WO2013069338A1 publication Critical patent/WO2013069338A1/ja
Priority to US14/273,992 priority patent/US9525009B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an organic electroluminescent element and an organic electroluminescent device having the organic electroluminescent element.
  • organic electroluminescent elements can emit light in various colors with a simple element configuration, in recent years, they have been actively developed as techniques for manufacturing light emitting devices such as displays and lighting.
  • the organic electroluminescence device obtains light emission by injecting holes and electrons from the anode and the cathode, allowing each charge to reach the light emitting layer, and recombining the charge in this light emitting layer. From this principle, for example, it has been studied to improve the light emission efficiency by retaining electric charges in the light emitting layer (see Patent Document 1).
  • retaining the charge in the light emitting layer deteriorates the current-voltage characteristics of the organic electroluminescent element.
  • it is generally performed by a method of retaining a charge by creating a charge trap level in the film. According to these methods, it is possible to increase the light emission efficiency by retaining the charge in the light emitting layer, but at the same time, the current-voltage characteristics are deteriorated.
  • CMC Publishing Organic EL Technology and Material Development
  • Non-Patent Document 2 OF SPIE Vil 4800,164-171 (2003) reported that the addition of 1-NaphDATA, which is also a charge transport material, to ⁇ NPD, which is a charge transport material, causes charge trapping and high voltage.
  • An object of the present invention is to provide an organic electroluminescence device having good current-voltage characteristics.
  • the present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
  • An organic electroluminescent device having layers in the order of an anode, a light emitting layer, and a cathode, wherein the total number of charge transport materials and light emitting materials contained in the light emitting layer is 5 or more, and is included in the issuing layer An organic electroluminescent device in which the total number of charge transport materials is three or more.
  • the difference in ionization potential and the electron affinity of two kinds of materials selected from an arbitrary charge transport material and a light emitting material included in the light emitting layer An organic electroluminescent element in which at least one of the differences satisfies a relationship satisfying a relationship of 0.20 eV or less.
  • An organic electroluminescent device having two or more organic electroluminescent devices that emit light of different colors, wherein the two or more organic electroluminescent devices are described in [1] or [2] Organic electroluminescent device consisting only of.
  • an organic electroluminescent device having good current-voltage characteristics is provided.
  • a flat panel display By using the organic electroluminescent device, a flat panel display, a display board, a marker lamp, It is possible to obtain a light source that makes use of characteristics as a surface light emitter such as a light source of a copying machine, a liquid crystal display, and a backlight light source of instruments.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of an organic electroluminescent element of the present invention.
  • Embodiments of the organic electroluminescent element and the organic electroluminescent device of the present invention will be described in detail below.
  • the following description is an example (representative example) of the embodiment of the present invention, and the present invention provides the gist thereof. Unless it exceeds, it is not specified in these contents.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having at least an anode, a luminescent layer, and a cathode in this order, and the luminescent layer has a charge transport material and a luminescent material, and is included in the luminescent layer.
  • the total number of charge transport materials and light-emitting materials is at least five or more, and the number of charge transport materials is three or more. In the present invention, the total number of charge transport materials contained in the light emitting layer is preferably four or more.
  • the action mechanism of the present invention is estimated as follows.
  • a layer that includes a charge transfer mechanism material aggregation or crystallization occurs, resulting in a non-uniform state of the layer in the film, impeding charge transport, and deteriorating current-voltage characteristics.
  • the light emitting layer is a layer where charges are concentrated from both electrodes, it is easily affected by this.
  • the present inventors have found that it is effective to use a plurality of types of materials as means for inhibiting the aggregation and crystallization of materials. That is, by using a plurality of materials, the distance between the materials of the same skeleton can be increased after the film is formed.
  • the charge transport material is usually mainly composed of a compound having aromaticity or a compound having a group having aromaticity. Therefore, relatively different compounds are easily mixed with each other, and contact with the same material is prevented and aggregation and the like are easily prevented. Therefore, it is possible to efficiently prevent aggregation, crystallization, etc. in the film by including in the light emitting layer 3 or more, preferably 4 or more, more preferably 5 or more, excluding the light emitting material. Charge traps and the like caused by these can be reduced, and good current-voltage characteristics can be obtained.
  • one kind of light emitting material in the light emitting layer may be used, but three or more, preferably four or more, more preferably five or more kinds of charge transport materials are used.
  • the total number of the charge transport materials and the charge transport material is preferably 5 or more.
  • the kind of the light emitting material and the charge transport material in the light emitting layer is not troublesome in the management of the material, the preparation of the composition for forming the light emitting layer, etc. Therefore, the total number of charge transport materials and light-emitting materials in the light-emitting layer is preferably 20 or less, and particularly preferably 15 or less. Practically, it is preferable to use one or two light emitting materials in the light emitting layer, and 4 to 12 kinds, particularly 5 to 10 kinds of charge transport materials.
  • a plurality of materials having different ionization potentials and electron affinities in the same layer are formed in the same layer, thereby forming a route for transporting a plurality of charges, thereby preventing charge congestion. It is considered that current-voltage characteristics can be obtained.
  • the charge transport material is uniformly dispersed in the film, and at least one of materials having different ionization potential and electron affinity is preferably used. It is preferable to have 4 or more, more preferably 5 or more. This is because when there are three or more types of materials having different ionization potentials and electron affinities, one of them functions as a charge trap and the risk of deteriorating current-voltage characteristics is reduced.
  • the content of the charge transport material in the light emitting layer is preferably larger than that of the light emitting material. This is because the number of charge transport paths to the light emitting material is physically increased.
  • At least one of the ionization potential and the electron affinity of each charge transport material has a different value, and the difference in ionization potential between the charge transport materials and the electrons. It is preferable that at least one of the differences in affinity is smaller. If at least one of the difference in ionization potential and the difference in electron affinity is small, it becomes easier for the electric charge to move between the respective paths, and the respective paths can be used efficiently, and the effect of mitigating the congestion is strengthened. Because.
  • At least one of the difference in ionization potential and the difference in electron affinity is in the above-described relationship for the light emitting material and the charge transport material in the light emitting layer. This is because charge transfer from the charge transport material to the light emitting material is performed smoothly.
  • At least one of the ionization potential and the electron affinity is different among three or more kinds of charge transport materials included in the light emitting layer, and the ionization potential and the electron affinity are different. Is more preferable. In addition, it is more preferable that at least one of the ionization potential and the electron affinity is different among all charge transport materials in the light emitting layer, and it is most preferable that the ionization potential and the electron affinity are different.
  • the difference in ionization potential or electron affinity between the materials is small, and the difference in ionization potential and electron affinity between two arbitrarily selected charge transport materials included in the light emitting layer.
  • a combination satisfying a relationship in which at least one of the differences is 0.50 eV or less, preferably 0.30 eV or less, more preferably 0.20 eV or less, still more preferably 0.15 eV or less, and even more preferably 0.10 eV or less.
  • One or more are preferably present. This is because the movement between the formed charge transport paths is likely to occur.
  • the minimum of this difference is 0.01 eV or more.
  • the number of combinations satisfying the above relationship is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more, but the total number of combinations depends on the total number of materials.
  • At least one of a difference in ionization potential and a difference in electron affinity between two kinds of materials arbitrarily selected from the light-emitting material and the charge transport material included in the light-emitting layer is 0.50 eV or less, preferably 0.30 eV.
  • the minimum of this difference is 0.01 eV or more.
  • the number of combinations satisfying the above relationship is preferably 2 or more, more preferably 3 or more, but the total number of combinations depends on the total number of materials.
  • the light emitting layer of the present invention desirably includes both a hole transport material and an electron transport material, and more preferably includes two or more kinds of each material. This is because a plurality of the above-described charge transport paths are easily formed in both holes and electrons. More preferably, each is at least three types.
  • a combination in which at least one of the difference in the ionization potential value and the difference in the electron affinity value of the charge transport material included in the light emitting layer is 0.30 eV or less is continuous. That is, when the charge transport material in the light emitting layer is set to h 1 , h 2 , h 3 , h 4 ,...
  • h 1 and h 2 Difference in ionization potential value or difference in electron affinity value is 0.30 eV or less, preferably 0.20 eV or less, more preferably 0.15 eV or less More preferably, it is 0.10 eV or less, and the difference between the ionization potential values of h 2 and h 3 or the difference between the electron affinity values (preferably the difference between the ionization potential value and the electron affinity value) is 0.
  • the difference in electron affinity value (preferably the difference in ionization potential value and the difference in electron affinity value) is 0.30 eV or less, preferably 0.20 eV or less, more preferably 0.15 eV or less, and still more preferably 0.8. It is preferable to have a continuous relationship, such as 10 eV or less.
  • the difference in ionization potential or electron affinity between the charge transport material having the largest ionization potential or electron affinity and the charge transport material having the smallest ionization potential or electron affinity is the light emitting layer.
  • N h the number of types of the charge transport material
  • it is preferably 0.30 ⁇ (N h ⁇ 1) eV or less, more preferably 0.20 ⁇ (N h ⁇ 1) eV or less, and more Preferably it is 0.15 ⁇ (N h ⁇ 1) eV or less, more preferably 0.10 ⁇ (N h ⁇ 1) eV or less.
  • the light emitting layer of the present invention preferably contains a compound group ⁇ composed of two or more compounds having a basic skeleton formed by connecting a plurality of aromatic ring groups and having a molecular weight of 2000 or less.
  • the compound group ⁇ is composed of a compound ⁇ 1 having the smallest number of aromatic ring groups constituting the basic skeleton and another compound having a basic skeleton that matches 50% or more of the basic skeleton of the compound ⁇ 1.
  • the other compound “having a basic skeleton that matches 50% or more of the basic skeleton of the compound ⁇ 1” will be described.
  • “Match” means that the aromatic ring group constituting the basic skeleton has the same ring skeleton, bonding order and bonding position with other groups.
  • the ring skeleton means the number of ring members when the aromatic ring group is derived from a single ring, and refers to both the number of individual rings and the condensed relationship when derived from a condensed ring.
  • Example 1 (Ring a and Ring f, Ring b and Ring g, Ring c and Ring h have the same ring skeleton, and the bonding order and bonding position with other groups. Ring d and Ring i are other Therefore, in Example 1, the compound A has a basic skeleton in which 3/4 (75%) of the basic skeletons of the compound B are the same. )
  • Ring a and Ring h, Ring b and Ring i, Ring c and Ring j, Ring d and Ring k, Ring e and Ring l, and Ring f and Ring m are the ring skeleton and the order of bonding with other groups.
  • the ring g and the ring n have the same ring skeleton, so in Example 2 above, Compound B is 6/7 (86%) of the basic skeleton of Compound A. (Note that the methyl group is not an aromatic ring group and is not included in the basic skeleton, and therefore is not considered in determining “match” in the present invention.)
  • Example 3 since compounds A to C have the same number of aromatic ring groups constituting the basic skeleton, any of them may be “compound ⁇ 1”.
  • the aromatic ring group constituting the basic skeleton of each compound has the same ring skeleton, bonding order and bonding position with other groups. That is, if compound A is “compound ⁇ 1,” the three aromatic ring groups constituting the basic skeleton of compound A are all “matched” with the basic skeletons of compounds B and C, and 100% are “matched”. " (Example 3)
  • any of them may be “compound ⁇ 1”.
  • ring b in compound A and ring f in compound B, and ring b in compound A and ring j in compound C are all different in ring skeleton.
  • ring f in compound B and ring j in compound C are different in bonding position.
  • Ring a Ring e, Ring i, Ring c, Ring g, Ring k, Ring d, Ring h, and Ring l are the same. Ring b, Ring f, and Ring j are not matched.
  • the compound group ⁇ in the present invention comprises two or more compounds having a basic skeleton formed by connecting a plurality of aromatic ring groups and having a molecular weight of 2000 or less.
  • a composition for an organic electroluminescent device including such a group of compounds a plurality of compounds included in the group satisfy the above-described relationship, so that crystallization of solute in the composition is suppressed and storage stability is improved. A high composition is obtained. Further, by using such a composition, an organic electroluminescence device having a low driving voltage and high luminous efficiency can be obtained.
  • the compounds included in the compound group ⁇ only need to satisfy the above conditions, and are not particularly limited. However, it is desirable that the compounds include the charge transport host structure group described later.
  • IP ionization potential
  • the ionization potential (IP) of the light emitting material and the charge transport material is a value within a range that can be measured by the following apparatuses, “AC-1”, “AC-2”, “ It can be measured by using a commercially available ionization potential measuring device such as “AC-3”, manufactured by Optel (manufactured by Sumitomo Heavy Industries Empress Co., Ltd.) “PCR-101” and “PYS-201” manufactured by Sumitomo Heavy Industries, Ltd.
  • measurement is performed with “PCR-101”, “PYS-201”, etc., which can be measured in vacuum.
  • An ionization potential (IP) measurement sample can be produced by depositing the light emitting material or the charge transport material on an ITO substrate by a wet or dry method.
  • the wet film-forming method include a method in which the light-emitting material or the charge transport material is dissolved in an organic solvent such as xylene or toluene and a film is formed by a spin coating method.
  • the dry film forming method include a vacuum deposition method.
  • the band gap (Eg) can be obtained by measuring a thin film absorption spectrum using an ultraviolet-visible absorptiometer. Specifically, a tangent line between the absorption spectrum and the base line is drawn at the rising portion on the short wavelength side of the thin film absorption spectrum, and the following formula is obtained from the wavelength W (nm) at the intersection of both tangent lines.
  • the energy indicating the band gap may be measured by an apparatus capable of measuring an absorption spectrum, and the type of the apparatus is not particularly limited, but for example, “F4500” manufactured by Hitachi, Ltd. can be used.
  • a sample for measuring energy showing a band gap can be produced by depositing the light emitting material or the charge transporting material on a glass substrate by a wet or dry method.
  • the wet film-forming method include a method in which the light-emitting material or the charge transport material is dissolved in an organic solvent such as xylene or toluene and a film is formed by a spin coating method.
  • the dry film forming method include a vacuum deposition method.
  • the electron affinity (EA) of the light emitting material and the charge transport material is as follows from the band gap (Eg) calculated from the absorption spectrum of the film of each material alone and the value of the ionization potential (IP). This is a value calculated by the following formula.
  • EA IP-Eg
  • the light emitting layer of the organic electroluminescent device of the present invention usually includes at least one or more light emitting materials (materials having light emitting properties) and three or more charge transport materials, and the total of the charge transport materials and the light emitting materials. Contains 5 or more compounds.
  • the preferred number of the charge transport material and the light-emitting material in the light-emitting layer is as described above, and the light-emitting layer is formed using the necessary number of the light-emitting material and the charge transport material so as to satisfy the above-described preferable relationship between the ionization potential and the electron affinity. Is formed.
  • the light emitting layer according to the present invention may contain a light emitting material as a dopant material and a charge transport material such as a hole transport material or an electron transport material as a host material. Furthermore, the light emitting layer according to the present invention may contain other components as long as the effects of the present invention are not significantly impaired. In addition, when forming a light emitting layer with a wet film-forming method, it is preferable to use a low molecular weight material in any case.
  • Luminescent material any known material that is usually used as a light-emitting material of an organic electroluminescent element can be applied, and there is no particular limitation. Light is emitted at a desired light emission wavelength, and the light emission efficiency is good. A substance may be used.
  • the light-emitting material may be a fluorescent light-emitting material or a phosphorescent light-emitting material, but is preferably a phosphorescent light-emitting material from the viewpoint of internal quantum efficiency.
  • a phosphorescent material When a phosphorescent material is used for the light-emitting layer, it is considered that the probability of occurrence of a mechanism involving charge recombination in the light-emitting layer is higher than that of a fluorescent light-emitting material, so transfer of charges between materials in the light-emitting layer is more important. It is considered that the influence of the number of charge transport paths and charge traps is increased. Therefore, the present invention is particularly effective when a phosphorescent material is used as the light emitting material. Further, for example, a fluorescent material and a phosphorescent material may be used in combination such that a fluorescent material is used for blue and a phosphorescent material is used for green and red.
  • the symmetry and rigidity of the molecules of the light emitting material are reduced.
  • fluorescent light emitting material examples include naphthalene, chrysene, perylene, pyrene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, arylamine, and derivatives thereof. It is done. Among these, anthracene, chrysene, pyrene, arylamine and derivatives thereof are preferable.
  • fluorescent light emitting material green fluorescent dye
  • yellow fluorescent dye yellow light emission
  • red fluorescent dyes fluorescent dyes
  • DCM dimethyl-6- (p-dimethylaminostyryl) -4H-pyran
  • Xanthene such as benzothioxanthene, azabenzothioxanthene, and derivatives thereof.
  • arylamine derivative that is a material that imparts blue fluorescence
  • a compound represented by the following formula (X) is preferable from the viewpoints of light emission efficiency, driving lifetime, and the like of the device.
  • Ar 21 represents a substituted or unsubstituted condensed aromatic ring group having 10 to 40 nuclear carbon atoms
  • Ar 22 and Ar 23 each independently represents a substituted or unsubstituted monovalent group having 6 to 40 carbon atoms
  • p represents an integer of 1 to 4.
  • the aromatic ring group in the present invention may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • Ar 21 examples include naphthalene, phenanthrene, fluoranthene, anthracene, pyrene, perylene, coronene, chrysene, picene, diphenylanthracene, fluorene, triphenylene, rubicene, benzoanthracene, phenylanthracene having one free valence. , Bisanthracene, dianthracenylbenzene, dibenzoanthracene and the like.
  • free valence can form bonds with other free valences as described in Organic Chemistry / Biochemical Nomenclature (above) (Revised 2nd edition, Nankodo, 1992). Say things.
  • phosphorescent material examples include those from Groups 7 to 11 of the long-period periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to the long-period periodic table). Examples thereof include a Werner complex or an organometallic complex containing a selected metal as a central metal. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. Among these, iridium or platinum is more preferable.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
  • the phosphorescent organometallic complex of the phosphorescent material is preferably a compound represented by the following formula (III) or formula (IV).
  • ML (qj) L ′ j (III) (In formula (III), M represents a metal, q represents a valence of the metal, L and L ′ represent a bidentate ligand, and j represents a number of 0, 1 or 2. )
  • M 7 represents a metal
  • T represents a carbon atom or a nitrogen atom.
  • R 92 to R 95 each independently represents a substituent. However, when T is a nitrogen atom, R 7 No 94 and R 95 )
  • M represents an arbitrary metal, and specific examples of preferable metals include the metals described above as the metal selected from Groups 7 to 11 of the periodic table.
  • bidentate ligand L represents a ligand having the following partial structure.
  • ring A1 represents an aromatic ring group which may have a substituent.
  • the aromatic ring group in the present invention may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • aromatic hydrocarbon ring examples include a group consisting of a 5- or 6-membered monocyclic ring or a 2-5 condensed ring having one free valence.
  • aromatic hydrocarbon ring group examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene having one free valence. Ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like.
  • aromatic heterocyclic group examples include groups having one free valence and consisting of a 5- or 6-membered monocyclic ring or a 2-4 condensed ring.
  • a furan ring a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, a carbazole ring, and a pyrroloimidazole ring having one free valence.
  • ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • nitrogen-containing aromatic heterocyclic group examples include groups having one free valence and consisting of a 5- or 6-membered monocyclic ring or a 2-4 condensed ring.
  • a pyrrole ring examples include a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, a pyrrolopyrazole ring, a pyrrolopyrrole ring, a thienopyrrole ring, and a fluropyrrole having one free valence.
  • each of ring A1 and ring A2 may have include a halogen atom, an alkyl group, an alkenyl group, an alkoxycarbonyl group, an alkoxy group, an aryloxy group, a dialkylamino group, a diarylamino group, and a carbazolyl group.
  • ring A1 is a nitrogen-containing aromatic heterocyclic group and ring A2 may have an aromatic hydrocarbon ring group as a substituent.
  • bidentate ligand L ′ represents a ligand having the following partial structure. However, in the following formulae, “Ph” represents a phenyl group.
  • L ′ the following ligands are preferable from the viewpoint of stability of the complex.
  • More preferable examples of the compound represented by the formula (III) include compounds represented by the following formulas (IIIa), (IIIb), and (IIIc).
  • M 4 represents the same metal as M
  • w represents the valence of the metal
  • ring A1 represents an aromatic hydrocarbon ring group which may have a substituent.
  • Ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • M 5 represents the same metal as M
  • w represents the valence of the metal
  • ring A 1 represents an aromatic ring group which may have a substituent
  • ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • M 6 represents the same metal as M, w represents the valence of the metal, j represents 0, 1 or 2, and ring A1 and ring A1 ′ each represent Independently, it represents an aromatic ring group which may have a substituent, and ring A2 and ring A2 ′ each independently represent a nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • aromatic group of ring A1 and ring A1 ′ include phenyl group, biphenyl group, naphthyl group, anthryl group, thienyl group, furyl group, benzothienyl group, benzofuryl group.
  • aromatic group of ring A1 and ring A1 ′ include phenyl group, biphenyl group, naphthyl group, anthryl group, thienyl group, furyl group, benzothienyl group, benzofuryl group.
  • preferred examples of the nitrogen-containing aromatic heterocyclic group for ring A2 and ring A2 ′ include pyridyl group, pyrimidyl group, pyrazinyl group, triazinyl group, benzothiazole group, benzoxazole group.
  • the aromatic group of ring A1 and ring A1 ′ and the nitrogen-containing aromatic heterocyclic group of ring A2 and ring A2 ′ may have a halogen atom; Alkyl group; alkenyl group; alkoxycarbonyl group; alkoxy group; aryloxy group; dialkylamino group; diarylamino group; carbazolyl group; acyl group; haloalkyl group;
  • substituents may be connected to each other to form a ring.
  • a substituent of the ring A1 and a substituent of the ring A2 are bonded, or a substituent of the ring A1 ′ and a substituent of the ring A2 ′ are bonded.
  • a condensed ring may be formed. Examples of such a condensed ring include a 7,8-benzoquinoline group.
  • ring A1 ′, ring A2 and ring A2 ′ more preferably, an alkyl group, an alkoxy group, an aromatic hydrocarbon ring group, a cyano group, a halogen atom, a haloalkyl group, a diarylamino group, And a carbazolyl group.
  • M 4 to M 6 in the formulas (IIIa) to (IIIc) include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold.
  • organometallic complexes represented by the above formulas (III) and (IIIa) to (IIIc) are shown below, but are not limited to the following compounds.
  • the organometallic complexes represented by the above formula (III) in particular, at least one of the ligands L and L ′ is a 2-arylpyridine-based ligand, that is, 2-arylpyridine, optionally It is preferable that it is a compound which has what the arbitrary substituents couple
  • the compounds described in International Publication No. 2005/019373 can also be used as the light emitting material.
  • M 7 represents a metal. Specific examples include the metals described above as the metal selected from Groups 7 to 11 of the periodic table. M 7 is preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold, and particularly preferably a divalent metal such as platinum or palladium.
  • R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, An alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, and an aromatic ring group are represented.
  • R 94 and R 95 each independently represent the same substituent as those listed as R 92 and R 93 .
  • R 94 and R 95 are absent.
  • R 92 to R 95 may further have a substituent. When it has a substituent, there is no restriction
  • T-1, T-10 to T-15 Specific examples (T-1, T-10 to T-15) of the organometallic complex represented by the formula (IV) are shown below, but are not limited to the following examples.
  • “Me” represents a methyl group
  • “Et” represents an ethyl group.
  • One of these light emitting materials may be used alone, or two or more of these light emitting materials may be used in any combination and ratio.
  • five or more types of charge transport materials are included in the light emitting layer.
  • luminescent materials are included in the light emitting layer.
  • the molecular weight of the luminescent material in the present invention is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight of the luminescent material in the present invention is preferably 10,000 or less, more preferably 5000 or less, still more preferably 4000 or less, and particularly preferably 3000 or less.
  • the molecular weight of the light emitting material in the present invention is usually 100 or more, preferably 200 or more, more preferably 300 or more, and still more preferably 400 or more.
  • the molecular weight of the luminescent material has a high glass transition temperature, melting point, decomposition temperature, etc., excellent heat resistance of the luminescent material and the formed luminescent layer, and film quality due to gas generation, recrystallization, molecular migration, etc. It is preferable to be large in that it is difficult to cause a decrease in impurity concentration and an increase in impurity concentration due to thermal decomposition of the material.
  • the molecular weight of the light-emitting material is preferably small in that the organic compound can be easily purified and easily dissolved in a solvent.
  • the light emitting layer according to the present invention preferably contains a light emitting material in an amount of usually 0.01% by weight or more, preferably 0.05% by weight or more, and more preferably 0.1% by weight or more. Further, the light emitting material is usually contained in an amount of 35% by weight or less, preferably 20% by weight or less, more preferably 10% by weight or less. In addition, when using together 2 or more types of luminescent material, it is preferable that these total content is included in the said range.
  • the light emitting material preferably emits light by receiving charge or energy from a host material having charge transport performance.
  • the emissive layer typically includes a charge transport material, such as that used for example as the host material.
  • the charge transport material includes a compound having a hole transport property (sometimes referred to as a hole transport material or a hole transport compound) and a compound having an electron transport property (referred to as an electron transport material or an electron transport compound). There is).
  • the light emitting layer may contain both a hole transport material and an electron transport material, or may contain either one.
  • the light emitting layer contains the compound which has hole transportability
  • the compound which has electron transportability should just transport an electron in a light emitting layer.
  • the light-emitting layer contains a compound having an electron transporting property.
  • the compound having an electron transporting property may transport holes in the light emitting layer.
  • examples of the charge transport material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, thiophene compounds, benzylphenyl compounds, fluorene compounds, hydrazone compounds, silazane compounds, silanamine compounds, Phosphamine compounds, quinacridone compounds, triphenylene compounds, carbazole compounds, pyrene compounds, anthracene compounds, phenanthroline compounds, quinoline compounds, pyridine compounds, triazine compounds, oxadiazole compounds, imidazole compounds, etc. Is mentioned.
  • charge transport materials may be used alone, or two or more may be used in any combination and ratio. In the present invention, five or more kinds of charge transport are contained in the light emitting layer. Materials and luminescent materials are included.
  • the electron transport material is preferably a compound having an electron transporting unit.
  • An electron transporting unit (electron transporting unit) is a structure (unit) having excellent durability against electrons and having electron transporting properties. Further, when two or more kinds of charge transport materials are included in the light emitting layer, the compound having this electron transport unit tends to be the charge transport material responsible for the electron transport described above.
  • the electron transport unit in the present invention is a unit in which electrons easily enter the unit and stabilize the contained electrons.
  • a pyridine ring or the like has a slight electron deficiency due to a nitrogen atom, easily accepts an electron, and the electron entering the ring is delocalized to be stabilized on the pyridine ring.
  • Examples of the structure of the unit having the above performance include a single ring or a condensed ring containing a hetero atom composed of sp 2 hybrid orbitals.
  • nitrogen, oxygen, sulfur, and selenium are preferable, and nitrogen is particularly preferable because the hetero atom easily forms sp 2 hybrid orbitals, has high stability to electrons, and high electron transport properties.
  • the number of heteroatoms having sp 2 hybrid orbitals included in the charge transport material is preferably large in view of high electron transport properties.
  • electron transport unit examples include quinoline ring, quinazoline ring, quinoxaline ring, phenanthroline ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, thiadiazole ring, benzothiadiazole ring, quinolinol metal complex, phenanthroline metal A complex, a hexaazatriphenylene structure, a tetrasiabenzoquinoline structure, and the like can be given.
  • quinoline ring, quinazoline ring, quinoxaline ring, phenanthroline ring, pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring and the like are preferable.
  • quinoline ring, quinazoline ring, pyridine ring, pyrimidine ring, triazine ring, 1,10-phenanthroline ring and the like are preferable from the viewpoint of excellent electrical stability.
  • the electron transport unit is a 6-membered monocyclic ring or condensed ring containing a nitrogen atom
  • the o-position and the p-position are all substituted with an aromatic ring with respect to the nitrogen atom.
  • the electron transport unit is a 6-membered condensed ring containing a nitrogen atom
  • a portion of the o-position and p-position of the nitrogen atom that does not form part of the condensed ring is an aromatic ring. It only needs to be substituted with a group.
  • an organic compound having a derivative of a ring listed in the following group (b) (electron transport unit) is more preferable because of its high stability against electrons and high electron transport properties.
  • the aromatic ring group in which the hydrogen atoms on the 2, 4, 6-position carbon atoms on the same ring are substituted with respect to the nitrogen atom is not particularly limited. That is, it may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group, but may be an aromatic hydrocarbon ring group in that it has excellent durability against electrical oxidation. preferable.
  • the number of carbon atoms in the aromatic ring group is preferably 6 to 30, and when the aromatic ring group is a group comprising a condensed ring, the number of condensed aromatic rings is preferably 2 to 4.
  • substituents of the ring structure included in the group (b) include a halogen atom, an alkyl group having 1 to 10 carbon atoms which may further have a substituent, and 2 to 10 carbon atoms. Or a monovalent aromatic hydrocarbon ring group having 6 to 30 carbon atoms.
  • the Hetero structure represents any of the following structural formulas (A-1), (A-2) and (A-3), and Xa 1 , Xa 2 , Ya 1 , Ya 2 , Za 1 and Za 2 are each independently an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent, or an aromatic complex having 3 to 30 carbon atoms which may have a substituent.
  • Xa 3 , Ya 3 and Za 3 each independently represent a hydrogen atom, an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent, or a substituent. Represents an aromatic heterocyclic group having 3 to 30 carbon atoms.
  • Xa 1 , Xa 2 , Ya 1 , Ya 2 , Za 1 and Za 2 are each independently an aromatic carbon atom having 6 to 30 carbon atoms which may have a substituent. It represents a hydrogen group or an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent. Among these, from the viewpoint of stability of the compound, an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent is preferable.
  • aromatic hydrocarbon ring forming the aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent a 6-membered monocyclic ring or a 2 to 5 condensed ring is preferable.
  • Specific examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, and fluoranthene ring.
  • a benzene ring is preferable from the viewpoint of stability and solubility of the compound.
  • At least one of Xa 1 , Xa 2 , Ya 1 , Ya 2 , Za 1 and Za 2 is preferably a 1,2-phenylene group or a 1,3-phenylene group, More preferably, it is a 3-phenylene group. Further, at least two of Xa 1 and Xa 2 , one of Ya 1 and Ya 2 , or one of Za 1 and Za 2 are 1 , 2-phenylene group or 1,3-phenylene group is particularly preferable, and 1,3-phenylene group is most preferable.
  • the stericity of the molecular structure is increased, the solubility in a solvent is increased, and the energy gap of the molecule is increased due to non-conjugated bonds.
  • the excited triplet energy is increased, it is preferable as a HOST material of a phosphorescent material.
  • a 1,3-phenylene group is more preferable from the viewpoint of stability of the compound and ease of synthesis.
  • aromatic heterocyclic ring forming an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent
  • a 5- or 6-membered monocyclic ring, or a 2 to 5 condensed ring thereof is preferable.
  • a carbazole ring, a dibenzofuran ring and a dibenzothiophene ring are preferable from the viewpoint of high stability and charge transportability of the compound, and a pyridine ring, a pyrimidine ring and a triazine ring are preferable from the viewpoint of high electron transportability. is there.
  • Xa 3 , Ya 3 and Za 3 in the general formula (A) are each independently a hydrogen atom, an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent, or a substituted group.
  • aromatic hydrocarbon ring forming the aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent a 6-membered monocyclic ring or a 2 to 5 condensed ring is preferable.
  • examples of Xa 1 in the general formula (A) include the same ring-derived groups as those listed above. Among these, from the viewpoint of stability of the compound, a benzene ring, a naphthalene ring or a phenanthrene ring is preferable.
  • the aromatic heterocyclic ring that forms an optionally substituted aromatic heterocyclic group having 3 to 30 carbon atoms is preferably a 5- or 6-membered monocyclic ring, or a 2 to 5 condensed ring thereof.
  • the same ring as mentioned above as an example of Xa 1 in the general formula (A) can be mentioned.
  • a group derived from a carbazole ring, a dibenzofuran ring or a dibenzothiophene ring is preferable from the viewpoint of high stability and charge transportability of the compound.
  • the three substituents of Hetero structure in formula (A), -Xa 1 -Xa 2 -Xa 3, -Ya 1 -Ya 2 -Ya 3, and, -Za 1 -Za 2 -Za 3 is They may be the same or different. It is preferable that at least one of them is different from the viewpoint of reducing the target property of the compound and increasing the solubility in a solvent.
  • Examples of the substituent that the aromatic hydrocarbon group or the aromatic heterocyclic group may have include a saturated hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, and 3 to 20 carbon atoms.
  • a saturated hydrocarbon group having 1 to 20 carbon atoms and an aromatic hydrocarbon group having 6 to 25 carbon atoms are preferable from the viewpoint of solubility and heat resistance.
  • examples of the saturated hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, and a hexyl group.
  • methyl group, ethyl group and isopropyl group are preferable, and methyl group and ethyl group are more preferable from the viewpoint of availability of raw materials and low cost.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 25 carbon atoms include a naphthyl group such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group; a phenanthyl group such as a 9-phenanthyl group and a 3-phenanthyl group; Anthryl group such as anthryl group, 2-anthryl group and 9-anthryl group; naphthacenyl group such as 1-naphthacenyl group and 2-naphthacenyl group; 1-chrycenyl group, 2-chrysenyl group, 3-chrysenyl group and 4-chrysenyl group Chrysenyl groups such as 1-pyrenyl group; Triphenylenyl groups such as 1-triphenylenyl group; Coronenyl groups such as 1-coronenyl group; 4-biphenyl group, 3-biphenyl A group
  • a phenyl group, a 2-naphthyl group and a 3-biphenyl group are preferable from the viewpoint of stability of the compound, and a phenyl group is particularly preferable from the viewpoint of ease of purification.
  • Examples of the aromatic heterocyclic group having 3 to 20 carbon atoms include thienyl groups such as 2-thienyl group; furyl groups such as 2-furyl group; imidazolyl groups such as 2-imidazolyl group; carbazolyl groups such as 9-carbazolyl group; And a pyridyl group such as a 2-pyridyl group and a triazinyl group such as a 1,3,5-triazin-2-yl group.
  • a carbazolyl group, particularly a 9-carbazolyl group is preferable from the viewpoint of stability.
  • diarylamino group having 12 to 60 carbon atoms examples include diphenylamino group, N-1-naphthyl-N-phenylamino group, N-2-naphthyl-N-phenylamino group, and N-9-phenanthryl-N-phenylamino.
  • a diphenylamino group an N-1-naphthyl-N-phenylamino group, and an N-2-naphthyl-N-phenylamino group are preferable, and a diphenylamino group is particularly preferable from the viewpoint of stability.
  • alkyloxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, isopropyloxy group, cyclohexyloxy group, and octadecyloxy group.
  • Examples of the (hetero) aryloxy group having 3 to 20 carbon atoms include substituents having an aryloxy group such as a phenoxy group, a 1-naphthyloxy group, and a 9-anthranyloxy group, and a heteroaryloxy group such as a 2-thienyloxy group Etc.
  • alkylthio group having 1 to 20 carbon atoms examples include a methylthio group, an ethylthio group, an isopropylthio group, and a cyclohexylthio group.
  • Examples of the (hetero) arylthio group having 3 to 20 carbon atoms include arylthio groups such as phenylthio group, 1-naphthylthio group, 9-anthranylthio group, and heteroarylthio groups such as 2-thienylthio group.
  • the light emitting layer only one type of electron transport material may be used, or two or more types may be used in any combination and ratio.
  • the hole transport material is preferably a compound having a hole transporting unit.
  • the hole transporting unit (hole transporting unit) is a structure (unit) having excellent durability against holes and having hole transporting properties.
  • the hole transport unit in the present invention means a unit that has an ionization potential that facilitates extraction of holes from the layer on the anode side of the light emitting layer and is stable with respect to holes.
  • the ionization potential that facilitates the extraction of holes from the layer on the anode side of the light emitting layer is usually 6.3 eV or less, preferably 5.9 eV or less, more preferably 5.8 eV or less, and even more preferably 5.7 eV or less. 5.3 eV or more, preferably 5.4 eV or more, more preferably 5.5 eV or more, and still more preferably 5.6 eV or more.
  • being stable against holes means that the hole transport unit is not easily decomposed even in a radical state. This means that the radical cation is delocalized so that it is stabilized even in the radical state.
  • Examples of the structure of the unit having the above-described performance include a structure containing a hetero atom having sp 3 orbital or a 4n-based aromatic condensed ring.
  • hole transport unit examples include carbazole ring, phthalocyanine ring, naphthalocyanine structure, porphyrin structure, triarylamine structure, triarylphosphine structure, benzofuran ring, dibenzofuran ring, pyrene ring, phenylenediamine structure, pyrrole ring, Examples include a benzidine structure, an aniline structure, a diarylamine structure, an imidazolidinone structure, and a pyrazole ring.
  • a carbazole ring, benzofuran ring, dibenzofuran ring, pyrene ring, triarylamine structure more preferably carbazole ring, benzofuran ring, A dibenzofuran ring and a pyrene ring are preferable, and a carbazole ring and a pyrene ring are particularly preferable.
  • hole transport material an organic compound having a derivative of any of the rings listed in the following group (a) (hole transport unit) is more excellent because of excellent stability against holes and high hole transportability. preferable.
  • These ring structures may have a substituent, and preferred substituents include a halogen atom, an alkyl group having 1 to 10 carbon atoms which may further have a substituent, and 2 to 2 carbon atoms. And an alkenyl group having 10 or a monovalent aromatic hydrocarbon ring group having 6 to 30 carbon atoms. More specifically, as an example of a low molecular weight hole transport material, two or more tertiary amines represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl And an aromatic amine compound in which two or more condensed aromatic rings are substituted with nitrogen atoms (Japanese Patent Laid-Open No.
  • Aromatic amine compounds having a starburst structure such as phenylamine (Journal of Luminescence, 1997, Vol. 72-74, pp. 985), and aromatic amine compounds (Chemical Communications) consisting of tetraphenylamine tetramer. , 1996, pp. 2175), 2,2 ', 7,7'-tetrakis- (diphenylamino) -9,9'- Fluorene-based compounds such as pyromellitic spirobifluorene (Synthetic Metals, 1997 years, Vol.91, pp.209), and the like.
  • a more preferable structure of the hole transport material is shown below.
  • Xe 1 , Xe 2 , Ye 1 , Ye 2 , Ze 1 and Ze 2 are each independently an aromatic hydrocarbon having 6 to 30 carbon atoms which may have a substituent.
  • Xe 3 , Ye 3 and Ze 3 may each independently have a hydrogen atom or a substituent. It represents a good aromatic hydrocarbon group having 6 to 30 carbon atoms or an optionally substituted aromatic heterocyclic group having 3 to 30 carbon atoms.
  • Xe 1 , Xe 2 , Ye 1 , Ye 2 , Ze 1 and Ze 2 in the general formula (E) are each independently an aromatic carbon atom having 6 to 30 carbon atoms which may have a substituent. It represents a hydrogen group or an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent. Among these, from the viewpoint of stability of the compound, an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent is preferable.
  • aromatic hydrocarbon ring forming the aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent a 6-membered monocyclic ring or a 2 to 5 condensed ring is preferable.
  • Specific examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, and fluoranthene ring.
  • a benzene ring is preferable from the viewpoint of stability and solubility of the compound.
  • At least one of Xe 1 , Xe 2 , Ye 1 , Ye 2 , Ze 1 and Ze 2 is preferably a 1,2-phenylene group or a 1,3-phenylene group, More preferably, it is a 3-phenylene group. Further, at least two of Xe 1 and Xe 2 , one of Ye 1 and Ye 2 , or one of Ze 1 and Ze 2 are 1 , 2-phenylene group or 1,3-phenylene group is particularly preferable, and 1,3-phenylene group is most preferable.
  • aromatic heterocyclic ring forming an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent
  • a 5- or 6-membered monocyclic ring, or a 2 to 5 condensed ring thereof is preferable.
  • a carbazole ring, a dibenzofuran ring and a dibenzothiophene ring are preferable from the viewpoint of high stability and charge transportability of the compound, and a pyridine ring, a pyrimidine ring and a triazine ring are preferable from the viewpoint of high electron transportability. is there.
  • Xe 3 , Ye 3 and Ze 3 in the general formula (E) are each independently a hydrogen atom, an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent, or It represents an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent.
  • aromatic hydrocarbon ring forming the aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent a 6-membered monocyclic ring or a 2 to 5 condensed ring is preferable.
  • examples of Xa 1 in the general formula (A) include the same ring-derived groups as those listed above. Among these, from the viewpoint of stability of the compound, a benzene ring, a naphthalene ring or a phenanthrene ring is preferable.
  • the aromatic heterocyclic ring that forms an optionally substituted aromatic heterocyclic group having 3 to 30 carbon atoms is preferably a 5- or 6-membered monocyclic ring, or a 2 to 5 condensed ring thereof.
  • the same ring as mentioned above as an example of Xa 1 in the general formula (A) can be mentioned.
  • a group derived from a carbazole ring, a dibenzofuran ring or a dibenzothiophene ring is preferable from the viewpoint of high stability and charge transportability of the compound.
  • the three substituents of N in the general formula (E), -Xe 1 -Xe 2 -Xe 3 , -Ye 1 -Ye 2 -Ye 3 , and -Ze 1 -Ze 2 -Ze 3 are the same. Or different. It is preferable that at least one of them is different from the viewpoint of reducing the target property of the compound and increasing the solubility in a solvent.
  • Examples of the substituent that the aromatic hydrocarbon group or the aromatic heterocyclic group may have include a saturated hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, and 3 to 20 carbon atoms.
  • a saturated hydrocarbon group having 1 to 20 carbon atoms and an aromatic hydrocarbon group having 6 to 25 carbon atoms are preferable from the viewpoint of solubility and heat resistance.
  • examples of the saturated hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, and a hexyl group.
  • methyl group, ethyl group and isopropyl group are preferable, and methyl group and ethyl group are more preferable from the viewpoint of availability of raw materials and low cost.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 25 carbon atoms include a naphthyl group such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group; a phenanthyl group such as a 9-phenanthyl group and a 3-phenanthyl group; Anthryl group such as anthryl group, 2-anthryl group and 9-anthryl group; naphthacenyl group such as 1-naphthacenyl group and 2-naphthacenyl group; 1-chrycenyl group, 2-chrysenyl group, 3-chrysenyl group and 4-chrysenyl group Chrysenyl groups such as 1-pyrenyl group; Triphenylenyl groups such as 1-triphenylenyl group; Coronenyl groups such as 1-coronenyl group; 4-biphenyl group, 3-biphenyl A group
  • a phenyl group, a 2-naphthyl group and a 3-biphenyl group are preferable from the viewpoint of stability of the compound, and a phenyl group is particularly preferable from the viewpoint of ease of purification.
  • Examples of the aromatic heterocyclic group having 3 to 20 carbon atoms include thienyl groups such as 2-thienyl group; furyl groups such as 2-furyl group; imidazolyl groups such as 2-imidazolyl group; carbazolyl groups such as 9-carbazolyl group; And a pyridyl group such as a 2-pyridyl group and a triazinyl group such as a 1,3,5-triazin-2-yl group.
  • a carbazolyl group, particularly a 9-carbazolyl group is preferable from the viewpoint of stability.
  • diarylamino group having 12 to 60 carbon atoms examples include diphenylamino group, N-1-naphthyl-N-phenylamino group, N-2-naphthyl-N-phenylamino group, and N-9-phenanthryl-N-phenylamino.
  • a diphenylamino group an N-1-naphthyl-N-phenylamino group, and an N-2-naphthyl-N-phenylamino group are preferable, and a diphenylamino group is particularly preferable from the viewpoint of stability.
  • alkyloxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, isopropyloxy group, cyclohexyloxy group, and octadecyloxy group.
  • Examples of the (hetero) aryloxy group having 3 to 20 carbon atoms include substituents having an aryloxy group such as a phenoxy group, a 1-naphthyloxy group, and a 9-anthranyloxy group, and a heteroaryloxy group such as a 2-thienyloxy group Etc.
  • alkylthio group having 1 to 20 carbon atoms examples include a methylthio group, an ethylthio group, an isopropylthio group, and a cyclohexylthio group.
  • Examples of the (hetero) arylthio group having 3 to 20 carbon atoms include arylthio groups such as phenylthio group, 1-naphthylthio group, 9-anthranylthio group, and heteroarylthio groups such as 2-thienylthio group.
  • the charge transporting material combined with the fluorescent light emitting material include the following examples.
  • Xb 1 , Xb 2 , Yb 1 and Yb 2 each independently represent an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms, or a substituent.
  • Xb 3 , Xb 4 , Yb 3 and Yb 4 are each independently a hydrogen atom or a carbon number optionally having a substituent.
  • Xc 1 , Xc 2 , Yc 1 and Yc 2 are each independently an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent, or a substituent.
  • Xc 3 , Xc 4 , Yc 3 and Yc 4 are each independently a hydrogen atom or a carbon number optionally having a substituent.
  • Xb 1 , Xb 2 , Yb 1 and Yb 2 in the general formula (B) and Xc 1 , Xc 2 , Yc 1 and Yc 2 in the general formula (C) are each independently a substituent. It represents an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have, or an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent. Among these, from the viewpoint of stability of the compound, an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent is preferable.
  • aromatic hydrocarbon ring forming the aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent a 6-membered monocyclic ring or a 2 to 5 condensed ring is preferable.
  • Specific examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, and fluoranthene ring.
  • a benzene ring is preferable from the viewpoint of stability and solubility of the compound.
  • aromatic heterocyclic ring forming an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent
  • a 5- or 6-membered monocyclic ring, or a 2 to 5 condensed ring thereof is preferable.
  • a carbazole ring, a dibenzofuran ring, and a dibenzothiophene ring are preferable from the viewpoint of stability and charge transportability of the compound, and a pyridine ring, a pyrimidine ring, and a triazine ring are preferable from the viewpoint of high electron transportability. is there.
  • Xb 3 , Xb 4 , Yb 3 and Yb 4 in the general formula (B), and Xc 3 , Xc 4 , Yc 3 and Yc 4 in the general formula (C) are all independently hydrogen It represents an atom, an aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent, or an aromatic heterocyclic group having 3 to 30 carbon atoms which may have a substituent.
  • the aromatic hydrocarbon ring forming the aromatic hydrocarbon group having 6 to 30 carbon atoms which may have a substituent a 6-membered monocyclic ring or a 2 to 5 condensed ring is preferable.
  • examples of Xb 1 in the general formula (B) include the same ring-derived groups as mentioned above. Among these, from the viewpoint of stability of the compound, a benzene ring, a naphthalene ring or a phenanthrene ring is preferable.
  • the aromatic heterocyclic ring that forms an optionally substituted aromatic heterocyclic group having 3 to 30 carbon atoms is preferably a 5- or 6-membered monocyclic ring, or a 2 to 5 condensed ring thereof.
  • the same ring as mentioned above as an example of Xb 1 in the general formula (B) can be mentioned.
  • a group derived from a carbazole ring, a dibenzofuran ring or a dibenzothiophene ring is preferable from the viewpoint of high stability and charge transportability of the compound.
  • Examples of the substituent that the aromatic hydrocarbon group or the aromatic heterocyclic group may have include a saturated hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, and 3 to 20 carbon atoms.
  • a saturated hydrocarbon group having 1 to 20 carbon atoms and an aromatic hydrocarbon group having 6 to 25 carbon atoms are preferable from the viewpoint of solubility and heat resistance.
  • examples of the saturated hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, and a hexyl group.
  • a saturated hydrocarbon group having 1 to 6 carbon atoms is preferable because the structure of the compound is stable.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 25 carbon atoms include a naphthyl group such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group; a phenanthyl group such as a 9-phenanthyl group and a 3-phenanthyl group; Anthryl group such as anthryl group, 2-anthryl group and 9-anthryl group; naphthacenyl group such as 1-naphthacenyl group and 2-naphthacenyl group; 1-chrycenyl group, 2-chrysenyl group, 3-chrysenyl group and 4-chrysenyl group A chrysenyl group such as a 1-pyrenyl group; a triphenylenyl group such as a 1-triphenylenyl group; a coronenyl group such as a 1-coronenyl group; a 4-b
  • a phenyl group, a 2-naphthyl group and a 3-biphenyl group are preferable from the viewpoint of stability of the compound, and a phenyl group is particularly preferable from the viewpoint of ease of purification.
  • Examples of the aromatic heterocyclic group having 3 to 20 carbon atoms include thienyl groups such as 2-thienyl group; furyl groups such as 2-furyl group; imidazolyl groups such as 2-imidazolyl group; carbazolyl groups such as 9-carbazolyl group; And a pyridyl group such as a 2-pyridyl group and a triazinyl group such as a 1,3,5-triazin-2-yl group.
  • a carbazolyl group, particularly a 9-carbazolyl group is preferable from the viewpoint of stability.
  • diarylamino group having 12 to 60 carbon atoms examples include diphenylamino group, N-1-naphthyl-N-phenylamino group, N-2-naphthyl-N-phenylamino group, and N-9-phenanthryl-N-phenylamino.
  • a diphenylamino group an N-1-naphthyl-N-phenylamino group, and an N-2-naphthyl-N-phenylamino group are preferable, and a diphenylamino group is particularly preferable from the viewpoint of stability.
  • alkyloxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, isopropyloxy group, cyclohexyloxy group, and octadecyloxy group.
  • Examples of the (hetero) aryloxy group having 3 to 20 carbon atoms include substituents having an aryloxy group such as a phenoxy group, a 1-naphthyloxy group, and a 9-anthranyloxy group, and a heteroaryloxy group such as a 2-thienyloxy group Etc.
  • alkylthio group having 1 to 20 carbon atoms examples include a methylthio group, an ethylthio group, an isopropylthio group, and a cyclohexylthio group.
  • Examples of the (hetero) arylthio group having 3 to 20 carbon atoms include arylthio groups such as phenylthio group, 1-naphthylthio group, 9-anthranylthio group, and heteroarylthio groups such as 2-thienylthio group.
  • the molecular weight of the charge transport material in the present invention is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight of the charge transport material in the present invention is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, and still more preferably 3000 or less.
  • the molecular weight of the charge transport material in the present invention is usually 100 or more, preferably 200 or more, more preferably 300 or more, and still more preferably 400 or more.
  • the molecular weight of the charge transport material is within the above range, the glass transition temperature, melting point, decomposition temperature, etc. are high, the heat resistance of the light emitting layer material and the formed light emitting layer is good, and recrystallization and molecular It is preferable in that the film quality is reduced due to the migration of the material, the impurity concentration is not increased due to thermal decomposition of the material, the device performance is excellent, and the purification is easy.
  • the light emitting layer may contain only one kind of charge transporting material as described above, or may contain two or more kinds. In the present invention, the light emitting layer contains five or more kinds of charges. Includes transport materials and luminescent materials.
  • the charge transport material (electron transport) mainly responsible for electron transport is compared with the EA of charge transport material (hole transport material) mainly responsible for transport of holes. It is desirable that the EA of the material is larger. That is, in general, when a plurality of charge transport materials are included in the same layer, electrons are likely to ride on a material having a large EA. Therefore, by using a charge transport material having a large EA as an electron transport material, high luminous efficiency can be obtained. It is possible to produce a long-life element.
  • of the charge transport material responsible for electron transport contained in the light emitting layer according to the present invention is large in that the compound is likely to be in a stable state when electrons exist in the energy level for transporting electrons. However, on the other hand, it is preferably small from the standpoint that transport and transfer of charges due to formation of a stable radical anion and inhibition of exciton formation are unlikely to occur.
  • is preferably 2.40 eV or more, more preferably 2.50 eV, and on the other hand, it is preferably 3.30 eV or less, and 3.20 eV or less. Preferably there is.
  • the light emitting layer according to the present invention preferably contains a charge transport material in an amount of usually 65% by weight or more, preferably 70% by weight or more, and more preferably 75% by weight or more. Further, the charge transport material is usually contained in 99.99% by weight or less, preferably 99.95% by weight or less, more preferably 99.9% by weight or less. In addition, when using together 2 or more types of charge transport materials, it is preferable that these total content is included in the said range.
  • the light emitting layer according to the present invention has a high material utilization efficiency, and the hole injection layer is easily mixed with the hole transport layer formed on the anode side, so that the hole injection property is likely to be good. Is preferably formed.
  • the wet film forming method is a film forming method, that is, a coating method, for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary A method of forming a film by employing a wet film formation method such as a coating method, an ink jet method, a nozzle printing method, a screen printing method, a gravure printing method, or a flexographic printing method, and drying the coated film.
  • a coating method for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary
  • a wet film formation method such as a coating method, an ink jet method, a nozzle printing method, a screen printing method, a gravure printing method, or a flexographic printing method, and drying the coated film.
  • spin coating, spray coating, ink jet, nozzle printing, and the like are preferable.
  • a light emitting layer When forming a light emitting layer by a wet film-forming method, usually a light emitting layer formed by dissolving the above-described light emitting material, charge transporting material, and other materials described later used as necessary in an appropriate solvent. It forms by forming into a film using the composition for water.
  • the solvent used in the wet film forming method of the light emitting layer is not particularly limited as long as the material used for forming the light emitting layer such as the light emitting material and the charge transporting material can be dissolved or dispersed well.
  • the light emitting material and the charge transport material are each usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight at 25 ° C. and 1 atm. It is preferable to dissolve the above.
  • a solvent is not limited to these.
  • the solvent include alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, tetramethylcyclohexanone and tetralin; chlorobenzene and dichlorobenzene Halogenated aromatic hydrocarbons such as trichlorobenzene; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3- Aromatic ethers such as dimethylanisole, 2,4-dimethylanisole, diphenyl ether;
  • Aliphatic ketones such as aromatic esters, cyclohexanone, cyclooctanone, and fenkon; Alicyclic alcohols such as cyclohexanol and cyclooctanol; Aliphatic ketones such as methyl ethyl ketone and dibutyl ketone; Fats such as butanol and hexanol Aliphatic alcohols such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); and the like.
  • PGMEA propylene glycol-1-monomethyl ether acetate
  • alkanes and aromatic hydrocarbons are preferable.
  • One of these solvents may be used alone, or two or more thereof may be used in any combination and ratio.
  • the solvent evaporates from the liquid film immediately after the film formation at an appropriate rate.
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher.
  • the boiling point of the solvent is usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower.
  • the light emitting material is usually contained in an amount of 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more. Further, it is preferable that the light emitting material is contained in an amount of usually 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less. In addition, when 2 or more types of luminescent materials are contained, it is preferable that these total content is included in the said range.
  • the light emitting layer forming composition in the present invention preferably contains a charge transport material in an amount of usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more. Moreover, it is good to contain normally 20 weight% or less, Preferably it is 15 weight% or less, More preferably, it is 10 weight% or less. When a plurality of types of charge transport materials are used for forming the light emitting layer, it is preferable that the total content of these materials is included in the above range.
  • the ratio of the content of the light emitting material and the charge transport material in the composition for forming the light emitting layer is usually 0.01 or more, preferably 0.03 or more. Is good. Further, the ratio of the content of the light emitting material and the charge transport material in the composition for forming the light emitting layer (weight ratio of light emitting material / charge transport material) is usually 0.5 or less, preferably 0.3 or less. Is good.
  • the content of the solvent in the composition for forming a light emitting layer according to the present invention is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the content of the solvent in the composition for forming a light emitting layer is large, it is preferable in that the viscosity is low and the workability of film formation is excellent.
  • the content of the solvent is small, it is preferable in that the thickness of a film obtained by removing the solvent after film formation can be easily obtained and film formation is easy.
  • the content of the solvent is preferably 10 parts by weight or more, more preferably 50 parts by weight or more, and particularly preferably 80 parts by weight or more with respect to 100 parts by weight of the composition for forming a light emitting layer. good.
  • the content of the solvent is preferably 99.95 parts by weight or less, more preferably 99.9 parts by weight or less, and particularly preferably 99.8 parts by weight or less.
  • composition for forming a light emitting layer in the present invention may contain various additives such as a leveling agent and an antifoaming agent for the purpose of improving film forming properties.
  • the solid content concentration which is the total amount of the light emitting material, hole transport material, electron transport material, and the like in the composition for forming a light emitting layer in the present invention, is preferably small in that film thickness unevenness is unlikely to occur. In view of the fact that defects are unlikely to occur in the film, it is preferable that the number be large. Specifically, it is preferably 0.01% by weight or more and usually 70% by weight or less.
  • the formation of the light-emitting layer was usually obtained after such a composition for forming a light-emitting layer was wet-formed on a layer (usually a hole injection layer or a hole transport layer described later) as a lower layer of the light-emitting layer. It is formed by drying the coating film and removing the solvent.
  • the thickness of the light emitting layer is arbitrary as long as the effects of the present invention are not significantly impaired. However, it is preferable that the film is thick in that it is difficult to cause defects in the film, but on the other hand, it is thin in that the driving voltage tends to be low. preferable. Specifically, the thickness is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • two or more light emitting layers may be provided.
  • the conditions of each layer are as described above.
  • any one of the light-emitting layers may satisfy the provisions of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of an organic electroluminescent element 10 of the present invention.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 Represents a light-emitting layer
  • 6 represents a hole blocking layer
  • 7 represents an electron transport layer
  • 8 represents an electron injection layer
  • 9 represents a cathode.
  • the organic electroluminescent element of the present invention has an anode, a light emitting layer, and a cathode as essential constituent layers, but if necessary, between the anode, the light emitting layer, and the light emitting layer of the cathode as shown in FIG. May have other functional layers.
  • substrate 1 becomes a support body of an organic electroluminescent element.
  • a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sheet, or the like is used as the substrate 1.
  • glass plates are particularly preferred; transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like.
  • gas barrier property of the substrate is preferably large because the organic electroluminescence element is hardly deteriorated by outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the anode 2 is an electrode that plays a role of hole injection into the layer on the light emitting layer 5 side.
  • This anode 2 is usually made of a metal such as aluminum, gold, silver, nickel, palladium or platinum, a metal oxide such as at least one of indium and tin, a metal halide such as copper iodide, or carbon black.
  • a metal such as aluminum, gold, silver, nickel, palladium or platinum
  • a metal oxide such as at least one of indium and tin
  • a metal halide such as copper iodide, or carbon black.
  • Alternatively, it is composed of a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the formation of the anode 2 is usually performed by a method such as sputtering or vacuum deposition.
  • a method such as sputtering or vacuum deposition.
  • fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • these fine particles are The anode 2 can also be formed by dispersing it in an appropriate binder resin solution and applying it onto the substrate 1.
  • a conductive polymer a thin film can be directly formed on the substrate 1 by electrolytic polymerization.
  • the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett., 60, 2711, 1992).
  • the anode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode 2 may be appropriately selected according to required transparency.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more.
  • the thickness of the anode 2 is usually about 1000 nm or less, preferably about 500 nm or less.
  • the thickness of the anode 2 is arbitrary.
  • the substrate 1 having the function of the anode 2 may be used. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.
  • the surface of the anode 2 is treated with ultraviolet (UV) / ozone, or with oxygen plasma or argon plasma. It is preferable to do.
  • the hole injection layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 5.
  • the hole injection layer 3 is not an essential layer for the organic electroluminescence device of the present invention, but when the hole injection layer 3 is provided, the hole injection layer 3 is usually formed on the anode 2.
  • the method for forming the hole injection layer 3 according to the present invention may be either a vacuum vapor deposition method or a wet film formation method, and is not particularly limited.
  • the hole injection layer 3 is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the film thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • a material for forming the hole injection layer 3 is usually mixed with an appropriate solvent (a solvent for hole injection layer) to form a film-forming composition ( The composition for forming a hole injection layer) is prepared, and this composition for forming the hole injection layer 3 is applied onto a layer corresponding to the lower layer of the hole injection layer (usually the anode 2) by an appropriate technique.
  • the hole injection layer 3 is formed by forming a film and drying.
  • the composition for forming a hole injection layer usually contains a hole transport material and a solvent as constituent materials for the hole injection layer 3.
  • a hole transport material is a compound having a hole transport property, which is usually used for the hole injection layer 3 of the organic electroluminescence device, a monomer or the like may be a polymer compound or the like. Although it may be a low molecular weight compound, it is preferably a high molecular weight compound.
  • hole transport material a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3 is preferable.
  • hole transport materials include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which a tertiary amine is linked by a fluorene group, hydrazone derivatives, silazane derivatives, silanamine derivatives Phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a mer.
  • the hole transport material used as the material of the hole injection layer 3 may contain any one of these compounds alone, or may contain two or more kinds. When two or more hole transport materials are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one or more other hole transport materials It is preferable to use together.
  • an aromatic amine compound is preferable from the viewpoint of amorphousness and visible light transmittance, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerizable compound in which repeating units are linked) is further included. preferable.
  • a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less a polymerizable compound in which repeating units are linked
  • the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
  • Ar 1 to Ar 5 each independently represents an optionally substituted aromatic ring group.
  • Z b represents a linking group selected from the following linking group group.
  • two groups bonded to the same N atom may be bonded to each other to form a ring.
  • Ar 6 to Ar 16 each independently represents an optionally substituted aromatic ring group.
  • R 5 and R 6 each independently represents a hydrogen atom or an arbitrary Represents a substituent.
  • a benzene ring, a naphthalene ring having one or two free valences from the viewpoint of solubility, heat resistance, hole injection / transport properties of the polymer compound A group derived from a phenanthrene ring, a thiophene ring or a pyridine ring is preferred, and a benzene ring or a naphthalene ring is more preferred.
  • the aromatic ring group of Ar 1 to Ar 16 may further have a substituent.
  • the molecular weight of the substituent is usually 400 or less, preferably about 250 or less.
  • an alkyl group, an alkenyl group, an alkoxy group, an aromatic ring group and the like are preferable.
  • R 5 and R 6 are optional substituents
  • substituents include an alkyl group, an alkenyl group, an alkoxy group, a silyl group, a siloxy group, and an aromatic ring group.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in International Publication No. 2005/089024.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene (3,4-ethylenedioxythiophene), which is a polythiophene derivative, in high molecular weight polystyrene sulfonic acid is also available. Also preferred. Moreover, the end of this polymer may be capped with methacrylate or the like.
  • the hole transport material may be a crosslinkable compound described in the following [Hole transport layer] section. The same applies to the film forming method using the crosslinkable compound.
  • the concentration of the hole transport material in the composition for forming a hole injection layer is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the concentration of the hole transport material in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.5% from the viewpoint of film thickness uniformity. On the other hand, it is usually 70% by weight or less, preferably 60% by weight or less, and more preferably 50% by weight or less. This concentration, it is preferable that the film thickness unevenness is small in that unlikely to occur. Further, this concentration is preferably large in that a defect is not easily generated in the formed hole injection layer.
  • the hole injection layer forming composition preferably contains an electron accepting compound as a constituent material of the hole injection layer 3.
  • the electron-accepting compound is preferably a compound having an oxidizing power and an ability to accept one electron from the hole transport material described above.
  • the electron accepting compound a compound having an electron affinity of 4 eV or more is preferable, and a compound having an electron affinity of 5 eV or more is more preferable.
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids. one or more compounds selected from the group, and the like. More specifically, as an electron-accepting compound, an onium salt substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (international publication) 2005/088904); iron (III) chloride (Japanese Unexamined Patent Publication No.
  • high valent inorganic compounds such as ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene, tris (pentafluorophenyl) borane Aromatic boron compounds such as (Japanese Unexamined Patent Publication No. 2003-31365); fullerene derivatives; iodine; sulfonate ions such as polystyrene sulfonate ions, alkylbenzene sulfonate ions, and camphor sulfonate ions.
  • high valent inorganic compounds such as ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene, tris (pentafluorophenyl) borane Aromatic boron compounds such as (Japanese Unexamined Patent Publication No. 2003-31365); fullerene derivatives; iodine; sulfonate ions such as polystyrene s
  • These electron-accepting compounds can improve the conductivity of the hole injection layer 3 by oxidizing the hole transport material.
  • At least one of the solvents of the composition for forming a hole injection layer used in the wet film formation method is preferably a compound that can dissolve the constituent material of the hole injection layer 3 described above.
  • the solvent include ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole .
  • Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-meth
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the hole transport layer 3 can be formed as follows, for example.
  • One or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transport material, electron accepting compound, etc.) are placed in a crucible installed in a vacuum vessel (when two or more materials are used) Place in each crucible) and evacuate the inside of the vacuum vessel to about 10 ⁇ 4 Pa with a suitable vacuum pump.
  • the crucible is heated (each crucible is heated when two or more materials are used), and the evaporation amount is controlled to evaporate (when two or more materials are used, each is independently evaporated)
  • the hole injection layer 3 is formed on the anode 2 of the substrate 1 placed facing the crucible.
  • the hole injection layer 3 can also be formed by putting those mixtures into a crucible, heating and evaporating.
  • the degree of vacuum during vapor deposition is not limited as long as the effects of the present invention are not significantly impaired.
  • the degree of vacuum at the time of vapor deposition is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more and 9.0 ⁇ 10 ⁇ 6 Torr (12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as the effects of the present invention are not significantly impaired.
  • the deposition rate is usually 0.1 ⁇ / sec or more and 5.0 ⁇ / sec or less.
  • the film formation temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired.
  • the film forming temperature during vapor deposition is preferably 10 ° C. or higher and 50 ° C. or lower.
  • the hole transport layer 4 is a layer that transports from the anode 2 to the light emitting layer 5.
  • the hole transport layer 4 is not an essential layer for the organic electroluminescence device of the present invention. However, when the hole transport layer 4 is provided, the hole transport layer 4 is usually provided with the hole injection layer 3. Can be formed on the hole injection layer 3 or on the anode 2 when the hole injection layer 3 is not provided.
  • the formation method of the hole transport layer 4 may be a vacuum deposition method or a wet film formation method, and is not particularly limited.
  • the hole transport layer 4 is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the material forming the hole transport layer 4 is preferably a material having high hole transportability and capable of efficiently transporting injected holes. Therefore, the material for forming the hole transport layer 4 has a low ionization potential, high transparency to visible light, high hole mobility, excellent stability, and trapping impurities at the time of manufacture. It is preferable that it does not easily occur during use. Further, in many cases, since the hole transport layer 4 is in contact with the light emitting layer 5, it does not quench the light emitted from the light emitting layer 5 or form an exciplex with the light emitting layer 5 to reduce the efficiency. It is preferable.
  • Such a material for the hole transport layer 4 may be a material conventionally used as a constituent material for the hole transport layer 4.
  • the material for the hole transport layer 4 include arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives. , Oligothiophene derivatives, condensed polycyclic aromatic derivatives, metal complexes and the like.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • a polyarylamine derivative and a polyarylene derivative are preferable.
  • Specific examples of polyarylamine derivatives and polyarylene derivatives include those described in Japanese Patent Application Laid-Open No. 2008-98619.
  • a hole transport layer forming composition is prepared in the same manner as the formation of the hole injection layer 3 and then dried after wet film formation.
  • the composition for forming a hole transport layer contains a solvent in addition to the hole transport material described above.
  • the solvent used is the same as that used for the hole injection layer forming composition.
  • the film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer 3.
  • the film forming conditions and the like are the same as in the case of forming the hole injection layer 3.
  • the film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the light emitting layer 5 is a layer that is excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 between electrodes to which an electric field is applied, and becomes a main light emitting source.
  • the light-emitting layer 5 is usually formed on the hole transport layer 4 when the hole transport layer 4 is present, without the hole transport layer 4 and when the hole injection layer 3 is present, In the case where neither the hole transport layer 4 nor the hole injection layer 3 is present, it can be formed on the anode 2.
  • the constituent material and the forming method of the light emitting layer 5 are as described above.
  • the total number of the light emitting material and the charge transport material in the light emitting layer is five or more, preferably the ionization described above.
  • a light emitting layer is formed by selecting a light emitting material and a charge transport material to be used so as to satisfy at least one of a potential relationship and an electron affinity relationship.
  • a hole blocking layer 6 may be provided between the light emitting layer 5 and an electron injection layer 8 described later.
  • the hole blocking layer 6 is a layer that also plays a role of blocking holes moving from the anode 2 from reaching the cathode 9 in the electron transport layer.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
  • the hole blocking layer is not an essential constituent layer.
  • the hole blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5.
  • the physical properties required for the material constituting the hole blocking layer 6 include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), excited triplet energy level (T1). ) Is high.
  • Examples of the material of the hole blocking layer 6 satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum.
  • ligand complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinolato) aluminum binuclear metal complexes, distyrylbiphenyl derivatives, etc.
  • Styryl compounds Japanese Unexamined Patent Publication No. 11-242996
  • triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole
  • phenanthroline derivatives such as bathocuproine (Japanese Patent Laid-Open No. 10-7929) JP) and the like.
  • a compound having at least one pyridine ring substituted at positions 2, 4, and 6 described in International Publication No. 2005/022962 is also preferable as a material for the hole blocking layer 6.
  • the hole blocking layer 6 can be formed by a wet film formation method, a vapor deposition method, or other methods.
  • the film thickness of the hole blocking layer 6 is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the thickness of the hole blocking layer 6 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 7 is a layer for transporting electrons provided between the light emitting layer 5 and the cathode 9.
  • the electron carrying layer 7 is not an essential structural layer.
  • an electron transport material for the electron transport layer 7 usually, a compound that has high electron injection efficiency from the cathode or the adjacent layer on the cathode side and that has high electron mobility and can efficiently transport injected electrons. Is used. Examples of the compound satisfying such conditions include metal complexes such as 8-hydroxyquinoline aluminum complex and lithium complex (Japanese Patent Laid-Open No.
  • Examples of the electron transporting material used for the electron transporting layer include electron transporting organic compounds represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and aluminum complexes of 8-hydroxyquinoline, sodium, potassium, and the like.
  • an alkali metal such as cesium, lithium, rubidium (described in Japanese Laid-Open Patent Publication No. 10-270171, Japanese Laid-Open Patent Publication No. 2002-1000047, Japanese Laid-Open Patent Publication No. 2002-1000048, etc.)
  • an inorganic salt such as lithium fluoride or cesium carbonate.
  • FIG. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
  • the thickness of the electron transport layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • an electron injection layer 8 may be provided between the electron transport layer 7 and a cathode 9 described later.
  • the electron injection layer 8 is made of an inorganic salt or the like. In the organic electroluminescence device of the present invention, the electron injection layer is not an essential constituent layer.
  • Examples of the material of the electron injection layer 8 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), lithium oxide (Li 2 O), cesium carbonate (II) (CsCO 3 ), and the like (Applied Physics Letters). , 1997, Vol. 70, pp. 152; Japanese Patent Laid-Open No. 10-74586; IEEE Transactions on Electron Devices, 1997, Vol. 44, pp. 1245;
  • the electron injection layer 8 is often not accompanied by charge transport properties, it is preferably used as an ultrathin film for efficient electron injection, and the film thickness is usually 0.1 nm or more, preferably 5 nm or less. is there.
  • the cathode 9 is an electrode that serves to inject electrons into the layer on the light emitting layer 5 side.
  • a material of the cathode 9 usually, metal such as aluminum, gold, silver, nickel, palladium, platinum, metal oxide such as oxide of at least one of indium and tin, metal halide such as copper iodide, It is composed of carbon black or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • a metal having a low work function is preferable for efficient electron injection.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used.
  • low work function alloy electrodes such as magnesium-silver alloys, magnesium-indium alloys, and aluminum-lithium alloys.
  • 1 type may be used for the material of a cathode, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the film thickness of the cathode 9 varies depending on the required transparency.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness of the cathode 9 is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less.
  • the thickness of the cathode 9 is arbitrary, and the cathode may be the same as the substrate. Furthermore, it is also possible to laminate different conductive materials on the cathode 9 described above.
  • the work function is further high against the atmosphere.
  • Te laminating a stable metal layer is preferable because stability of the device is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the organic electroluminescent element according to the present invention may have another configuration without departing from the gist thereof.
  • an arbitrary layer may be provided between the anode 2 and the cathode 9 in addition to the layer described above as long as the performance is not impaired.
  • non-essential layers may be omitted.
  • the other components on the substrate 1 are the cathode 9, the electron injection layer 8, the electron transport layer 7, the hole blocking layer 6, the light emitting layer 5, the hole transport layer 4, the positive layer.
  • hole injection layer 3 may be provided in order of the anode 2.
  • the organic electroluminescence device according to the present invention can be configured by laminating components other than the substrate between two substrates, at least one of which is transparent.
  • a structure in which a plurality of components (light emitting units) other than the substrate are stacked in a plurality of layers may be employed.
  • a charge comprising vanadium pentoxide (V 2 O 5 ) or the like when a generation layer (Carrier Generation Layer: CGL) is provided, a barrier between steps is reduced, which is more preferable from the viewpoint of light emission efficiency and driving voltage.
  • the organic electroluminescent device according to the present invention may be configured as a single organic electroluminescent device, or may be applied to a configuration in which a plurality of organic electroluminescent devices are arranged in an array. it may be applied to a configuration in which the cathode is disposed an X-Y matrix.
  • each layer described above may contain components other than those described as materials as long as the effects of the present invention are not significantly impaired.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having two or more organic electroluminescent devices that emit light of different colors, and at least one of them is the organic electroluminescent device of the present invention. To do. Moreover, in this organic electroluminescent device, it is preferable that all the organic electroluminescent elements are the organic electroluminescent elements of the present invention. The reason is that the driving voltage of the organic electroluminescent device is lowered, resulting in power saving. Examples of the organic electroluminescent device of the present invention include an organic EL display device and organic EL illumination.
  • the organic EL display device of the present invention is a display device using the organic electroluminescent element of the present invention described above. There is no restriction
  • the organic EL display device of the present invention can be obtained by the method described in “Organic EL display” (Ohm, published on Aug. 20, 2004, Shizushi Tokito, Chiba Adachi, Hideyuki Murata). Can be formed.
  • the organic EL illumination of the present invention is illumination using the above-described organic electroluminescent element of the present invention.
  • the ionization potential (IP) and the electron affinity (EA) of the light emitting material and the charge transport material used for the light emitting layer were measured by the following methods.
  • ultrasonic cleaning with an aqueous surfactant solution is performed on a film formation surface (manufactured by Geomatic Co., sputter film formation product) of an ITO film formation substrate in which an ITO transparent conductive film is deposited to a thickness of 70 nm on a glass substrate.
  • Washing was performed in the order of water washing with ultrapure water, ultrasonic washing with ultrapure water, and water washing with ultrapure water, followed by drying with compressed air, followed by ultraviolet ozone cleaning.
  • a 1 wt% toluene solution is prepared for each charge transport material (h-1 to h-21) and each light emitting material (D-1 to D-4), and spin coating is performed on the cleaned ITO film-formed substrate. The number of rotations was adjusted as appropriate, and the film was formed under the following conditions to obtain a single-layer film of a charge transport material or a light-emitting material having a thickness of 50 nm.
  • the ionization potential IP was measured using “PCR-101” manufactured by Optel, in a state of being evacuated to 10 Torr or less. Further, for the single layer film, a transmitted light spectrum, that is, a thin film absorption spectrum, was measured using a spectrofluorometer “F-4500” manufactured by Hitachi, Ltd.
  • the absolute value EA of electron affinity was calculated from the sum of the ionization potential IP and the band gap Eg. The results were as shown in Table 1 below.
  • Example 1 The organic electroluminescent element shown in FIG. 1 was produced. First, an ITO transparent conductive film was deposited to a thickness of 70 nm on a glass substrate 1 and patterned into a stripe having a width of 2 mm to form an ITO anode 2. Ultrasonic cleaning with an aqueous surfactant solution, water cleaning with ultrapure water, ultrasonic cleaning with ultrapure water on the film formation surface of the ITO film forming substrate (manufactured by Geomatic Co., Ltd., sputter film forming product) on which the anode 2 is formed. Washing was performed in the order of washing with ultrapure water, followed by drying with compressed air and UV ozone cleaning.
  • a hole transporting polymer compound having a repeating structure represented by the following (P1) and 4-isopropyl-4′-methyldiphenyliodonium tetrakis represented by the following (A1) An ethyl benzoate solution (a composition for forming a hole injection layer) containing 0.8% by weight of pentafluorophenyl) borate was prepared.
  • This composition for forming a hole injection layer is formed on the ITO substrate by a spin coat method under the following film formation conditions, and further baked under the following baking conditions to form a hole having a thickness of 40 nm.
  • An injection layer 3 was obtained.
  • ⁇ Film formation conditions> Spin coat atmosphere Under air atmosphere Bake conditions Under air atmosphere, 230 ° C, 1 hour
  • a 1 wt% cyclohexylbenzene solution (a composition for forming a hole transport layer) of a hole transport polymer compound represented by the following (H-1) was prepared, and this was corrected under the following film formation conditions.
  • a hole transport layer 4 having a thickness of 10 nm was formed by forming a film on the hole injection layer 3 by spin coating and performing a crosslinking treatment by baking.
  • the light emitting material (D-1 to 4) and the charge transporting materials (h-1) to (h-21) shown below are 1.2 wt. %
  • H-2 to h-7 are each 0.6 wt. %
  • a film is formed on the hole transport layer 4 by a spin coating method under the conditions shown below, and a baking process is performed under the following baking conditions, whereby light emission with a film thickness of 50 nm is achieved.
  • Layer 5 was formed.
  • ⁇ Film formation conditions> Spin coat atmosphere Under nitrogen atmosphere Bake conditions Under nitrogen atmosphere, 120 ° C, 10 minutes
  • the substrate on which the hole injection layer 3, the hole transport layer 4 and the light emitting layer 5 are formed is carried into a vacuum vapor deposition apparatus, and after rough evacuation, the degree of vacuum in the apparatus is increased using a cryopump. It exhausted until it became 3.0 * 10 ⁇ -4> Pa or less.
  • the charge transport material h-19 as a hole blocking material was deposited at a deposition rate of 0.6 to 1.2 liters / second.
  • the hole blocking layer 6 was formed by forming a film with a thickness of 10 nm.
  • tris (8-hydroxyquinolinato) aluminum Alq 3
  • the electron transport layer 7 was formed by depositing a film with a thickness of 20 nm at 0.7 to 1.3 ⁇ / sec.
  • substrate which vapor-deposited to the electron carrying layer 7 was conveyed from the chamber for organic layer vapor deposition to the chamber for metal vapor deposition.
  • a mask for cathode vapor deposition a stripe shadow mask having a width of 2 mm was placed in close contact with the substrate so as to be orthogonal to the ITO stripe of the anode 2.
  • the apparatus was evacuated until the degree of vacuum was 1.1 ⁇ 10 ⁇ 4 Pa or less in the same manner as in the organic layer deposition.
  • lithium fluoride LiF
  • the electron injection layer 8 was formed by depositing a film with a thickness of 0.5 nm at a rate of 0.15 liter / second.
  • aluminum is heated using a molybdenum boat, and the film thickness is 80 nm at a deposition rate of 0.6 to 10.0 mm / sec.
  • the cathode 9 was formed by vapor deposition. The substrate temperature during the deposition of the electron injection layer 8 and the cathode 9 was kept at room temperature.
  • sealing treatment was performed by the method described below.
  • a photocurable resin “30Y-437” manufactured by ThreeBond Co., Ltd.
  • a moisture getter sheet manufactured by Dynic Co.
  • substrate completed until formation of the above-mentioned cathode 9 was carried in, and it bonded together so that the vapor-deposited surface might oppose a desiccant sheet.
  • coated was irradiated with ultraviolet light, and resin was hardened.
  • Example 1 As described above, the organic electroluminescent element of Example 1 having a light emitting area portion having a size of 2 mm ⁇ 2 mm was obtained.
  • Example 2 to 5 The organic electroluminescence of Examples 2 to 5 and Comparative Examples 1 to 4 was the same as Example 1 except that the light emitting material and the charge transport material used for the composition for forming the light emitting layer were prepared in combinations shown in Table 2.
  • a device was created.
  • Table 2 with respect to each Example or Comparative Example, the content (% by weight) of the material is described in the column of the material used for the composition for forming the light emitting layer.
  • a blank material means that it is not contained in the composition for forming a light emitting layer.
  • the total number of materials included in the light emitting layer and the number of charge transport materials included in the light emitting layer are also shown. The same applies to the following tables.
  • Example 6 Comparative Example 5
  • Organic electroluminescent elements of Example 6 and Comparative Example 5 were prepared in the same manner as Example 1 except that the light emitting material and charge transporting material used for the composition for forming the light emitting layer were prepared in combinations shown in Table 3. .
  • Examples 7 to 10, Comparative Example 6 The light emitting material and charge transporting material used for the composition for forming the light emitting layer were prepared in the combinations shown in Table 4, and the hole blocking material used was HB-01 represented by the following formula instead of h-19.
  • Organic electroluminescent elements of Examples 7 to 10 and Comparative Example 6 were prepared in the same manner as Example 1 except that the blocking layer was formed.
  • Examples 11 to 19, Comparative Example 7 The light-emitting material and charge transport material used in the light-emitting layer forming composition were prepared in the combinations shown in Table 5, and a hole blocking layer was formed using HB-01 instead of h-19 as the hole blocking material. Except that, organic electroluminescent elements of Examples 11 to 19 and Comparative Example 7 were produced in the same manner as Example 1.
  • the current-voltage-luminance (IVL) characteristics of the organic electroluminescent elements of each example and comparative example were measured, the voltage at 10 mA / cm 2 was calculated, and the voltage difference with respect to the voltage of the reference comparative example was shown in Table 2. Also listed in ⁇ 5.
  • the reference comparative examples are Comparative Example 1 for Examples 1-5 and Comparative Examples 1-4, Comparative Example 5 for Example 6 and Comparative Example 5, and Comparative Examples 5 for Example 7-10 and Comparative Example 6. Comparative Example 6 was used as Comparative Example 7 for Examples 11 to 19 and Comparative Example 7. When the numerical value of the voltage difference is negative, it indicates that the voltage value of the example or the comparative example is lower than the reference comparative example.
  • Examples 1 to 5 and Comparative Examples 1 to 4 show the results when the light emitting material is fixed to one specific type and the number and combination of charge transport materials are variously changed (Table 2).
  • the voltage is higher than that in Comparative Examples 1 to 4 in which the total number of materials is 4 or less, that is, the number of charge transport materials is 3 or less. Is as low as 0.7 V or more, and the effect of the present invention is clearly obtained.
  • Example 2 is obtained by adding h-6 to Comparative Example 2, but the voltage difference between Comparative Example 2 and Example 2 is not caused by the effect of h-6 itself. This is because the voltage equivalent to that of the second embodiment is obtained in the third embodiment even though h-6 is not included.
  • the reason why the effects of the present invention can be obtained from the data in various combinations is not due to a specific material, but is considered to be mainly due to the influence of the number of types of materials.
  • Example 6 and Comparative Example 5 compare the cases where there are four types and three types of charge transport materials when one type of light emitting material different from Example 1 is contained (Table 1). 3) A voltage drop of 0.2 V is obtained, suggesting that the effect of the present invention is not due to a specific light emitting material.
  • Example 7 the results of various changes in the number and combination of charge transport materials are shown in Examples 7 to 10 and Comparative Example 6 (Table 4). Even in this case, the voltage drop effect of 0.2 V is obtained in Example 7 in which the number of charge transport materials is increased to 3 as compared with Comparative Example 6 in which the total number of materials is 4 and the number of charge transport materials is 2. Further, it can be seen that in Examples 8 to 10 in which four or more kinds of charge transport materials are used, a large voltage reduction effect of 0.5 V or more can be obtained as compared with Comparative Example 6.
  • the number of light emitting materials is the same for two types, but when different light emitting materials are used, the results of various changes in the number and combination of charge transport materials are also shown in Examples 11 to 19 and Comparative Example 7. (Table 5). Even in this case, in Examples 11 to 13 in which the number of charge transport materials is increased to 3 as compared with Comparative Example 7 in which the total number of materials is 4 and the number of charge transport materials is 2, the voltage reduction effect of 0.1 V to 0.2 V is obtained. Has been obtained. Furthermore, it can be seen that in Examples 14 to 19 in which four or more kinds of charge transport materials are used, a large voltage reduction effect of 0.5 V or more can be obtained as compared with Comparative Example 7. That is, it is clear that the effects of the present invention are obtained regardless of the specific charge transport material.
  • the voltage can be lowered by setting the total number of charge transport materials and light-emitting materials in the light-emitting layer to five or more and the total number of charge transport materials to three or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

 本発明は、電流-電圧特性の良好な有機電界発光素子を提供することを目的とする。本発明の有機電界発光素子は、陽極、発光層、及び陰極の順に層を有し、該発光層に含まれる電荷輸送材料と発光材料の総数が5種類以上である。好ましくは、発光層に含まれる電荷輸送材料の総数が4種類以上であり、発光層に含まれる電荷輸送材料のイオン化ポテンシャル及び電子親和力のうちの少なくとも一方の値が、少なくとも3種類以上で異なる。

Description

有機電界発光素子及び有機電界発光デバイス
 本発明は、有機電界発光素子と、この有機電界発光素子を有する有機電界発光デバイスに関するものである。
 有機電界発光素子は、簡単な素子構成で様々な色に発光することができることから、近年、ディスプレイや照明などの発光装置を製造するための技術として、盛んに開発が行われている。
 有機電界発光素子は、陽極及び陰極から正孔及び電子を注入し、発光層に各電荷を到達させ、この発光層で電荷再結合させることで、発光を得るものである。この原理から、例えば、発光層に電荷を留めることにより、発光効率を向上させることが検討されている(特許文献1参照)。
 一方で、電荷を発光層に留めることは、有機電界発光素子の電流-電圧特性を悪化させる。一つの層に電荷を留めるには、通常、膜内に電荷のトラップ準位をつくり電荷を留める方法などにより行われる。これらの方法によれば、電荷を発光層に留めることにより、発光効率を上げることが可能であるが、同時に、電流-電圧特性を悪化させることにつながる。例えば、「有機EL技術と材料開発(シーエムシー出版)」には、発光材料が電荷輸送材料に対する電荷トラップとして働き、高電圧化につながることが記載されている(非特許文献1参照)。また、Proc. of SPIE Vil 4800,164-171(2003)には、電荷輸送材料であるαNPDに同じく電荷輸送材料である1-NaphDATAを添加した場合、電荷トラップの原因となり、高電圧化が起こることが報告されている(非特許文献2参照)。
 このようなことから、有機電界発光素子を発光装置として実用化するためには、電流-電圧特性の更なる向上が望まれる。
日本国特開2005-219513号公報
有機EL技術と材料開発、シーエムシー出版、2010年5月発行、184頁 Proc. of SPIE Vil 4800,164-171(2003)
 本発明は、電流-電圧特性の良好な有機電界発光素子を提供することを目的とする。
 この課題に対し、本発明者らが鋭意検討を行った結果、通常、複数の電荷輸送材料を発光層に用いた場合に、前述の理由から、高電圧化が進行すると考えられていたが、おどろくべきことに、一定数以上の電荷輸送材料とそれらの電荷輸送経路の準位をコントロールすることにより、電流-電圧特性が良好な有機電界発光素子を得ることが可能であることを見出した。
 本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。
[1] 陽極、発光層、及び陰極の順に層を有する有機電界発光素子であって、該発光層に含まれる電荷輸送材料と発光材料の総数が5種類以上であり、且つ該発行層に含まれる電荷輸送材料の総数が3種類以上である有機電界発光素子。
[2] [1]に記載の有機電界発光素子において、該発光層に含まれる電荷輸送材料の総数が4種類以上である有機電界発光素子。
[3] [1]又は[2]に記載の有機電界発光素子において、該発光層にイオン化ポテンシャル及び電子親和力のうちの少なくとも一方の値が異なる電荷輸送材料が3種類以上含まれる有機電界発光素子。
[4] [1]又は[2]に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料を2種選び出した際の、該電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.30eV以下である関係を満たす組み合わせが、1つ以上存在する有機電界発光素子。
[5] [1]又は[2]に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料を2種選び出した際の、該電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.30eV以下である関係を満たす組み合わせが、2つ以上存在する有機電界発光素子。
[6] [1]又は[2]に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料を2種選び出した際の、該電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.20eV以下である関係を満たす組み合わせが、2つ以上存在する有機電界発光素子。
[7] [1]又は[2]に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料及び発光材料から選び出した2種の材料の、イオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.20eV以下である関係を満たす組み合わせが、3つ以上存在する有機電界発光素子。
[8] 互いに異なる色に発光する有機電界発光素子を2つ以上有する有機電界発光デバイスであって、[1]又は[2]に記載の有機電界発光素子を少なくとも1つ以上有する有機電界発光デバイス。
[9] 互いに異なる色に発光する有機電界発光素子を2つ以上有する有機電界発光デバイスであって、該2つ以上の有機電界発光素子が[1]又は[2]に記載の有機電界発光素子のみから構成される有機電界発光デバイス。
[10] [8]又は[9]に記載の有機電界発光デバイスを用いた有機EL表示装置。
[11] [8]又は[9]に記載の有機電界発光デバイスを用いた有機EL照明。
 本発明によれば、電流-電圧特性の良好な有機電界発光素子が提供され、この有機電界発光素子により、発光効率の高いOAコンピューターや壁掛けテレビ等用のフラットパネルディスプレイ、表示板、標識灯及び複写機の光源、液晶ディスプレイ、計器類のバックライト光源等の面発光体としての特徴を生かした光源等を得ることができる。
図1は、本発明の有機電界発光素子の実施の形態の一例を示す模式的な断面図である。
 以下に本発明の有機電界発光素子及び有機電界発光デバイスの実施態様を詳細に説明するが、以下の説明は、本発明の実施態様の一例(代表例)であり、本発明は、その要旨を超えない限り、これらの内容に特定されない。
〔有機電界発光素子〕
 本発明の有機電界発光素子は、少なくとも、陽極、発光層、及び陰極をこの順に有する有機電界発光素子であって、該発光層は電荷輸送材料及び発光材料を有し、該発光層に含まれる電荷輸送材料及び発光材料の総数は少なくとも5種類以上であり、且つ電荷輸送材料が3種類以上であることを特徴とする。
 本発明において、発光層に含まれる電荷輸送材料の総数は、好ましくは4種類以上である。
[発光層における材料数の制御による作用機構]
 本発明の作用機構は、以下のように推定される。電荷移動の機構を含む層においては、材料の凝集や結晶化などが起こることにより、膜内の層の状態が不均一化され、電荷の輸送を阻害され、電流-電圧特性の悪化を引き起こすことがある。特に、発光層は両電極より電荷が集中する層であるため、この影響を受けやすい。ここで、本発明者らは、材料の凝集や結晶化などを引き起こすことを阻害する手段として、複数種の材料を用いることが有効であることを見出した。即ち、複数の材料を用いることにより、膜形成した後に同じ骨格の材料間の距離を離すことができるために、膜内での凝集や結晶化などを阻害し、均一なアモルファス膜を保ち、電荷移動的に欠損の少ない良好な電荷輸送膜を形成することが可能となる。例えば、分子を擬似的に球とみなした場合、効率よく球が接触し、空間内に充填される方式は、擬似的には単位格子とみなすことができる。最も接触の多い充填方法(面心立方、六法最密充填)は、6種類以上の材料により、同種の材料の接触を防ぐことが可能である。実際には分子サイズの違いから、6種類以下の数で、同種の材料の接触を防ぐことが可能であり、5種類以上の材料、好ましくは6種類以上の材料を有することにより、同一材料に由来する凝集や結晶化を防ぐ効果が高められ、均一な膜を得ることが可能となって、良好な電流-電圧特性を得ることができる。
 また、電荷輸送材料は、後述の通り、通常、芳香族性を有する化合物又は芳香族性を有する基を有する化合物で主に構成されている。そのため、比較的異なる化合物同士が混合されやすく、同一材料との接触を防ぎ、凝集などを防止しやすい。従って、発光材料を除く3種類以上、好ましくは4種類以上、更に好ましくは5種類以上の電荷輸送材料を発光層に含有させることにより、効率よく膜内での凝集や結晶化などを防止し、これらに起因する電荷トラップなどを軽減することが可能であり、良好な電流―電圧特性を得ることができる。
 このようなことから、本発明においては、発光層中の発光材料は1種類でもよいが、電荷輸送材料については3種類以上、好ましくは4種類以上、更に好ましくは5種類以上用い、発光材料と電荷輸送材料との合計で5種類以上とすることが良い。発光層中の発光材料及び電荷輸送材料の種類は、材料の管理、発光層形成用組成物の調製等において手間がかからず、また、後述する電荷輸送経路が適度に細分化され、駆動電圧を低減し易いことから、発光層中の電荷輸送材料及び発光材料は合計で20種類以下であることが好ましく、特に15種類以下であることが好ましい。実用的には、発光層中の発光材料を1種類又は2種類とし、電荷輸送材料を4~12種類、特に5~10種類用いることが好ましい。
[発光層における材料のイオン化ポテンシャルと電子親和力の制御による作用機構]
 本発明では、イオン化ポテンシャル及び電子親和力のうちの少なくとも一方が異なる材料を同一の層内に複数存在させることにより、複数の電荷を輸送する経路を形成することで、電荷の渋滞を防ぎ、良好な電流-電圧特性を得ることができると考えられる。複数の電荷輸送経路を形成するためには、膜内に均一に電荷輸送材料が分散していることが好ましく、且つイオン化ポテンシャル及び電子親和力のうちの少なくとも一方が異なる材料を、3種類以上、好ましくは4種類以上、更に好ましくは5種類以上有することが好ましい。イオン化ポテンシャル及び電子親和力のうちの少なくとも一方が異なる材料が3種類以上である場合、一方が電荷トラップとして機能し、電流-電圧特性を悪化させてしまう危険性が低減されるからである。
 また、発光層中の電荷輸送材料の含有量は、発光材料よりも多いことが好ましい。発光材料への電荷輸送経路が物理的にも多くなるからである。
 また、電荷が効率よく各経路を利用するためには、各電荷輸送材料のイオン化ポテンシャル及び電子親和力のうちの少なくとも一方が異なる値である上で、互いの電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が小さい方が好ましい。イオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が小さいと、電荷が各経路間を移動しやすくなり、効率よく各経路を利用することができるようになり、渋滞の緩和効果が強くなるためである。
 更に好ましくは、発光層内の発光材料と電荷輸送材料についても、イオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が上記の関係にあることが望ましい。これは、電荷輸送材料から発光材料への電荷の授受がスムーズに行われるためである。
 このため、本発明においては、発光層に含まれる電荷輸送材料の3種類以上において、イオン化ポテンシャル及び電子親和力のうちの少なくとも一方の値が異なることが好ましく、イオン化ポテンシャル及び電子親和力の値が異なることがより好ましい。また、発光層内のすべての電荷輸送材料において、イオン化ポテンシャル及び電子親和力のうちの少なくとも一方の値が異なることが更に好ましく、イオン化ポテンシャル及び電子親和力の値が異なることが最も好ましい。
 一方で、各材料のイオン化ポテンシャルの差又は電子親和力の差は小さい事が好ましく、発光層に含まれる電荷輸送材料の内、任意に選び出した2種の電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.50eV以下、好ましくは0.30eV以下、より好ましくは0.20eV以下、更に好ましくは0.15eV以下、より一層好ましくは0.10eV以下の関係を満たす組み合わせが1つ以上存在することが好ましい。形成された電荷輸送経路間の移動が起こりやすくなるためである。尚、この差の下限は0.01eV以上である。また、上記関係を満たす組み合わせの数は、好ましくは2つ以上、より好ましくは3つ以上、更に好ましくは4つ以上存在することが好ましいが、組み合わせの総数は材料の総数に依存する。
 また、発光層に含まれる発光材料及び電荷輸送材料の内、任意に選び出した2種の材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.50eV以下、好ましくは0.30eV以下、より好ましくは0.20eV以下、更に好ましくは0.15eV以下、より一層好ましくは0.10eV以下の関係を満たす組み合わせが1つ以上存在することが、低電圧化の観点からは好ましい。尚、この差の下限は0.01eV以上である。また、上記関係を満たす組み合わせの数は、好ましくは2つ以上、より好ましくは3つ以上存在することが好ましいが、組み合わせの総数は材料の総数に依存する。
 また、本発明の発光層には、正孔輸送材料と電子輸送材料の両方を含むことが望ましく、かつそれぞれの材料が2種類以上含まれることがより好ましい。正孔と電子のいずれにおいても、上述の電荷輸送経路が複数形成されやすくなるからである。更に好ましくはそれぞれ3種類以上である。
 また、発光層に含まれる電荷輸送材料のイオン化ポテンシャルの値の差及び電子親和力の値の差のうちの少なくとも一方が0.30eV以下である組み合わせが連続していることが好ましい。即ち、発光層内の電荷輸送材料を、イオン化ポテンシャルの値又は電子親和力の値の低い方からh、h、h、h、…………とした場合、hとhのイオン化ポテンシャルの値の差又は電子親和力の値の差(好ましくはイオン化ポテンシャルの値の差及び電子親和力の値の差)が0.30eV以下、好ましくは0.20eV以下、より好ましくは0.15eV以下、更に好ましくは0.10eV以下であり、hとhのイオン化ポテンシャルの値の差又は電子親和力の値の差(好ましくはイオン化ポテンシャルの値の差及び電子親和力の値の差)が0.30eV以下、好ましくは0.20eV以下、より好ましくは0.15eV以下、更に好ましくは0.10eV以下であり、hとhのイオン化ポテンシャルの値の差又は電子親和力の値の差(好ましくはイオン化ポテンシャルの値の差及び電子親和力の値の差)が0.30eV以下、好ましくは0.20eV以下、より好ましくは0.15eV以下、更に好ましくは0.10eV以下であるというように、連続した関係を有することが好ましい。従って、発光層内に含まれる電荷輸送材料のうち、最もイオン化ポテンシャル又は電子親和力が大きい電荷輸送材料と最もイオン化ポテンシャル又は電子親和力が小さい電荷輸送材料とのイオン化ポテンシャル又は電子親和力の差は、発光層内の電荷輸送材料の種類数をNとした場合、0.30×(N-1)eV以下であることが好ましく、更に好ましくは0.20×(N-1)eV以下、より好ましくは0.15×(N-1)eV以下、更に好ましくは0.10×(N-1)eV以下である。
 本発明の発光層は、複数の芳香環基が連結してなる基本骨格を有し、且つ分子量が2000以下である、2以上の化合物からなる化合物群αを含有することが望ましい。
 化合物群αは、基本骨格を構成する芳香環基の数が最も少ない化合物α1と、該化合物α1の基本骨格の50%以上と一致した基本骨格を有する、他の化合物からなる。
 ここで「該化合物α1の基本骨格の50%以上と一致した基本骨格を有する」他の化合物について説明する。
 「一致」とは、基本骨格を成す芳香環基の、環の骨格、他の基との結合順及び結合位置がいずれも一致していることをいう。環の骨格とは、芳香環基が単環由来の場合は環員数を意味し、縮合環由来の場合は個々の環の員数と縮合関係の双方をいう。
 例えば下記例1の場合、まず基本骨格を構成する芳香環基の数がより少ない化合物Bが「化合物α1」に相当する。化合物Aと化合物Bの基本骨格を比較すると、化合物Bの基本骨格を構成する芳香環基(環f~i)のうち、環f及び環g~iのうちいずれか2つの環(合計3つの環)が、化合物Aの基本骨格と「一致」していることになる。つまり、化合物Bの基本骨格を構成する4つの芳香環基のうち3つが「一致」しており、75%(=3/4)が「一致」していることになる。なお、このような場合を「(基本骨格の)一致率が75%である」と表現することがある。
(例1)
Figure JPOXMLDOC01-appb-C000001
(環aと環f、環bと環g、環cと環hは、環の骨格、他の基との結合順および結合位がいずれも一致している。環dと環iは、他の基との結合順および結合位置が不一致である。従って上記例1においては、化合物Aは、化合物Bの基本骨格のうち3/4(75%)が一致した基本骨格を有することになる。)
 下記例2の場合、化合物A及びBは基本骨格を構成する芳香環基の数が同数なので、いずれを「化合物α1」としてもよい。仮に化合物Aを「化合物α1」とすると、化合物Aの基本骨格を構成する芳香環基(環a~g)のうち、環a~fが化合物Bの基本骨格と「一致」していることになる。つまり、化合物Aの基本骨格を構成する7つの芳香環基のうち6つが「一致」しており、86%が「一致」していることになる。
(例2)
Figure JPOXMLDOC01-appb-C000002
(環aと環h、環bと環i、環cと環j、環dと環k、環eと環l、及び環fと環mは、環の骨格、他の基との結合順および結合位置がいずれも一致している。環gと環nは、環の骨格が不一致である。従って上記例2においては、化合物Bは、化合物Aの基本骨格の6/7(86%)が一致した基本骨格を有することになる。なお、メチル基は芳香環基ではなく、基本骨格には含まれないため、本発明における「一致」を判断する上では考慮しない。)
 下記例3の場合、化合物A~Cは、基本骨格を構成する芳香環基の数が同数なので、いずれを「化合物α1」としてもよい。また、各化合物の基本骨格を成す芳香環基の、環の骨格、他の基との結合順及び結合位置がいずれも一致している。つまり、仮に化合物Aを「化合物α1」とした場合、化合物Aの基本骨格を構成する3つの芳香環基が、化合物B及びCの基本骨格と全て「一致」しており、100%が「一致」していることになる。
(例3)
Figure JPOXMLDOC01-appb-C000003
 同様に下記例4の場合、化合物A~Cは、基本骨格を構成する芳香環基の数が同数なので、いずれを「化合物α1」としてもよい。また、各化合物の基本骨格を成す芳香環基のうち、化合物Aにおける環bと化合物Bにおける環f、及び化合物Aにおける環bと化合物Cにおける環jは、いずれも環の骨格が異なる。また化合物Bにおける環fと化合物Cにおける環jは、結合位置が異なる。
 仮に化合物Aを「化合物α1」とすると、化合物Aの基本骨格を構成する芳香環基(環a~d)のうち、環a、c及びdが化合物B及びCの基本骨格と「一致」していることになる。つまり、化合物Aの基本骨格を構成する4つの芳香環基のうち3つが「一致」しており、75%が「一致」していることになる。
(例4)
Figure JPOXMLDOC01-appb-C000004
(環aと環eと環i、環cと環gと環k、環dと環hと環lは各々一致している。環bと環fと環jは不一致である。)
 本発明における化合物群αは、複数の芳香環基が連結してなる基本骨格を有し、かつ分子量が2000以下である2以上の化合物からなる。このような化合物群を含む有機電界発光素子用組成物の場合、該群に含まれる複数の化合物が上述した関係を満たすことにより、組成物中における溶質の結晶析出が抑制され、保存安定性が高い組成物が得られる。また、このような組成物を用いることにより、駆動電圧が低く、発光効率の高い有機電界発光素子を得ることができる。
 化合物群αに含まれる化合物は、上記条件を満たせばよく、特に制限は無いが、後述する電荷輸送ホストの構造群を含むことが望ましい。
[イオン化ポテンシャル及び電子親和力の測定法]
 本発明における各材料のイオン化ポテンシャル及び電子親和力の測定方法は以下の通りである。
<イオン化ポテンシャル(IP)の測定法>
 発光材料及び電荷輸送材料のイオン化ポテンシャル(IP)は、以下の各装置で測定可能とされる範囲内の値であれば、理研計器株式会社製「AC-1」、「AC-2」、「AC-3」、オプテル社製(住友重機械皇后株式会社製)「PCR-101」並びに住友重機械工業株式会社製「PYS-201」などの市販のイオン化ポテンシャル測定装置を用いることにより測定できる。好ましくは真空中での測定が可能である「PCR-101」、「PYS-201」などで測定する。これは、大気雰囲気下で測定された測定値は、誤差が大きくなり、また、測定原理上、光源の出力を弱めるため、特にイオン化ポテンシャルの絶対値が大きい材料に於いて、精度が低く、正確な値が得られないことがあるためである。
 イオン化ポテンシャル(IP)測定用のサンプルは、ITO基板上に当該発光材料又は電荷輸送材料を湿式又は乾式法で成膜することにより作製することができる。湿式成膜法としては、当該発光材料又は電荷輸送材料をキシレンやトルエンなどの有機溶剤に溶かしてスピンコート法で成膜する方法などが挙げられる。また、乾式成膜法としては、真空蒸着法などが挙げられる。
<バンドギャップ(Eg)の測定方法>
 バンドギャップ(Eg)は、紫外-可視吸光度計を用いた薄膜吸収スペクトルの測定により得られる。具体的には、薄膜吸収スペクトルの短波長側の立ち上がり部分で吸収スペクトルとベースラインの接線を引き、該両接線の交点の波長W(nm)から下記式により求められる。
  Eg=1240÷W
 すなわち、例えば、該交点の波長が470nmである場合のEgは、1240÷470=2.63(eV)となる。
 このバンドギャップを示すエネルギーの測定は、吸収スペクトルが測定可能な装置で測定すればよく、装置の種類等に特に制限はないが、例えば日立製作所製「F4500」等を用いることができる。
 バンドギャップを示すエネルギーの測定用サンプルは、ガラス基板上に当該発光材料又は電荷輸送材料を湿式又は乾式法で成膜することにより作製することができる。湿式成膜法としては、当該発光材料又は電荷輸送材料をキシレンやトルエンなどの有機溶剤に溶かしてスピンコート法で成膜する方法などが挙げられる。また、乾式成膜法としては、真空蒸着法などが挙げられる。
<電子親和力の測定法>
 本発明において、発光材料及び電荷輸送材料の電子親和力(EA)は、各材料単独の膜の吸収スペクトルから算出される上記のバンドギャップ(Eg)と、上記のイオン化ポテンシャル(IP)の値から以下の式により算出される値である。
  EA=IP-Eg
[発光層]
 本発明の有機電界発光素子が有する発光層は、通常少なくとも1つ以上の発光材料(発光の性質を有する材料)と3つ以上の電荷輸送材料を含み、電荷輸送材料と発光材料との合計で5種類以上の化合物を含む。発光層中の電荷輸送材料及び発光材料の好ましい数は前述の通りであり、上述したイオン化ポテンシャル及び電子親和力の好ましい関係を満たすように、必要な数の発光材料と電荷輸送材料を用いて発光層が形成される。
 本発明に係る発光層は、発光材料をドーパント材料とし、正孔輸送材料や電子輸送材料などの電荷輸送材料をホスト材料として含んでいてもよい。更に、本発明に係る発光層は、本発明の効果を著しく損なわない範囲で、その他の成分を含有していてもよい。なお、湿式成膜法で発光層を形成する場合は、何れも低分子量の材料を使用することが好ましい。
{発光材料}
 発光材料としては、通常、有機電界発光素子の発光材料として使用されている任意の公知の材料を適用することができ、特に制限はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。発光材料としては、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。
 発光層に燐光発光材料を用いる場合、蛍光発光材料に比べ、発光層における電荷再結合を伴う機構の発生確率が高いと考えられるため、発光層内の材料間の電荷の授受がより重要であり、電荷輸送経路数や電荷トラップの影響が大きくなると考えられる。従って、本発明は発光材料に燐光発光材料を用いた場合に特に有効となる。
 また、例えば、青色は蛍光発光材料、緑色及び赤色は燐光発光材料を用いるなど、蛍光発光材料と燐光発光材料を組み合わせて用いてもよい。
 なお、湿式成膜法により発光層を形成する際に用いられる発光層形成用組成物の調製に用いる溶剤への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることが好ましい。
 発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<蛍光発光材料>
 以下、発光材料のうち蛍光発光材料の例を挙げるが、蛍光発光材料は以下の例示物に限定されるものではない。
 青色発光を与える蛍光発光材料(青色蛍光色素)としては、例えば、ナフタレン、クリセン、ペリレン、ピレン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン、アリールアミン及びそれらの誘導体等が挙げられる。中でも、アントラセン、クリセン、ピレン、アリールアミン及びそれらの誘導体等が好ましい。
 緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、例えば、キナクリドン、クマリン、Al(CNO)などのアルミニウム錯体及びそれらの誘導体等が挙げられる。
 黄色発光を与える蛍光発光材料(黄色蛍光色素)としては、例えば、ルブレン、ペリミドン及びそれらの誘導体等が挙げられる。
 赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、例えば、DCM(4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン)系化合物、ベンゾピラン、ローダミン、ベンゾチオキサンテン、アザベンゾチオキサンテン等のキサンテン及びそれらの誘導体等が挙げられる。
 上記青色蛍光を与える材料であるアリールアミン誘導体としては、より具体的には、下記式(X)で表される化合物が、素子の発光効率、駆動寿命等の観点から好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Ar21は、核炭素数10~40の置換もしくは無置換の縮合芳香環基を示し、Ar22及びAr23は、それぞれ独立に炭素数6~40の置換もしくは無置換の1価の芳香族炭化水素環基を示し、pは1~4の整数を示す。)
 なお、本発明における芳香環基は、芳香族炭化水素環基でもよいし、芳香族複素環基でもよい。
 Ar21としては、具体的には、1個の遊離原子価を有するナフタレン、フェナントレン、フルオランテン、アントラセン、ピレン、ペリレン、コロネン、クリセン、ピセン、ジフェニルアントラセン、フルオレン、トリフェニレン、ルビセン、ベンゾアントラセン、フェニルアントラセン、ビスアントラセン、ジアントラセニルベンゼン又はジベンゾアントラセンなどが挙げられる。ここで、本発明において、遊離原子価とは、有機化学・生化学命名法(上)(改定第2版、南江堂、1992年発行)に記載のとおり、他の遊離原子価と結合を形成できるものを言う。
 以下に、蛍光発光材料としてのアリールアミン誘導体の好ましい具体例を示すが、本発明に係る蛍光発光材料はこれらに限定されるものではない。以下において、「Me」はメチル基を、「Et」はエチル基を表す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
<燐光発光材料>
 燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7~11族から選ばれる金属を中心金属として含むウェルナー型錯体又は有機金属錯体などが挙げられる。
 周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられ、中でもより好ましくはイリジウム又は白金である。
 錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。
 燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられる。
 特に、燐光発光材料の燐光性有機金属錯体としては、好ましくは下記式(III)又は式(IV)で表される化合物が挙げられる。
     ML(q-j)L’    (III)
(式(III)中、Mは金属を表し、qは上記金属の価数を表す。また、L及びL’は二座配位子を表す。jは0、1又は2の数を表す。)
Figure JPOXMLDOC01-appb-C000012
 (式(IV)中、Mは金属を表し、Tは炭素原子又は窒素原子を表す。R92~R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、R94及びR95は無い。)
 以下、まず、式(III)で表される化合物について説明する。
 式(III)中、Mは任意の金属を表し、好ましいものの具体例としては、周期表第7~11族から選ばれる金属として前述した金属などが挙げられる。
 また、式(III)中、二座配位子Lは、以下の部分構造を有する配位子を示す。
Figure JPOXMLDOC01-appb-C000013
 上記Lの部分構造において、環A1は、置換基を有していてもよい、芳香環基を表わす。本発明における芳香環基は、芳香族炭化水素環基でも良いし、芳香族複素環基でも良い。
 該芳香族炭化水素環としては、1個の遊離原子価を有する、5又は6員環の単環又は2~5縮合環からなる基などが挙げられる。
 該芳香族炭化水素環基の具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などが挙げられる。
 該芳香族複素環基としては、1個の遊離原子価を有する、5又は6員環の単環又は2~4縮合環からなる基などが挙げられる。
 具体例としては、1個の遊離原子価を有する、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などが挙げられる。
 また、上記Lの部分構造において、環A2は、置換基を有していてもよい、含窒素芳香族複素環基を表す。
 該含窒素芳香族複素環基としては、1個の遊離原子価を有する、5又は6員環の単環又は2~4縮合環からなる基などが挙げられる。
 具体例としては、1個の遊離原子価を有する、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、フロピロール環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環などが挙げられる。
 環A1又は環A2がそれぞれ有していてもよい置換基の例としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基;芳香族炭化水素環基等が挙げられる。また、環A1が含窒素芳香族複素環基である場合及び環A2は、芳香族炭化水素環基を置換基として有していてもよい。
 また、式(III)中、二座配位子L’は、以下の部分構造を有する配位子を示す。但し、以下の式において、「Ph」はフェニル基を表す。
Figure JPOXMLDOC01-appb-C000014
 中でも、L’としては、錯体の安定性の観点から、以下に挙げる配位子が好ましい。
Figure JPOXMLDOC01-appb-C000015
  式(III)で表される化合物として、更に好ましくは、下記式(IIIa)、(IIIb)、(IIIc)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式(IIIa)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、環A1は、置換基を有していてもよい芳香族炭化水素環基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure JPOXMLDOC01-appb-C000017
(式(IIIb)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、環A1は、置換基を有していてもよい芳香環基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure JPOXMLDOC01-appb-C000018
(式(IIIc)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、jは、0、1又は2を表し、環A1及び環A1’は、それぞれ独立に、置換基を有していてもよい芳香環基を表し、環A2及び環A2’は、それぞれ独立に、置換基を有していてもよい含窒素芳香族複素環基を表す。)
 上記式(IIIa)~(IIIc)において、環A1及び環A1’の芳香環基の好ましい例としては、フェニル基、ビフェニル基、ナフチル基、アントリル基、チエニル基、フリル基、ベンゾチエニル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、カルバゾリル基等が挙げられる。
 上記式(IIIa)~(IIIc)において、環A2及び環A2’の含窒素芳香族複素環基の好ましい例としては、ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、ベンゾチアゾール基、ベンゾオキサゾール基、ベンゾイミダゾール基、キノリル基、イソキノリル基、キノキサリル基、フェナントリジニル基等が挙げられる。
 上記式(IIIa)~(IIIc)における環A1及び環A1’の芳香環基、環A2及び環A2’の含窒素芳香族複素環基が有していてもよい置換基としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基等が挙げられる。
 なお、これら置換基は互いに連結して環を形成してもよい。具体例としては、環A1が有する置換基と環A2が有する置換基とが結合するか、又は、環A1’が有する置換基と環A2’が有する置換基とが結合することにより、一つの縮合環を形成してもよい。このような縮合環としては、7,8-ベンゾキノリン基等が挙げられる。
 中でも、環A1、環A1’、環A2及び環A2’の置換基として、より好ましくは、アルキル基、アルコキシ基、芳香族炭化水素環基、シアノ基、ハロゲン原子、ハロアルキル基、ジアリールアミノ基、カルバゾリル基などが挙げられる。
 また、式(IIIa)~(IIIc)におけるM~Mの好ましい例としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金などが挙げられる。
 上記式(III)及び(IIIa)~(IIIc)で示される有機金属錯体の具体例を以下に示すが、下記の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式(III)で表される有機金属錯体の中でも、特に、配位子L及びL’のうちの少なくとも一方は、2-アリールピリジン系配位子、即ち、2-アリールピリジン、これに任意の置換基が結合したもの、及び、これに任意の基が縮合してなるものを有する化合物であることが好ましい。
 また、国際公開第2005/019373号に記載の化合物も、発光材料として使用することが可能である。
 次に、式(IV)で表される化合物について説明する。
 式(IV)中、Mは金属を表す。具体例としては、周期表第7~11族から選ばれる金属として前述した金属などが挙げられる。Mとしては、中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
 また、式(IV)において、R92及びR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香環基を表す。
 更に、Tが炭素原子の場合、R94及びR95は、それぞれ独立に、R92及びR93として挙げたものと同様の置換基を表す。また、Tが窒素原子の場合は、R94及びR95は無い。
 また、R92~R95は、更に置換基を有していてもよい。置換基を有する場合、その種類に特に制限はなく、任意の基を置換基とすることができる。
 更に、R92~R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。
 式(IV)で表される有機金属錯体の具体例(T-1、T-10~T-15)を以下に示すが、下記の例示物に限定されるものではない。また、以下の化学式において、「Me」はメチル基を表し、「Et」はエチル基を表す。
Figure JPOXMLDOC01-appb-C000021
 これらの発光材料は、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよいが、本発明において、発光層内には5種類以上の電荷輸送材料と発光材料が含まれる。
<分子量>
 本発明における発光材料の分子量は、本発明の効果を著しく損なわない限り任意である。本発明における発光材料の分子量は、好ましくは10000以下、より好ましくは5000以下、更に好ましくは4000以下、特に好ましくは3000以下である。また、本発明における発光材料の分子量は、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上である。
 発光材料の分子量は、ガラス転移温度や融点、分解温度等が高く、発光材料及び形成された発光層の耐熱性に優れる点、及び、ガス発生、再結晶化及び分子のマイグレーションなどに起因する膜質の低下や材料の熱分解に伴う不純物濃度の上昇などが起こり難い点では大きいことが好ましい。一方、発光材料の分子量は、有機化合物の精製が容易で、溶剤に溶解させやすい点では小さいことが好ましい。
 本発明に係る発光層には、発光材料が通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上含有されていることが良い。また、発光材料が通常35重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下含有されていることが良い。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにするのが好ましい。
{電荷輸送材料}
 有機電界発光素子の発光層において、発光材料は、電荷輸送性能を有するホスト材料から電荷又はエネルギーを受け取って発光することが好ましい。従って、発光層は、通常、例えば、このホスト材料として使用されるような、電荷輸送材料を含む。電荷輸送材料には、正孔輸送性を有する化合物(正孔輸送材料或いは正孔輸送性化合物と称することがある)と、電子輸送性を有する化合物(電子輸送材料或いは電子輸送性化合物と称することがある)がある。発光層は、正孔輸送材料と電子輸送材料の両方を含んでいてもよく、いずれか一方を含んでいてもよい。なお、発光層が正孔輸送性を有する化合物は含んでいるが、電子輸送性を有する化合物を含んでいない場合は、発光層において、正孔輸送性を有する化合物が電子を輸送すれば良い。同様に発光層が電子輸送性を有する化合物を含んでいるが、正孔輸送性を有する化合物を含んでいない場合は、発光層において、電子輸送性を有する化合物が正孔を輸送すれば良い。
 ここで、電荷輸送材料の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン系化合物、ベンジルフェニル系化合物、フルオレン系化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物、トリフェニレン系化合物、カルバゾール系化合物、ピレン系化合物、アントラセン系化合物、フェナントロリン系化合物、キノリン系化合物、ピリジン系化合物、トリアジン系化合物、オキサジアゾール系化合物、イミダゾール系化合物等が挙げられる。
 これらの電荷輸送材料は、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよいが、本発明において、発光層内には5種類以上の電荷輸送材料と発光材料が含まれる。
 電子輸送材料は、電子輸送性のユニットを有する化合物であることが好ましい。電子輸送性のユニット(電子輸送ユニット)とは、電子に対する耐久性に優れており、電子輸送性を有する構造(ユニット)である。また、発光層に2種以上の電荷輸送材料が含まれる場合、この電子輸送ユニットを有する化合物が前述の電子輸送を担う電荷輸送材料となりやすい。
 本発明における電子輸送ユニットとは、ユニットに電子が入り易く、また入った電子を安定化し易いユニットである。例えばピリジン環等は窒素原子のために環が僅かに電子不足であり、電子を受け取りやすく、環に入った電子は非局在化されることにより、ピリジン環上で安定化する。
 上記の様な性能を有するユニットの構造としては、sp混成軌道からなるヘテロ原子を含む単環又は縮合環が挙げられる。ここで、ヘテロ原子は、sp混成軌道を形成しやすく、電子に対する安定性が高く、電子輸送性が高いことから窒素、酸素、硫黄及びセレンが好ましく、窒素が特に好ましい。電荷輸送材料料が有するsp混成軌道を有するヘテロ原子の数は、電子輸送性が高い点では、多いことが好ましい。
 以下に電子輸送ユニットの例を挙げるが、これらに限定されるものではない。
 電子輸送ユニットとしては具体的には、キノリン環、キナゾリン環、キノキサリン環、フェナントロリン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、チアジアゾール環、ベンゾチアジアゾール環、キノリノール金属錯体、フェナントロリン金属錯体、ヘキサアザトリフェニレン構造、テトラシアルベンゾキノリン構造等が挙げられる。この中でも電子に対する安定性が高く、電子輸送性が高いことから、好ましくは、キノリン環、キナゾリン環、キノキサリン環、フェナントロリン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環などが挙げられ、中でも電気的安定性に優れる点で好ましくは、キノリン環、キナゾリン環、ピリジン環、ピリミジン環、トリアジン環、1,10-フェナントロリン環などが挙げられる。
 尚、上記電子輸送ユニットが窒素原子を含む6員環の単環又は縮合環である場合、窒素原子に対して、o-位及びp-位が全て芳香族環で置換されているのが好ましい。
 この理由は次の通りである。即ち、窒素原子を含む6員環のo-位及びp-位は、活性部位であり、ここが芳香環基によって置換されることで電子が非局在化する。このことで、電子により安定となる。
 尚、上記電子輸送ユニットが窒素原子を含む6員環の縮合環である場合は、窒素原子のo-位及びp-位のうち、縮合環の一部を形成していない部位が、芳香環基で置換されていればよい。
 電子輸送材料としては、電子に対する安定性が高く、電子輸送性が高いことから、下記(b)群(電子輸送ユニット)に挙げられる環の誘導体を有する有機化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000022
(但し、上記(b)群に含まれる環はいずれも、窒素原子に対して、o-位及びp-位が全て芳香環基で置換されている。)
 前記(b)群中の、窒素原子に対して、同一環上の2,4,6位の炭素原子上の水素原子が置換されている芳香環基は、特に制限はない。つまり、芳香族炭化水素環基であっても、芳香族複素環基であってもよいが、電気的酸化に対して優れた耐久性を有する点で、芳香族炭化水素環基であることが好ましい。芳香環基の炭素数は、6~30が好ましく、また、芳香環基が縮合環からなる基の場合、その縮合している芳香環の数は2~4が好ましい。
 ここで、上記(b)群に含まれる環構造が有する好ましい置換基としては、ハロゲン原子、及び、更に置換基を有していてもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基又は炭素数6~30の1価の芳香族炭化水素環基などが挙げられる。
 また、低分子量の電子輸送材料として、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)、2,5-ビス(6’-(2’,2”-ビピリジル))-1、1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)、バソフェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、4,4’-ビス(9-カルバゾール)-ビフェニル(CBP)等が挙げられる。
 より詳細に好ましい電子輸送材料を記載する。
<一般式(A)>
Figure JPOXMLDOC01-appb-C000023
(上記一般式(A)において、Hetero構造は下記構造式(A-1)、(A-2)及び(A-3)のいずれかを表し、Xa、Xa、Ya、Ya、Za及びZaは各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表し、Xa、Ya及びZaは各々独立に、水素原子、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。)
Figure JPOXMLDOC01-appb-C000024
 上記一般式(A)におけるXa、Xa、Ya、Ya、Za及びZaは、いずれも各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。中でも、化合物の安定性の点からは好ましくは置換基を有していてもよい炭素数6~30の芳香族炭化水素基である。
 置換基を有していてもよい炭素数6~30の芳香族炭化水素基を形成する芳香族炭化水素環としては、6員環の単環、又は2~5縮合環が好ましい。具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環が挙げられる。中でも、化合物の安定性や溶解性の点から、好ましくはベンゼン環である。
 上記一般式(A)におけるXa、Xa、Ya、Ya、Za及びZaの少なくとも1つが1,2-フェニレン基または、1,3-フェニレン基であることが好ましく、1,3-フェニレン基であることがより好ましく、さらに、Xa、Xaのいずれか一方、Ya、Yaのいずれか一方、またはZa、Zaのいずれか一方の内、少なくとも2つが1,2-フェニレン基または、1,3-フェニレン基であることが特に好ましく、1,3-フェニレン基であることが最も好ましい。1,2-フェニレン基または、1,3-フェニレン基で連結されることにより、分子構造の立体性が高くなり、溶媒に対する溶解性が高くなるとともに非共役結合であるため分子のエネルギーギャップが大きくなり好ましく、特に、励起3重項エネルギーが高くなることから、燐光発光材料のHOST材料として好ましい。さらに、1,3-フェニレン基であることが、化合物の安定性および合成のしやすさからより好ましい。
 置換基を有していてもよい炭素数3~30の芳香族複素環基を形成する芳香族複素環としては、5または6員環の単環、或いはこれらの2~5縮合環が好ましい。具体的には、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環が挙げられる。中でも、化合物の安定性や電荷輸送性が高い点からは、好ましくはカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環であり、電子輸送性が高い点からは、好ましくはピリジン環、ピリミジン環、トリアジン環である。
 また上記一般式(A)におけるXa、Ya及びZaは、いずれも各々独立に、水素原子、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。
 置換基を有していてもよい炭素数6~30の芳香族炭化水素基を形成する芳香族炭化水素環としては、6員環の単環、又は2~5縮合環が好ましい。具体的には一般式(A)におけるXaなどの例として前掲したものと同様の環由来の基が挙げられる。中でも化合物の安定性の点から、好ましくは、ベンゼン環、ナフタレン環またはフェナントレン環である。
 置換基を有していてもよい炭素数3~30の芳香族複素環基を形成する芳香族複素環としては、5または6員環の単環、或いはこれらの2~5縮合環が好ましい。具体的には、一般式(A)におけるXaなどの例として前掲したものと同様の環が挙げられる。中でも化合物の安定性や電荷輸送性が高い点から、好ましくはカルバゾール環、ジベンゾフラン環またはジベンゾチオフェン環由来の基である。
 上記一般式(A)におけるHetero構造の3つの置換基である、-Xa-Xa-Xa、-Ya-Ya-Ya、および、-Za-Za-Zaは、同一であっても異なっていてもよい。化合物の対象性を落として溶媒に対する溶解性を高める点から、少なくとも一つは異なることが好ましい。
 芳香族炭化水素基または芳香族複素環基が有しても良い置換基としては、炭素数1~20の飽和炭化水素基、炭素数6~25の芳香族炭化水素基、炭素数3~20の芳香族複素環基、炭素数12~60のジアリールアミノ基、炭素数1~20のアルキルオキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルチオ基、炭素数3~20の(ヘテロ)アリールチオ基、シアノ基などが挙げられる。これらのうち、溶解性及び耐熱性の点から、炭素数1~20の飽和炭化水素基及び炭素数6~25の芳香族炭化水素基が好ましい。また、化合物の安定性の点からは置換基を有さないことも好ましい。
 具体的には、炭素数1~20の飽和炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基、オクチル基、シクロヘキシル基、デシル基及びオクタデシル基等が挙げられる。これらのうち、原料の入手しやすさや安価さなどの点から、メチル基、エチル基及びイソプロピル基が好ましく、メチル基及びエチル基が更に好ましい。
 炭素数6~25の1価の芳香族炭化水素基としては、フェニル基、1-ナフチル基、2-ナフチル基などのナフチル基;9-フェナンチル基、3-フェナンチル基などのフェナンチル基;1-アントリル基、2-アントリル基、9-アントリル基などのアントリル基;1-ナフタセニル基、2-ナフタセニル基などのナフタセニル基;1-クリセニル基、2-クリセニル基、3-クリセニル基、4-クリセニル基、5-クリセニル基、6-クリセニル基などのクリセニル基;1-ピレニル基などのピレニル基;1-トリフェニレニル基などのトリフェニレニル基;1-コロネニル基などのコロネニル基;4-ビフェニル基、3-ビフェニル基のビフェニル基;フルオランテン環を有する基;フルオレン環を有する基;アセナフテン環を有する基及びベンズピレン環等を有する置換基などが挙げられる。これらのうち、化合物の安定性の点からフェニル基、2-ナフチル基及び3-ビフェニル基が好ましく、精製のし易さからフェニル基が特に好ましい。
 炭素数3~20の芳香族複素環基としては、2-チエニル基などのチエニル基;2-フリル基などのフリル基;2-イミダゾリル基などのイミダゾリル基;9-カルバゾリル基などのカルバゾリル基;2-ピリジル基などのピリジル基及び1,3,5-トリアジン-2-イル基などのトリアジニル基等が挙げられる。中でも、カルバゾリル基、特に9-カルバゾリル基が安定性の点から好ましい。
 炭素数12~60のジアリールアミノ基としては、ジフェニルアミノ基、N-1-ナフチル-N-フェニルアミノ基、N-2-ナフチル-N-フェニルアミノ基、N-9-フェナントリル-N-フェニルアミノ基、N-(ビフェニル-4-イル)-N-フェニルアミノ基、ビス(ビフェニル-4-イル)アミノ基等が挙げられる。中でもジフェニルアミノ基、N-1-ナフチル-N-フェニルアミノ基、N-2-ナフチル-N-フェニルアミノ基が好ましく、特にジフェニルアミノ基が安定性の点で好ましい。
 炭素数1~20のアルキルオキシ基としては、メトキシ基、エトキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基及びオクタデシルオキシ基等が挙げられる。
 炭素数3~20の(ヘテロ)アリールオキシ基としては、フェノキシ基、1-ナフチルオキシ基、9-アントラニルオキシ基等のアリールオキシ基及び2-チエニルオキシ基等のヘテロアリールオキシ基を有する置換基等が挙げられる。
 炭素数1~20のアルキルチオ基としては、メチルチオ基、エチルチオ基、イソプロピルチオ基及びシクロヘキシルチオ基等が挙げられる。
 炭素数3~20の(ヘテロ)アリールチオ基としては、フェニルチオ基、1-ナフチルチオ基、9-アントラニルチオ基等のアリールチオ基及び2-チエニルチオ基等のヘテロアリールチオ基等が挙げられる。
 なお、発光層において、電子輸送材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 正孔輸送材料は、正孔輸送性のユニットを有する化合物であることが好ましい。正孔輸送性のユニット(正孔輸送ユニット)とは、正孔に対する耐久性に優れており、正孔輸送性を有する構造(ユニット)である。
 本発明における正孔輸送ユニットとは、発光層の陽極側にある層から正孔を取り出し易いイオン化ポテンシャルを有し、また正孔に対して安定であるユニットであることを示す。
 発光層の陽極側にある層から正孔を取り出し易いイオン化ポテンシャルとは、通常6.3eV以下、好ましくは、5.9eV以下、より好ましくは5.8eV以下、更に好ましくは5.7eV以下であり、5.3eV以上、好ましくは5.4eV以上、より好ましくは5.5eV以上、更に好ましくは5.6eV以上である。
 また、正孔に対して安定であるとは、正孔輸送ユニットが、ラジカル状態になっても分解され難いということである。これは、ラジカルカチオンが非局在化されることにより、ラジカル状態でも安定化するということである。
 上記の様な性能を有するユニットの構造としては、sp軌道を有するヘテロ原子を含む構造、又は、炭素数が4n系の芳香族縮合環などが挙げられる。
 以下に正孔輸送ユニットの例を挙げるが、これらに限定されるものではない。
 正孔輸送ユニットとしては、具体的にはカルバゾール環、フタロシアニン環、ナフタロシアニン構造、ポルフィリン構造、トリアリールアミン構造、トリアリールホスフィン構造、ベンゾフラン環、ジベンゾフラン環、ピレン環、フェニレンジアミン構造、ピロール環、ベンジジン構造、アニリン構造、ジアリールアミン構造、イミダゾリジノン構造、ピラゾール環等が挙げられる。この中でも正孔に対する安定性に優れ、正孔輸送性が高いことから、好ましくは、カルバゾール環、ベンゾフラン環、ジベンゾフラン環、ピレン環、トリアリールアミン構造であり、より好ましくはカルバゾール環、ベンゾフラン環、ジベンゾフラン環、ピレン環であり、特に好ましくはカルバゾール環、ピレン環である。
 正孔輸送材料としては、正孔に対する安定性に優れ、正孔輸送性が高いことから、下記(a)群(正孔輸送ユニット)に挙げられる何れかの環の誘導体を有する有機化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000025
 これらの環構造は、置換基を有していてもよく、好ましい置換基としては、ハロゲン原子、及び、更に置換基を有していてもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基又は炭素数6~30の1価の芳香族炭化水素環基などが挙げられる。
 より具体的には、低分子量の正孔輸送材料の例として、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族アミン系化合物(日本国特開平5-234681号公報)、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(Journal of Luminescence,1997年、Vol.72-74,pp.985)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chemical Communications,1996年、pp.2175)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のフルオレン系化合物(Synthetic Metals,1997年,Vol.91,pp.209)等が挙げられる。
 より好ましい正孔輸送材料の構造を下記に示す。
<一般式(E)>
Figure JPOXMLDOC01-appb-C000026
(上記一般式(E)において、Xe、Xe、Ye、Ye、Ze及びZeは各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表し、Xe、Ye及びZeは各々独立に、水素原子、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。)
 上記一般式(E)におけるXe、Xe、Ye、Ye、Ze及びZeは、いずれも各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。中でも、化合物の安定性の点からは好ましくは置換基を有していてもよい炭素数6~30の芳香族炭化水素基である。
 置換基を有していてもよい炭素数6~30の芳香族炭化水素基を形成する芳香族炭化水素環としては、6員環の単環、又は2~5縮合環が好ましい。具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環が挙げられる。中でも、化合物の安定性や溶解性の点から、好ましくはベンゼン環である。
 上記一般式(E)におけるXe、Xe、Ye、Ye、Ze及びZeの少なくとも1つが1,2-フェニレン基または、1,3-フェニレン基であることが好ましく、1,3-フェニレン基であることがより好ましく、さらに、Xe、Xeのいずれか一方、Ye、Yeのいずれか一方、またはZe、Zeのいずれか一方の内、少なくとも2つが1,2-フェニレン基または、1,3-フェニレン基であることが特に好ましく、1,3-フェニレン基であることが最も好ましい。
 置換基を有していてもよい炭素数3~30の芳香族複素環基を形成する芳香族複素環としては、5または6員環の単環、或いはこれらの2~5縮合環が好ましい。具体的には、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環が挙げられる。中でも、化合物の安定性や電荷輸送性が高い点からは、好ましくはカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環であり、電子輸送性が高い点からは、好ましくはピリジン環、ピリミジン環、トリアジン環である。
 また、上記一般式(E)におけるXe、Ye及びZeは、いずれも各々独立に、水素原子、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。
 置換基を有していてもよい炭素数6~30の芳香族炭化水素基を形成する芳香族炭化水素環としては、6員環の単環、又は2~5縮合環が好ましい。具体的には一般式(A)におけるXaなどの例として前掲したものと同様の環由来の基が挙げられる。中でも化合物の安定性の点から、好ましくは、ベンゼン環、ナフタレン環またはフェナントレン環である。
 置換基を有していてもよい炭素数3~30の芳香族複素環基を形成する芳香族複素環としては、5または6員環の単環、或いはこれらの2~5縮合環が好ましい。具体的には、一般式(A)におけるXaなどの例として前掲したものと同様の環が挙げられる。中でも化合物の安定性や電荷輸送性が高い点から、好ましくはカルバゾール環、ジベンゾフラン環またはジベンゾチオフェン環由来の基である。
 上記一般式(E)におけるNの3つの置換基である、-Xe-Xe-Xe、-Ye-Ye-Ye、および、-Ze-Ze-Zeは、同一であっても異なっていてもよい。化合物の対象性を落として溶媒に対する溶解性を高める点から、少なくとも一つは異なることが好ましい。
 芳香族炭化水素基または芳香族複素環基が有しても良い置換基としては、炭素数1~20の飽和炭化水素基、炭素数6~25の芳香族炭化水素基、炭素数3~20の芳香族複素環基、炭素数12~60のジアリールアミノ基、炭素数1~20のアルキルオキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルチオ基、炭素数3~20の(ヘテロ)アリールチオ基、シアノ基などが挙げられる。これらのうち、溶解性及び耐熱性の点から、炭素数1~20の飽和炭化水素基及び炭素数6~25の芳香族炭化水素基が好ましい。また、化合物の安定性の点からは置換基を有さないことも好ましい。
 具体的には、炭素数1~20の飽和炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基、オクチル基、シクロヘキシル基、デシル基及びオクタデシル基等が挙げられる。これらのうち、原料の入手しやすさや安価さなどの点から、メチル基、エチル基及びイソプロピル基が好ましく、メチル基及びエチル基が更に好ましい。
 炭素数6~25の1価の芳香族炭化水素基としては、フェニル基、1-ナフチル基、2-ナフチル基などのナフチル基;9-フェナンチル基、3-フェナンチル基などのフェナンチル基;1-アントリル基、2-アントリル基、9-アントリル基などのアントリル基;1-ナフタセニル基、2-ナフタセニル基などのナフタセニル基;1-クリセニル基、2-クリセニル基、3-クリセニル基、4-クリセニル基、5-クリセニル基、6-クリセニル基などのクリセニル基;1-ピレニル基などのピレニル基;1-トリフェニレニル基などのトリフェニレニル基;1-コロネニル基などのコロネニル基;4-ビフェニル基、3-ビフェニル基のビフェニル基;フルオランテン環を有する基;フルオレン環を有する基;アセナフテン環を有する基及びベンズピレン環等を有する置換基などが挙げられる。これらのうち、化合物の安定性の点からフェニル基、2-ナフチル基及び3-ビフェニル基が好ましく、精製のし易さからフェニル基が特に好ましい。
 炭素数3~20の芳香族複素環基としては、2-チエニル基などのチエニル基;2-フリル基などのフリル基;2-イミダゾリル基などのイミダゾリル基;9-カルバゾリル基などのカルバゾリル基;2-ピリジル基などのピリジル基及び1,3,5-トリアジン-2-イル基などのトリアジニル基等が挙げられる。中でも、カルバゾリル基、特に9-カルバゾリル基が安定性の点から好ましい。
 炭素数12~60のジアリールアミノ基としては、ジフェニルアミノ基、N-1-ナフチル-N-フェニルアミノ基、N-2-ナフチル-N-フェニルアミノ基、N-9-フェナントリル-N-フェニルアミノ基、N-(ビフェニル-4-イル)-N-フェニルアミノ基、ビス(ビフェニル-4-イル)アミノ基等が挙げられる。中でもジフェニルアミノ基、N-1-ナフチル-N-フェニルアミノ基、N-2-ナフチル-N-フェニルアミノ基が好ましく、特にジフェニルアミノ基が安定性の点で好ましい。
 炭素数1~20のアルキルオキシ基としては、メトキシ基、エトキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基及びオクタデシルオキシ基等が挙げられる。
 炭素数3~20の(ヘテロ)アリールオキシ基としては、フェノキシ基、1-ナフチルオキシ基、9-アントラニルオキシ基等のアリールオキシ基及び2-チエニルオキシ基等のヘテロアリールオキシ基を有する置換基等が挙げられる。
 炭素数1~20のアルキルチオ基としては、メチルチオ基、エチルチオ基、イソプロピルチオ基及びシクロヘキシルチオ基等が挙げられる。
 炭素数3~20の(ヘテロ)アリールチオ基としては、フェニルチオ基、1-ナフチルチオ基、9-アントラニルチオ基等のアリールチオ基及び2-チエニルチオ基等のヘテロアリールチオ基等が挙げられる。
 なお、発光層において、正孔輸送材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、蛍光発光材料と組み合わせる電荷輸送材料としては、下記の例が上げられる。
下記一般式(B)
Figure JPOXMLDOC01-appb-C000027
(上記一般式(B)において、Xb、Xb、Yb及びYbは各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表し、Xb、Xb、Yb及びYbは各々独立に、水素原子、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。)
下記一般式(C)
Figure JPOXMLDOC01-appb-C000028
(上記一般式(C)において、Xc、Xc、Yc及びYcは各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表し、Xc、Xc、Yc及びYcは各々独立に、水素原子、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。)
 上記一般式(B)におけるXb、Xb、Yb及びYb、並びに、上記一般式(C)におけるXc、Xc、Yc及びYcは、いずれも各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。中でも、化合物の安定性の点からは好ましくは置換基を有していてもよい炭素数6~30の芳香族炭化水素基である。
 置換基を有していてもよい炭素数6~30の芳香族炭化水素基を形成する芳香族炭化水素環としては、6員環の単環、又は2~5縮合環が好ましい。具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環が挙げられる。中でも、化合物の安定性や溶解性の点から、好ましくはベンゼン環である。
 置換基を有していてもよい炭素数3~30の芳香族複素環基を形成する芳香族複素環としては、5または6員環の単環、或いはこれらの2~5縮合環が好ましい。具体的には、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環が挙げられる。中でも、化合物の安定性や電荷輸送性が高い点からは、好ましくはカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環であり、電子輸送性が高い点からは、好ましくはピリジン環、ピリミジン環、トリアジン環である。
 また、上記一般式(B)におけるXb、Xb、Yb及びYb、並びに、上記一般式(C)におけるXc、Xc、Yc及びYcは、いずれも各々独立に、水素原子、置換基を有していてもよい炭素数6~30の芳香族炭化水素基、または置換基を有していてもよい炭素数3~30の芳香族複素環基を表す。
 置換基を有していてもよい炭素数6~30の芳香族炭化水素基を形成する芳香族炭化水素環としては、6員環の単環、又は2~5縮合環が好ましい。具体的には一般式(B)におけるXbなどの例として前掲したものと同様の環由来の基が挙げられる。中でも化合物の安定性の点から、好ましくは、ベンゼン環、ナフタレン環またはフェナントレン環である。
 置換基を有していてもよい炭素数3~30の芳香族複素環基を形成する芳香族複素環としては、5または6員環の単環、或いはこれらの2~5縮合環が好ましい。具体的には、一般式(B)におけるXbなどの例として前掲したものと同様の環が挙げられる。中でも化合物の安定性や電荷輸送性が高い点から、好ましくはカルバゾール環、ジベンゾフラン環またはジベンゾチオフェン環由来の基である。
 芳香族炭化水素基または芳香族複素環基が有しても良い置換基としては、炭素数1~20の飽和炭化水素基、炭素数6~25の芳香族炭化水素基、炭素数3~20の芳香族複素環基、炭素数12~60のジアリールアミノ基、炭素数1~20のアルキルオキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルチオ基、炭素数3~20の(ヘテロ)アリールチオ基、シアノ基などが挙げられる。これらのうち、溶解性及び耐熱性の点から、炭素数1~20の飽和炭化水素基及び炭素数6~25の芳香族炭化水素基が好ましい。
 具体的には、炭素数1~20の飽和炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基、オクチル基、シクロヘキシル基、デシル基及びオクタデシル基等が挙げられる。中でも、化合物の構造が安定であることから、炭素数1~6の飽和炭化水素基が好ましい。
 炭素数6~25の1価の芳香族炭化水素基としては、フェニル基、1-ナフチル基、2-ナフチル基などのナフチル基;9-フェナンチル基、3-フェナンチル基などのフェナンチル基;1-アントリル基、2-アントリル基、9-アントリル基などのアントリル基;1-ナフタセニル基、2-ナフタセニル基などのナフタセニル基;1-クリセニル基、2-クリセニル基、3-クリセニル基、4-クリセニル基、5-クリセニル基、6-クリセニル基などのクリセニル基;1-ピレニル基などのピレニル基;1-トリフェニレニル基などのトリフェニレニル基;1-コロネニル基などのコロネニル基;4-ビフェニル基、3-ビフェニル基のビフェニル基;フルオランテン環を有する基;フルオレン環を有する基;アセナフテン環を有する基及びベンズピレン環等を有する置換基などが挙げられる。これらのうち、化合物の安定性の点からフェニル基、2-ナフチル基及び3-ビフェニル基が好ましく、精製のし易さからフェニル基が特に好ましい。
 炭素数3~20の芳香族複素環基としては、2-チエニル基などのチエニル基;2-フリル基などのフリル基;2-イミダゾリル基などのイミダゾリル基;9-カルバゾリル基などのカルバゾリル基;2-ピリジル基などのピリジル基及び1,3,5-トリアジン-2-イル基などのトリアジニル基等が挙げられる。中でも、カルバゾリル基、特に9-カルバゾリル基が安定性の点から好ましい。
 炭素数12~60のジアリールアミノ基としては、ジフェニルアミノ基、N-1-ナフチル-N-フェニルアミノ基、N-2-ナフチル-N-フェニルアミノ基、N-9-フェナントリル-N-フェニルアミノ基、N-(ビフェニル-4-イル)-N-フェニルアミノ基、ビス(ビフェニル-4-イル)アミノ基等が挙げられる。中でもジフェニルアミノ基、N-1-ナフチル-N-フェニルアミノ基、N-2-ナフチル-N-フェニルアミノ基が好ましく、特にジフェニルアミノ基が安定性の点で好ましい。
 炭素数1~20のアルキルオキシ基としては、メトキシ基、エトキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基及びオクタデシルオキシ基等が挙げられる。
 炭素数3~20の(ヘテロ)アリールオキシ基としては、フェノキシ基、1-ナフチルオキシ基、9-アントラニルオキシ基等のアリールオキシ基及び2-チエニルオキシ基等のヘテロアリールオキシ基を有する置換基等が挙げられる。
 炭素数1~20のアルキルチオ基としては、メチルチオ基、エチルチオ基、イソプロピルチオ基及びシクロヘキシルチオ基等が挙げられる。
 炭素数3~20の(ヘテロ)アリールチオ基としては、フェニルチオ基、1-ナフチルチオ基、9-アントラニルチオ基等のアリールチオ基及び2-チエニルチオ基等のヘテロアリールチオ基等が挙げられる。
<分子量>
 本発明における電荷輸送材料の分子量は、本発明の効果を著しく損なわない限り任意である。本発明における電荷輸送材料の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下である。また、本発明における電荷輸送材料の分子量は、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上である。
 電荷輸送材料の分子量が上記範囲内であると、ガラス転移温度や融点、分解温度等が高く、発光層材料及び形成された発光層の耐熱性が良好である点、及び、再結晶化や分子のマイグレーションなどに起因する膜質の低下や、材料の熱分解に伴う不純物濃度の上昇などが起こり難く、素子性能に優れる点、また、精製が容易である点などで好ましい。
<電子親和力(EA)>
 発光層には、上述のような電荷輸送材料の1種のみが含まれていてもよく、2種以上が含まれていてもよいが、本発明において、発光層内には5種類以上の電荷輸送材料と発光材料が含まれる。
 発光層に2種以上の電荷輸送材料が含まれる場合、主に正孔の輸送を担う電荷輸送材料(正孔輸送材料)のEAに比べて、主に電子輸送を担う電荷輸送材料(電子輸送材料)のEAの方が大きいことが望ましい。即ち、一般的に、同一の層に複数の電荷輸送材料が含まれる場合、電子はEAの大きい材料に乗りやすいため、EAの大きい電荷輸送材料を電子輸送材料とすることで、高発光効率で長寿命の素子を作製する事が可能となる。
 本発明に係る発光層に含まれる電子輸送を担う電荷輸送材料のEAの絶対値|EA|は、電子を輸送するエネルギー準位に電子が存在する際に化合物が安定状態となりやすい点では大きいことが好ましいが、また、一方で、安定なラジカルアニオンの形成による電荷の輸送や授受、励起子の生成阻害などが起こり難い点では、小さいことが好ましい。具体的には、|EA|は、2.40eV以上であることが好ましく、2.50eVであることが更に好ましく、また、一方で、3.30eV以下であることが好ましく、3.20eV以下であることが好ましい。
 電荷輸送材料の化学構造と|EA|との間には、大凡、以下の傾向が認められることが多い。例えば、芳香族性を有する6員環単環を中心に有する材料の場合、ベンゼン環(ヘテロ原子0個)<ピリジン環(ヘテロ原子1個)<ピリミジン環(ヘテロ原子2個)<トリアジン環(ヘテロ原子3個)の順に|EA|が大きくなる傾向がある。また、同じ構造の芳香環の縮環の場合、ベンゼン環(単環)<ナフタレン環(2縮合環)<アントラセン環(3縮合環)<クリセン環(4縮合環)の順に|EA|が大きくなる傾向がある。
 本発明に係る発光層には、電荷輸送材料を通常65重量%以上、好ましくは70重量%以上、さらに好ましくは75重量%以上含有することが良い。また、電荷輸送材料を通常99.99重量%以下、好ましくは99.95重量%以下、さらに好ましくは99.9重量%以下含有することが良い。なお、2種以上の電荷輸送材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにするのが好ましい。
{発光層の形成}
 本発明に係る発光層は、材料の利用効率が高く、また、その陽極側に形成される正孔輸送層と適度に混ざることにより正孔の注入性が良好となりやすいことから、湿式成膜法で形成されるのが好ましい。
 本発明において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等の湿式で成膜させる方法を採用し、この塗布膜を乾燥させて膜形成を行う方法をいう。これらの成膜方法の中でも、スピンコート法、スプレーコート法、インクジェット法、ノズルプリンティング法などが好ましい。
 湿式成膜法により発光層を形成する場合は、通常、上述の発光材料、電荷輸送材料、及び必要に応じて用いられる後述のその他の材料を適切な溶剤に溶解させることにより調製した発光層形成用組成物を用いて成膜することにより形成する。
 発光層の湿式成膜法に用いる溶剤は、発光材料及び電荷輸送材料などの発光層の形成に用いる材料が良好に溶解又は分散する溶剤であれば特に限定されない。
 溶剤の溶解性としては、25℃、1気圧下で、発光材料及び電荷輸送材料を、各々、通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上溶解することが好ましい。
 以下に溶剤の具体例を挙げるが、本発明の効果を損なわない限り、溶剤は、これらに限定されるものではない。
 溶剤としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、テトラメチルシクロヘキサノン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類、シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。
 溶剤は、中でも好ましくは、アルカン類や芳香族炭化水素類である。
 これらの溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 また、より均一な膜を得るためには、成膜直後の液膜から溶剤が適当な速度で蒸発することが好ましい。このため、溶剤の沸点は、通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上であることが良い。また、溶剤の沸点は、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下であることが良い。
{発光層形成用組成物の組成}
 本発明における発光層形成用組成物中には、発光材料が通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上含有されていることが好ましい。また、発光材料が通常10重量%以下、好ましくは7重量%以下、さらに好ましくは5重量%以下含有されていることが好ましい。なお、2種以上の発光材料を含有する場合には、これらの合計の含有量が上記範囲に含まれるようにするのが好ましい。
 本発明における発光層形成用組成物は、電荷輸送材料を通常0.1重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上含有しているのが良い。また、通常20重量%以下、好ましくは15重量%以下、さらに好ましくは10重量%以下含有することが良い。発光層の形成に複数種の電荷輸送材料を用いる場合、これらの合計の含有量が上記範囲に含まれるようにするのが好ましい。
 また、発光層形成用組成物中の発光材料と電荷輸送材料との含有量の比(発光材料/電荷輸送材料の重量比)は、通常0.01以上、好ましくは0.03以上であることが良い。また、発光層形成用組成物中の発光材料と電荷輸送材料との含有量の比(発光材料/電荷輸送材料の重量比)は、通常0.5以下、好ましくは0.3以下であることが良い。
 本発明に係る発光層形成用組成物における溶剤の含有量は、本発明の効果を著しく損なわない限り任意である。発光層形成用組成物中の溶剤の含有量が多いと、粘性が低く、成膜の作業性に優れる点で好ましい。一方、溶剤の含有量が少ないと、成膜後に溶剤を除去して得られる膜の厚みを稼ぎやすく、成膜が容易である点で好ましい。具体的には、溶剤の含有量は、発光層形成用組成物100重量部に対して、好ましくは10重量部以上、より好ましくは50重量部以上、特に好ましくは80重量部以上であることが良い。また、溶剤の含有量は、好ましくは99.95重量部以下、より好ましくは99.9重量部以下、特に好ましくは99.8重量部以下であることが良い。なお、発光層形成用組成物として2種以上の溶剤を混合して用いる場合には、これらの溶剤の合計がこの範囲を満たすようにするのが好ましい。
 本発明における発光層形成用組成物は、成膜性の向上を目的として、レベリング剤や消泡剤等の各種添加剤を含有してもよい。
 本発明における発光層形成用組成物中の発光材料、正孔輸送材料、電子輸送材料等の合計量である固形分濃度は、膜厚ムラが生じ難い点では少ないことが好ましいが、また、一方で、膜に欠陥が生じ難い点では多いことが好ましい。具体的には、通常0.01重量%以上、通常70重量%以下であることがよい。
 発光層の形成は、通常、このような発光層形成用組成物を発光層の下層となる層(通常は後述の正孔注入層又は正孔輸送層)上に湿式成膜後、得られた塗膜を乾燥し、溶剤を除去することにより形成される。
{膜厚}
 発光層の膜厚は本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚いことが好ましいが、また、一方で、駆動電圧が低くなりやすい点では薄いことが好ましい。具体的には、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲であるのがよい。
 なお、有機電界発光素子には、発光層は2層以上設けてもかまわない。発光層が2層以上の場合、各層の条件は上述の通りである。
 発光層を2層以上設けた場合は、いずれかの発光層が本発明の規定を満たせばよい。
〔有機電界発光素子の層構成と形成方法〕
 以下に、本発明の有機電界発光素子の層構成及びその一般的形成方法等の実施の形態の一例を、図1を参照して説明する。
 図1は本発明の有機電界発光素子10の構造例を示す断面の模式図であり、図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。
 即ち、本発明の有機電界発光素子は、陽極、発光層及び陰極を必須の構成層とするが、必要に応じて、図1に示すように陽極と発光層及び陰極との発光層との間に他の機能層を有していてもよい。
[基板]
 基板1は、有機電界発光素子の支持体となるものである。基板1としては、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板;ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合には、ガスバリア性に留意するのが好ましい。基板のガスバリア性は、基板を通過した外気による有機電界発光素子の劣化が起こり難いので、大きいことが好ましい。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
[陽極]
 陽極2は、発光層5側の層への正孔注入の役割を果たす電極である。
 この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及びスズのうちの少なくとも1つの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の方法により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、これらの微粒子などを適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより、陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成することもできる。また、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
 陽極2の厚みは、必要とする透明性などに応じて適宜選択すればよい。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極2の厚みは、通常5nm以上、好ましくは10nm以上である。また、この場合、陽極2の厚みは、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は、陽極2の厚みは任意である。陽極2の機能を兼ね備えた基板1を用いてもよい。また、さらには、上記の陽極2の上に異なる導電材料を積層することも可能である。
 陽極2に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極2表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることが好ましい。
[正孔注入層]
 正孔注入層3は、陽極2から発光層5へ正孔を輸送する層である。正孔注入層3は、本発明の有機電界発光素子に必須の層ではないが、正孔注入層3を設ける場合は、正孔注入層3は、通常、陽極2上に形成される。
 本発明に係る正孔注入層3の形成方法は、真空蒸着法でも、湿式成膜法でもよく、特に制限はない。正孔注入層3は、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
 正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
{湿式成膜法による正孔注入層の形成}
 湿式成膜法により正孔注入層3を形成する場合、通常は、正孔注入層3を構成する材料を適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層3形成用組成物を適切な手法により、正孔注入層の下層に該当する層(通常は、陽極2)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
<正孔輸送材料>
 正孔注入層形成用組成物は通常、正孔注入層3の構成材料として正孔輸送材料及び溶剤を含有する。
 正孔輸送材料は、通常、有機電界発光素子の正孔注入層3に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。
 正孔輸送材料としては、陽極2から正孔注入層3への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送材料の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
 尚、本発明において誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
 正孔注入層3の材料として用いられる正孔輸送材料は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送材料を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送材料1種又は2種以上とを併用することが好ましい。
 上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(I)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000029
(式(I)中、Ar~Arは、各々独立して、置換基を有していてもよい芳香環基を表す。Zは、下記の連結基群の中から選ばれる連結基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000030
(上記各式中、Ar~Ar16は、各々独立して、置換基を有していてもよい芳香環基を表す。R及びRは、各々独立して、水素原子又は任意の置換基を表す。)
 Ar~Ar16の芳香環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、1個又は2個の遊離原子価を有する、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環がさらに好ましい。
 Ar~Ar16の芳香環基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香環基などが好ましい。
 R及びRが任意の置換基である場合、該置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香環基などが挙げられる。
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号に記載のものが挙げられる。
 また、正孔輸送材料としては、ポリチオフェンの誘導体である3,4-ethylenedioxythiophene(3,4-エチレンジオキシチオフェン)を高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレート等でキャップしたものであってもよい。
 尚、正孔輸送材料は、下記[正孔輸送層]の項に記載の架橋性化合物であってもよい。該架橋性化合物を用いた場合の成膜方法についても同様である。
 正孔注入層形成用組成物中の正孔輸送材料の濃度は、本発明の効果を著しく損なわない限り任意である。正孔注入層形成用組成物中の正孔輸送材料の濃度は、膜厚の均一性の点から、通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上であり、また、一方、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度は、膜厚ムラが生じ難い点では小さいことが好ましい。また、この濃度は、成膜された正孔注入層に欠陥が生じ難い点では大きいことが好ましい。
<電子受容性化合物>
 正孔注入層形成用組成物は、正孔注入層3の構成材料として、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物とは、酸化力を有し、上述の正孔輸送材料から1電子受容する能力を有する化合物が好ましい。具体的には、電子受容性化合物としては、電子親和力が4eV以上である化合物が好ましく、5eV以上である化合物がさらに好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。さらに具体的には、電子受容性化合物としては、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開2005/089024号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
 これらの電子受容性化合物は、正孔輸送材料を酸化することにより正孔注入層3の導電率を向上させることができる。
<その他の構成材料>
 正孔注入層3の材料としては、本発明の効果を著しく損なわない限り、上述の正孔輸送材料や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。
<溶剤>
 湿式成膜法に用いる正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層3の構成材料を溶解しうる化合物であることが好ましい。
 溶剤として例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、等が挙げられる。
 その他、ジメチルスルホキシド等も用いることができる。
 これらの溶剤は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
{真空蒸着法による正孔注入層3の形成}
 真空蒸着法により正孔注入層3を形成する場合には、例えば、以下のようにして正孔輸送層3を形成することができる。正孔注入層3の構成材料(前述の正孔輸送材料、電子受容性化合物等)の1種又は2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10-4Pa程度まで排気する。この後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ(2種以上の材料を用いる場合は各々独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板1の陽極2上に正孔注入層3を形成させる。なお、2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されない。蒸着時の真空度は、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されない。蒸着速度は、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されない。蒸着時の成膜温度は、好ましくは10℃以上、50℃以下で行われる。
[正孔輸送層]
 正孔輸送層4は、陽極2から発光層5へ輸送する層である。正孔輸送層4は、本発明の有機電界発光素子に必須の層ではないが、正孔輸送層4を設ける場合は、通常、正孔輸送層4は、正孔注入層3がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。
 正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよく、特に制限はない。正孔輸送層4は、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
 正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、正孔輸送層4を形成する材料は、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、正孔輸送層4は、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
 このような正孔輸送層4の材料としては、従来、正孔輸送層4の構成材料として用いられている材料であればよい。正孔輸送層4の材料としては、例えばアリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
 また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
 中でも、正孔輸送層4の材料としては、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体及びポリアリーレン誘導体の具体例等は、日本国特開2008-98619号公報に記載のものなどが挙げられる。
 湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。
 正孔輸送層形成用組成物には、上述の正孔輸送材料の他、溶剤を含有する。用いる溶剤は、上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件等も正孔注入層3の形成の場合と同様である。
 真空蒸着法により正孔輸送層4を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。
 このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
[発光層]
 発光層5は、電界を与えられた電極間において、陽極2から注入された正孔と、陰極9から注入された電子との再結合により励起されて、主たる発光源となる層である。発光層5は、通常、正孔輸送層4がある場合には正孔輸送層4の上に、正孔輸送層4が無く、正孔注入層3がある場合には正孔注入層3の上に、正孔輸送層4も正孔注入層3も無い場合は、陽極2の上に形成することができる。
 発光層5の構成材料及び形成方法等については、前述の通りであり、本発明においては、発光層中の発光材料及び電荷輸送材料の総数が5種類以上であって、好ましくは、前述のイオン化ポテンシャルの関係及び電子親和力の関係のうちの少なくとも一方を満たすように、用いる発光材料及び電荷輸送材料を選択して発光層が形成される。
[正孔阻止層]
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、電子輸送層のうち、更に陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割をも担う層である。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。本発明の有機電界発光素子においては、正孔阻止層は必須の構成層ではない。
 この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。
 正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項エネルギー準位(T1)が高いことなどが挙げられる。このような条件を満たす正孔阻止層6の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)などが挙げられる。更に、国際公開第2005/022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
 正孔阻止層6の形成方法に制限はない。従って、正孔阻止層6は、湿式成膜法、蒸着法や、その他の方法で形成できる。
 正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意である。正孔阻止層6の膜厚は、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。
[電子輸送層]
 電子輸送層7は、発光層5と陰極9の間に設けられた電子を輸送するための層である。なお、本発明の有機電界発光素子においては、電子輸送層7は必須の構成層ではない。
 電子輸送層7の電子輸送材料としては、通常、陰極又は陰極側の隣接層からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体やリチウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、トリアジン化合物誘導体、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 また、該電子輸送層に用いられる電子輸送材料としては、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される電子輸送性有機化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープさせることにより(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)、電子注入輸送性と優れた膜質を両立させることが可能となるため好ましい。また、上述の電子輸送性有機化合物にフッ化リチウムや炭酸セシウムなどのような無機塩をドープすることも有効である。
 電子輸送層7の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
 電子輸送層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
[電子注入層]
 陰極9から注入された電子を効率良く発光層5に注入するために、電子輸送層7と後述の陰極9との間に電子注入層8を設けてもよい。電子注入層8は、無機塩などからなる。なお、本発明の有機電界発光素子においては、電子注入層は必須の構成層ではない。
 電子注入層8の材料としては、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、酸化リチウム(LiO)、炭酸セシウム(II)(CsCO)等が挙げられる(Applied Physics Letters, 1997年, Vol.70、pp.152;日本国特開平10-74586号公報;IEEE Transactions on Electron Devices,1997年,Vol.44,pp.1245;SID 04 Digest,pp.154等参照)。
 電子注入層8は、電荷輸送性を伴わない場合が多いため、電子注入を効率よく行なうには、極薄膜として用いることが好ましく、その膜厚は、通常0.1nm以上、好ましくは5nm以下である。
[陰極]
 陰極9は、発光層5側の層に電子を注入する役割を果たす電極である。
 陰極9の材料としては、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及びスズのうちの少なくとも一方の酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。これらのうち、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金などが用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
 なお、陰極の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 陰極9の膜厚は、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陰極9の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陰極9の厚みは任意であり、陰極は基板と同一でもよい。また、さらには、上記の陰極9の上に異なる導電材料を積層することも可能である。
 さらに、例えば、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウム等のアルカリ土類金属等からなる低仕事関数の金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
[その他の層]
 本発明に係る有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。具体的には、例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、上記説明にある層のうち必須でない層が省略されていてもよい。
 また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば、図1の層構成であれば、基板1上に他の構成要素を陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に設けてもよい。
 更には、少なくとも一方が透明性を有する2枚の基板の間に、基板以外の構成要素を積層することにより、本発明に係る有機電界発光素子を構成することも可能である。
 また、基板以外の構成要素(発光ユニット)を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
 更には、本発明に係る有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX-Yマトリックス状に配置された構成に適用してもよい。
 また、上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
〔有機電界発光デバイス〕
 本発明の有機電界発光デバイスは、互いに異なる色に発光する有機電界発光素子を2つ以上有する有機電界発光デバイスであって、そのうちの少なくとも1つが本発明の有機電界発光素子であることを特徴とするものである。また、この有機電界発光デバイスにおいて、すべての有機電界発光素子が本発明の有機電界発光素子であることが好ましい。その理由は有機電界発光デバイスの駆動電圧が下がり、省電力化になることによる。本発明の有機電界発光デバイスとしては、有機EL表示装置及び有機EL照明などが挙げられる。
〔有機EL表示装置〕
 本発明の有機EL表示装置は、上述の本発明の有機電界発光素子を用いた表示装置である。本発明の有機EL表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機EL表示装置を形成することができる。
〔有機EL照明〕
 本発明の有機EL照明は、上述の本発明の有機電界発光素子を用いた照明である。本発明の有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 次に、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
〔イオン化ポテンシャル及び電子親和力の測定〕
 以下の実施例及び比較例において、発光層に用いた発光材料及び電荷輸送材料について、以下の方法でイオン化ポテンシャル(IP)及び電子親和力(EA)を測定した。
 まず、ガラス基板上に、ITO透明導電膜を70nmの厚さに堆積したITO成膜基板の成膜面(ジオマテック社製、スパッタ成膜品)に対して、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄を行い、更に圧縮空気で乾燥させた後、紫外線オゾン洗浄を施した。
 各電荷輸送材料(h-1~h-21)及び各発光材料(D-1~D-4)について、それぞれ1重量%トルエン溶液を調製し、前記洗浄したITO成膜基板上にスピンコート法にて回転数を適宜調整し、下記の条件で成膜することにより、膜厚50nmの電荷輸送材料又は発光材料の単層膜を得た。これらのサンプルについて、オプテル社製「PCR-101」を用いて、10Torr以下まで真空引きした状態で、イオン化ポテンシャルIPを測定した。
 更に、上記単層膜について、日立社製分光蛍光光度計「F-4500」を用いて、透過光スペクトル、即ち、薄膜吸収スペクトルを測定し、その短波長側の立ち上がり部分で吸収スペクトルとベースラインの接線を引き、該両接線の交点の波長W(nm)から下記式により、バンドギャップEgを算出した。
  Eg=1240/W
 イオン化ポテンシャルIPとバンドギャップEgの和から、電子親和力の絶対値EAを算出した。結果は、下記表1に示す通りであった。
Figure JPOXMLDOC01-appb-T000031
(特性評価用素子の作製)
(実施例1)
 図1に示す有機電界発光素子を作製した。
 まず、ガラス基板1上に、ITO透明導電膜を70nmの厚さに堆積し、2mm幅のストライプにパターニングして、ITOの陽極2を形成した。陽極2を形成したITO成膜基板(ジオマテック社製、スパッタ成膜品)の成膜面に対して、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄を行い、更に圧縮空気で乾燥させ、紫外線オゾン洗浄を施した。
 次に、下記(P1)で表される繰り返し構造を有する正孔輸送性高分子化合物を2.0重量%と、下記(A1)で表される4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートを0.8重量%含む安息香酸エチル溶液(正孔注入層形成用組成物)を調製した。
Figure JPOXMLDOC01-appb-C000032
 この正孔注入層形成用組成物を、下記に示す成膜条件でスピンコート法により上記ITO基板上に成膜し、さらに下記に示すベーク条件にてベークすることにより、膜厚40nmの正孔注入層3を得た。
<成膜条件>
 スピンコート雰囲気  大気雰囲気下
 ベーク条件      大気雰囲気下,230℃,1時間
 その後、下記(H-1)で表される正孔輸送性高分子化合物の1重量%シクロヘキシルベンゼン溶液(正孔輸送層形成用組成物)を調製し、これを下記に示す成膜条件で正孔注入層3上にスピンコートにて成膜し、ベークによる架橋処理を行うことで、膜厚10nmの正孔輸送層4を形成した。
Figure JPOXMLDOC01-appb-C000033
<成膜条件>
 スピンコート雰囲気  窒素雰囲気下
 ベーク条件      窒素雰囲気下,230℃,1時間
 次に、発光層5を形成するにあたり、以下に示す発光材料(D-1~4)と、電荷輸送材料(h-1)~(h-21)の内、h-1を1.2重量%、h-2~h-7をそれぞれ0.6wt.%、D-1を0.48重量%含有させたシクロヘキシルベンゼン溶液(発光層形成用組成物)を調製した。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 この発光層形成用組成物を用いて、以下に示す条件で正孔輸送層4上にスピンコート法にて成膜し、下記に示すベーク条件でベーク処理を行うことで、膜厚50nmの発光層5を形成した。
<成膜条件>
  スピンコート雰囲気 窒素雰囲気下
  ベーク条件     窒素雰囲気下,120℃,10分
 次に、正孔注入層3、正孔輸送層4及び発光層5を成膜した基板を真空蒸着装置内に搬入し、粗排気を行った後、クライオポンプを用いて装置内の真空度が3.0×10-4Pa以下になるまで排気した。発光層5の上に、真空度を2.2×10-4Pa以下に保った状態で、正孔阻止材料として電荷輸送材料h-19を,蒸着速度0.6~1.2Å/秒で膜厚10nm成膜することにより正孔阻止層6を形成した。
 次いで、真空度を2.2×10-4Pa以下に保った状態で、正孔阻止層6の上に、トリス(8-ヒドロキシキノリナート)アルミニウム(Alq)を加熱して、蒸着速度0.7~1.3Å/秒で膜厚20nm成膜することにより電子輸送層7を形成した。
 ここで、電子輸送層7までの蒸着を行った基板を、有機層蒸着用チャンバーから金属蒸着用チャンバーへと搬送した。陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプと直交するように基板に密着させて設置した。有機層蒸着時と同様にして、装置内を真空度が1.1×10-4Pa以下になるまで排気した。
 その後、真空度を1.0×10-4Pa以下に保った状態で、電子輸送層7の上に、フッ化リチウム(LiF)を、モリブデンボートを用いて加熱し、蒸着速度0.07~0.15Å/秒で膜厚0.5nm蒸着することにより電子注入層8を形成した。次に、同様にして、真空度を2.0×10-4Paに保った状態で、アルミニウムを、モリブデンボートを用いて加熱し、蒸着速度0.6~10.0Å/秒で膜厚80nm蒸着することにより、陰極9を形成した。以上の電子注入層8及び陰極9の蒸着時の基板温度は、室温に保持した。
 引き続き、有機電界発光素子が、保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
 窒素グローブボックス中で、23mm×23mmサイズのガラス板の外周部に、1mmの幅で光硬化性樹脂「30Y-437」(スリーボンド社製)を塗布し、中央部に水分ゲッターシート(ダイニック社製)を設置した。この上に、上述の陰極9の形成まで終了した基板を搬入し、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。
 以上の様にして、2mm×2mmのサイズの発光面積部分を有する実施例1の有機電界発光素子が得られた。
(実施例2~5、比較例1~4)
 発光層形成用組成物に用いる発光材料と電荷輸送材料を、表2に示す組み合わせで調製したこと以外は、実施例1と同様にして実施例2~5及び比較例1~4の有機電界発光素子を作成した。表2においては、各実施例あるいは比較例に対し、発光層形成用組成物に用いた材料の欄に、該材料の含有率(重量%)を記載している。空欄の材料は該発光層形成用組成物に含有されていないことを意味する。また、各実施例及び比較例において、発光層に含まれる材料の総数、及び、発光層に含まれる電荷輸送材料の数についても示した。以下の表においても同様である。
Figure JPOXMLDOC01-appb-T000037
(実施例6、比較例5)
 発光層形成用組成物に用いる発光材料と電荷輸送材料を、表3に示す組み合わせで調製したこと以外は、実施例1と同様にして実施例6及び比較例5の有機電界発光素子を作成した。
Figure JPOXMLDOC01-appb-T000038
(実施例7~10、比較例6)
 発光層形成用組成物に用いる発光材料と電荷輸送材料を、表4に示す組み合わせで調製したことと、正孔阻止材料としてh-19の代わりに下記式で示すHB-01を用いて正孔阻止層を形成したこと以外は、実施例1と同様にして実施例7~10及び比較例6の有機電界発光素子を作成した。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-T000040
(実施例11~19、比較例7)
 発光層形成用組成物に用いる発光材料と電荷輸送材料を、表5に示す組み合わせで調製したことと、正孔阻止材料としてh-19の代わりにHB-01を用いて正孔阻止層を形成したこと以外は、実施例1と同様にして実施例11~19及び比較例7の有機電界発光素子を作成した。
Figure JPOXMLDOC01-appb-T000041
(特性評価用素子の評価及び考察)
 各実施例及び比較例の有機電界発光素子の電流-電圧-輝度(IVL)特性の測定を行い、10mA/cm時の電圧を算出し、基準となる比較例の電圧に対する電圧差を表2~5に併記した。基準となる比較例は、実施例1~5及び比較例1~4については比較例1を、実施例6及び比較例5については比較例5を、実施例7~10及び比較例6については比較例6を、実施例11~19及び比較例7については比較例7を用いた。電圧差の数値がマイナスである場合は、該実施例もしくは比較例の電圧値が、基準となる比較例よりも低いことを示す。
 実施例1~5、比較例1~4は、発光材料を特定の1種類に固定し、電荷輸送材料の数や組み合わせを種々変更した場合の結果を示したものである(表2)。材料総数が5種類以上、すなわち電荷輸送材料数が4種類以上の実施例1~5は、材料総数が4種類以下、すなわち電荷輸送材料数が3種類以下の比較例1~4に比べ、電圧が0.7V以上も低く、本願発明の効果が明白に得られている。
 ここで、比較例2に対し、h-6を添加したものが実施例2であるが、比較例2と実施例2の電圧の差は、h-6自体の効果が原因ではない。なぜなら、実施例3ではh-6を含まないにも関わらず、実施例2と同等の電圧が得られているからである。このように、種々の組み合わせにおけるデータから、本発明の効果が得られる理由は、特定の材料によるものではなく、材料の種類数による影響が主要因であるものと考えられる。
 同様に、実施例6と比較例5は、実施例1とは異なる発光材料を1種類含有する場合において、電荷輸送材料の種類が4種類と3種類の場合を比較したものであるが(表3)、0.2Vの電圧低下が得られており、本発明の効果が特定の発光材料によるものではないことを示唆している。
 次に、発光材料を特定の2種類とした場合において、同様に電荷輸送材料の数や組み合わせを種々変更した場合の結果を、実施例7~10、比較例6に示す(表4)。この場合においても、総材料数4、電荷輸送材料数2の比較例6に対し、電荷輸送材料数を3に増やした実施例7において、0.2Vの電圧低下効果が得られている。更には、電荷輸送材料を4種類以上とした実施例8~10においては、比較例6に比べ、0.5V以上と大きな電圧低下効果が得られることが判る。
 次に、発光材料数は2種類で同じであるが、異なる発光材料とした場合において、同様に電荷輸送材料の数や組み合わせを種々変更した場合の結果を、実施例11~19、比較例7に示す(表5)。この場合においても、総材料数4、電荷輸送材料数2の比較例7に対し、電荷輸送材料数を3に増やした実施例11~13において、0.1V~0.2Vの電圧低下効果が得られている。更には、電荷輸送材料を4種類以上とした実施例14~19においては、比較例7に比べ、0.5V以上と大きな電圧低下効果が得られることが判る。すなわち、特定の電荷輸送材料によらず、本願発明の効果が得られていることが明白である。
 以上の結果から、発光層の電荷輸送材料と発光材料の総数を5種類以上とし,且つ電荷輸送材料の総数を3種類以上にすることにより低電圧化を図ることができる。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2011年11月11日出願の日本特許出願(特願2011-247576)に基づくものであり、その内容はここに参照として取り込まれる。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子

Claims (13)

  1.  陽極、発光層、及び陰極の順に層を有する有機電界発光素子であって、
     該発光層に含まれる電荷輸送材料と発光材料の総数が5種類以上であり、且つ該発光層に含まれる電荷輸送材料の総数が3種類以上である有機電界発光素子。
  2.  請求項1に記載の有機電界発光素子において、該発光層に含まれる電荷輸送材料の総数が4種類以上である有機電界発光素子。
  3.  請求項1又は2に記載の有機電界発光素子において、該発光層にイオン化ポテンシャル及び電子親和力のうちの少なくとも一方の値が異なる電荷輸送材料が3種類以上含まれる有機電界発光素子。
  4.  請求項1又は2に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料を2種選び出した際の、該電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.30eV以下である関係を満たす組み合わせが、1つ以上存在する有機電界発光素子。
  5.  請求項1又は2に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料を2種選び出した際の、該電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.30eV以下である関係を満たす組み合わせが、2つ以上存在する有機電界発光素子。
  6.  請求項1又は2に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料を2種選び出した際の、該電荷輸送材料のイオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.20eV以下である関係を満たす組み合わせが、2つ以上存在する有機電界発光素子。
  7.  請求項1又は2に記載の有機電界発光素子において、該発光層に含まれる任意の電荷輸送材料及び発光材料から選び出した2種の材料の、イオン化ポテンシャルの差及び電子親和力の差のうちの少なくとも一方が0.20eV以下である関係を満たす組み合わせが、3つ以上存在する有機電界発光素子。
  8.  互いに異なる色に発光する有機電界発光素子を2つ以上有する有機電界発光デバイスであって、請求項1又は2に記載の有機電界発光素子を1つ以上有する有機電界発光デバイス。
  9.  互いに異なる色に発光する有機電界発光素子を2つ以上有する有機電界発光デバイスであって、該2つ以上の有機電界発光素子が請求項1又は2に記載の有機電界発光素子のみから構成される有機電界発光デバイス。
  10.  請求項8に記載の有機電界発光デバイスを用いた有機EL表示装置。
  11.  請求項8に記載の有機電界発光デバイスを用いた有機EL照明。
  12.  請求項9に記載の有機電界発光デバイスを用いた有機EL表示装置。
  13.  請求項9に記載の有機電界発光デバイスを用いた有機EL照明。
PCT/JP2012/067625 2011-11-11 2012-07-10 有機電界発光素子及び有機電界発光デバイス WO2013069338A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201711349623.XA CN107994062B (zh) 2011-11-11 2012-07-10 发光层形成用组合物和有机电致发光器件的制造方法
JP2013542881A JP6331393B2 (ja) 2011-11-11 2012-07-10 有機電界発光素子及び有機電界発光デバイス
KR1020147011403A KR102122188B1 (ko) 2011-11-11 2012-07-10 유기 전계 발광 소자 및 유기 전계 발광 디바이스
EP12848061.3A EP2779263B1 (en) 2011-11-11 2012-07-10 Organic electroluminescent element and organic electroluminescent device
CN201280055385.0A CN103931009B (zh) 2011-11-11 2012-07-10 有机电致发光元件和有机电致发光器件
US14/273,992 US9525009B2 (en) 2011-11-11 2014-05-09 Organic electroluminescent element and organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011247576 2011-11-11
JP2011-247576 2011-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/273,992 Continuation US9525009B2 (en) 2011-11-11 2014-05-09 Organic electroluminescent element and organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2013069338A1 true WO2013069338A1 (ja) 2013-05-16

Family

ID=48289715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067625 WO2013069338A1 (ja) 2011-11-11 2012-07-10 有機電界発光素子及び有機電界発光デバイス

Country Status (7)

Country Link
US (1) US9525009B2 (ja)
EP (1) EP2779263B1 (ja)
JP (2) JP6331393B2 (ja)
KR (1) KR102122188B1 (ja)
CN (2) CN103931009B (ja)
TW (1) TWI593151B (ja)
WO (1) WO2013069338A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021441A1 (en) * 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2015093938A (ja) * 2013-11-12 2015-05-18 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2017155003A (ja) * 2016-03-02 2017-09-07 株式会社Kyulux 化合物、キャリア輸送材料および有機発光素子
KR20190111919A (ko) 2017-01-23 2019-10-02 미쯔비시 케미컬 주식회사 발광층 형성용 조성물 및 해당 발광층 형성용 조성물을 함유하는 유기 전계 발광 소자
EP2887417B1 (en) * 2013-12-17 2020-03-25 The Regents Of The University Of Michigan Extended OLED operational lifetime through phosphorescent dopant profile mangement
JP2020095970A (ja) * 2018-05-25 2020-06-18 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
CN111635436A (zh) * 2019-03-01 2020-09-08 北京夏禾科技有限公司 一种含氟取代的金属配合物
WO2021060239A1 (ja) * 2019-09-26 2021-04-01 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
KR20230135591A (ko) 2021-01-26 2023-09-25 이데미쓰 고산 가부시키가이샤 조성물, 분체, 유기 일렉트로루미네센스 소자, 유기일렉트로루미네센스 소자의 제조 방법 및 전자 기기
JP7517861B2 (ja) 2019-04-30 2024-07-17 三星ディスプレイ株式會社 有機発光素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752902B9 (en) 2011-11-22 2017-08-30 Idemitsu Kosan Co., Ltd Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US10700294B2 (en) 2014-10-30 2020-06-30 Changchun Institute Of Applied Chemistry, Chinese Academy Of Sciences Blue organic electroluminescent device and preparation method thereof
CN104270847B (zh) 2014-10-30 2016-09-28 中国科学院长春应用化学研究所 一种白色有机电致发光器件及其制备方法
KR101958833B1 (ko) * 2015-09-21 2019-03-15 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
WO2018164511A1 (ko) * 2017-03-09 2018-09-13 주식회사 엘지화학 유기 발광 소자
US11744145B2 (en) * 2018-11-05 2023-08-29 Lg Display Co., Ltd. Organic compound and organic electroluminescent device comprising the same

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05234681A (ja) 1990-07-26 1993-09-10 Eastman Kodak Co 有機エレクトロルミネセンス媒体を有するエレクトロルミネセンス装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2003347058A (ja) * 2002-04-24 2003-12-05 Eastman Kodak Co 有機発光デバイス
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
JP2005219513A (ja) 2004-02-03 2005-08-18 Umihira:Kk ブレーキ制御装置
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2006148045A (ja) * 2004-11-17 2006-06-08 Samsung Sdi Co Ltd 低分子有機電界発光素子及びその製造方法
JP2007201192A (ja) * 2006-01-26 2007-08-09 Fuji Xerox Co Ltd 有機電界発光素子
JP2007257897A (ja) * 2006-03-20 2007-10-04 Seiko Epson Corp 発光素子の製造方法、発光装置の製造方法および電子機器の製造方法
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2008311367A (ja) * 2007-06-13 2008-12-25 Fuji Xerox Co Ltd 有機電界発光素子及び表示装置
JP2010161356A (ja) * 2008-12-10 2010-07-22 Fujifilm Corp 有機電界発光素子及び発光装置
WO2010098246A1 (ja) * 2009-02-27 2010-09-02 新日鐵化学株式会社 有機電界発光素子

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024526B2 (ja) 2001-08-29 2007-12-19 富士フイルム株式会社 縮合八環芳香族化合物並びにそれを用いた有機el素子及び有機elディスプレイ
JP4106974B2 (ja) * 2002-06-17 2008-06-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
US7275972B2 (en) 2003-08-22 2007-10-02 3M Innovative Properties Company Method of making an electroluminescent device having a patterned emitter layer and non-patterned emitter layer
JP2005228737A (ja) 2004-01-15 2005-08-25 Fuji Photo Film Co Ltd 有機電界発光素子
US20050158582A1 (en) 2004-01-15 2005-07-21 Fuji Photo Film Co., Ltd. Organic electroluminescent element
JP4522416B2 (ja) * 2004-06-23 2010-08-11 シャープ株式会社 有機エレクトロルミネッセンス素子、それを備えた画像表示装置及び照明装置、電荷輸送材料、及びそれを含む電荷輸送層形成用インク
US20060088730A1 (en) 2004-10-25 2006-04-27 Eastman Kodak Company Organic light-emitting devices with improved performance
JP4362461B2 (ja) 2004-11-05 2009-11-11 三星モバイルディスプレイ株式會社 有機電界発光素子
US20060159952A1 (en) * 2005-01-14 2006-07-20 Eastman Kodak Company Mixed anthracene derivative host materials
KR100787428B1 (ko) 2005-03-05 2007-12-26 삼성에스디아이 주식회사 유기 전계 발광 소자
CN100494209C (zh) * 2005-06-06 2009-06-03 清华大学 一种有机电致发光材料及其应用
JP2007110102A (ja) 2005-09-15 2007-04-26 Fujifilm Corp 有機電界発光素子
US7839078B2 (en) 2005-09-15 2010-11-23 Fujifilm Corporation Organic electroluminescent element having a luminescent layer and a buffer layer adjacent thereto
KR20080028212A (ko) 2006-09-26 2008-03-31 삼성에스디아이 주식회사 유기발광소자 및 그 제조방법
US20080135804A1 (en) 2006-12-08 2008-06-12 Chunong Qiu All-in-one organic electroluminescent inks with balanced charge transport properties
US20080160342A1 (en) * 2006-12-29 2008-07-03 Hong Meng Host compositions for luminescent materials
US9000419B2 (en) 2007-02-19 2015-04-07 Dai Nippon Printing Co., Ltd Organic electroluminescence element
JP5487595B2 (ja) * 2007-11-15 2014-05-07 三菱化学株式会社 有機電界発光素子用組成物および有機電界発光素子
JP5499487B2 (ja) * 2008-02-25 2014-05-21 三菱化学株式会社 キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP5659459B2 (ja) 2008-04-02 2015-01-28 日立化成株式会社 有機エレクトロニクス用材料
DE102008039361A1 (de) 2008-05-30 2009-12-03 Osram Opto Semiconductors Gmbh Elektronische Vorrichtung
WO2010056070A2 (ko) 2008-11-13 2010-05-20 주식회사 엘지화학 저전압 구동 유기발광소자 및 이의 제조 방법
US8048541B2 (en) * 2008-12-17 2011-11-01 City University Of Hong Kong Organic electroluminescence device
JP5549228B2 (ja) * 2009-01-09 2014-07-16 三菱化学株式会社 有機el素子及び有機発光デバイス
JP2010183009A (ja) 2009-02-09 2010-08-19 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2010185007A (ja) 2009-02-12 2010-08-26 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2010205427A (ja) 2009-02-27 2010-09-16 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2011009498A (ja) 2009-06-26 2011-01-13 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子
JP5586254B2 (ja) 2009-09-01 2014-09-10 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置
JP5717333B2 (ja) * 2009-11-16 2015-05-13 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置及び有機el照明
JP5757244B2 (ja) 2009-12-15 2015-07-29 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
JP5423706B2 (ja) * 2010-03-15 2014-02-19 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、有機el照明、及び有機el表示装置
KR101823602B1 (ko) 2010-03-25 2018-01-30 유니버셜 디스플레이 코포레이션 용액 처리 가능한 도핑된 트리아릴아민 정공 주입 물질
JP2012033918A (ja) 2010-07-08 2012-02-16 Mitsubishi Chemicals Corp 有機電界発光素子、有機電界発光デバイス、有機el表示装置及び有機el照明
CN103329619B (zh) * 2011-01-11 2015-04-01 三菱化学株式会社 有机电致发光器件用组合物、有机电致发光器件、显示装置及照明装置
EP2665105B1 (en) 2011-01-14 2021-12-01 Mitsubishi Chemical Corporation Organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent device
CN102807901B (zh) 2012-07-10 2013-12-25 华中师范大学 一种生物质气化催化裂解工艺及整体式气化催化反应器

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05234681A (ja) 1990-07-26 1993-09-10 Eastman Kodak Co 有機エレクトロルミネセンス媒体を有するエレクトロルミネセンス装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2003347058A (ja) * 2002-04-24 2003-12-05 Eastman Kodak Co 有機発光デバイス
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
JP2005219513A (ja) 2004-02-03 2005-08-18 Umihira:Kk ブレーキ制御装置
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2006148045A (ja) * 2004-11-17 2006-06-08 Samsung Sdi Co Ltd 低分子有機電界発光素子及びその製造方法
JP2007201192A (ja) * 2006-01-26 2007-08-09 Fuji Xerox Co Ltd 有機電界発光素子
JP2007257897A (ja) * 2006-03-20 2007-10-04 Seiko Epson Corp 発光素子の製造方法、発光装置の製造方法および電子機器の製造方法
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2008311367A (ja) * 2007-06-13 2008-12-25 Fuji Xerox Co Ltd 有機電界発光素子及び表示装置
JP2010161356A (ja) * 2008-12-10 2010-07-22 Fujifilm Corp 有機電界発光素子及び発光装置
WO2010098246A1 (ja) * 2009-02-27 2010-09-02 新日鐵化学株式会社 有機電界発光素子

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Organic Chemistry, Biochemical Nomenclature", vol. 1, 1992, NANKO-DO
"Organic EL Technology and Material Development", CMC PUBLISHING
"Organic EL Technology and Material Development", May 2010, CMC PUBLISHING, pages: 184
APPL. PHYS. LETT., vol. 60, 1992, pages 2711
APPLIED PHYSICS LETTERS, vol. 70, 1997, pages 152
CHEMICAL COMMUNICATIONS, 1996, pages 2175
IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 44, 1997, pages 1245
JOURNAL OF LUMINESCENCE, vol. 72-74, 1997, pages 985
PROC. OF SPIE VIL 4800, 2003, pages 164 - 171
See also references of EP2779263A4
SHIZUO TOKITO; CHIHAYA ADACHI; HIDEYUKI MURATA, ORGANIC EL DISPLAY, 20 August 2004 (2004-08-20)
SYNTHETIC METALS, vol. 91, 1997, pages 209

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412962B2 (en) 2012-08-03 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11043637B2 (en) 2012-08-03 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10069076B2 (en) 2012-08-03 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10897012B2 (en) 2012-08-03 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11968889B2 (en) 2012-08-03 2024-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2014021441A1 (en) * 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2015093938A (ja) * 2013-11-12 2015-05-18 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
EP3690972A1 (en) * 2013-12-17 2020-08-05 The Regents Of The University Of Michigan Extended oled operational lifetime through phosphorescent dopant profile management
EP2887417B1 (en) * 2013-12-17 2020-03-25 The Regents Of The University Of Michigan Extended OLED operational lifetime through phosphorescent dopant profile mangement
JP2017155003A (ja) * 2016-03-02 2017-09-07 株式会社Kyulux 化合物、キャリア輸送材料および有機発光素子
JPWO2018135656A1 (ja) * 2017-01-23 2019-11-07 三菱ケミカル株式会社 発光層形成用組成物及び該発光層形成用組成物を含有する有機電界発光素子
KR20190111919A (ko) 2017-01-23 2019-10-02 미쯔비시 케미컬 주식회사 발광층 형성용 조성물 및 해당 발광층 형성용 조성물을 함유하는 유기 전계 발광 소자
TWI775802B (zh) * 2017-01-23 2022-09-01 日商三菱化學股份有限公司 發光層形成用組成物以及含有該發光層形成用組成物的有機電場發光元件
JP2020095970A (ja) * 2018-05-25 2020-06-18 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
CN111635436A (zh) * 2019-03-01 2020-09-08 北京夏禾科技有限公司 一种含氟取代的金属配合物
JP7517861B2 (ja) 2019-04-30 2024-07-17 三星ディスプレイ株式會社 有機発光素子
CN114423733A (zh) * 2019-09-26 2022-04-29 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
WO2021060239A1 (ja) * 2019-09-26 2021-04-01 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
KR20230135591A (ko) 2021-01-26 2023-09-25 이데미쓰 고산 가부시키가이샤 조성물, 분체, 유기 일렉트로루미네센스 소자, 유기일렉트로루미네센스 소자의 제조 방법 및 전자 기기

Also Published As

Publication number Publication date
KR102122188B1 (ko) 2020-06-12
TWI593151B (zh) 2017-07-21
CN103931009A (zh) 2014-07-16
EP2779263B1 (en) 2020-12-09
EP2779263A4 (en) 2015-04-08
CN103931009B (zh) 2018-01-19
JP6331393B2 (ja) 2018-05-30
CN107994062A (zh) 2018-05-04
JP2018093208A (ja) 2018-06-14
EP2779263A1 (en) 2014-09-17
US9525009B2 (en) 2016-12-20
JPWO2013069338A1 (ja) 2015-04-02
CN107994062B (zh) 2022-07-01
KR20140092826A (ko) 2014-07-24
TW201320426A (zh) 2013-05-16
US20140246660A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP6191680B2 (ja) 有機電界発光素子、有機電界発光デバイス、有機el表示装置及び有機el照明
JP6331393B2 (ja) 有機電界発光素子及び有機電界発光デバイス
JP5549228B2 (ja) 有機el素子及び有機発光デバイス
JP5206900B1 (ja) 有機電界発光素子、有機電界発光素子用組成物、及び有機電界発光装置
JP5321700B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
WO2014054596A1 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP6217059B2 (ja) 有機電界発光素子及び有機電界発光デバイス
JP2014131973A (ja) イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
WO2011083588A1 (ja) 有機el素子及び有機発光デバイス
JP2010183010A (ja) 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP5456282B2 (ja) 有機電界発光素子
JP2014220248A (ja) 有機電界発光素子の製造方法
JP5569630B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP2014058457A (ja) イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
JP2010209143A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542881

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147011403

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012848061

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE