JP2010209143A - 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明 - Google Patents

有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明 Download PDF

Info

Publication number
JP2010209143A
JP2010209143A JP2009053749A JP2009053749A JP2010209143A JP 2010209143 A JP2010209143 A JP 2010209143A JP 2009053749 A JP2009053749 A JP 2009053749A JP 2009053749 A JP2009053749 A JP 2009053749A JP 2010209143 A JP2010209143 A JP 2010209143A
Authority
JP
Japan
Prior art keywords
organic electroluminescent
organic
layer
composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009053749A
Other languages
English (en)
Inventor
Ichiro Imada
一郎 今田
Junji Mizukami
潤二 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2009053749A priority Critical patent/JP2010209143A/ja
Publication of JP2010209143A publication Critical patent/JP2010209143A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】湿式成膜法により形成された有機層を有する有機電界発光素子であって、高い電流効率、十分な駆動寿命を有する有機電界発光素子を提供する。
【解決手段】ドーパント材料、ホスト材料および溶剤を含有する有機電界発光素子用組成物において、該ドーパント材料および該ホスト材料はいずれもトルエンに2wt%以上溶解し、かつ該ドーパント材料および該ホスト材料の分子長が下記式(a)を満たすことを特徴とする有機電界発光素子用組成物。
(ドーパント材料の分子長)/(ホスト材料の分子長)≦ 1.4 ・・・(a)
【選択図】図1

Description

本発明は、有機電界発光素子の有機層を湿式成膜法で形成するために用いられる有機電界発光素子用組成物と、この有機電界発光素子用組成物を用いて湿式成膜法により形成された有機層を有する有機電界発光素子と、この有機電界発光素子を用いた有機ELディスプレイおよび有機EL照明に関する。
近年、薄膜型の電界発光素子としては、無機材料を使用したものに代わり、有機薄膜を用いた有機電界発光素子の開発が行われるようになっている。有機電界発光素子は、通常、陽極と陰極との間に、正孔注入層、正孔輸送層、有機発光層、電子輸送層などを設けて形成され、この各層に適した材料が開発されつつある。また、有機電界発光素子の発光色も赤、緑、青と、それぞれに開発が進んでいる。
しかしながら、青色有機電界発光素子については、効率、寿命、耐熱性の観点で満足できるものが実現されておらず、フルカラーディスプレイ用途への適用には制約があるという課題があった。
有機電界発光素子の各構成層の形成方法としては、真空蒸着法と湿式成膜法がある。このうち、真空蒸着法では、テレビやモニタ用の中・大型フルカラーパネルなどを製作する場合、歩留まりの観点で課題を有する。そのため、中でもこれら大面積の用途には湿式成膜法が好適である。
湿式成膜法で有機電界発光素子の有機層を形成するためには、有機層を形成する材料が溶剤に溶解し、かつ湿式成膜後にも素子の構成層として要求される高い性能を有することが望まれるが、従来開発されている湿式成膜用材料であっても、このような湿式成膜法に要求される条件を満たさないものが多かった。
例えば、特許文献1では、下記式で示される材料を用いて、湿式成膜法によって作製した素子が開示されている。
Figure 2010209143
また、特許文献2には、下記式で示される材料を用い、湿式成膜法によって作製した素子が開示されている。
Figure 2010209143
しかしながら、これらの材料は、溶剤に対する溶解性や耐熱性といった湿式成膜のプロセス上の要求物性を満足していない上に、素子に用いても輝度が低かったり、十分な寿命や効率が得られないなどの問題があった。
国際公開2006/070712号パンフレット 特開2004−224766号公報
本発明は、上記課題に鑑みてなされたものであって、種々の溶剤を用いて溶液化することができ、有機電界発光素子の有機層を湿式成膜法で形成して、十分な寿命や効率を有する有機電界発光素子を作製し得る有機電界発光素子用組成物と、この有機電界発光素子用組成物を用いて湿式成膜法により形成された有機層を有する有機電界発光素子と、この有機電界発光素子を用いた有機ELディスプレイおよび有機EL照明を提供することを目的とする。
本発明者らが鋭意検討した結果、トルエンに対して2wt%以上の溶解性をもつような、溶剤に対する溶解性の高い材料を用いて、湿式成膜法により有機電界発光素子を作製する際に、ドーパント材料とホスト材料の分子長の比が1.4倍以内であることにより、上記課題が解決できることが分かり、本発明に到達した。
すなわち、本発明の要旨は、ドーパント材料、ホスト材料および溶剤を含有する有機電界発光素子用組成物において、該ドーパント材料および該ホスト材料はいずれもトルエンに2wt%以上溶解し、かつ該ドーパント材料および該ホスト材料の分子長が下記式(a)を満たすことを特徴とする有機電界発光素子用組成物、に存する。
(ドーパント材料の分子長)/(ホスト材料の分子長)≦ 1.4 ・・・(a)
本発明の別の要旨は、陽極、陰極、およびこれら両極間に設けられた有機層を有する有機電界発光素子であって、該有機層が、上記本発明の有機電界発光素子用組成物を用いて形成された層であることを特徴とする有機電界発光素子、に存する。
本発明の別の要旨は、陽極、陰極、およびこれら両極間に設けられた有機層を有する有機電界発光素子であって、該有機層は、ドーパント材料およびホスト材料を含有し、該ドーパント材料および該ホスト材料はいずれもトルエンに2wt%以上溶解し、かつ、該ドーパント材料および該ホスト材料の分子長が下記式(a)を満たすことを特徴とする有機電界発光素子、に存する。
(ドーパント材料の分子長)/(ホスト材料の分子長)≦ 1.4 ・・・(a)
本発明の更に別の要旨は、このような有機電界発光素子を有する有機ELディスプレイおよび有機EL照明、に存する。
本発明の有機電界発光素子用組成物によれば、湿式成膜法で形成される発光層等の有機層を有する有機電界発光素子において、高効率で長寿命な有機電界発光素子を提供することができる。また、このような有機電界発光素子を用いて、高品質の有機ELディスプレイおよび有機EL照明を提供することができる。
本発明の有機電界発光素子の一例を示した模式的断面図である。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない。
[有機電界発光素子用組成物]
本発明の有機電界発光素子用組成物は、ドーパント材料、ホスト材料および溶剤を含有する有機電界発光素子用組成物において、該ドーパント材料および該ホスト材料はいずれもトルエンに2wt%以上溶解し(即ち、溶解度2wt%以上)、かつ該ドーパント材料および該ホスト材料の分子長が下記式(a)を満たすことを特徴とする。
(ドーパント材料の分子長)/(ホスト材料の分子長)≦ 1.4 ・・・(a)
すなわち、本発明は、湿式成膜プロセス適性向上のため、ドーパント材料とホスト材料の溶剤への溶解性を向上させたところ、従来の蒸着法で得られる素子や、溶解性の低い材料を用いた素子と異なり、ホスト材料とドーパント材料の分子の大きさがほぼ同程度であることが、これらが溶液中に均一に溶解し、良好な性能を得るための必須条件であるとの知見に基いて達成されたものであり、有機電界発光素子用組成物中のドーパント材料とホスト材料は、上述のトルエン溶解性を満たすと共に、上述の分子長比を満たす必要がある。
本発明の有機電界発光素子用組成物に含まれるドーパント材料およびホスト材料としては特に制限はないが、通常、有機電界発光素子用組成物には、以下に例示する有機電界発光素子材料と溶剤が含有され、有機電界発光素子用組成物中の有機電界発光素子材料のうち、一般的には、発光材料がドーパント材料となり、電荷輸送性材料がホスト材料となる。
{トルエン溶解性}
本発明の有機電界発光素子用組成物に含有されるドーパント材料およびホスト材料は、いずれもトルエンに対する溶解度が2wt%以上であることを特徴とする。このように、トルエンに対する溶解度が2wt%以上のドーパント材料およびホスト材料を含有することにより、材料が均一に分散し、良分散された膜が形成されるため、好ましい。
有機電界発光素子用組成物中のドーパント材料およびホスト材料のトルエンに対する溶解度は、高い程好ましく、より好ましくは4wt%以上、特に好ましくは8wt%以上である。ただし、通常60wt%以下である。
なお、トルエンに対する溶解度は、後述の実施例の項に記載される方法で測定される。
{分子長}
本発明の有機電界発光素子用組成物に含まれるドーパント材料とホスト材料は、上述のトルエン溶解度を満たすと共に、それぞれの分子長が下記式(a)を満たすことを特徴とする。
(ドーパント材料の分子長)/(ホスト材料の分子長)≦ 1.4 ・・・(a)
ここで「分子長」とは、原子間の平均結合長から計算された分子長をさし、その構造から、各種ソフトウェア(例えば、ケンブリッジソフトウェア社製Chem Draw等)により測定することができる。
ドーパント材料の分子長がホスト材料の分子長に対して1.4倍よりも大きいとホスト材料からドーパント材料へのエネルギー移動が非効率となる。従って、(ドーパント材料の分子長)/(ホスト材料の分子長)は通常1.4以下、好ましくは1.3以下、より好ましくは1.2以下である。ただし、この値が過度に小さいとドーパント材料が凝集しやすくなるため、(ドーパント材料の分子長)/(ホスト材料の分子長)は通常0.6以上、好ましくは0.7以上、より好ましくは0.8以上である。
以下に、まず一般的な有機電界発光素子用組成物に含まれる有機電界発光素子材料について説明し、これらの有機電界発光素子材料の中から、選択使用される本発明の必須要件を満たすドーパント材料とホスト材料について説明する。
{有機電界発光素子材料}
有機電界発光素子材料とは、有機電界発光素子の陽極と陰極の間の層に含有される材料である。有機電界発光素子材料としては、例えば、正孔輸送性材料や電子輸送性材料などの電荷輸送性材料、発光材料、電子受容性化合物などが挙げられる。
本発明の有機電界発光素子用組成物における有機電界発光素子材料の含有量は、通常0.0001wt%以上、好ましくは0.001wt%以上、より好ましくは0.1wt%以上、また、通常90wt%以下、好ましくは70wt%以下、より好ましくは50wt%以下である。この含有量が上記下限より少ないと湿式成膜法により形成される薄膜の膜厚が薄くなり、素子としたときに、黒点や短絡の原因となる恐れがある。この含有量が上記上限より多いと湿式成膜法により形成される薄膜の膜厚が厚くなり、素子としたときに、駆動電圧が上昇したり、膜の不均一性(塗布ムラ)が生じやすくなり、輝度ムラが生じたりする恐れがある。
本発明における有機電界発光素子材料の分子量は、本発明の効果を著しく損なわない限り任意であるが、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。
有機電界発光素子材料の分子量が小さ過ぎると、ガラス転移温度や融点、分解温度等が低くなりやすく、有機電界発光素子材料および形成される有機薄膜の耐熱性が著しく低下し、再結晶化や分子のマイグレーションなどに起因する膜質の低下や、材料の熱分解に伴う不純物濃度の上昇などを引き起こし、素子性能の低下を引き起こす場合がある。
一方、分子量が大きすぎると、有機電界発光素子材料の構造や組成物(インク)の調製に使用する溶剤の種類によっては溶剤に対する有機電界発光素子材料の溶解度が小さくなりすぎる場合があり、例えば材料製造工程における精製が困難となる場合がある。また、成膜時に薄膜が形成されない部分が生じたり、形成された有機薄膜の膜厚が薄くなりすぎるなどの問題が生じ、素子としたときに、黒点の発生や短絡の原因となる場合がある。
<発光材料>
本発明の有機電界発光素子用組成物に含有される有機電界発光素子材料のうち、少なくとも1種は発光材料であることが好ましく、本発明の有機電界発光素子用組成物は、通常、有機電界発光素子の発光層を形成するために使用される。また、発光材料は通常有機電界発光素子用組成物中のドーパント材料となる。
発光材料とは、不活性ガス雰囲気下、室温で、希薄溶液中における蛍光量子収率が30%以上である材料であって、希薄溶液中における蛍光スペクトルとの対比から、それを用いて作製された有機電界発光素子に通電した際に得られるELスペクトルの一部または全部が、該材料の発光に帰属される材料、と定義される。
発光材料としては、通常、有機電界発光素子の発光材料として使用されているものであれば限定されない。例えば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。また、青色発光材料は蛍光発光材料を用い、緑色発光材料や赤色発光材料は燐光発光材料を用いるなど、組み合わせて用いてもよい。
なお、発光材料としては、溶剤への溶解性を向上させる目的で、分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基が導入されたりしている材料を用いることが好ましい。
以下、発光材料のうち蛍光発光材料の例を挙げるが、蛍光発光材料は以下の例示物に限定されるものではない。
青色発光を与える蛍光発光材料(青色蛍光色素)としては、例えば、ナフタレン、クリセン、ペリレン、ピレン、アントラセン、クマリン、p−ビス(2−フェニルエテニル)ベンゼンおよびそれらの誘導体等が挙げられる。中でも、アントラセン、クリセン、ピレンおよびそれらの誘導体等が好ましい。
緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、例えば、キナクリドン、クマリン、Al(CNO)などのアルミニウム錯体およびそれらの誘導体等が挙げられる。
黄色発光を与える蛍光発光材料(黄色蛍光色素)としては、例えば、ルブレン、ペリミドンおよびそれらの誘導体等が挙げられる。
赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、例えば、DCM(4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチレン)−4H−ピラン)系化合物、ベンゾピラン、ローダミン、ベンゾチオキサンテン、アザベンゾチオキサンテン等のキサンテンおよびそれらの誘導体等が挙げられる。
燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7〜11族から選ばれる金属を中心金属として含むウェルナー型錯体または有機金属錯体が挙げられる。
周期表第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられ、中でもより好ましくはイリジウムまたは白金である。
錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。
燐光発光材料として、具体的には、トリス(2−フェニルピリジン)イリジウム、トリス(2−フェニルピリジン)ルテニウム、トリス(2−フェニルピリジン)パラジウム、ビス(2−フェニルピリジン)白金、トリス(2−フェニルピリジン)オスミウム、トリス(2−フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられる。
発光材料として用いる化合物の分子量は、本発明の効果を著しく損なわない限り任意であるが、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。発光材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりする場合がある。一方、発光材料の分子量が大き過ぎると、当該発光材料の有機化合物の精製が困難となってしまったり、溶剤に溶解させる際に時間を要したりする傾向がある。
なお、上述した発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
本発明の有機電界発光素子用組成物に含まれる発光材料の含有量は、0.000001wt%以上が好ましく、0.0001wt%以上がより好ましく、0.01wt%以上が特に好ましく、25wt%以下が好ましく、15wt%以下がより好ましく、15wt%以下が特に好ましい。
有機電界発光素子用組成物中の発光材料の含有量がこの下限を下回ると、有機電界発光素子用組成物中の固形分含有量が不足することにより成膜時に薄膜が形成されない部分が生じる、あるいは形成された薄膜の膜厚が薄くなりすぎるなどの問題が生じ、最終的に得られた素子の黒点の発生や短絡の原因となる等、所望の機能を十分に得ることが出来ない場合がある。また、有機電界発光素子用組成物に通常含まれる電荷輸送性材料に対する濃度の相対値が低下してしまい、電荷輸送性材料からの電荷あるいはエネルギーの移動が不十分となり、無効電流の増大による消費電力の低下や電荷輸送性材料そのものからの発光による色ずれなどが生じる場合もある。
一方、有機電界発光素子用組成物中の発光材料の含有量がこの上限を上回ると、成膜時に得られる薄膜の膜厚が厚くなりすぎ素子の駆動電圧が上昇する、薄膜の不均一性(塗布ムラ)が生じやすくなり素子発光面の輝度ムラの原因となる等、やはり所望の機能を十分に得られない場合がある。また、一般に濃度消光と呼ばれる発光材料分子間の相互作用の増大による消光現象や、乾燥時の発光材料の凝集、発光材料が発光層へ注入された電荷のトラップとして作用することによる駆動電圧の上昇や素子の耐久性の低下などが起こりやすくなる場合もある。
該含有量は、本発明の有機電界発光素子用組成物中に含まれる発光材料が複数ある場合には、その合計量を表す。
<電荷輸送性材料>
有機電界発光素子において、発光材料は、電荷輸送性のホスト材料から電荷またはエネルギーを受け取って発光することが好ましい。従って、本発明の有機電界発光素子用組成物に含まれるホスト材料は、発光材料をドーパント材料とする電荷輸送性材料であることが好ましい。電荷輸送性材料としては、正孔輸送性の化合物(正孔輸送性材料)や電子輸送性の化合物(電子輸送性材料)が挙げられる。
ここで、電荷輸送性材料の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン系化合物、ベンジルフェニル系化合物、フルオレン系化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物、トリフェニレン系化合物、カルバゾール系化合物、ピレン系化合物、アントラセン系化合物、フェナントロリン系化合物、キノリン系化合物、ピリジン系化合物、トリアジン系化合物、オキサジアゾール系化合物、イミダゾール系化合物等が挙げられる。
より具体的には、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族アミン系化合物(特開平5−234681号公報)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(Journal of Luminescence, 1997年, Vol.72−74, pp.985)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chemical Communications, 1996年, pp.2175)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のフルオレン系化合物(Synthetic Metals, 1997年,Vol.91 ,pp.209)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)、バソフェナントロリン(BPhen)、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)、4,4’−ビス(9−カルバゾール)−ビフェニル(CBP)等が挙げられる。
本発明における電荷輸送性材料の分子量は、本発明の効果を著しく損なわない限り任意であるが、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。
電荷輸送性材料の分子量が小さ過ぎると、発光材料の場合と同様に、ガラス転移温度や融点、分解温度等が低くなりやすく、有機電界発光素子材料および得られた有機薄膜の耐熱性が著しく低下し、再結晶化や分子のマイグレーションなどに起因する膜質の低下や、材料の熱分解に伴う不純物濃度の上昇などを引き起こし、素子性能の低下を引き起こす場合がある。
一方、電荷輸送性材料の分子量が大きすぎると、有機電界発光素子材料の構造や組成物の調製に使用する溶剤の種類によっては溶剤に対する材料の溶解度が小さくなりすぎ、例えば材料製造工程における精製が困難となるため不純物濃度が高くなり、有機電界発光素子の発光効率や耐久性の低下の原因となる、あるいは湿式成膜時に薄膜が形成されない部分が生じる、形成された薄膜の膜厚が薄くなりすぎるなどの問題が生じ、最終的に得られた素子の黒点の発生や短絡の原因となる等、所望の機能を十分に得ることが出来ない場合がある。
なお、上述した電荷輸送性材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
本発明の有機電界発光素子用組成物に含まれる電荷輸送性材料の含有量は、0.000001wt%以上が好ましく、0.0001wt%以上がより好ましく、0.01wt%以上が更に好ましい。また、50wt%以下が好ましく、30wt%以下がより好ましく、15wt%以下が更に好ましい。有機電界発光素子用組成物中の電荷輸送性材料の含有量がこの下限を下回ると、湿式成膜法により形成される薄膜中の電荷輸送能力が低下することによる駆動電圧の上昇、あるいは発光効率の低下を引き起こす場合がある。加えて、有機電界発光素子用組成物中の固形分含有量が不足することにより、塗布成膜時に薄膜が形成されない部分が生じる、あるいは形成された薄膜の膜厚が薄くなりすぎるなどの問題が生じ、最終的に得られた素子の黒点の発生や短絡の原因となる等、所望の機能を十分に得ることが出来ない場合もあるため好ましくない。一方、電荷輸送性材料の含有量がこの上限を上回ると、成膜時に得られる薄膜の膜厚が厚くなりすぎ、素子の駆動電圧が上昇する、塗布ムラが生じやすくなり、素子発光面の輝度ムラの原因となる等、やはり所望の機能を十分に得られない場合があるため、好ましくない。
また、有機電界発光素子用組成物中における電荷輸送性材料の含有量に対する発光材料の含有量の割合は、0.01wt%以上が好ましく、0.1wt%以上がより好ましく、1wt%以上が更に好ましい。また、50wt%以下が好ましく、30wt%以下がより好ましく、10wt%以下が更に好ましい。有機電界発光素子用組成物中の電荷輸送性材料の含有量に対する発光材料の含有量の割合がこの下限を下回ると、電荷輸送性材料からの電荷あるいはエネルギーの移動が不十分となり、無効電流の増大による消費電力の低下や電荷輸送性材料そのものからの発光による色ずれなどが生じるようになる。一方、この割合が上記上限を上回ると、一般に濃度消光と呼ばれる発光材料分子間の相互作用の増大による消光現象や、乾燥時の発光材料の凝集、発光材料が発光層へ注入された電荷のトラップとして作用することによる駆動電圧の上昇や素子の耐久性の低下などが起こりやすくなる。
<本発明に係るドーパント材料およびホスト材料>
本発明の有機電界発光素子用組成物に含有されるドーパント材料およびホスト材料は、前述のトルエン溶解性と式(a)を満たすものであればよく、例えば、上述の有機電界発光素子材料のうち、前述のトルエン溶解性と式(a)を満たす材料が選択使用されるが、特に次のような化合物であることが好ましい。
(ホスト材料)
ホスト材料は、分子内にアントラセン環を含む化合物であることが効率の点で好ましい。
アントラセン環を含むホスト材料としては、例えば、国際公開第2005/054162号パンフレットに非対称モノアントラセン誘導体として記載されたもの、国際公開第2006/104044号パンフレットにアントリルアリーレン誘導体として記載されたものや、次のようなものが挙げられるが、何らこれらに限定されるものではない。
Figure 2010209143
これらのホスト材料は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(ドーパント材料)
ドーパント材料は、下記式(1)で表される化合物(以下、この化合物を「芳香族アミン系化合物(1)」と称す場合がある。)であることが発光効率の点で好ましく、この芳香族アミン系化合物(1)のなかでも特に、Ar35がクリセン環由来の基であることが好ましい。
Figure 2010209143
(式(1)中、Ar31〜Ar35は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基を表す。)
上記式(1)において、Ar31〜Ar35の芳香族炭化水素基としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、ピレン環、クリセン環、ナフタセン環、ベンゾフェナントレン環等の、ベンゼン環、或いは、ベンゼン環の2〜4個が縮合してなる縮合環由来の基が挙げられる。これらのうち、特に、Ar31、Ar32、Ar33、Ar34については、発光波長の点で、それぞれ独立に、ベンゼン環、ナフタレン環、フェナントレン環由来の基が好ましく、特にベンゼン環由来の基が好ましい。また、Ar35については、発光効率の点で、クリセン環、ピレン環、アントラセン環由来の基が好ましく、特にクリセン環由来の基が耐久性の点で好ましい。Ar35がクリセン環由来の基である場合、−NAr31Ar32、−NAr33Ar34の結合位置には特に制限はないが、6位と12位、2位と8位が好ましく、特に6位と12位が好ましい。即ち、前記式(1)は、下記式(1’)で表されることが好ましい。
Figure 2010209143
(式(1’)中、Ar31〜Ar34は、式(1)におけると同義である。)
Ar31〜Ar35の芳香族炭化水素基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましく、特に、親油性置換基のアルキル基が好ましい。
Ar31〜Ar34が置換基を有する場合、その置換位置は、窒素原子の置換位置に対して、パラ位、メタ位、或いはパラ位およびメタ位の二置換であることが好ましく、特にパラ位であることが好ましい。
また、Ar35が置換基を有する場合、その置換位置は、−NAr31Ar32、−NAr33Ar34が置換していないベンゼン環であることが好ましく、特に、Ar35は−NAr31Ar32、−NAr33Ar34以外に置換基を有さないことが好ましい。
本発明に好適な芳香族アミン系化合物(1)としては、例えば次のような化合物が挙げられるが、何らこれらに限定されるものではない。
Figure 2010209143
Figure 2010209143
Figure 2010209143
Figure 2010209143
これらの芳香族アミン系化合物(1)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
本発明の有機電界発光素子用組成物中の前述のトルエン溶解性と式(a)を満たすドーパント材料とホスト材料の含有量は、ドーパント材料が0.1wt%以上、特に0.5wt%以上で、30wt%以下、特に20wt%以下、ホスト材料が70wt%以上、特に80wt%以上で、99.9wt%以下、特に99.5wt%以下であることが好ましく、また、ドーパント材料とホスト材料との含有量比は、重量比で、ホスト材料:ドーパント材料=10:0.1〜3であることが好ましい。
{溶剤}
本発明の有機電界発光素子用組成物は溶剤を含有する。ここで、本発明における溶剤とは、20℃、1気圧の雰囲気において液体であり、本発明の有機電界発光素子用組成物に含有されるドーパント材料(例えば、発光材料)やホスト材料(例えば、電荷輸送性材料)を溶解することが可能な化合物である。
溶剤としては、一般的に市販されている極性または無極性の溶剤であれば特に制限は無いが、中でもベンゼン、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン、ジクロロベンゼン等の置換または無置換の芳香族炭化水素系溶剤、アニソール、安息香酸エステル、ジフェニルエーテル等の芳香族エーテル系溶剤、芳香族エステル系溶剤、ヘキサン、ヘプタン、シクロヘキサン等の鎖状または環状アルカン系溶剤、酢酸エチル等のカルボン酸エステル系溶剤、アセトン、シクロヘキサノン等の含カルボニル系溶剤、水、アルコール、環状エーテルなどが好ましく、芳香族炭化水素系溶剤がより好ましく、中でも、ベンゼン、トルエン、メシチレン、シクロヘキシルベンゼンが好ましい。
本発明の有機電界発光素子用組成物中に、溶剤は1種類が含有されていてもよいし、2種類あるいはそれ以上の溶剤の組合せで含まれていてもよいが、通常1種類以上、好ましくは2種類以上、通常10種類以下、好ましくは8種類以下、より好ましくは6種類以下の組み合わせで含有されることが好ましい。
また、2種以上の溶剤を混合して使用する場合、その混合比についても、何ら限定されることはないが、最も混合比が多い溶剤が全溶剤中に通常1wt%以上、好ましくは5wt%以上、より好ましくは10wt%以上、また、通常100wt%以下、好ましくは90wt%以下、より好ましくは80wt%以下であり、最も混合比が少ない溶媒が全溶剤中に通常0.0001wt%以上、好ましくは0.001wt%以上、より好ましくは0.01wt%以上、また、通常50wt%以下となるような混合比であることが好ましい。
{その他の成分}
本発明の有機電界発光素子用組成物は、上記ホスト材料、ドーパント材料および溶剤の他、レベリング剤、消泡剤、増粘剤等の塗布性改良剤、電子受容性化合物や電子供与性化合物などの電荷輸送補助剤、バインダー樹脂などを含有していてもよい。これらのその他の成分の有機電界発光素子用組成物中の含有量は、形成される薄膜の電荷移動を著しく阻害しないこと、発光材料の発光を阻害しないこと、薄膜の膜質を低下させないことなどの観点から、通常50wt%以下である。
{溶剤濃度・固形分濃度}
本発明の有機電界発光素子用組成物を、後述の本発明の有機電界発光素子の発光層を形成するための発光層形成用組成物として用いる場合、有機電界発光素子用組成物中の溶剤の含有量は、本発明の効果を著しく損なわない限り任意であるが、通常50wt%以上、通常99.9999wt%以下、である。なお、溶剤として2種以上の溶剤を混合して用いる場合には、これらの溶剤の合計がこの範囲を満たすようにする。
また、ホスト材料、ドーパント材料、その他の材料等の全固形分濃度としては、通常0.01wt%以上、通常70wt%以下である。この濃度が高すぎると形成される薄膜の膜厚ムラが生じる可能性があり、また、低すぎると形成される薄膜に欠陥が生じる可能性がある。
[有機電界発光素子]
本発明の有機電界発光素子は、陽極、陰極、およびこれら両極間に設けられた有機層を有する有機電界発光素子であって、該有機層が、上述の本発明の有機電界発光素子用組成物を用いて、好ましくは湿式成膜法により形成された層であること、即ち、前述のトルエン溶解性と式(a)を満たすドーパント材料とホスト材料を含有する層であることを特徴とするものである。当該有機層は、特に発光層であることが好ましい。
前述のトルエン溶解性と式(a)を満たすドーパント材料とホスト材料を含有する有機層における、該ドーパント材料及びホスト材料の含有量は、当該有機層の構成材料や機能等においても異なるが、前述のトルエン溶解性と式(a)を満たすドーパント材料とホスト材料を用いることによる本発明の効果を有効に得る上で、ドーパント材料とホスト材料の合計で95wt%以上、特に98wt%以上、とりわけ99〜100wt%であることが好ましい。
また、該ドーパント材料とホスト材料の含有量比は、重量比でホスト材料:ドーパント材料=10:0.1〜20であることが本発明の効果を確実に得る上で好ましい。
尚、本発明において湿式成膜法とは、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等湿式で成膜される方法をいう。これらの成膜方法の中でも、スピンコート法、スプレーコート法、インクジェット法が好ましい。これは、湿式成膜法において、成膜用組成物として用いられる本発明の有機電界発光素子用組成物等に特有の液性に合うためである。
以下に、本発明の有機電界発光素子の層構成およびその一般的形成方法等について、図1を参照して説明する。
図1は本発明の有機電界発光素子10の構造例を示す断面の模式図であり、図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。
{基板}
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
{陽極}
陽極2は発光層側の層への正孔注入の役割を果たすものである。
この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウムおよび/またはスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
陽極2の形成は、通常、スパッタリング法、真空蒸着法等により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極2の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極2の厚みは任意であり、陽極2は基板1と同一でもよい。また、さらには、上記の陽極2の上に異なる導電材料を積層することも可能である。
陽極2に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極2表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることは好ましい。
{正孔注入層}
正孔注入層3は、陽極2から発光層5へ正孔を輸送する層であり、通常、陽極2上に形成される。
本発明に係る正孔注入層3の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔注入層3を湿式成膜法により形成することが好ましい。
正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
<湿式成膜法による正孔注入層の形成>
湿式成膜により正孔注入層3を形成する場合、通常は、正孔注入層3を構成する材料を適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、正孔注入層3の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
(正孔輸送性化合物)
正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物および溶剤を含有する。
正孔輸送性化合物は、通常、有機電界発光素子の正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。
正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から4.5eV〜6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
尚、本発明において誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのものおよび芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
正孔注入層3の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種または2種以上と、その他の正孔輸送性化合物1種または2種以上とを併用することが好ましい。
上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(I)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure 2010209143
(式(I)中、ArおよびArは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を表す。Ar〜Arは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を表す。Yは、下記の連結基群の中から選ばれる連結基を表す。また、Ar〜Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。
Figure 2010209143
(上記各式中、Ar〜Ar16は、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を表す。RおよびRは、それぞれ独立して、水素原子または任意の置換基を表す。))
Ar〜Ar16の芳香族炭化水素基および芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
Ar〜Ar16の芳香族炭化水素基および芳香族複素環基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましい。
およびRが任意の置換基である場合、該置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基などが挙げられる。
式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号パンフレットに記載のものが挙げられる。
また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-ethylenedioxythiophene(3,4−エチレンジオキシチオフェン)を高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレート等でキャップしたものであってもよい。
正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。
(電子受容性化合物)
正孔注入層形成用組成物は正孔注入層の構成材料として、電子受容性化合物を含有していることが好ましい。
電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上の化合物である化合物がさらに好ましい。
このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種または2種以上の化合物等が挙げられる。さらに具体的には、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開2005/089024号パンフレット);塩化鉄(III)(特開平11−251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンダフルオロフェニル)ボラン(特開2003−31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
これらの電子受容性化合物は、正孔輸送性化合物を酸化することにより正孔注入層の導電率を向上させることができる。
正孔注入層或いは正孔注入層形成用組成物中の電子受容性化合物の正孔輸送性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
(その他の構成材料)
正孔注入層の材料としては、本発明の効果を著しく損なわない限り、上述の正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
(溶剤)
湿式成膜法に用いる正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層の構成材料を溶解しうる化合物であることが好ましい。また、この溶剤の沸点は通常110℃以上、好ましくは140℃以上、中でも200℃以上、通常400℃以下、中でも300℃以下であることが好ましい。溶剤の沸点が低すぎると、乾燥速度が速すぎ、膜質が悪化する可能性がある。また、溶剤の沸点が高すぎると乾燥工程の温度を高くする必要があし、他の層や基板に悪影響を与える可能性がある。
溶剤として例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル、等が挙げられる。
エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル、等が挙げられる。
芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3−イロプロピルビフェニル、1,2,3,4−テトラメチルベンゼン、1,4−ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。
アミド系溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、等が挙げられる。
その他、ジメチルスルホキシド、等も用いることができる。
これらの溶剤は1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で用いてもよい。
(成膜方法)
正孔注入層形成用組成物を調製後、この組成物を湿式成膜により、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより正孔注入層3を形成する。
成膜工程における温度は、組成物中に結晶が生じることによる膜の欠損を防ぐため、10℃以上が好ましく、50℃以下が好ましくい。
成膜工程における相対湿度は、本発明の効果を著しく損なわない限り限定されないが、通常0.01ppm以上、通常80%以下である。
成膜後、通常加熱等により正孔注入層形成用組成物の膜を乾燥させる。加熱工程において使用する加熱手段の例を挙げると、クリーンオーブン、ホットプレート、赤外線、ハロゲンヒーター、マイクロ波照射などが挙げられる。中でも、膜全体に均等に熱を与えるためには、クリーンオーブンおよびホットプレートが好ましい。
加熱工程における加熱温度は、本発明の効果を著しく損なわない限り、正孔注入層形成用組成物に用いた溶剤の沸点以上の温度で加熱することが好ましい。また、正孔注入層に用いた溶剤が2種類以上含まれている混合溶剤の場合、少なくとも1種類がその溶剤の沸点以上の温度で加熱されるのが好ましい。溶剤の沸点上昇を考慮すると、加熱工程においては、好ましくは120℃以上、好ましくは410℃以下で加熱することが好ましい。
加熱工程において、加熱温度が正孔注入層形成用組成物の溶剤の沸点以上であり、かつ塗布膜の十分な不溶化が起こらなければ、加熱時間は限定されないが、好ましくは10秒以上、通常180分以下である。加熱時間が長すぎると他の層の成分が拡散する傾向があり、短すぎると正孔注入層が不均質になる傾向がある。加熱は2回に分けて行ってもよい。
<真空蒸着法による正孔注入層の形成>
真空蒸着により正孔注入層3を形成する場合には、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種または2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10−4Pa程度まで排気した後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ(2種以上の材料を用いる場合はそれぞれ独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板の陽極2上に正孔注入層3を形成させる。なお、2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10−6Torr(0.13×10−4Pa)以上、通常9.0×10−6Torr(12.0×10−4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、通常5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上で、好ましくは50℃以下で行われる。
{正孔輸送層}
正孔輸送層4は、正孔注入層がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。また、本発明の有機電界発光素子は、正孔輸送層を省いた構成であってもよい。
本発明に係る正孔輸送層4の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔輸送層4を湿式成膜法により形成することが好ましい。
正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
このような正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層3に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p−フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体またはグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
ポリアリールアミン誘導体としては、下記式(II)で表される繰り返し単位を含む重合体であることが好ましい。特に、下記式(II)で表される繰り返し単位からなる重合体であることが好ましく、この場合、繰り返し単位それぞれにおいて、ArまたはArが異なっているものであってもよい。
Figure 2010209143
(式(II)中、ArおよびArは、それぞれ独立して、置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基を表す。)
置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環または2〜5縮合環由来の基およびこれらの環が2環以上直接結合で連結してなる基が挙げられる。
置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5または6員環の単環または2〜4縮合環由来の基およびこれらの環が2環以上直接結合で連結してなる基が挙げられる。
溶解性、耐熱性の点から、ArおよびArは、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基やベンゼン環が2環以上連結してなる基(例えば、ビフェニル基やターフェニル基)が好ましい。
中でも、ベンゼン環由来の基(フェニル基)、ベンゼン環が2環連結してなる基(ビフェニル基)およびフルオレン環由来の基(フルオレニル基)が好ましい。
ArおよびArにおける芳香族炭化水素基および芳香族複素環基が有していてもよい置換基としては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素環基、芳香族複素環基などが挙げられる。
ポリアリーレン誘導体としては、前記式(II)におけるArやArとして例示した置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。
ポリアリーレン誘導体としては、下記式(III-1)および/または下記式(III-2)からなる繰り返し単位を有する重合体が好ましい。
Figure 2010209143
(式(III-1)中、R、R、RおよびRは、それぞれ独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基、またはカルボキシ基を表す。tおよびsは、それぞれ独立に、0〜3の整数を表す。tまたはsが2以上の場合、一分子中に含まれる複数のRまたはRは同一であっても異なっていてもよく、隣接するRまたはRどうしで環を形成していてもよい。)
Figure 2010209143
(式(III-2)中、ReおよびRは、それぞれ独立に、上記式(III-1)におけるR、R、RまたはRと同義である。rおよびuは、それぞれ独立に、0〜3の整数を表す。rまたはuが2以上の場合、一分子中に含まれる複数のRおよびRは同一であっても異なっていてもよく、隣接するRまたはRどうしで環を形成していてもよい。Xは、5員環または6員環を構成する原子または原子群を表す。)
Xの具体例としては、酸素原子、置換基を有していてもよいホウ素原子、置換基を有していてもよい窒素原子、置換基を有していてもよいケイ素原子、置換基を有していてもよいリン原子、置換基を有していてもよいイオウ原子、置換基を有していてもよい炭素原子またはこれらが結合してなる基である。
また、ポリアリーレン誘導体としては、下記式(III-1)および/または下記式(III-2)からなる繰り返し単位に加えて、さらに下記式(III-3)で表される繰り返し単位を有することが好ましい。
Figure 2010209143
(式(III-3)中、Ar〜Arは、それぞれ独立に、置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基を表す。xおよびyは、それぞれ独立に0または1を表す。)
Ar〜Arの具体例としては、前記式(II)における、ArおよびArと同様である。
上記式(III-1)〜(III-3)の具体例およびポリアリーレン誘導体の具体例等は、特開2008−98619号公報に記載のものなどが挙げられる。
湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。
正孔輸送層形成用組成物には、上述の正孔輸送性化合物の他、溶剤を含有する。用いる溶剤は上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。
真空蒸着法により正孔輸送層を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。
正孔輸送層4は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
正孔輸送層4はまた、架橋性化合物を架橋して形成される層であってもよい。架橋性化合物は、架橋性基を有する化合物であって、架橋することにより網目状高分子化合物を形成する。
この架橋性基の例を挙げると、オキセタン、エポキシなどの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル、シンナモイル等の不飽和二重結合由来の基;ベンゾシクロブテン由来の基などが挙げられる。
架橋性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。 架橋性化合物は1種のみを有していてもよく、2種以上を任意の組み合わせおよび比率で有していてもよい。
架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物としては、上記の例示したものが挙げられ、これら正孔輸送性化合物に対して、架橋性基が主鎖または側鎖に結合しているものが挙げられる。特に架橋性基は、アルキレン基等の連結基を介して、主鎖に結合していることが好ましい。また、特に正孔輸送性化合物としては、架橋性基を有する繰り返し単位を含む重合体であることが好ましく、上記式(II)や式(III-1)〜(III-3)に架橋性基が直接または連結基を介して結合した繰り返し単位を有する重合体であることが好ましい。
架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物の例を挙げると、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体等の含窒素芳香族化合物誘導体;トリフェニルアミン誘導体;シロール誘導体;オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。その中でも、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体等の含窒素芳香族誘導体;トリフェニルアミン誘導体、シロール誘導体、縮合多環芳香族誘導体、金属錯体などが好ましく、特に、トリフェニルアミン誘導体がより好ましい。
架橋性化合物を架橋して正孔輸送層4を形成するには、通常、架橋性化合物を溶剤に溶解または分散した正孔輸送層形成用組成物を調製して、湿式成膜により成膜して架橋させる。
正孔輸送層形成用組成物には、架橋性化合物の他、架橋反応を促進する添加物を含んでいてもよい。架橋反応を促進する添加物の例を挙げると、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、メタロセン化合物、オキシムエステル化合物、アゾ化合物、オニウム塩等の重合開始剤および重合促進剤;縮合多環炭化水素、ポルフィリン化合物、ジアリールケトン化合物等の光増感剤;などが挙げられる。
また、さらに、レベリング剤、消泡剤等の塗布性改良剤;電子受容性化合物;バインダー樹脂;などを含有していてもよい。
正孔輸送層形成用組成物は、架橋性化合物を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、通常50重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下含有する。
このような濃度で架橋性化合物を含む正孔輸送層形成用組成物を下層(通常は正孔注入層3)上に成膜後、加熱および/または光などの電磁エネルギー照射により、架橋性化合物を架橋させて網目状高分子化合物を形成する。
成膜時の温度、湿度などの条件は、前記正孔注入層3の湿式成膜時と同様である。
成膜後の加熱の手法は特に限定されない。加熱温度条件としては、通常120℃以上、好ましくは400℃以下である。
加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、成膜された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。
光などの電磁エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。光以外の電磁エネルギー照射では、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。
加熱および光などの電磁エネルギー照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。
このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
{発光層}
正孔注入層3の上、または正孔輸送層4を設けた場合には正孔輸送層4の上には発光層5が設けられる。発光層5は、電界を与えられた電極間において、陽極2から注入された正孔と、陰極9から注入された電子との再結合により励起されて、主たる発光源となる層である。
<発光層の材料>
発光層5は、その構成材料として、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、あるいは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有する。発光材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として使用してもよい。発光材料としては、前述の本発明の有機電界発光素子用組成物の説明の項で例示したものを用いることができる。
特に、本発明の有機電界発光素子は、その発光層が、本発明の有機電界発光素子用組成物を用いて湿式成膜法で形成されることが好ましい。
更に、発光層5は、本発明の効果を著しく損なわない範囲で、その他の成分を含有していてもよい。なお、湿式成膜法で発光層5を形成する場合は、低分子量の材料(分子量通常10000以下、好ましくは5000以下)を使用することが好ましい。
<発光層の形成>
湿式成膜法により発光層5を形成する場合は、発光層に用いる材料を適切な溶剤に溶解させて発光層形成用組成物(例えば、本発明の有機電界発光素子用組成物)を調製し、それを用いて成膜することにより形成する。
発光層5を本発明に係る湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶剤としては、上記本発明の有機電界発光素子用組成物に含有される溶剤として説明したものと同様である。
また、発光層形成用組成物中の発光材料、電荷輸送性化合物等の固形分濃度としては、通常0.01重量%以上、通常70重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると膜に欠陥が生じる可能性がある。
発光層形成用組成物を湿式成膜後、得られた塗膜を乾燥し、溶剤を除去することにより、発光層が形成される。具体的には、上記正孔注入層の形成において記載した方法と同様である。湿式成膜法の方式は、本発明の効果を著しく損なわない限り限定されず、前述のいかなる方式も用いることができる。
発光層5の膜厚は本発明の効果を著しく損なわない限り任意であるが、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層5の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。
{正孔阻止層}
発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。
正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2−メチル−8−キノリノラト)(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)などが挙げられる。更に、国際公開第2005−022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
なお、正孔阻止層6の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
正孔阻止層6の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。
正孔阻止層にかえて、正孔緩和層を設けてもよい。
{電子輸送層}
発光層5と後述の電子注入層8の間に、電子輸送層7を設けてもよい。
電子輸送層7は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。
電子輸送層7に用いられる電子輸送性化合物としては、通常、陰極9または電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−ヒドロキシフラボン金属錯体、5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
なお、電子輸送層7の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子輸送層7の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
電子輸送層7の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
{電子注入層}
電子注入層8は、陰極9から注入された電子を効率よく発光層5へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、酸化リチウム(LiO)、炭酸セシウム(II)(CsCO)等が挙げられる(Applied Physics Letters, 1997年, Vol.70, pp.152;特開平10−74586号公報;I有機ELディスプレイおよび有機EL照明 Transactions on Electron Devices, 1997年,Vol.44, pp.1245;SID 04 Digest, pp.154等参照)。その膜厚は通常0.1nm以上、5nm以下が好ましい。
更に、バソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
なお、電子注入層8の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子注入層8の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
{陰極}
陰極9は、発光層5側の層(電子注入層8または発光層5など)に電子を注入する役割を果たすものである。
陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行うには、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
陰極9の膜厚は、通常、陽極2と同様である。
さらに、低仕事関数金属から成る陰極9を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
{その他の層}
本発明の有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。
有していてもよい層としては、例えば、電子阻止層が挙げられる。
電子阻止層は、正孔注入層3または正孔輸送層4と発光層5との間に設けられ、発光層5から移動してくる電子が正孔注入層3に到達するのを阻止することで、発光層5内で正孔と電子との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔注入層3から注入された正孔を効率よく発光層5の方向に輸送する役割とがある。特に、発光材料として燐光材料を用いたり、青色発光材料を用いたりする場合は電子阻止層を設けることが効果的である。
電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いこと等が挙げられる。更に、本発明においては、発光層5を本発明に係る有機層として湿式成膜法で作製する場合には、電子阻止層にも湿式成膜の適合性が求められる。このような電子阻止層に用いられる材料としては、F8−TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号パンフレット)等が挙げられる。
なお、電子阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
電子阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば、図1の層構成であれば、基板1上に他の構成要素を陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に設けてもよい。
更には、少なくとも一方が透明性を有する2枚の基板の間に、基板以外の構成要素を積層することにより、本発明に係る有機電界発光素子を構成することも可能である。
また、基板以外の構成要素(発光ユニット)を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
更には、本発明に係る有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX−Yマトリックス状に配置された構成に適用してもよい。
また、上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
[有機ELディスプレイおよび有機EL照明]
本発明の有機電界発光素子は、有機ELディスプレイや有機EL照明に使用される。本発明により得られる有機電界発光素子は、例えば、「有機ELディスプレイ」(オーム社,平成16年8月20日発行,時任静士、安達千波矢、村田英幸著)に記載されているような方法で有機ELディスプレイや有機EL照明を形成することができる。
次に、本発明を実施例によってさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
なお、以下において、ドーパント材料およびホスト材料のトルエンに対する溶解度は以下の方法で測定した。
<トルエンに対する溶解度測定>
内容量2〜10mlのガラス製サンプル瓶に、溶質Xg(通常3〜10mgの範囲)、溶剤としてトルエンYgを投入し、該サンプル瓶の蓋を閉じた後、50℃以下の温度で、撹拌し、極力溶解を促進する。その後、室温(通常、10〜30℃)下、1時間以上静置したとき、目視あるいは顕微鏡観察により、析出物、懸濁あるいは層分離が確認されなかった場合、溶解度は{X/(X+Y)}×100wt%以上であり、析出物が確認された場合、溶解度は{X/(X+Y)}×100wt%未満であると判定した。
[実施例1]
ガラス基板1の上にインジウム・スズ酸化物(ITO)透明導電膜を150nm成膜したもの(スパッタ成膜品、シート抵抗15Ω)を通常のフォトリソグラフィ技術により2mm幅のストライプにパターニングして陽極2を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
正孔輸送性化合物として下記構造の芳香族アミン高分子化合物PB−1(重量平均分子量:29400、数平均分子量:12600)、電子受容性化合物として下記構造の化合物PI−1、および溶剤として安息香酸エチルを含有する正孔注入層形成用組成物を調製した。組成物中のPB−1とPI−1は重量比でPB−1:PI−1=10:4とし、組成物中のPB−1およびPI−1の合計濃度は2重量%とした。この組成物をスピナ回転数1500rpm、スピナ回転時間30秒で陽極2上にスピンコートにより湿式成膜した。成膜後、260℃で180分間加熱乾燥させた。以上の操作により膜厚30nmの均一な正孔注入層3の薄膜が形成された。
Figure 2010209143
次に、正孔輸送性化合物として下記構造の化合物HT−1および溶剤としてトルエンを含有する正孔輸送層形成用組成物を調製した。組成物中における化合物HT−1の濃度は0.4重量%とした。この組成物をスピナ回転数1500rpm、スピナ回転時間30秒で正孔注入層3上にスピンコートにより湿式成膜した。成膜後、230℃で60分間加熱した。以上の操作により膜厚20nmの均一な正孔輸送層4の薄膜が形成された。
Figure 2010209143
次いで、ホスト材料として下記構造の化合物E−2、ドーパント材料として下記構造の化合物D−1、および溶剤としてトルエンを含有する有機電界発光素子用組成物を、発光層形成に用いる組成物として調製した。組成物中の化合物E−2と化合物D−1とは重量比で化合物E−2:D−1=10:1とし、組成物中の化合物E−2およびD−1の合計濃度は0.75重量%とした。この組成物をスピナ回転数1500rpm、スピナ回転時間30秒で正孔輸送層4上にスピンコートにより湿式成膜した。成膜後、100℃で60分間加熱乾燥させた。以上の操作により膜厚40nmの均一な発光層5の薄膜が形成された。
Figure 2010209143
なお、化合物E−2のトルエンへの溶解度は2wt%以上であった。また、化合物D−1のトルエンへの溶解度は3wt%であった。また、ケンブリッジソフトウェア社製Chem Drawを用いた作図により測定した化合物E−2の分子長は22.4Å、化合物D−1の分子長は23.9Åであり、(化合物D−1の分子長)/(化合物E−2の分子長)=1.07であった。
得られた発光層5の上に、真空蒸着法により正孔阻止層6として下記構造の化合物HB−1を膜厚10nmとなるように、次いで、電子輸送層7として下記構造の化合物ET−1を膜厚30nmとなるように、それぞれ順次積層した。
Figure 2010209143
その後、真空蒸着法により、電子注入層8としてフッ化リチウム(LiF)を膜厚0.5nmとなるように、陰極9としてアルミニウムを膜厚80nmとなるように、それぞれ陽極2であるITOストライプと直交する形状の2mm幅のストライプ状に積層した。
以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
この素子からは、ELピーク波長470nmの青色発光が得られることを確認した。
[比較例1]
ドーパント材料として、上記化合物D−1の代わりに、下記構造の化合物D−2を使用した以外は、実施例1と同様にして有機電界発光素子を得た。化合物D−2のトルエンへの溶解度は2wt%以上であった。化合物D−2の分子長は33.5Åであり、(化合物D−2の分子長)/(化合物E−2の分子長)=1.50であった。
Figure 2010209143
この素子からは、ELピーク波長441nmの青色発光が得られることを確認した。
実施例1および比較例1で得られた素子の発光特性および駆動寿命を表1にまとめて示す。
なお、表中、語句の意味は、以下の通りである。
・最高輝度:250mA/cmの電流を流したときの正面輝度
・駆動電圧:正面輝度100cd/m時の駆動電圧
・電流効率:10mA/cmの電流を流したときの電流効率
・CIE色度座標:正面輝度10〜1000cd/m時のCIE色度座標
・T50:室温条件下、初期正面輝度1,000cd/mで定電流駆動したとき、
正面輝度が初期輝度の50%まで低下するまでに要した時間
Figure 2010209143
以上の結果から、本発明の有機電界発光素子用組成物を用いて、長寿命で高効率な有機電界発光素子を実現することができることが分かる。これに対して、本発明の有機電界発光素子用組成物の条件を満たさない比較例1の素子は、実施例1と比較して駆動電圧は同等だったものの最高輝度や効率が低く、駆動寿命も短いものであった。
1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極
10 有機電界発光素子

Claims (8)

  1. ドーパント材料、ホスト材料および溶剤を含有する有機電界発光素子用組成物において、
    該ドーパント材料および該ホスト材料はいずれもトルエンに2wt%以上溶解し、かつ該ドーパント材料および該ホスト材料の分子長が下記式(a)を満たすことを特徴とする、有機電界発光素子用組成物。
    (ドーパント材料の分子長)/(ホスト材料の分子長)≦ 1.4 ・・・(a)
  2. 該ホスト材料が、分子内にアントラセン環を含む化合物であることを特徴とする、請求項1に記載の有機電界発光素子用組成物。
  3. 該ドーパント材料が、下記式(1)で表される化合物であることを特徴とする、請求項1または2に記載の有機電界発光素子用組成物。
    Figure 2010209143
    (式(1)中、Ar31〜Ar35は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基を表す。)
  4. 陽極、陰極、およびこれら両極間に設けられた有機層を有する有機電界発光素子であって、該有機層が、請求項1ないし3のいずれか一項に記載の有機電界発光素子用組成物を用いて形成された層であることを特徴とする、有機電界発光素子。
  5. 該有機電界発光素子用組成物を用いて形成された層が発光層であることを特徴とする、請求項4に記載の有機電界発光素子。
  6. 陽極、陰極、およびこれら両極間に設けられた有機層を有する有機電界発光素子であって、該有機層は、ドーパント材料およびホスト材料を含有し、
    該ドーパント材料および該ホスト材料はいずれもトルエンに2wt%以上溶解し、かつ、該ドーパント材料および該ホスト材料の分子長が下記式(a)を満たすことを特徴とする、有機電界発光素子。
    (ドーパント材料の分子長)/(ホスト材料の分子長)≦ 1.4 ・・・(a)
  7. 請求項4ないし6のいずれか一項に記載の有機電界発光素子を有する、有機ELディスプレイ。
  8. 請求項4ないし6のいずれか一項に記載の有機電界発光素子を有する、有機EL照明。
JP2009053749A 2009-03-06 2009-03-06 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明 Pending JP2010209143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053749A JP2010209143A (ja) 2009-03-06 2009-03-06 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053749A JP2010209143A (ja) 2009-03-06 2009-03-06 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明

Publications (1)

Publication Number Publication Date
JP2010209143A true JP2010209143A (ja) 2010-09-24

Family

ID=42969663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053749A Pending JP2010209143A (ja) 2009-03-06 2009-03-06 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明

Country Status (1)

Country Link
JP (1) JP2010209143A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141274A1 (ja) * 2011-04-12 2012-10-18 富士フイルム株式会社 有機電界発光素子、有機電界発光素子用材料、膜、発光層、及び有機電界発光素子の作製方法
KR20160035611A (ko) * 2012-02-14 2016-03-31 메르크 파텐트 게엠베하 유기 전계발광 소자용 스피로비플루오렌 화합물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070712A1 (ja) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用発光性インク組成物
JP2007110093A (ja) * 2005-09-13 2007-04-26 Mitsubishi Chemicals Corp 有機電界発光素子用組成物及び有機電界発光素子
WO2008056652A1 (fr) * 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Solution contenant un matériau el organique, procédé de synthèse d'un matériau el organique, composé synthétisé par le procédé de synthèse, procédé de formation d'un film mince de matériau el organique, film mince de matériau el organ
JP2008166629A (ja) * 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の合成法、この合成法による合成された化合物、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
WO2008105472A1 (ja) * 2007-02-28 2008-09-04 Idemitsu Kosan Co., Ltd. 有機el材料含有溶液、有機el薄膜形成方法、有機el薄膜を含む有機el素子および有機elディスプレイパネル製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070712A1 (ja) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用発光性インク組成物
JP2007110093A (ja) * 2005-09-13 2007-04-26 Mitsubishi Chemicals Corp 有機電界発光素子用組成物及び有機電界発光素子
WO2008056652A1 (fr) * 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Solution contenant un matériau el organique, procédé de synthèse d'un matériau el organique, composé synthétisé par le procédé de synthèse, procédé de formation d'un film mince de matériau el organique, film mince de matériau el organ
JP2008166629A (ja) * 2006-12-29 2008-07-17 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の合成法、この合成法による合成された化合物、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
WO2008105472A1 (ja) * 2007-02-28 2008-09-04 Idemitsu Kosan Co., Ltd. 有機el材料含有溶液、有機el薄膜形成方法、有機el薄膜を含む有機el素子および有機elディスプレイパネル製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141274A1 (ja) * 2011-04-12 2012-10-18 富士フイルム株式会社 有機電界発光素子、有機電界発光素子用材料、膜、発光層、及び有機電界発光素子の作製方法
JP2012231135A (ja) * 2011-04-12 2012-11-22 Fujifilm Corp 有機電界発光素子、有機電界発光素子用材料、膜、発光層、及び有機電界発光素子の作製方法
KR20160035611A (ko) * 2012-02-14 2016-03-31 메르크 파텐트 게엠베하 유기 전계발광 소자용 스피로비플루오렌 화합물
KR102015765B1 (ko) 2012-02-14 2019-10-21 메르크 파텐트 게엠베하 유기 전계발광 소자용 스피로비플루오렌 화합물

Similar Documents

Publication Publication Date Title
JP6191680B2 (ja) 有機電界発光素子、有機電界発光デバイス、有機el表示装置及び有機el照明
JP5743388B2 (ja) 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP5757244B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
JP5757370B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP2011253722A (ja) 有機電界発光素子、有機el照明及び有機el表示装置
JP5717333B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置及び有機el照明
JP5321700B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP2011026237A (ja) 有機化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010199296A (ja) 有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010219508A (ja) 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2010183010A (ja) 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
WO2011019025A1 (ja) 有機電界発光素子、有機el表示装置及び有機el照明
JP5402703B2 (ja) 有機電界発光素子、有機elディスプレイ、有機el照明及び有機el信号装置
JP2010235708A (ja) 蛍光発光材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5644196B2 (ja) 化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2010184876A (ja) 有機金属錯体、有機電界発光素子用組成物および有機電界発光素子
JP5456282B2 (ja) 有機電界発光素子
JP2010209143A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2014220248A (ja) 有機電界発光素子の製造方法
JP5569630B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP5644147B2 (ja) 有機化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2010209248A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010199295A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010212437A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機el表示装置および有機el照明
JP2010209211A (ja) 有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902