WO2014054596A1 - 有機電界発光素子、有機el照明および有機el表示装置 - Google Patents

有機電界発光素子、有機el照明および有機el表示装置 Download PDF

Info

Publication number
WO2014054596A1
WO2014054596A1 PCT/JP2013/076591 JP2013076591W WO2014054596A1 WO 2014054596 A1 WO2014054596 A1 WO 2014054596A1 JP 2013076591 W JP2013076591 W JP 2013076591W WO 2014054596 A1 WO2014054596 A1 WO 2014054596A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
light emitting
emitting layer
layer
Prior art date
Application number
PCT/JP2013/076591
Other languages
English (en)
French (fr)
Inventor
良子 庄司
善宏 野田
一毅 岡部
敦史 高橋
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020157008083A priority Critical patent/KR20150060737A/ko
Priority to JP2014539740A priority patent/JP5757370B2/ja
Priority to CN201380051057.8A priority patent/CN104685651A/zh
Priority to EP13843402.2A priority patent/EP2905820A1/en
Publication of WO2014054596A1 publication Critical patent/WO2014054596A1/ja
Priority to US14/677,250 priority patent/US20150214499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to an organic electroluminescent element and organic EL lighting and an organic EL display device including the organic electroluminescent element.
  • organic electroluminescent elements have been actively developed as light emitting devices such as displays and lighting.
  • This organic electroluminescent element injects positive and negative charges into an organic thin film between electrodes and takes out an excited state generated by recombination as light.
  • an element using phosphorescence (emission by triplet excitons) instead of fluorescence (emission by singlet excitons) has been studied.
  • phosphorescence emission by triplet excitons
  • fluorescence emission by singlet excitons
  • europium complex, platinum complex or the like is used as phosphorescent molecule.
  • the conventional organic electroluminescence device using phosphorescent molecules is highly efficient, but is insufficient for practical use in terms of driving stability, and it is difficult to realize a highly efficient and long-life device. .
  • a hole blocking layer is generally provided on the cathode side of the light emitting layer in order to increase its efficiency and life.
  • the efficiency can be increased (Patent Document 1), and the deterioration of the layer on the cathode side of the light-emitting layer due to holes can be prevented, and its lifetime is reduced. It is because it is thought that it improves.
  • a material used for the hole blocking layer for example, a pyridine compound is preferably used (Patent Document 2).
  • Patent Document 3 there is a case where the hole blocking layer is not formed to prevent the light emission characteristics and the life from deteriorating. Also, from the viewpoint of driving voltage, it is considered that there is a case where the driving voltage is lowered when the hole blocking layer is not formed.
  • an organic electroluminescence device that emits white light has been studied as an alternative device for white illumination such as a conventional fluorescent lamp.
  • a method for obtaining this white light-emitting organic electroluminescent element for example, in Patent Document 4, two light emitting layers are formed, and a blue light emitting layer is laminated on a yellow to red light emitting layer, whereby a white light emitting layer is obtained.
  • An organic electroluminescent device capable of obtaining light emission is disclosed.
  • Japanese Unexamined Patent Publication No. 2001-284056 Japanese Unexamined Patent Publication No. 2012-033918 Japanese Unexamined Patent Publication No. 2006-156848 Japanese Unexamined Patent Publication No. 2008-159367
  • a fluorescent light emitting material and a phosphorescent light emitting material may be laminated.
  • the actual situation is that sufficient studies have not been made as to how the fluorescent light emitting material and the phosphorescent light emitting material are laminated and what kind of hole blocking layer material should be used.
  • the present invention provides a superior light emission in an organic electroluminescence device that realizes mixed color light emission, preferably white light emission, by laminating a light emitting layer containing a phosphorescent light emitting material and a light emitting layer containing a fluorescent light emitting material.
  • An object of the present invention is to realize an organic electroluminescent element having a structure of a light emitting layer capable of realizing characteristics and having a hole blocking layer capable of lowering a driving voltage.
  • the organic electroluminescent element, organic EL illumination, and organic EL display device of the present invention have the following characteristics ⁇ 1> to ⁇ 10>.
  • An organic electroluminescent device including an anode, a cathode, and a plurality of light emitting layers formed between the anode and the cathode, wherein the plurality of light emitting layers are sequentially formed from the anode side by a wet film formation method.
  • a phosphorescent material and a first charge transport material each of which comprises a first light-emitting layer formed by a vacuum evaporation method and a second light-emitting layer formed by vacuum vapor deposition, each of which is a low-molecular compound.
  • X represents C or N
  • Ar 1 and Ar 2 each independently represent an aromatic ring group which may have a substituent.
  • R 1 has a substituent.
  • X represents C or N
  • Ar 1 to Ar 3 each independently represents an aromatic ring group which may have a substituent.
  • R 1 has a substituent.
  • X represents C or N
  • Ar 1, Ar 3, Ar 21 and Ar 22 represent each independently may have a substituent aromatic ring group.
  • the Ar 21 Ar 22 represents a bond to ring the formed good .R 1 even though the substituent organic group which may number 50 or less carbon atoms have, when R 1 there are a plurality, in each identical L 1 represents a single bond or an aromatic ring group having 25 or less carbon atoms which may have a substituent, and n represents an integer of 0 or more and 4 or less.
  • ⁇ 5> The organic electroluminescence according to any one of ⁇ 1> to ⁇ 4>, wherein Ar 1 is an aromatic hydrocarbon group in at least one of the formulas (1) to (4). element.
  • an emission spectrum of the organic electroluminescent element has a maximum emission wavelength in at least two of a 440 to 500 nm region, a 500 to 580 nm region, and a 580 to 630 nm region.
  • Organic electroluminescent element as described in any one of these.
  • ⁇ 7> The organic electroluminescent element according to any one of ⁇ 1> to ⁇ 6>, further including a hole transport layer between the anode and the light emitting layer.
  • ⁇ 8> The organic electroluminescence device according to ⁇ 7>, wherein the hole transport layer is a layer formed by a wet film formation method.
  • Organic EL illumination including the organic electroluminescent element according to any one of ⁇ 1> to ⁇ 8>.
  • An organic EL display device comprising the organic electroluminescent element according to any one of ⁇ 1> to ⁇ 8>.
  • an organic electroluminescent device that emits light of mixed colors with a low driving voltage, preferably white light.
  • the organic electroluminescent element of the present invention is used for a white light source (for example, a light source of a copying machine, a backlight light source of a liquid crystal display or instruments, a color filter display device), a display plate, or a marker lamp. Can be applied, and its technical value is high.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent element of the present invention.
  • the term “heterocycle” or “hydrocarbon ring” when used, it includes both a ring having aromaticity and a ring having no aromaticity.
  • aromatic ring when simply referred to as “aromatic ring”, it includes both a hydrocarbon aromatic ring and a heteroaromatic ring.
  • the “aromatic ring group” refers to “a group derived from a monocyclic aromatic ring”, “a group derived from a condensed ring in which two or more rings are condensed”, And / or a group in which two or more of the condensed rings are linked via a single bond.
  • the “group derived from the XX ring” means a XX ring having a free valence corresponding to the number of bonds.
  • Free valence refers to those that can form bonds with other free valences as described in Organic Chemistry / Biochemical Nomenclature (above) (Revised 2nd edition, Nankodo, 1992). That is, for example, “a benzene ring having one free valence” refers to a phenyl group, and “a benzene ring having two free valences” refers to a phenylene group.
  • “may have a substituent” means that one or more substituents may be present.
  • (Hetero) aryl means both “aryl” and “heteroaryl”. Further, the “aryl group” means both “aromatic hydrocarbon group” and “aromatic heterocyclic group”.
  • the expression “440 nm to 500 nm” means 440 nm or more and less than 500 nm.
  • the organic electroluminescent element of the present invention is an organic electroluminescent element comprising an anode, a cathode, and a plurality of light emitting layers formed between the anode and the cathode, wherein the plurality of light emitting layers are formed from the anode side.
  • a first light emitting layer formed by a wet film formation method hereinafter sometimes referred to as “coated light emitting layer”
  • a second light emitting layer formed by a vacuum deposition method hereinafter referred to as “vapor deposited light emitting layer”.
  • the coating light emitting layer contains a phosphorescent light emitting material and a first charge transporting material, both of which are low molecular compounds, and the vapor deposition light emitting layer is low in both.
  • a fluorescent compound and a second charge transport material, which are molecular compounds, have a hole blocking layer adjacent to the cathode side of the vapor-deposited light emitting layer, and the hole blocking layer has the following formula (1) It contains the compound represented by this.
  • X represents C or N
  • Ar 1 and Ar 2 each independently represent an aromatic ring group which may have a substituent.
  • R 1 has a substituent. Represents an organic group having 50 or less carbon atoms, and when a plurality of R 1 are present, they may be the same or different, and m represents an integer of 0 to 5.
  • a light-emitting material and a first or second charge transport material (hereinafter sometimes collectively referred to as “charge transport material”), both of which are low molecular compounds.
  • charge transport material a first or second charge transport material
  • the distance between charge transport units connected by polymer chains in the high-molecular-weight charge transport material is the distance that facilitates charge transport or exciton migration. It becomes very difficult to control.
  • the film density in wet film formation and vacuum deposition using a low molecular weight charge transport material is higher than the film density in wet film formation using a high molecular weight charge transport material, and the intermolecular density at the coating / deposition interface is high. Since adhesion becomes high, transfer of electric charge is facilitated, which is preferable in terms of voltage reduction.
  • the organic electroluminescent device of the present invention preferably all low molecular compounds are used as the material for forming the light emitting layer.
  • the organic electroluminescent device of the present invention preferably further has a hole transport layer between the anode and the light emitting layer in order to inject sufficient holes into the light emitting layer closest to the cathode.
  • Each of the coated light-emitting layer and the vapor-deposited light-emitting layer, which are the light-emitting layers of the organic electroluminescent device of the present invention, is characterized by containing a light-emitting material and a first or second charge transport material, both of which are low molecular compounds.
  • the molecular weight of the “low molecular weight compound” in the present invention is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, More preferably, it is the range of 400 or more.
  • the molecular weight of the material used to form the light emitting layer is too small, the heat resistance will be significantly reduced, gas will be generated, the film quality will be degraded when the film is formed, or organic electroluminescence due to migration, etc. In some cases, the morphology of the element may be changed. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound or take a long time to dissolve in the solvent.
  • the molecular weight of the material used for forming the light emitting layer is within the above range, the glass transition temperature, the melting point, the decomposition temperature, etc. are high, the material used for forming the light emitting layer and the formed light emitting layer have good heat resistance, and recrystallization. It is preferable in that it is difficult to cause deterioration in film quality due to crystallization or molecular migration, an increase in impurity concentration due to thermal decomposition of the material, and the like, and it is difficult to reduce device performance, and purification is easy.
  • the molecular weight of the compound is preferably 10,000 or less, more preferably 5000 or less, still more preferably 4000 or less, particularly
  • the low molecular weight compound is preferably 3000 or less, preferably 100 or more, more preferably 200 or more, still more preferably 300 or more, and particularly preferably 400 or more.
  • the organic electroluminescence device of the present invention preferably has a maximum emission wavelength in at least two of the 440 to 500 nm region, 500 to 580 nm region, and 580 to 630 nm region in the emission spectrum.
  • the light emitting material used for forming the light emitting layer is obtained by using an organic electroluminescent device having an emission spectrum of 440 to 500 nm, 500 to 580 nm, and 580 to 630 nm. Among them, there is a method that is appropriately selected and used so that at least two regions have maximum emission wavelengths.
  • the organic electroluminescence device should be used by appropriately selecting the light emitting material used for the light emitting layer so that the emission spectrum of the organic electroluminescence device has a maximum light emission wavelength in each of the 440 to 500 nm region, the 500 to 580 nm region, and the 580 to 630 nm region. Is preferred.
  • the emission spectrum of the organic electroluminescent element of the present invention can be measured using, for example, a spectroscope USB4000 (manufactured by Ocean Optics).
  • a spectroscope USB4000 manufactured by Ocean Optics
  • the measuring device of an emission spectrum is not limited to said measuring device, You may use another measuring device.
  • the light emitting layer in the present invention is a layer which is excited by recombination of holes injected from the anode and electrons injected from the cathode between the electrodes to which an electric field is applied, and becomes a main light emitting source.
  • the film quality of the light emitting layer obtained becomes uniform by having the light emitting layer in order from the anode side, the coated light emitting layer and the vapor deposited light emitting layer. Further, when the phosphorescent material is contained in the coated light emitting layer, high efficiency can be obtained. When the vapor-deposited light emitting layer contains a fluorescent light emitting material, a sufficient light emission intensity can be obtained. Furthermore, an organic electroluminescence device having excellent luminous efficiency is realized by the following mechanism by forming a light emitting layer by laminating a vapor-deposited light emitting layer containing a fluorescent light emitting material on a coated light emitting layer containing a phosphorescent light emitting material. be able to.
  • the phosphorescent material is a complex containing a metal atom having a large atomic weight such as Ir or Pt. Since the chemical surface energy is low and stable when the compound containing a metal atom having a large atomic weight is not present on the outermost surface of the film, the phosphorescent material is hardly present on the outermost surface in the presence of a solvent. It is considered that a large amount of the first charge transport material is present in an extremely thin region on the outermost surface of the dried film.
  • the region where the first charge transport material is abundant is considered to block energy transfer from the fluorescent light-emitting material in the second light-emitting layer (vapor-deposited light-emitting layer) provided thereon to the phosphorescent light-emitting material in the first light-emitting layer. .
  • both the first and second light emitting layers emit light sufficiently, and an organic electroluminescent device having high luminous efficiency can be obtained.
  • a phosphorescent light emitting material is used as the light emitting material of the second light emitting layer (deposited light emitting layer)
  • the following problems may occur. Therefore, in the organic electroluminescent element of the present invention, the light emitting material of the vapor deposited light emitting layer is used.
  • a fluorescent material is used.
  • the phosphorescent material is a molecule having a large molecular weight including a metal atom having a large atomic weight
  • the molecule flying by vacuum deposition has a large thermal energy.
  • a phosphorescent material is vacuum-deposited as a light-emitting material for the second light-emitting layer formed on the first light-emitting layer
  • the surface of the first light-emitting layer may be roughened by collision of phosphorescent material molecules with large thermal energy. Conceivable.
  • the layer surface (interface) with impaired flatness promotes aggregation of the material contained in the layer, and the aggregate causes charge trap formation.
  • the barrier function by the first charge transport material on the surface of the first light-emitting layer which is a feature of the above-described element of the present invention, is impaired by the phosphorescent light-emitting material molecules that come from the vapor deposition, the triplet in the first light-emitting layer.
  • the energy moves into the second light emitting layer the light emission of the first light emitting layer becomes insufficient, and the balance of the light emission color may be lost.
  • fluorescent light emitting material used in the vapor deposition light emitting layer
  • the fluorescent light emitting material used in the vapor deposition light emitting layer will be described.
  • Examples of fluorescent light emitting materials (blue fluorescent dyes) having a maximum emission wavelength in the 440 to 500 nm region and giving blue light emission include naphthalene, chrysene, perylene, pyrene, anthracene, coumarin, and p-bis (2-phenylethenyl). Examples thereof include benzene, arylamine and derivatives thereof. Among these, anthracene, chrysene, pyrene, arylamine and derivatives thereof are preferable.
  • styrylamine compounds and arylamine compounds are preferable in terms of high blue color purity, high efficiency, and long life.
  • styrylamine compound those represented by the following formula (A) are preferable in that holes are efficiently captured in the light emitting layer.
  • Ar 22 is a biphenyl group, a terphenyl group, a stilbene group or a distyryl aryl group
  • Ar 23 and Ar 24 are each independently a hydrogen atom or an aromatic group having 6 to 20 carbon atoms. And when there are a plurality of Ar 23 and Ar 24 , they may be the same or different, and Ar 22 to Ar 24 may have a substituent, and p is 1 to 4 (It is an integer.)
  • At least one of Ar 23 and Ar 24 is an aromatic group having 6 to 20 carbon atoms substituted with a styryl group.
  • the aromatic group having 6 to 20 carbon atoms include aromatic hydrocarbon groups such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a terphenyl group.
  • arylamine compound those represented by the following formula (B) are preferable in that holes are efficiently captured in the light emitting layer.
  • Ar 25 represents a substituted or unsubstituted aryl group having 10 to 40 nuclear carbon atoms
  • Ar 26 and Ar 27 each independently represents a substituted or unsubstituted aryl group having 5 to 40 nuclear carbon atoms
  • Q is an integer of 1 to 4.
  • examples of the aryl group having 10 to 40 nuclear carbon atoms of Ar 25 include a naphthyl group, anthryl group, phenanthryl group, pyrenyl group, chrysenyl group, coronyl group, biphenyl group, terphenyl group, and diphenylanthryl group.
  • Examples of the aryl group having 5 to 40 nuclear carbon atoms of Ar 26 and Ar 27 include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, a coronyl group, a biphenyl group, and a terphenyl group.
  • substituents are alkyl groups having 1 to 6 carbon atoms (ethyl group, methyl group, i-propyl group, n-propyl group, s-butyl group, t-butyl group).
  • Fluorescent light emitting material that gives blue light emission may be used alone or in combination of two or more in any ratio.
  • green fluorescent dyes having a maximum emission wavelength in the 500 to 580 nm region and giving green light emission
  • aluminum complexes such as quinacridone, coumarin, Al (C 9 H 6 NO) 3 and their derivatives. Is mentioned. One of these may be used alone, or two or more may be used in any combination and ratio.
  • red fluorescent dye As a fluorescent light-emitting material (red fluorescent dye) having a maximum emission wavelength in the region of 580 to 630 nm and giving red light, for example, DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, xanthenes such as benzopyran, rhodamine, benzothioxanthene, azabenzothioxanthene, and derivatives thereof. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the phosphorescent light emitting material used in the coated light emitting layer will be described.
  • the phosphorescent material for example, a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 A Werner complex or an organometallic complex containing a metal as a central metal.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. Among these, iridium or platinum is more preferable.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
  • the phosphorescent organometallic complex of the phosphorescent material is preferably a compound represented by the following formula (III) or formula (IV).
  • M represents a metal
  • i represents a valence of the metal M
  • L and L ′ each independently represent a bidentate ligand, and a plurality of L and L ′ are present. They may be the same or different, j represents a number of 0, 1 or 2.
  • M 7 represents a metal
  • T represents a carbon atom or a nitrogen atom.
  • R 92 to R 95 each independently represents a substituent. However, when T is a nitrogen atom, nitrogen is substituted. There is no R 94 or R 95 directly bonded to the atom T. Also, a plurality of T and R 92 to R 95 may be the same or different.
  • M represents an arbitrary metal
  • preferable metals include the metals described above as metals selected from Groups 7 to 11 of the periodic table.
  • bidentate ligand L represents a ligand having the following partial structure.
  • the ring A1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.
  • the aromatic hydrocarbon group include groups derived from a 5- or 6-membered monocyclic ring or a 2-5 condensed ring. Specific examples include monovalent groups derived from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, etc. Is mentioned.
  • the aromatic heterocyclic group include groups derived from a 5- or 6-membered monocyclic ring or a 2-4 condensed ring.
  • furan ring benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, Thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring And monovalent groups derived from cinnoline ring, quinoxaline ring, phenan
  • ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • the nitrogen-containing aromatic heterocyclic group include groups derived from a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, furopyrrole ring, thienofuran ring, benzoisoxazole ring.
  • each of ring A1 and ring A2 may have include a halogen atom; an alkyl group; an alkenyl group; an aralkyl group; an alkoxycarbonyl group; an alkoxy group; an aryloxy group; a dialkylamino group; Carbazolyl group; acyl group; haloalkyl group; cyano group; aromatic hydrocarbon group and the like.
  • bidentate ligand L ′ represents a ligand having the following partial structure.
  • “Ph” represents a phenyl group.
  • L ′ the following ligands are preferable from the viewpoint of stability of the complex.
  • More preferable examples of the compound represented by the formula (III) include compounds represented by the following formula (IIIa), (IIIb) or (IIIc).
  • M 4 represents the same metal as M in the formula (III)
  • w represents the valence of the metal M 4
  • the ring A 1 is an aromatic group optionally having a substituent.
  • ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent, and when there are a plurality of rings A1 and A2, they are the same. But it may be different.
  • M 5 represents the same metal as M in the formula (III)
  • w represents the valence of the metal M 5
  • the ring A 1 is an aromatic group optionally having a substituent.
  • ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent, and when there are a plurality of rings A1 and A2, they are the same. But it may be different.
  • M 6 represents the same metal as M in formula (III)
  • w represents the valence of the metal M 6
  • v represents 0, 1 or 2
  • ring A1 and ring A1 ′ each independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent
  • ring A2 and ring A2 ′ each independently have a substituent.
  • a nitrogen-containing aromatic heterocyclic group which may be the same or different when a plurality of ring A1, ring A2, ring A1 ′ and ring A2 ′ are present.
  • preferred examples of the ring A1 and the ring A1 ′ include phenyl group, biphenyl group, naphthyl group, anthryl group, thienyl group, furyl group, benzothienyl group, benzofuryl group, pyridyl group. Quinolyl group, isoquinolyl group, carbazolyl group and the like.
  • ring A2 and ring A2 ′ include pyridyl group, pyrimidyl group, pyrazinyl group, triazinyl group, benzothiazole group, benzoxazole group, benzimidazole group, quinolyl group, An isoquinolyl group, a quinoxalyl group, a phenanthridinyl group, and the like can be given.
  • the aromatic group of ring A1 and ring A1 ′ and the nitrogen-containing aromatic heterocyclic group of ring A2 and ring A2 ′ may have a halogen atom;
  • a diarylamino group having 8 to 24 carbon atoms, a 5- or 6-membered monocyclic ring or an aromatic hydrocarbon ring group or carbazolyl group which is a 2 to 4 condensed ring further has a substituent at the aryl moiety constituting the group.
  • the substituent may be substituted with an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aralkyl group having 1 to 24 carbon atoms, or an alkyl group having 1 to 12 carbon atoms.
  • substituents may be connected to each other to form a ring.
  • a substituent of the ring A1 and a substituent of the ring A2 are bonded, or a substituent of the ring A1 ′ and a substituent of the ring A2 ′ are bonded.
  • a condensed ring may be formed. Examples of such a condensed ring include a 7,8-benzoquinoline group.
  • substituent for ring A1, ring A1 ′, ring A2 and ring A2 ′ more preferably, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an aralkyl group having 1 to 24 carbon atoms.
  • An aromatic hydrocarbon ring group which is a 5- or 6-membered monocyclic ring or a 2-4 condensed ring, a cyano group, a halogen atom, a haloalkyl group, a diarylamino group having 8 to 24 carbon atoms, and a carbazolyl group, and more preferably Is an aromatic hydrocarbon ring group which is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aralkyl group having 1 to 24 carbon atoms, a 5- or 6-membered monocyclic ring or a 2 to 4 condensed ring A diarylamino group having 8 to 24 carbon atoms and a carbazolyl group.
  • the aromatic hydrocarbon ring group which is a 5- or 6-membered monocyclic ring or a 2-4 condensed ring, a diarylamino group having 8 to 24 carbon atoms, and a carbazolyl group further have a substituent at the aryl moiety constituting the group.
  • the substituents are as described above.
  • M 4 to M 6 in the formulas (IIIa) to (IIIc) include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold.
  • the organometallic complexes represented by the above formula (III) in particular, as the ligand L and / or L ′, any 2-arylpyridine-based ligand, that is, any of 2-arylpyridine and 2-arylpyridine may be used.
  • a compound having a substituent bonded thereto and a compound obtained by condensing an arbitrary group to 2-arylpyridine is preferable.
  • the compounds described in International Publication No. 2005/019373 can also be used as the light emitting material.
  • M 7 represents a metal.
  • Specific examples include the metals described above as the metal selected from Groups 7 to 11 of the periodic table. Among these, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold is preferable, and divalent metals such as platinum and palladium are particularly preferable.
  • R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, Represents an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group;
  • R 94 and R 95 each independently represents a substituent represented by the same exemplary compounds and R 92 and R 93. Further, when T is a nitrogen atom, there is no R 94 or R 95 directly bonded to the T. R 92 to R 95 may further have a substituent. When it has a substituent, there is no restriction
  • a phosphorescent luminescent material for every wavelength area
  • the first light emitting layer (the layer on the anode side of the light emitting layer) formed by a wet film forming method is used as the coated light emitting layer. That is, as described above, phosphorescent materials generally have a large molecular weight. If the first light-emitting layer is formed by a vacuum deposition process, the phosphorescent light-emitting material molecules that have come from the vapor deposition have large thermal energy and are attached to the outermost surface of the layer at the final stage of the deposition process. After the molecules move on the surface of the layer, the molecules aggregate and stabilize.
  • the aggregate of phosphorescent material molecules is present more in the outermost layer than in the inside of the light emitting layer. Since this aggregate serves as a trap for excitons and charges present in both the first light emitting layer and the second light emitting layer, it is considered that the driving voltage of the device is increased and the light emission efficiency is decreased. Therefore, the first light emitting layer is preferably a coated light emitting layer.
  • the fluorescent light-emitting material generally has a molecular weight that is not as large as that of the phosphorescent light-emitting material. For this reason, the molecules of the fluorescent light emitting material that have come and adhered to the substrate by the vapor deposition process have relatively small thermal energy and do not move much even on the outermost surface of the layer (the probability of forming an aggregate is low). Conceivable.
  • the “wet film-forming method” refers to a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, a capillary coating method, a nozzle printing method, and an inkjet method.
  • a method of forming a film using an ink containing a solvent such as a screen printing method, a gravure printing method, a flexographic printing method, and an offset printing.
  • the nozzle printing method, die coating method, roll coating method, spray coating method, ink jet method, gravure printing method or flexographic printing method are preferable in terms of ease of patterning, and the nozzle printing method and ink jet method in terms of obtaining uniform film quality.
  • the method, the gravure printing method and the flexographic printing method are particularly preferable.
  • the coated light emitting layer is formed by the wet film forming method using the phosphorescent light emitting material, the low molecular weight first charge transport material, and a composition for forming a light emitting layer further containing a solvent.
  • the solvent for forming the coating light emitting layer is not particularly limited as long as the phosphorescent light emitting material and the first charge transporting material described below are well dissolved.
  • the solubility of the solvent the phosphorescent material and the first charge transport material are each usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight at normal temperature / normal pressure. % Or more is preferable.
  • a solvent is given to the following, as long as the effect of this invention is not impaired, it is not limited to these.
  • alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, and bicyclohexane
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, and tetralin
  • halogenated aromatics such as chlorobenzene, dichlorobenzene, and trichlorobenzene
  • Group hydrocarbons 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethyl
  • Aromatic ethers such as anisole and diphenyl ether
  • aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate
  • alkanes and aromatic hydrocarbons are preferable.
  • One of these solvents may be used alone, or two or more thereof may be used in any combination and ratio.
  • the solvent evaporates from the liquid film immediately after the film formation at an appropriate rate.
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 300 ° C. or lower, preferably 270 ° C. or lower, more preferably 250 ° C. or lower.
  • the amount of the solvent used is arbitrary as long as the effect of the present invention is not significantly impaired, but is preferably 10 parts by weight or more, more preferably 50 parts by weight or more, particularly preferably with respect to 100 parts by weight of the light emitting layer forming composition. Is 80 parts by weight or more, preferably 99.99 parts by weight or less, more preferably 99.95 parts by weight or less, and particularly preferably 99.90 parts by weight or less.
  • the content of the solvent in the composition for forming a light emitting layer is less than the lower limit, the viscosity becomes too high, and film forming workability may be lowered.
  • the coated light emitting layer is preferably a layer having a maximum light emitting wavelength in at least one of the 440 to 500 nm region, the 500 to 580 nm region, and the 580 to 630 nm region. Is a blue light emitting material having a maximum emission wavelength in the 440 to 500 nm region, a green light emitting material having a maximum emission wavelength in the 500 to 580 nm region, and a red light emitting material having a maximum emission wavelength in the 580 to 630 nm region.
  • the coated light emitting layer preferably contains a phosphorescent light emitting material from the viewpoint of obtaining high light emission efficiency.
  • the coated light emitting layer preferably contains a red phosphorescent material and / or a green phosphorescent material. This is because a layer containing a red to green light emitting material with a narrow energy gap is arranged on the anode side, so that a layer adjacent to the anode side of the light emitting layer from a blue light emitting material with a wide energy gap (for example, a hole transport layer). ) By suppressing the energy transfer to.
  • the light emitting material is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and usually 20% by weight or less, preferably Is contained in an amount of 10% by weight or less, more preferably 5% by weight or less.
  • the coated light emitting layer in the present invention contains a first charge transport material.
  • the first charge transport material is a compound having a charge transport property such as a hole transport property and an electron transport property, and is a compound defined by a single molecular weight.
  • the light emitting layer according to the present invention preferably includes a light emitting material as a dopant material and a first charge transport material as a host material.
  • the first charge transport material may be any low molecular weight compound conventionally used in the light emitting layer of an organic electroluminescent device, and a compound used as a host material for the light emitting layer is particularly preferable.
  • the first charge transport material examples include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which a tertiary amine is linked with a fluorene group, Hydrazone compounds, silazane compounds, silanamine compounds, phosphamine compounds, quinacridone compounds, anthracene compounds, pyrene compounds, carbazole compounds, pyridine compounds, styryl compounds, phenanthroline compounds, oxadiazole compounds, Examples include silole compounds.
  • the first charge transport material is roughly classified into a hole transport compound and an electron transport compound.
  • the coated light emitting layer may contain a hole transporting compound as a constituent material.
  • a hole transporting compound examples of low molecular weight hole transporting compounds are represented by, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl.
  • Aromatic diamines containing two or more tertiary amines and having two or more condensed aromatic rings substituted with nitrogen atoms Japanese Patent Laid-Open No.
  • Aromatic amine compounds having a starburst structure such as (1-naphthylphenylamino) triphenylamine (Journal of Luminescence, 1997, Vol. 72-74, pp. 985), aroma comprising a tetramer of triphenylamine Group amine compounds (Chemical Communications, 1996, pp. 2175), 2,2 ′, 7,7′-tetrakis- (diphenyl) Mino) -9,9'-spirobifluorene, etc. spiro compounds of (Synthetic Metals, 1997 years, Vol.91, pp.209), and the like.
  • 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the coated light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 ''-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4, 7-diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4,4′-bis (9-carbazole) -biphenyl (CBP) and the like.
  • BND 2,5-bis (1-naphthyl) -1,
  • only 1 type may be used for an electron transport compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • only 1 type may be used for said 1st charge transport material, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the coating light emitting layer includes a red phosphorescent light emitting material and a green phosphorescent light emitting material
  • the first charge transport material an aromatic amine compound, a compound in which a tertiary amine is linked by a fluorene group, a carbazole compound, A pyridine type compound and a silole type compound are mentioned.
  • Specific examples of the first charge transport material suitable for the present invention are listed below, but the present invention is not limited to these.
  • the first charge transport material is usually 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more, and usually 20% by weight or less. Preferably it contains 10 weight% or less, More preferably, it contains 5 weight% or less.
  • the ratio of the content of the light emitting material and the first charge transport material in the light emitting layer forming composition is usually 0.01 or more, preferably 0.03 or more, Usually, it is 0.5 or less, preferably 0.3 or less.
  • the composition for light emitting layer formation in this invention is application
  • the content of these other components does not significantly inhibit the charge transfer of the formed thin film (coated light emitting layer), does not inhibit the light emission of the light emitting material, does not deteriorate the film quality of the thin film
  • the content in the coated light emitting layer is usually 5% by weight or less, preferably 1% by weight or less, more preferably 0.5% by weight or less, and particularly preferably 0% by weight (not contained). From the viewpoint of the effect of the present invention, it is preferable that not only the light emitting material and the first charge transport material contained in the composition for forming a light emitting layer, but also all materials contained in the coated light emitting layer are low molecular compounds. .
  • a second light emitting layer (a layer formed from the anode side through the first light emitting layer through the first light emitting layer) formed by vacuum vapor deposition is used as the vapor deposited light emitting layer.
  • the “vacuum deposition method” refers to a method of forming a layer by evaporating a compound in a vacuum.
  • the degree of vacuum in order to facilitate the prevention of collision of the vacuum deposition machine of residual gas molecules, evaporated to lower the evaporation temperature of the vapor deposition material is usually 10 -2 Pa or less 10 -6, 10 - 3 Pa or less and 10 ⁇ 5 or more are preferable.
  • the vapor-deposited light-emitting layer is a layer containing a fluorescent light-emitting material from the viewpoint of ease of vapor deposition.
  • the vapor-deposited light emitting layer preferably contains at least a blue light emitting material having a maximum light emission wavelength particularly in the 440 to 500 nm region.
  • the vapor-deposited luminescent layer in the present invention usually contains a second charge transport material in addition to the luminescent material.
  • a second charge transport material in addition to the luminescent material.
  • a well-known low molecular-weight material can be used.
  • the vapor-deposited light-emitting layer contains a blue fluorescent light-emitting material, it is particularly preferable to use a compound represented by the following formula (VI) as the second charge transport material from the viewpoint of excellent durability.
  • Ar 1A and Ar 1B each independently represent an aromatic hydrocarbon group that may have a substituent, or an aromatic heterocyclic group that may have a substituent.
  • the anthracene ring in formula (VI) may have a substituent other than Ar 1A and Ar 1B .
  • aromatic hydrocarbon group of Ar 1A and Ar 1B include a benzene ring such as a benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, pyrene ring, chrysene ring, naphthacene ring, benzophenanthrene ring, or benzene ring And a group derived from a condensed ring formed by condensation of 2 to 5 of these groups and a group having 25 or less carbon atoms formed by linking two or more of these groups.
  • a benzene ring such as a benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, pyrene ring, chrysene ring, naphthacene ring, benzophenanthrene ring, or benzene ring
  • aromatic heterocyclic group for Ar 1A and Ar 1B include a furan ring, a benzofuran ring, a dibenzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, Carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring , Pyridazine ring, pyrimidine ring, triazine
  • the aromatic hydrocarbon group in Ar 1A and Ar 1B may have, an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkoxy group, a (hetero) aryloxy group, an alkylthio group , (Hetero) arylthio groups, cyano groups, dialkylamino groups, alkylarylamino groups, diarylamino groups, and the like.
  • alkyl groups and aromatic hydrocarbon groups are compounds having stability of the compound. From the viewpoint, an aromatic hydrocarbon group is particularly preferable.
  • the alkyl group as a substituent that the aromatic hydrocarbon group in Ar 1A and Ar 1B may have is preferably an alkyl group having 1 to 20 carbon atoms.
  • a methyl group, an ethyl group, a propyl group, an iso- Examples include propyl group, butyl group, iso-butyl group, sec-butyl group, tert-butyl group, hexyl group, octyl group, cyclohexyl group, decyl group, octadecyl group and the like.
  • a methyl group, an ethyl group, an iso-propyl group, a sec-butyl group, and a tert-butyl group are preferable.
  • a methyl group and an ethyl group are preferable from the viewpoint of availability of raw materials and low cost.
  • aromatic hydrocarbon group those having 6 to 25 carbon atoms are preferable, and an aromatic hydrocarbon group derived from a 6-membered monocyclic ring or a 2 to 5 condensed ring is preferable.
  • aromatic hydrocarbon group derived from a 6-membered monocyclic ring or a 2 to 5 condensed ring examples thereof include groups derived from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, and the like.
  • aromatic heterocyclic group those having 3 to 20 carbon atoms are preferable.
  • alkoxy group those having 1 to 20 carbon atoms are preferable, and examples thereof include a methoxy group, an ethoxy group, an isopropyloxy group, a cyclohexyloxy group, and an octadecyloxy group.
  • (hetero) aryloxy group those having 3 to 20 carbon atoms are preferable, and examples thereof include a phenoxy group, a 1-naphthyloxy group, a 9-anthryloxy group, and a 2-thienyloxy group.
  • alkylthio group those having 1 to 20 carbon atoms are preferable, and examples thereof include a methylthio group, an ethylthio group, an isopropylthio group, a cyclohexylthio group, and the like.
  • the (hetero) arylthio group is preferably one having 3 to 20 carbon atoms, and examples thereof include a phenylthio group, a 1-naphthylthio group, a 9-anthrylthio group, and a 2-thienylthio group.
  • the dialkylamino group is preferably one having 2 to 29 carbon atoms, and examples thereof include a diethylamino group, a diisopropylamino group, and a methylethylamino group.
  • the alkylarylamino group preferably has 7 to 30 carbon atoms, and examples thereof include a methylphenylamino group.
  • the diarylamino group those having 12 to 30 carbon atoms are preferable, and examples thereof include a diphenylamino group and a phenylnaphthylamino group.
  • These substituents may further have a substituent, and examples of the substituent include the above-described alkyl group, aromatic hydrocarbon group, aromatic heterocyclic group, alkoxy group, diarylamino group and the like. Can be mentioned. However, the case where the substituents are bonded to form a ring is excluded.
  • the preferable specific example of the 2nd charge transport material contained in a vapor deposition light emitting layer is shown below, this invention is not limited to these.
  • Any one of the second charge transport materials may be used, or two or more may be used in any combination and ratio.
  • the vapor deposition light emitting layer in this invention may contain the other component, unless the effect of this invention is impaired.
  • the other components that may be included are the same as those described in the section ⁇ Other components> of the ⁇ Coated light emitting layer ⁇ .
  • the light emitting material is usually 0.001% by weight or more, preferably 0.005% by weight or more, more preferably 0.01% by weight or more, and usually 30% by weight or less, preferably 20% by weight. % Or less, more preferably 15% by weight or less.
  • the second charge transport material is usually 0.001% by weight or more, usually 99.999% by weight or less, preferably 99.995% by weight or less, more preferably 99.99% by weight. % Or less.
  • the content ratio of the light emitting material to the second charge transport material in the vapor-deposited light emitting layer is usually 0.01 or more, preferably 0.03 or more, and usually 0.00. 5 or less, preferably 0.2 or less.
  • the component does not significantly inhibit the charge transfer of the formed thin film (vapor-deposited luminescent layer), does not inhibit the luminescence of the luminescent material, and deteriorates the film quality of the thin film. From the standpoint of not allowing it, etc., it is usually 5% by weight or less, preferably 1% by weight or less, more preferably 0.5% by weight or less, and particularly preferably 0% by weight (not contained).
  • a vacuum is formed between the coated light emitting layer and the vapor deposited light emitting layer using a charge transport material for the purpose of suppressing energy transfer between the coated light emitting layer and the vapor deposited light emitting layer.
  • the film thickness of the coated light emitting layer is preferably in the range of 2 to 100 nm, and in particular in the range of 3 to 60 nm, the driving voltage of the resulting device can be lowered. It is preferable in that it can be performed.
  • the film thickness of the vapor-deposited light emitting layer is preferably in the range of 2 to 100 nm, and particularly preferably in the range of 3 to 60 nm, from the viewpoint that the driving voltage of the resulting element can be lowered.
  • the total film thickness of the light emitting layer according to the present invention (that is, the total film thickness including the coated light emitting layer, the vapor deposited light emitting layer, and the intermediate layer when the intermediate layer is included) is in the range of 5 to 100 nm. In particular, the range of 10 to 80 nm is preferable from the viewpoint of the low driving voltage of the resulting device and the stability of the emission color.
  • the hole blocking layer according to the present invention improves the efficiency of the device by confining holes injected from the anode in the light emitting layer, and prevents deterioration due to the flow of holes to the cathode side.
  • This layer is provided and is adjacent to the cathode side of the second light emitting layer.
  • the compound contained in the hole blocking layer in the present invention will be described.
  • X represents C or N.
  • Ar 1 and Ar 2 each independently represent an aromatic ring group which may have a substituent.
  • R 1 has a substituent. Represents an organic group having 50 or less carbon atoms, and when a plurality of R 1 are present, they may be the same or different, and m represents an integer of 0 to 5.
  • the aromatic ring groups Ar 1 and Ar 2 are substituted on the quinoline ring or the quinazoline ring, and m R 1 is further substituted. It is characterized by having a structure.
  • the compound of the present invention has a relatively broadest lowest orbital (LUMO) centered on a quinoline ring or a quinazoline ring as compared with a compound having a pyridine ring or a pyrimidine ring, so that the charge is The quinoline ring or the quinazoline ring is distributed more delocalized around the center.
  • LUMO lowest orbital
  • the electron transfer to the adjacent light-emitting layer becomes smooth, which contributes to a decrease in driving voltage, and the adjacent fluorescent material becomes difficult to quench, thereby contributing to an improvement in luminous efficiency.
  • the organic electroluminescence element has a function of improving the durability.
  • the structure in which the aromatic ring group Ar 1 is substituted at the 4-position of the quinoline ring or the quinazoline ring improves the durability of the organic electroluminescent device in order to suppress decomposition of the ring.
  • the quinoline ring is more preferable than the quinazoline ring.
  • Ar 1 and Ar 2 in the formula (1) represent an aromatic ring group which may have a substituent.
  • the aromatic ring group for Ar 1 and Ar 2 is preferably one having 3 to 25 carbon atoms.
  • aromatic ring group examples include a phenyl group; a biphenyl group such as a 3-biphenyl group and a 4-biphenyl group; Terphenyl group; naphthyl group such as 1-naphthyl group and 2-naphthyl group; anthryl group such as 1-anthryl group, 2-anthryl group and 9-anthryl group; phenanthryl group such as 9-phenanthryl group; 1-naphthacenyl group A naphthacenyl group such as a 2-naphthacenyl group; a 1-chrysenyl group, a 2-chrycenyl group, a 3-chrycenyl group, a 4-chrycenyl group, a 5-chrycenyl group, a 6-chrysenyl group such as a 1-pyrenyl group; Pyrenyl group; triphenylenyl group such as 1-triphenylen
  • Ar 1 and Ar 2 are preferably a phenyl group, a 3-biphenyl group, a 4-biphenyl group, a 2-naphthyl group, a 9-phenanthryl group, and a 9-anthryl group.
  • a biphenyl group, a 4-biphenyl group, and a 2-naphthyl group are particularly preferable from the viewpoint of easy purification of the compound, and a phenyl group, a 3-biphenyl group, and a 4-biphenyl group are most preferable.
  • Ar 1 and Ar 2 may have a substituent.
  • substituents include an alkyl group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, and a carbon number.
  • Diarylamino groups such as arylthio group, cyano group, diphenylamino group and the like.
  • These groups may further have a substituent, and specific examples thereof are the same as those exemplified as the substituents for Ar 1 and Ar 2 .
  • an alkyl group and an aromatic hydrocarbon group are preferable from the viewpoint of stability of the compound, and an aromatic hydrocarbon group is particularly preferable.
  • Examples of the alkyl group having 1 to 20 carbon atoms as the substituent that Ar 1 and Ar 2 may have include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an iso-butyl group, sec -Butyl group, tert-butyl group, hexyl group, octyl group, cyclohexyl group, decyl group, octadecyl group and the like.
  • they are a methyl group, an ethyl group, and an isopropyl group.
  • a methyl group and an ethyl group are preferable from the viewpoint of availability of raw materials and low cost.
  • Examples of the aromatic hydrocarbon group having 6 to 25 carbon atoms as the substituent that Ar 1 and Ar 2 may have include a phenyl group; a naphthyl group such as a 1-naphthyl group and a 2-naphthyl group; Anthryl group such as anthryl group, 2-anthryl group and 9-anthryl group; phenanthryl group such as 9-phenanthryl group; naphthacenyl group such as 1-naphthacenyl group and 2-naphthacenyl group; , 3-chrysenyl group, 4-chrycenyl group, 5-chrycenyl group, 6-chrycenyl group and the like chrysenyl group; 1-pyrenyl group such as 1-triphenylenyl group; 1-triphenylenyl group such as 1-coronenyl group Groups; biphenyl groups such as 4-biphenyl group and 3-biphenyl group
  • a phenyl group, 2-naphthyl group, 9-phenanthryl group, 9-anthryl group, 4-biphenyl group, and 3-biphenyl group are preferred from the viewpoint of stability of the compound, and phenyl is preferred because of the ease of purification of the compound.
  • Group, 2-naphthyl group and 3-biphenyl group are particularly preferred.
  • Examples of the aromatic heterocyclic group having 3 to 20 carbon atoms as a substituent that Ar 1 and Ar 2 may have include a thienyl group such as a 2-thienyl group, a furyl group such as a 2-furyl group, Examples thereof include an imidazolyl group such as a 2-imidazolyl group, a carbazolyl group such as a 9-carbazolyl group, a pyridyl group such as a 2-pyridyl group, and a triazine-yl group such as a 1,3,5-triazin-2-yl group. Of these, a 9-carbazolyl group is preferable from the viewpoint of stability of the compound.
  • Examples of the alkyloxy group having 1 to 20 carbon atoms as the substituent that Ar 1 and Ar 2 may have include a methoxy group, an ethoxy group, an isopropyloxy group, a cyclohexyloxy group, an octadecyloxy group, and the like. It is done.
  • Examples of the (hetero) aryloxy group having 3 to 20 carbon atoms as the substituent that Ar 1 and Ar 2 may have include a phenoxy group, a 1-naphthyloxy group, a 9-anthryloxy group, 2 -Thienyloxy group and the like.
  • Examples of the alkylthio group having 1 to 20 carbon atoms as the substituent that Ar 1 and Ar 2 may have include a methylthio group, an ethylthio group, an isopropylthio group, a cyclohexylthio group, and the like.
  • Examples of the (hetero) arylthio group having 3 to 20 carbon atoms as the substituent that Ar 1 and Ar 2 may have include a phenylthio group, a 1-naphthylthio group, a 9-anthrylthio group, a 2-thienylthio group, and the like Is mentioned.
  • the substitution position is not particularly limited. For example, when Ar 1 is a phenyl group, a para-position or a meta with respect to the substitution position on the quinoline ring or the quinazoline ring. Is preferred.
  • R 1 in formula (1) is a substituent bonded to the quinoline ring or quinazoline ring, and m represents the number of R 1 substituted on the ring.
  • R 1 in Formula (1) represents an organic group having 50 or less carbon atoms, and these may have a substituent. When it has a substituent, the carbon number of the organic group of R 1 is usually 50 or less including the substituent, and preferably 30 or less.
  • organic group represented by R 1 examples include an alkyl group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 25 carbon atoms, an aromatic heterocyclic group having 3 to 20 carbon atoms, and an alkyl group having 1 to 20 carbon atoms.
  • examples thereof include an alkyloxy group, a (hetero) aryloxy group having 3 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, a (hetero) arylthio group having 3 to 20 carbon atoms, and a cyano group.
  • R 1 is preferably an alkyl group, an aromatic hydrocarbon group, or an aromatic heterocyclic group from the viewpoint of stability of the compound, and particularly preferably an aromatic hydrocarbon group.
  • Examples of the alkyl group having 1 to 20 carbon atoms as the organic group for R 1 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, iso-butyl group, sec-butyl group, tert-butyl group, A hexyl group, an octyl group, a cyclohexyl group, a decyl group, an octadecyl group, etc. are mentioned.
  • they are a methyl group, an ethyl group, and an isopropyl group.
  • a methyl group and an ethyl group are preferable from the viewpoint of availability of raw materials and low cost.
  • Examples of the aromatic hydrocarbon group having 6 to 25 carbon atoms as the organic group for R 1 include phenyl group; naphthyl group such as 1-naphthyl group and 2-naphthyl group; 1-anthryl group, 2-anthryl group, Anthryl group such as 9-anthryl group; phenanthryl group such as 9-phenanthryl group; naphthacenyl group such as 1-naphthacenyl group and 2-naphthacenyl group; Groups, a chrycenyl group such as a 5-chrycenyl group and a 6-chrycenyl group; a pyrenyl group such as a 1-pyrenyl group; a triphenylenyl group such as a 1-triphenylenyl group; a coronenyl group such as a 1-coronenyl group and the like.
  • a phenyl group, 2-naphthyl group, 1-anthryl group, 9-anthryl group, and 9-phenanthryl group are preferable from the viewpoint of stability of the compound, and phenyl group, 2-naphthyl group are preferable from the viewpoint of easy purification of the compound.
  • the group is particularly preferred.
  • Examples of the aromatic heterocyclic group having 3 to 20 carbon atoms as the organic group for R 1 include thienyl group such as 2-thienyl group, furyl group such as 2-furyl group, imidazolyl group such as 2-imidazolyl group, Examples thereof include a carbazolyl group such as 9-carbazolyl group, a pyridyl group such as 2-pyridyl group, and a triazin-yl group such as 1,3,5-triazin-2-yl group. Of these, a 9-carbazolyl group is preferable from the viewpoint of stability of the compound.
  • Examples of the alkyloxy group having 1 to 20 carbon atoms as the organic group for R 1 include methoxy group, ethoxy group, isopropyloxy group, cyclohexyloxy group, octadecyloxy group and the like. Of these, methoxy group and ethoxy group are preferable from the viewpoint of high glass transition temperature.
  • Examples of the (hetero) aryloxy group having 3 to 20 carbon atoms as the organic group for R 1 include phenoxy group, 3-phenoxyphenoxy group, 2-naphthyloxy group, 9-anthryloxy group, 2-thienyloxy Groups and the like. Of these, a phenoxy group, a 3-phenoxyphenoxy group, and a 2-naphthyloxy group are preferable from the viewpoint of ease of purification of the compound, and a 3-phenoxyphenoxy group is particularly preferable.
  • Examples of the alkylthio group having 1 to 20 carbon atoms as the organic group for R 1 include a methylthio group, an ethylthio group, an isopropylthio group, a cyclohexylthio group, and the like. Among these, a methylthio group and an ethylthio group are preferable from the viewpoint of a high glass transition temperature.
  • Examples of the (hetero) arylthio group having 3 to 20 carbon atoms as the organic group for R 1 include a phenylthio group, a 1-naphthylthio group, a 9-anthrylthio group, and a 2-thienylthio group. These organic groups may further have a substituent, and examples of the substituent include those exemplified as the substituent for Ar 1 described above.
  • X represents C or N.
  • Ar 1 to Ar 3 each independently represents an aromatic ring group which may have a substituent.
  • R 1 has a substituent. Represents an organic group having 50 or less carbon atoms, and when there are a plurality of R 1 s , they may be the same or different, and n represents an integer of 0 or more and 4 or less.
  • Ar 1 , Ar 2 and Ar 3 in the formula (2) has the same meaning as Ar 1 in each of the formulas (1).
  • Specific examples, preferred examples and preferred substituents of Ar 1 , Ar 2 , and Ar 3 may have specific examples, preferred examples and preferred examples of Ar 1 in the formula (1), respectively. It is the same as the substituent.
  • R 1 in formula (2) has the same meaning as R 1 in the formula (1).
  • n represents the number of R 1 substituted on the quinoline ring or the quinazoline ring.
  • n is an integer of 0 or more and 4 or less, preferably 0 or more and 2 or less, particularly preferably 0 or more and 1 or less, and n being 0 means that R 1 is not substituted on the ring.
  • the plurality of R 1 substituted on the ring may be the same or different.
  • X is a .Ar 1, Ar 3, Ar 21 and Ar 22 represent each independently may have a substituent aromatic ring group.
  • the Ar 21 represents C or N Ar 22 represents a bond to ring the formed good .R 1 even though the substituent organic group which may number 50 or less carbon atoms have, when R 1 there are a plurality, in each identical L 1 represents a single bond or an aromatic ring group having 25 or less carbon atoms which may have a substituent, and n represents an integer of 0 or more and 4 or less.
  • Ar 1 , Ar 3 , Ar 21 and Ar 22 > Ar 1, Ar 3, Ar 21 and Ar 22 in the formula (3) has the same meaning as Ar 1 in each of the formulas (1).
  • Specific examples, preferred examples and preferred substituents of Ar 1 , Ar 3 , Ar 21 and Ar 22 may have specific examples, preferred examples and preferred examples of Ar 1 in the formula (1). It is the same as a good substituent.
  • R 1 and n in the formula (3) are respectively synonymous with R 1 and n in the formula (2).
  • L 1 in Formula (3) represents an aromatic ring group having 25 or less carbon atoms which may have a single bond or a substituent.
  • Specific examples of the aromatic ring group having 25 or less carbon atoms include an aromatic hydrocarbon group having 6 to 25 carbon atoms and an aromatic heterocyclic group having 3 to 25 carbon atoms.
  • an aromatic hydrocarbon group is a compound. From the standpoint of stability.
  • Examples of the aromatic hydrocarbon group having 6 to 25 carbon atoms of L 1 include a phenylene group such as a 1,4-phenylene group and a 1,3-phenylene group; a naphthylene group such as a 1,6-naphthylene group; A phenanthrylene group such as a 9-phenanthrylene group; an anthrylene group such as a 2,6-anthrylene group or a 9,10-anthrylene group; a pyrenylene group such as a 1,6-pyrenylene group; A phenylene group; a biphenylene group such as a 4,4′-biphenylene group, a 3,3′-biphenylene group, a 4,3′-biphenylene group, and the like.
  • 1,4-phenylene group, 1,3-phenylene group, 3,3′-biphenylene group, 4,3′-biphenylene group, and 1,6-naphthylene group are preferable from the viewpoint of stability of the compound. From the viewpoint of ease of purification, 1,3-phenylene group, 3,3′-biphenylene group, and 1,6-naphthylene group are particularly preferable.
  • Examples of the aromatic heterocyclic group having 3 to 25 carbon atoms of L 1 include a thienylene group such as a 2,5-thienylene group, a furylene group such as a 2,5-furylene group, and a pyridylene such as a 2,6-pyridylene group. And quinolylene groups such as a 2,6-quinolylene group. Of these, 2,6-pyridylene group and 2,6-quinolylene group are preferable from the viewpoint of stability of the compound.
  • the substituent that L 1 may have is the same as the substituent that Ar 1 of formula (1) may have.
  • X is a .Ar 1, Ar 3, Ar 21 and Ar 22 represent each independently may have a substituent aromatic ring group.
  • the Ar 21 represents C or N Ar 22 represents a bond to ring the formed good .R 1 even though the substituent organic group which may number 50 or less carbon atoms have, when R 1 there are a plurality, in each identical L 1 represents a single bond or an aromatic ring group having 25 or less carbon atoms which may have a substituent, and n represents an integer of 0 or more and 4 or less.
  • Ar 1 , Ar 3 , Ar 21 , Ar 22 , R 1 , L 1 and n Ar 1 , Ar 3 , Ar 21 , Ar 22 , R 1 , L 1 and n in the formula (4) are respectively Ar 1 , Ar 3 , Ar 21 , Ar 22 , R 1 , L in the formula (3). Synonymous with 1 and n.
  • Specific examples, preferred examples, and substituents that Ar 1 , Ar 3 , Ar 21 , Ar 22 , R 1 and L 1 may have are Ar 1 , Ar 3 , Ar 21 in formula (3), respectively.
  • Ar 22 , R 1 , L 1 and n are the same as the specific examples, preferred examples and the substituents that may be present.
  • the upper limit of the molecular weight of the compound represented by the formula (1) of the present invention is usually 7000 or less, preferably 5000 or less, particularly preferably considering the ease of purification of the compound. In consideration of high purity by sublimation purification of 3000 or less, most preferably 1500 or less. Further, the lower limit of the molecular weight of the compound represented by the formula (1) of the present invention is usually 100 or more, and preferably 500 or more in consideration of the thermal stability of the compound.
  • the compound represented by the formula (1) of the present invention usually has a glass transition temperature of 100 ° C. or higher, but is preferably 120 ° C. or higher from the viewpoint of heat resistance.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of an organic electroluminescent element 10 of the present invention.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 Represents a light-emitting layer
  • 6 represents a hole blocking layer
  • 7 represents an electron transport layer
  • 8 represents an electron injection layer
  • 9 represents a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sheet, or the like is used.
  • a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, polysulfone or the like is preferable.
  • a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the anode 2 serves to inject holes into the layer on the light emitting layer 5 side.
  • This anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or It is composed of a conductive polymer such as poly (3-methylthiophene), polypyrrole, and polyaniline.
  • the anode 2 is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate binder resin solution it is also possible to form the anode 2 by dispersing it and applying it onto the substrate 1.
  • a conductive polymer a thin film can be directly formed on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett. 60, 2711, 1992).
  • the anode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode 2 varies depending on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. When it may be opaque, the thickness of the anode 2 is arbitrary, and the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.
  • the surface of the anode 2 is treated with ultraviolet (UV) / ozone, or with oxygen plasma or argon plasma. It is preferable to do.
  • the hole injection layer 3 is a layer for injecting holes from the anode 2 to the layer on the light emitting layer 5 side, and is usually formed on the anode 2.
  • the method for forming the hole injection layer 3 according to the present invention may be a vacuum deposition method or a wet film formation method, and is not particularly limited, but the hole injection layer 3 is formed by a wet film formation method from the viewpoint of reducing dark spots. It is preferable.
  • the thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • a material for forming the hole injection layer 3 is usually mixed with an appropriate solvent (a solvent for hole injection layer) to form a film-forming composition (a solvent for hole injection layer) is prepared, and this composition for forming the hole injection layer is applied onto a layer corresponding to the lower layer of the hole injection layer (usually the anode 2) by an appropriate technique.
  • the hole injection layer 3 is formed by depositing and drying.
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as constituent materials for the hole injection layer 3.
  • the hole transporting compound is a compound having a hole transporting property that is usually used in the hole injection layer 3 of the organic electroluminescence device
  • the monomer may be a polymer compound or the like. Although it may be a low molecular compound such as, it is preferably a high molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3.
  • hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by a fluorene group, hydrazone derivatives, silazane derivatives, silanamines Derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • a derivative includes, for example, an aromatic amine derivative and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a mer.
  • the hole transporting compound used as the material for the hole injection layer 3 may contain any one of these compounds alone, or may contain two or more. In the case of containing two or more kinds of hole transporting compounds, the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds. It is preferable to use the above in combination.
  • an aromatic amine compound is preferable from the viewpoint of amorphousness and visible light transmittance, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerizable compound in which repeating units are linked) is further included.
  • Preferable examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
  • Ar 1 ′ and Ar 2 ′ each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 3 ′ to Ar 5 ′ each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • b represents a linking group selected from the following group of linking groups, and among Ar 1 ′ to Ar 5 ′, two groups bonded to the same N atom are bonded to each other to form a ring. May be good.
  • Ar 6 to Ar 16 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • R 5 and R 6 each independently represents a hydrogen atom or an arbitrary substituent.
  • the aromatic hydrocarbon groups and aromatic heterocyclic groups of Ar 1 ′ to Ar 5 ′ and Ar 6 to Ar 16 are benzene rings from the viewpoint of the solubility, heat resistance, hole injection / transport properties of the polymer compound.
  • a group derived from a naphthalene ring, a phenanthrene ring, a thiophene ring or a pyridine ring is preferred, and a group derived from a benzene ring or a naphthalene ring is more preferred.
  • the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 1 ′ to Ar 5 ′ and Ar 6 to Ar 16 may further have a substituent.
  • the molecular weight of the substituent is usually 400 or less, preferably about 250 or less.
  • an alkyl group, an alkenyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group and the like are preferable.
  • examples of the substituent include alkyl groups, alkenyl groups, alkoxy groups, silyl groups, siloxy groups, aromatic hydrocarbon groups, aromatic heterocyclic groups, and the like.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in WO 2005/089024.
  • a hole transporting compound a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene (3,4-ethylenedioxythiophene), which is a polythiophene derivative, in a high molecular weight polystyrene sulfonic acid. Is also preferred.
  • the end of this polymer may be capped with methacrylate or the like.
  • the hole transporting compound may be a crosslinkable compound described in the section ⁇ Hole transporting layer ⁇ below. The same applies to the film formation method when the crosslinkable compound is used.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.01% by weight or more, preferably in terms of film thickness uniformity. Is 0.1% by weight or more, more preferably 0.5% by weight or more, and usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably contains an electron accepting compound as a constituent material of the hole injection layer 3.
  • the electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole transporting compound, specifically, a compound having an electron affinity of 4 eV or more is preferable, and 5 eV or more. More preferred is a compound that is
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • examples thereof include one or more compounds selected from the group. More specifically, an onium salt substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (WO 2005/089024); High valence inorganic compounds such as iron (III) chloride (Japanese Patent Laid-Open No.
  • Cyano compounds such as tetracyanoethylene; Tris (pentafluorophenyl) borane (Japanese Patent Laid-Open No. 2003) Aromatic boron compounds; fullerene derivatives; iodine; sulfonate ions such as polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, and the like.
  • These electron accepting compounds can improve the conductivity of the hole injection layer 3 by oxidizing the hole transporting compound.
  • the content of the electron-accepting compound in the hole-injecting layer 3 or the composition for forming a hole-injecting layer with respect to the hole-transporting compound is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.
  • hole injection layer 3 As a material for the hole injection layer 3, other components may be further contained in addition to the above-described hole transporting compound and electron accepting compound as long as the effects of the present invention are not significantly impaired.
  • other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents.
  • 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
  • At least one of the solvents of the composition for forming a hole injection layer used in the wet film formation method is preferably a compound that can dissolve the constituent material of the hole injection layer 3 described above.
  • the boiling point of this solvent is usually 110 ° C. or higher, preferably 140 ° C. or higher, more preferably 200 ° C. or higher, and usually 400 ° C. or lower, preferably 300 ° C. or lower. If the boiling point of the solvent is too low, the drying speed may be too high and the film quality may deteriorate. Further, if the boiling point of the solvent is too high, it is necessary to increase the temperature of the drying step, which may adversely affect other layers and the substrate.
  • ether solvents examples include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole .
  • Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-me
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the composition After preparing the composition for forming the hole injection layer, the composition is applied on the layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2) by a wet film forming method, and dried. Thus, the hole injection layer 3 is formed.
  • the temperature in the coating step is preferably 10 ° C. or higher, and preferably 50 ° C. or lower in order to prevent film loss due to the formation of crystals in the composition.
  • coating process is not limited unless the effect of this invention is impaired remarkably, it is 0.01 ppm or more normally, and usually 80% or less.
  • the film of the composition for forming a hole injection layer is usually dried by heating or the like.
  • the heating means used in the heating step include a clean oven, a hot plate, infrared rays, a halogen heater, microwave irradiation and the like. Among them, a clean oven and a hot plate are preferable in order to uniformly apply heat to the entire film.
  • the heating temperature in the heating step is preferably heated at a temperature equal to or higher than the boiling point of the solvent used in the composition for forming a hole injection layer as long as the effects of the present invention are not significantly impaired.
  • at least one type is preferably heated at a temperature equal to or higher than the boiling point of the solvent.
  • the heating step is preferably performed at 120 ° C. or higher, preferably 410 ° C. or lower.
  • the heating time is not limited as long as the heating temperature is not lower than the boiling point of the solvent of the composition for forming a hole injection layer and sufficient insolubilization of the coating film does not occur. Is less than a minute. If the heating time is too long, the components of the other layers tend to diffuse, and if it is too short, the hole injection layer tends to be inhomogeneous. Heating may be performed in two steps.
  • the hole injection layer 3 is formed by vacuum deposition, one or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transporting compound, electron accepting compound, etc.) are placed in a vacuum vessel. Put in crucibles installed (in case of using two or more materials, put them in each crucible), evacuate the inside of the vacuum vessel to about 10 -4 Pa with a suitable vacuum pump, then heat the crucible (two types When using the above materials, heat each crucible) and control the evaporation amount to evaporate (when using two or more materials, control each evaporation amount independently) and face the crucible Then, the hole injection layer 3 is formed on the anode 2 of the substrate 1 placed on the substrate 1. In addition, when using 2 or more types of materials, the hole injection layer 3 can also be formed by putting those mixtures into a crucible, heating and evaporating.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more, usually 9.0 ⁇ 10 ⁇ 6 Torr. (12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / second or more and usually 5.0 ⁇ / second or less.
  • the film forming temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher, preferably 50 ° C. or lower.
  • the hole transport layer 4 can be formed on the hole injection layer 3 when the hole injection layer 3 is provided, and on the anode 2 when the hole injection layer 3 is not provided.
  • the organic electroluminescent element of the present invention may have a configuration in which the hole transport layer 4 is omitted, but as described above, the organic electroluminescent element of the present invention preferably has a hole transport layer.
  • the formation method of the hole transport layer 4 may be a vacuum deposition method or a wet film formation method, and is not particularly limited. However, from the viewpoint of reducing dark spots, the hole transport layer 4 is preferably formed by a wet film formation method.
  • the material for forming the hole transport layer 4 is preferably a material having high hole transportability and capable of efficiently transporting injected holes. Therefore, it is preferable that the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is high, and impurities that become traps are not easily generated during manufacturing or use. In many cases, it is preferable not to quench the light emitted from the light emitting layer 5 or to form an exciplex with the light emitting layer 5 to reduce the efficiency because it is in contact with the light emitting layer 5.
  • the material for the hole transport layer 4 may be any material that has been conventionally used as a constituent material for the hole transport layer 4.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer. Of these, polyarylamine derivatives and polyarylene derivatives are preferred.
  • the polyarylamine derivative is preferably a polymer containing a repeating unit represented by the following formula (II).
  • the polymer is preferably composed of a repeating unit represented by the following formula (II).
  • Ar a or Ar b may be different in each repeating unit.
  • Ar a and Ar b each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.
  • Examples of the aromatic hydrocarbon group optionally having a substituent for Ar a and Ar b include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene A group derived from a 6-membered monocyclic ring or a 2-5 condensed ring such as a ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, a fluorene ring, and a group formed by connecting these rings by two or more direct bonds. .
  • Examples of the aromatic heterocyclic group which may have a substituent include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, and a carbazole ring.
  • Ar a and Ar b are each independently selected from the group consisting of a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, pyrene ring, thiophene ring, pyridine ring, and fluorene ring.
  • a group derived from a selected ring or a group in which two or more benzene rings are linked is preferable.
  • a group derived from a benzene ring (phenyl group), a group formed by connecting two benzene rings (biphenyl group), and a group derived from a fluorene ring (fluorenyl group) are preferable.
  • the aromatic hydrocarbon group and aromatic heterocyclic group in Ar a and Ar b may have include an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, and a dialkyl.
  • Examples thereof include an amino group, a diarylamino group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, an arylthio group, a silyl group, a siloxy group, a cyano group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group.
  • an arylene group such as an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent exemplified as Ar a or Ar b in the formula (II) is used as a repeating unit.
  • the polymer which has is mentioned.
  • a polymer having a repeating unit represented by the following formula (V-1) and / or the following formula (V-2) is preferable.
  • R a , R b , R c and R d are each independently an alkyl group, an alkoxy group, a phenylalkyl group, a phenylalkoxy group, a phenyl group, a phenoxy group, an alkylphenyl group, Represents an alkoxyphenyl group, an alkylcarbonyl group, an alkoxycarbonyl group, or a carboxy group, and t and s each independently represent an integer of 0 to 3. When t or s is 2 or more, they are contained in one molecule.
  • a plurality of R a or R b may be the same or different, and adjacent R a or R b may form a ring.
  • R e and R f each independently have the same meaning as R a in formula (V-1).
  • R and u each independently represents an integer of 0 to 3.
  • a plurality of R e and R f contained in one molecule may be the same or different, and adjacent R e or R f form a ring.
  • X ′ represents an atom or a group of atoms constituting a 5-membered ring or a 6-membered ring.
  • X ′ are —O—, —BR—, —NR—, —SiR 2 —, —PR—, —SR—, —CR 2 — or a group formed by bonding thereof.
  • R represents a hydrogen atom or an arbitrary organic group.
  • the organic group in the present invention is a group containing at least one carbon atom.
  • the polyarylene derivative has a repeating unit represented by the following formula (V-3) in addition to the repeating unit represented by the above formula (V-1) and / or the above formula (V-2). Is preferred.
  • Ar c to Ar h and Ar j each independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, v ′ and w ′ represents 0 or 1 independently.
  • Ar c to Ar h and Ar j are the same as Ar a in the formula (II).
  • Specific examples of the above formulas (V-1) to (V-3) and specific examples of polyarylene derivatives include those described in Japanese Patent Application Laid-Open No. 2008-98619.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer 3 and then heated and dried after the wet film formation.
  • the composition for forming a hole transport layer contains a solvent in addition to the above hole transport compound.
  • the solvent used is the same as that used for the composition for forming a hole injection layer.
  • the film forming conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer 3.
  • the hole transport layer 4 When the hole transport layer 4 is formed by the vacuum deposition method, the film forming conditions are the same as those for the hole injection layer 3.
  • the hole transport layer 4 may contain various light emitting materials, electron transport compounds, binder resins, coating property improving agents, and the like in addition to the hole transport compound.
  • the hole transport layer 4 may also be a layer formed by crosslinking a crosslinkable compound.
  • the crosslinkable compound is a compound having a crosslinkable group, and forms a network polymer compound by crosslinking.
  • crosslinkable groups examples include groups derived from cyclic ethers such as oxetane groups and epoxy groups; derived from unsaturated double bonds such as vinyl groups, trifluorovinyl groups, styryl groups, acrylic groups, methacryloyl groups, and cinnamoyl groups. Groups derived from benzocyclobutene, and the like.
  • the crosslinkable compound may be any of a monomer, an oligomer, and a polymer.
  • the crosslinkable compound may have only 1 type, and may have 2 or more types by arbitrary combinations and ratios.
  • the crosslinkable compound it is preferable to use a hole transporting compound having a crosslinkable group.
  • the hole transporting compound include those exemplified above, and those having a crosslinkable group bonded to the main chain or side chain with respect to these hole transporting compounds.
  • the crosslinkable group is preferably bonded to the main chain via a linking group such as an alkylene group.
  • the hole transporting compound is preferably a polymer containing a repeating unit having a crosslinkable group, and the above formula (II) and formulas (V-1) to (V-3) can be used as a crosslinkable group. Is preferably a polymer having a repeating unit bonded directly or via a linking group.
  • Examples of hole transporting compounds having a crosslinkable group include pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, carbazole derivatives, phthalocyanine derivatives, porphyrin derivatives, and other nitrogen-containing aromatic compound derivatives.
  • nitrogen-containing aromatic derivatives such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, carbazole derivatives; triphenylamine derivatives, silole derivatives, condensed polycyclic aromatic derivatives, metal complexes, etc.
  • triphenylamine derivatives particularly preferred are triphenylamine derivatives.
  • a composition for forming a hole transport layer in which a crosslinkable compound is dissolved or dispersed in a solvent is usually prepared and deposited by wet film formation.
  • the composition for forming a hole transport layer may contain an additive for promoting a crosslinking reaction in addition to the crosslinking compound.
  • additives that accelerate the crosslinking reaction include polymerization initiators and polymerization accelerators such as alkylphenone compounds, acylphosphine oxide compounds, metallocene compounds, oxime ester compounds, azo compounds, onium salts; condensed polycyclic hydrocarbons, Examples thereof include photosensitizers such as porphyrin compounds and diaryl ketone compounds. Furthermore, it may contain coating improvers such as leveling agents and antifoaming agents; electron accepting compounds; binder resins and the like.
  • the crosslinkable compound is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, usually 50% by weight or less, preferably 20%. It is contained in an amount of not more than wt%, more preferably not more than 10 wt%.
  • the composition is crosslinkable by heating and / or irradiation with active energy such as light.
  • active energy such as light.
  • Conditions such as temperature and humidity during film formation are the same as those during wet film formation of the hole injection layer.
  • the heating method after film formation is not particularly limited. As heating temperature conditions, it is 120 degreeC or more normally, Preferably it is 400 degrees C or less.
  • the heating time is usually 1 minute or longer, preferably 24 hours or shorter.
  • the heating means is not particularly limited, and means such as placing a laminated body having a deposited layer on a hot plate or heating in an oven is used. For example, conditions such as heating on a hot plate at 120 ° C. or more for 1 minute or more can be used.
  • a method of irradiating directly using an ultraviolet / visible / infrared light source such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a halogen lamp, an infrared lamp, or the above-mentioned light source is incorporated.
  • Examples include a mask aligner and a method of irradiation using a conveyor type light irradiation device.
  • active energy irradiation other than light for example, there is a method of irradiation using a device that irradiates a microwave generated by a magnetron, a so-called microwave oven.
  • the irradiation time it is preferable to set conditions necessary for reducing the solubility of the film, but irradiation is usually performed for 0.1 seconds or longer, preferably 10 hours or shorter.
  • Heating and irradiation of active energy such as light may be performed individually or in combination.
  • the order of implementation is not particularly limited.
  • the film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the light emitting layer 5 is provided on the hole transport layer 4.
  • the light emitting layer 5 is a layer that is excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 between electrodes to which an electric field is applied, and becomes a main light emitting source.
  • the above description of [light emitting layer] is applied.
  • a hole blocking layer 6 is provided between the light emitting layer 5 and an electron injection layer 8 described later.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
  • the above description of [Hole blocking layer] is applied.
  • An electron transport layer 7 may be provided between the hole blocking layer 6 and an electron injection layer 8 described later.
  • the electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the device, and efficiently transports electrons injected from the cathode 9 between the electrodes to which an electric field is applied in the direction of the light emitting layer 5. Formed from a compound capable of
  • the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility are efficiently transported.
  • the compound which can be used is used.
  • the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No.
  • the material of the electron carrying layer 7 may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. There is no restriction
  • the thickness of the electron transport layer 7 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode 9 into the layer on the light emitting layer 5 side.
  • the material for forming the electron injection layer 8 is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the film thickness is preferably from 0.1 nm to 5 nm.
  • an organic electron transport compound represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium
  • an alkali metal such as sodium, potassium, cesium, lithium or rubidium
  • both electron injection and transport properties are improved and excellent film quality is achieved. It is preferable because it can be made to occur.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • an ultra-thin insulating film (0.1 to 5 nm) formed of lithium fluoride (LiF), magnesium fluoride (MgF 2 ), lithium oxide (Li 2 O), cesium carbonate (II) (CsCO 3 ), or the like. Is also an effective method for improving the efficiency of the device (Applied Physics Letters, 1997, Vol. 70, pp. 152; Japanese Patent Laid-Open No. 10-74586; IEEE Transactions on Electron Devices, 1997). Year, Vol. 44, pp. 1245; SID 04 Digest, pp. 154, etc.).
  • the material of the electron injection layer 8 may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the cathode 9 serves to inject electrons into a layer (such as the electron injection layer 8 or the hole blocking layer 6) on the light emitting layer 5 side.
  • a layer such as the electron injection layer 8 or the hole blocking layer 6
  • the material used for the anode 2 can be used.
  • a metal having a low work function is preferable for efficient electron injection.
  • tin, magnesium, indium A suitable metal such as calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the material of the cathode 9 may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the film thickness of the cathode 9 is usually the same as that of the anode 2.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the organic electroluminescent element according to the present invention may have another configuration without departing from the gist thereof.
  • an arbitrary layer may be provided between the anode 2 and the cathode 9 in addition to the layers described above, and an arbitrary layer may be omitted. .
  • Examples of the layer that may be included in addition to the layers described above include an electron blocking layer.
  • the electron blocking layer is provided between the hole injection layer 3 or the hole transport layer 4 and the light emitting layer 5 and prevents electrons moving from the light emitting layer 5 from reaching the hole injection layer 3.
  • the probability of recombination of holes and electrons in the light emitting layer 5 is increased, the excitons generated are confined in the light emitting layer 5, and the holes injected from the hole injection layer 3 are efficiently collected.
  • a phosphorescent material or a blue light emitting material is used as the light emitting material, it is effective to provide an electron blocking layer.
  • the characteristics required for the electron blocking layer include high hole transportability, a large energy gap (difference between HOMO and LUMO), and a high excited triplet level (T1). Furthermore, in the present invention, when the light emitting layer 5 is formed as an organic layer according to the present invention by a wet film formation method, the electron blocking layer is also required to be compatible with the wet film formation. Examples of the material used for such an electron blocking layer include a copolymer of dioctylfluorene and triphenylamine typified by F8-TFB (International Publication No. 2004/084260).
  • the material of an electron blocking layer may use only 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • an electron blocking layer There is no restriction
  • substrate in reverse order.
  • the other components on the substrate 1 are the cathode 9, the electron injection layer 8, the electron transport layer 7, the hole blocking layer 6, the light emitting layer 5, the hole transport layer 4, the positive layer.
  • the hole injection layer 3 and the anode 2 may be provided in this order.
  • the organic electroluminescent element according to the present invention by laminating components other than the substrate between two substrates, at least one of which is transparent. Further, a structure in which a plurality of components (light emitting units) other than the substrate are stacked in a plurality of layers (a structure in which a plurality of light emitting units are stacked) may be employed. In that case, instead of the interface layer between the steps (between the light emitting units) (in the case where the anode is ITO and the cathode is Al, these two layers), for example, a charge made of vanadium pentoxide (V 2 O 5 ) or the like. When a generation layer (Carrier Generation Layer: CGL) is provided, a barrier between steps is reduced, which is more preferable from the viewpoint of light emission efficiency and driving voltage.
  • CGL Carrier Generation Layer
  • the organic electroluminescent device according to the present invention may be configured as a single organic electroluminescent device, or may be applied to a configuration in which a plurality of organic electroluminescent devices are arranged in an array. You may apply to the structure by which the cathode is arrange
  • Each layer described above may contain components other than those described as materials unless the effects of the present invention are significantly impaired.
  • Organic EL display device uses the above-described organic electroluminescent element of the present invention.
  • the organic EL display device of the present invention can assemble in accordance with a conventional method using the organic electroluminescent element of this invention.
  • the organic EL display device of the present invention can be obtained by the method described in “Organic EL display” (Ohm, published on Aug. 20, 2004, Shizushi Tokito, Chiba Adachi, Hideyuki Murata). Can be formed.
  • Organic EL lighting uses the above-described organic electroluminescent element of the present invention.
  • Example 1 An organic electroluminescent element having the configuration shown in FIG. 1 was produced. ⁇ Anode> An indium tin oxide (ITO) transparent conductive film formed on a glass substrate with a thickness of 150 nm (sputtered film, sheet resistance of 15 ⁇ ) is patterned into a 2 mm wide stripe by ordinary photolithography technology. Anode 2 was formed. The substrate 1 on which the anode 2 was formed was cleaned in the order of ultrasonic cleaning with pure water and then with pure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
  • ITO indium tin oxide
  • the hole injection layer 3 was formed on the formed anode 2 by a wet film forming method as follows. 2.5% by weight of a crosslinkable polymer compound (P1) having the following repeating structure as a hole transporting compound and 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate as an electron accepting compound A composition for forming a hole injection layer in which 0.5% by weight was dissolved in ethyl benzoate was prepared, and this composition was formed on the ITO substrate by spin coating.
  • P1 crosslinkable polymer compound having the following repeating structure as a hole transporting compound and 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate
  • spinner rotation speed was 500 rpm, 2 seconds, and 2200 rpm, 30 seconds. Thereafter, the polymer compound (P1) was heated by a clean oven at 230 ° C. for 60 minutes to be crosslinked and cured to form a hole injection layer 3 having a thickness of 40 nm.
  • a hole transport layer 4 was formed on the formed hole injection layer 3 by a wet film forming method as follows.
  • a composition was prepared, and this composition was formed on the hole injection layer 3 by spin coating in a nitrogen atmosphere.
  • “Hex” represents a hexyl group.
  • the spinner rotation speed was 500 rpm
  • the spinner rotation time was 2 seconds
  • the spinner rotation speed was 2200 rpm and the spinner rotation time was 120 seconds.
  • the polymer compound (HT-1) was heated at 230 ° C. for 60 minutes to cause a crosslinking reaction and cured to form a 10 nm-thick hole transport layer 4.
  • a coated light emitting layer was formed on the formed hole transport layer 4 by a wet film forming method as follows.
  • the following compounds (GH-5), (GH-4), (GD-1) and (RD-2) were mixed at a weight ratio of 25: 75: 10: 1, and 3% by weight of this mixture was added to cyclohexyl.
  • a composition dissolved in benzene was prepared, and this composition was formed by spin coating on the hole transport layer 4 in a nitrogen atmosphere.
  • spinner rotation speed was 500 rpm, 2 seconds, and 2300 rpm, 120 seconds. Then, the coating light emitting layer with a film thickness of 30 nm was formed by drying for 30 minutes at 120 degreeC.
  • a deposited light-emitting layer was formed on the formed coated light-emitting layer by vacuum deposition as follows.
  • the following compounds (BH-1) and (BD-1) were co-evaporated at a rate ratio of 100: 5 by a vacuum evaporation method to form a deposited light-emitting layer having a thickness of 25 nm.
  • a 10 nm-thick hole blocking layer 6 was formed by depositing the following compound (HB-1) on the formed vapor-deposited light-emitting layer by a vacuum vapor deposition method.
  • an electron transport layer 7 having a film thickness of 15 nm was formed by depositing the following compound (ET-1) on the formed hole blocking layer 6 by a vacuum deposition method.
  • the element that has been vapor-deposited up to the electron transport layer 7 is once taken out from the vacuum vapor deposition apparatus into the atmosphere, and used as a cathode vapor deposition mask with a width of 2 mm in a shape orthogonal to the ITO stripe as the anode 2.
  • a stripe shadow mask is brought into close contact with the element, placed in another vacuum vapor deposition apparatus, and lithium fluoride (LiF) is formed to a thickness of 0.5 nm as the electron injection layer 8 by the same vacuum vapor deposition method as the electron transport layer 7.
  • LiF lithium fluoride
  • aluminum was laminated as the cathode 9 so as to have a film thickness of 80 nm.
  • a sealing process was performed by the method described below.
  • a photocurable resin was applied to the outer periphery of a 23 mm ⁇ 23 mm size glass plate with a width of about 1 mm, and a moisture getter sheet was placed in the center.
  • finished cathode formation was bonded together so that the vapor-deposited surface might oppose a desiccant sheet.
  • coated was irradiated with ultraviolet light, and resin was hardened. Thereby, the organic electroluminescent element which has a light emission area part of 2 mm x 2 mm size was obtained.
  • Example 2 An organic electroluminescent element was produced in the same manner as in Example 1 except that the material used for forming the hole blocking layer 6 in Example 1 was changed to the compound (HB-2) shown below.
  • Example 3 An organic electroluminescent element was produced in the same manner as in Example 1 except that the material used for forming the hole blocking layer 6 in Example 1 was changed to the compound (HB-3) shown below.
  • Example 4 An organic electroluminescent element was produced in the same manner as in Example 1, except that the material used for forming the hole blocking layer 6 in Example 1 was changed to the compound (HB-4) shown below.
  • Example 1 An organic electroluminescent element was produced in the same manner as in Example 1 except that the material used for forming the hole blocking layer 6 in Example 1 was changed to the compound (HB-5) shown below.
  • Example 2 An organic electroluminescent element was produced in the same manner as in Example 1 except that the material used for forming the hole blocking layer 6 in Example 1 was changed to the compound (HB-6) shown below.
  • Example 5 In Example 1, an organic electroluminescent element was produced in the same manner as in Example 1 except for the following. ⁇ Hole transport layer> The hole transport layer was formed in the same manner as in Example 1 except that the material was changed to the following (HT-2) and the spin coating conditions were changed.
  • ⁇ Coating light emitting layer> The same as in Example 1 except that (HB-5), (GH-4) and (RD-2) were changed to a mixture in which the weight ratio of 25:75:10 was used as the material for the coated light emitting layer. Formed.
  • ⁇ Vapor deposition light emitting layer> It was formed in the same manner as in Example 1 except that the vapor-deposited light emitting layer material was changed to (BH-2) and (BD-1) shown below and the rate ratio was changed to 100: 10.
  • Example 5 In Example 5, an organic electroluminescent device was produced in the same manner as in Example 5 except that the material used for the hole blocking layer 6 was changed to (HB-6). [Comparative Example 4] In Example 5, an organic electroluminescent element was produced in the same manner as in Example 5 except for the following.
  • ⁇ Coating light emitting layer> (BH-2) and (BD-1) were mixed at a weight ratio of 100: 10 as a material for the coated light emitting layer, and a composition in which 1.0% by weight of the mixture was dissolved in cyclohexylbenzene was prepared.
  • This composition was formed into a film by spin coating under a nitrogen atmosphere.
  • spinner rotation speed was 500 rpm
  • spinner rotation time was 2 seconds
  • spinner rotation speed was 1500 rpm and spinner rotation time was 120 seconds.
  • the coating light emitting layer with a film thickness of 15 nm was formed by drying at 120 degreeC for 30 minutes.
  • ⁇ Vapor deposition light emitting layer> Other than changing the above-mentioned (HB-5), (GH-4) and (RD-2) as the material for the vapor-deposited light emitting layer, changing the rate ratio to 90:10:10, and changing the film thickness to 30 nm Was formed in the same manner as in Example 5.
  • V1 of Comparative Example 3 in the case of a V 0 was determined voltage change value 1. Furthermore, the driving voltage (V1K) when each element obtained in Example 5 and Comparative Examples 3 and 4 was lit at 1000 cd / m 2 was measured, and V1K in Comparative Example 3 was set to V 0 ′. V1K ⁇ V 0 ′ (hereinafter referred to as “voltage change value 1K”) was obtained. The results are shown in Table 2.
  • Example 5 and Comparative Example 3 From the results of Example 5 and Comparative Example 3, by using the compound represented by the formula (1) of the present invention for the hole blocking layer regardless of the materials of the hole transport layer, the coated light emitting layer and the vapor deposited light emitting layer. It is clear that the drive voltage of the organic electroluminescent element can be reduced. Note that the emission spectra of the organic electroluminescent elements obtained in Example 5 and Comparative Example 3 both had maximum emission wavelengths at 464 nm and 593 nm. Comparative Example 4 is an example in which the phosphorescent light emitting material used for the coated light emitting layer of Example 5 was applied to the vapor deposited light emitting layer, and the fluorescent light emitting material used for the vapor deposited light emitting layer of Example 5 was applied to the coated light emitting layer.
  • Example 6 an organic electroluminescent element was produced in the same manner as in Example 2 except for the following.
  • ⁇ Coating light emitting layer> As a material for the coated light emitting layer, the above (HB-6), (GH-4), the following (GD-2), and (RD-3) were changed to a mixture in which the weight ratio was 25: 75: 10: 1. Except that, it was formed in the same manner as in Example 2.
  • ⁇ Vapor deposition light emitting layer> The materials of the vapor-deposited light-emitting layer were changed to those described in (BH-2) and (BD-2) below, and were co-deposited by a vacuum vapor deposition method at a rate ratio of 100: 5. It formed similarly.
  • the compound (HB-7) is a material that has been widely used as a conventional hole blocking layer material.
  • the organic electroluminescent device using the hole blocking layer material of the present invention has a driving voltage of It is clear that a low voltage can be realized.
  • the emission spectra of the devices obtained in Example 6 and Comparative Example 5 all had maximum emission wavelengths at 463 to 464 nm, 557 to 558 nm, and 593 to 594 nm.
  • Example 7 an organic electroluminescent element was produced in the same manner as in Example 2 except for the following.
  • ⁇ Coating light emitting layer> As a material for the coated light emitting layer, the above (GH-5), the following (GH-6), (GD-3), and (RD-4) were changed to a mixture in which the weight ratio was 25: 75: 10: 1. Except that, it was formed in the same manner as in Example 2.
  • ⁇ Vapor deposition light emitting layer> The same as in Example 2 except that the material of the vapor-deposited light emitting layer was changed to (BH-2) and (BD-2) and co-deposited by a vacuum vapor deposition method at a rate ratio of 100: 5. Formed.
  • Example 7 an organic electroluminescent device was produced in the same manner as in Example 7 except that the material used for the hole blocking layer 6 was changed to (HB-5).
  • the drive voltage can be lowered regardless of the material of the coated light emitting layer and the vapor deposited light emitting layer. Note that the emission spectra of the organic electroluminescent elements obtained in Example 7 and Comparative Example 6 both had maximum emission wavelengths at 464 nm and 599 nm.
  • Example 8 In Example 2, an organic electroluminescent element was produced in the same manner as in Example 2 except for the following.
  • ⁇ Coating light emitting layer> A mixture of the following (GH-7), the above (GH-6), the following (GD-4), and the above (RD-3) in a weight ratio of 25: 75: 10: 1 as the material of the coated light emitting layer This was formed in the same manner as in Example 2 except that the change was made.
  • ⁇ Vapor deposition light emitting layer> The materials of the vapor-deposited light-emitting layer were changed to those of (BH-2) and (BD-3) described below, and the same as in Example 2 except that the film was formed by co-evaporation by a vacuum vapor deposition method at a rate ratio of 100: 5. It formed similarly.
  • Example 8 an organic electroluminescent device was produced in the same manner as in Example 8 except that the material used for the hole blocking layer 6 was changed to the above (HB-5).
  • the drive voltage can be lowered regardless of the material of the coated light emitting layer and the vapor deposited light emitting layer. Note that the emission spectra of the organic electroluminescence devices obtained in Example 8 and Comparative Example 7 all had maximum emission wavelengths at 467 nm, 534 nm, and 592 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

 本発明は駆動電圧の低電圧化が可能な正孔阻止層を有する有機電界発光素子を提供することを目的とする。本発明は、陽極、陰極並びに湿式成膜法で形成された第一発光層および真空蒸着法で形成された第二発光層を含む有機電界発光素子であって、前記第一発光層が低分子化合物である燐光発光材料と第一電荷輸送材料とを含有し、前記第二発光層が低分子化合物である蛍光発光材料と第二電荷輸送材料とを含有し、前記第二発光層の前記陰極側に隣接する正孔阻止層が特定の化合物を含有する有機電界発光素子に関する。

Description

有機電界発光素子、有機EL照明および有機EL表示装置
 本発明は、有機電界発光素子と、該有機電界発光素子を含む、有機EL照明及び有機EL表示装置に関する。
 近年、ディスプレイや照明などの発光装置として有機電界発光素子の開発が盛んに行われている。この有機電界発光素子は、電極間の有機薄膜に正負の電荷を注入、再結合により生じた励起状態を光として取り出すものである。
 有機電界発光素子の発光効率を上げる目的で、蛍光(一重項励起子による発光)ではなく燐光(三重項励起子による発光)を用いた素子が検討されている。燐光を用いると、蛍光を用いた素子と比べて、効率が3倍程度向上すると考えられており、燐光分子としてユーロピウム錯体、白金錯体等を使用することが報告されている。しかしながら、従来の燐光分子を用いた有機電界発光素子は、高効率発光ではあるが、駆動安定性の点において実用には不十分であり、高効率かつ長寿命の素子の実現は困難であった。
 燐光の有機電界発光素子の場合には、その効率と寿命を高めるために、一般的に、発光層の陰極側に正孔阻止層が設けられる。これは励起子を発光層内に閉じ込めることで、その効率を上げることができ(特許文献1)、また、正孔による発光層よりも陰極側の層の劣化を防ぐことができ、その寿命が向上すると考えられるためである。正孔阻止層に用いる材料としては、例えばピリジン系化合物が好適に用いられる(特許文献2)。
 また、蛍光の有機電界発光素子の場合には正孔阻止層を形成させない方が、発光特性や寿命の低下を防止する場合がある(特許文献3)。また、駆動電圧の観点からも正孔阻止層を形成させない方が駆動電圧が低くなる場合も存在すると考えられる。
 一方、従来の蛍光灯等の白色照明の代替装置として、白色発光の有機電界発光素子についても検討がなされている。従来、この白色発光の有機電界発光素子を得る方法として、例えば、特許文献4には、発光層を2層とし、黄色~赤色系の発光層に青色系の発光層を積層することによって、白色発光を得ることのできる有機電界発光素子が開示されている。
日本国特開2001-284056号公報 日本国特開2012-033918号公報 日本国特開2006-156848号公報 日本国特開2008-159367号公報
 上記のように、異なる発光色を持つ2層の発光層を設けて白色発光を実現しようとする際には、蛍光発光材料と燐光発光材料を積層する場合がありえるが、このような構成の場合に、蛍光発光材料と燐光発光材料をどのように積層し、かつどのような正孔阻止層材料を用いるべきかについては十分な検討がなされていないのが実情であった。
 本発明は、上記事情に鑑み、燐光発光材料を含有する発光層と蛍光発光材料を含有する発光層を積層して混色発光、好ましくは白色発光を実現する有機電界発光素子において、より優れた発光特性の実現が可能な発光層の構成を有し、かつ、駆動電圧の低電圧化が可能な正孔阻止層を有する有機電界発光素子を実現することを目的とする。
 上記目的を達成するため、本発明の有機電界発光素子、有機EL照明および有機EL表示装置は、以下の<1>~<10>の特徴を有する。
<1> 陽極、陰極および前記陽極と前記陰極との間に形成された複数の発光層を含む有機電界発光素子であって、前記複数の発光層は、前記陽極側から順に、湿式成膜法で形成された第一発光層と、真空蒸着法で形成された第二発光層とを含み、前記第一発光層が、いずれも低分子化合物である、燐光発光材料と第一電荷輸送材料とを含有し、前記第二発光層が、いずれも低分子化合物である、蛍光発光材料と第二電荷輸送材料とを含有し、前記第二発光層の前記陰極側に隣接して正孔阻止層を有し、前記正孔阻止層が、下記式(1)で表される化合物を含有する、有機電界発光素子。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、XはCまたはNを表し、ArおよびArはそれぞれ独立して置換基を有していてもよい芳香環基を表す。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。mは0以上5以下の整数を表す。)
<2> 前記式(1)で表される化合物が、下記式(2)で表される化合物である、前記<1>に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、XはCまたはNを表し、Ar~Arはそれぞれ独立して置換基を有していてもよい芳香環基を表す。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。nは0以上4以下の整数を表す。)
<3> 前記式(2)で表される化合物が、下記式(3)で表される化合物である、前記<2>に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000007
(式(3)中、XはCまたはNを表し、Ar、Ar、Ar21およびAr22はそれぞれ独立して置換基を有していてもよい芳香環基を表す。またAr21とAr22は結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。Lは、単結合または置換基を有していてもよい炭素数25以下の芳香環基を表す。nは0以上4以下の整数を表す。)
<4> 前記式(3)で表される化合物が、下記式(4)で表される化合物である、前記<3>に記載の有機電界発光素子。
Figure JPOXMLDOC01-appb-C000008
(式(4)中、XはCまたはNを表し、Ar、Ar、Ar21およびAr22はそれぞれ独立して置換基を有していてもよい芳香環基を表す。またAr21とAr22は結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。Lは、単結合または置換基を有していてもよい炭素数25以下の芳香環基を表す。nは0以上4以下の整数を表す。)
<5> 前記式(1)~(4)の少なくともいずれか1の式において、Arが芳香族炭化水素基である、前記<1>乃至<4>のいずれか一に記載の有機電界発光素子。
<6> 前記有機電界発光素子の発光スペクトルが、440~500nm領域、500~580nm領域、および580~630nm領域のうち、少なくとも2つの領域に極大発光波長を有する、前記<1>乃至<5>のいずれか一に記載の有機電界発光素子。
<7> 前記陽極と前記発光層との間に正孔輸送層を有する、前記<1>乃至<6>のいずれか一に記載の有機電界発光素子。
<8> 前記正孔輸送層が湿式成膜法で形成された層である、前記<7>に記載の有機電界発光素子。
<9> 前記<1>乃至<8>のいずれか一に記載の有機電界発光素子を含む、有機EL照明。
<10> 前記<1>乃至<8>のいずれか一に記載の有機電界発光素子を含む、有機EL表示装置。
 本発明によれば、低駆動電圧の混色発光、好ましくは白色発光の有機電界発光素子が提供される。
 本発明の有機電界発光素子は、面発光体としての特徴を生かした白色光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源、カラーフィルター表示装置)、表示板、標識灯への応用が考えられ、その技術的価値は高いものである。
図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
 [語句の説明]
 本発明において、単に「複素環」または「炭化水素環」と称した場合には、芳香族性を有する環および芳香族性を有しない環のいずれをも含むものとする。また、単に「芳香環」と称した場合には、炭化水素芳香環および複素芳香環のいずれをも含むものとする。
 また、本発明において、「芳香環基」とは、「単環の芳香環に由来する基」、「2以上の環が縮合した縮合環に由来する基」の他、「これらの単環および/または縮合環の2以上が単結合を介して連結した基」も含むものとする。ここで、「○○環に由来する基」とは、結合数に相当する遊離原子価を有する○○環のことである。遊離原子価とは、有機化学・生化学命名法(上)(改定第2版、南江堂、1992年発行)に記載のとおり、他の遊離原子価と結合を形成できるものを言う。すなわち、例えば、「1個の遊離原子価を有するベンゼン環」はフェニル基のことを言い、「2個の遊離原子価を有するベンゼン環」はフェニレン基のことを言う。
 また、本発明において、「置換基を有していてもよい」とは、置換基を1または2以上有していてもよいことを意味するものとする。
 また、「(ヘテロ)アリール」とは、「アリール」と「ヘテロアリール」の両方を意味するものとする。また、「アリール基」とは、「芳香族炭化水素基」と「芳香族複素環基」の両方を意味するものとする。
 また、本発明において「440nm~500nm」と表記した場合は、440nm以上500nm未満を意味するものとする。
 <<有機電界発光素子>>
 本発明の有機電界発光素子は、陽極、陰極および前記陽極と前記陰極との間に形成された複数の発光層を含む有機電界発光素子であって、前記複数の発光層は、前記陽極側から順に、湿式成膜法で形成された第一発光層(以下、「塗布発光層」と記載することがある。)と、真空蒸着法で形成された第二発光層(以下、「蒸着発光層」と記載することがある。)とを含み、前記塗布発光層が、いずれも低分子化合物である、燐光発光材料と第一電荷輸送材料とを含有し、前記蒸着発光層が、いずれも低分子化合物である、蛍光発光材料と第二電荷輸送材料とを含有し、前記蒸着発光層の前記陰極側に隣接して正孔阻止層を有し、前記正孔阻止層が、下記式(1)で表される化合物を含有することを特徴とするものである。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、XはCまたはNを表し、ArおよびArはそれぞれ独立して置換基を有していてもよい芳香環基を表す。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。mは0以上5以下の整数を表す。)
 本発明における塗布発光層及び蒸着発光層においてそれぞれ、いずれも低分子化合物である、発光材料と第一又は第二電荷輸送材料(以下、「電荷輸送材料」と総じて称することがある。)とを用いることは、以下の理由による。
 高分子量の電荷輸送材料と、低分子量の発光材料とを含む発光層では、高分子量の電荷輸送材料において、高分子鎖でつながった電荷輸送ユニットの間隔を、電荷輸送あるいは励起子移動しやすい距離に制御することは非常に困難となる。
 また、低分子量の電荷輸送材料を用いた湿式成膜および真空蒸着における膜密度は、高分子量の電荷輸送材料を用いた湿式成膜における膜密度よりも高くなり、塗布/蒸着界面における分子間の密着性が高くなるため、電荷の授受が容易になり電圧の低下に繋がる点においても好ましい。
 このようなことから、本発明の有機電界発光素子においては、発光層の形成に用いる材料としては、全て低分子化合物を使用する。
 本発明の有機電界発光素子は、更に、陽極と発光層との間に、正孔輸送層を有することが、陰極に最も近い発光層に十分な正孔を注入するために好ましい。
 [低分子化合物]
 本発明の有機電界発光素子の発光層である塗布発光層及び蒸着発光層はそれぞれ、いずれも低分子化合物である、発光材料と第一又は第二電荷輸送材料とを含有することを特徴とする。
 本発明における「低分子化合物」の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。
 発光層の形成に用いる材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりする場合がある。一方、発光材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、溶剤に溶解させる際に長い時間を要したりする傾向がある。
 発光層の形成に用いる材料の分子量が上記範囲内であるとガラス転移温度や融点、分解温度等が高く、発光層の形成に用いる材料および形成された発光層の耐熱性が良好で、再結晶化や分子のマイグレーションなどに起因する膜質の低下や、材料の熱分解に伴う不純物濃度の上昇などを引き起こし難く、素子性能が低下し難い点、また精製が容易である点などで好ましい。
 本発明の有機電界発光素子の発光層が、発光材料および電荷輸送材料以外の化合物を含む場合、その化合物についても、分子量が好ましくは10000以下、より好ましくは5000以下、更に好ましくは4000以下、特に好ましくは3000以下、また、好ましくは100以上、より好ましくは200以上、更に好ましくは300以上、特に好ましくは400以上の範囲にある低分子化合物とすることが好ましい。
 [発光スペクトルの極大発光波長]
 本発明の有機電界発光素子は、その発光スペクトルにおいて、440~500nm領域、500~580nm領域、および580~630nm領域のうち少なくとも2つの領域に、極大発光波長を有することが好ましい。
 このような本発明の有機電界発光素子を得る方法としては、発光層の形成に用いる発光材料を、有機電界発光素子の発光スペクトルが、440~500nm領域、500~580nm領域、および580~630nm領域のうち少なくとも2つの領域に、極大発光波長を有するように、適宜選択して用いる方法がある。
 また、カラーフィルター、偏光板、位相差板、拡散板、および蛍光変換膜などを適用して、各領域に極大発光波長を有するように設計することもできるが、本発明の有機電界発光素子においては、有機電界発光素子の発光スペクトルが、440~500nm領域、500~580nm領域、および580~630nm領域のそれぞれに極大発光波長を有するように、発光層に用いる発光材料を適宜選択して用いることが好ましい。
 [発光スペクトルの測定方法]
 本発明の有機電界発光素子の発光スペクトルは、例えば、分光器USB4000(オーシャンオプティクス社製)を用いて測定することができる。
 なお、上記と同等の測定が可能であれば、発光スペクトルの測定機器は上記の測定機器に限定されるものではなく、その他の測定機器を用いてもよい。
 [発光層]
 本発明における発光層は、電界を与えられた電極間において、陽極から注入された正孔と、陰極から注入された電子との再結合により励起されて、主たる発光源となる層であり、前述のように、陽極側から、いずれも低分子化合物である燐光発光材料と第一電荷輸送材料とを含有する塗布発光層と、いずれも低分子化合物である蛍光発光材料と第二電荷輸送材料をと含有する蒸着発光層とを含む。
 発光層を陽極側から順に、塗布発光層、蒸着発光層とを有することで、得られる発光層の膜質が均一となる。また、塗布発光層に燐光発光材料が含まれていると、高い効率を得ることができる。蒸着発光層に蛍光発光材料が含有されていると、十分な発光強度を得ることができる。さらに、燐光発光材料を含む塗布発光層上に蛍光発光材料を含む蒸着発光層が積層して発光層が形成されることにより、以下の作用機構で発光効率に優れた有機電界発光素子を実現することができる。
 即ち、まず、第一発光層として、燐光発光材料と第一電荷輸送材料を含む組成物を湿式成膜する。一般に燐光発光材料は、IrやPtなど原子量の大きな金属原子を含む錯体である。原子量の大きな金属原子を含む化合物が膜の最表面に存在しないほうが化学的な表面エネルギーが低く安定であるため、溶媒存在下では燐光発光材料は最表面にはほとんど存在しない状態となり、その結果、乾燥後の膜の最表面の極薄い領域には第一電荷輸送材料が多く存在することになると考えられる。
 この第一電荷輸送材料が多い領域が、その上に設けられる第二発光層(蒸着発光層)中の蛍光発光材料から、第一発光層中の燐光発光材料へのエネルギー移動をブロックすると考えられる。その結果、第一および第二発光層がいずれも十分に発光し、発光効率の高い有機電界発光素子が得られると考えられる。
 なお、第二発光層(蒸着発光層)の発光材料として燐光発光材料を用いると、以下のような問題が生じる可能性があるため、本発明の有機電界発光素子では、蒸着発光層の発光材料として蛍光発光材料を用いる。
 前述したように、燐光発光材料は原子量の大きな金属原子を含む分子量の大きな分子であるため、真空蒸着により飛来した当該分子は大きな熱エネルギーを有している。第一発光層上に形成する第二発光層の発光材料として燐光発光材料を真空蒸着すると、大きな熱エネルギーを持った燐光発光材料分子が衝突することにより、第一発光層の表面が荒れることが考えられる。平坦性が損なわれた層表面(界面)は、層中に含まれる材料の凝集を促し、凝集体は電荷のトラップ形成の原因となる。
 また、上述した本発明の素子の特色である、第一発光層表面の第一電荷輸送材料によるバリア機能が、蒸着により飛来した燐光発光材料分子により損なわれるため、第一発光層中の三重項エネルギーが第二発光層中に移動してしまい、第一発光層の発光が不十分となり、発光色のバランスが崩れるおそれがある。
 {発光材料}
 <蛍光発光材料>
 以下、発光材料のうち、蒸着発光層で用いる蛍光発光材料について説明する。
 (1)440~500nm領域(青)
 440~500nm領域に極大発光波長を有する、青色発光を与える蛍光発光材料(青色蛍光色素)としては、例えば、ナフタレン、クリセン、ペリレン、ピレン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン、アリールアミンおよびそれらの誘導体等が挙げられる。中でも、アントラセン、クリセン、ピレン、アリールアミンおよびそれらの誘導体等が好ましい。
 中でも、青の色純度が高く、高効率、長寿命な点で、スチリルアミン化合物およびアリールアミン化合物であることが好ましい。
 スチリルアミン化合物としては、発光層中で正孔を効率的に捕獲する点で、下記式(A)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(A)中、Ar22はビフェニル基、ターフェニル基、スチルベン基またはジスチリルアリール基であり、Ar23およびAr24は各々独立に、水素原子または炭素数が6~20の芳香族基であり、Ar23およびAr24が複数存在する場合には、それらは同一でも異なっていてもよい。また、Ar22~Ar24は置換基を有していてもよい。pは1~4の整数である。)
 式(A)において、好ましくはAr23及びAr24の少なくとも一方がスチリル基で置換されている炭素数が6~20の芳香族基である。
 ここで、炭素数が6~20の芳香族基としては、フェニル基、ナフチル基、アントリル基、フェナンスリル基、ターフェニル基等の芳香族炭化水素基が挙げられる。
 また、アリールアミン化合物としては、発光層中で正孔を効率的に捕獲する点で、下記式(B)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000011
(式(B)中、Ar25は置換もしくは無置換の核炭素数10~40のアリール基であり、Ar26およびAr27は各々独立に、置換もしくは無置換の核炭素数5~40のアリール基である。qは1~4の整数である。)
 ここで、Ar25の核炭素数が10~40のアリール基としては、例えば、ナフチル基、アントリル基、フェナンスリル基、ピレニル基、クリセニル基、コロニル基、ビフェニル基、ターフェニル基、ジフェニルアントリル基、カルバゾリル基、ベンゾキノリル基、フルオランテニル基、アセナフトフルオランテニル基、スチルベン基等が挙げられる。
 また、Ar26、Ar27の核炭素数が5~40のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナンスリル基、ピレニル基、クリセニル基、コロニル基、ビフェニル基、ターフェニル基、ピローリル基、フラニル基、チオフェニル基、ベンゾチオフェニル基、オキサジアゾリル基、ジフェニルアントリル基、インドリル基、カルバゾリル基、ピリジル基、ベンゾキノリル基、フルオランテニル基、アセナフトフルオランテニル基、スチルベン基等が挙げられる。
 これらのアリール基が置換基を有する場合、好ましい置換基としては、炭素数1~6のアルキル基(エチル基、メチル基、i-プロピル基、n-プロピル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等)、炭素数1~6のアルコキシ基(エトキシ基、メトキシ基、i-プロポキシ基、n-プロポキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基、ヘキシルオキシ基、シクロペントキシ基、シクロヘキシルオキシ基等)、核原子数5~40のアリール基、核原子数5~40のアリール基で置換されたアミノ基、核原子数5~40のアリール基を有するエステル基、炭素数1~6のアルキル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子等が挙げられる。
 本発明における青色発光を与える蛍光発光材料の好ましい具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 上記青色発光を与える蛍光発光材料は、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 (2)500~580nm領域(緑)
 500~580nm領域に極大発光波長を有する、緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、例えば、キナクリドン、クマリン、Al(CNO)などのアルミニウム錯体およびそれらの誘導体等が挙げられる。これらは、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 (3)580~630nm領域(赤)
 580~630nm領域に極大発光波長を有する、赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、例えば、DCM(4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン)系化合物、ベンゾピラン、ローダミン、ベンゾチオキサンテン、アザベンゾチオキサンテン等のキサンテンおよびそれらの誘導体等が挙げられる。これらは、1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 <燐光発光材料>
 次に、発光材料のうち、塗布発光層で用いる燐光発光材料について説明する。
 燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を中心金属として含むウェルナー型錯体または有機金属錯体が挙げられる。
 周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられ、中でもより好ましくはイリジウムまたは白金である。
 錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。
 燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられる。
 特に、燐光発光材料の燐光性有機金属錯体としては、好ましくは下記式(III)または式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式(III)中、Mは金属を表し、iは前記金属Mの価数を表す。また、LおよびL’はそれぞれ独立して二座配位子を表し、LおよびL’が複数存在する場合には、それらは同一でも異なっていてもよい。jは0、1または2の数を表す。)
Figure JPOXMLDOC01-appb-C000015
(式(IV)中、Mは金属を表し、Tは炭素原子または窒素原子を表す。R92~R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、窒素原子であるTに直接結合しているR94またはR95は存在しない。また、複数存在するTおよびR92~R95は、それぞれ同一でも異なっていてもよい。)
 以下、まず、式(III)で表される化合物について説明する。
 式(III)中、Mは任意の金属を表し、好ましいものの具体例としては、周期表第7~11族から選ばれる金属として前述した金属が挙げられる。
 また、式(III)中、二座配位子Lは、以下の部分構造を有する配位子を示す。
Figure JPOXMLDOC01-appb-C000016
 上記Lの部分構造において、環A1は、置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基を表す。
 該芳香族炭化水素基としては、5または6員環の単環または2~5縮合環由来の基が挙げられる。
 具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環由来の1価の基などが挙げられる。
 該芳香族複素環基としては、5または6員環の単環または2~4縮合環由来の基が挙げられる。
 具体例としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環由来の1価の基などが挙げられる。
 また、上記Lの部分構造において、環A2は、置換基を有していてもよい、含窒素芳香族複素環基を表す。
 該含窒素芳香族複素環基としては、5または6員環の単環または2~4縮合環由来の基が挙げられる。
 具体例としては、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、フロピロール環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環由来の1価の基などが挙げられる。
 環A1または環A2がそれぞれ有していてもよい置換基の例としては、ハロゲン原子;アルキル基;アルケニル基;アラルキル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基;芳香族炭化水素基等が挙げられる。
 また、式(III)中、二座配位子L’は、以下の部分構造を有する配位子を示す。但し、本明細書の式において、「Ph」はフェニル基を表す。
Figure JPOXMLDOC01-appb-C000017
 中でも、L’としては、錯体の安定性の観点から、以下に挙げる配位子が好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(III)で表される化合物として、更に好ましくは、下記式(IIIa)、(IIIb)または(IIIc)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
(式(IIIa)中、Mは式(III)におけるMと同様の金属を表し、wは前記金属Mの価数を表し、環A1は、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。環A1、環A2が複数存在する場合には、それぞれ同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000020
(式(IIIb)中、Mは式(III)におけるMと同様の金属を表し、wは前記金属Mの価数を表し、環A1は、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。環A1、環A2が複数存在する場合には、それぞれ同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000021
(式(IIIc)中、Mは式(III)におけるMと同様の金属を表し、wは前記金属Mの価数を表し、vは、0、1または2を表し、環A1および環A1’は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、環A2および環A2’は、それぞれ独立に、置換基を有していてもよい含窒素芳香族複素環基を表す。環A1、環A2、環A1’、環A2’が複数存在する場合には、それぞれ同一でも異なっていてもよい。)
 上記式(IIIa)~(IIIc)において、環A1および環A1’の好ましい例としては、フェニル基、ビフェニル基、ナフチル基、アントリル基、チエニル基、フリル基、ベンゾチエニル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、カルバゾリル基等が挙げられる。
 上記式(IIIa)~(IIIc)において、環A2および環A2’の好ましい例としては、ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、ベンゾチアゾール基、ベンゾオキサゾール基、ベンゾイミダゾール基、キノリル基、イソキノリル基、キノキサリル基、フェナントリジニル基等が挙げられる。
 上記式(IIIa)~(IIIc)における環A1及び環A1’の芳香環基、環A2及び環A2’の含窒素芳香族複素環基が有していてもよい置換基としては、ハロゲン原子;炭素数1~12のアルキル基;炭素数1~12のアルケニル基;炭素数1~12のアルコキシカルボニル基;炭素数1~12のアルコキシ基;炭素数1~24のアラルキル基;炭素数1~12のアリールオキシ基;炭素数1~24のジアルキルアミノ基;炭素数8~24のジアリールアミノ基;5又は6員環の単環又は2~4縮合環である芳香族炭化水素環基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基等が挙げられる。
 炭素数8~24のジアリールアミノ基、5又は6員環の単環又は2~4縮合環である芳香族炭化水素環基、カルバゾリル基は、その基を構成するアリール部位にさらに置換基を有していてもよく、その置換基としては、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数1~24のアラルキル基、炭素数1~12のアルキル基で置換されていてもよい5又は6員環の単環又は2~4縮合環である芳香族炭化水素環基が挙げられる。
 なお、これら置換基は互いに連結して環を形成してもよい。具体例としては、環A1が有する置換基と環A2が有する置換基とが結合するか、または、環A1’が有する置換基と環A2’が有する置換基とが結合することにより、一つの縮合環を形成してもよい。このような縮合環としては、7,8-ベンゾキノリン基等が挙げられる。
 中でも、環A1、環A1’、環A2及び環A2’の置換基として、より好ましくは、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数1~24のアラルキル基、5又は6員環の単環又は2~4縮合環である芳香族炭化水素環基、シアノ基、ハロゲン原子、ハロアルキル基、炭素数8~24のジアリールアミノ基、カルバゾリル基であり、さらに好ましくは炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数1~24のアラルキル基、5又は6員環の単環又は2~4縮合環である芳香族炭化水素環基、炭素数8~24のジアリールアミノ基、カルバゾリル基である。5又は6員環の単環又は2~4縮合環である芳香族炭化水素環基、炭素数8~24のジアリールアミノ基、カルバゾリル基は、その基を構成するアリール部位にさらに置換基を有していてもよく、その置換基としては、先述したとおりである。
 また、式(IIIa)~(IIIc)におけるM~Mの好ましい例としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられる。
 上記式(III)で表される有機金属錯体の中でも、特に、配位子Lおよび/またはL’として2-アリールピリジン系配位子、即ち、2-アリールピリジン、2-アリールピリジンに任意の置換基が結合したもの、および、2-アリールピリジンに任意の基が縮合してなるものを有する化合物が好ましい。
 また、国際公開第2005/019373号に記載の化合物も、発光材料として使用することが可能である。
 次に、式(IV)で表される化合物について説明する。
 式(IV)中、Mは金属を表す。具体例としては、周期表第7~11族から選ばれる金属として前述した金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
 また、式(IV)において、R92およびR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素基または芳香族複素環基を表す。
 更に、Tが炭素原子の場合、R94およびR95は、それぞれ独立に、R92およびR93と同様の例示物で表される置換基を表す。また、Tが窒素原子の場合は該Tに直接結合するR94またはR95は存在しない。
 また、R92~R95は、更に置換基を有していてもよい。置換基を有する場合、その種類に特に制限はなく、任意の基を置換基とすることができる。
 更に、R92~R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。
 以下に、燐光発光材料の具体例をその極大発光波長の存在する波長領域毎に示す。以下の燐光発光材料は、いずれも1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 (1)440nm~500nm領域に極大発光波長を有する燐光発光材料(青)の具体例
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 (2)500~580nm領域に極大発光波長を有する燐光発光材料(緑)の具体例
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 (3)580~630nm領域に極大発光波長を有する燐光発光材料(赤)の具体例
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 {塗布発光層}
 本発明の有機電界発光素子では、湿式成膜法で形成された第一発光層(発光層のうち陽極側にある層)を塗布発光層とする。
 即ち、前述したように、燐光発光材料は一般に分子量が大きい。仮に、当該第一発光層を真空蒸着プロセスにより形成した場合、蒸着により飛来した燐光発光材料の分子は、大きな熱エネルギーを有しており、蒸着工程の最終段階で層の最表面に付着した当該分子は、層表面を移動した後、当該分子同士が凝集し、安定化する。つまり最表層には、燐光発光材料分子の凝集体が、発光層内部と比べて多く存在していると考えられる。この凝集体が、第一発光層および第二発光層の両方に存在するエキシトンや電荷のトラップとなるため、素子の駆動電圧上昇や発光効率の低下を引き起こすものと考えられる。従って、第一発光層は塗布発光層とすることが好ましい。
 なお、蛍光発光材料は、概して燐光発光材料ほど分子量が大きくない。このため、蒸着工程により基板上に飛来・付着した蛍光発光材料の分子は、有している熱エネルギーが比較的小さく、層の最表面でもあまり移動しない(凝集体を形成する確率が低い)と考えられる。
 本発明において、「湿式成膜法」とは、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、ノズルプリンティング法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷等の、溶剤を含有するインクを用いて成膜する方法をいう。パターニングのし易さという点で、ノズルプリンティング法、ダイコート法、ロールコート法、スプレーコート法、インクジェット法、グラビア印刷法またはフレキソ印刷法が好ましく、均一な膜質を得られる点でノズルプリンティング法、インクジェット法、グラビア印刷法、フレキソ印刷法が特に好ましい。
 塗布発光層は、上記燐光発光材料および低分子量の第一電荷輸送材料と更に溶剤とを含有する発光層形成用組成物を用いて、上記湿式成膜法にて形成される。
 <溶剤>
 塗布発光層を形成するための溶剤は、燐光発光材料および後掲の第一電荷輸送材料が良好に溶解する溶剤であれば特に限定されない。
 溶剤の溶解性としては、常温・常圧下で、燐光発光材料および第一電荷輸送材料を、各々、通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上溶解することが好ましい。
 以下に溶剤の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。
 例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。
 中でも好ましくは、アルカン類や芳香族炭化水素類である。
 これらの溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 また、より均一な膜を得るためには、成膜直後の液膜から溶剤が適当な速度で蒸発することが好ましい。このため、溶剤の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上、また、通常300℃以下、好ましくは270℃以下、より好ましくは250℃以下である。
 溶剤の使用量は、本発明の効果を著しく損なわない限り任意であるが、発光層形成用組成物100重量部に対して、好ましくは10重量部以上、より好ましくは50重量部以上、特に好ましくは80重量部以上、また、好ましくは99.99重量部以下、より好ましくは99.95重量部以下、特に好ましくは99.90重量部以下である。発光層形成用組成物中の溶剤の含有量が上記下限を下回ると、粘性が高くなりすぎ、成膜作業性が低下する可能性がある。一方、上記上限を上回ると、成膜後、溶剤を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。なお、発光層形成用組成物として2種以上の溶剤を混合して用いる場合には、これらの溶剤の合計がこの範囲を満たすようにする。
 <発光材料>
 本発明においては、塗布発光層は、440~500nm領域、500~580nm領域、および580~630nm領域のうちの少なくとも1つの領域に極大発光波長を有する層であることが好ましく、従って、塗布発光層は、特に、440~500nm領域に極大発光波長を有する青色発光材料と、500~580nm領域に極大発光波長を有する緑色発光材料と、580~630nm領域に極大発光波長を有する赤色発光材料のうちの1種以上、特に、500~580nm領域に極大発光波長を有する緑色発光材料と、580~630nm領域に極大発光波長を有する赤色発光材料のうちいずれか一つを有することが好ましく、両方有することが更に好ましい。
 前述の如く、塗布発光層は、高い発光効率が得られる点から燐光発光材料を含有することが好ましい。特に塗布発光層は、赤色燐光発光材料および/又は緑色燐光発光材料とを含有することが好ましい。
 これは、エネルギーギャップの狭い、赤色から緑色の発光材料を含む層を陽極側に配置することで、エネルギーギャップの広い青色発光材料から発光層の陽極側に隣接する層(例えば、正孔輸送層)へのエネルギーの移動を抑制することによる。
 本発明における発光層形成用組成物は、発光材料を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、また、通常20重量%以下、好ましくは10重量%以下、さらに好ましくは5重量%以下含有する。
 <第一電荷輸送材料>
 本発明における塗布発光層は、第一電荷輸送材料を含有する。
 第一電荷輸送材料とは、正孔輸送性や電子輸送性などの電荷輸送性を有する化合物であって、単一の分子量で規定される化合物である。本発明に係る発光層は、発光材料をドーパント材料とし、第一電荷輸送材料をホスト材料として含むことが好ましい。
 第一電荷輸送材料は、従来有機電界発光素子の発光層に用いられている低分子量化合物であればよく、特に発光層のホスト材料として使用されている化合物が好ましい。
 第一電荷輸送材料として具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、スチリル系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等が挙げられる。
 また、第一電荷輸送材料は、正孔輸送性化合物と電子輸送性化合物とに大別される。
 (正孔輸送性化合物)
 塗布発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4’’-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence,1997年,Vol.72-74,pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications,1996年,pp.2175)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のスピロ化合物(Synthetic Metals,1997年,Vol.91,pp.209)等が挙げられる。
 なお、塗布発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 (電子輸送性化合物)
 塗布発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)や、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)や、4,4’-ビス(9-カルバゾール)-ビフェニル(CBP)等が挙げられる。
 なお、塗布発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 尚、上記第一電荷輸送材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。特に、2種以上を組み合せる時は、前記正孔輸送性化合物と電子輸送性化合物とを併用することが好ましい。
 特に、塗布発光層に、赤色燐光発光材料および緑色燐光発光材料を含む場合は、第一電荷輸送材料としては、芳香族アミン系化合物、フルオレン基で3級アミンを連結した化合物、カルバゾール系化合物、ピリジン系化合物、シロール系化合物が挙げられる。
 以下に、本発明に好適な第一電荷輸送材料の具体例を挙げるが、本発明は何らこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 本発明における発光層形成用組成物は、第一電荷輸送材料を通常0.1重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上、また、通常20重量%以下、好ましくは10重量%以下、さらに好ましくは5重量%以下含有する。
 また、発光層形成用組成物中の発光材料と第一電荷輸送材料との含有量の比(発光材料/第一電荷輸送材料)は、通常0.01以上、好ましくは0.03以上、また通常0.5以下、好ましくは0.3以下である。
 <その他の成分>
 本発明における発光層形成用組成物は、本発明の効果を著しく損なわない限り、さらに後述する正孔輸送層や正孔注入層由来の成分、レベリング剤、消泡剤、増粘剤等の塗布性改良剤、電子受容性化合物や電子供与性化合物などの電荷輸送補助剤、バインダ樹脂などを含有してもよい。なお、これらその他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、これらその他の成分の含有量は、形成される薄膜(塗布発光層)の電荷移動を著しく阻害しないこと、発光材料の発光を阻害しないこと、薄膜の膜質を低下させないこと等の観点から、塗布発光層中の含有量として通常5重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下、特に好ましくは0重量%(含有しない)である。
 なお、本発明の効果の観点からは、発光層形成用組成物に含まれる発光材料及び第一電荷輸送材料のみならず、塗布発光層に含まれる全ての材料が低分子化合物であることが好ましい。
 {蒸着発光層}
 本発明の有機電界発光素子では、真空蒸着法で形成された第二発光層(発光層のうち、陽極側から第一発光層を介して形成された層)を蒸着発光層とする。
 本発明において、「真空蒸着法」とは、真空で化合物を蒸発させて層を形成する方法を言う。
 その真空度としては、真空蒸着機内の残存気体分子への衝突の防止と、蒸着材料の蒸発温度を下げて蒸発を容易にするため、通常10-2Pa以下10-6以上であり、10-3Pa以下10-5以上が好ましい。
 本発明において、蒸着発光層は、蒸着の容易さの観点から、蛍光発光材料を含有する層とする。また、蒸着発光層は、特に440~500nm領域に極大発光波長を有する青色発光材料を少なくとも含むことが好ましい。
 <第二電荷輸送材料>
 本発明における蒸着発光層は、発光材料の他に、通常第二電荷輸送材料を含有する。
 蒸着発光層に含有される第二電荷輸送材料は、本発明の効果を損わない限り特に制限はなく、公知の低分子量材料を用いることができる。
 特に、蒸着発光層に、青色蛍光発光材料を含有する場合、耐久性に優れる点から、下記式(VI)で表される化合物を第二電荷輸送材料として用いることが特に好ましい。
Figure JPOXMLDOC01-appb-C000045
(式(VI)中、Ar1AおよびAr1Bは、各々独立に、置換基を有していてもよい芳香族炭化水素基、または置換基を有していてもよい芳香族複素環基を表す。また、式(VI)中のアントラセン環は、Ar1A、Ar1B以外の置換基を有していてもよい。)
 Ar1AおよびAr1Bの芳香族炭化水素基の具体例としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、ピレン環、クリセン環、ナフタセン環、ベンゾフェナントレン環等のベンゼン環、或いは、ベンゼン環の2~5個が縮合してなる縮合環由来の基、およびこれらの基が2以上連結してなる炭素数25以下の基が挙げられる。
 Ar1AおよびAr1Bの芳香族複素環基の具体例としては、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の由来の基が挙げられる。
 Ar1AおよびAr1Bにおける芳香族炭化水素基が有していてもよい置換基としては、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、(ヘテロ)アリールオキシ基、アルキルチオ基、(ヘテロ)アリールチオ基、シアノ基、ジアルキルアミノ基、アルキルアリールアミノ基、ジアリールアミノ基などの有機基が挙げられるが、これらのうち、アルキル基および芳香族炭化水素基が、化合物の安定性の面から好ましく、芳香族炭化水素基が特に好ましい。
 Ar1AおよびAr1Bにおける芳香族炭化水素基が有していてもよい置換基としてのアルキル基としては、炭素数1~20のものが好ましく、例えば、メチル基、エチル基、プロピル基、iso-プロピル基、ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基、オクチル基、シクロヘキシル基、デシル基、オクタデシル基等が挙げられる。好ましくは、メチル基、エチル基、iso-プロピル基、sec-ブチル基、tert-ブチル基である。これらのうち、メチル基、エチル基が原料の入手しやすさ、安価さなどから好ましい。
 芳香族炭化水素基としては、炭素数6~25のものが好ましく、6員環の単環または2~5縮合環由来の芳香族炭化水素基が好ましい。例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環等の由来の基が挙げられる。
 芳香族複素環基としては、炭素数3~20のものが好ましく、例えば、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の由来の基が挙げられる。
 アルコキシ基としては、炭素数1~20のものが好ましく、例えば、メトキシ基、エトキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。
 (ヘテロ)アリールオキシ基としては、炭素数3~20のものが好ましく、例えば、フェノキシ基、1-ナフチルオキシ基、9-アントリルオキシ基、2-チエニルオキシ基等が挙げられる。
 アルキルチオ基としては、炭素数1~20のものが好ましく、例えば、メチルチオ基、エチルチオ基、イソプロピルチオ基、シクロヘキシルチオ基等が挙げられる。(ヘテロ)アリールチオ基としては、炭素数3~20のものが好ましく、例えば、フェニルチオ基、1-ナフチルチオ基、9-アントリルチオ基、2-チエニルチオ基等が挙げられる。
 ジアルキルアミノ基としては、炭素数2~29のものが好ましく、例えば、ジエチルアミノ基、ジイソプロピルアミノ基、メチルエチルアミノ基等が挙げられる。
 アルキルアリールアミノ基としては、炭素数7~30のものが好ましく、例えば、メチルフェニルアミノ基等が挙げられる。
 ジアリールアミノ基としては、炭素数12~30のものが好ましく、例えば、ジフェニルアミノ基、フェニルナフチルアミノ基等が挙げられる。
 また、これらの置換基は更に置換基を有していてもよく、その置換基としては、例えば上記のアルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、ジアリールアミノ基などが挙げられる。ただし、該置換基同士が結合して環を形成する場合は除く。
 以下に、蒸着発光層に含まれる第二電荷輸送材料の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 上記第二電荷輸送材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 <その他の成分>
 本発明における蒸着発光層は、本発明の効果を損わない限り、その他の成分を含んでいてもよい。含んでいてもよいその他の成分は、前記{塗布発光層}の<その他の成分>の項で記載したものと同様である。
 <成分含有量>
 本発明における蒸着発光層は、発光材料を通常0.001重量%以上、好ましくは0.005重量%以上、さらに好ましくは0.01重量%以上、また、通常30重量%以下、好ましくは20重量%以下、さらに好ましくは15重量%以下含有する。
 また、本発明における蒸着発光層は、第二電荷輸送材料を通常0.001重量%以上、また、通常99.999重量%以下、好ましくは99.995重量%以下、さらに好ましくは99.99重量%以下含有する。
 また、蒸着発光層中の発光材料と第二電荷輸送材料との含有量の比(発光材料/第二電荷輸送材料)は、通常0.01以上、好ましくは0.03以上、また通常0.5以下、好ましくは0.2以下である。
 本発明における蒸着発光層がその他の成分を含む場合、当該成分は、形成される薄膜(蒸着発光層)の電荷移動を著しく阻害しないこと、発光材料の発光を阻害しないこと、薄膜の膜質を低下させないこと等の観点から、通常5重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下、特に好ましくは0重量%(含有しない)である。
 なお、本発明の効果の観点からは、蒸着発光層に含まれる発光材料及び第二電荷輸送材料のみならず、当該発光層に含まれる全ての材料が低分子化合物であることが好ましい。
 [中間層]
 本発明の有機電界発光素子においては、塗布発光層と蒸着発光層の間には、塗布発光層と蒸着発光層との間のエネルギー移動を抑制することを目的として、電荷輸送材料を用いて真空蒸着法で積層された非発光性の中間層を用いてもよい。
 {膜厚}
 本発明に係る発光層において、前記塗布発光層の膜厚は、2~100nmの範囲にあることが好ましく、特に3~60nmの範囲にあることが、得られる素子の駆動電圧を低くすることができる点で好ましい。
 また、蒸着発光層の膜厚は、2~100nmの範囲にあることが好ましく、特に3~60nmの範囲にあることが、得られる素子の駆動電圧を低くすることができる点で好ましい。
 本発明に係る発光層の全膜厚(即ち、塗布発光層と蒸着発光層と更に中間層を含む場合はその中間層も入れた合計の膜厚)は、5~100nmの範囲にあることが好ましく、特に10~80nmの範囲にあることが、得られる素子の駆動電圧が低く、また発光色の安定性の点で好ましい。
 [正孔阻止層]
 本発明における正孔阻止層は、前述のように、陽極から注入された正孔を発光層内に閉じ込めることで素子の効率を向上させるとともに、陰極側に正孔が流れることによる劣化を防ぐために設けられる層であり、第二発光層の陰極側に隣接している。以下、本発明における正孔阻止層が含有する化合物について説明する。
 [式(1)で表される化合物]
 正孔阻止層が含有する本発明の化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000048
(式(1)中、XはCまたはNを表す。ArおよびArはそれぞれ独立して置換基を有していてもよい芳香環基を表す。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。mは0以上5以下の整数を表す。)
 [1]構造上の特徴
 上記式(1)で表される本発明の化合物は、キノリン環又はキナゾリン環に芳香環基であるAr及びArが置換し、さらにRをm個置換させた構造を有することを特徴とする。この構造を有することにより、本発明の化合物は、ピリジン環又はピリミジン環を有する化合物に比べ、キノリン環又はキナゾリン環を中心とした、比較的広がった最低空軌道(LUMO)を有するため、電荷はキノリン環又はキナゾリン環を中心としてより非局在化して分布することとなる。
 このような電荷分布を実現することにより、隣接発光層への電子授与が円滑になることで駆動電圧の低下に寄与し、隣接する蛍光発光材料が消光し難くなることで発光効率の向上に寄与し、有機電界発光素子の耐久性を高める機能を奏するものと推測される。
 また、キノリン環またはキナゾリン環の4位に芳香環基Arを置換させた構造が、その環の分解を抑えるために、有機電界発光素子の耐久性を向上させるものと推測される。また、本発明の化合物においては、キノリン環の方がキナゾリン環より好ましい。
 [2]式(1)における各構成要素
 以下に上記式(1)における各構成要素について詳細に説明する。
 <ArおよびArについて>
 式(1)中のArおよびArは置換基を有していてもよい芳香環基を表す。
 ArおよびArの芳香環基としては炭素数3以上25以下のものが好ましく、具体的に芳香環基の例としては、フェニル基;3-ビフェニル基、4-ビフェニル基などのビフェニル基;ターフェニル基;1-ナフチル基、2-ナフチル基などのナフチル基;1-アントリル基、2-アントリル基、9-アントリル基などのアントリル基;9-フェナントリル基などのフェナントリル基;1-ナフタセニル基、2-ナフタセニル基などのナフタセニル基;1-クリセニル基、2-クリセニル基、3-クリセニル基、4-クリセニル基、5-クリセニル基、6-クリセニル基などのクリセニル基;1-ピレニル基などのピレニル基;1-トリフェニレニル基などのトリフェニレニル基;1-コロネニル基などのコロネニル基等の芳香族炭化水素基;2-ピリジル基などのピリジル基;2-チエニル基などのチエニル基;3-ベンゾチエニル基などのベンゾチエニル基;2-キノリニル基などのキノリニル基等の芳香族複素環基が挙げられ、特に芳香族炭化水素基が好ましい。
 化合物の安定性の面から、ArおよびArとしてはフェニル基、3-ビフェニル基、4-ビフェニル基、2-ナフチル基、9-フェナントリル基、9-アントリル基が好ましく、フェニル基、3-ビフェニル基、4-ビフェニル基、2-ナフチル基が化合物の精製のし易さから特に好ましく、フェニル基、3-ビフェニル基、4-ビフェニル基が最も好ましい。
 また、ArおよびArは置換基を有していてもよく、その置換基の具体例としては、炭素数1~20のアルキル基、炭素数6~25の芳香族炭化水素基、炭素数3~20の芳香族複素環基、炭素数1~20のアルキルオキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルチオ基、炭素数3~20の(ヘテロ)アリールチオ基、シアノ基、ジフェニルアミノ基などのジアリールアミノ基が挙げられる。これらの基はさらに置換基を有していてもよく、その具体例としては、ArおよびArの置換基として例示したものと同様である。Arが有する置換基としてはアルキル基および芳香族炭化水素基が、化合物の安定性の面から好ましく、芳香族炭化水素基が特に好ましい。
 ArおよびArが有していてもよい置換基としての炭素数1~20のアルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基、オクチル基、シクロヘキシル基、デシル基、オクタデシル基等が挙げられる。好ましくは、メチル基、エチル基、イソプロピル基である。これらのうち、メチル基、エチル基が原料の入手しやすさ、安価さなどから好ましい。
 ArおよびArが有していてもよい置換基としての炭素数6~25の芳香族炭化水素基の例としては、フェニル基;1-ナフチル基、2-ナフチル基などのナフチル基;1-アントリル基、2-アントリル基、9-アントリル基などのアントリル基;9-フェナントリル基などのフェナントリル基;1-ナフタセニル基、2-ナフタセニル基などのナフタセニル基;1-クリセニル基、2-クリセニル基、3-クリセニル基、4-クリセニル基、5-クリセニル基、6-クリセニル基などのクリセニル基;1-ピレニル基などのピレニル基;1-トリフェニレニル基などのトリフェニレニル基;1-コロネニル基などのコロネニル基;4-ビフェニル基、3-ビフェニル基などのビフェニル基;オルト-ターフェニル基、メタ-ターフェニル基、パラ-ターフェニル基などのターフェニル基等が挙げられる。これらのうち、化合物の安定性の面からフェニル基、2-ナフチル基、9-フェナントリル基、9-アントリル基、4-ビフェニル基、3-ビフェニル基が好ましく、化合物の精製のし易さからフェニル基、2-ナフチル基、3-ビフェニル基が特に好ましい。
 ArおよびArが有していてもよい置換基としての炭素数3~20の芳香族複素環基の例としては、2-チエニル基などのチエニル基、2-フリル基などのフリル基、2-イミダゾリル基などのイミダゾリル基、9-カルバゾリル基などのカルバゾリル基、2-ピリジル基などのピリジル基、1,3,5-トリアジン-2-イル基などのトリアジン-イル基等が挙げられる。中でも9-カルバゾリル基が化合物の安定性の面から好ましい。
 ArおよびArが有していてもよい置換基としての炭素数1~20のアルキルオキシ基の例としては、メトキシ基、エトキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。
 ArおよびArが有していてもよい置換基としての炭素数3~20の(ヘテロ)アリールオキシ基の例としては、フェノキシ基、1-ナフチルオキシ基、9-アントリルオキシ基、2-チエニルオキシ基等が挙げられる。
 ArおよびArが有していてもよい置換基としての炭素数1~20のアルキルチオ基の例としては、メチルチオ基、エチルチオ基、イソプロピルチオ基、シクロヘキシルチオ基等が挙げられる。
 ArおよびArが有していてもよい置換基としての炭素数3~20の(ヘテロ)アリールチオ基の例としては、フェニルチオ基、1-ナフチルチオ基、9-アントリルチオ基、2-チエニルチオ基等が挙げられる。
 ArおよびArがこれらの置換基を有する場合、その置換位置には特に制限はないが、例えばArがフェニル基の場合、キノリン環またはキナゾリン環への置換位置に対してパラ位またはメタ位であることが好ましい。
 <Rおよびmについて>
 式(1)中のRは、キノリン環またはキナゾリン環に結合する置換基であり、mは環に置換するRの数を表す。mは0以上5以下、好ましくは0以上2以下、特に好ましくは0以上1以下の整数であり、mが0とは、Rがその環に置換しないことを意味する。また、mが2以上のとき、その環に置換する複数のRは同一であっても異なっていてもよい。
 式(1)中のRは炭素数50以下の有機基を表し、これらは置換基を有していてもよい。Rの有機基の炭素数は、置換基を有する場合はその置換基も含めて通常50以下であり、好ましくは30以下である。
 Rの有機基の具体例としては、炭素数1~20のアルキル基、炭素数6~25の芳香族炭化水素基、炭素数3~20の芳香族複素環基、炭素数1~20のアルキルオキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルチオ基、炭素数3~20の(ヘテロ)アリールチオ基、シアノ基が挙げられる。Rとしては、アルキル基、芳香族炭化水素基、芳香族複素環基が、化合物の安定性の面から好ましく、芳香族炭化水素基が特に好ましい。
 Rの有機基としての炭素数1~20のアルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基、オクチル基、シクロヘキシル基、デシル基、オクタデシル基等が挙げられる。好ましくは、メチル基、エチル基、イソプロピル基である。これらのうち、メチル基、エチル基が原料の入手しやすさ、安価さなどから好ましい。
 Rの有機基としての炭素数6~25の芳香族炭化水素基の例としては、フェニル基;1-ナフチル基、2-ナフチル基などのナフチル基;1-アントリル基、2-アントリル基、9-アントリル基などのアントリル基;9-フェナントリル基などのフェナントリル基;1-ナフタセニル基、2-ナフタセニル基などのナフタセニル基;1-クリセニル基、2-クリセニル基、3-クリセニル基、4-クリセニル基、5-クリセニル基、6-クリセニル基などのクリセニル基;1-ピレニル基などのピレニル基;1-トリフェニレニル基などのトリフェニレニル基;1-コロネニル基などのコロネニル基等が挙げられる。これらのうち、化合物の安定性の面からフェニル基、2-ナフチル基、1-アントリル基、9-アントリル基、9-フェナントリル基が好ましく、化合物の精製のし易さからフェニル基、2-ナフチル基が特に好ましい。
 Rの有機基としての炭素数3~20の芳香族複素環基の例としては、2-チエニル基などのチエニル基、2-フリル基などのフリル基、2-イミダゾリル基などのイミダゾリル基、9-カルバゾリル基などのカルバゾリル基、2-ピリジル基などのピリジル基、1,3,5-トリアジン-2-イル基などのトリアジン-イル基等が挙げられる。中でも9-カルバゾリル基が化合物の安定性の面から好ましい。
 Rの有機基としての炭素数1~20のアルキルオキシ基の例としては、メトキシ基、エトキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。中でもメトキシ基、エトキシ基が高いガラス転移温度の面から好ましい。
 Rの有機基としての炭素数3~20の(ヘテロ)アリールオキシ基の例としては、フェノキシ基、3-フェノキシフェノキシ基、2-ナフチルオキシ基、9-アントリルオキシ基、2-チエニルオキシ基等が挙げられる。中でも、フェノキシ基、3-フェノキシフェノキシ基、2-ナフチルオキシ基が化合物の精製の容易さの面から好ましく、3-フェノキシフェノキシ基が特に好ましい。
 Rの有機基としての炭素数1~20のアルキルチオ基の例としては、メチルチオ基、エチルチオ基、イソプロピルチオ基、シクロヘキシルチオ基等が挙げられる。中でも、メチルチオ基、エチルチオ基が高いガラス転移温度の面から好ましい。
 Rの有機基としての炭素数3~20の(ヘテロ)アリールチオ基の例としては、フェニルチオ基、1-ナフチルチオ基、9-アントリルチオ基、2-チエニルチオ基等が挙げられる。
 これらの有機基はさらに置換基を有していてもよく、その置換基としては、前述のArの置換基として例示したものが挙げられる。
 [3]式(2)で表される化合物
 前記式(1)で表される化合物の中でも、特に下記式(2)で表される化合物が好ましい。これは、キノリン環またはキナゾリン環に置換した芳香環基数が増えたことで、最低空軌道(LUMO)が広がることにより、隣接発光層へ電子がスムーズに流れるようになったとともに、化合物のガラス転移点が高くなり、耐熱性が向上したものと推測される。
Figure JPOXMLDOC01-appb-C000049
(式(2)中、XはCまたはNを表す。Ar~Arはそれぞれ独立して置換基を有していてもよい芳香環基を表す。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。nは0以上4以下の整数を表す。)
 <Ar、ArおよびArについて>
 式(2)中のAr、ArおよびArは、それぞれ前記式(1)におけるArと同義である。Ar、Ar、およびArの具体例、好ましい例およびその有していてもよい置換基は、それぞれ前記式(1)のArの具体例、好ましい例およびその有していてもよい置換基と同じである。
 <Rおよびnについて>
 式(2)中のRは、前記式(1)におけるRと同義である。Rの具体例、好ましい例およびその有していてもよい置換基は、前記式(1)のRの具体例、好ましい例およびその有していてもよい置換基と同じである。
 式(2)中、nはキノリン環またはキナゾリン環に置換するRの数を表す。nは0以上4以下、好ましくは0以上2以下、特に好ましくは0以上1以下の整数であり、nが0とは、Rがその環に置換しないことを意味する。また、nが2以上のとき、その環に置換する複数のRは同一であっても異なっていてもよい。
 [4]式(3)で表される化合物
前記式(2)で表される化合物の中でも、特に下記式(3)で表される化合物が好ましい。これは、非共有電子対をもつ窒素原子が芳香環基Ar21およびAr22で置換された構造が高い正孔親和性を有し、化合物の最高被占軌道(HOMO)が窒素原子を中心とした周辺に広がっていることにより、正孔に対する耐久性が向上したものと推測される。
Figure JPOXMLDOC01-appb-C000050
(式(3)中、XはCまたはNを表す。Ar、Ar、Ar21およびAr22はそれぞれ独立して置換基を有していてもよい芳香環基を表す。またAr21とAr22は結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。Lは、単結合または置換基を有していてもよい炭素数25以下の芳香環基を表す。nは0以上4以下の整数を表す。)
 <Ar、Ar、Ar21およびAr22について>
 式(3)中のAr、Ar、Ar21およびAr22は、それぞれ前記式(1)におけるArと同義である。Ar、Ar、Ar21およびAr22の具体例、好ましい例およびその有していてもよい置換基は、それぞれ前記式(1)のArの具体例、好ましい例およびその有していてもよい置換基と同じである。
 <Rおよびnについて>
 式(3)中のRおよびnは、それぞれ前記式(2)におけるRおよびnとそれぞれ同義である。Rの具体例、好ましい例およびその有していてもよい置換基は、前記式(2)のRの具体例、好ましい例およびその有していてもよい置換基と同じである。
 <Lについて>
 式(3)中のLは、単結合もしくは置換基を有していてもよい炭素数25以下の芳香環基を表す。炭素数25以下の芳香環基の具体例としては、炭素数6~25の芳香族炭化水素基、炭素数3~25の芳香族複素環基が挙げられ、特に、芳香族炭化水素基が化合物の安定性の面から好ましい。
 Lの炭素数6~25の芳香族炭化水素基の例としては、1,4-フェニレン基、1,3-フェニレン基などのフェニレン基;1,6-ナフチレン基などのナフチレン基;3,9-フェナントリレン基などのフェナントリレン基;2,6-アントリレン基、9,10-アントリレン基などのアントリレン基;1,6-ピレニレン基などのピレニレン基;2,7-トリフェニレニレン基などのトリフェニレニレン基;4,4’-ビフェニレン基、3,3’-ビフェニレン基、4,3’-ビフェニレン基などのビフェニレン基等が挙げられる。中でも、化合物の安定性の面から1,4-フェニレン基、1,3-フェニレン基、3,3’-ビフェニレン基、4,3’-ビフェニレン基、1,6-ナフチレン基が好ましく、化合物の精製の容易さの面から1,3-フェニレン基、3,3’-ビフェニレン基、1,6-ナフチレン基が特に好ましい。
 Lの炭素数3~25の芳香族複素環基の例としては、2,5-チエニレン基などのチエニレン基、2,5-フリレン基などのフリレン基、2,6-ピリジレン基などのピリジレン基、2,6-キノリレン基などのキノリレン基等が挙げられる。中でも2,6-ピリジレン基、2,6-キノリレン基が化合物の安定性の面から好ましい。
 Lの有していてもよい置換基は、前記式(1)のArの有していてもよい置換基と同じである。
 [5]式(4)で表される化合物
 前記式(3)で表される化合物の中でも、特にArがキノリン環またはキナゾリン環の6位に置換した下記式(4)で表される化合物が好ましい。
 これは、キノリン環またはキナゾリン環の6位に芳香環基Arが存在することで、さらに最低空軌道(LUMO)が広がることにより、より隣接発光層へ電子がスムーズに流れるようになったとともに、電子に対する耐久性が向上したものと推測される。
Figure JPOXMLDOC01-appb-C000051
(式(4)中、XはCまたはNを表す。Ar、Ar、Ar21およびAr22はそれぞれ独立して置換基を有していてもよい芳香環基を表す。またAr21とAr22は結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。Lは、単結合または置換基を有していてもよい炭素数25以下の芳香環基を表す。nは0以上4以下の整数を表す。)
 <Ar、Ar、Ar21、Ar22、R、Lおよびnについて>
 式(4)中のAr、Ar、Ar21、Ar22、R、Lおよびnは、それぞれ前記式(3)におけるAr、Ar、Ar21、Ar22、R、Lおよびnと同義である。Ar、Ar、Ar21、Ar22、RおよびLの具体例、好ましい例およびその有していてもよい置換基は、それぞれ前記式(3)におけるAr、Ar、Ar21、Ar22、R、Lおよびnの具体例、好ましい例およびその有していてもよい置換基と同じである。
 [6]分子量について
 本発明の式(1)で表される化合物の分子量の上限は、通常7000以下であり、化合物の精製の容易さを考えた場合、好ましくは5000以下であり、特に好ましくは3000以下、昇華精製による高純度化を考慮した場合、最も好ましくは1500以下である。
 また、本発明の式(1)で表される化合物の分子量の下限は、通常100以上であり、化合物の熱的安定性を考慮した場合、好ましくは500以上である。
 [7]ガラス転移温度
 本発明の式(1)で表される化合物は、通常100℃以上のガラス転移温度を有するが、耐熱性の観点から120℃以上であることが好ましい。
 [8]例示化合物
 本発明の式(1)で表される化合物の具体例を挙げるが、本発明の化合物は以下の例示化合物に限定されるものではない。以下の例示化合物においては、XはCまたはNを表す。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 [有機電界発光素子の層構成]
 以下に、本発明の有機電界発光素子の層構成およびその一般的形成方法等について、図1を参照して説明する。
 図1は本発明の有機電界発光素子10の構造例を示す断面の模式図であり、図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。
 {基板}
 基板1は、有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
 {陽極}
 陽極2は、発光層5側の層への正孔注入の役割を果たすものである。
 この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウムおよび/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
 陽極2の形成は通常、スパッタリング法、真空蒸着法等により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
 陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極2の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極2の厚みは任意であり、陽極2は基板1と同一でもよい。また、さらには、上記の陽極2の上に異なる導電材料を積層することも可能である。
 陽極2に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極2表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることが好ましい。
 {正孔注入層}
 正孔注入層3は、陽極2から発光層5側の層へ正孔を注入する層であり、通常、陽極2上に形成される。
 本発明に係る正孔注入層3の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔注入層3を湿式成膜法により形成することが好ましい。
 正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
 <湿式成膜法による正孔注入層の形成>
 湿式成膜法により正孔注入層3を形成する場合、通常は、正孔注入層3を構成する材料を適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、正孔注入層の下層に該当する層(通常は、陽極2)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
 (正孔輸送性化合物)
 正孔注入層形成用組成物は通常、正孔注入層3の構成材料として正孔輸送性化合物および溶剤を含有する。
 正孔輸送性化合物は、通常、有機電界発光素子の正孔注入層3に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
 尚、本発明において誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのものおよび芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
 正孔注入層3の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することが好ましい。
 上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(I)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000055
(式(I)中、Ar’およびAr’は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Ar’~Ar’は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Zは、下記の連結基群の中から選ばれる連結基を表す。また、Ar’~Ar’のうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000056
(上記各式中、Ar~Ar16は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。RおよびRは、各々独立して、水素原子又は任意の置換基を表す。)
 Ar’~Ar’およびAr~Ar16の芳香族炭化水素基および芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
 Ar’~Ar’およびAr~Ar16の芳香族炭化水素基および芳香族複素環基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましい。
 RおよびRが任意の置換基である場合、該置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基などが挙げられる。
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号に記載のものが挙げられる。
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-ethylenedioxythiophene(3,4-エチレンジオキシチオフェン)を高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレート等でキャップしたものであってもよい。
 尚、正孔輸送性化合物は、下記{正孔輸送層}の項に記載の架橋性化合物であってもよい。該架橋性化合物を用いた場合の成膜方法についても同様である。
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。
 (電子受容性化合物)
 正孔注入層形成用組成物は正孔注入層3の構成材料として、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上である化合物がさらに好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。さらに具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
 これらの電子受容性化合物は、正孔輸送性化合物を酸化することにより正孔注入層3の導電率を向上させることができる。
 正孔注入層3或いは正孔注入層形成用組成物中の電子受容性化合物の正孔輸送性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
 (その他の構成材料)
 正孔注入層3の材料としては、本発明の効果を著しく損なわない限り、上述の正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 (溶剤)
 湿式成膜法に用いる正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層3の構成材料を溶解しうる化合物であることが好ましい。また、この溶剤の沸点は通常110℃以上、好ましくは140℃以上、中でも200℃以上がより好ましく、通常400℃以下、中でも300℃以下であることが好ましい。溶剤の沸点が低すぎると、乾燥速度が速すぎて膜質が悪化する可能性がある。また、溶剤の沸点が高すぎると乾燥工程の温度を高くする必要があり、他の層や基板に悪影響を与える可能性がある。
 溶剤として例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 その他、ジメチルスルホキシド等も用いることができる。
 これらの溶剤は1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で用いてもよい。
 (成膜方法)
 正孔注入層形成用組成物を調製後、この組成物を湿式成膜法により、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより正孔注入層3を形成する。
 塗布工程における温度は、組成物中に結晶が生じることによる膜の欠損を防ぐため、10℃以上が好ましく、50℃以下が好ましい。
 塗布工程における相対湿度は、本発明の効果を著しく損なわない限り限定されないが、通常0.01ppm以上、通常80%以下である。
 塗布後、通常加熱等により正孔注入層形成用組成物の膜を乾燥させる。加熱工程において使用する加熱手段の例を挙げると、クリーンオーブン、ホットプレート、赤外線、ハロゲンヒーター、マイクロ波照射などが挙げられる。中でも、膜全体に均等に熱を与えるためには、クリーンオーブンおよびホットプレートが好ましい。
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り、正孔注入層形成用組成物に用いた溶剤の沸点以上の温度で加熱することが好ましい。また、正孔注入層に用いた溶剤が2種類以上含まれている混合溶剤の場合、少なくとも1種類がその溶剤の沸点以上の温度で加熱されるのが好ましい。溶剤の沸点上昇を考慮すると、加熱工程においては、好ましくは120℃以上、好ましくは410℃以下で加熱することが好ましい。
 加熱工程において、加熱温度が正孔注入層形成用組成物の溶剤の沸点以上であり、かつ塗膜の十分な不溶化が起こらなければ、加熱時間は限定されないが、好ましくは10秒以上、通常180分以下である。加熱時間が長すぎると他の層の成分が拡散する傾向があり、短すぎると正孔注入層が不均質になる傾向がある。加熱は2回に分けて行ってもよい。
 <真空蒸着法による正孔注入層の形成>
 真空蒸着により正孔注入層3を形成する場合には、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種又は2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10-4Pa程度まで排気した後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ(2種以上の材料を用いる場合は各々独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板1の陽極2上に正孔注入層3を形成させる。なお、2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、通常9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、通常5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上で、好ましくは50℃以下で行われる。
 {正孔輸送層}
 正孔輸送層4は、正孔注入層3がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。また、本発明の有機電界発光素子は、正孔輸送層4を省いた構成であってもよいが、前述の如く、本発明の有機電界発光素子は正孔輸送層を有することが好ましい。
 正孔輸送層4の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔輸送層4を湿式成膜法により形成することが好ましい。
 正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
 このような正孔輸送層4の材料としては、従来、正孔輸送層4の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層3に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
 また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
 中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体としては、下記式(II)で表される繰り返し単位を含む重合体であることが好ましい。特に、下記式(II)で表される繰り返し単位からなる重合体であることが好ましく、この場合、繰り返し単位それぞれにおいて、Ar又はArが異なっているものであってもよい。
Figure JPOXMLDOC01-appb-C000057
(式(II)中、ArおよびArは、各々独立して、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。)
 ArおよびArの置換基を有していてもよい芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2~5縮合環由来の基およびこれらの環が2環以上直接結合で連結してなる基が挙げられる。
 置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2~4縮合環由来の基およびこれらの環が2環以上直接結合で連結してなる基が挙げられる。
 溶解性、耐熱性の点から、ArおよびArは、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環由来の基やベンゼン環が2環以上連結してなる基(例えば、ビフェニル基やターフェニレン基)が好ましい。
 中でも、ベンゼン環由来の基(フェニル基)、ベンゼン環が2環連結してなる基(ビフェニル基)およびフルオレン環由来の基(フルオレニル基)が好ましい。
 ArおよびArにおける芳香族炭化水素基および芳香族複素環基が有していてもよい置換基としては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素環基、芳香族複素環基などが挙げられる。
 ポリアリーレン誘導体としては、前記式(II)におけるArやArとして例示した置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。
 ポリアリーレン誘導体としては、下記式(V-1)および/又は下記式(V-2)からなる繰り返し単位を有する重合体が好ましい。
Figure JPOXMLDOC01-appb-C000058
(式(V-1)中、R、R、RおよびRは、各々独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基、又はカルボキシ基を表す。tおよびsは、各々独立に、0~3の整数を表す。t又はsが2以上の場合、一分子中に含まれる複数のR又はRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000059
(式(V-2)中、RおよびRは、各々独立に、上記式(V-1)におけるRと同義である。rおよびuは、各々独立に、0~3の整数を表す。r又はuが2以上の場合、一分子中に含まれる複数のRおよびRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。X’は、5員環又は6員環を構成する原子又は原子群を表す。)
 X’の具体例としては、-O-、-BR-、-NR-、-SiR-、-PR-、-SR-、-CR-又はこれらが結合してなる基である。尚、Rは、水素原子又は任意の有機基を表す。本発明における有機基とは、少なくとも一つの炭素原子を含む基である。
 また、ポリアリーレン誘導体としては、前記式(V-1)および/又は前記式(V-2)からなる繰り返し単位に加えて、さらに下記式(V-3)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000060
(式(V-3)中、Ar~ArおよびArは、各々独立に、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。v’およびw’は、各々独立に0又は1を表す。)
 Ar~ArおよびArの具体例としては、前記式(II)における、Arと同様である。
 上記式(V-1)~(V-3)の具体例およびポリアリーレン誘導体の具体例等は、日本国特開2008-98619号公報に記載のものなどが挙げられる。
 湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。
 正孔輸送層形成用組成物には、上述の正孔輸送性化合物の他、溶剤を含有する。用いる溶剤は上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。
 真空蒸着法により正孔輸送層4を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。
 正孔輸送層4は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
 正孔輸送層4はまた、架橋性化合物を架橋して形成される層であってもよい。架橋性化合物は、架橋性基を有する化合物であって、架橋することにより網目状高分子化合物を形成する。
 この架橋性基の例を挙げると、オキセタン基、エポキシ基などの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル基、シンナモイル基等の不飽和二重結合由来の基;ベンゾシクロブテン由来の基などが挙げられる。
 架橋性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。架橋性化合物は1種のみを有していてもよく、2種以上を任意の組み合わせおよび比率で有していてもよい。
 架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物としては、上記の例示したものが挙げられ、これら正孔輸送性化合物に対して、架橋性基が主鎖又は側鎖に結合しているものが挙げられる。特に架橋性基は、アルキレン基等の連結基を介して、主鎖に結合していることが好ましい。また、特に正孔輸送性化合物としては、架橋性基を有する繰り返し単位を含む重合体であることが好ましく、上記式(II)や式(V-1)~(V-3)に架橋性基が直接又は連結基を介して結合した繰り返し単位を有する重合体であることが好ましい。
 架橋性基を有する正孔輸送性化合物の例を挙げると、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体等の含窒素芳香族化合物誘導体;トリフェニルアミン誘導体;シロール誘導体;オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。その中でも、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体等の含窒素芳香族誘導体;トリフェニルアミン誘導体、シロール誘導体、縮合多環芳香族誘導体、金属錯体などが好ましく、特に、トリフェニルアミン誘導体がより好ましい。
 架橋性化合物を架橋して正孔輸送層4を形成するには、通常、架橋性化合物を溶剤に溶解又は分散した正孔輸送層形成用組成物を調製して、湿式成膜により成膜して架橋させる。
 正孔輸送層形成用組成物には、架橋性化合物の他、架橋反応を促進する添加物を含んでいてもよい。架橋反応を促進する添加物の例を挙げると、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、メタロセン化合物、オキシムエステル化合物、アゾ化合物、オニウム塩等の重合開始剤および重合促進剤;縮合多環炭化水素、ポルフィリン化合物、ジアリールケトン化合物等の光増感剤などが挙げられる。
 またさらに、レベリング剤、消泡剤等の塗布性改良剤;電子受容性化合物;バインダー樹脂などを含有していてもよい。
 正孔輸送層形成用組成物は、架橋性化合物を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、通常50重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下含有する。
 このような濃度で架橋性化合物を含む正孔輸送層形成用組成物を下層(通常は正孔注入層3)上に成膜後、加熱および/又は光などの活性エネルギー照射により、架橋性化合物を架橋させて網目状高分子化合物を形成する。
 成膜時の温度、湿度などの条件は、前記正孔注入層の湿式成膜時と同様である。
 成膜後の加熱の手法は特に限定されない。加熱温度条件としては、通常120℃以上、好ましくは400℃以下である。
 加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、成膜された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。
 光などの活性エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。
 光以外の活性エネルギー照射では、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。
 照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。
 加熱および光などの活性エネルギー照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。
 このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
 {発光層}
 正孔注入層3の上、又は正孔輸送層4を設けた場合には正孔輸送層4の上には発光層5が設けられる。発光層5は、電界を与えられた電極間において、陽極2から注入された正孔と、陰極9から注入された電子との再結合により励起されて、主たる発光源となる層である。
 この発光層5については、前述の[発光層]の説明が適用される。
 {正孔阻止層}
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設ける。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。この正孔阻止層6については、前述の[正孔阻止層]の説明が適用される。
 {電子輸送層}
 正孔阻止層6と後述の電子注入層8の間に、電子輸送層7を設けてもよい。
 電子輸送層7は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。
 電子輸送層7に用いられる電子輸送性化合物としては、通常、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 なお、電子輸送層7の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 電子輸送層7の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
 電子輸送層7の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
 {電子注入層}
 電子注入層8は、陰極9から注入された電子を効率よく発光層5側の層へ注入する役割を果たす。電子注入を効率よく行なうには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
 更に、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載。)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
 また、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、酸化リチウム(LiO)、炭酸セシウム(II)(CsCO)等で形成された極薄絶縁膜(0.1~5nm)を用いることも、素子の効率を向上させる有効な方法である(Applied Physics Letters,1997年,Vol.70,pp.152;日本国特開平10-74586号公報;IEEE Transactions on Electron Devices,1997年,Vol.44,pp.1245;SID 04 Digest,pp.154等参照)。
 なお、電子注入層8の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 電子注入層8の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
 {陰極}
 陰極9は、発光層5側の層(電子注入層8又は正孔阻止層6など)に電子を注入する役割を果たすものである。
 陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数合金電極が挙げられる。
 なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 陰極9の膜厚は、通常、陽極2と同様である。
 さらに、低仕事関数金属から成る陰極9を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 {その他の層}
 本発明に係る有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。
 上記説明にある層の他に有していてもよい層としては、例えば、電子阻止層が挙げられる。
 電子阻止層は、正孔注入層3又は正孔輸送層4と発光層5との間に設けられ、発光層5から移動してくる電子が正孔注入層3に到達するのを阻止することで、発光層5内で正孔と電子との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔注入層3から注入された正孔を効率よく発光層5の方向に輸送する役割とがある。特に、発光材料として燐光材料を用いたり、青色発光材料を用いたりする場合は電子阻止層を設けることが効果的である。
 電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いこと等が挙げられる。更に、本発明においては、発光層5を本発明に係る有機層として湿式成膜法で作製する場合には、電子阻止層にも湿式成膜の適合性が求められる。このような電子阻止層に用いられる材料としては、F8-TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号)等が挙げられる。
 なお、電子阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 電子阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。
 また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば、図1の層構成であれば、基板1上に他の構成要素を陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に設けてもよい。
 更には、少なくとも一方が透明性を有する2枚の基板の間に、基板以外の構成要素を積層することにより、本発明に係る有機電界発光素子を構成することも可能である。
 また、基板以外の構成要素(発光ユニット)を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その場合には、各段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合は、それら2層)の代わりに、例えば五酸化バナジウム(V)等からなる電荷発生層(Carrier Generation Layer:CGL)を設けると、段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
 更には、本発明に係る有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX-Yマトリックス状に配置された構成に適用してもよい。
 また、上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。
 <<有機EL表示装置>>
 本発明の有機EL表示装置は、上述の本発明の有機電界発光素子を用いたものである。
 本発明の有機EL表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機EL表示装置を形成することができる。
 <<有機EL照明>>
 本発明の有機EL照明は、上述の本発明の有機電界発光素子を用いたものである。本発明の有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 次に、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
 [実施例1]
 図1に示す構成の有機電界発光素子を作製した。
 <陽極>
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を厚さ150nmに成膜したもの(スパッタ成膜品、シート抵抗15Ω)を通常のフォトリソグラフィ技術により2mm幅のストライプにパターニングして陽極2を形成した。陽極2を形成した基板1を、純水による超音波洗浄、純水による水洗の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄の処理を行った。
 <正孔注入層>
 次いで、形成された陽極2上に、以下の通り、湿式成膜法により正孔注入層3を形成した。
 正孔輸送性化合物として以下に示す繰り返し構造を有する架橋性高分子化合物(P1)2.5重量%と、電子受容性化合物として4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート0.5重量%とを、安息香酸エチルに溶解させた正孔注入層形成用組成物を調製し、この組成物を前記ITO基板上にスピンコートで成膜した。
Figure JPOXMLDOC01-appb-C000061
 スピンコート条件として、スピナ回転数500rpm、2秒、そして2200rpm、30秒の2段階で行った。その後、230℃のクリーンオーブンにより60分間加熱して、該高分子化合物(P1)を架橋反応させて硬化させ、膜厚40nmの正孔注入層3を形成した。
 <正孔輸送層>
 次いで、形成された正孔注入層3上に、以下の通り、湿式成膜法により正孔輸送層4を形成した。
 正孔輸送性化合物として以下に示す繰り返し構造を有する架橋性高分子化合物(HT-1)(重量平均分子量:45000)1.0重量%を、シクロヘキシルベンゼンに溶解させた正孔輸送層形成用組成物を調製し、この組成物を窒素雰囲気下、前記正孔注入層3上にスピンコートで成膜した。下記構造式中「Hex」はヘキシル基を表す。
Figure JPOXMLDOC01-appb-C000062
 スピンコート条件として、スピナ回転数500rpm、スピナ回転時間2秒、そしてスピナ回転数2200rpm、スピナ回転時間120秒の2段階で行った。その後、230℃で60分間加熱して、該高分子化合物(HT-1)を架橋反応させて硬化させ、膜厚10nmの正孔輸送層4を形成した。
 <塗布発光層>
 次いで、形成された正孔輸送層4上に、以下の通り、湿式成膜法により塗布発光層を形成した。
 以下に示す化合物(GH-5)、(GH-4)、(GD-1)および(RD-2)を、25:75:10:1の重量比で混合し、この混合物3重量%をシクロヘキシルベンゼンに溶解させた組成物を調製し、この組成物を窒素雰囲気下、前記正孔輸送層4上にスピンコートで成膜した。
Figure JPOXMLDOC01-appb-C000063
 スピンコート条件として、スピナ回転数500rpm、2秒、そして2300rpm、120秒の2段階で行った。その後、120℃で30分間乾燥を行うことで、膜厚30nmの塗布発光層を形成した。
 <蒸着発光層>
 次いで、形成された塗布発光層上に、以下の通り、真空蒸着法により蒸着発光層を形成した。
 以下に示す化合物(BH-1)と(BD-1)を100:5のレート比で真空蒸着法により共蒸着して成膜することで、膜厚25nmの蒸着発光層を形成した。
Figure JPOXMLDOC01-appb-C000064
 <正孔阻止層>
 次いで、形成された蒸着発光層上に、以下に示す化合物(HB-1)を真空蒸着法により成膜することで、膜厚10nmの正孔阻止層6を形成した。
Figure JPOXMLDOC01-appb-C000065
 <電子輸送層>
 次いで、形成された正孔阻止層6上に、以下に示す化合物(ET-1)を真空蒸着法により成膜することで、膜厚15nmの電子輸送層7を形成した。
Figure JPOXMLDOC01-appb-C000066
 <電子注入層・陰極>
 ここで、電子輸送層7までの蒸着を行った素子を、一度、真空蒸着装置内より大気中に取り出して、陰極蒸着用のマスクとして、陽極2であるITOストライプと直交する形状の2mm幅のストライプ状シャドーマスクを素子に密着させ、別の真空蒸着装置内に設置して、電子輸送層7と同様の真空蒸着法により、電子注入層8としてフッ化リチウム(LiF)を膜厚0.5nm、次いで陰極9としてアルミニウムを膜厚80nmとなるようにそれぞれ積層した。
 <封止>
 引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
 窒素雰囲気のグローブボックス中で、23mm×23mmサイズのガラス板の外周部に、約1mmの幅で光硬化性樹脂を塗布し、中央部に水分ゲッターシートを設置した。この上に、陰極形成を終了した基板を、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。これにより、2mm×2mmサイズの発光面積部分を有する有機電界発光素子が得られた。
 [実施例2]
 実施例1において、正孔阻止層6の形成に使用する材料として、以下に示す化合物(HB-2)に変更したこと以外は実施例1と同様に有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000067
 [実施例3]
 実施例1において、正孔阻止層6の形成に使用する材料として、以下に示す化合物(HB-3)に変更したこと以外は実施例1と同様に有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000068
 [実施例4]
 実施例1において、正孔阻止層6の形成に使用する材料として、以下に示す化合物(HB-4)に変更したこと以外は実施例1と同様に有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000069
 [比較例1]
 実施例1において、正孔阻止層6の形成に使用する材料として、以下に示す化合物(HB-5)に変更したこと以外は実施例1と同様に有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000070
 [比較例2]
 実施例1において、正孔阻止層6の形成に使用する材料として、以下に示す化合物(HB-6)に変更したこと以外は実施例1と同様に有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000071
 [有機電界発光素子の評価]
 実施例1~4および比較例1、2において得られた各素子を1cd/mで点灯させたときの駆動電圧(V1)を測定し、比較例1のV1をVとした場合のV1-V(以下「電圧変化値1」と称す。)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000072
 正孔阻止層にピリジン系またはピリミジン系化合物を用いた比較例1、2に対して、正孔阻止層に前記式(1)で表される化合物を用いた実施例1~4では、有機電界発光素子の駆動電圧の低電圧化が実現できていることが明らかである。
 なお、実施例1~4および比較例1~2で得られた有機電界発光素子の発光スペクトルはいずれも、462nm、519nmおよび585~587nmに極大発光波長を有した。
 [実施例5]
 実施例1において、下記に示すこと以外は、実施例1と同様に有機電界発光素子を作製した。
 <正孔輸送層>
 正孔輸送層の材料として、下記(HT-2)に変更し、スピンコート条件を変更したこと以外は実施例1と同様に形成した。
Figure JPOXMLDOC01-appb-C000073
 スピンコート条件として、スピナ回転数500rpm、スピナ回転時間2秒、そしてスピナ回転数2350rpm、スピナ回転時間120秒の2段階で行った。
 <塗布発光層>
 塗布発光層の材料として、前記(HB-5)、(GH-4)および(RD-2)を25:75:10の重量比で混合した混合物に変更したこと以外は、実施例1と同様に形成した。
 <蒸着発光層>
 蒸着発光層の材料として、以下に示す(BH-2)と前記(BD-1)に変更し、レート比を100:10に変更したこと以外は、実施例1と同様に形成した。
Figure JPOXMLDOC01-appb-C000074
 [比較例3]
 実施例5において、正孔阻止層6に使用する材料として、前記(HB-6)に変更したこと以外は、実施例5と同様に有機電界発光素子を作製した。
 [比較例4]
 実施例5において、下記に示すこと以外は、実施例5と同様に有機電界発光素子を作製した。
 <塗布発光層>
 塗布発光層の材料として、前記(BH-2)および(BD-1)を100:10の重量比で混合し、この混合物1.0重量%をシクロヘキシルベンゼンに溶解させた組成物を調製し、この組成物を窒素雰囲気下、スピンコートで成膜した。
 スピンコート条件として、スピナ回転数500rpm、スピナ回転時間2秒、そしてスピナ回転数1500rpm、スピナ回転時間120秒の2段階で行った。その後、120℃で30分間乾燥を行うことで、膜厚15nmの塗布発光層を形成した。
 <蒸着発光層>
 蒸着発光層の材料として、上記(HB-5)、(GH-4)および(RD-2)に変更し、レート比を90:10:10に変更し、膜厚を30nmに変更したこと以外は、実施例5と同様に形成した。
 [有機電界発光素子の評価]
 比較例3のV1をVとした場合の、電圧変化値1を求めた。更に、実施例5および比較例3、4において得られた各素子を1000cd/mで点灯させたときの駆動電圧(V1K)を測定し、比較例3のV1KをV’とした場合のV1K-V’(以下「電圧変化値1K」と称す。)を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000075
 実施例5と比較例3の結果より、正孔輸送層、塗布発光層及び蒸着発光層の材料によらず、正孔阻止層に本願発明の式(1)で表される化合物を用いることで、有機電界発光素子の駆動電圧の低電圧化が実現できていることが明らかである。
 なお、実施例5および比較例3で得られた有機電界発光素子の発光スペクトルはいずれも、464nmおよび593nmに極大発光波長を有した。
 また、比較例4は、実施例5の塗布発光層に用いた燐光発光材料を蒸着発光層に、実施例5の蒸着発光層に用いた蛍光発光材料を塗布発光層に適用した例であるが、比較例4の層構成では有機電界発光素子の駆動電圧が大幅に上昇してしまうことが明らかである。
 なお、比較例4で得られた有機電界発光素子の発光スペクトルは、464nmおよび576nmに極大発光波長を有した。
 [実施例6]
 実施例2において、下記に示すこと以外は、実施例2と同様に有機電界発光素子を作製した。
 <塗布発光層>
 塗布発光層の材料として、前記(HB-6)、(GH-4)、下記(GD-2)、および(RD-3)を25:75:10:1の重量比で混合した混合物に変更したこと以外は、実施例2と同様に形成した。
Figure JPOXMLDOC01-appb-C000076
 <蒸着発光層>
 蒸着発光層の材料として、前記(BH-2)および下記(BD-2)に変更し、100:5のレート比で真空蒸着法により共蒸着して成膜したこと以外は、実施例2と同様に形成した。
Figure JPOXMLDOC01-appb-C000077
 [比較例5]
 実施例6において、正孔阻止層6に使用する材料として、以下に示す化合物(HB-7)に変更したこと以外は、実施例6と同様に有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000078
 [有機電界発光素子の評価]
 比較例5のV1をVとした場合の電圧変化値1と、比較例5のV1KをV’とした場合の電圧変化値1Kを求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000079
 化合物(HB-7)は、従来正孔阻止層材料として広く用いられている材料であるが、この材料に対し、本発明の正孔阻止層材料を用いた有機電界発光素子では、駆動電圧の低電圧化が実現できていることが明らかである。
 なお、実施例6および比較例5で得られた素子の発光スペクトルはいずれも、463~464nm、557~558nmおよび593~594nmに極大発光波長を有した。
 [実施例7]
 実施例2において、下記に示すこと以外は、実施例2と同様に有機電界発光素子を作製した。
 <塗布発光層>
 塗布発光層の材料として、前記(GH-5)、下記(GH-6)、(GD-3)、および(RD-4)を25:75:10:1の重量比で混合した混合物に変更したこと以外は、実施例2と同様に形成した。
Figure JPOXMLDOC01-appb-C000080
 <蒸着発光層>
 蒸着発光層の材料として、前記(BH-2)および(BD-2)に変更し、100:5のレート比で真空蒸着法により共蒸着して成膜したこと以外は、実施例2と同様に形成した。
 [比較例6]
 実施例7において、正孔阻止層6に使用する材料として、前記(HB-5)に変更したこと以外は、実施例7と同様に有機電界発光素子を作製した。
 [有機電界発光素子の評価]
 比較例6のV1をVとした場合の電圧変化値1と、比較例6のV1KをV’とした場合の電圧変化値1Kを求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000081
 本発明の有機電界発光素子では、塗布発光層及び蒸着発光層の材料によらず、駆動電圧の低電圧化が実現できていることが明らかである。
 なお、実施例7および比較例6で得られた有機電界発光素子の発光スペクトルはいずれも、464nmおよび599nmに極大発光波長を有した。
 [実施例8]
 実施例2において、下記に示すこと以外は、実施例2と同様に有機電界発光素子を作製した。
 <塗布発光層>
 塗布発光層の材料として、下記(GH-7)、前記(GH-6)、下記(GD-4)、および前記(RD-3)を25:75:10:1の重量比で混合した混合物に変更したこと以外は、実施例2と同様に形成した。
Figure JPOXMLDOC01-appb-C000082
 <蒸着発光層>
 蒸着発光層の材料として、前記(BH-2)および下記(BD-3)に変更し、100:5のレート比で真空蒸着法により共蒸着して成膜したこと以外は、実施例2と同様に形成した。
Figure JPOXMLDOC01-appb-C000083
 [比較例7]
 実施例8において、正孔阻止層6に使用する材料として、前記(HB-5)に変更したこと以外は、実施例8と同様に有機電界発光素子を作製した。
 [有機電界発光素子の評価]
 比較例7のV1をVとした場合の電圧変化値1と、比較例7のV1KをV’とした場合の電圧変化値1Kを求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000084
 本発明の有機電界発光素子では、塗布発光層及び蒸着発光層の材料によらず、駆動電圧の低電圧化が実現できていることが明らかである。
 なお、実施例8および比較例7で得られた有機電界発光素子の発光スペクトルはいずれも、467nm、534nmおよび592nmに極大発光波長を有した。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は2012年10月2日出願の日本特許出願(特願2012-220399)および2013年7月12日出願の日本特許出願(特願2013-146649)に基づくものであり、その内容はここに参照として取り込まれる。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子

Claims (10)

  1.  陽極、陰極および前記陽極と前記陰極との間に形成された複数の発光層を含む有機電界発光素子であって、
     前記複数の発光層は、前記陽極側から順に、湿式成膜法で形成された第一発光層と、真空蒸着法で形成された第二発光層とを含み、
     前記第一発光層が、いずれも低分子化合物である、燐光発光材料と第一電荷輸送材料とを含有し、
     前記第二発光層が、いずれも低分子化合物である、蛍光発光材料と第二電荷輸送材料とを含有し、
     前記第二発光層の前記陰極側に隣接して正孔阻止層を有し、
     前記正孔阻止層が、下記式(1)で表される化合物を含有する、有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、XはCまたはNを表す。ArおよびArはそれぞれ独立して置換基を有していてもよい芳香環基を表す。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。mは0以上5以下の整数を表す。)
  2.  前記式(1)で表される化合物が、下記式(2)で表される化合物である、請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、XはCまたはNを表す。Ar~Arはそれぞれ独立して置換基を有していてもよい芳香環基を表す。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。nは0以上4以下の整数を表す。)
  3.  前記式(2)で表される化合物が、下記式(3)で表される化合物である、請求項2に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、XはCまたはNを表す。Ar、Ar、Ar21およびAr22はそれぞれ独立して置換基を有していてもよい芳香環基を表す。またAr21とAr22は結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。Lは、単結合または置換基を有していてもよい炭素数25以下の芳香環基を表す。nは0以上4以下の整数を表す。)
  4.  前記式(3)で表される化合物が、下記式(4)で表される化合物である、請求項3に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、XはCまたはNを表す。Ar、Ar、Ar21およびAr22はそれぞれ独立して置換基を有していてもよい芳香環基を表す。またAr21とAr22は結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数50以下の有機基を表し、Rが複数存在する場合には、それぞれ同一でも異なっていてもよい。Lは、単結合または置換基を有していてもよい炭素数25以下の芳香環基を表す。nは0以上4以下の整数を表す。)
  5.  前記式(1)~(4)の少なくともいずれか1の式において、Arが芳香族炭化水素基である、請求項1乃至4のいずれか一項に記載の有機電界発光素子。
  6.  前記有機電界発光素子の発光スペクトルが、440~500nm領域、500~580nm領域、および580~630nm領域のうち、少なくとも2つの領域に極大発光波長を有する、請求項1乃至5のいずれか一項に記載の有機電界発光素子。
  7.  前記陽極と前記発光層との間に正孔輸送層を有する、請求項1乃至6のいずれか一項に記載の有機電界発光素子。
  8.  前記正孔輸送層が湿式成膜法で形成された層である、請求項7に記載の有機電界発光素子。
  9.  請求項1乃至8のいずれか一項に記載の有機電界発光素子を含む、有機EL照明。
  10.  請求項1乃至8のいずれか一項に記載の有機電界発光素子を含む、有機EL表示装置。
PCT/JP2013/076591 2012-10-02 2013-09-30 有機電界発光素子、有機el照明および有機el表示装置 WO2014054596A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157008083A KR20150060737A (ko) 2012-10-02 2013-09-30 유기 전계 발광 소자, 유기 el 조명 및 유기 el 표시 장치
JP2014539740A JP5757370B2 (ja) 2012-10-02 2013-09-30 有機電界発光素子、有機el照明および有機el表示装置
CN201380051057.8A CN104685651A (zh) 2012-10-02 2013-09-30 有机电致发光元件、有机el照明和有机el显示装置
EP13843402.2A EP2905820A1 (en) 2012-10-02 2013-09-30 Organic electroluminescent element, organic el lighting and organic el display device
US14/677,250 US20150214499A1 (en) 2012-10-02 2015-04-02 Organic electroluminescent element, organic el lighting and organic el display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-220399 2012-10-02
JP2012220399 2012-10-02
JP2013-146649 2013-07-12
JP2013146649 2013-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/677,250 Continuation US20150214499A1 (en) 2012-10-02 2015-04-02 Organic electroluminescent element, organic el lighting and organic el display

Publications (1)

Publication Number Publication Date
WO2014054596A1 true WO2014054596A1 (ja) 2014-04-10

Family

ID=50434923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076591 WO2014054596A1 (ja) 2012-10-02 2013-09-30 有機電界発光素子、有機el照明および有機el表示装置

Country Status (7)

Country Link
US (1) US20150214499A1 (ja)
EP (1) EP2905820A1 (ja)
JP (1) JP5757370B2 (ja)
KR (1) KR20150060737A (ja)
CN (1) CN104685651A (ja)
TW (1) TW201420573A (ja)
WO (1) WO2014054596A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419226B2 (en) 2013-03-27 2016-08-16 Idemitsu Kosan Co., Ltd. Condensed fluoranthene compound, material for organic electroluminescent element using this compound, organic electroluminescent element using this material, and electronic device
KR20170129805A (ko) 2015-03-26 2017-11-27 도레이 카부시키가이샤 화합물, 및 이를 함유하는 전자 디바이스, 발광 소자, 광전 변환 소자 및 이미지 센서
US9837615B2 (en) 2013-06-04 2017-12-05 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative, organic electroluminescence element material using same, and organic electroluminescence element and electronic device using same
CN112159409A (zh) * 2020-09-28 2021-01-01 天津理工大学 一种以吡咯并吡咯为母核的不对称有机空穴传输材料及其合成方法和用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051684B2 (ja) * 2015-12-15 2022-04-11 メルク パテント ゲーエムベーハー 有機電子調合物のための溶媒として芳香族基を含むエステル
CN109873079B (zh) * 2019-03-05 2022-10-18 业成科技(成都)有限公司 有机发光二极管堆栈结构的方法
CN110299461A (zh) * 2019-06-25 2019-10-01 南昌航空大学 一种量子点发光二极管及其制作方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05234681A (ja) 1990-07-26 1993-09-10 Eastman Kodak Co 有機エレクトロルミネセンス媒体を有するエレクトロルミネセンス装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10153967A (ja) * 1996-11-25 1998-06-09 Seiko Epson Corp フルカラー有機el表示装置およびその製造方法
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2001284056A (ja) 2000-03-31 2001-10-12 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2006156848A (ja) 2004-11-30 2006-06-15 Seiko Epson Corp 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2008159367A (ja) 2006-12-22 2008-07-10 Seiko Epson Corp 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法並びに電子機器
JP2008533674A (ja) * 2005-03-15 2008-08-21 ノヴァレッド・アクチエンゲゼルシャフト 発光素子
JP2009227663A (ja) * 2008-02-25 2009-10-08 Mitsubishi Chemicals Corp キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010183072A (ja) * 2009-01-09 2010-08-19 Mitsubishi Chemicals Corp 有機el素子及び有機発光デバイス
WO2011083588A1 (ja) * 2010-01-08 2011-07-14 三菱化学株式会社 有機el素子及び有機発光デバイス
JP2011253722A (ja) * 2010-06-02 2011-12-15 Mitsubishi Chemicals Corp 有機電界発光素子、有機el照明及び有機el表示装置
JP2012033918A (ja) 2010-07-08 2012-02-16 Mitsubishi Chemicals Corp 有機電界発光素子、有機電界発光デバイス、有機el表示装置及び有機el照明
WO2012157211A1 (ja) * 2011-05-13 2012-11-22 ソニー株式会社 有機el多色発光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205650A (ja) * 2009-03-05 2010-09-16 Fujifilm Corp 有機el表示装置

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05234681A (ja) 1990-07-26 1993-09-10 Eastman Kodak Co 有機エレクトロルミネセンス媒体を有するエレクトロルミネセンス装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH10153967A (ja) * 1996-11-25 1998-06-09 Seiko Epson Corp フルカラー有機el表示装置およびその製造方法
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2001284056A (ja) 2000-03-31 2001-10-12 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2006156848A (ja) 2004-11-30 2006-06-15 Seiko Epson Corp 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法
JP2008533674A (ja) * 2005-03-15 2008-08-21 ノヴァレッド・アクチエンゲゼルシャフト 発光素子
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2008159367A (ja) 2006-12-22 2008-07-10 Seiko Epson Corp 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法並びに電子機器
JP2009227663A (ja) * 2008-02-25 2009-10-08 Mitsubishi Chemicals Corp キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010183072A (ja) * 2009-01-09 2010-08-19 Mitsubishi Chemicals Corp 有機el素子及び有機発光デバイス
WO2011083588A1 (ja) * 2010-01-08 2011-07-14 三菱化学株式会社 有機el素子及び有機発光デバイス
JP2011253722A (ja) * 2010-06-02 2011-12-15 Mitsubishi Chemicals Corp 有機電界発光素子、有機el照明及び有機el表示装置
JP2012033918A (ja) 2010-07-08 2012-02-16 Mitsubishi Chemicals Corp 有機電界発光素子、有機電界発光デバイス、有機el表示装置及び有機el照明
WO2012157211A1 (ja) * 2011-05-13 2012-11-22 ソニー株式会社 有機el多色発光装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Nomenclatures in Organic Clzemi.stry and Biochemistry", vol. 1, 1992, NANKODO
APPL. PHYS. LETT., vol. 60, 1992, pages 2711
APPLIED PHYSICS LETTERS, vol. 70, 1997, pages 152
CHEMICAL COMMUNICATIONS, 1996, pages 2175
IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 44, 1997, pages 1245
JOURNAL OF LUMINESCENCE, vol. 72-74, 1997, pages 985
SHIZUO TOKITO; CHIHAYA ADACHI; HIDEYUKI MURATA, ORGANIC EL DISPLAY, 20 August 2004 (2004-08-20)
SID 04 DIGEST, pages 154
SYNTHETIC METALS, vol. 91, 1997, pages 209

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419226B2 (en) 2013-03-27 2016-08-16 Idemitsu Kosan Co., Ltd. Condensed fluoranthene compound, material for organic electroluminescent element using this compound, organic electroluminescent element using this material, and electronic device
US9741943B2 (en) 2013-03-27 2017-08-22 Idemitsu Kosan Co., Ltd. Condensed fluoranthene compound, material for organic electroluminescent element using this compound, organic electroluminescent element using this material, and electronic device
US9837615B2 (en) 2013-06-04 2017-12-05 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative, organic electroluminescence element material using same, and organic electroluminescence element and electronic device using same
KR20170129805A (ko) 2015-03-26 2017-11-27 도레이 카부시키가이샤 화합물, 및 이를 함유하는 전자 디바이스, 발광 소자, 광전 변환 소자 및 이미지 센서
CN112159409A (zh) * 2020-09-28 2021-01-01 天津理工大学 一种以吡咯并吡咯为母核的不对称有机空穴传输材料及其合成方法和用途

Also Published As

Publication number Publication date
TW201420573A (zh) 2014-06-01
US20150214499A1 (en) 2015-07-30
KR20150060737A (ko) 2015-06-03
JPWO2014054596A1 (ja) 2016-08-25
JP5757370B2 (ja) 2015-07-29
CN104685651A (zh) 2015-06-03
EP2905820A1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP6191680B2 (ja) 有機電界発光素子、有機電界発光デバイス、有機el表示装置及び有機el照明
JP5549228B2 (ja) 有機el素子及び有機発光デバイス
JP5757244B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
KR102122188B1 (ko) 유기 전계 발광 소자 및 유기 전계 발광 디바이스
JP5560592B2 (ja) 含窒素複素環化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5757370B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP5141837B1 (ja) 有機電界発光素子、有機電界発光素子用組成物、及び有機電界発光装置
JP5750821B2 (ja) 有機化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5321700B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP5717333B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置及び有機el照明
WO2011083588A1 (ja) 有機el素子及び有機発光デバイス
JP2010199296A (ja) 有機電界発光素子、有機elディスプレイおよび有機el照明
WO2011019025A1 (ja) 有機電界発光素子、有機el表示装置及び有機el照明
JP5644196B2 (ja) 化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2014220248A (ja) 有機電界発光素子の製造方法
JP5569630B2 (ja) 有機電界発光素子、有機el照明および有機el表示装置
JP2010184876A (ja) 有機金属錯体、有機電界発光素子用組成物および有機電界発光素子
JP2010209143A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010199295A (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010209211A (ja) 有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010209144A (ja) 有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539740

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157008083

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013843402

Country of ref document: EP