WO2010074304A1 - リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池 - Google Patents

リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池 Download PDF

Info

Publication number
WO2010074304A1
WO2010074304A1 PCT/JP2009/071838 JP2009071838W WO2010074304A1 WO 2010074304 A1 WO2010074304 A1 WO 2010074304A1 JP 2009071838 W JP2009071838 W JP 2009071838W WO 2010074304 A1 WO2010074304 A1 WO 2010074304A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
particles
lithium secondary
Prior art date
Application number
PCT/JP2009/071838
Other languages
English (en)
French (fr)
Inventor
隆太 杉浦
小林 伸行
昌平 横山
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP09835094.5A priority Critical patent/EP2369664B1/en
Priority to JP2010544205A priority patent/JP5043203B2/ja
Priority to CN200980149005.8A priority patent/CN102239587B/zh
Publication of WO2010074304A1 publication Critical patent/WO2010074304A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery having a layered rock salt structure and a method for producing the same, and more particularly to a plate-like particle for the same material, the same material film, and a method for producing the same material.
  • a cobalt-based positive electrode active material As a positive electrode material of a lithium secondary battery (sometimes referred to as a lithium ion secondary battery), a cobalt-based positive electrode active material is widely used.
  • This cobalt-based positive electrode active material (typically LiCoO 2 ) has a so-called ⁇ -NaFeO 2 type layered rock salt structure.
  • lithium ions Li +
  • crystal planes other than the (003) plane for example, (101) plane or (104) plane.
  • the charging / discharging operation is performed by the entry and exit of the lithium ions.
  • an object of the present invention is to provide a lithium secondary battery with improved capacity, durability, and rate characteristics as compared with the conventional one.
  • a feature of one aspect of the present invention is a plate-like particle for a positive electrode active material of a lithium secondary battery having a layered rock salt structure, wherein the (003) plane in the structure intersects the plate surface direction of the particle. It is in the orientation. That is, the particles are formed such that a surface other than (003) (for example, (104) surface) is oriented in the plate surface direction.
  • the particles can be formed to a thickness of preferably 20 ⁇ m or less.
  • the lithium secondary battery of the present invention includes a positive electrode including the plate-like particles for a positive electrode active material of the present invention as a positive electrode active material, a negative electrode including a carbonaceous material or a lithium storage material as a negative electrode active material, the positive electrode, and the negative electrode And an electrolyte provided so as to be interposed therebetween.
  • the positive electrode active material layer is formed by disperse
  • the said positive electrode is comprised by the laminated body of this positive electrode active material layer and a predetermined positive electrode collector.
  • the positive electrode in this case is configured by superimposing the positive electrode active material layer containing the plate-like particles and the positive electrode current collector.
  • a positive electrode active material film of a lithium secondary battery having the above-described structure, wherein a surface other than (003) in the structure (for example, (104) surface) is a film plate. The orientation is in the plane direction.
  • This film can be formed to a thickness of preferably 20 ⁇ m or less.
  • the lithium secondary battery of the present invention is interposed between the positive electrode including the positive electrode active material film of the present invention, the negative electrode including a carbonaceous material or a lithium storage material as a negative electrode active material, and the positive electrode and the negative electrode. Provided electrolyte.
  • the positive electrode of the lithium secondary battery for example, a laminate of the positive electrode active material film and a predetermined positive electrode current collector (for example, vapor deposition (for example, sputtering) of the active material film and a conductor film)
  • the positive electrode is constituted by a laminate formed by coating or the like.
  • the ratio [003] / [104] of the diffraction intensity by the (003) plane to the diffraction intensity by the (104) plane in X-ray diffraction is preferably in the range of 0.005 to 1.0. It is.
  • [003] / [104] is 1.0 or less, Li ions can be easily taken out, and the charge / discharge characteristics are significantly improved.
  • the particles and films as described above can be produced by a production method including the following steps (1) and (2): (1) Plate-like Co 3 O 4 particles oriented (h00) in the particle plate surface direction. A step of forming a thin-film sheet (a self-supporting film: definition will be described later), and (2) a step of introducing Li into the Co 3 O 4 particles.
  • the step (1) may include the following steps: forming a green sheet containing Co 3 O 4 and Bi 2 O 3 and having a thickness of 20 ⁇ m or less, and forming the green sheet at 900 ° C. to 1300 A step of firing at a temperature within a range of ° C.
  • the following steps (3) may further include: (3) a step of crushing the sheet into a number of the Co 3 O 4 particles.
  • the step (2) may include the following steps: mixing the Co 3 O 4 particles obtained by the crushing step and Li 2 CO 3. And heating.
  • a surface (a surface other than the (003) surface: for example, the (104) surface) on which lithium ions can enter and exit satisfactorily is the plate surface. Oriented in the direction. Thereby, the exposure (contact) of the surface to the electrolyte is increased, and the exposure ratio of the (003) surface on the surface of the particle or film is extremely low. Therefore, for example, in the film used as the positive electrode material of the solid lithium secondary battery, high capacity and high rate characteristics can be achieved at the same time. Alternatively, in the plate-like particles used as the positive electrode material of the liquid lithium secondary battery, high rate characteristics can be maintained even when the particle size is increased to improve durability and increase capacity. . As described above, according to the present invention, it is possible to provide a lithium secondary battery in which capacity, durability, and rate characteristics are improved as compared with the conventional one.
  • FIG. 1A is a cross-sectional view showing a schematic configuration of a lithium secondary battery to which an embodiment of the present invention is applied.
  • FIG. 1B is an enlarged cross-sectional view of the positive electrode shown in FIG. 1A.
  • FIG. 2A is an enlarged perspective view of the plate-like particle for positive electrode active material shown in FIG.
  • FIG. 2B is an enlarged perspective view of a positive electrode active material particle of a comparative example.
  • FIG. 2C is an enlarged perspective view of positive electrode active material particles of a comparative example.
  • FIG. 3A is a scanning electron micrograph of the surface of (h00) -oriented Co 3 O 4 particles obtained by the sheet forming step in the production method of the present invention.
  • FIG. 3A is a scanning electron micrograph of the surface of (h00) -oriented Co 3 O 4 particles obtained by the sheet forming step in the production method of the present invention.
  • FIG. 3A is a scanning electron micrograph of the surface of (h00) -oriented Co
  • FIG. 3B is a scanning electron micrograph of the surface of LiCoO 2 particles (through the lithium introduction step) obtained by the production method of the present invention.
  • FIG. 3C is a scanning electron micrograph of the cross section of LiCoO 2 particles (through the lithium introduction step) obtained by the production method of the present invention.
  • FIG. 3D is a scanning electron micrograph of the cross-section of LiCoO 2 particles (through the lithium introduction step) obtained by the production method of the present invention.
  • FIG. 4A is a scanning electron micrograph of normal (comparative) Co 3 O 4 particles with (111) orientation.
  • FIG. 4B is a scanning electron micrograph of LiCoO 2 particles of a comparative example obtained by performing the above lithium introduction step on the normal (comparative) Co 3 O 4 particles shown in FIG. 4A.
  • FIG. 5 is an X-ray diffraction profile of the LiCoO 2 particles shown in FIGS. 3B and 4B.
  • FIG. 6A is a cross-sectional view illustrating a schematic configuration of a lithium secondary battery according to a modification.
  • FIG. 6B is an enlarged cross-sectional view of the positive electrode active material layer shown in FIG. 6A.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a lithium secondary battery according to another modification.
  • FIG. 8 is a cross-sectional view showing a configuration of a modified example of the positive electrode shown in FIG. 1B.
  • the lithium secondary battery 10 of the present embodiment is a so-called liquid type, and includes a battery case 11, a separator 12, an electrolyte 13, a negative electrode 14, and a positive electrode 15.
  • the separator 12 is provided so as to bisect the inside of the battery case 11.
  • a liquid electrolyte 13 is accommodated, and a negative electrode 14 and a positive electrode 15 are provided so as to face each other with the separator 12 therebetween.
  • the electrolyte 13 for example, a non-aqueous solvent based electrolyte in which an electrolyte salt such as a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent is preferably used because of its electrical characteristics and ease of handling.
  • a polymer electrolyte, a gel electrolyte, an organic solid electrolyte, and an inorganic solid electrolyte can also be used as the electrolyte 13 without problems.
  • Dielectric constants such as chain esters, such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propion carbonate; Ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate High cyclic esters; mixed solvents of chain esters and cyclic esters; and the like, and mixed solvents with cyclic esters having chain esters as the main solvent are particularly suitable.
  • LiClO 4 LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [wherein Rf and Rf ′ are fluoroalkyl groups], etc. can be used. These may be used alone or in combination of two or more.
  • a fluorine-containing organic lithium salt having 2 or more carbon atoms is particularly preferable. This is because this fluorine-containing organolithium salt has a large anionic property and is easily ion-separated, so that it is easily dissolved in the above-mentioned solvent.
  • the concentration of the electrolyte salt in the nonaqueous electrolytic solution is not particularly limited, but is, for example, 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l or less, more preferably 1. It is desirable that it is 5 mol / l or less.
  • the negative electrode active material according to the negative electrode 14 may be any material as long as it can occlude and release lithium ions.
  • graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, mesocarbon micro Carbonaceous materials such as beads, carbon fibers, activated carbon and the like are used.
  • Lithium storage materials such as materials can also be used as the negative electrode active material.
  • FIG. 1B is an enlarged cross-sectional view of the positive electrode 15 shown in FIG. 1A.
  • the positive electrode 15 includes a positive electrode current collector 15a and a positive electrode active material layer 15b.
  • the positive electrode active material layer 15b is composed of a binder 15b1 and plate particles 15b2 for positive electrode active material.
  • the basic configuration of the lithium secondary battery 10 and the positive electrode 15 shown in FIGS. 1A and 1B (battery case 11, separator 12, electrolyte 13, negative electrode 14, positive electrode current collector 15a, and binder 15b1. Is included in the present specification, and a detailed description thereof is omitted.
  • the positive electrode active material plate-like particle 15b2 is a particle containing cobalt and lithium and having a layered rock salt structure, more specifically, a LiCoO 2 particle having a thickness of about 2 to 100 ⁇ m. It is formed in a plate shape.
  • FIG. 2A is an enlarged perspective view of the plate-like particles 15b2 for positive electrode active material shown in FIG. 2B and 2C are enlarged perspective views of positive electrode active material particles of a comparative example.
  • the positive electrode active material plate-like particle 15b2 has a surface other than (003) on both surfaces (upper surface (plate surface) A and lower surface (plate surface) B) in the particle thickness direction.
  • the surface for example, (101) surface or (104) surface
  • the (003) surface surface painted in black in the figure
  • the plate-like particles 15b2 for the positive electrode active material are formed such that surfaces other than (003) (for example, (104) surface) are oriented in the particle plate surface direction.
  • the particles of the comparative example shown in FIG. 2B are formed in an isotropic shape instead of a thin plate shape.
  • the particles of the comparative example shown in FIG. 2C are in the form of a thin plate, they are formed so that (003) is exposed on both surfaces (upper surface A and lower surface B) in the particle thickness direction. .
  • the particles of these comparative examples are produced by a conventional production method. ⁇ Outline of production method of plate-like particles for positive electrode active material>
  • raw material particles particles obtained by appropriately mixing particles of compounds such as Li, Co, Ni and Mn are used so that the composition after synthesis is a positive electrode active material LiMO 2 having a layered rock salt structure.
  • raw material particles having a composition of LiMO 2 can be used.
  • particles containing a compound of each compound such as Co, Ni, Mn, or the like or particles having a composition of (Co, Ni, Mn) O x that do not contain a Li compound can be used as necessary.
  • LiMO 2 is obtained by further reacting the fired molded body and the Li compound after the firing process of the molded body (details will be described later).
  • the Li compound may be added in an excess of 0.5 to 30 mol%.
  • 0.001 to 30 wt% of low melting point oxide such as bismuth oxide and low melting point glass such as borosilicate glass may be added.
  • self-supporting in the “self-supporting molded body” is synonymous with “independent” in the “independent sheet” described later. That is, the “self-supporting molded body” typically can maintain the shape of a sheet-shaped molded body by itself. In addition, even if it alone can not keep the shape of the sheet-like molded body, it may be attached to any substrate or formed into a film and peeled off from this substrate before or after firing, Included in “self-supported compact”. As a molding method of the molded body, for example, a doctor blade method using a slurry containing raw material particles can be used.
  • a drum dryer may be used for forming a formed body, in which a slurry containing a raw material is applied onto a heated drum and the dried material is scraped off with a scraper.
  • a disk drier can be used for forming the formed body, in which a slurry is applied to a heated disk surface, dried and scraped with a scraper.
  • the hollow granulated body obtained by setting the conditions of a spray dryer suitably can also be regarded as the sheet-like molded object with a curvature, it can be used suitably as a molded object.
  • an extrusion molding method using a clay containing raw material particles can also be used as a molding method of the molded body.
  • the slurry is applied to a flexible plate (for example, an organic polymer plate such as a PET film), and the applied slurry is dried and solidified to form a molded product, and the molded product and the plate are peeled off. By doing so, you may produce the molded object before baking of a plate-like polycrystalline particle.
  • a flexible plate for example, an organic polymer plate such as a PET film
  • inorganic particles may be dispersed in a suitable dispersion medium, and a binder, a plasticizer, or the like may be added as appropriate.
  • the slurry is preferably prepared so as to have a viscosity of 500 to 4000 cP, and is preferably degassed under reduced pressure.
  • the thickness of the molded body is more preferably 50 ⁇ m or less, and still more preferably 20 ⁇ m or less. Moreover, it is preferable that the thickness of a molded object shall be 2 micrometers or more. If thickness is 2 micrometers or more, it will be easy to produce the self-supporting sheet-like molded object. The thickness of the sheet-like molded body is almost the same as the thickness of the plate-like particles, and is thus appropriately set according to the use of the plate-like particles. 3. Baking process of molded body In this baking process, the molded body obtained in the molding process is, for example, placed on a setter and fired as it is in a molded state (a sheet state).
  • the firing step may be one in which a sheet-like formed body is appropriately cut and crushed and placed in a sheath and fired.
  • the raw material particles are mixed particles before synthesis, synthesis, further sintering and grain growth occur in this firing step.
  • the compact is a sheet having a thickness of 100 ⁇ m or less, grain growth in the thickness direction is limited. For this reason, after the grains have grown until the number of crystal grains becomes one in the thickness direction of the compact, grain growth proceeds only in the in-plane direction of the compact. At this time, a specific crystal plane which is stable in terms of energy spreads on the sheet surface (plate surface).
  • the raw material particles are LiMO 2
  • the (101) plane and (104) plane which are crystal planes in which lithium ions can enter and exit satisfactorily, can be oriented so as to be exposed on the sheet surface (plate surface).
  • the (h00) plane which becomes the (104) plane when reacted with the Li compound to form LiMO 2 , It can be oriented so as to be exposed on the sheet surface (plate surface).
  • the firing temperature is preferably 800 ° C to 1350 ° C.
  • the firing time is preferably between 1 and 50 hours. If it is shorter than 1 hour, the degree of orientation becomes low. On the other hand, if it is longer than 50 hours, energy consumption becomes too large.
  • the firing atmosphere is appropriately set so that decomposition does not proceed during firing.
  • the volatilization of Li proceeds, it is preferable to arrange lithium carbonate or the like in the same sheath to create a lithium atmosphere.
  • firing is preferably performed in an atmosphere having a high oxygen partial pressure. 4).
  • the crushing step may be performed after the lithium introduction step.
  • a sheet oriented by firing or a plate-like particle obtained by pulverizing it is obtained from raw material particles not containing a Li compound, by reacting this with a Li compound (such as lithium nitrate or lithium carbonate), A positive electrode active material film is obtained that is oriented so that a crystal plane that is satisfactorily moved in and out is exposed on the plate surface.
  • lithium introduction is performed by sprinkling lithium nitrate on the alignment sheet or particles so that the molar ratio Li / M of Li and M is 1 or more and heat treatment.
  • the heat treatment temperature is preferably 600 ° C. to 800 ° C. At a temperature lower than 600 ° C., the reaction does not proceed sufficiently. At a temperature higher than 800 ° C., the orientation deteriorates.
  • ⁇ Sheet formation process By forming a green sheet containing Co 3 O 4 and Bi 2 O 3 and having a thickness of 20 ⁇ m or less, and firing the green sheet at a temperature in the range of 900 ° C. to 1300 ° C.
  • the “independent” sheet does not include a sheet that is fixed to another support (substrate or the like) by firing and integrated with the support (unseparable or difficult to separate).
  • the amount of material existing in the thickness direction is extremely small compared to the particle plate surface direction, that is, the in-plane direction (direction perpendicular to the thickness direction). Few. For this reason, in the initial stage where there are a plurality of grains in the thickness direction, grains grow in random directions. On the other hand, when the grain growth proceeds and the material in the thickness direction is consumed, the grain growth direction is limited to the in-plane two-dimensional direction. This reliably promotes grain growth in the surface direction.
  • the green sheet by forming the green sheet as thin as possible (for example, several ⁇ m or less), or by promoting the grain growth as much as possible even if the thickness is about 100 ⁇ m (for example, about 20 ⁇ m).
  • the grain growth in the surface direction is more reliably promoted.
  • only particles having a crystal plane having the lowest surface energy in the plane of the green sheet selectively grow in a flat shape (plate shape) in the in-plane direction.
  • plate-like crystal grains made of CoO having a large aspect ratio and a specific crystal plane (here, (h00) plane) oriented in the grain plate plane direction are obtained by sheet firing. Furthermore, it is oxidized from CoO to Co 3 O 4 in the process of lowering the temperature.
  • Co 3 O 4 plate-like crystal grains in which a specific crystal plane (here, (h00) plane) is oriented in the grain plate plane direction are obtained by taking over the orientation orientation of CoO.
  • the degree of orientation tends to decrease. This is because the crystal structure of CoO and Co 3 O 4 and the inter-atomic distance of Co—O are greatly different, so that the crystal structure tends to be disturbed when oxidation, that is, oxygen atoms are inserted. Therefore, it is preferable to select conditions as appropriate so as not to reduce the degree of orientation as much as possible. For example, it is preferable to reduce the rate of temperature decrease, hold at a predetermined temperature, or reduce the oxygen partial pressure.
  • a thin film (self-supporting film) in which a large number of thin plate-like particles whose specific crystal planes are oriented in the grain plate surface direction is bonded in the plane direction at the grain boundary portion is obtained (See Japanese Patent Application No. 2007-283184 relating to the present applicant). That is, a thin film (self-supporting film) is formed in which the number of crystal grains in the thickness direction is substantially one.
  • the meaning of “substantially one crystal grain in the thickness direction” does not exclude that a part (for example, end portions) of crystal grains adjacent in the plane direction overlap each other in the thickness direction.
  • This self-supporting film can be a dense ceramic sheet in which a large number of thin plate-like particles as described above are bonded without gaps.
  • ⁇ Crushing process >> The thin film sheet (self-supporting film) obtained by the above-described sheet forming step is in a state where it can be easily crushed at the grain boundary part. Therefore, the thin sheet (self-supporting film) obtained by the above-described sheet forming process is placed on a mesh having a predetermined opening diameter and pressed with a spatula from above, so that the above-described sheet becomes a large number of Cos. Crushed into 3 O 4 particles.
  • Lithium introduction process >> Co 3 O 4 particles obtained by the above crushing step and (h00) oriented (the meaning of “(h00) orientation” is as described above) and Li 2 CO 3 are mixed and heated for a predetermined time.
  • lithium is introduced into the Co 3 O 4 particles.
  • plate-like particles 15b2 for positive electrode active material which are (104) oriented LiCoO 2 particles are obtained.
  • As a lithium source when introducing lithium in addition to lithium carbonate, for example, various lithium salts such as lithium nitrate, lithium acetate, lithium chloride, lithium oxalate, lithium citrate, lithium methoxide, lithium ethoxide, etc. Lithium alkoxide can also be used.
  • the conditions for introducing lithium i.e., mixing ratio, heating temperature, heating time, atmosphere, etc., the melting point or decomposition temperature of the material used as a lithium source, be appropriately set in consideration of the reactivity, etc., of LiCoO 2 particles It is important for enhancing the orientation. For example, if a mixture of (h00) oriented Co 3 O 4 particles and a lithium source reacts in a very active state, the orientation of the Co 3 O 4 particles may be disturbed, which is not preferable.
  • the mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 500 to 700 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 2 ⁇ m.
  • the sheet-like molded body peeled off from the PET film was cut into a 70 mm square with a cutter, and placed in the center of a zirconia setter (dimension 90 mm square, height 1 mm) with an embossed projection of 300 ⁇ m in size. After firing at 1150 ° C.
  • FIG. 3A is a scanning electron micrograph of the surface of (h00) -oriented Co 3 O 4 particles obtained by the sheet forming step in the production method of the present invention (the above specific example).
  • FIG. 3B is a scanning electron micrograph of the surface of LiCoO 2 particles (through the lithium introduction step) obtained by the production method of the present invention (the above specific example).
  • FIG. 3C is a scanning electron micrograph of the cross-section of LiCoO 2 particles (through the lithium introduction step) obtained by the production method of the present invention (the above specific example).
  • FIG. 4A is a scanning electron micrograph of normal (comparative) Co 3 O 4 particles with (111) orientation, which is the surface with the lowest surface energy.
  • FIG. 4B is a scanning electron micrograph of LiCoO 2 particles of a comparative example obtained by performing the above lithium introduction step on the normal (comparative) Co 3 O 4 particles shown in FIG. 4A.
  • 5 is an X-ray diffraction profile of the LiCoO 2 particles shown in FIGS. 3B and 4B (the upper profile corresponds to the comparative example of FIG. 4B and the lower profile corresponds to the specific example of FIG. 3B). ).
  • FIG. 5 shows a diffraction profile of a crystal plane parallel to the plate surface of the particle, that is, a crystal surface oriented in the plate surface direction of the particle.
  • Co 3 O 4 particles of the comparative example see FIG.
  • FIG. 3A that are not (111) -oriented (h00) -oriented, so (104) -oriented LiCoO 2 particles exposed on the upper surface (plate surface) A and the lower surface (plate surface) B became (104) -oriented LiCoO 2 particles (see FIGS. 2A, 3B, and 5).
  • FIG. 3B unlike FIG. 4B, it can be confirmed that a thin streak-like pattern appears on the particle surface.
  • the scanning electron microscope of the cross section of the obtained LiCoO 2 particles when the slurry viscosity is 4000 cP, the sheet thickness after drying is 10 ⁇ m, the firing temperature is 1300 ° C., and the other steps are the same.
  • a photograph is shown in FIG. 3D.
  • FIG. 3D the surface and cross-sectional properties of the particles obtained by this example are the same as in FIG. 3C. Therefore, also in this example, similar to the above specific example, (104) -oriented LiCoO 2 particles were obtained.
  • a slurry having a viscosity of 4000 cP was prepared by the same raw materials and methods as described above. This prepared slurry was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 10 ⁇ m. The sheet-like molded body peeled off from the PET film was cut into a 70 mm square with a cutter, and placed in the center of a zirconia setter (dimension 90 mm square, height 1 mm) with an embossed projection of 300 ⁇ m in size. After firing and temperature lowering (the conditions for firing and temperature lowering will be described later), a portion not welded to the setter was taken out.
  • LiNO 3 powder manufactured by Kanto Chemical Co., Ltd.
  • a LiCoO 2 ceramic sheet (film) having a thickness of 10 ⁇ m was obtained.
  • the obtained LiCoO 2 ceramic sheet was placed on a polyester sieve (mesh) having an average opening diameter of 100 ⁇ m, and pulverized by passing through the mesh while lightly pressing with a spatula, whereby powdery LiCoO 2 was obtained.
  • XRD X-ray diffraction
  • the XRD profile when the surface of the plate-like particle was irradiated with X-rays was measured, and the diffraction intensity (peak height) from the (104) plane was measured.
  • the ratio [003] / [104] of the diffraction intensity (peak height) by the (003) plane was determined.
  • the plate surface of the plate-like particles is in surface contact with the glass substrate surface, and the particle plate surface and the glass substrate surface are parallel to each other. For this reason, according to the above method, a diffraction profile is obtained by a crystal plane that is parallel to the crystal plane of the grain plate surface, that is, a crystal plane that is oriented in the grain plane direction of the grain.
  • a battery was prepared as follows.
  • the obtained LiCoO 2 particles, acetylene black, and polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 75: 20: 5 to prepare a positive electrode material.
  • a positive electrode was produced by press-molding 0.02 g of the prepared positive electrode material into a disk shape having a diameter of 20 mm at a pressure of 300 kg / cm 2 .
  • the produced positive electrode, negative electrode made of a Li metal plate, stainless steel current collector plate, and separator are arranged in the order of current collector plate-positive electrode-separator-negative electrode-current collector plate, and the coin cell is filled with the electrolytic solution. Produced.
  • the electrolytic solution was prepared by dissolving LiPF 6 in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio to a concentration of 1 mol / L.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the battery capacity (discharge capacity) and capacity retention rate were evaluated. Charge at constant current until the battery voltage reaches 4.2 V at a current value of 0.1 C rate, and then charge at constant voltage until the current value drops to 1/20 under the current condition of maintaining the battery voltage at 4.2 V. Charge / discharge operation of 10 minutes after that, followed by constant current discharge at a current value of 1 C rate until the battery voltage reaches 3.0 V, and then pause for 10 minutes.
  • the plate-like particle 15b2 for the positive electrode active material having a relatively large particle diameter is used, but at a rate as high as 1C, 100 mAh / g or more.
  • a large discharge capacity (rate characteristic) is realized.
  • the peak intensity ratio [003] / [104] is 1.0 or less (0.9 or less)
  • Li ions can be easily taken out, and the battery capacity (discharge capacity) at a high rate is greatly increased. improves.
  • the peak intensity ratio is less than 0.005
  • the capacity retention rate (cycle characteristics) deteriorates.
  • the (003) plane where lithium ions cannot enter and exit is only slightly exposed at the end faces of the plate-like particles (see FIG. 2A). That is, the exposure of the surface where the lithium ions are satisfactorily taken in and out of the electrolyte 13 (including those permeating into the binder 15b1) is increased, and the lithium ions cannot enter and exit (003) surface. The exposure ratio is extremely low.
  • the (003) plane is exposed as a plane at the end face C, but other structures can also be realized. For example, a structure (see FIG. 3C) in which the (003) plane and another plane (such as the (104) plane) form steps can be formed.
  • lithium ion secondary batteries for mobile devices that are mounted on mobile phones and notebook PCs require high-capacity batteries that can be used for a long time.
  • it is effective to improve the filling rate of the active material powder, and it is preferable to use large particles having a particle size of 10 ⁇ m or more with good filling properties.
  • the particle diameter is increased to 10 ⁇ m or more, the surface (003) where the lithium ions and the electrons cannot enter and exit from the crystal structure becomes plate-like particles that are widely exposed on the surface (see FIG. 2C). ), The output characteristics may be adversely affected.
  • the LiCoO 2 plate-like particles of the present invention the lithium ion and electron conduction surfaces are widely exposed on the surface. For this reason, according to the present invention, the LiCoO 2 plate-like particles can be enlarged without adversely affecting the output characteristics. Therefore, according to this invention, the high capacity
  • the thickness of the oriented plate-like particles and film is desirably 2 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, and still more preferably 5 to 20 ⁇ m. If it is thicker than 100 ⁇ m, it is not preferable from the viewpoint of the rate characteristics decreasing and the sheet formability.
  • the aspect ratio of the oriented plate-like particles is preferably 4-20. If it is smaller than 4, the effect of expanding the entrance / exit surface of lithium ions by orientation will be reduced. If it is larger than 20, when the oriented plate-like particles are filled so that the plate surface of the oriented plate-like particles is parallel to the in-plane direction of the positive electrode sheet, the lithium ion diffusion path in the thickness direction of the positive electrode sheet becomes longer. This is not preferable because the rate characteristics are deteriorated.
  • the positive electrode active material layer 15b shown in FIG. 1B may be a thin film (self-supporting film) -like LiCoO 2 ceramic sheet (positive electrode active material film).
  • ⁇ Manufacturing method An independent thin film (self-supporting film) -like LiCoO 2 ceramic sheet having a thickness of 10 ⁇ m was produced by the same raw material and method as in Example 2 described above. Note that, as described above, in this embodiment, crushing with a mesh is not performed.
  • ⁇ Evaluation >> XRD (X-ray diffraction) measurement was performed by the following method: a self-supporting film having a diameter of about 16 mm was placed on a glass substrate so that the film surface and the glass substrate surface were parallel, and the XRD apparatus described above was installed.
  • a battery was prepared as follows.
  • a positive electrode plate was produced by sputtering Au on one side of a free-standing film having a diameter of about 16 mm to form a current collecting layer (thickness: 500 mm).
  • the prepared positive electrode plate, negative electrode made of a Li metal plate, stainless steel current collector plate, and separator are arranged in the order of current collector plate-positive electrode-separator-negative electrode-current collector plate, and this integrated body is made of the same electrolyte as described above.
  • the coin cell was produced by filling.
  • Table 2 below shows the evaluation results of seven experimental examples (Comparative Examples 3 and 4 and Experimental Examples 6 to 10) in which the degree of orientation was changed by changing the amount of Bi 2 O 3 added and the conditions of firing and temperature reduction. Show.
  • Table 2 shows the same results as in Table 1 were obtained also in the positive electrode plate using the positive electrode active material in the form of a self-supporting film.
  • a gel polymer electrolyte may be used as the electrolyte.
  • a positive electrode was produced by sputtering Au particles on one side of a free-standing film having a diameter of 16 mm to form a current collecting layer (thickness: 500 mm).
  • Polyethylene oxide (PEO) was dissolved by heating in an organic electrolyte, impregnated into a polypropylene nonwoven fabric as a structural reinforcing material, and then cooled to form a gel electrolyte layer.
  • PEO Polyethylene oxide
  • the plate-like particles for positive electrode active material and the positive electrode active material film of the present invention are not limited to lithium cobaltate as long as they have a layered rock salt structure.
  • the plate-like particle for positive electrode active material and the positive electrode active material film of the present invention may be made of a solid solution containing nickel, manganese, etc. in addition to cobalt. Specific examples include lithium nickelate, lithium manganate, nickel / lithium manganate, nickel / lithium cobaltate, cobalt / nickel / lithium manganate, cobalt / lithium manganate, and the like.
  • these materials include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba.
  • elements such as Bi and Bi may be contained.
  • the Co oxide phase transforms from a spinel structure represented by Co 3 O 4 at room temperature to a CoO rock salt structure.
  • Mn and Ni take a spinel structure of Mn 3 O 4 and a rock salt structure of NiO, respectively, over a wide temperature range.
  • a LiMO 2 sheet or plate-like particle for positive electrode active material oriented as described above can be obtained. That is, for example, Ni-Mn composite oxide not containing Co also has a rock salt structure at a high temperature and a spinel structure at a low temperature, as in the case of Co oxide. Therefore, an oriented sheet can be produced in the same manner as described above. Then, such a sheet or by introducing the Li to the pulverized product, represented by Li (Ni, Mn) O 2 , may positive electrode active material of good alignment state is produced.
  • an independent film-like sheet composed of a large number of (h00) -oriented plate-like MO particles (M includes one or more selected from Co, Ni, and Mn) having a rock salt structure is formed, and such A positive electrode active material oriented so that the crystal plane in which lithium ions such as (104) and (101) can be satisfactorily entered and exited is parallel to the plate surface by introducing lithium into the sheet or its crushed material LiMO 2 sheets or plate-like particles can also be obtained.
  • a film-like sheet made of particles of LiMO 2 (M includes one or more selected from Co, Ni, and Mn) is fired, the composition, temperature, atmosphere, pressure, additive, and the like are controlled. , (104), (101), etc.
  • LiMO 2 sheet for positive electrode active material or plate-like particles oriented so that the crystal plane where lithium ions enter and exit well can be parallel to the plate surface can be obtained directly.
  • the lithium ion conduction direction is the b-axis direction ([010] direction). Therefore, a positive electrode active material having good performance can be obtained by using plate-like particles or films oriented such that the ac surface (for example, (010) surface) is parallel to the plate surface.
  • ⁇ Other composition example 1 Cobalt-nickel system> A green sheet having a thickness of 20 ⁇ m or less containing NiO powder, Co 3 O 4 powder, and Al 2 O 3 powder is formed, and the green sheet is formed at a temperature in the range of 1000 ° C. to 1400 ° C. By firing in an air atmosphere for a predetermined time, an independent film-like sheet composed of a number of (h00) -oriented plate-like (Ni, Co, Al) O particles is formed.
  • MnO 2 , ZnO or the like as an auxiliary agent, grain growth is promoted, and as a result, the (h00) orientation of the plate-like crystal grains can be enhanced.
  • the (h00) -oriented (Ni, Co, Al) O ceramic sheet obtained by the above-described process and lithium nitrate (LiNO 3 ) are mixed and heated for a predetermined time, thereby (Ni, Co, Al). ) Lithium is introduced into the O particles.
  • a (104) -oriented Li (Ni 0.75 Co 0.2 Al 0.05 ) O 2 plate-like sheet for positive electrode active material is obtained.
  • the slurry was prepared by the following method. NiO powder (particle size 1-10 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.) 75.1 parts by weight, Co 3 O 4 powder (particle size 1-5 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.) 21.5 parts by weight, Al By mixing and pulverizing 3.4 parts by weight of 2 O 3 powder (particle size: 1-10 ⁇ m, manufactured by Showa Denko KK) and heat-treating at 1300 ° C. for 5 hours in the atmosphere (Ni, Co, Al) O powder was synthesized.
  • ⁇ Tape molding The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 8 ⁇ m.
  • ⁇ Baking The sheet-like molded body peeled off from the PET film was cut into a 50 mm square with a cutter, and placed in the center of a zirconia setter (dimension 90 mm square, height 1 mm) subjected to embossing with a projection size of 300 ⁇ m. After heat treatment at 1300 ° C.
  • Tables 3 and 4 show the evaluation results for various experimental examples in which the orientation was changed by changing the heat treatment (sheet firing) and the lithium introduction conditions in Example 5 described above.
  • Experimental Example 14 in the table.
  • the battery characteristic evaluation was performed both in the powder state (evaluation method is the same as in Example 2) and in the self-supporting film state (evaluation method is the same as in Example 3).
  • Table 4 in Comparative Example 5 where [003] / [104] exceeded 1.0, the discharge capacity was low.
  • Comparative Example 6 in which [003] / [104] is less than 0.005, the capacity retention rate was low.
  • Layered compounds are generally known to have large strain energy. Both strain energy and surface energy contribute to the selective grain growth (preferential orientation) of grains in a specific orientation.
  • the (003) plane is the most stable in terms of surface energy, and the (101) and (104) planes are stable in terms of strain energy.
  • the film thickness is 0.1 ⁇ m or less, the ratio of the surface to the sheet volume is large, so that surface energy-dominated selective growth occurs and particles oriented in the (003) plane are obtained.
  • the film thickness is 0.1 ⁇ m or more, the ratio of the surface to the sheet volume decreases, so that the strain energy becomes dominant, and particles oriented in the (101) and (104) planes are obtained.
  • the film-like sheet obtained by the above-described sheet forming step is in a state where it can be easily crushed at the grain boundary part. Therefore, the film-like sheet obtained by the above-described sheet forming step is placed on a mesh having a predetermined opening diameter and pressed with a spatula from above, so that the above-mentioned sheet becomes a large number of Li (Ni 1/1 / 3 Mn 1/3 Co 1/3 ) O 2 particles.
  • Li (Ni 1/3 Mn 1/3 Co 1/3) consisting of O 2 plate crystal grains may also be obtained by the following manufacturing method.
  • a green sheet having a thickness of 20 ⁇ m or less containing NiO powder, MnCO 3 powder, and Co 3 O 4 powder is formed, and the green sheet is heated at a temperature in the range of 900 ° C. to 1300 ° C. in an Ar atmosphere.
  • an independent film-like sheet composed of a number of (h00) -oriented plate-like (Ni, Mn, Co) 3 O 4 particles is formed.
  • (Ni, Mn, Co) 3 O 4 having a spinel structure is reduced to undergo a phase transformation to (Ni, Mn, Co) O having a rock salt structure.
  • the orientation direction of (Ni, Mn, Co) O is taken over, so that a specific crystal plane (here, (h00) plane) is oriented in the grain plate surface direction (Ni, Mn, Co) 3 O.
  • a specific crystal plane here, (h00) plane
  • the degree of orientation tends to decrease. This is because the crystal structures of (Ni, Mn, Co) O and (Ni, Mn, Co) 3 O 4 are greatly different, and the interatomic distances of Ni—O, Mn—O, and Co—O are large. This is because the crystal structure is easily disturbed during oxidation (that is, oxygen atoms are inserted).
  • the film-like sheet obtained by the above-described sheet forming step is in a state where it can be easily crushed at the grain boundary part. Therefore, by placing the film-like sheet obtained by the above-described sheet forming step on a mesh having a predetermined opening diameter and pressing it with a spatula from above, a large number of the above-mentioned sheets (Ni, Mn, Co) 3 O 4 broken into particles.
  • the slurry was prepared by the following method. 24.4 parts by weight of NiO powder (particle size: 1-10 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.) so as to have a composition ratio of Li 1.20 (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , 28.4 parts by weight of MnCO 3 powder (particle size 1-10 ⁇ m, manufactured by Tosoh Corporation), 26.2 parts by weight of Co 3 O 4 powder (particle diameter 1-5 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.), Li 2 By mixing and pulverizing 21.0 parts by weight of CO 3 powder (particle size: 10-50 ⁇ m, manufactured by Kanto Chemical Co., Ltd.) and heat-treating it in an airtight sheath at 720 ° C.
  • NiO powder particle size: 1-10 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • the mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 3000 to 4000 cP.
  • Tape molding The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 16 ⁇ m.
  • ⁇ Baking The sheet-like molded body peeled off from the PET film was cut into a 30 mm square with a cutter and placed on the center of a zirconia setter (dimension 90 mm square, height 1 mm) having a projection size of 300 ⁇ m. This setter was put into a sheath on which 1 g of Li 2 CO 3 powder was placed, and after firing for 10 hours at 1120 ° C.
  • the fired ceramic sheet was placed on a sieve (mesh) having an opening diameter of 100 ⁇ m and crushed by passing through the mesh while lightly pressing with a spatula to obtain a powder.
  • ICP inductively coupled plasma
  • Li 1.05 Li 1.05 (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 .
  • Tables 5 and 6 show the evaluation results for various experimental examples in which the orientation was changed by changing the heat treatment (sheet firing) conditions and the like in Example 6 described above.
  • Experimental Example 20 in the table.
  • Comparative Example 7 Experimental Example 17, and Experimental Example 18, Bi 2 O 3 (particle size: 0.3 ⁇ m, manufactured by Taiyo Mining Co., Ltd.) was added during slurry preparation.
  • Table 5 and Table 6 by adding a relatively large amount of Bi 2 O 3 and firing it at a low temperature for a short time, rapid and isotropic grain growth occurs. Became plate-like particles that were dense but not oriented. In this case, the discharge capacity was significantly reduced.
  • FIG. 6A is a cross-sectional view illustrating a schematic configuration of a lithium secondary battery 20 according to a modification. Referring to FIG.
  • the lithium secondary battery 20 is a so-called all-solid-state battery, and includes a positive electrode current collector 21, a positive electrode active material layer 22, a solid electrolyte layer 23, a negative electrode active material layer 24, And a negative electrode current collector 25.
  • the lithium secondary battery 20 is formed by laminating a positive electrode active material layer 22, a solid electrolyte layer 23, a negative electrode active material layer 24, and a negative electrode current collector 25 in this order on a positive electrode current collector 21.
  • FIG. 6A including materials constituting the positive electrode current collector 21, the solid electrolyte layer 23, the negative electrode active material layer 24, and the negative electrode current collector 25) is included.
  • FIG. 6B is an enlarged cross-sectional view of the positive electrode active material layer 22 shown in FIG. 6A.
  • the positive electrode active material layer 22 is formed in a film shape in which a large number of positive electrode active material plate-like particles 22a are bonded in the plane direction.
  • These positive electrode active material plate-like particles 22a are also surfaces other than (003) on the surfaces (upper and lower surfaces in the figure) having normal directions along the particle thickness direction, as in the above-described embodiment. (For example, (104) plane) is exposed.
  • the ratio of exposure (contact) to the solid electrolyte layer 23 on the (003) plane where the lithium ions cannot enter and exit in the positive electrode active material plate-like particles 22a is extremely low.
  • the positive electrode active material layer 22 facing (contacting) the solid electrolyte layer 23 Almost all of the surface becomes a surface (for example, (104) surface) where lithium ions can enter and exit well. Therefore, according to the present invention, higher capacity and higher rate characteristics in the all-solid-type lithium secondary battery 20 are achieved.
  • the crushing process in the above-mentioned embodiment is not performed at the time of formation of the positive electrode active material layer 22 in the lithium secondary battery 20 having such a configuration. That is, lithium is introduced into the Co 3 O 4 ceramic sheet obtained by firing the green sheet without crushing.
  • the positive electrode active material layer 22 is applied to an all solid state battery.
  • the present invention can also be applied to a liquid battery.
  • the positive electrode material in the liquid type battery has an active material filling rate of about 60%.
  • a filling rate of 100% is substantially achieved in a state in which the surface through which lithium ions enter and exit is ensured over the entire film surface. That is, an extremely high capacity can be obtained while minimizing the sacrifice of rate characteristics.
  • both may be merely in contact with each other, or may be bonded by a thin layer made of a conductive binder such as acetylene black. Good. In the latter case, the positive electrode current collector 21 may be bent, so that the positive electrode active material layer 22 may be cracked. However, the crack is parallel to the conduction direction of electrons and ions.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a lithium secondary battery 30 of another modification. Referring to FIG.
  • the lithium secondary battery 30 is of a so-called polymer type, and includes a positive electrode current collector 31, a positive electrode active material layer 32, a polymer electrolyte layer 33, a negative electrode active material layer 34, A negative electrode current collector 35.
  • the lithium secondary battery 30 is formed by laminating a positive electrode active material layer 32, a polymer electrolyte layer 33, a negative electrode active material layer 34, and a negative electrode current collector 35 in this order on a positive electrode current collector 31.
  • the polymer type lithium secondary battery 30 has a feature that a thin battery configuration is possible as compared with a liquid type in which there is a risk of liquid leakage.
  • the film-like positive electrode active material layer 32 According to the film-like positive electrode active material layer 32 according to the present invention, a filling rate of 100% is substantially achieved in a state in which the surface through which lithium ions enter and exit is ensured over the entire film surface. That is, the positive electrode portion can be made much thinner than before, and a thinner battery can be obtained.
  • the oriented plate-like particles of the present invention those having a plurality of sizes and shapes may be appropriately blended in the positive electrode active material layer 15b. Further, as shown in FIG. 8, the oriented plate-like particles 15b2 of the present invention and the conventional equiaxed particles 15b3 may be mixed at an appropriate mixing ratio.
  • the particles can be arranged efficiently and the filling rate is increased. It is done.
  • the present invention is not limited to the manufacturing method specifically disclosed in the above embodiment.
  • the firing temperature of the green sheet may be a temperature within the range of 900 ° C to 1300 ° C.
  • the additive in the sheet forming process is not limited to Bi 2 O 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

容量、耐久性、及びレート特性が従来よりも向上した、リチウム二次電池を提供する。層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子あるいは膜であって、(003)面が、板面方向と交差する方向に配向している。

Description

リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
 本発明は、層状岩塩構造を有する、リチウム二次電池の正極活物質及びその製造方法に関し、より詳しくは、同物質用の板状粒子、同物質膜、及び同物質の製造方法に関する。
 リチウム二次電池(リチウムイオン二次電池と称されることもある)の正極材料として、コバルト系の正極活物質が広く用いられている。このコバルト系の正極活物質(典型的にはLiCoO)は、いわゆるα−NaFeO型の層状岩塩構造を有している。このコバルト系の正極活物質においては、(003)面以外の結晶面(例えば(101)面や(104)面)にて、リチウムイオン(Li)の出入りが生じる。かかるリチウムイオンの出入りによって、充放電動作が行われる。
 この種の電池の正極活物質においては、リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面:例えば(101)面や(104)面)が、より多く電解質に露出することで、電池の容量が向上する。また、単に容量だけでなく、耐久性やレート特性等、より多くの特性を向上させることが求められている。本発明は、かかる課題を解決するためになされたものである。すなわち、本発明の目的は、容量、耐久性、及びレート特性が従来よりも向上した、リチウム二次電池を提供することにある。
 本発明の一側面における特徴は、層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子であって、同構造における(003)面が粒子の板面方向と交差する方向に配向していることにある。すなわち、この粒子は、(003)以外の面(例えば(104)面)が前記板面方向に配向するように形成されている。この粒子は、好ましくは20μm以下の厚さに形成され得る。
 本発明のリチウム二次電池は、本発明の正極活物質用の板状粒子を正極活物質として含む正極と、炭素質材料又はリチウム吸蔵物質を負極活物質として含む負極と、前記正極と前記負極との間に介在するように設けられた電解質と、を備えている。
 そして、リチウム二次電池の正極を構成するに際しては、例えば、かかる正極活物質用の板状粒子を所定のバインダー中に分散することで、正極活物質層が形成される。そして、この正極活物質層と所定の正極集電体との積層体によって、前記正極が構成される。すなわち、この場合の前記正極は、前記板状粒子を含む前記正極活物質層と、前記正極集電体と、が重ね合わせられることによって構成されている。
 本発明の他の側面における特徴は、上述の構造を有する、リチウム二次電池の正極活物質膜であって、同構造における(003)以外の面(例えば(104)面)が、膜の板面方向に配向していることにある。この膜は、好ましくは20μm以下の厚さに形成され得る。
 本発明のリチウム二次電池は、本発明の正極活物質膜を含む正極と、炭素質材料又はリチウム吸蔵物質を負極活物質として含む負極と、前記正極と前記負極との間に介在するように設けられた電解質と、を備えている。
 そして、リチウム二次電池の正極を構成するに際しては、例えば、かかる正極活物質膜と所定の正極集電体との積層体(例えば当該活物質膜と導電体膜とを蒸着(例えばスパッタリング)や塗布等によって積層したもの)によって、前記正極が構成される。
 配向度については、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、0.005~1.0の範囲にあることが好適である。
 [003]/[104]が1.0以下となることで、Liイオンの取り出しが行いやすくなるため、充放電特性の向上が顕著となる。但し、[003]/[104]が0.005未満となると、サイクル特性が下がる。これは、配向度が高すぎる(すなわち結晶の向きが揃いすぎる)と、Liイオンの出入りに伴う結晶の体積変化によって、粒子が割れやすくなるためである、と考えられる(なお、このサイクル特性劣化の理由の詳細については明らかではない。)。
 上述のような粒子や膜は、以下の(1)及び(2)の工程を含む製造方法によって製造され得る:(1)粒子板面方向に(h00)配向した板状のCo粒子を含む、薄膜状のシート(自立膜:定義は後述する)を形成する工程、(2)前記Co粒子にLiを導入する工程。
 前記工程(1)は、以下の工程を含み得る:CoとBiとを含有し20μm以下の厚さのグリーンシートを形成する工程、及び、前記グリーンシートを900℃ないし1300℃の範囲内の温度で焼成する工程。
 なお、上述の(1)と(2)の工程の間に、下記(3)の工程がさらに含まれ得る:(3)前記シートを多数の前記Co粒子に解砕する工程。
 かかる(3)の工程が含まれる場合、前記工程(2)は、以下の工程を含み得る:前記解砕工程によって得られた前記Co粒子と、LiCOと、を混合し、加熱する工程。
 本発明によれば、上述の構造を有する前記板状粒子や前記膜において、リチウムイオンの出入りが良好に行われる面((003)面以外の面:例えば(104)面)が、前記板面方向に配向する。これにより、電解質に対する当該面の露出(接触)がより多くなるとともに、当該粒子や膜の表面における(003)面の露出割合が極めて低くなる。
 したがって、例えば、固体型リチウム二次電池の正極材料として用いられる前記膜において、高容量と高レート特性とが同時に達成され得る。あるいは、液体型リチウム二次電池の正極材料として用いられる前記板状粒子において、粒子サイズを大きくして耐久性の向上及び高容量化を図った場合であっても、高いレート特性が維持され得る。
 以上の通り、本発明によれば、容量、耐久性、及びレート特性が従来よりも向上した、リチウム二次電池を提供することが可能になる。
 図1Aは、本発明の一実施形態が適用されたリチウム二次電池の概略構成を示す断面図である。
 図1Bは、図1Aに示されている正極の拡大断面図である。
 図2Aは、図1に示されている正極活物質用板状粒子の拡大斜視図である。
 図2Bは、比較例の正極活物質粒子の拡大斜視図である。
 図2Cは、比較例の正極活物質粒子の拡大斜視図である。
 図3Aは、本発明の製造方法におけるシート形成工程によって得られた、(h00)配向したCo粒子の表面の走査電子顕微鏡写真である。
 図3Bは、本発明の製造方法によって得られた(リチウム導入工程を経た)LiCoO粒子の表面の走査電子顕微鏡写真である。
 図3Cは、本発明の製造方法によって得られた(リチウム導入工程を経た)LiCoO粒子の断面の走査電子顕微鏡写真である。
 図3Dは、本発明の製造方法によって得られた(リチウム導入工程を経た)LiCoO粒子の断面の走査電子顕微鏡写真である。
 図4Aは、(111)配向した通常の(比較例の)Co粒子の走査電子顕微鏡写真である。
 図4Bは、図4Aに示されている通常の(比較例の)Co粒子に対して上述のリチウム導入工程を行うことで得られた比較例のLiCoO粒子の走査電子顕微鏡写真である。
 図5は、図3B及び図4Bに示されているLiCoO粒子のX線回折プロファイルである。
 図6Aは、変形例のリチウム二次電池の概略構成を示す断面図である。
 図6Bは、図6Aに示されている正極活物質層の拡大断面図である。
 図7は、他の変形例のリチウム二次電池の概略構成を示す断面図である。
 図8は、図1Bに示されている正極の変形例の構成を示す断面図である。
 以下、本発明の好適な実施形態を、実施例及び比較例を用いつつ説明する。なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。よって、後述するように、本発明が、以下に説明する実施形態や実施例の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態や実施例に対して施され得る各種の変更(modification)の例示は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、末尾にまとめて記載されている。
 <リチウム二次電池の構成>
 図1Aは、本発明の一実施形態が適用されたリチウム二次電池10の概略構成を示す断面図である。
 図1Aを参照すると、本実施形態のリチウム二次電池10は、いわゆる液体型であって、電池ケース11と、セパレータ12と、電解質13と、負極14と、正極15と、を備えている。
 セパレータ12は、電池ケース11内を二分するように設けられている。電池ケース11内には、液体の電解質13が収容されているとともに、負極14及び正極15がセパレータ12を隔てて対向するように設けられている。
 電解質13としては、例えば、電気特性や取り扱い易さから、有機溶媒等の非水系溶媒にリチウム塩等の電解質塩を溶解させた、非水溶媒系の電解液が好適に用いられる。もっとも、ポリマー電解質、ゲル電解質、有機固体電解質、無機固体電解質も、電解質13として問題なく用いることができる。
 非水電解液の溶媒としては、特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピオンカーボネート等の鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の誘電率の高い環状エステル;鎖状エステルと環状エステルの混合溶媒;等を用いることができ、鎖状エステルを主溶媒とした環状エステルとの混合溶媒が特に適している。
 非水電解液の調製にあたって上述の溶媒に溶解させる電解質塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(RfSO)(Rf′SO)、LiC(RfSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfとRf′はフルオロアルキル基]、等を用いることができる。これらは、それぞれ単独で用いられてもよく、2種以上が併用されてもよい。上述の電解質塩の中でも、炭素数2以上の含フッ素有機リチウム塩が特に好ましい。この含フッ素有機リチウム塩は、アニオン性が大きく、かつイオン分離しやすいので、上述の溶媒に溶解し易いからである。非水電解液中における電解質塩の濃度は、特に限定されないが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下であることが望ましい。
 負極14に係る負極活物質は、リチウムイオンを吸蔵、放出できるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素質材料が用いられる。また、金属リチウムや、ケイ素,スズ、インジウム等を含む合金、リチウムに近い低電位で充放電できるケイ素,スズ等の酸化物、Li2.6Co0.4N等のリチウムとコバルトとの窒化物、等のリチウム吸蔵物質も、負極活物質として用いることができる。さらに、黒鉛の一部は、リチウムと合金化し得る金属や酸化物などと置き換えることもできる。負極活物質として黒鉛を用いた場合には、満充電時の電圧をリチウム基準で約0.1Vとみなすことができるため、電池電圧に0.1Vを加えた電圧で正極15の電位を便宜上計算することができることから、正極15の充電電位が制御しやすく好ましい。
 図1Bは、図1Aに示されている正極15の拡大断面図である。図1Bを参照すると、正極15は、正極集電体15aと、正極活物質層15bと、を備えている。正極活物質層15bは、結着材15b1と、正極活物質用板状粒子15b2と、から構成されている。
 なお、図1A及び図1Bに示されているリチウム二次電池10及び正極15の基本的な構成(電池ケース11、セパレータ12、電解質13、負極14、正極集電体15a、及び結着材15b1を構成する材質を含む。)は周知であるので、本明細書においては、その詳細な説明は省略されている。
 本発明の一実施形態である正極活物質用板状粒子15b2は、コバルト及びリチウムを含有し層状岩塩構造を有する粒子、より詳しくは、LiCoO粒子であって、厚さが2ないし100μm程度の板状に形成されている。
 図2Aは、図1に示されている正極活物質用板状粒子15b2の拡大斜視図である。図2B及び図2Cは、比較例の正極活物質粒子の拡大斜視図である。
 図2Aに示されているように、正極活物質用板状粒子15b2は、粒子厚さ方向における両面(上側表面(板面)A及び下側表面(板面)B)に(003)以外の面(例えば(101)面や(104)面)が露出するとともに、粒子板面方向と交差する端面Cに(003)面(図中黒色で塗りつぶされた面)が露出するように形成されている。すなわち、正極活物質用板状粒子15b2は、(003)以外の面(例えば(104)面)が粒子板面方向に配向するように形成されている。
 これに対し、図2Bに示されている比較例の粒子は、薄板状ではなく等方形状に形成されている。また、図2Cに示されている比較例の粒子は、薄板状であるものの、粒子厚さ方向における両面(上側表面A及び下側表面B)に(003)が露出するように形成されている。これら比較例の粒子は、従来の製造方法によって製造されたものである。
 <正極活物質用板状粒子の製造方法の概要>
 図2Aに示されている構成の正極活物質用板状粒子15b2は、以下の製造方法によって、容易かつ確実に形成される。
 1.原料粒子の準備
 原料粒子としては、合成後の組成が層状岩塩構造を有する正極活物質LiMOとなるように、Li、Co、Ni、Mnなどの化合物の粒子を適宜混合したものが用いられる。あるいは、原料粒子として、LiMOの組成からなるもの(合成済みのもの)を用いることができる。
 あるいは、必要に応じて、Li化合物を含まない、Co、Ni、Mnなどの各化合物の粒子を混合した粒子又は(Co,Ni,Mn)Oの組成からなる粒子を用いることができる。この場合、成形体の焼成工程の後、焼成された成形体とLi化合物とをさらに反応させることでLiMOが得られる(詳細は後述する)。
 粒成長を促進する、もしくは焼成中に揮発する分を補償する目的で、Li化合物を0.5~30mol%過剰に入れてもよい。また、粒成長を促進する目的で、酸化ビスマスなどの低融点酸化物、ホウケイ酸ガラスなどの低融点ガラスを0.001~30wt%添加してもよい。
 2.原料粒子の成形工程
 原料粒子を、厚さが100μm以下のシート状の自立した成形体に成形する。ここで、「自立した成形体」における「自立した」は、後述の「独立したシート」における「独立した」と同義である。すなわち、「自立した成形体」は、典型的には、それ単体でシート状の成形体の形状を保つことができるものである。なお、それ単体ではシート状の成形体の形状を保つことができないものであっても、何らかの基板上に貼り付けたり成膜したりして焼成前又は焼成後に、この基板から剥離したものも、「自立した成形体」に含まれる。
 成形体の成形方法としては、例えば、原料粒子を含むスラリーを用いたドクターブレード法が用いられ得る。また、成形体の成形には、熱したドラム上へ原料を含むスラリーを塗布し、乾燥させたものをスクレイパーで掻きとる、ドラムドライヤーが用いられ得る。また、成形体の成形には、熱した円板面へスラリーを塗布し、これを乾燥させてスクレイパーで掻きとる、ディスクドライヤーを用いることもできる。また、スプレードライヤーの条件を適宜設定することで得られる中空の造粒体も、曲率をもったシート状成形体とみることができるので、成形体として好適に用いることができる。さらに、原料粒子を含む坏土を用いた押出成形法も成形体の成形方法として利用可能である。
 ドクターブレード法を用いる場合、可撓性を有する板(例えばPETフィルムなどの有機ポリマー板など)にスラリーを塗布し、塗布したスラリーを乾燥固化して成形体とし、この成形体と板とを剥離することにより、板状多結晶粒子の焼成前の成形体を作製してもよい。成形前にスラリーや坏土を調製するときには、無機粒子を適当な分散媒に分散させ、バインダーや可塑剤などを適宜加えてもよい。また、スラリーは、粘度が500~4000cPとなるように調製するのが好ましく、減圧化で脱泡するのが好ましい。
 成形体の厚さは、50μm以下に形成することがより好ましく、20μm以下に形成することが更に好ましい。また、成形体の厚さは、2μm以上とするのが好ましい。厚さが2μm以上であれば、自立したシート状の成形体を作成しやすい。このシート状の成形体の厚さは、略そのまま板状粒子の厚さとなることから、板状粒子の用途に合わせて適宜設定される。
 3.成形体の焼成工程
 この焼成工程においては、成形工程で得られた成形体は、例えば、成形されたそのままの状態(シート状態)で、セッターに載せて焼成される。あるいは、焼成工程は、シート状の成形体を適宜切断、破砕したものを、鞘に入れて焼成するものであってもよい。
 原料粒子が合成前の混合粒子である場合は、この焼成工程において、合成、さらには、焼結及び粒成長が生じる。本発明では、成形体が厚さ100μm以下のシート状であるため、厚さ方向の粒成長が限られる。このため、成形体の厚さ方向に結晶粒が1個となるまで粒成長した後は、成形体の面内方向にのみ粒成長が進む。このとき、エネルギー的に安定な特定の結晶面がシート表面(板面)に広がる。したがって、特定の結晶面がシート表面(板面)と平行になるように配向した薄膜状のシート(自立膜)が得られる。
 原料粒子をLiMOとした場合、リチウムイオンの出入りが良好に行われる結晶面である(101)面や(104)面を、シート表面(板面)に露出するように配向させることができる。一方、原料粒子を、Liを含まないもの(例えばスピネル構造のM)とした場合、Li化合物と反応させてLiMOとしたときに(104)面となる、(h00)面を、シート表面(板面)に露出するように配向させることができる。
 焼成温度は、800℃~1350℃が好ましい。800℃より低温では、粒成長が不十分で、配向度が低くなる。一方、1350℃より高温では、分解・揮発が進んでしまう。焼成時間は、1~50時間の間とするのが好ましい。1時間より短いと、配向度が低くなる。一方、50時間より長いと、消費エネルギーが大きくなりすぎる。焼成雰囲気は、焼成中に分解が進まないように適宜設定される。Liの揮発が進むような場合は、炭酸リチウムなどを同じ鞘内に配置してリチウム雰囲気とすることが好ましい。焼成中に酸素の放出や、さらには還元が進むような場合、酸素分圧の高い雰囲気で焼成することが好ましい。
 4.解砕工程及びリチウム導入工程
 板状粒子を得る場合は、焼成後のシート状の成形体を、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、当該シートが多数の板状粒子に解砕される。なお、解砕工程は、リチウム導入工程の後に行われてもよい。
 Li化合物を含まない原料粒子から、焼成により配向したシート、あるいはこれを解砕した板状粒子を得た場合、これとLi化合物(硝酸リチウムや炭酸リチウムなど)を反応させることで、リチウムイオンの出入りが良好に行われる結晶面が板面に露出するように配向した、正極活物質膜が得られる。例えば、配向シートあるいは粒子に、硝酸リチウムを、LiとMとのモル比Li/Mが1以上となるようにふりかけて、熱処理することで、リチウム導入が行われる。ここで、熱処理温度は、600℃~800℃が好ましい。600℃より低温では、反応が十分に進まない。800℃より高温では、配向性が低下する。
 以下、LiCoO粒子を得る場合の典型的な製造方法の概略について説明する。
 <<シート形成工程>>
 CoとBiとを含有し20μm以下の厚さのグリーンシートを形成し、このグリーンシートを900℃ないし1300℃の範囲内の温度で所定時間焼成することで、粒子板面方向に(h00)配向した(すなわち(h00)面が板面と平行となるように配向した:以下これを単に「(h00)配向」と表現することがある))多数の板状のCo粒子からなる、独立した薄膜状のシート(自立膜)が形成される。なお、この焼成の際に、ビスマスは揮発することでシートから除去され、Coは還元されてCoOに相変態する。
 ここで、「独立した」シート(自立膜)とは、焼成後に他の支持体から独立して単体で取り扱い可能なシートのことをいう。すなわち、「独立した」シートには、焼成により他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能あるいは分離困難となった)ものは含まれない。
 このように薄膜(自立膜)状に形成されたグリーンシートにおいては、粒子板面方向すなわち面内方向(厚さ方向と直交する方向)に比べて、厚さ方向に存在する材料の量がきわめて少ない。
 このため、厚さ方向に複数個の粒子がある初期段階には、ランダムな方向に粒成長する。一方、粒成長が進み厚さ方向の材料が消費されると、粒成長方向は面内の二次元方向に制限される。これにより、面方向への粒成長が確実に促進される。
 特に、グリーンシートを可能な限り薄く形成したり(例えば数μm以下)、厚さが100μm程度(例えば20μm程度)の比較的厚めであっても粒成長を可能な限り大きく促進したりすることで、面方向への粒成長がより確実に促進される。
 また、このとき、表面エネルギーの最も低い結晶面をグリーンシートの面内に持つ粒子のみが選択的に面内方向へ扁平状(板状)に粒成長する。その結果、シート焼成により、アスペクト比が大きく、特定の結晶面(ここでは(h00)面)が粒子板面方向に配向したCoOからなる板状結晶粒子が得られる。
 さらに、温度が下がる過程で、CoOからCoに酸化される。その際に、CoOの配向方位が引き継がれることで、特定の結晶面(ここでは(h00)面)が粒子板面方向に配向したCo板状結晶粒子が得られる。
 かかるCoOからCoへの酸化の際に、配向度が低下しやすい。これは、CoOとCoの結晶構造及びCo−Oの原子間距離が大きく異なることから、酸化すなわち酸素原子が挿入される際に結晶構造が乱れやすいためである。したがって、配向度をなるべく低下しないように適宜条件を選択することが好ましい。例えば、降温速度を小さくすることや、所定の温度で保持することや、酸素分圧を小さくすることが好ましい。
 したがって、かかるグリーンシートを焼成することで、特定の結晶面が粒子板面方向に配向した薄板状の多数の粒子が、粒界部にて面方向に結合した薄膜(自立膜)が得られる(本出願人に係る特願2007−283184号参照)。すなわち、実質的に厚さ方向についての結晶粒子の個数が1個となるような薄膜(自立膜)が形成される。ここで、「実質的に厚さ方向についての結晶粒子の個数が1個」の意義は、面方向に隣り合う結晶粒子の一部分(例えば端部)が厚さ方向に互いに重なり合うことを排除しない。この自立膜は、上述のような薄板状の多数の粒子が隙間なく結合した、緻密なセラミックスシートとなり得る。
 <<解砕工程>>
 上述のシート形成工程によって得られた薄膜状のシート(自立膜)は、粒界部にて解砕しやすい状態となっている。そこで、上述のシート形成工程によって得られた薄膜状のシート(自立膜)を、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、上述のシートが多数のCo粒子に解砕される。
 <<リチウム導入工程>>
 上述の解砕工程によって得られた、(h00)配向した(「(h00)配向」の意義は上記の通り)Co粒子と、LiCOと、を混合して、所定時間加熱することで、Co粒子にリチウムが導入される。これにより、(104)配向したLiCoO粒子である正極活物質用板状粒子15b2が得られる。
 リチウム導入する際のリチウム源としては、炭酸リチウム以外にも、例えば、硝酸リチウム、酢酸リチウム、塩化リチウム、シュウ酸リチウム、クエン酸リチウム等の各種リチウム塩や、リチウムメトキシド、リチウムエトキシド等のリチウムアルコキシドも用いることができる。
 リチウム導入する際の条件、すなわち、混合比、加熱温度、加熱時間、雰囲気等は、リチウム源として用いる材料の融点や分解温度、反応性等を考慮して適宜設定することが、LiCoO粒子の配向性を高める上で重要である。
 例えば、(h00)配向したCo粒子とリチウム源との混合物が、非常に活性な状態で反応すると、Co粒子の配向性を乱すことがあるので好ましくない。ここでいう活性とは、例えば、リチウム源が過剰量となるとともに液体状態となり、Co粒子の結晶に対してリチウムイオンが進入していくだけでなく、Co粒子がリチウム源からなる液体への溶解および再析出が起こるような場合をいう。
 なお、解砕工程は、リチウム導入工程の後に行われてもよい。
 <具体例>
 以下、上述の製造方法の具体例、及びかかる具体例によって製造された粒子の評価結果について、詳細に説明する。
 <<製造方法>>
 まず、以下の方法によって、スラリーを調製した:Co粉末(粒径1−5μm、正同化学工業株式会社製)を粉砕して作製したCo原料粒子(粒径0.3μm)に20wt%の割合でBi(粒径0.3μm、太陽鉱工株式会社製)を添加したもの100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、500~700cPの粘度に調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。
 上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが2μmとなるように、シート状に成形した。
 PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、1150℃で5h焼成後、降温速度50℃/hにて降温し、セッターに溶着していない部分を取り出した。
 焼成後のセラミックスシートを、開口径100μmのふるい(メッシュ)に載せ、ヘラで軽く押し付けながらメッシュを通過させることで、解砕した。
 セラミックスシートを解砕することで得られたCo粉末と、LiCO粉末(関東化学株式会社製)とを、Li/Co=1.0となるように混合し、坩堝中にて750℃で3時間加熱処理することで、粉末状のLiCoOを得た。
 <<評価結果>>
 図3Aは、本発明(上記具体例)の製造方法におけるシート形成工程によって得られた、(h00)配向したCo粒子の表面の走査電子顕微鏡写真である。図3Bは、本発明(上記具体例)の製造方法によって得られた(リチウム導入工程を経た)LiCoO粒子の表面の走査電子顕微鏡写真である。図3Cは、本発明(上記具体例)の製造方法によって得られた(リチウム導入工程を経た)LiCoO粒子の断面の走査電子顕微鏡写真である。
 一方、図4Aは、表面エネルギーの最も低い面である(111)配向した通常の(比較例の)Co粒子の走査電子顕微鏡写真である。図4Bは、図4Aに示されている通常の(比較例の)Co粒子に対して上述のリチウム導入工程を行うことで得られた比較例のLiCoO粒子の走査電子顕微鏡写真である。
 また、図5は、図3B及び図4Bに示されているLiCoO粒子のX線回折プロファイルである(上方のプロファイルが図4Bの比較例、下方のプロファイルが図3Bの具体例に対応する。)。X線回折の測定方法は後述するが、この図5は、粒子の板面に平行に存在する結晶面、すなわち、粒子の板面方向に配向する結晶面による回折プロファイルである。
 比較例のCo粒子(図4A参照)においては、(111)配向の様子が確認できる。この比較例の粒子にリチウム導入工程を行うと、上側表面Aや下側表面Bに(003)面が露出した、(003)配向のLiCoO粒子となった(図2C、図4B、及び図5参照:図4Bにおいては、平滑な(003)面が、図2Cにおける上側表面(板面)Aに非常に高い割合で露出している様子が確認できる。)。
 これに対し、本発明(上記具体例)の製造方法によれば、(111)配向せず(h00)配向したCo粒子(図3A参照)にリチウム導入工程を行うことで、リチウムが放出されやすい(104)面が上側表面(板面)Aや下側表面(板面)Bに露出した、(104)配向のLiCoO粒子となった(図2A、図3B、及び図5参照:図3Bにおいては、図4Bとは異なり、粒子表面に細いスジ状の模様が現れている様子が確認できる。)。
 なお、上記具体例において、スラリー粘度を4000cP、乾燥後のシート厚さを10μm、焼成温度を1300℃とし、それ以外は同じ工程とした場合の、得られたLiCoO粒子の断面の走査電子顕微鏡写真を図3Dに示す。図3Dに示されているように、本例によって得られた粒子の表面及び断面性状は、図3Cと同様である。よって、本例によっても、上記具体例と同様に、(104)配向のLiCoO粒子が得られた。
 <<製造方法>>
 まず、上述と同様の原料及び方法によって、4000cPの粘度のスラリーを調製した。この調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが10μmとなるように、シート状に成形した。
 PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、焼成・降温後(焼成及び降温の条件は後述する)、セッターに溶着していない部分を取り出した。
 このようにして得られたCoセラミックスシートに、LiNO粉末(関東化学株式会社製)を、Li/Co=1.0となるようにふりかけ、坩堝中にて750℃、3時間加熱処理することで、厚さ10μmのLiCoOセラミックスシート(膜)が得られた。
 得られたLiCoOセラミックスシートを、平均開口径100μmのポリエステル製のふるい(メッシュ)に載せ、ヘラで軽く押し付けながらメッシュを通過させて解砕することで、粉末状のLiCoOが得られた。
 <<評価>>
 XRD(X線回折)測定は、以下の方法で行った:エタノール2gに板状粒子0.1gを加えたものを、超音波分散機(超音波洗浄機)で30分間分散させ、これを25mm×50mmのガラス基板に2000rpmでスピンコートし、板状粒子同士ができるだけ重ならないように、且つ結晶面とガラス基板面とが平行となる状態に配置した。XRD装置(株式会社リガク製ガイガーフレックスRAD−IB)を用い、板状粒子の表面に対してX線を照射したときのXRDプロファイルを測定し、(104)面による回折強度(ピーク高さ)に対する(003)面による回折強度(ピーク高さ)の比率[003]/[104]を求めた。なお、上記方法においては、板状粒子の板面がガラス基板面と面接触し、粒子板面とガラス基板面とが平行になる。このため、上記方法によれば、粒子板面の結晶面に平行に存在する結晶面、すなわち、粒子の板面方向に配向する結晶面による回折プロファイルが得られる。
 電池特性の評価のために、以下のようにして電池を作成した。
 得られたLiCoO粒子、アセチレンブラック、及びポリフッ化ビニリデン(PVDF)を、質量比で75:20:5となるように混合して正極材料を調製した。調製した正極材料0.02gを300kg/cmの圧力で直径20mmの円板状にプレス成形することで、正極を作製した。
 作製した正極、Li金属板からなる負極、ステンレス集電板、及びセパレータを、集電板−正極−セパレータ−負極−集電板の順に配置し、この集積体を電解液で満たすことでコインセルを作製した。電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解することで調製した。
 上述のようにして作製した電池(コインセル)を用いて、電池容量(放電容量)及び容量維持率の評価を行った。
 0.1Cレートの電流値で電池電圧が4.2Vとなるまで定電流充電し、その後電池電圧を4.2Vに維持する電流条件で、その電流値が1/20に低下するまで定電圧充電した後10分間休止し、続いて1Cレートの電流値で電池電圧が3.0Vになるまで定電流放電した後10分間休止する、という充放電操作を1サイクルとし、25℃の条件下で合計3サイクル繰り返し、3サイクル目の放電容量を測定した。
 作製した電池について、試験温度を25℃として、(1)1Cレートの定電流−定電圧で4.2Vまでの充電、及び(2)1Cレートの定電流で3.0Vまでの放電、を繰り返すサイクル充放電を行った。100回のサイクル充放電終了後の電池の放電容量を初回の電池の放電容量で除した値を、容量維持率(%)とした。
 Bi添加量と焼成及び降温の条件とを変更することで配向度を変えた7つの実験例(比較例1・2及び実験例1~5)の評価結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この表1に示されているように、本具体例においては、比較的大粒径の正極活物質用板状粒子15b2が用いられているにもかかわらず、1Cという高いレートにおいて100mAh/g以上という大きな放電容量(レート特性)が実現される。
 また、ピーク強度比[003]/[104]が1.0以下(0.9以下)となることで、Liイオンの取り出しが行いやすくなるため、高いレートにおける電池容量(放電容量)が大幅に向上する。但し、ピーク強度比が0.005未満となると、容量維持率(サイクル特性)が悪化する。これは、配向度が高すぎる(すなわち結晶の向きが揃いすぎる)と、Liイオンの出入りに伴う結晶の体積変化によって、粒子が割れやすくなるためであると考えられる(なお、このサイクル特性劣化の理由の詳細については明らかではない。)。
 <実施形態による効果>
 このように、本発明(上記具体例)の製造方法によって製造されたLiCoO板状粒子である正極活物質用板状粒子15b2においては、リチウムイオンの出入りが良好に行われる(104)面が、板状粒子の板面方向に配向し、板状粒子の表面の大部分にて露出される。一方、リチウムイオンの出入りが行えない(003)面は、板状粒子の端面にわずかに露出するのみである(図2A参照)。すなわち、電解質13(結着材15b1に浸透しているものを含む)への、リチウムイオンの出入りが良好に行われる面の露出がより多くなるとともに、リチウムイオンの出入りが行えない(003)面の露出割合が極めて低くなる。なお、図2Aの例では、(003)面は、端面Cにて面として露出した図となっているが、これ以外の構造も実現され得る。例えば、(003)面と他の面((104)面等)とがステップを形成したような構造(図3C参照)が形成され得る。
 ところで、通常の(図2Bや図2Cに示されているような)LiCoO粒子においては、粒子径を小さくすると、比表面積が大きくなるためにレート特性が高くなる一方、粒子強度が低くなるために耐久性が低下し、結着材の割合が多くなるために容量も小さくなる。このように、通常の(従来の)LiCoO粒子においては、レート特性と、耐久性及び容量とが、トレードオフの関係になっていた。
 これに対し、本発明のLiCoO板状粒子においては、粒子径を大きくして耐久性及び容量を向上させた場合、リチウムが放出されやすい面の総面積も大きくなり、高レート特性が得られる。したがって、本発明によれば、容量、耐久性、及びレート特性が、従来よりも向上され得る。
 特に、携帯電話やノートPCに搭載される、モバイル機器向けのリチウムイオン二次電池においては、長時間の使用に対応した、高容量な電池が求められる。高容量化には活物質粉末の充填率向上が有効であり、充填性のよい粒径10μm以上の大粒子を用いることが好ましい。
 この点、従来技術では、粒子径を10μm以上に大きくしようとすると、結晶構造上、リチウムイオンおよび電子が出入りできない面(003)が表面に広く露出した板状粒子となってしまい(図2C参照)、出力特性に悪影響を及ぼすことがあった。
 これに対し、本発明のLiCoO板状粒子では、リチウムイオンおよび電子の伝導面が表面に広く露出している。このため、本発明によれば、出力特性に悪影響を及ぼすことなくLiCoO板状粒子を大粒子化することができる。したがって、本発明によれば、従来よりも高充填された、高容量な正極材シートを提供することができる。
 なお、配向板状粒子や膜の厚さは、2~100μm、より好ましくは5~50μm、さらに好ましくは5~20μmが望ましい。100μmより厚いと、レート特性が低下する点や、シート成形性の点から、好ましくない。2μmより薄いと、充填率を上げる効果が小さくなる点で、好ましくない。
 配向板状粒子のアスペクト比は、4~20が望ましい。4より小さいと、配向によるリチウムイオン出入り面の拡大効果が小さくなる。20より大きいと、配向板状粒子の板面が正極シートの面内方向に平行になるように配向板状粒子が充填された場合、正極シートの厚み方向へのリチウムイオンの拡散経路が長くなることで、レート特性が低下するので、好ましくない。
 <変形例の例示列挙>
 なお、上述の実施形態や具体例は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
 以下、変形例について幾つか例示する。以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、本変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。
 もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。
 また、上述の実施形態の構成、及び下記の各変形例に記載された構成の全部又は一部が、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。
 (1)本発明は、上述の実施形態にて具体的に開示された構成に何ら限定されない。
 (1−1)例えば、図1Bに示されている正極活物質層15bは、薄膜(自立膜)状のLiCoOセラミックスシート(正極活物質膜)であってもよい。
 <<製造方法>>
 上述の実施例2と同様の原料及び方法によって、厚さ10μmの独立した薄膜(自立膜)状のLiCoOセラミックスシートを作製した。なお、上述の通り、本実施例においては、メッシュによる解砕は行われない。
 <<評価>>
 XRD(X線回折)測定は、以下の方法で行った:直径16mm程度の自立膜を、膜面とガラス基板面とが平行となるように、ガラス基板上に設置し、上述のXRD装置を用いて、膜の表面に対してX線を照射したときのXRDプロファイルを測定し、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]を求めた。
 電池特性の評価のために、以下のようにして電池を作成した。
 直径16mm程度の自立膜の片面にAuをスパッタリングして集電層(厚さ:500Å)を形成することで、正極板を作製した。作製した正極板、Li金属板からなる負極、ステンレス集電板、及びセパレータを、集電板−正極−セパレータ−負極−集電板の順に配置し、この集積体を上述と同様の電解液で満たすことでコインセルを作製した。
 Bi添加量と焼成及び降温の条件とを変更することで配向度を変えた7つの実験例(比較例3・4及び実験例6~10)の評価結果を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この表2に示されているように、自立膜状の正極活物質を用いた正極板においても、上述の表1と同様の結果が得られた。
 電解質としては、ゲルポリマー電解質が用いられ得る。
 直径16mmの自立膜の片面にAu粒子をスパッタリングして集電層(厚さ:500Å)を形成することで、正極を作製した。ポリエチレンオキサイド(PEO)を有機電解液に加熱溶解し、構造補強材であるポリプロピレン製不織布に含浸後、冷却してゲル電解質層を形成した。
 作製した正極、ゲル電解質層、Li金属板からなる負極、及びステンレス集電板を、集電板−正極−ゲル電解質層−負極−集電板の順に配置し、上述の電解液を満たすことでコインセルを作製した。
 かかるコインセルについて、上述と同様に、電池容量及び容量維持率の評価を行ったところ、上述の表2と同様の傾向となった。
 本発明の正極活物質用板状粒子及び正極活物質膜は、層状岩塩構造を有する限り、コバルト酸リチウムに限定されない。例えば、本発明の正極活物質用板状粒子及び正極活物質膜は、コバルトの他にニッケルやマンガン等を含有した固溶体からなるものであってもよい。具体的には、ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン酸リチウム、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、コバルト・マンガン酸リチウム等が挙げられる。さらに、これらの材料に、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Biなどの元素が1種以上含まれていてもよい。
 Coの酸化物は、920℃以上では、室温におけるCoで表されるスピネル構造からCoOの岩塩構造に相変態する。一方、MnおよびNiは、広い温度範囲で、それぞれMnのスピネル構造、NiOの岩塩構造をとる。
 このため、Co、Ni、Mnのうちの少なくとも2つを含む固容体においても、組成、温度、雰囲気、圧力などを制御することで、Coと同様に、低温でのスピネル構造から高温にて岩塩構造をとるような相変態を起こさせることができる。
 この場合、粒子板面方向に(h00)配向した多数の板状のM(MはCo、Ni、Mnら選ばれる1種以上を含む)粒子からなる、独立した薄膜状のシート(自立膜)を形成し、かかるシートあるいはその解砕物に対してリチウムを導入することで、(104)や(101)等のリチウムイオンの出入りが良好に行われる結晶面が板面と平行となるように配向した正極活物質用LiMOシートあるいは板状粒子を得ることができる。
 すなわち、例えば、Coを含まない、Ni−Mn複合酸化物についても、Co酸化物と同様に、高温で岩塩構造、低温でスピネル構造をとることから、配向シートが上述と同様に作製されうる。そして、かかるシートあるいはその解砕物にLiを導入することで、Li(Ni,Mn)Oで示され、良好な配向状態の正極活物質が作製され得る。
 あるいは、岩塩構造である、(h00)配向した多数の板状のMO(MはCo、Ni、Mnら選ばれる1種以上を含む)粒子からなる、独立した膜状のシートを形成し、かかるシートあるいはその解砕物に対してリチウムを導入することで、(104)や(101)等のリチウムイオンの出入りが良好に行われる結晶面が板面と平行となるように配向した、正極活物質用LiMOシートあるいは板状粒子を得ることもできる。
 あるいは、LiMO(MはCo、Ni、Mnら選ばれる1種以上を含む)の粒子からなる膜状のシートを焼成する際、組成、温度、雰囲気、圧力、添加剤などを制御することで、(104)や(101)等のリチウムイオン出入りが良好に行われる結晶面が板面と平行となるように配向した正極活物質用LiMOシートあるいは板状粒子を直接的に得ることができる。
 なお、LiFePOに代表される、オリビン構造の正極活物質においては、リチウムイオンの伝導方向がb軸方向([010]方向)であるとされている。よって、ac面(例えば(010)面)が板面と平行となるように配向した板状粒子あるいは膜とすることで、良好な性能を有する正極活物質を得ることができる。
 <他の組成例1:コバルト−ニッケル系>
 NiO粉末と、Co粉末と、Al粉末と、を含有する、20μm以下の厚さのグリーンシートを形成し、このグリーンシートを1000℃ないし1400℃の範囲内の温度で、大気雰囲気で所定時間焼成することで、(h00)配向した多数の板状の(Ni,Co,Al)O粒子からなる、独立した膜状のシートが形成される。ここで、助剤としてMnO、ZnO等を添加することにより、粒成長が促進され、結果として板状結晶粒子の(h00)配向性を高めることができる。
 上述の工程によって得られた、(h00)配向した(Ni,Co,Al)Oセラミックスシートと、硝酸リチウム(LiNO)とを混合して、所定時間加熱することで、(Ni,Co,Al)O粒子にリチウムが導入される。これにより、(104)配向した正極活物質用Li(Ni0.75Co0.2Al0.05)O板状シートが得られる。
 <<スラリー調製>>
 まず、以下の方法によって、スラリーを調整した。
 NiO粉末(粒径1−10μm、正同化学工業株式会社製)75.1重量部、Co粉末(粒径1−5μm、正同化学工業株式会社製)21.5重量部、Al粉末(粒径1−10μm、昭和電工株式会社製)3.4重量部を混合・粉砕し、大気雰囲気中で1300℃にて5時間熱処理することで、(Ni,Co,Al)O粉末を合成した。
 この粉末をポットミルで16時間粉砕することで得られた(Ni,Co,Al)O原料粒子(粒径0.3μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、3000~4000cPの粘度に調製した。
 <<テープ成形>>
 上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが8μmとなるように、シート状に成形した。
 <<焼成>>
 PETフィルムから剥がしたシート状の成形体を、カッターで50mm角に切り出し、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、大気雰囲気中にて1300℃で10時間熱処理後、焼成炉中の雰囲気を酸素雰囲気に置換し、室温まで200℃/hで降温して、セッターに溶着していない部分を取り出した。
 <<リチウム導入>>
 得られた(Ni,Co,Al)Oセラミックスシートと、LiNO粉末(関東化学株式会社製)とを、mol比率Li/(NiCoAl)=1.5となるように混合し、酸素雰囲気中(0.1MPa)にて750℃で5時間加熱処理することで、Li(Ni,Co,Al)Oシートを得た。このシート面に対しXRD測定(配向性評価)を行ったところ、[003]/[104]=0.4であった。
 <<評価>>
 上述の実施例5における熱処理(シート焼成)やリチウム導入条件を変更することで配向性を変化させた各種の実験例についての評価結果を、表3及び表4に示す。なお、上述の実施例5と一致するものは、表中、実験例14である。また、電池特性評価は、粉末状態(評価方法は上述の実施例2と同様)、及び自立膜状態(評価方法は上述の実施例3と同様)の両方で行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4に示されているように、[003]/[104]が1.0を超える比較例5においては、放電容量が低くなった。また、[003]/[104]が0.005未満となる比較例6においては、容量維持率が低くなった。そして、[003]/[104]が0.005~1.0の範囲にある実験例11ないし16においては、良好な放電容量及び容量維持率が得られた。
 なお、上述の例においては、コバルト−ニッケル系におけるニッケルの一部がアルミニウムに置換されていたが、本発明はこれに限定されない。すなわち、本発明がLi(Ni,Co)Oに対しても好適に適用されることは、いうまでもない。
 <他の組成例2:コバルト−ニッケル−マンガン三元系>
 Li(Ni1/3Mn1/3Co1/3)O粉末を用いて100μm以下の厚さのグリーンシートを形成し、このグリーンシートを900℃ないし1200℃の範囲内の温度で所定時間焼成することで、(101)あるいは(104)が粒子板面と平行となるように配向した粒子からなる、独立した膜状のシートが形成される。
 本プロセスで配向した粒子が得られる理由の詳細については明らかではないが、以下に推定する理由を説明する。このシート焼成の際に、結晶の歪エネルギーの最も低い結晶面をグリーンシートの面内に持つ粒子のみが選択的に面内方向へ扁平状(板状)に粒成長することで、アスペクト比が大きく、特定の結晶面(ここでは(101)、(104)面)が板面と平行となるように配向したLi(Ni1/3Mn1/3Co1/3)Oからなる板状結晶粒子が得られると考えられる。
 なお、ここでいう、歪エネルギーとは、粒成長時の内部応力や、欠陥等による応力をいう。層状化合物は、一般に歪エネルギーが大きいことが知られている。
 特定の方位の粒子の選択な粒成長(優先配向)には、歪エネルギーと表面エネルギーの両方が寄与する。表面エネルギー的には(003)面が最も安定であり、歪エネルギー的には(101)並びに(104)面が安定面である。
 膜厚が0.1μm以下では、シート体積に対する表面の割合が大きいため、表面エネルギー支配的な選択成長が起こり、(003)面に配向した粒子が得られる。一方、膜厚が0.1μm以上では、シート体積に占める表面の割合が低下するため、歪エネルギーが支配的になり、(101)並びに(104)面に配向した粒子が得られる。但し、膜厚が100μm以上のシートでは、緻密化が困難になり、粒成長時の内部応力が溜まらないため、選択的な配向は確認されない。
 本材料においては、粒成長が大きく促進される1000℃以上の温度域では、リチウムの揮発が生じたり、構造的に不安定になることによる分解が生じたりする。よって、例えば、揮発するリチウムを補償するために原料中のリチウム量を過剰にすることや、雰囲気制御(例えば炭酸リチウム等のリチウム化合物を載置した密閉容器内での焼成等)による分解抑制や、Biや低融点ガラスなどの助剤添加による低温焼成、等が重要である。
 上述のシート形成工程によって得られた膜状のシートは、粒界部にて解砕しやすい状態となっている。そこで、上述のシート形成工程によって得られた膜状のシートを、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、上述のシートが多数のLi(Ni1/3Mn1/3Co1/3)O粒子に解砕される。
 あるいは、Li(Ni1/3Mn1/3Co1/3)Oからなる板状結晶粒子は、以下の製造方法によっても得られる。
 NiO粉末と、MnCO粉末と、Co粉末と、を含有する、20μm以下の厚さのグリーンシートを形成し、このグリーンシートを900℃ないし1300℃の範囲内の温度で、Ar雰囲気で所定時間焼成することで、(h00)配向した多数の板状の(Ni,Mn,Co)粒子からなる、独立した膜状のシートが形成される。なお、この焼成の際に、スピネル構造の(Ni,Mn,Co)は、還元されることで、岩塩構造の(Ni,Mn,Co)Oに相変態する。
 このとき、表面エネルギーの最も低い結晶面をグリーンシートの面内に持つ粒子のみが選択的に面内方向へ扁平状(板状)に粒成長する。その結果、シート焼成により、アスペクト比が大きく、特定の結晶面(ここでは(h00)面)が粒子板面と平行となるように配向した(Ni,Mn,Co)Oからなる板状結晶粒子が得られる。
 さらに、温度が下がる過程で、炉内の雰囲気を酸素雰囲気に置換すると、(Ni,Mn,Co)Oから(Ni,Mn,Co)に酸化される。その際に、(Ni,Mn,Co)Oの配向方位が引き継がれることで、特定の結晶面(ここでは(h00)面)が粒子板面方向に配向した(Ni,Mn,Co)板状結晶粒子が得られる。
 かかる(Ni,Mn,Co)Oから(Ni,Mn,Co)への酸化の際に、配向度が低下しやすい。これは、(Ni,Mn,Co)Oと(Ni,Mn,Co)の結晶構造が大きく異なること、並びに、Ni−O,Mn−O,及びCo−Oの原子間距離が大きく異なることから、酸化(すなわち酸素原子が挿入される)時に結晶構造が乱れやすいためである。
 したがって、配向度をなるべく低下しないように適宜条件を選択することが好ましい。例えば、降温速度を小さくすることや、所定の温度で保持することや、酸素分圧を小さくすることが好ましい。
 上述のシート形成工程によって得られた膜状のシートは、粒界部にて解砕しやすい状態となっている。そこで、上述のシート形成工程によって得られた膜状のシートを、所定の開口径のメッシュ上に載置して、その上からヘラで押しつけることで、上述のシートが多数の(Ni,Mn,Co)粒子に解砕される。
 上述の解砕工程によって得られた、(h00)配向した(Ni,Mn,Co)粒子と、LiCOとを混合して、所定時間加熱することで、(Ni,Mn,Co)粒子にリチウムが導入される。これにより、(104)配向したLi(Ni1/3Mn1/3Co1/3)O粒子である正極活物質用板状粒子15b2が得られる。
 <<スラリー調製>>
 まず、以下の方法によって、スラリーを調整した。
 Li1.20(Ni1/3Mn1/3Co1/3)Oの組成比となるように、NiO粉末(粒径1−10μm、正同化学工業株式会社製)24.4重量部、MnCO粉末(粒径1−10μm、東ソー株式会社製)28.4重量部、Co粉末(粒径1−5μm、正同化学工業株式会社製)26.2重量部、LiCO粉末(粒径10−50μm、関東化学株式会社製)21.0重量部を混合・粉砕し、大気中、密閉鞘内にて720℃で24時間熱処理することで、Li1.20(Ni1/3Mn1/3Co1/3)O粉末を合成した。
 この粉末をポットミルで5時間粉砕することで得られたLi(Ni1/3Mn1/3Co1/3)O原料粒子(粒径0.3μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、3000~4000cPの粘度に調製した。
 <<テープ成形>>
 上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが16μmとなるように、シート状に成形した。
 <<焼成>>
 PETフィルムから剥がしたシート状の成形体を、カッターで30mm角に切り出し、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置した。このセッターを、LiCO粉末1gを載置した鞘の中に入れ、フタを閉めた状態で、1120℃で10時間焼成後、セッターに溶着していない部分を取り出した。
 焼成後のセラミックスシートを、開口径100μmのふるい(メッシュ)に載せ、ヘラで軽く押し付けながらメッシュを通過させることで解砕し、粉末を得た。得られた粉末をICP(誘導結合プラズマ)発光分光分析装置(株式会社堀場製作所製 製品名ULTIMA2)により成分分析したところ、Li1.05(Ni1/3Mn1/3Co1/3)Oであった。得られた粉末に対しXRD測定を行ったところ、[003]/[104]=0.4であった。
 <<評価>>
 上述の実施例6における熱処理(シート焼成)条件等を変更することで配向性を変化させた各種の実験例についての評価結果を、表5及び表6に示す。なお、上述の実施例6と一致するものは、表中、実験例20である。ここで、比較例7、実験例17、及び実験例18においては、スラリー調製時に、Bi(粒径0.3μm、太陽鉱工株式会社製)を添加した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5及び表6に示されているように、Biを比較的多量に添加して低温で短時間焼成することで、急激かつ等方的な粒成長が生じるため、比較例7においては、緻密ではあるが配向しない板状粒子となった。この場合、放電容量が著しく低下した。また、[003]/[104]が0.005未満となる比較例8においては、容量維持率が低くなった。そして、[003]/[104]が0.005~1.0の範囲にある実験例17ないし22においては、良好な放電容量及び容量維持率が得られた。
 Li/Coは、1.0に限定されないが、0.9~1.2の範囲内にあることが好ましく、1.0~1.1の範囲内にあることがより好ましい。これにより、良好な充放電容量が実現される。
 CoセラミックスシートにLiNO粉末をふりかける際に、Li/Co=1.2となるようにしたこと以外は、実験例3と同様の方法により、粉末状のLiCoOを作製した。得られた粉末状のLiCoOについて、洗浄処理により、余分なリチウム化合物を除去した。その後、上述のICP発光分光分析装置により成分分析したところ、Li/Co=1.1であった。また、XRD測定(配向性評価)を行ったところ、X線回折強度比率[003]/[104]=0.3であった。なお、実験例3で作製した粉末状のLiCoOを、同様に成分分析したところ、Li/Co=1.0であった。
 CoセラミックスシートにLiNO粉末をふりかける際に、Li/Co=1.2となるようしたこと以外は、実験例8と同様の方法により、厚さ10μmの独立した膜状のLiCoOセラミックスシート(自立膜)を作製した。得られた膜状のLiCoOセラミックスシートついて、メッシュによる解砕、洗浄処理により余分なリチウム化合物を除去した。その後、上述のICP発光分光分析装置により成分分析したところ、Li/Co=1.1であった。また、XRD測定(配向性評価)を行ったところ、X線回折強度比率[003]/[104]=0.3であった。なお、実験例8で作製した膜状のLiCoOセラミックスシートを、同様に成分分析したところ、Li/Co=1.0であった。
 (Ni,Co,Al)OセラミックスシートとLiNO粉末とを混合する際に、mol比率Li/(NiCoAl)=2.0となるようにしたこと以外は、実験例14と同様の方法により、Li(Ni,Co,Al)O粉末を得た。得られたLi(Ni,Co,Al)Oシートついて、洗浄処理により余分なリチウム化合物を除去した。その後、上述のICP発光分光分析装置により成分分析したところ、Li/(NiCoAl)=1.1であった。また、XRD測定(配向性評価)を行ったところ、X線回折強度比率[003]/[104]=0.4であった。なお、実験例14で作製したLi(Ni,Co,Al)Oシートを、同様に成分分析したところ、Li/(NiCoAl)=1.0であった。
 また、本発明の正極活物質用板状粒子の適用対象は、図1Aに示されているリチウム二次電池10のような液体型のものに限定されない。例えば、電解質として、無機固体、有機ポリマー、あるいは有機ポリマーに電解液を染み込ませたゲル状のものが用いられ得る。
 図6Aは、変形例のリチウム二次電池20の概略構成を示す断面図である。図6Aを参照すると、このリチウム二次電池20は、いわゆる全固体型のものであって、正極集電体21と、正極活物質層22と、固体電解質層23と、負極活物質層24と、負極集電体25と、を備えている。このリチウム二次電池20は、正極集電体21の上に、正極活物質層22、固体電解質層23、負極活物質層24、及び負極集電体25を、この順序で積層することにより形成されている。
 なお、図6Aに示されているリチウム二次電池20の基本的な構成(正極集電体21、固体電解質層23、負極活物質層24、及び負極集電体25を構成する材質を含む。)は周知であるので、本明細書においては、その詳細な説明は省略されている。
 図6Bは、図6Aに示されている正極活物質層22の拡大断面図である。図6Bを参照すると、正極活物質層22は、多数の正極活物質用板状粒子22aが面方向に結合した膜状に形成されている。これらの正極活物質用板状粒子22aも、上述の実施形態と同様に、粒子厚さ方向に沿った法線方向を有する表面(図中上側及び下側表面)に、(003)以外の面(例えば(104)面)が露出するように構成されている。
 かかる構成を有するリチウム二次電池20においては、正極活物質用板状粒子22aにおける、リチウムイオンの出入りが行えない(003)面の、固体電解質層23に対する露出(接触)割合が、極めて低くなる。すなわち、特開2003−132887号公報に開示されているような従来の構成とは異なり、本例のリチウム二次電池20においては、固体電解質層23と対向(接触)する正極活物質層22の表面のほとんど全部が、リチウムイオンの出入りが良好に行われる面(例えば(104)面)となる。
 したがって、本発明によれば、全固体型のリチウム二次電池20における、よりいっそうの高容量化及び高レート特性が達成される。さらに、正極活物質用板状粒子22aの粒子サイズを大きくすることで、耐久性の向上とともに、さらなる高容量化及び高レート特性が達成される。
 なお、かかる構成のリチウム二次電池20における正極活物質層22の形成時には、上述の実施形態における解砕工程は行われない。すなわち、グリーンシートの焼成によって得られたCoセラミックスシートを解砕することなく、これにリチウム導入が行われる。
 また、上述の変形例では、正極活物質層22は、全固体型電池に適用されていた。もっとも、本発明は液体型電池においても適用可能である。通常、液体型電池における正極材は、活物質の充填率は60%程度である。これに対し、本発明の活物質膜によれば、リチウムイオンの出入りする面を膜表面全面に確保した状態で、実質的に充填率100%が達成される。すなわち、レート特性の犠牲を最小限に抑えつつ、きわめて高い容量が得られる。
 なお、正極活物質層22と正極集電体21との界面においては、両者は、ただ接しているだけでもよいし、アセチレンブラック等の導電性結着材からなる薄い層によって接着されていてもよい。後者の場合、正極集電体21が曲がることで、正極活物質層22にはクラックが入ることがあり得る。もっとも、クラックは、電子及びイオンの伝導方向と平行になる。このため、クラックが発生しても、特性上、なんら問題は生じない。
 正極活物質層22の表面は、平滑に研磨されていてもよい。この場合、研磨後に表面に残留した応力や欠陥を除去する目的で、1000℃以下の熱処理が施されてもよい。これにより、正極集電体21及び固体電解質層23との密着性が向上するとともに、活性な結晶面が露出するため、充放電特性が向上する。
 図7は、他の変形例のリチウム二次電池30の概略構成を示す断面図である。図7を参照すると、このリチウム二次電池30は、いわゆるポリマー型のものであって、正極集電体31と、正極活物質層32と、ポリマー電解質層33と、負極活物質層34と、負極集電体35と、を備えている。このリチウム二次電池30は、正極集電体31の上に、正極活物質層32、ポリマー電解質層33、負極活物質層34、及び負極集電体35を、この順序で積層することにより形成されている。
 ポリマー型のリチウム二次電池30においては、液漏れの恐れがある液体型に比べ、薄い電池構成が可能という特徴がある。本発明による膜状の正極活物質層32によれば、リチウムイオンの出入りする面を膜表面全面に確保した状態で、実質的に充填率100%が達成される。すなわち、従来よりも、正極部分を非常に薄くすることができ、さらにはより薄い電池が得られる。
 (1−2)例えば、本発明の配向板状粒子については、正極活物質層15b内にて、複数の大きさ・形状からなるものが適宜配合されてもよい。また、図8に示されているように、本発明の配向板状粒子15b2と、従来の等軸形状の粒子15b3とを、適当な混合比で混ぜてもよい。例えば、等軸形状の粒子と、その粒径と同程度の厚みを有する配向板状粒子とを、適当な混合比で混合することで、効率よく粒子が配列することができ、充填率が高められる。
 (2)本発明は、上述の実施形態にて具体的に開示された製造方法に何ら限定されない。
 例えば、グリーンシートの焼成温度は、900℃ないし1300℃の範囲内の温度であればよい。また、シート形成工程における添加物も、Biに限定されない。
 さらに、上述の具体例におけるCo原料粒子に代えて、CoO原料粒子を用いることが可能である。この場合、スラリーを焼成することで、900℃以上の温度域において(h00)配向した岩塩構造のCoOシートが得られ、これを例えば800℃程度あるいはそれ以下で酸化することで、CoOにおける、Co原子とO原子の配列状態を部分的に継承した、(h00)配向したスピネル構造のCo粒子からなるシートが得られる。
 リチウム導入工程において、(h00)配向したCo粒子とLiCOとを単に混合して所定時間加熱する代わりに、これらを塩化ナトリウム(融点800℃)や塩化カリウム(融点770℃)などのフラックス中で混合及び加熱してもよい。
 (3)その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。
 また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。さらに、本明細書にて引用した先行出願や各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして適宜援用され得る。

Claims (10)

  1.  層状岩塩構造を有する、リチウム二次電池の正極活物質用の板状粒子であって、
     (003)面が、粒子の板面方向と交差する方向に配向していることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  2.  請求の範囲第1項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
     (003)以外の面が、前記板面方向に配向していることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  3.  請求の範囲第2項に記載の、リチウム二次電池の正極活物質用の板状粒子であって、
     (104)面が、前記板面方向に配向しており、
     X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、0.005~1.0の範囲にあることを特徴とする、リチウム二次電池の正極活物質用の板状粒子。
  4.  層状岩塩構造を有する、リチウム二次電池の正極活物質膜であって、
     (003)以外の面が、粒子の板面方向に配向していることを特徴とする、リチウム二次電池の正極活物質膜。
  5.  請求の範囲第4項に記載の、リチウム二次電池の正極活物質膜であって、
     (104)面が、前記板面方向に配向しており、
     X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、0.005~1.0の範囲にあることを特徴とする、リチウム二次電池の正極活物質膜。
  6.  層状岩塩構造を有する、リチウム二次電池の正極活物質の製造方法であって、
     粒子の板面方向に(h00)配向した板状のCo粒子を含む薄膜状のシートを形成し、
     前記Co粒子にLiを導入することを特徴とする、リチウム二次電池の正極活物質の製造方法。
  7.  請求の範囲第6項に記載の、リチウム二次電池の正極活物質の製造方法であって、
     前記シートの形成は、
     CoとBiとを含有し20μm以下の厚さのグリーンシートを形成し、
     前記グリーンシートを900℃ないし1300℃の範囲内の温度で焼成する工程を含むことを特徴とする、リチウム二次電池の正極活物質の製造方法。
  8.  請求の範囲第6項又は第7項に記載の、リチウム二次電池の正極活物質の製造方法において、
     前記シートを多数の前記Co粒子に解砕する工程をさらに有し、
     前記Liの導入は、
     前記解砕工程によって得られた前記Co粒子と、LiCOと、を混合し、加熱する工程を含むことを特徴とする、リチウム二次電池の正極活物質の製造方法。
  9.  請求の範囲第1項ないし第3項のうちのいずれか1項に記載の板状粒子を正極活物質として含む、正極と、
     炭素質材料又はリチウム吸蔵物質を負極活物質として含む、負極と、
     前記正極と前記負極との間に介在するように設けられた、電解質と、
     を備えたことを特徴とする、リチウム二次電池。
  10.  請求の範囲第4項又は第5項に記載の正極活物質膜を含む、正極と、
     炭素質材料又はリチウム吸蔵物質を負極活物質として含む、負極と、
     前記正極と前記負極との間に介在するように設けられた、電解質と、
     を備えたことを特徴とする、リチウム二次電池。
PCT/JP2009/071838 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池 WO2010074304A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09835094.5A EP2369664B1 (en) 2008-12-24 2009-12-22 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
JP2010544205A JP5043203B2 (ja) 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
CN200980149005.8A CN102239587B (zh) 2008-12-24 2009-12-22 锂二次电池的正极活性物质用的板状粒子、锂二次电池的正极活性物质膜、它们的制造方法、锂二次电池的正极活性物质的制造方法以及锂二次电池

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008326997 2008-12-24
JP2008-326997 2008-12-24
JP2009-64862 2009-03-17
JP2009064862 2009-03-17
JP2009-138984 2009-06-10
JP2009138984 2009-06-10
JP2009191670 2009-08-21
JP2009-191670 2009-08-21
JP2009-234951 2009-10-09
JP2009234951 2009-10-09

Publications (1)

Publication Number Publication Date
WO2010074304A1 true WO2010074304A1 (ja) 2010-07-01

Family

ID=42266613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071838 WO2010074304A1 (ja) 2008-12-24 2009-12-22 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池

Country Status (5)

Country Link
US (1) US8916293B2 (ja)
EP (1) EP2369664B1 (ja)
JP (1) JP5043203B2 (ja)
CN (1) CN102239587B (ja)
WO (1) WO2010074304A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038394A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 リチウム二次電池用正極活物質
JP2016004703A (ja) * 2014-06-18 2016-01-12 日本碍子株式会社 リチウム二次電池用正極活物質板の製造方法
WO2016052176A1 (ja) * 2014-09-30 2016-04-07 日本碍子株式会社 コバルト酸リチウム配向焼結板の製造方法
WO2016117499A1 (ja) * 2015-01-23 2016-07-28 日本碍子株式会社 全固体電池用正極板、全固体電池
WO2017006591A1 (ja) * 2015-07-08 2017-01-12 日本碍子株式会社 全固体リチウム電池
KR20170016747A (ko) * 2015-08-04 2017-02-14 삼성전자주식회사 다결정 소결체를 갖는 이차전지 양극, 상기 이차전지 양극을 포함하는 이차전지, 및 상기 이차전지 양극을 제조하는 방법
WO2018088522A1 (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 二次電池
US10020507B2 (en) 2012-10-15 2018-07-10 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery and positive electrode including same
JP2019050107A (ja) * 2017-09-08 2019-03-28 セイコーエプソン株式会社 電池、電池の製造方法および電子機器
CN109802101A (zh) * 2017-11-16 2019-05-24 丰田自动车株式会社 锂二次电池用的正极材料
WO2020055210A1 (ko) 2018-09-12 2020-03-19 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US10629905B2 (en) 2016-04-25 2020-04-21 Ngk Insulators, Ltd. Positive electrode

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542694B2 (ja) * 2008-12-24 2014-07-09 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
JP5631993B2 (ja) * 2010-06-23 2014-11-26 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
JP5564649B2 (ja) * 2010-06-23 2014-07-30 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JP5631992B2 (ja) 2010-06-23 2014-11-26 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
US9577261B2 (en) 2011-03-18 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
DE112012002563B4 (de) 2011-03-25 2021-10-07 Semiconductor Energy Laboratory Co., Ltd. Lithium-lonen-Sekundärbatterie
JP5630669B2 (ja) * 2012-06-29 2014-11-26 トヨタ自動車株式会社 リチウム二次電池
JP2015032355A (ja) * 2013-07-31 2015-02-16 日本碍子株式会社 全固体電池
WO2017104363A1 (ja) * 2015-12-18 2017-06-22 日本碍子株式会社 板状リチウム複合酸化物、及びその製造方法
KR102643570B1 (ko) 2016-02-24 2024-03-04 엔지케이 인슐레이터 엘티디 판형 리튬 복합 산화물
CN109075321B (zh) 2016-04-25 2021-10-29 日本碍子株式会社 正极
CN105811000A (zh) * 2016-06-12 2016-07-27 上海空间电源研究所 一种微波辅助制备锂镧锆氧固态电解质的工艺方法
EP3796455A4 (en) * 2018-05-17 2022-03-16 NGK Insulators, Ltd. LITHIUM SECONDARY BATTERY
JP6966639B2 (ja) * 2018-05-17 2021-11-17 日本碍子株式会社 リチウム二次電池
WO2020090470A1 (ja) * 2018-11-01 2020-05-07 日本碍子株式会社 リチウム二次電池
EP3933983A4 (en) * 2019-02-28 2023-01-11 SM Lab Co., Ltd. POSITIVE ACTIVE MATERIAL, PROCESS FOR ITS MANUFACTURE AND LITHIUM SECONDARY BATTERY WITH POSITIVE ELECTRODE CONTAINING POSITIVE ACTIVE MATERIAL
CN111200124B (zh) * 2019-09-29 2021-11-09 浙江安力能源有限公司 一种钠镍电池正极材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272564A (ja) * 1990-02-16 1991-12-04 Japan Storage Battery Co Ltd 有機電解液電池の活物質およびその製造方法
JPH0855624A (ja) * 1994-03-07 1996-02-27 Tdk Corp 層状構造酸化物および二次電池
JP2001297761A (ja) * 2000-04-12 2001-10-26 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質
JP2001351687A (ja) * 2000-06-06 2001-12-21 Fdk Corp リチウムイオン二次電池
JP2002279985A (ja) * 2001-03-15 2002-09-27 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質およびそれを用いた非水系リチウム二次電池
JP2002324544A (ja) * 2001-02-26 2002-11-08 Mitsubishi Cable Ind Ltd リチウム二次電池用正極およびリチウム二次電池
JP2003132887A (ja) 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd 固体リチウム二次電池およびその製造方法
WO2003088382A1 (fr) * 2002-04-18 2003-10-23 Japan Storage Battery Co., Ltd. Pile secondaire non aqueuse
JP2005197004A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2007283184A (ja) 2006-04-14 2007-11-01 Tokyo Univ Of Agriculture & Technology 水素分離薄膜及びその製造方法。
JP2008523567A (ja) * 2004-12-08 2008-07-03 シモーフィックス,インコーポレーテッド LiCoO2の堆積
JP2008258160A (ja) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池用活物質およびその製造法
JP2009295514A (ja) * 2008-06-06 2009-12-17 Toyota Motor Corp リチウムイオン二次電池およびその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503930A (en) * 1994-03-07 1996-04-02 Tdk Corporation Layer structure oxide
US5683672A (en) * 1994-04-15 1997-11-04 Sony Corporation Non-aqueous liquid electrolyte secondary cell
JP4784608B2 (ja) 1997-03-28 2011-10-05 宇部興産株式会社 リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
JP2000200624A (ja) 1999-01-06 2000-07-18 Toyota Central Res & Dev Lab Inc 非水電解液二次電池
JP2000260479A (ja) 1999-03-11 2000-09-22 Toyota Central Res & Dev Lab Inc リチウムイオン二次電池
JP2000281354A (ja) * 1999-03-31 2000-10-10 Toda Kogyo Corp 層状岩塩型酸化物粒子粉末及びその製造方法
JP4318002B2 (ja) 1999-04-09 2009-08-19 Agcセイミケミカル株式会社 非水電解液二次電池用正極活物質の製造方法
JP2001006671A (ja) 1999-06-18 2001-01-12 Toyota Central Res & Dev Lab Inc リチウム二次電池のエージング処理方法
JP2001052703A (ja) 1999-08-10 2001-02-23 Nikko Materials Co Ltd リチウム二次電池用正極材料及びその製造方法
CN1156928C (zh) * 1999-08-16 2004-07-07 复旦大学 用于锂离子二次电池的正极活性材料及其制造方法和用途
US6344366B1 (en) 1999-09-15 2002-02-05 Lockheed Martin Energy Research Corporation Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing
JP2003002653A (ja) 2001-06-20 2003-01-08 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムクロム複合酸化物およびその製造方法
JP4172024B2 (ja) 2003-03-25 2008-10-29 日立金属株式会社 リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP4803486B2 (ja) * 2003-05-15 2011-10-26 株式会社Gsユアサ 非水電解質電池
US7556889B2 (en) * 2003-05-26 2009-07-07 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
KR100560540B1 (ko) * 2003-07-18 2006-03-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
JP4216669B2 (ja) 2003-08-07 2009-01-28 日鉱金属株式会社 リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
EP2472637A3 (en) 2003-12-15 2013-09-11 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
JP2006012576A (ja) 2004-06-25 2006-01-12 Shin Etsu Chem Co Ltd 非水電解質二次電池用電極及びその作製方法
JP4826877B2 (ja) 2005-01-25 2011-11-30 三菱化学株式会社 電気化学素子用電極およびそれを用いたリチウム二次電池
JP4439456B2 (ja) * 2005-03-24 2010-03-24 株式会社東芝 電池パック及び自動車
CN100342568C (zh) 2005-09-15 2007-10-10 河北工业大学 含锂锰复合氧化物的正极多元活性材料的制备方法
JP2007179917A (ja) 2005-12-28 2007-07-12 Hitachi Ltd リチウム二次電池用正極活物質及びこれを用いたリチウム二次電池
JP5069007B2 (ja) 2006-01-12 2012-11-07 石原産業株式会社 リチウム・遷移金属複合酸化物の製造方法
EP2138472B1 (en) 2007-02-26 2012-09-26 NGK Insulators, Ltd. Method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
JP2009301850A (ja) 2008-06-12 2009-12-24 Toyota Motor Corp リチウム二次電池
JP5542694B2 (ja) * 2008-12-24 2014-07-09 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272564A (ja) * 1990-02-16 1991-12-04 Japan Storage Battery Co Ltd 有機電解液電池の活物質およびその製造方法
JPH0855624A (ja) * 1994-03-07 1996-02-27 Tdk Corp 層状構造酸化物および二次電池
JP2001297761A (ja) * 2000-04-12 2001-10-26 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質
JP2001351687A (ja) * 2000-06-06 2001-12-21 Fdk Corp リチウムイオン二次電池
JP2002324544A (ja) * 2001-02-26 2002-11-08 Mitsubishi Cable Ind Ltd リチウム二次電池用正極およびリチウム二次電池
JP2002279985A (ja) * 2001-03-15 2002-09-27 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質およびそれを用いた非水系リチウム二次電池
JP2003132887A (ja) 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd 固体リチウム二次電池およびその製造方法
WO2003088382A1 (fr) * 2002-04-18 2003-10-23 Japan Storage Battery Co., Ltd. Pile secondaire non aqueuse
JP2005197004A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2008523567A (ja) * 2004-12-08 2008-07-03 シモーフィックス,インコーポレーテッド LiCoO2の堆積
JP2007283184A (ja) 2006-04-14 2007-11-01 Tokyo Univ Of Agriculture & Technology 水素分離薄膜及びその製造方法。
JP2008258160A (ja) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池用活物質およびその製造法
JP2009295514A (ja) * 2008-06-06 2009-12-17 Toyota Motor Corp リチウムイオン二次電池およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAN XIE ET AL.: "Orientation dependence of Li-ion diffusion kinetics in LiCo02 thin filmsprepared by RF magnetron sputtering", SOLID STATE IONICS, vol. 179, 15 May 2008 (2008-05-15), pages 362 - 370, XP022609549 *
P. J. BOUWMAN ET AL.: "Influence of Diffusion Plane Orientation on ElectrochemicalProperties of Thin Film LiCo02 Electrodes", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 149, 12 April 2002 (2002-04-12), pages A699 - A709, XP008147451 *
See also references of EP2369664A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014038394A1 (ja) * 2012-09-04 2016-08-08 日本碍子株式会社 リチウム二次電池用正極活物質
US9246168B2 (en) 2012-09-04 2016-01-26 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery
WO2014038394A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 リチウム二次電池用正極活物質
US10020507B2 (en) 2012-10-15 2018-07-10 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery and positive electrode including same
JP2016004703A (ja) * 2014-06-18 2016-01-12 日本碍子株式会社 リチウム二次電池用正極活物質板の製造方法
US10103377B2 (en) 2014-09-30 2018-10-16 Ngk Insulators, Ltd. Method for manufacturing lithium cobaltate oriented sintered plate
JP6019269B2 (ja) * 2014-09-30 2016-11-02 日本碍子株式会社 コバルト酸リチウム配向焼結板の製造方法
WO2016052176A1 (ja) * 2014-09-30 2016-04-07 日本碍子株式会社 コバルト酸リチウム配向焼結板の製造方法
WO2016117499A1 (ja) * 2015-01-23 2016-07-28 日本碍子株式会社 全固体電池用正極板、全固体電池
WO2017006591A1 (ja) * 2015-07-08 2017-01-12 日本碍子株式会社 全固体リチウム電池
JPWO2017006591A1 (ja) * 2015-07-08 2018-04-05 日本碍子株式会社 全固体リチウム電池
KR20170016747A (ko) * 2015-08-04 2017-02-14 삼성전자주식회사 다결정 소결체를 갖는 이차전지 양극, 상기 이차전지 양극을 포함하는 이차전지, 및 상기 이차전지 양극을 제조하는 방법
KR102435473B1 (ko) 2015-08-04 2022-08-23 삼성전자주식회사 다결정 소결체를 갖는 이차전지 양극, 상기 이차전지 양극을 포함하는 이차전지, 및 상기 이차전지 양극을 제조하는 방법
US10629905B2 (en) 2016-04-25 2020-04-21 Ngk Insulators, Ltd. Positive electrode
CN109906531A (zh) * 2016-11-11 2019-06-18 日本碍子株式会社 二次电池
JPWO2018088522A1 (ja) * 2016-11-11 2019-10-10 日本碍子株式会社 二次電池
JP6995057B2 (ja) 2016-11-11 2022-01-14 日本碍子株式会社 二次電池
CN109906531B (zh) * 2016-11-11 2022-05-13 日本碍子株式会社 二次电池
US11387454B2 (en) 2016-11-11 2022-07-12 Ngk Insulators, Ltd. Secondary battery
WO2018088522A1 (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 二次電池
JP2019050107A (ja) * 2017-09-08 2019-03-28 セイコーエプソン株式会社 電池、電池の製造方法および電子機器
JP7021479B2 (ja) 2017-09-08 2022-02-17 セイコーエプソン株式会社 電池、電池の製造方法および電子機器
JP2019091655A (ja) * 2017-11-16 2019-06-13 トヨタ自動車株式会社 リチウム二次電池用の正極材料
CN109802101A (zh) * 2017-11-16 2019-05-24 丰田自动车株式会社 锂二次电池用的正极材料
JP7104877B2 (ja) 2017-11-16 2022-07-22 トヨタ自動車株式会社 リチウム二次電池用の正極材料
WO2020055210A1 (ko) 2018-09-12 2020-03-19 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
US8916293B2 (en) 2014-12-23
EP2369664A1 (en) 2011-09-28
EP2369664A4 (en) 2013-11-20
US20100159332A1 (en) 2010-06-24
JP5043203B2 (ja) 2012-10-10
JPWO2010074304A1 (ja) 2012-06-21
CN102239587B (zh) 2015-11-25
CN102239587A (zh) 2011-11-09
EP2369664B1 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5043203B2 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
JP5542694B2 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
JP4703786B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP4703785B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及びリチウム二次電池
JP4745463B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP4755727B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP4745464B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
JP5457947B2 (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
US20130045424A1 (en) Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery
JPWO2009139397A1 (ja) 板状結晶粒子及びその製造方法、並びにリチウム二次電池
WO2011158575A1 (ja) リチウム二次電池の正極活物質の製造方法
US8709662B2 (en) Method for producing cathode active material for a lithium secondary battery
JP2010219068A (ja) リチウム二次電池の正極活物質用の板状粒子の製造方法
JP2012003880A (ja) リチウム二次電池の正極活物質用の板状粒子、及び同物質膜、並びにリチウム二次電池
WO2012029803A1 (ja) リチウム二次電池の正極活物質

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149005.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010544205

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009835094

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE