WO2010021224A1 - 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板 - Google Patents
感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板 Download PDFInfo
- Publication number
- WO2010021224A1 WO2010021224A1 PCT/JP2009/063187 JP2009063187W WO2010021224A1 WO 2010021224 A1 WO2010021224 A1 WO 2010021224A1 JP 2009063187 W JP2009063187 W JP 2009063187W WO 2010021224 A1 WO2010021224 A1 WO 2010021224A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- conductive film
- substrate
- film
- photosensitive
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0366—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/097—Inks comprising nanoparticles and specially adapted for being sintered at low temperature
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/02—Materials and properties organic material
- G02F2202/022—Materials and properties organic material polymeric
- G02F2202/023—Materials and properties organic material polymeric curable
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
- Y10T29/49144—Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49156—Manufacturing circuit on or in base with selective destruction of conductive paths
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49158—Manufacturing circuit on or in base with molding of insulated base
- Y10T29/4916—Simultaneous circuit manufacturing
Definitions
- the present invention relates to a photosensitive conductive film, a method for forming a conductive film, a method for forming a conductive pattern, and a conductive film substrate, and in particular, as electrode wiring for devices such as flat panel displays such as liquid crystal display elements, touch screens, and solar cells.
- the present invention relates to a conductive pattern forming method and a conductive film substrate.
- liquid crystal display elements such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones, and electronic dictionaries, and display devices such as OA / FA devices that use liquid crystal display elements and touch screens are widespread.
- display devices such as OA / FA devices that use liquid crystal display elements and touch screens are widespread.
- a transparent conductive film is used for part of wiring, pixel electrodes, or terminals that are required to be transparent.
- ITO Indium-Tin-Oxide
- indium oxide Indium oxide
- tin oxide Indium oxide
- a pattern obtained by patterning a transparent conductive film made of the above-mentioned material is mainly used.
- a method for patterning a transparent conductive film As a method for patterning a transparent conductive film, a method is generally employed in which after forming a transparent conductive film, a resist pattern is formed by a photolithography method, and a predetermined portion of the conductive film is removed by wet etching to form a conductive pattern.
- a mixed liquid composed of two liquids of hydrochloric acid and ferric chloride is generally used as an etching liquid.
- the ITO film and the tin oxide film are generally formed by a sputtering method.
- the properties of the transparent conductive film are likely to change depending on the difference in sputtering method, sputtering power, gas pressure, substrate temperature, type of atmospheric gas, and the like. Differences in the film quality of the transparent conductive film due to fluctuations in sputtering conditions cause variations in the etching rate when the transparent conductive film is wet-etched, and are liable to reduce product yield due to patterning defects.
- the conductive pattern forming method described above has undergone a sputtering process, a resist forming process, and an etching process, the process is long and a great burden is imposed on the cost.
- Patent Document 1 After a conductive layer containing conductive fibers such as silver fibers is formed on a substrate, a photosensitive resin layer is formed on the conductive layer, and a pattern mask is formed thereon. A method of forming a conductive pattern that is exposed and developed is disclosed.
- the present invention has been made in view of the above problems of the prior art, and a conductive pattern having sufficient adhesion to the substrate and sufficiently low surface resistivity is easily formed on the substrate with sufficient resolution. It is an object of the present invention to provide a photosensitive conductive film, a method for forming a conductive film using the photosensitive conductive film, a method for forming a conductive pattern, and a conductive film substrate.
- the present invention provides a photosensitive conductive film comprising a support film, a conductive layer provided on the support film and containing conductive fibers, and a photosensitive resin layer provided on the conductive layer.
- a photosensitive conductive film comprising a support film, a conductive layer provided on the support film and containing conductive fibers, and a photosensitive resin layer provided on the conductive layer.
- the photosensitive conductive film of the present invention by having the above configuration, the photosensitive conductive film is laminated so that the photosensitive resin layer is in close contact with the substrate, and the substrate is exposed and developed in a simple process. It is possible to form a conductive pattern with sufficient resolution and a sufficiently low surface resistivity with sufficient resolution.
- the laminate of the conductive layer and the photosensitive resin layer has a minimum light transmittance in the wavelength region of 450 to 650 nm of 80 when the total film thickness of both layers is 1 to 10 ⁇ m. % Or more is preferable.
- the conductive layer and the photosensitive resin layer satisfy such conditions, it is easy to increase the brightness in a display panel or the like.
- the conductive fiber is preferably a silver fiber in that the conductivity of the conductive film to be formed can be easily adjusted.
- the photosensitive resin layer contains a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator. It is preferable to do.
- the present invention also includes a laminating step of laminating the photosensitive conductive film of the present invention so that the photosensitive resin layer is in close contact with the substrate, and an exposure step of irradiating the photosensitive resin layer on the substrate with actinic rays.
- a method for forming a conductive film is provided.
- the above process is performed using the photosensitive conductive film of the present invention, so that the adhesiveness to the substrate is sufficient and the surface resistivity is sufficient on the substrate.
- a small conductive film can be easily formed.
- the present invention also includes a step of laminating the photosensitive conductive film of the present invention so that the photosensitive resin layer is in close contact with the substrate, and an exposure step of irradiating a predetermined portion of the photosensitive resin layer on the substrate with actinic rays. And a developing process for forming a conductive pattern by developing the exposed photosensitive resin layer.
- the above process is carried out using the photosensitive conductive film of the present invention, so that the adhesion to the substrate is sufficient and the surface resistivity is sufficient on the substrate. It becomes possible to easily form a small conductive pattern with sufficient resolution.
- the present invention also provides a conductive film substrate comprising a substrate and a conductive film formed on the substrate by the conductive film formation method of the present invention.
- the present invention also provides a conductive film substrate comprising a substrate and a conductive pattern formed on the substrate by the conductive pattern forming method of the present invention.
- the conductive film or the conductive pattern preferably has a surface resistivity of 2000 ⁇ / ⁇ or less.
- a photosensitive conductive film that can easily form a conductive pattern having sufficient adhesion to the substrate and having a sufficiently small surface resistivity on a substrate with sufficient resolution
- a conductive film forming method using a photosensitive conductive film, a conductive pattern forming method, and a conductive film substrate can be provided.
- (meth) acrylate means “acrylate” and “methacrylate” corresponding thereto.
- (meth) acryl means “acryl” and “methacryl” corresponding thereto, and “(meth) acryloyl” means “acryloyl” and corresponding “methacryloyl”.
- FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the photosensitive conductive film of the present invention.
- a photosensitive conductive film 10 shown in FIG. 1 includes a support film 1, a conductive layer 2 provided on the support film 1 and containing conductive fibers, and a photosensitive resin layer 3 provided on the conductive layer 2. .
- the support film 1 examples include polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film.
- polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film.
- a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance.
- these polymer films since these polymer films must be removable from the photosensitive resin layer later, they must not be subjected to a surface treatment or material that makes removal impossible.
- the thickness of the support film 1 is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and particularly preferably 15 to 100 ⁇ m.
- the thickness of the support film is less than 5 ⁇ m, the mechanical strength decreases, and the photosensitive resin composition is applied to form the conductive fiber dispersion or the photosensitive resin layer 3 in order to form the conductive layer 2.
- the thickness of the support film exceeds 300 ⁇ m, the pattern resolution tends to decrease when the actinic ray is irradiated to the photosensitive resin layer via the support film, and the price tends to increase.
- the haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is particularly preferably from 2.0 to 2.0%, and extremely preferably from 0.01 to 1.0%.
- the haze value can be measured in accordance with JIS K 7105. For example, it can be measured with a commercially available turbidimeter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.). .
- Examples of the conductive fibers contained in the conductive layer 2 include metal fibers such as gold, silver, and platinum, and carbon fibers such as carbon nanotubes. These can be used alone or in combination of two or more. From the viewpoint of conductivity, it is preferable to use gold fiber or silver fiber. Gold fiber and silver fiber can be used individually by 1 type or in combination of 2 or more types. Furthermore, silver fiber is more preferable from the viewpoint of easily adjusting the conductivity of the formed conductive film.
- the metal fiber can be prepared, for example, by a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method.
- the fiber diameter of the conductive fiber is preferably 1 nm to 50 nm, more preferably 2 nm to 20 nm, and particularly preferably 3 nm to 10 nm.
- the fiber length of the conductive fiber is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m, and particularly preferably 3 ⁇ m to 10 ⁇ m.
- the fiber diameter and fiber length can be measured with a scanning electron microscope.
- the thickness of the conductive layer 2 varies depending on the use of the conductive film or conductive pattern formed using the photosensitive conductive film of the present invention and the required conductivity, but is preferably 1 ⁇ m or less, preferably 1 nm to 0.5 ⁇ m. More preferably, the thickness is 5 nm to 0.1 ⁇ m.
- the thickness of the conductive layer 2 is 1 ⁇ m or less, the light transmittance in the wavelength range of 450 to 650 nm is high, the pattern formation is excellent, and it is particularly suitable for the production of a transparent electrode.
- the conductive layer 2 preferably has a network structure in which conductive fibers are in contact with each other.
- the conductive layer 2 having such a network structure may be formed on the surface of the photosensitive resin layer 3 on the support film side, but conductivity is obtained in the surface direction on the surface exposed when the support film is peeled off. If it is, it may be formed in the form included in the support film side surface layer of the photosensitive resin layer 3.
- the thickness of the conductive layer 2 having a network structure indicates a value measured by a scanning electron micrograph.
- the conductive layer 2 containing conductive fibers is, for example, conductive having the above-described conductive fibers added to the support film 1 with water and / or an organic solvent and, if necessary, a dispersion stabilizer such as a surfactant. It can be formed by coating and then drying the fiber dispersion. After drying, the conductive layer 2 formed on the support film 1 may be laminated as necessary.
- the coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. The drying can be performed at 30 to 150 ° C. for about 1 to 30 minutes with a hot air convection dryer or the like.
- the conductive fiber may coexist with a surfactant or a dispersion stabilizer.
- the photosensitive resin layer 3 is formed of a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator. Can be mentioned.
- (A) As a binder polymer for example, obtained by reaction of acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid
- acrylic resin styrene resin
- epoxy resin amide resin
- amide epoxy resin alkyd resin
- phenol resin ester resin
- urethane resin epoxy resin
- epoxy resin and (meth) acrylic acid examples thereof include epoxy acrylate resins, acid-modified epoxy acrylate resins obtained by reaction of epoxy acrylate resins and acid anhydrides, and the like. These resins can be used singly or in combination of two or more.
- acrylic resin means a polymer mainly having monomer units derived from a polymerizable monomer having a (meth) acrylic group.
- (meth) acrylic acid means “acrylic acid” and “methacrylic acid” corresponding thereto
- (meth) acrylic acid alkyl ester means “acrylic acid alkyl ester” and the same. The corresponding “alkyl methacrylate ester” is meant.
- acrylic resin those produced by radical polymerization of a polymerizable monomer having a (meth) acryl group can be used.
- This acrylic resin can be used individually by 1 type or in combination of 2 or more types.
- Examples of the polymerizable monomer having a (meth) acryl group include acrylamide such as diacetone acrylamide, (meth) acrylic acid alkyl ester, (meth) acrylic acid tetrahydrofurfuryl ester, and (meth) acrylic acid dimethylamino.
- Ethyl ester (meth) acrylic acid diethylaminoethyl ester, (meth) acrylic acid glycidyl ester, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, (Meth) acrylic acid, ⁇ -bromo (meth) acrylic acid, ⁇ -chloro (meth) acrylic acid, ⁇ -furyl (meth) acrylic acid, ⁇ -styryl (meth) acrylic acid and the like.
- the acrylic resin is substituted at the ⁇ -position or aromatic ring such as styrene, vinyltoluene, ⁇ -methylstyrene and the like.
- Polymerizable styrene derivatives esters of vinyl alcohol such as acrylonitrile and vinyl-n-butyl ether, maleic acid monoesters such as maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate, fumaric acid
- maleic acid monoesters such as maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate, fumaric acid
- One or two or more polymerizable monomers such as cinnamic acid, ⁇ -cyanocinnamic acid, itaconic acid, and crotonic acid may be copolymerized.
- Examples of the (meth) acrylic acid alkyl ester include compounds represented by the following general formula (1), and compounds in which the alkyl group of these compounds is substituted with a hydroxyl group, an epoxy group, a halogen group, or the like.
- CH 2 C (R 1 ) -COOR 2 (1)
- R 1 represents a hydrogen atom or a methyl group
- R 2 represents an alkyl group having 1 to 12 carbon atoms.
- the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, and the like. These structural isomers are mentioned.
- Examples of the compound represented by the general formula (1) include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid butyl ester, (meth) ) Acrylic acid pentyl ester, (meth) acrylic acid hexyl ester, (meth) acrylic acid heptyl ester, (meth) acrylic acid octyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid nonyl ester, (meth) ) Acrylic acid decyl ester, (meth) acrylic acid undecyl ester, (meth) acrylic acid dodecyl ester. These can be used alone or in combination of two or more.
- the binder polymer preferably has a carboxyl group from the viewpoint of improving the alkali developability.
- the polymerizable monomer having a carboxyl group include (meth) acrylic acid as described above.
- the ratio of the carboxyl group in the binder polymer is 12 to 50% by mass as the ratio of the polymerizable monomer having a carboxyl group to the total polymerizable monomer used from the viewpoint of balancing the alkali developability and alkali resistance. It is preferably 12 to 40% by mass, more preferably 15 to 30% by mass, and most preferably 15 to 25% by mass.
- the ratio of the polymerizable monomer having a carboxyl group is less than 12% by mass, the alkali developability tends to be inferior, and when it exceeds 50% by mass, the alkali resistance tends to be inferior.
- the weight average molecular weight of the binder polymer is preferably 5,000 to 300,000, more preferably 20,000 to 150,000, and particularly preferably 30,000 to 100,000 from the viewpoint of balancing the mechanical strength and alkali developability.
- the weight average molecular weight is less than 5000, the developer resistance tends to decrease, and when it exceeds 300,000, the development time tends to be long.
- the weight average molecular weight in this invention is a value measured by the gel permeation chromatography method (GPC), and converted with the analytical curve created using standard polystyrene.
- binder polymers are used singly or in combination of two or more.
- a binder polymer in the case of using two or more types in combination for example, two or more types of binder polymers comprising different copolymerization components, two or more types of binder polymers having different weight average molecular weights, and two or more types of binder polymers having different degrees of dispersion are used.
- a binder polymer is mentioned.
- the photopolymerizable compound having an ethylenically unsaturated bond is preferably a photopolymerizable compound having an ethylenically unsaturated bond.
- Examples of the photopolymerizable compound having an ethylenically unsaturated bond include a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid, 2,2-bis (4-((meth) acryloxy).
- Examples of the 2,2-bis (4-((meth) acryloxypolyethoxy) phenyl) propane include 2,2-bis (4-((meth) acryloxydiethoxy) phenyl) propane, 2,2 -Bis (4-((meth) acryloxytriethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxytetraethoxy) phenyl) propane, 2,2-bis (4-((meta ) Acryloxypentaethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxyhexaethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxyheptaethoxy) phenyl) Propane, 2,2-bis (4-((meth) acryloxyoctaethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxynona) Toxi) phenyl) propane, 2,2-bis (4-((
- BPE-500 Japanese Patent Application Laida Chemical Co., Ltd.
- BPE-1300 Japanese Patent Application Laida Chemical Co., Ltd.
- Examples of the compound obtained by reacting the polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid include, for example, polyethylene glycol di (meth) acrylate having 2 to 14 ethylene groups, and 2 to 2 propylene groups. 14 polypropylene glycol di (meth) acrylate, polyethylene polypropylene glycol di (meth) acrylate having 2 to 14 ethylene groups and 2 to 14 propylene groups, trimethylolpropane di (meth) acrylate, Trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, trimethylolpropane diethoxytri (meth) acrylate, trimethylolpropane triethoxytri (meth) acrylate, trimethylolpropane tetrae Toxitri (meth) acrylate, trimethylolpropane pentaethoxytri (meth) acrylate, tetramethylol
- urethane monomer examples include (meth) acrylic monomers having a hydroxyl group at the ⁇ -position and diisocyanate compounds such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
- diisocyanate compounds such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
- Addition reaction product tris [(meth) acryloxytetraethylene glycol isocyanate] hexamethylene isocyanurate, EO-modified urethane di (meth) acrylate, EO, PO-modified urethane di (meth) acrylate, and the like.
- EO represents ethylene oxide
- PO represents propylene oxide
- the PO-modified compound has a block structure of a propylene oxide group.
- examples of the EO-modified urethane di (meth) acrylate include “UA-11” (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.).
- Examples of the EO, PO-modified urethane di (meth) acrylate include “UA-13” (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.).
- the content ratio of the photopolymerizable compound is preferably 30 to 80 parts by mass, and more preferably 40 to 70 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer and the photopolymerizable compound. If this content is less than 30 parts by mass, photocuring will be insufficient, and the transferred conductive film (conductive layer and photosensitive resin layer) will tend to have insufficient coating properties. When wound, it tends to be difficult to store.
- photopolymerization initiator examples include benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4 '-Dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1
- Aromatic ketones such as 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone
- substituents of the aryl groups of two 2,4,5-triarylimidazoles may be the same to give the target compound, or differently give an asymmetric compound.
- aromatic ketone compounds such as 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 and 1,2-octanedione-1- [4 Oxime ester compounds such as-(phenylthio) phenyl] -2- (O-benzoyloxime) are more preferred. These are used alone or in combination of two or more.
- the content of the photopolymerization initiator is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer and the photopolymerizable compound. It is particularly preferably 1 to 5 parts by mass. If this content is less than 0.1 parts by mass, the photosensitivity tends to be insufficient, and if it exceeds 20 parts by mass, the absorption on the surface of the photosensitive resin layer increases during exposure, and the internal photocuring is caused. There is a tendency to become insufficient.
- a plasticizer such as p-toluenesulfonamide, a filler, an antifoaming agent, a flame retardant, a stabilizer, an adhesion imparting agent, a leveling agent, a peeling accelerator, and an antioxidant are added as necessary.
- Additives such as an agent, a fragrance, an imaging agent, and a thermal crosslinking agent can be contained alone or in combination of two or more. The addition amount of these additives is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer and the photopolymerizable compound.
- the photosensitive resin layer 3 is formed on the support film 1 on which the conductive layer 2 is formed, as required, methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl. It can be formed by applying and drying a solution of a photosensitive resin composition having a solid content of about 10 to 60% by mass dissolved in a solvent such as ether or a mixed solvent thereof. However, in this case, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.
- Coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
- the thickness of the photosensitive resin layer 3 varies depending on the use, but the thickness after drying is preferably 1 to 200 ⁇ m, more preferably 1 to 15 ⁇ m, and particularly preferably 1 to 10 ⁇ m. If the thickness is less than 1 ⁇ m, coating tends to be difficult, and if it exceeds 200 ⁇ m, the sensitivity due to the decrease in light transmission is insufficient, and the photocuring property of the photosensitive resin layer to be transferred tends to decrease.
- the laminate of the conductive layer 2 and the photosensitive resin layer 3 has a minimum light transmission in a wavelength region of 450 to 650 nm when the total film thickness of both layers is 1 to 10 ⁇ m.
- the rate is preferably 80% or more, and more preferably 85% or more.
- a protective film can be laminated so as to contact the surface of the photosensitive resin layer 3 opposite to the support film 1 side.
- the protective film for example, a polymer film having heat resistance and solvent resistance such as a polyethylene terephthalate film, a polypropylene film, and a polyethylene film can be used. Moreover, you may use the polymer film similar to the above-mentioned support body film as a protective film.
- the adhesive force between the protective film and the photosensitive resin layer is greater than the adhesive force between the conductive layer 2 and the photosensitive resin layer 3 and the support film 1 in order to facilitate the peeling of the protective film from the photosensitive resin layer. Is preferably small.
- the number of fish eyes with a diameter of 80 micrometers or more contained in a protective film is 5 pieces / m ⁇ 2 > or less.
- “Fish eye” means that when a material is melted by heat, kneaded, extruded, biaxially stretched, casting method, etc., foreign materials, undissolved materials, oxidized degradation products, etc. It is taken in.
- the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 5 to 30 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
- the thickness of the protective film is less than 1 ⁇ m, the protective film tends to be broken during lamination, and when it exceeds 100 ⁇ m, the price tends to increase.
- the photosensitive conductive film may further have layers such as an adhesive layer and a gas barrier layer on the support film.
- the photosensitive conductive film can be stored, for example, in the form of a flat plate as it is or in the form of a roll wound around a cylindrical core. In addition, it is preferable to wind up in this case so that a support film may become the outermost side.
- the photosensitive conductive film when the photosensitive conductive film does not have a protective film, the photosensitive conductive film can be stored as it is in the form of a flat plate.
- the core is not particularly limited as long as it is conventionally used.
- plastic such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, ABS resin (acrylonitrile-butadiene-styrene copolymer) Is mentioned.
- an end face separator on the end face of the photosensitive conductive film wound up in a roll shape from the viewpoint of end face protection, and in addition, it is preferable to install a moisture-proof end face separator from the viewpoint of edge fusion resistance.
- the conductive film forming method of the present invention includes a laminating step of laminating the photosensitive conductive film of the present invention so that the photosensitive resin layer is in close contact with the substrate, and irradiating the photosensitive resin layer on the substrate with actinic rays. An exposure step.
- the photosensitive conductive film has a protective film
- the photosensitive conductive film from which the protective film has been peeled is laminated on the substrate from the photosensitive resin layer side.
- the laminating process the photosensitive resin layer, the conductive layer, and the support film are laminated in this order on the substrate.
- the substrate examples include a glass substrate and a plastic substrate such as polycarbonate.
- the substrate preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm.
- the laminating step is performed, for example, by a method of laminating the photosensitive conductive film by removing the protective film, if any, and then pressing the photosensitive resin layer side against the substrate while heating.
- the photosensitive resin layer and / or the substrate is preferably heated to 70 to 130 ° C., and the pressure bonding pressure is about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ).
- these conditions are not particularly limited.
- the photosensitive resin layer is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the substrate in advance, but it is also possible to perform a pre-heat treatment of the substrate in order to further improve the lamination property. .
- the photosensitive resin layer is cured by irradiation with actinic rays, and the conductive layer is fixed by the cured product, whereby a conductive film is formed on the substrate.
- the active light source a known light source, for example, a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, or the like that effectively emits ultraviolet light, visible light, or the like is used.
- an Ar ion laser, a semiconductor laser, or the like that effectively emits ultraviolet light, visible light, or the like is used.
- those that effectively radiate visible light such as photographic flood bulbs and solar lamps, are also used.
- the support film on the conductive layer When the support film on the conductive layer is transparent to actinic rays, it can be irradiated with actinic rays through the support film. When the support film is light-shielding, it is photosensitive after removing the support film. Actinic rays are irradiated to the resin layer.
- actinic rays can be irradiated from the substrate side through the substrate, but in terms of resolution, the actinic rays are applied from the conductive layer side to the conductive layer and the photosensitive resin layer. Is preferably irradiated.
- a conductive film substrate having a conductive film on the substrate is obtained.
- the formed conductive film is subjected to heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after peeling off the support film. It may be further cured by performing.
- a transparent conductive film can be easily formed on a substrate such as glass or plastic.
- the conductive pattern forming method includes a step of laminating the above-described photosensitive conductive film 10 so that the photosensitive resin layer 3 is in close contact with the substrate 20 (FIG. 2A), and the substrate 20.
- the exposure process ((b) of FIG. 2) which irradiates a predetermined part of the upper photosensitive resin layer 3 with actinic rays, and the image development process which forms a conductive pattern by developing the exposed photosensitive resin layer 3 are provided. .
- the conductive film substrate 40 including the conductive film (conductive pattern) 2a patterned on the substrate 20 is obtained ((c) in FIG. 2).
- the laminating step is performed, for example, by a method of laminating the photosensitive conductive film by removing the protective film, if any, and then pressing the photosensitive resin layer side against the substrate while heating.
- the photosensitive resin layer and / or the substrate is preferably heated to 70 to 130 ° C., and the pressure bonding pressure is about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ).
- these conditions are not particularly limited.
- the photosensitive resin layer is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the substrate in advance, but it is also possible to perform a pre-heat treatment of the substrate in order to further improve the lamination property. .
- Examples of the exposure method in the exposure step include a method of irradiating an active light beam in an image form through a negative or positive mask pattern called an artwork (mask exposure method).
- an active light source a known light source, for example, a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, or the like that effectively emits ultraviolet light, visible light, or the like is used.
- an Ar ion laser, a semiconductor laser, or the like that effectively emits ultraviolet light, visible light, or the like is used.
- those that effectively radiate visible light such as photographic flood bulbs and solar lamps, are also used.
- a method of irradiating actinic rays in an image form by a direct drawing method using a laser exposure method or the like may be employed.
- the support film on the conductive layer When the support film on the conductive layer is transparent to actinic rays, it can be irradiated with actinic rays through the support film. When the support film is light-shielding, it is photosensitive after removing the support film. Actinic rays are irradiated to the resin layer.
- actinic rays can be irradiated from the substrate side through the substrate, but in terms of resolution, the actinic rays are applied from the conductive layer side to the conductive layer and the photosensitive resin layer. Is preferably irradiated.
- portions other than the exposed portion of the photosensitive resin layer are removed. Specifically, when a transparent support film is present on the conductive layer, the support film is first removed, and then a portion other than the exposed portion of the photosensitive resin layer is removed by wet development. Thereby, the conductive layer 2a containing conductive fibers remains on the cured resin layer 3a having a predetermined pattern, and a conductive pattern is formed.
- the wet development is performed by a known method such as spraying, rocking immersion, brushing, or scraping, using a developer corresponding to a photosensitive resin such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer. .
- a safe and stable aqueous solution such as an alkaline aqueous solution
- alkali hydroxides such as lithium, sodium, or potassium hydroxide
- alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate
- potassium phosphate and phosphoric acid.
- Alkali metal phosphates such as sodium and alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate are used.
- Examples of the alkaline aqueous solution used for development include 0.1 to 5% by mass sodium carbonate aqueous solution, 0.1 to 5% by mass potassium carbonate aqueous solution, 0.1 to 5% by mass sodium hydroxide aqueous solution, and 0.1 to 5% by mass. % Sodium tetraborate aqueous solution and the like are preferable.
- the pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 11, and the temperature is adjusted according to the developability of the photosensitive resin layer.
- a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
- an aqueous developer composed of water or an aqueous alkaline solution and one or more organic solvents
- the base contained in the alkaline aqueous solution in addition to the above-mentioned bases, for example, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1 , 3-propanediol, 1,3-diaminopropanol-2, morpholine.
- organic solvent examples include 3 acetone alcohol, acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether. Is mentioned. These are used individually by 1 type or in combination of 2 or more types.
- the aqueous developer preferably has an organic solvent concentration of 2 to 90% by mass, and the temperature can be adjusted according to the developability. Further, the pH of the aqueous developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8-12, and more preferably pH 9-10. In addition, a small amount of a surfactant, an antifoaming agent, or the like can be added to the aqueous developer.
- organic solvent developer examples include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, and ⁇ -butyrolactone. These organic solvents are preferably added with water in the range of 1 to 20% by mass in order to prevent ignition.
- Examples of the developing method include a dip method, a battle method, a spray method, brushing, and slapping. Among these, it is preferable to use a high-pressure spray system from the viewpoint of improving the resolution.
- the conductive pattern may be further cured by performing heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development. Good.
- a transparent conductive pattern can be easily formed on a substrate such as glass or plastic without forming an etching resist like an inorganic film such as ITO. Is possible.
- the conductive film substrate of the present invention is obtained by the conductive film formation method or conductive pattern formation method described above, but from the viewpoint of being able to be effectively used as a transparent electrode, the surface resistivity of the conductive film or conductive pattern is 2000 ⁇ / ⁇ or less. Preferably, it is 1000 ⁇ / ⁇ or less, more preferably 500 ⁇ / ⁇ or less.
- the surface resistivity can be adjusted by, for example, the concentration of the conductive fiber dispersion or the coating amount.
- the minimum light transmittance in the wavelength region of 450 to 650 nm is preferably 80% or more, and more preferably 85% or more.
- the reaction solution was allowed to stand at 30 ° C. or less, diluted 10-fold with acetone, centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted.
- Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice similarly using distilled water, and obtained the silver fiber.
- the fiber diameter (diameter) was about 5 nm
- the fiber length was about 5 ⁇ m.
- solution a a solution prepared by mixing 100 g of methacrylic acid, 250 g of methyl methacrylate, 100 g of ethyl acrylate and 50 g of styrene as a monomer and 0.8 g of azobisisobutyronitrile was prepared. . Next, the solution a was added dropwise to the solution s heated to 80 ° C. over 4 hours, and then kept at 80 ° C. with stirring for 2 hours. Further, a solution obtained by dissolving 1.2 g of azobisisobutyronitrile in 100 g of the solution s was dropped into the flask over 10 minutes.
- Example 1 The conductive fiber dispersion 1 obtained above is uniformly applied at 25 g / m 2 on a 50 ⁇ m-thick polyethylene terephthalate film (PET film, manufactured by Teijin Ltd., trade name “G2-50”) as a support film.
- PET film polyethylene terephthalate film
- the conductive layer was applied on the support film by applying, drying with a hot air convection dryer at 100 ° C. for 3 minutes, and pressurizing at a linear pressure of 10 kg / cm at room temperature.
- the film thickness after drying of the conductive layer was about 0.02 ⁇ m.
- the solution of the photosensitive resin composition is uniformly applied onto a 50 ⁇ m-thick polyethylene terephthalate film on which the conductive layer is formed, and dried for 10 minutes with a 100 ° C. hot air convection dryer to form a photosensitive resin layer. Formed. Thereafter, the photosensitive resin layer was covered with a protective film made of polyethylene (manufactured by Tamapoly Co., Ltd., trade name “NF-13”) to obtain a photosensitive conductive film. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
- Example 2 The conductive fiber dispersion 2 obtained above was uniformly applied at 25 g / m 2 on a 50 ⁇ m-thick polyethylene terephthalate film (PET film, manufactured by Teijin Ltd., trade name “G2-50”) as a support film.
- PET film polyethylene terephthalate film
- the conductive layer was applied on a support film by applying, drying for 10 minutes with a hot air convection dryer at 100 ° C., and applying pressure at a linear pressure of 10 kg / cm at room temperature.
- the thickness of the conductive layer after drying was about 0.01 ⁇ m.
- the photosensitive resin composition solution is uniformly applied onto a 50 ⁇ m-thick polyethylene terephthalate film on which a conductive layer is formed, and dried for 10 minutes in a 100 ° C. hot air convection dryer to form a photosensitive resin layer. Formed. Thereafter, the photosensitive resin layer was covered with a protective film made of polyethylene (manufactured by Tamapoly Co., Ltd., trade name “NF-13”) to obtain a photosensitive conductive film. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
- a polycarbonate substrate having a thickness of 1 mm is heated to 80 ° C., and the photosensitive conductive film obtained in Examples 1 and 2 is placed on the surface of the polycarbonate substrate with the photosensitive resin layer facing the substrate while peeling off the protective film.
- Lamination was performed under the conditions of 0 ° C. and 0.4 MPa. After lamination, when the substrate was cooled and the temperature of the substrate reached 23 ° C., it was 1000 mJ using an exposure machine (trade name “HMW-201B” manufactured by Oak Co., Ltd.) having a high-pressure mercury lamp from the support film side.
- the conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of / cm 2 .
- each conductive film was 2000 ⁇ / ⁇ and 500 ⁇ / ⁇ , and the minimum light transmittance (including the substrate) in the wavelength region of 450 to 650 nm was 80% and 85%.
- a conductive film was formed on the glass substrate using the photosensitive conductive film obtained in Examples 1 and 2 in the same manner as described above except that the substrate was changed to a 0.7 mm thick soda glass plate.
- the surface resistivity of each conductive film was 2000 ⁇ / ⁇ and 500 ⁇ / ⁇ , and the minimum light transmittance (including the substrate) in the wavelength region of 450 to 650 nm was 82% and 87%.
- the surface resistivity and transmittance were measured by the following methods.
- Example 3 A conductive layer was formed in the same manner as in Example 1, and the photosensitive conductive layer was formed in the same manner as in Example 1 except that the photosensitive resin layer was formed so that the total film thickness of the conductive layer and the photosensitive resin layer was 10 ⁇ m. A film was prepared.
- Example 4 A conductive layer was formed in the same manner as in Example 2, and the photosensitive conductive layer was formed in the same manner as in Example 2 except that the photosensitive resin layer was formed so that the total film thickness of the conductive layer and the photosensitive resin layer was 10 ⁇ m. A film was prepared.
- the photosensitive conductive film obtained above was heated to 80 ° C. on a 1 mm thick polycarbonate substrate with the photosensitive resin layer facing the substrate while peeling off the protective film, under the conditions of 120 ° C. and 0.4 MPa. Laminated. After lamination, when the substrate was cooled and the temperature of the substrate reached 23 ° C., it was 1000 mJ using an exposure machine (trade name “HMW-201B” manufactured by Oak Co., Ltd.) having a high-pressure mercury lamp from the support film side. The conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of / cm 2 . After the exposure, the film was left at room temperature (25 ° C.) for 15 minutes, and then the PET film as the support film was peeled off to form a conductive film containing carbon nanotubes or silver fibers on the polycarbonate substrate.
- the film was allowed to stand at room temperature (25 ° C.) for 15 minutes, and then the PET film as the support film was peeled off and developed by spraying a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 30 seconds. After development, a conductive pattern having a line width / space width of about 100/100 ⁇ m of a conductive film containing carbon nanotubes or silver fibers was formed on a polycarbonate substrate. It was confirmed that each conductive pattern was well formed.
- a photosensitive conductive film that can easily form a conductive pattern having sufficient adhesion to the substrate and having a sufficiently small surface resistivity on a substrate with sufficient resolution
- a conductive film forming method using a photosensitive conductive film, a conductive pattern forming method, and a conductive film substrate can be provided.
- SYMBOLS 1 Support film, 2 ... Conductive layer, 2a ... Conductive pattern, 3 ... Photosensitive resin layer, 3a ... Resin hardened layer, 10 ... Photosensitive conductive film, 20 ... Substrate, 30 ... Artwork, 40 ... Conductive substrate.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dispersion Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Nanotechnology (AREA)
- Materials For Photolithography (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Manufacturing Of Electric Cables (AREA)
- Conductive Materials (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Position Input By Displaying (AREA)
Abstract
Description
CH2=C(R1)-COOR2 …(1)
本発明の導電膜の形成方法は、本発明の感光性導電フィルムを、基板上に感光性樹脂層が密着するようにラミネートするラミネート工程と、基板上の感光性樹脂層に活性光線を照射する露光工程とを備える。感光性導電フィルムが保護フィルムを有している場合は、保護フィルムを剥離した感光性導電フィルムを、基板上に感光性樹脂層側からラミネートする。ラミネート工程により、基板上に、感光性樹脂層、導電層及び支持フィルムがこの順に積層される。
次に、図面を参照しつつ、本発明の導電パターンの形成方法について説明する。
(導電性繊維分散液1(カーボンナノチューブ分散液))
純水に、Unidym社のHipco単層カーボンナノチューブの高純度品を0.4質量%、及び、界面活性剤としてドデシルーペンタエチレングリコールを0.1質量%の濃度となるように分散し、導電性繊維分散液1を得た。
[ポリオール法による銀繊維の調製]
2000mlの3口フラスコに、エチレングリコール500mlを入れ、窒素雰囲気下、マグネチックスターラーで攪拌しながらオイルバスにより160℃まで加熱した。ここに、別途用意したPtCl22mgを50mlのエチレングリコールに溶解した溶液を滴下した。4~5分後、AgNO35gをエチレングリコール300mlに溶解した溶液と、重量平均分子量が4万のポリビニルピロリドン(和光純薬(株)製)5gをエチレングリコール150mlに溶解した溶液とを、それぞれの滴下ロートから1分間で滴下し、その後160℃で60分間攪拌した。
純水に、上記で得られた銀繊維を0.2質量%、及び、ドデシルーペンタエチレングリコールを0.1質量%の濃度となるように分散し、導電性繊維分散液2を得た。
<アクリル樹脂の合成>
撹拌機、還流冷却器、温度計、滴下ロート及び窒素ガス導入管を備えたフラスコに、メチルセロソルブとトルエンとの混合液(メチルセロソルブ/トルエン=3/2(質量比)、以下、「溶液s」という)400gを加え、窒素ガスを吹き込みながら撹拌して、80℃まで加熱した。一方、単量体としてメタクリル酸100g、メタクリル酸メチル250g、アクリル酸エチル100g及びスチレン50gと、アゾビスイソブチロニトリル0.8gとを混合した溶液(以下、「溶液a」という)を用意した。次に、80℃に加熱された溶液sに溶液aを4時間かけて滴下した後、80℃で撹拌しながら2時間保温した。さらに、100gの溶液sにアゾビスイソブチロニトリル1.2gを溶解した溶液を、10分かけてフラスコ内に滴下した。そして、滴下後の溶液を撹拌しながら80℃で3時間保温した後、30分間かけて90℃に加熱した。90℃で2時間保温した後、冷却してバインダーポリマー溶液を得た。このバインダーポリマー溶液に、アセトンを加えて不揮発成分(固形分)が50質量%になるように調製し、(a)成分としてのバインダーポリマー溶液を得た。得られたバインダーポリマーの重量平均分子量は80000であった。これをアクリルポリマーAとした。
(実施例1)
上記で得られた導電性繊維分散液1を、支持フィルムである50μm厚のポリエチレンテレフタレートフィルム(PETフィルム、帝人(株)製、商品名「G2-50」)上に25g/m2で均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥し、室温において10kg/cmの線圧で加圧することにより、支持フィルム上に導電層を形成した。なお、導電層の乾燥後の膜厚は、約0.02μmであった。
上記で得られた導電性繊維分散液2を、支持フィルムである50μm厚のポリエチレンテレフタレートフィルム(PETフィルム、帝人(株)製、商品名「G2-50」)上に25g/m2で均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥し、室温において10kg/cmの線圧で加圧することにより、支持フィルム上に導電層を形成した。なお、導電層の乾燥後の膜厚は、約0.01μmであった。
1mm厚のポリカーボネート基板を80℃に加温し、その表面上に実施例1及び2で得られた感光性導電フィルムを、保護フィルムを剥離しながら感光性樹脂層を基板に対向させて、120℃、0.4MPaの条件でラミネートした。ラミネート後、基板を冷却し基板の温度が23℃になった時点で、支持フィルム側から高圧水銀灯ランプを有する露光機(オーク(株)製、商品名「HMW-201B」)を用いて、1000mJ/cm2の露光量で導電層及び感光性樹脂層に光照射した。露光後、室温(25℃)で15分間放置し、続いて、支持フィルムであるPETフィルムを剥離することで、カーボンナノチューブ又は銀繊維を含んでなる導電膜をポリカーボネート基板上に形成した。それぞれの導電膜の表面抵抗率は、2000Ω/□、500Ω/□であり、450~650nmの波長域における最小光透過率(基板を含む)は、80%、85%であった。
低抵抗率計(三菱化学社製、ロレスタGP)を用い、4探針法によりJIS K 7194に準拠して表面抵抗率を測定した。
分光光度計(日立ハイテクノロジーズ社製、商品名「U-3310」)を用いて、450nm、550nm及び650nmにおける光透過率、及び、450~650nmの波長域における最小光透過率を測定した。
(実施例3)
実施例1と同様にして導電層を形成し、導電層及び感光性樹脂層の合計膜厚が10μmとなるように感光性樹脂層を形成した以外は実施例1と同様にして、感光性導電フィルムを作製した。
実施例2と同様にして導電層を形成し、導電層及び感光性樹脂層の合計膜厚が10μmとなるように感光性樹脂層を形成した以外は実施例2と同様にして、感光性導電フィルムを作製した。
上記で得られた感光性導電フィルムを、80℃に加温した1mm厚のポリカーボネート基板に、保護フィルムを剥離しながら感光性樹脂層を基板に対向させて、120℃、0.4MPaの条件でラミネートした。ラミネート後、基板を冷却し基板の温度が23℃になった時点で、支持フィルム側から高圧水銀灯ランプを有する露光機(オーク(株)製、商品名「HMW-201B」)を用いて、1000mJ/cm2の露光量で導電層及び感光性樹脂層に光照射した。露光後、室温(25℃)で15分間放置し、続いて、支持フィルムであるPETフィルムを剥離することで、カーボンナノチューブ又は銀繊維を含んでなる導電膜をポリカーボネート基板上に形成した。
1mm厚のポリカーボネート基板を80℃に加温し、その表面上に、実施例1、2で得られた感光性導電フィルムを、保護フィルムを剥離しながら感光性樹脂層を基板に対向させて、120℃、0.4MPaの条件でラミネートした。ラミネート後、基板を冷却し基板の温度が23℃になった時点で、支持フィルムであるPETフィルム面にライン幅/スペース幅が100/100μmで長さが100mmの配線パターンを有するフォトマスクを密着させた。そして、高圧水銀灯ランプを有する露光機(オーク(株)製、商品名「HMW-201B」)を用いて、200mJ/cm2の露光量で導電層及び感光性樹脂層に光照射した。
Claims (10)
- 支持フィルムと、該支持フィルム上に設けられ導電性繊維を含有する導電層と、該導電層上に設けられた感光性樹脂層と、を備える、感光性導電フィルム。
- 前記導電層及び前記感光性樹脂層の積層体は、両層の合計膜厚を1~10μmとしたときに450~650nmの波長域における最小光透過率が80%以上である、請求項1に記載の感光性導電フィルム。
- 前記導電性繊維が銀繊維である、請求項1又は2に記載の感光性導電フィルム。
- 前記感光性樹脂層が、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物及び光重合開始剤を含有する、請求項1~3のいずれか一項に記載の感光性導電フィルム。
- 請求項1~4のいずれか一項に記載の感光性導電フィルムを、基板上に前記感光性樹脂層が密着するようにラミネートするラミネート工程と、
前記基板上の前記感光性樹脂層に活性光線を照射する露光工程と、
を備える、導電膜の形成方法。 - 請求項1~4のいずれか一項に記載の感光性導電フィルムを、基板上に前記感光性樹脂層が密着するようにラミネートする工程と、
前記基板上の前記感光性樹脂層の所定部分に活性光線を照射する露光工程と、
露光した前記感光性樹脂層を現像することにより導電パターンを形成する現像工程と、
を備える、導電パターンの形成方法。 - 基板と、該基板上に請求項5に記載の導電膜の形成方法により形成された導電膜と、を備える、導電膜基板。
- 前記導電膜の表面抵抗率が2000Ω/□以下である、請求項7に記載の導電膜基板。
- 基板と、該基板上に請求項6に記載の導電パターンの形成方法により形成された導電パターンと、を備える、導電膜基板。
- 前記導電パターンの表面抵抗率が2000Ω/□以下である、請求項9に記載の導電膜基板。
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09808160.7A EP2320433B1 (en) | 2008-08-22 | 2009-07-23 | Method of forming a conductive pattern |
KR1020177024327A KR101855056B1 (ko) | 2008-08-22 | 2009-07-23 | 감광성 도전 필름, 도전막의 형성 방법, 도전 패턴의 형성 방법 및 도전막 기판 |
KR1020167022117A KR101774885B1 (ko) | 2008-08-22 | 2009-07-23 | 감광성 도전 필름, 도전막의 형성 방법, 도전 패턴의 형성 방법 및 도전막 기판 |
CN200980132369.5A CN102124529B (zh) | 2008-08-22 | 2009-07-23 | 感光性导电膜、导电膜的形成方法、导电图形的形成方法以及导电膜基板 |
KR1020137022959A KR20130114265A (ko) | 2008-08-22 | 2009-07-23 | 감광성 도전 필름, 도전막의 형성 방법, 도전 패턴의 형성 방법 및 도전막 기판 |
KR1020157012672A KR20150061016A (ko) | 2008-08-22 | 2009-07-23 | 감광성 도전 필름, 도전막의 형성 방법, 도전 패턴의 형성 방법 및 도전막 기판 |
JP2010525646A JP4811533B2 (ja) | 2008-08-22 | 2009-07-23 | 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板 |
KR1020117002155A KR101255433B1 (ko) | 2008-08-22 | 2009-07-23 | 감광성 도전 필름, 도전막의 형성 방법, 도전 패턴의 형성 방법 및 도전막 기판 |
KR1020127019642A KR101316977B1 (ko) | 2008-08-22 | 2009-07-23 | 감광성 도전 필름, 도전막의 형성 방법, 도전 패턴의 형성 방법 및 도전막 기판 |
KR1020127004508A KR101333906B1 (ko) | 2008-08-22 | 2009-07-23 | 감광성 도전 필름, 도전막의 형성 방법, 도전 패턴의 형성 방법 및 도전막 기판 |
US13/060,114 US8171628B2 (en) | 2008-08-22 | 2009-07-23 | Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate |
US13/046,544 US8426741B2 (en) | 2008-08-22 | 2011-03-11 | Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate |
US13/368,057 US8674233B2 (en) | 2008-08-22 | 2012-02-07 | Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate |
US14/153,887 US9161442B2 (en) | 2008-08-22 | 2014-01-13 | Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-214113 | 2008-08-22 | ||
JP2008214113 | 2008-08-22 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/060,114 A-371-Of-International US8171628B2 (en) | 2008-08-22 | 2009-07-23 | Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate |
US13/046,544 Division US8426741B2 (en) | 2008-08-22 | 2011-03-11 | Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate |
US13/368,057 Division US8674233B2 (en) | 2008-08-22 | 2012-02-07 | Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010021224A1 true WO2010021224A1 (ja) | 2010-02-25 |
Family
ID=41707102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063187 WO2010021224A1 (ja) | 2008-08-22 | 2009-07-23 | 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板 |
Country Status (7)
Country | Link |
---|---|
US (4) | US8171628B2 (ja) |
EP (2) | EP2357521B1 (ja) |
JP (5) | JP4811533B2 (ja) |
KR (7) | KR101333906B1 (ja) |
CN (5) | CN102789131A (ja) |
TW (4) | TWI549142B (ja) |
WO (1) | WO2010021224A1 (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2273354A1 (en) * | 2009-07-08 | 2011-01-12 | Chimei InnoLux Corporation | Conductive plate and touch panel including the same |
JP2011222298A (ja) * | 2010-04-09 | 2011-11-04 | Fujifilm Corp | 導電膜及びその製造方法、並びにタッチパネル及び集積型太陽電池 |
CN102902425A (zh) * | 2011-07-28 | 2013-01-30 | 宸鸿科技(厦门)有限公司 | 电容式触控面板结构及制造方法 |
WO2013018691A1 (ja) * | 2011-08-03 | 2013-02-07 | 東レ株式会社 | 導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル |
WO2013047553A1 (ja) * | 2011-09-30 | 2013-04-04 | 富士フイルム株式会社 | 静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置 |
WO2013051516A1 (ja) | 2011-10-03 | 2013-04-11 | 日立化成株式会社 | 導電パターンの形成方法、導電パターン基板及びタッチパネルセンサ |
WO2013133214A1 (ja) | 2012-03-08 | 2013-09-12 | 日本写真印刷株式会社 | フレキシブルタッチパネル |
WO2013151052A1 (ja) * | 2012-04-04 | 2013-10-10 | 日立化成株式会社 | 導電パターンの形成方法及び導電パターン基板 |
WO2013176155A1 (ja) * | 2012-05-24 | 2013-11-28 | 東レ株式会社 | パターニングされた導電基材の製造方法、これによってパターニングされた導電基材およびタッチパネル |
WO2014196154A1 (ja) * | 2013-06-04 | 2014-12-11 | 日立化成株式会社 | 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板 |
WO2015001901A1 (ja) * | 2013-07-01 | 2015-01-08 | 日本写真印刷株式会社 | 相互静電容量方式タッチパネル |
JP2015018157A (ja) * | 2013-07-12 | 2015-01-29 | 日立化成株式会社 | 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板 |
JP2015052774A (ja) * | 2013-08-07 | 2015-03-19 | 日立化成株式会社 | 加飾基板上におけるレジストパターン又は導電パターンの製造方法、及び転写形感光性導電フィルム |
JP2015060091A (ja) * | 2013-09-19 | 2015-03-30 | 日立化成株式会社 | 導電パターンの製造方法、その方法により製造された導電パターンを備える導電パターン基板、その導電パターン基板を含むタッチパネルセンサ、及び感光性導電フィルム |
WO2015049939A1 (ja) * | 2013-10-03 | 2015-04-09 | 日立化成株式会社 | 感光性導電フィルム、これを用いた導電パターンの形成方法及び導電パターン基板 |
WO2015056445A1 (ja) * | 2013-10-16 | 2015-04-23 | 日立化成株式会社 | 導電性繊維を含む積層体、感光性導電フィルム、導電パターンの製造方法、導電パターン基板、及びタッチパネル |
JP2015219308A (ja) * | 2014-05-15 | 2015-12-07 | 日立化成株式会社 | 感光性導電フィルム、感光性導電積層体、導電膜の形成方法及び導電積層体 |
JP2016066590A (ja) * | 2014-06-09 | 2016-04-28 | 日立化成株式会社 | 導電フィルム、感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基材 |
WO2016167228A1 (ja) * | 2015-04-15 | 2016-10-20 | 日立化成株式会社 | 感光性導電フィルム、導電パターンの形成方法、導電パターン付き基材、及びタッチパネルセンサ |
WO2016181496A1 (ja) * | 2015-05-12 | 2016-11-17 | 日立化成株式会社 | 導電膜作製液セット、導電パターンの形成方法、及びタッチパネル |
JP2017045687A (ja) * | 2015-08-28 | 2017-03-02 | 日立化成株式会社 | 感光性導電フィルム、感光性導電フィルムロール、及びそれを用いた導電膜・導電パターンの形成方法 |
US9709887B2 (en) | 2014-03-14 | 2017-07-18 | Hitachi Chemical Company, Ltd. | Photosensitive conductive film |
JP2017201350A (ja) * | 2016-05-02 | 2017-11-09 | 日立化成株式会社 | 感光性導電フィルム、導電パターンの形成方法及び導電パターン基板の製造方法 |
JP2017223995A (ja) * | 2017-09-07 | 2017-12-21 | 日立化成株式会社 | 導電パターンの製造方法、その方法により製造された導電パターンを備える導電パターン基板、その導電パターン基板を含むタッチパネルセンサ、及び感光性導電フィルム |
JP2017228312A (ja) * | 2017-09-07 | 2017-12-28 | 日立化成株式会社 | 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板 |
KR20180013856A (ko) | 2015-05-29 | 2018-02-07 | 닛샤 가부시키가이샤 | 터치 센서의 제조 방법 |
KR101847364B1 (ko) * | 2010-05-13 | 2018-04-09 | 히타치가세이가부시끼가이샤 | 감광성 도전 필름, 도전막의 형성 방법 및 도전 패턴의 형성 방법 |
WO2021065317A1 (ja) * | 2019-09-30 | 2021-04-08 | 富士フイルム株式会社 | 転写フィルム、積層体の製造方法、積層体、タッチパネルセンサー、タッチパネル |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102645989B (zh) * | 2011-02-16 | 2015-11-25 | 群康科技(深圳)有限公司 | 触摸屏面板的制备方法 |
CN102819340B (zh) * | 2011-06-09 | 2016-03-02 | 天津富纳源创科技有限公司 | 触摸屏面板的制备方法 |
WO2013084282A1 (ja) * | 2011-12-05 | 2013-06-13 | 日立化成株式会社 | 樹脂硬化膜パターンの形成方法、感光性樹脂組成物及び感光性エレメント |
WO2013084283A1 (ja) * | 2011-12-05 | 2013-06-13 | 日立化成株式会社 | タッチパネル用電極の保護膜の形成方法、感光性樹脂組成物及び感光性エレメント |
CN102637486A (zh) * | 2012-05-14 | 2012-08-15 | 南昌欧菲光科技有限公司 | 一种用于电容式触摸屏双层透明导电薄膜的制备方法 |
KR102121539B1 (ko) * | 2012-09-27 | 2020-06-10 | 미래나노텍(주) | 전극 필름의 제조 장치 및 제조 방법 |
KR20140063302A (ko) * | 2012-11-16 | 2014-05-27 | 삼성디스플레이 주식회사 | 캐리어 기판 제거 장치, 표시장치 제조 시스템, 및 표시장치 제조 방법 |
WO2014098157A1 (ja) * | 2012-12-19 | 2014-06-26 | 株式会社クラレ | 膜形成方法、導電膜、及び絶縁膜 |
CN105359069B (zh) * | 2013-07-03 | 2019-12-10 | 阿莫善斯有限公司 | 用于触屏板的触摸感应器、其制造方法及由其构成的触屏板 |
CN105637130B (zh) * | 2013-10-17 | 2019-07-19 | 日产化学工业株式会社 | 感光性纤维及其制造方法 |
TWI567600B (zh) * | 2013-11-26 | 2017-01-21 | 恆顥科技股份有限公司 | 觸控裝置 |
CN103886934B (zh) * | 2014-04-04 | 2016-08-24 | 纳诺电子化学(苏州)有限公司 | 一种透明导电膜 |
KR102287289B1 (ko) * | 2014-07-08 | 2021-08-06 | 주식회사 동진쎄미켐 | 투명 전극 복합체 |
SG11201702198QA (en) * | 2014-09-22 | 2017-04-27 | Basf Se | Transparent conductive layer, a film comprising the layer, and a process for its production |
CN104575701B (zh) * | 2014-12-17 | 2017-01-11 | 张家港康得新光电材料有限公司 | 高分子透明导电膜及其制备方法 |
JP6027633B2 (ja) * | 2015-01-13 | 2016-11-16 | 日本写真印刷株式会社 | タッチ入力センサの製造方法及び感光性導電フィルム |
KR102297878B1 (ko) | 2015-01-16 | 2021-09-03 | 삼성디스플레이 주식회사 | 터치 패널 및 그 제조 방법 |
TWI548587B (zh) * | 2015-01-26 | 2016-09-11 | 國立臺灣大學 | 奈米金屬線圖案化之方法,使用該方法製備而成之圖案化奈米金屬線電極以及包含該圖案化奈米金屬線電極做為材料之電晶體元件 |
JP2016206463A (ja) * | 2015-04-24 | 2016-12-08 | 株式会社トクヤマ | フォトクロミック積層体 |
CN105139924B (zh) * | 2015-10-09 | 2017-09-05 | 重庆文理学院 | 一种双保护膜的银纳米线透明导电薄膜的制备方法 |
US9801284B2 (en) * | 2015-11-18 | 2017-10-24 | Dow Global Technologies Llc | Method of manufacturing a patterned conductor |
US11773275B2 (en) | 2016-10-14 | 2023-10-03 | C3 Nano, Inc. | Stabilized sparse metal conductive films and solutions for delivery of stabilizing compounds |
CN106773235A (zh) * | 2016-12-27 | 2017-05-31 | 广州汇驰实业发展有限公司 | 一种调光膜及其制备方法 |
CN107093494B (zh) * | 2017-03-22 | 2021-07-13 | 中山大学 | 一种可转移图案化的导电薄膜及其制备与图案化的方法 |
CN107015705A (zh) * | 2017-05-19 | 2017-08-04 | 信利光电股份有限公司 | 一种触控显示装置、触控面板及其制作方法 |
US20190364665A1 (en) * | 2018-05-22 | 2019-11-28 | C3Nano Inc. | Silver-based transparent conductive layers interfaced with copper traces and methods for forming the structures |
KR102711341B1 (ko) * | 2022-05-23 | 2024-09-27 | 한국광기술원 | 투명 전극 필름, 전극을 선택적으로 전사하여 투명 전극 필름을 제조하는 장치 및 그 방법 |
CN115734459B (zh) * | 2022-11-07 | 2024-03-12 | 湖北通格微电路科技有限公司 | 玻璃基线路板及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006069848A (ja) * | 2004-09-02 | 2006-03-16 | Fuji Xerox Co Ltd | カーボンナノチューブパターンの形成方法 |
JP2006140264A (ja) * | 2004-11-11 | 2006-06-01 | Hitachi Aic Inc | 電磁波シールドフィルムの製造方法およびそのフィルム |
JP2006344479A (ja) * | 2005-06-08 | 2006-12-21 | Sumitomo Metal Mining Co Ltd | 透明導電膜形成用感光性塗布液及び透明導電パターン膜とその製造方法 |
US20070074316A1 (en) | 2005-08-12 | 2007-03-29 | Cambrios Technologies Corporation | Nanowires-based transparent conductors |
JP2007257964A (ja) * | 2006-03-22 | 2007-10-04 | Tdk Corp | 転写用導電性フィルム及びそれを用いた透明導電層が付与された物体 |
JP2007257963A (ja) * | 2006-03-22 | 2007-10-04 | Tdk Corp | 転写用導電性フィルム及びそれを用いた透明導電層が付与された物体 |
JP2007308688A (ja) * | 2006-04-20 | 2007-11-29 | Sumitomo Metal Mining Co Ltd | 透明導電膜形成用ネガ型感光性塗布液及び透明導電パターン膜とその製造方法 |
JP2008159581A (ja) * | 2006-11-30 | 2008-07-10 | Hitachi Chem Co Ltd | 導電膜形成用材料、導電膜及びその形成方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2975921B2 (ja) * | 1998-02-25 | 1999-11-10 | 大塚化学株式会社 | 微細な導電性繊維、該導電性繊維を配合した樹脂組成物及び導電性糸 |
US6871396B2 (en) * | 2000-02-09 | 2005-03-29 | Matsushita Electric Industrial Co., Ltd. | Transfer material for wiring substrate |
JP3948217B2 (ja) * | 2000-06-05 | 2007-07-25 | 昭和電工株式会社 | 導電性硬化性樹脂組成物、その硬化体、及びその成形体 |
JP2001356209A (ja) * | 2000-06-14 | 2001-12-26 | Toppan Printing Co Ltd | カラーフィルタの製造方法 |
KR100588991B1 (ko) | 2000-09-20 | 2006-06-14 | 히다치 가세고교 가부시끼가이샤 | 감광성 엘리먼트, 레지스트 패턴의 형성방법 및 프린트배선판의 제조방법 |
JP4779244B2 (ja) * | 2001-06-28 | 2011-09-28 | Tdk株式会社 | 機能性層パターンの形成方法 |
TW560017B (en) * | 2001-07-12 | 2003-11-01 | Hitachi Ltd | Semiconductor connection substrate |
CN1195793C (zh) * | 2001-08-06 | 2005-04-06 | 昭和电工株式会社 | 导电的可固化树脂组合物和燃料电池用的隔板 |
AU2003244167A1 (en) * | 2002-06-24 | 2004-01-06 | Mitsubishi Plastics, Inc. | Conductive resin film, collector and production methods therefore |
JPWO2004006235A1 (ja) | 2002-07-05 | 2005-11-04 | 日立化成工業株式会社 | 感光性樹脂組成物及びこれを用いた感光性エレメント |
JP2004230690A (ja) | 2003-01-30 | 2004-08-19 | Takiron Co Ltd | 制電性透明樹脂板 |
JP4471346B2 (ja) * | 2003-01-31 | 2010-06-02 | タキロン株式会社 | 電磁波シールド体 |
JP2004253326A (ja) * | 2003-02-21 | 2004-09-09 | Toyobo Co Ltd | 導電性フイルム |
TWI226115B (en) * | 2003-04-09 | 2005-01-01 | Phoenix Prec Technology Corp | Substrate with enhanced supporting structure and method for fabricating the same |
WO2005010092A1 (ja) * | 2003-07-24 | 2005-02-03 | Nitto Denko Corporation | 無機粉体含有樹脂組成物、膜形成材料層、転写シート、誘電体層形成基板の製造方法、及び誘電体層形成基板 |
TWI266568B (en) * | 2004-03-08 | 2006-11-11 | Brain Power Co | Method for manufacturing embedded thin film resistor on printed circuit board |
KR100832259B1 (ko) * | 2004-04-20 | 2008-05-28 | 타키론 가부시기가이샤 | 터치 패널용 투명 전기전도 성형체 및 터치 패널 |
JP4666961B2 (ja) * | 2004-06-29 | 2011-04-06 | Tdk株式会社 | 透明導電層が付与された物体、及び転写用導電性フィルム |
US7345307B2 (en) * | 2004-10-12 | 2008-03-18 | Nanosys, Inc. | Fully integrated organic layered processes for making plastic electronics based on conductive polymers and semiconductor nanowires |
JP4805587B2 (ja) * | 2005-02-24 | 2011-11-02 | エーユー オプトロニクス コーポレイション | 液晶表示装置とその製造方法 |
TWI260189B (en) * | 2005-03-30 | 2006-08-11 | Advanced Semiconductor Eng | Method of fabricating a device-containing substrate |
JP2006310154A (ja) * | 2005-04-28 | 2006-11-09 | Bussan Nanotech Research Institute Inc | 透明導電膜および透明導電膜用コーティング組成物 |
US8603611B2 (en) * | 2005-05-26 | 2013-12-10 | Gunze Limited | Transparent planar body and transparent touch switch |
JP5146732B2 (ja) * | 2005-11-10 | 2013-02-20 | 住友金属鉱山株式会社 | インジウム系ナノワイヤ、酸化物ナノワイヤ及び導電性酸化物ナノワイヤ並びにそれらの製造方法 |
KR20070074316A (ko) | 2006-01-09 | 2007-07-12 | 주식회사 팬택 | 이동통신단말기에서의 brew 실행시 ui 이벤트 처리방법 |
CN101410755B (zh) * | 2006-03-31 | 2011-08-17 | 日立化成工业株式会社 | 感光性树脂组合物、使用其的感光性元件、抗蚀图案的形成方法及印刷电路板的制造方法 |
TWI426531B (zh) * | 2006-10-12 | 2014-02-11 | Cambrios Technologies Corp | 以奈米線為主之透明導體及其應用 |
-
2009
- 2009-07-23 CN CN2012102742308A patent/CN102789131A/zh active Pending
- 2009-07-23 JP JP2010525646A patent/JP4811533B2/ja not_active Expired - Fee Related
- 2009-07-23 KR KR1020127004508A patent/KR101333906B1/ko active IP Right Grant
- 2009-07-23 EP EP11157859.7A patent/EP2357521B1/en not_active Not-in-force
- 2009-07-23 KR KR1020127019642A patent/KR101316977B1/ko active IP Right Grant
- 2009-07-23 KR KR1020137022959A patent/KR20130114265A/ko active Application Filing
- 2009-07-23 EP EP09808160.7A patent/EP2320433B1/en not_active Not-in-force
- 2009-07-23 KR KR1020167022117A patent/KR101774885B1/ko active IP Right Grant
- 2009-07-23 WO PCT/JP2009/063187 patent/WO2010021224A1/ja active Application Filing
- 2009-07-23 CN CN201310692470.4A patent/CN103728794B/zh not_active Expired - Fee Related
- 2009-07-23 CN CN200980132369.5A patent/CN102124529B/zh not_active Expired - Fee Related
- 2009-07-23 KR KR1020177024327A patent/KR101855056B1/ko active IP Right Grant
- 2009-07-23 KR KR1020157012672A patent/KR20150061016A/ko active Application Filing
- 2009-07-23 KR KR1020117002155A patent/KR101255433B1/ko active IP Right Grant
- 2009-07-23 CN CN201210088511.4A patent/CN102645840B/zh not_active Expired - Fee Related
- 2009-07-23 US US13/060,114 patent/US8171628B2/en not_active Expired - Fee Related
- 2009-07-23 CN CN201410519874.8A patent/CN104282360B/zh not_active Expired - Fee Related
- 2009-08-06 TW TW102101643A patent/TWI549142B/zh not_active IP Right Cessation
- 2009-08-06 TW TW101118641A patent/TWI405221B/zh not_active IP Right Cessation
- 2009-08-06 TW TW102141911A patent/TWI460744B/zh not_active IP Right Cessation
- 2009-08-06 TW TW098126580A patent/TWI393153B/zh not_active IP Right Cessation
-
2011
- 2011-03-10 JP JP2011053486A patent/JP5418523B2/ja not_active Expired - Fee Related
- 2011-03-11 US US13/046,544 patent/US8426741B2/en active Active
-
2012
- 2012-02-07 US US13/368,057 patent/US8674233B2/en active Active
-
2013
- 2013-09-06 JP JP2013185283A patent/JP6026376B2/ja not_active Expired - Fee Related
-
2014
- 2014-01-13 US US14/153,887 patent/US9161442B2/en not_active Expired - Fee Related
-
2015
- 2015-05-21 JP JP2015103844A patent/JP6290134B2/ja active Active
-
2017
- 2017-02-16 JP JP2017027072A patent/JP6402791B2/ja not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006069848A (ja) * | 2004-09-02 | 2006-03-16 | Fuji Xerox Co Ltd | カーボンナノチューブパターンの形成方法 |
JP2006140264A (ja) * | 2004-11-11 | 2006-06-01 | Hitachi Aic Inc | 電磁波シールドフィルムの製造方法およびそのフィルム |
JP2006344479A (ja) * | 2005-06-08 | 2006-12-21 | Sumitomo Metal Mining Co Ltd | 透明導電膜形成用感光性塗布液及び透明導電パターン膜とその製造方法 |
US20070074316A1 (en) | 2005-08-12 | 2007-03-29 | Cambrios Technologies Corporation | Nanowires-based transparent conductors |
JP2007257964A (ja) * | 2006-03-22 | 2007-10-04 | Tdk Corp | 転写用導電性フィルム及びそれを用いた透明導電層が付与された物体 |
JP2007257963A (ja) * | 2006-03-22 | 2007-10-04 | Tdk Corp | 転写用導電性フィルム及びそれを用いた透明導電層が付与された物体 |
JP2007308688A (ja) * | 2006-04-20 | 2007-11-29 | Sumitomo Metal Mining Co Ltd | 透明導電膜形成用ネガ型感光性塗布液及び透明導電パターン膜とその製造方法 |
JP2008159581A (ja) * | 2006-11-30 | 2008-07-10 | Hitachi Chem Co Ltd | 導電膜形成用材料、導電膜及びその形成方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2320433A4 |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2273354A1 (en) * | 2009-07-08 | 2011-01-12 | Chimei InnoLux Corporation | Conductive plate and touch panel including the same |
JP2011222298A (ja) * | 2010-04-09 | 2011-11-04 | Fujifilm Corp | 導電膜及びその製造方法、並びにタッチパネル及び集積型太陽電池 |
KR101847364B1 (ko) * | 2010-05-13 | 2018-04-09 | 히타치가세이가부시끼가이샤 | 감광성 도전 필름, 도전막의 형성 방법 및 도전 패턴의 형성 방법 |
CN102902425A (zh) * | 2011-07-28 | 2013-01-30 | 宸鸿科技(厦门)有限公司 | 电容式触控面板结构及制造方法 |
CN102902425B (zh) * | 2011-07-28 | 2016-06-08 | 宸鸿科技(厦门)有限公司 | 电容式触控面板结构及制造方法 |
WO2013018691A1 (ja) * | 2011-08-03 | 2013-02-07 | 東レ株式会社 | 導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル |
CN103703519B (zh) * | 2011-08-03 | 2016-01-27 | 东丽株式会社 | 导电层合体、图案化导电层合体及使用该层合体得到的触控面板 |
JP5303069B2 (ja) * | 2011-08-03 | 2013-10-02 | 東レ株式会社 | 導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル |
CN103703519A (zh) * | 2011-08-03 | 2014-04-02 | 东丽株式会社 | 导电层合体、图案化导电层合体及使用该层合体得到的触控面板 |
WO2013047553A1 (ja) * | 2011-09-30 | 2013-04-04 | 富士フイルム株式会社 | 静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置 |
JP2013077098A (ja) * | 2011-09-30 | 2013-04-25 | Fujifilm Corp | 静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置 |
KR101348546B1 (ko) | 2011-10-03 | 2014-01-07 | 히타치가세이가부시끼가이샤 | 도전 패턴의 형성 방법, 도전 패턴 기판 및 터치 패널 센서 |
US9817499B2 (en) | 2011-10-03 | 2017-11-14 | Hitachi Chemical Company, Ltd. | Conductive pattern formation method, conductive pattern-bearing substrate, and touch panel sensor |
US9639189B2 (en) | 2011-10-03 | 2017-05-02 | Hitachi Chemical Company, Ltd. | Conductive pattern formation method, conductive pattern-bearing substrate, and touch panel sensor |
JP5257558B1 (ja) * | 2011-10-03 | 2013-08-07 | 日立化成株式会社 | 導電パターンの形成方法、導電パターン基板及びタッチパネルセンサ |
WO2013051516A1 (ja) | 2011-10-03 | 2013-04-11 | 日立化成株式会社 | 導電パターンの形成方法、導電パターン基板及びタッチパネルセンサ |
US9052587B2 (en) | 2011-10-03 | 2015-06-09 | Hitachi Chemical Company, Ltd. | Conductive pattern formation method, conductive pattern-bearing substrate, and touch panel sensor |
WO2013133214A1 (ja) | 2012-03-08 | 2013-09-12 | 日本写真印刷株式会社 | フレキシブルタッチパネル |
US9379703B2 (en) | 2012-03-08 | 2016-06-28 | Nissha Printing Co., Ltd. | Flexible touch panel |
WO2013151052A1 (ja) * | 2012-04-04 | 2013-10-10 | 日立化成株式会社 | 導電パターンの形成方法及び導電パターン基板 |
JP2016006901A (ja) * | 2012-04-04 | 2016-01-14 | 日立化成株式会社 | 導電パターンの形成方法 |
WO2013176155A1 (ja) * | 2012-05-24 | 2013-11-28 | 東レ株式会社 | パターニングされた導電基材の製造方法、これによってパターニングされた導電基材およびタッチパネル |
CN104321836A (zh) * | 2012-05-24 | 2015-01-28 | 东丽株式会社 | 经图案化的导电基材的制造方法、通过该方法而进行了图案化的导电基材及触控面板 |
WO2014196154A1 (ja) * | 2013-06-04 | 2014-12-11 | 日立化成株式会社 | 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板 |
KR20150140422A (ko) * | 2013-07-01 | 2015-12-15 | 니혼샤신 인사츠 가부시키가이샤 | 상호 정전 용량 방식 터치 패널 |
JP2015011633A (ja) * | 2013-07-01 | 2015-01-19 | 日本写真印刷株式会社 | 相互静電容量方式タッチパネル |
WO2015001901A1 (ja) * | 2013-07-01 | 2015-01-08 | 日本写真印刷株式会社 | 相互静電容量方式タッチパネル |
US9575595B2 (en) | 2013-07-01 | 2017-02-21 | Nissha Printing Co., Ltd. | Mutual capacitance touch panel |
KR101675712B1 (ko) | 2013-07-01 | 2016-11-11 | 니혼샤신 인사츠 가부시키가이샤 | 상호 정전 용량 방식 터치 패널 |
JP2015018157A (ja) * | 2013-07-12 | 2015-01-29 | 日立化成株式会社 | 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板 |
JP2015052774A (ja) * | 2013-08-07 | 2015-03-19 | 日立化成株式会社 | 加飾基板上におけるレジストパターン又は導電パターンの製造方法、及び転写形感光性導電フィルム |
JP2015060091A (ja) * | 2013-09-19 | 2015-03-30 | 日立化成株式会社 | 導電パターンの製造方法、その方法により製造された導電パターンを備える導電パターン基板、その導電パターン基板を含むタッチパネルセンサ、及び感光性導電フィルム |
US10353293B2 (en) | 2013-10-03 | 2019-07-16 | Hitachi Chemical Company, Ltd. | Photosensitive conductive film, conductive pattern formation method using same, and conductive pattern substrate |
KR20160065807A (ko) | 2013-10-03 | 2016-06-09 | 히타치가세이가부시끼가이샤 | 감광성 도전 필름, 이것을 사용한 도전 패턴의 형성 방법 및 도전 패턴 기판 |
WO2015049939A1 (ja) * | 2013-10-03 | 2015-04-09 | 日立化成株式会社 | 感光性導電フィルム、これを用いた導電パターンの形成方法及び導電パターン基板 |
JPWO2015049939A1 (ja) * | 2013-10-03 | 2017-03-09 | 日立化成株式会社 | 感光性導電フィルム、これを用いた導電パターンの形成方法及び導電パターン基板 |
JP2016048688A (ja) * | 2013-10-16 | 2016-04-07 | 日立化成株式会社 | 金属繊維の劣化抑制方法、膜、及び膜の製造方法 |
JP5858197B2 (ja) * | 2013-10-16 | 2016-02-10 | 日立化成株式会社 | 導電性繊維を含む積層体、感光性導電フィルム、導電パターンの製造方法、導電パターン基板、及びタッチパネル |
US10795469B2 (en) | 2013-10-16 | 2020-10-06 | Hitachi Chemical Company, Ltd. | Laminate containing conductive fiber, photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate, and touch panel |
WO2015056445A1 (ja) * | 2013-10-16 | 2015-04-23 | 日立化成株式会社 | 導電性繊維を含む積層体、感光性導電フィルム、導電パターンの製造方法、導電パターン基板、及びタッチパネル |
US9709887B2 (en) | 2014-03-14 | 2017-07-18 | Hitachi Chemical Company, Ltd. | Photosensitive conductive film |
JP2015219308A (ja) * | 2014-05-15 | 2015-12-07 | 日立化成株式会社 | 感光性導電フィルム、感光性導電積層体、導電膜の形成方法及び導電積層体 |
JP2016066590A (ja) * | 2014-06-09 | 2016-04-28 | 日立化成株式会社 | 導電フィルム、感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基材 |
WO2016167228A1 (ja) * | 2015-04-15 | 2016-10-20 | 日立化成株式会社 | 感光性導電フィルム、導電パターンの形成方法、導電パターン付き基材、及びタッチパネルセンサ |
WO2016181496A1 (ja) * | 2015-05-12 | 2016-11-17 | 日立化成株式会社 | 導電膜作製液セット、導電パターンの形成方法、及びタッチパネル |
KR20180013856A (ko) | 2015-05-29 | 2018-02-07 | 닛샤 가부시키가이샤 | 터치 센서의 제조 방법 |
JP2017045687A (ja) * | 2015-08-28 | 2017-03-02 | 日立化成株式会社 | 感光性導電フィルム、感光性導電フィルムロール、及びそれを用いた導電膜・導電パターンの形成方法 |
JP2017201350A (ja) * | 2016-05-02 | 2017-11-09 | 日立化成株式会社 | 感光性導電フィルム、導電パターンの形成方法及び導電パターン基板の製造方法 |
JP2017223995A (ja) * | 2017-09-07 | 2017-12-21 | 日立化成株式会社 | 導電パターンの製造方法、その方法により製造された導電パターンを備える導電パターン基板、その導電パターン基板を含むタッチパネルセンサ、及び感光性導電フィルム |
JP2017228312A (ja) * | 2017-09-07 | 2017-12-28 | 日立化成株式会社 | 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板 |
WO2021065317A1 (ja) * | 2019-09-30 | 2021-04-08 | 富士フイルム株式会社 | 転写フィルム、積層体の製造方法、積層体、タッチパネルセンサー、タッチパネル |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6402791B2 (ja) | 導電膜基板及びその使用方法 | |
JP5257558B1 (ja) | 導電パターンの形成方法、導電パターン基板及びタッチパネルセンサ | |
JP5569144B2 (ja) | 感光性導電フィルム、導電膜の形成方法及び導電パターンの形成方法 | |
JP2012162601A (ja) | オーバーコート用光硬化性樹脂組成物、オーバーコート用光硬化性エレメント、導電膜基板の製造方法及び導電膜基板 | |
JP2017156510A (ja) | 感光性導電フィルム、導電パターンの形成方法及び導電パターン基板、並びにタッチパネル | |
JP2018049054A (ja) | 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板の形成方法 | |
JP2012014860A (ja) | オーバーコート用光硬化性樹脂組成物、並びにこれを用いたオーバーコート用光硬化性エレメント、導電パターンの形成方法、及び導電膜基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980132369.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09808160 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010525646 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117002155 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1239/DELNP/2011 Country of ref document: IN Ref document number: 2009808160 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13060114 Country of ref document: US |