WO2013018691A1 - 導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル - Google Patents
導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル Download PDFInfo
- Publication number
- WO2013018691A1 WO2013018691A1 PCT/JP2012/069133 JP2012069133W WO2013018691A1 WO 2013018691 A1 WO2013018691 A1 WO 2013018691A1 JP 2012069133 W JP2012069133 W JP 2012069133W WO 2013018691 A1 WO2013018691 A1 WO 2013018691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- matrix
- carbon
- metal
- conductive laminate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/02—Layer formed of wires, e.g. mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention provides a conductive laminate having a conductive component having a network structure made of a metal-based linear structure and a conductive layer made of a matrix, a conductive region (A), and a non-conductive region (B).
- the present invention relates to a patterned conductive laminate having a patterned conductive layer therein. More specifically, the conductive laminate that can shorten the processing time when a pattern is processed and formed on an electrode member used for a touch panel or the like, and the non-visibility of the pattern portion including the conductive region (A) and the non-conductive region (B) Relates to a patterned conductive laminate having a high thickness.
- the present invention relates to a conductive laminate used for display members such as liquid crystal displays, organic electroluminescence, electronic paper, and electrode members used for solar cell modules, and a patterned conductive laminate.
- a conductive member for an electrode is used for a display related such as a touch panel, a liquid crystal display, an organic electroluminescence, an electronic paper, or a solar cell module.
- a desired pattern made of a conductive region is formed and used.
- the conductive member there is one in which a conductive layer is laminated on a base material.
- a conductive layer in addition to those using a conventional conductive thin film such as ITO or a metal thin film, carbon nanotubes (hereinafter abbreviated as CNT), The thing using linear conductive components, such as metal nanowire, is proposed.
- CNT carbon nanotubes
- a conductive laminate in which a coating material in which CNT is a conductive component and mixed with an ultraviolet curable resin is laminated on a base material has been proposed (Patent Document 1).
- stacked the resin layer on the conductive layer which used the metal nanowire as the conductive component is proposed (patent document 2).
- Patent Document 3 a conductive laminate in which metal nanowires are dispersed in a matrix with a high degree of curing using a polyfunctional component has been proposed. Furthermore, a conductive laminate using metal nanowires that has been patterned into a conductive region and a non-conductive region that leaves the metal nanowire has also been proposed (Patent Document 4).
- Patent Document 7 a chemical etching method using a photoresist or an etching solution is generally used.
- Patent Document 7 an insulating material is used for the non-conductive region (Patent Document 7), and the contact angle and material of the protective layer are specified for making the pattern thin (patent) Document 8) has been proposed.
- JP 2008-179787 A Special table 2010-507199 JP 2011-29037 A JP 2011-29038 A JP 2010-140859 A JP 2001-307567 A JP 2010-165460 A JP 2011-167848 A
- the conductive laminate described in Patent Document 1 needs to increase the CNT content, and is composed of a conductive region and a non-conductive region.
- the pattern is formed, there is a problem that the pattern can be distinguished (that is, the non-visibility is low) by the light absorption property of the CNT.
- the conductive laminate described in Patent Document 2 uses metal nanowires having higher conductivity than CNT as the conductive component, the concentration of the conductive component can be set lower than that of CNT.
- a pattern composed of a conductive region and a non-conductive region is formed, a difference in optical characteristics occurs between the conductive region and the non-conductive region, and the non-visibility of the pattern is similarly insufficient.
- Patent Documents 3, 4, and 8 the matrix of the conductive layer is formed by irradiation with a high ionizing radiation dose, but the processing time required for patterning becomes extremely long. There was a problem that the non-visibility of the pattern was still low. Furthermore, Patent Document 5 proposes a patterning method using laser and etching, but there is a problem that it is difficult to adjust the remaining amount of conductive nanofibers after patterning. Patent Documents 6 and 7 have a problem that production efficiency is poor because many processes are required.
- the present invention can stably form a desired pattern without causing problems such as peeling of a conductive layer in processing for forming a pattern, and can perform patterning processing. It is intended to obtain a conductive laminate that requires a short time and a patterned conductive laminate that has high non-visibility of pattern portions.
- It is composed of a polymer having a structure in which a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction is polymerized.
- the peak intensity ⁇ 1 of the carbon-carbon double bond stretching vibration and the peak intensity ⁇ 2 of the carbon-hydrogen single bond (CH) obtained by the FT-IR-ATR method are ⁇ 1 / ⁇ 2 ⁇ 0.2 is satisfied.
- the surface average thickness T of the matrix of the conductive layer is 70 to 1000 nm.
- the matrix is composed of a polymer having a structure in which a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction is subjected to a polymerization reaction, and the carbon-carbon bismuth with respect to the total mass of the matrix.
- the relationship between the obtained peak intensity ⁇ 1 of the stretching vibration of the carbon-carbon double bond and the peak intensity ⁇ 2 of the stretching vibration of the carbon-hydrogen single bond (C—H) is ⁇ 1 / ⁇ 2 ⁇ 0.2.
- the amount of the metal component quantified by fluorescent X-rays in the non-conductive region (B) is 0.5 to 0.9 of the amount of the metal component quantified by fluorescent X-rays in the conductive region (A). Is double.
- a method for producing a heat-treated patterned conductive laminate comprising subjecting the patterned conductive laminate according to [4] or [5] to a heat treatment at 60 to 150 ° C. for 30 seconds to 10 minutes.
- problems such as peeling of the conductive layer are less likely to occur in processing for pattern formation, a desired pattern can be formed stably, and the time required for patterning is short. It is possible to provide a laminate and a patterned conductive laminate having high non-visibility of the pattern portion.
- FIG. 1 is a schematic cross-sectional view illustrating an example of a touch panel that is one embodiment of the present invention. It is an example of the cross-sectional schematic diagram of the metal-type linear structure vicinity of this invention. It is a schematic diagram of the pattern mask used for preparation of the sample of a patterned conductive laminated body in an Example and a comparative example.
- the conductive laminate of the present invention is a conductive laminate in which a conductive layer having a network structure composed of a metal-based linear structure and a matrix is disposed on at least one surface of a base material, The following (i) to (iv) are satisfied.
- It is composed of a polymer having a structure in which a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction is polymerized.
- the peak intensity ⁇ 1 of the carbon-carbon double bond stretching vibration and the peak intensity ⁇ 2 of the carbon-hydrogen single bond (CH) obtained by the FT-IR-ATR method are ⁇ 1 / ⁇ 2 ⁇ 0.2 is satisfied.
- the surface average thickness T of the matrix of the conductive layer is 70 to 1000 nm.
- the conductive laminate of the present invention uses the metal-based linear structure having a network structure as the conductive component constituting the conductive layer as described above, thereby sufficiently reducing the surface resistance and providing the necessary conductivity. It has gained.
- the matrix of the conductive layer satisfies the above (i) to (iv), it has resistance to the patterning process and can form a desired pattern with less problems such as peeling of the conductive layer.
- the resistance to the patterning process and the pattern processability in a short time, both of which have been difficult to achieve in the past, can reduce the time required for the patterning process.
- the patterned conductive laminate of the present invention has a patterned conductive layer on at least one side of the substrate.
- the patterned conductive layer has a conductive region (A) and a non-conductive region (B) in its plane.
- the patterned conductive layer is composed of a matrix and a metal component, and the metal component has different forms in the conductive region (A) and the non-conductive region (B).
- the conductive region (A) includes a metal-based linear structure having a network structure in the matrix. Since the metal-based linear structure having a network structure works as a so-called conductive component and lowers the resistance value, conductivity necessary for the conductive region (A) is exhibited.
- the non-conductive region (B) includes a metal-based dispersion isolated and dispersed in the matrix.
- the resistance value can be increased even if it contains an amount of the metal component specified in the condition (II) described in detail later, and the insulation necessary for the non-conductive region (B) Can be expressed.
- the patterned conductive laminate of the present invention satisfies the conditions (I) and (II).
- (I) is a condition relating to the matrix
- (II) is a condition relating to the metal component.
- (I) further consists of two conditions.
- the matrix is composed of a polymer including a structure obtained by polymerization reaction of a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction, and is derived from the carbon-carbon double bond group with respect to the total mass of the matrix.
- Yes (I-1) is 9 to 26 mass%.
- the relationship between the peak intensity ⁇ 1 of the carbon-carbon double bond stretching vibration and the peak intensity ⁇ 2 of the carbon-hydrogen single bond (CH) obtained by the FT-IR-ATR method is ⁇ 1 / ⁇ 2. ⁇ 0.2 (I-2).
- the matrix in (I), can be adjusted by the raw material composition (I-1) and the polymerization degree (I-2). By finding a matrix satisfying such a condition (I), it has resistance to the patterning process described later, and the condition (II) while maintaining the conductive layer of the conductive laminate before etching as the conductive region (A).
- the non-conductive region (B) satisfying the above condition is formed, and the patterned conductive laminate of the present invention can be formed.
- (II) is that the metal content of the metal-based linear structure by fluorescent X-rays in the non-conductive region (B) is 0.5 to 0 of the metal content by fluorescent X-rays in the conductive region (A). .9 times are specified.
- the conductive component of the conductive layer of the conductive laminate of the present invention is a metal-based linear structure.
- a conductive layer having excellent conductivity can be obtained, so that the amount of matrix component can be increased, thereby improving the resistance to patterning processing. Can be improved.
- the metal-based linear structure has a network structure in the conductive layer.
- the network structure is a dispersed structure in which the average number of contacts with another metal-based linear structure exceeds at least 1 when viewed with respect to individual metal-based linear structures in the conductive layer. It means having.
- the contact may be formed by any portion of the metal-based linear structure, the end portions of the metal-based linear structure are in contact with each other, or the portion other than the end and the end of the metal-based linear structure Or portions other than the ends of the metal-based linear structure may be in contact with each other.
- the contact may mean that the contact is joined or simply in contact.
- the conductive laminate of the present invention if a metal-based linear structure having a network structure is present, the conductive laminate does not contribute to the formation of the network among metal-based linear structures in the conductive layer (that is, contact points). There may be a part of the metal-based linear structure (which is 0 independently of the network).
- the network structure can be observed by a method described later, but is not particularly limited.
- the conductive component constituting the conductive layer of the conductive laminate of the present invention is composed of a metal-based linear structure, when the amount of the metal-based linear structure in the conductive layer is below a certain level, In some cases, a region where the system-like linear structure does not exist is scattered, but even if such a region exists, the metal-based linear structure has a network structure in the plane, and the conductivity between any two points is not good. Can be shown.
- the length of the short axis of the metal-based linear structure (the diameter of the metal-based linear structure) and the length of the long axis (the length of the metal-based linear structure) are the same as those of the metal-based linear structure.
- the length of the minor axis is preferably 1 nm to 1000 nm (1 ⁇ m)
- the length of the shaft may be longer than 10 and is preferably 1 ⁇ m to 100 ⁇ m (0.1 mm).
- the metal-based linear structure include needle-shaped conductors such as fibrous conductors, nanowires, and whiskers.
- the nanowire is a structure having an arc shape as exemplified by reference numeral 7 in FIG. 2, and the needle shape has a linear shape as exemplified by reference numeral 8 in FIG. It is a structure.
- the metal-based linear structure may exist in the form of an aggregate in addition to the case where it exists alone.
- the aggregate may be a state in which the arrangement direction of the metal-based linear structures is not regular and randomly assembled, and the surfaces in the length direction of the metal linear structures are aggregated in parallel. It may be in the state.
- a state in which the surfaces in the length direction are gathered in parallel it is known that it becomes an aggregate called a bundle, and the metal-based linear structure may have a similar bundle structure.
- the diameter of the metal-based linear structure in the present invention refers to the single diameter of the metal-based linear structure even when the above-described aggregate is formed.
- the average diameter r of the metal-based linear structure is “(6) surface average thickness T of the conductive layer or conductive region (A) matrix, average diameter r of the metal-based linear structure” in Examples described later. Obtained by the method described in 1.
- the material of the metal-based linear structure in the present invention contains a metal component such as a metal, an alloy, a metal oxide, a metal nitride, and a metal hydroxide.
- a metal component such as a metal, an alloy, a metal oxide, a metal nitride, and a metal hydroxide.
- the metal Group 2, Group 3, Group 4, Group 5, Group 6, Group 8, Group 8, Group 9, Group 10, Group 11 in the periodic table of elements, Examples include elements belonging to Group 12, Group 13, Group 14, or Group 15.
- the alloy include alloys containing the metal (stainless steel, brass, etc.).
- Examples of the metal oxide include InO 2 , SnO 2 , ZnO, and the like, and these metal oxide composites (InO 2 Sn, SnO 2 —Sb 2 O 4 , SnO 2 —V 2 O 5 , TiO 2). (Sn / Sb) O 2 , SiO 2 (Sn / Sb) O 2 , K 2 O—nTiO 2 — (Sn / Sb) O 2 , K 2 O—nTiO 2 —C, etc.). These may be subjected to a surface treatment.
- the metal-based linear structures include those in which the metal or metal oxide is coated or vapor-deposited on the surface of an organic compound (eg, plant fiber, synthetic fiber, etc.) or non-metallic material (eg, inorganic fiber, etc.). It is.
- an organic compound eg, plant fiber, synthetic fiber, etc.
- non-metallic material eg, inorganic fiber, etc.
- silver linear structures can be particularly preferably used from the viewpoints of optical properties such as transparency and conductivity.
- metal-based linear structures can be obtained, for example, by the production methods disclosed in JP-T-2009-505358, JP-A-2009-146747, and JP-A-2009-70660.
- the conductive component of the conductive region (A) is a metal-based linear structure having a network structure. Since the conductive component (A) having a highly conductive network structure having a highly conductive network structure can provide a conductive region (A) that is more conductive than the blending amount, the conductive region (A) The matrix content ratio of can be increased, thereby improving the resistance to the patterning process.
- the contents of the network structure in the conductive component of the conductive region (A) are the same as the structure in the conductive component of the conductive layer described above. Since the conductive component constituting the conductive region (A) of the patterned conductive laminate of the present invention is a metal-based linear structure having a network structure, the metal-based linear shape having a network structure in the conductive region (A). When the content ratio of the structure is below a certain level, there may be a region where the metal-based linear structure does not exist in the surface. However, even if such a region exists, conductivity between any two points may be present. Can be shown.
- the metal-based linear structure constituting the metal-based linear structure having a network structure has an average diameter (the definition may be referred to as a minor axis length described later) and the length of the metal-based linear structure.
- the length of the long axis of the metal-based linear structure may be various, but the average diameter is smaller than the pattern and is preferably 1 nm to 1000 nm (1 ⁇ m), and the metal-based linear structure
- the length of the body may be such that the aspect ratio (length of the metal-based linear structure / average diameter) is greater than 10 with respect to the average diameter, and preferably 1 ⁇ m to 100 ⁇ m (0.1 mm).
- the non-conductive region (B) includes a metal dispersion that is isolated and dispersed as a metal component.
- the isolated and dispersed metal dispersion in the present invention means that it does not have a network structure regardless of the individual shape of the metal dispersion.
- the concentration of metal-based linear structures or other metal-based components dispersed in the matrix is reduced in the matrix, the shape of the metal components is made spherical to make it difficult for metals to contact each other, By shortening the length of the structure, the contact between the metal-based linear structures is separated, so that each metal component can be isolated and the contact between the metal components can be eliminated, or between the metal components Even when there are contacts, the number of contacts with respect to the number of dispersed metal components is reduced.
- the method of reducing the number of contacts relative to the number of dispersed metal components is to make the contact portion or the metal component itself non-conductive, Cutting a part of one metal-based linear structure, and more specifically, by dissolving part of the metal-based linear structure or chemically changing the surface, the contact part or metal-based structure
- Examples of the method include blocking the conductive path by making the linear structure insulative, and dissolving a part of the metal-based linear structure to cut a part of the metal-based linear structure.
- the metal contained is preferably the same as the metal component of the conductive layer from the viewpoint of pattern non-visibility.
- the matrix constituting the conductive layer and the patterned conductive layer is composed of (i) a polymer including a structure in which a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction is polymerized.
- the Such a polymer comprises a composition comprising a monomer, an oligomer or a polymer having two or more carbon-carbon double bond groups that contribute to the polymerization reaction, and a carbon-carbon double bond in the carbon-carbon double bond group. It is a polymer obtained by forming a carbon-carbon single bond by a polymerization reaction as a reaction point.
- Examples of the functional group containing a carbon-carbon double bond group include an isopropenyl group, an isopentenyl group, an allyl group, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a methacryl group, an acrylamide group, and a methacrylamide group.
- Arylidene groups, allylidine groups, vinyl ether groups, or carbon-carbon double bond groups with a halogen element such as fluorine or chlorine bonded to carbon for example, vinyl fluoride groups, vinylidene fluoride groups, vinyl chloride groups, chlorides
- acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group having high reactivity of the carbon-carbon double bond group portion are preferably used from the viewpoint of imparting resistance to patterning treatment. Can do.
- an acryloyl group having only a highly stable carbonyl bond (—CO—) is more preferable than an acryloyloxy group having an ester bond (—COO—).
- Examples of the compound having two or more carbon-carbon double bond groups that contribute to the polymerization reaction include pentaerythritol triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, pentaerythritol ethoxytriacrylate, penta Erythritol ethoxytrimethacrylate, pentaerythritol ethoxytetraacrylate, pentaerythritol ethoxytetramethacrylate, dipentaerythritol triacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetraacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Bae Methacrylate
- the composition formed from can be used, it is not specifically limited to these.
- a compound having 4 or more carbon-carbon double bond groups contributing to the polymerization reaction that is, a compound having 4 or more functional groups, can easily form a desired pattern without problems such as peeling of the conductive layer or decrease in conductivity. Can be particularly preferably used.
- tetrafunctional or higher functional compound examples include the tetrafunctional tetraacrylate, tetramethacrylate, pentafunctional pentaacrylate, pentamethacrylate, hexafunctional hexaacrylate, hexamethacrylate, and the like.
- the resistance to the patterning treatment is insufficient, and the conductive layer may be peeled off or the conductivity may be reduced, resulting in defects in the patterned conductive layer. May occur or it may be difficult to control the amount of metal in the non-conductive region (B) within the range specified in (II), and it may be difficult to increase the non-visibility of the pattern.
- it is larger than 26% by mass excessive resistance is imparted, and the processing time required for patterning becomes extremely long, or the non-conductive region (B) cannot be formed and patterning becomes impossible. In some cases, a conductive layered product cannot be obtained.
- the cross-linking unit structure mass content is preferably 19% by mass to 24% by mass, and if it is in the range of 21% by mass to 24% by mass, it has resistance to the patterning treatment, and the matrix of the conductive layer described later. Since the average surface thickness T can be reduced, the time required for processing is easily shortened, which is more preferable.
- cross-linking unit structure mass content of the matrix is determined as follows.
- the conductive layer or the patterned conductive layer is peeled from the sample, and the matrix is dissolved in a soluble solvent. If necessary, a separable method is selected from general chromatographies typified by silica gel column chromatography, gel permeation chromatography, liquid high performance chromatography and the like, and each is separated and purified into a single substance.
- a sample is prepared by appropriately concentrating and diluting each substance thus isolated.
- qualitative analysis is performed to identify components contained in the sample.
- the analysis method of the group (1) below is combined, and if there are components that cannot be detected by the analysis of the group (1), the analysis method of the group (2) below is combined.
- the measurement method for each group is applied in the order described below, and the following measurement method is used when detection is difficult in the analysis described earlier. Similarly, in the case of combination, the analysis described earlier is used preferentially, and those that can be measured with fewer combinations are preferentially applied.
- Nuclear magnetic resonance spectroscopy 1 H-NMR, 13 C-NMR, 29 Si-NMR, 19 F-NMR), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR), infrared spectrophotometry (IR ), Raman spectroscopy, mass spectrometry (gas chromatography-mass spectrometry (GC-MS), pyrolysis gas chromatography-mass spectrometry (pyrolysis GC-MS), matrix-assisted laser desorption ionization mass spectrometry ( MALDI-MS), time-of-flight mass spectrometry (TOF-MS), time-of-flight matrix-assisted laser desorption / ionization mass spectrometry (MALDI-TOF-MS), dynamic secondary ion mass spectrometry (Dynamic-SIMS), flight Time-type secondary ion mass spectrometry (TOF-SIMS), static secondary ion mass spectrometry (Static-SIMS), etc.
- TBE 1,1,2,2-tetrabromoethane
- the amount of carbon-carbon double bond groups in the matrix mass of the conductive layer is determined. Calculate and use this to calculate the cross-linking unit structure mass content.
- the matrix used in the present invention is composed of (iii) FT-IR-ATR (Attenuated Total Reflectance) method, the peak intensity ⁇ 1 of the stretching vibration of the carbon-carbon double bond of the matrix and the carbon-
- the peak intensity ⁇ 2 of the stretching vibration of the hydrogen single bond (C—H) satisfies the relationship of ⁇ 1 / ⁇ 2 ⁇ 0.2. Since ⁇ 1 / ⁇ 2 becomes ⁇ 1 / ⁇ 2 ⁇ 0.2, the time required for the pattern processing can be shortened.
- ⁇ 1 / ⁇ 2 is preferably ⁇ 1 / ⁇ 2 ⁇ 0.23, more preferably ⁇ 1 / ⁇ 2 ⁇ 0.25, and more preferably ⁇ 1 / ⁇ 2 ⁇ 0.28, the time required for pattern processing can be further shortened.
- the peak of the stretching vibration of the carbon-carbon double bond may slightly shift back and forth depending on the structure of the matrix component, but also in the wave number region of 1650 to 1600 cm ⁇ 1 , and the carbon-hydrogen single bond (C— Similarly, since the peak of the stretching vibration of H) appears in the wave number region of 3000 to 2800 cm ⁇ 1 , ⁇ 1 / ⁇ 2 is calculated with the maximum value of the corresponding peak existing in each wave number region as the values of ⁇ 1 and ⁇ 2.
- ⁇ 1 or ⁇ 2 overlaps with the peak derived from the base material when the spectrum is obtained and confirmed in the same manner only with the base material, the spectrum is similarly obtained and obtained only with the base material by the method described later. Then, a difference spectrum with respect to the spectrum of the conductive laminate is obtained, and ⁇ 1 / ⁇ 2 is calculated from the difference spectrum with the maximum values of the corresponding peaks existing in the respective wave number regions as values of ⁇ 1 and ⁇ 2.
- the FT-IR-ATR method used to obtain the peak intensity ⁇ 1 of the stretching vibration of the carbon-carbon double bond and the peak intensity ⁇ 2 of the stretching vibration of the carbon-hydrogen single bond (C—H) is as follows.
- the measurement is performed.
- a Ge crystal is installed as an ATR crystal on a Fourier transform infrared spectrophotometer (for example, FTS-55A (manufactured by Bio-Rad Digilab)), and the conductive side of the sample (in the present invention, a conductive layer or a patterned conductive layer is laminated). The other side) is crimped to the ATR crystal.
- ⁇ 1 and / or ⁇ 2 overlaps with the peak derived from the base material when the spectrum is similarly obtained and confirmed separately from the base material, the spectrum is obtained in the same way only from the base material, and the base material spectrum and the conductivity are determined.
- a difference spectrum with respect to the spectrum of the laminate is obtained, and ⁇ 1 / ⁇ 2 is calculated from the difference spectrum, with the maximum values of the corresponding peaks existing in each wave number region as values of ⁇ 1 and ⁇ 2.
- the surface average thickness T of the conductive layer matrix (hereinafter sometimes simply referred to as the surface average thickness T) is preferably 70 to 1000 nm.
- the surface average thickness T is a representative value of the thickness of the portion where the metal-based linear structure as shown by reference numeral 21 shown in FIG. 4 does not exist, and is defined as follows. First, for one specimen, images including a cross section of a metal-based linear structure obtained from different parts are prepared for 10 visual fields.
- the thickness of two locations (reference numeral 21) each having an average diameter r separated from both ends of the cross section of the metal-based linear structure per field of view is measured, the average value is calculated, and the surface thickness t of the matrix of the conductive layer is obtained. .
- the surface thickness t is obtained for a total of 10 visual fields, and the average value is defined as the surface average thickness T of the matrix of the conductive layer.
- a magnification that can secure three significant digits is selected, and in the calculation, the value is obtained by rounding off the fourth digit.
- the pattern Time required for processing can be shortened.
- the surface average thickness T is less than 70 nm, the resistance to the patterning treatment is insufficient, and the above-mentioned item (ii) (metal-based linear structure by the fluorescent X-rays of the patterned conductive laminate in the nonconductive region (B))
- the amount of metal in the body is 0.5 to 0.9 times the amount of metal by fluorescent X-rays of the patterned conductive laminate in the conductive region (A)), As a result, there may be a problem that a desired pattern is not obtained.
- the average surface thickness T is more preferably 100 nm to 500 nm, still more preferably 100 nm to 350 nm, and most preferably 150 nm to 250 nm.
- the processing time required for patterning can be further shortened.
- the thickness is from 100 nm to 350 nm, the processing time required for patterning is shortened and a low surface resistance value can be obtained more easily, and further 150 nm to 250 nm. In this case, even if the conductivity of the conductive component is somewhat high, the conductive laminate is likely to stably have a low surface resistance value.
- the surface average thickness T is a method described in “(6) Surface average thickness T of conductive layer or conductive region (A) matrix, average diameter r of metal-based linear structure”, which will be described later. Ask for.
- the average diameter r of the metal-based linear structure and the average surface thickness T of the matrix of the conductive layer satisfy the relationship of 1.8 ⁇ T / r ⁇ 10.
- T / r is more preferably 2.2 ⁇ T / r ⁇ 6, and further preferably 3.5 ⁇ T / r ⁇ 5.
- the size of the average diameter r, the type of the matrix, etc. it forms an aggregate. May exist.
- the aggregate may be, for example, a state in which the arrangement direction of the metal-based linear structure is not regular and randomly assembled, and the long-axis surfaces of the metal-based linear structure are parallel to each other.
- the assembled state may be sufficient.
- a bundle called a bundle is formed, and the metal-based linear structure may have a similar bundle structure. Therefore, the average diameter r of the metal-based linear structure in the present invention refers to the average of the diameters of the single metal-based linear structure even when the above-described aggregate is formed.
- the metal content by fluorescent X-rays in the non-conductive region (B) is 0.5 to 0.9 times the metal content by fluorescent X-rays in the conductive region (A). is there.
- a patterned conductive laminate having high pattern non-visibility is obtained.
- ITO tin-doped indium oxide
- the presence of a specific amount of metal reduces the difference in optical characteristics between the conductive region (A) and the non-conductive region (B).
- This is a patterned conductive laminate having high non-visibility.
- the ratio of the metal content by fluorescent X-rays in the conductive region (A) is preferably 0.7 to 0.9 times, more preferably 0.8 to 0.9 times. Furthermore, the haze value Hz 1 of the patterned conductive laminate in the conductive region (A) and the haze value Hz 2 of the patterned conductive laminate in the non-conductive region (B) are 0.8 ⁇ Hz 1. It is preferable to satisfy the relationship of / Hz 2 ⁇ 1.5. By adopting such a range, the patterned conductive laminate is excellent in pattern non-visibility and electrical conductivity, and can obtain transmitted light without coloring.
- Method of forming conductive layer As a method for forming the conductive layer on the substrate in the present invention, an optimum method may be selected depending on the type of the metal-based linear structure or the matrix, and cast, spin coat, dip coat, bar coat, spray, blade Common methods such as a wet coating method such as coating, slit die coating, gravure coating, reverse coating, screen printing, mold coating, print transfer, and inkjet can be used. Among them, a slit die coat which can uniformly laminate the conductive layer and hardly damages the substrate, or a wet coat method using a micro gravure which can form the conductive layer uniformly and with high productivity is preferable.
- a conductive component having a network structure made of a conductive material is placed on the base material in advance, and then a matrix is placed and combined with the conductive component.
- the conductive layer may be formed by mixing the conductive material and the matrix in advance to form a conductive matrix composition, and the conductive matrix composition is laminated on the substrate to form a conductive component having a network structure.
- a conductive layer containing may be formed.
- the conductive material may be made of a single material or a mixture of a plurality of materials.
- the matrix may be composed of a single material or a mixture of a plurality of materials.
- the matrix of the conductive layer of the conductive laminate in the present invention comprises a composition comprising a monomer, oligomer or polymer having two or more carbon-carbon double bond groups contributing to the polymerization reaction, in the carbon-carbon double bond group. It is a polymer obtained by forming a carbon-carbon single bond by a polymerization reaction using the carbon-carbon double bond of In this case, the formation of the matrix by the polymerization reaction is referred to as curing.
- a method for curing a composition comprising a monomer, oligomer, or polymer having two or more carbon-carbon double bond groups that contribute to the polymerization reaction heat curing, active electron beam such as ultraviolet light, visible light, electron beam, etc.
- Photo-curing by irradiation (hereinafter collectively referred to as photo-curing).
- a photocuring initiator as described later (hereinafter referred to as a photoinitiator) is contained,
- active species can be generated simultaneously in the entire system, so that the time required to start curing can be shortened, and the curing time can also be shortened. For this reason, photocuring is more preferable.
- the photoinitiator means active species such as radical species, cation species, and anion species, which are active species that absorb active electron beams such as ultraviolet light, visible light, and electron beams and initiate reaction. Is a substance that initiates a chemical reaction.
- Usable photoinitiators include, for example, benzophenone series such as benzophenone, hydroxybenzophenone, 4-phenylbenzophenone, benzoin series such as benzyldimethyl ketal, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl- 1-phenylpropan-1-one, 2-methyl 1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl)
- Examples include ⁇ -hydroxy ketones such as butanone-1, ⁇ -amino ketones, thioxanthones such as isopropylthioxanthone and 2-4-diethylthioxanthone, and methylphenylglyoxylate.
- Commercially available products of such photoinitiators include Ciba “IRGACURE” (registered trademark) 184 (manufactured by Ciba Japan) as 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl 1 [4- (methylthio) Ciba “IRGACURE” (registered trademark) 907 (manufactured by Ciba Japan), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) as phenyl] -2-morpholinopropan-1-one -Examples of butanone include Ciba "IRGACURE” (registered trademark) 369 (manufactured by Ciba Japan).
- the matrix of the present invention may be a matrix type.
- the type of the active electron beam is appropriately selected depending on the nature, and the photoinitiator is selected from the selected type of the active electron beam alone or contains two or more different absorption wavelength regions.
- the method of adjusting the irradiation amount of an active electron beam etc. is mentioned, The electrically conductive laminated body of this invention can be obtained by combining these suitably.
- the method of adjusting the irradiation amount of the active electron beam is preferably used because it is relatively easy to implement.
- the method of adjusting the irradiation amount can be controlled relatively easily by changing the conditions (output conditions, etc.) of the emitter such as a lamp that emits the active electron beam.
- the irradiation distance between the emitter such as the lamp and the non-irradiated body, or by adjusting the transport speed of the non-irradiated body in the production of the conductive laminate of the present invention the irradiation time is shortened.
- the integrated dose can also be controlled.
- Dose of accumulation of the active electron beam is preferably from 300 mJ / cm 2 or less, more preferably 150 mJ / cm 2 or less, more preferably 100 mJ / cm 2 or less.
- the lower limit value of the integrated irradiation amount of the active electron beam is not particularly limited, but if it is less than 1 mJ / cm 2 , defects such as insufficient curing of the matrix may occur, and 1 mJ / cm 2 or more is preferable.
- a specific atmosphere in which the oxygen concentration is lowered such as in an atmosphere substituted with an inert gas such as nitrogen or argon, or in an atmosphere deoxygenated.
- the integrated irradiation amount of the active electron beam in a specific atmosphere with a low oxygen concentration.
- the amount of the metal component quantified by fluorescent X-rays in the non-conductive region (B) is determined in the conductive region (A).
- the method for producing the patterned conductive laminate so as to satisfy the relationship is 0.5 to 0.9 times the amount of the metal component quantified by fluorescent X-ray.
- the following methods (1) to (3) can be mentioned.
- Method for separately forming the conductive region (A) and the non-conductive region (B) Each method for forming the conductive region (A) and the non-conductive region (B), for example, a screen Printing, mold coating, printing transfer, ink jet method, dispenser method, stencil printing method, pad printing method, spray coating, etc.) can be used. At that time, the conductive region (A) and the non-conductive region (B) may be simultaneously formed on the base material, and the other region may be formed after either one of the regions is formed.
- a method for forming the conductive region (A) in such a case [Method for forming conductive layer] described later can be applied.
- the non-conductive region (B) can be obtained by using a low content concentration of the metal-based linear structure as a composition for forming a matrix.
- a metal structure other than a linear structure the shape is made spherical so that the metals do not easily come into contact with each other, so that the contact points between the metal components are separated and dispersed, thereby obtaining non-conductivity. be able to.
- a method of forming the conductive region (A) and the non-conductive region (B) separately After preliminarily laminating only the conductive component on the entire surface of one side of the base material, the matrix-forming composition is applied and cured only in the region to be the conductive region (A) in the patterned laminate, and then patterned.
- the conductive material in the region to be the non-conductive region (B) in the stacked body is removed with an etching solution or the like which will be described later.
- a non-conductive region-forming coating agent is applied to a region to be a non-conductive region from which the conductive component has been removed and cured.
- the non-stacked region of the anti-etching layer is etched by stacking an anti-etching layer according to the pattern after forming the conductive layer. can do.
- the mode of cutting the conductive path is not particularly limited, and for example, by partially dissolving the metal-based linear structure or chemically changing the surface with the treatment agent, the contact portion or the metal-based linear structure is insulative. And making it non-conductive, partly dissolving the metal-based linear structure and cutting a part of the metal-based linear structure. Note that the conductive layer other than the portion that has become the non-conductive region by the above operation becomes the conductive region.
- the method of (3) is preferable from the viewpoint of productivity and cost because it is relatively easy to obtain a patterned conductive laminate that takes such a range by appropriately adjusting and changing the etching conditions.
- Etching conditions to be adjusted / changed include, for example, the type of etching solution, the composition and composition ratio of the etching solution, the pH of the etching solution (acidic and alkaline), the concentration of the etching solution, the etching processing time, and the etching processing temperature ( Etching solution temperature), etching solution stirring, and the like, which can be adjusted in combination.
- a laminate in which a conductive layer is formed on a base material is a conductive laminate, a conductive layer of the conductive laminate is etched based on a pattern, and a laminate in which the conductive layer is a non-conductive region and a conductive region.
- the patterned conductive laminate and the non-conductive region and the conductive region of the patterned conductive laminate are collectively referred to as a patterned conductive layer.
- Examples of the treating agent used in the method (3) in the method for producing a patterned conductive laminate include an etching solution which is a solution containing an acid or base component and a semisolid etching paste containing an acid or base component. It is done.
- the metal-based linear structure on the conductive layer is selectively removed, the amount of metal in the non-conductive region (B) can be easily controlled, and patterning with high pattern non-visibility is achieved. It becomes easy to obtain a conductive laminate.
- Examples of the acid include monocarboxylic acids such as formic acid, acetic acid and propionic acid, dicarboxylic acids such as oxalic acid, succinic acid, tartaric acid and malonic acid, tricarboxylic acids such as citric acid and tricarballylic acid, and alkyls such as methanesulfonic acid.
- monocarboxylic acids such as formic acid, acetic acid and propionic acid
- dicarboxylic acids such as oxalic acid, succinic acid, tartaric acid and malonic acid
- tricarboxylic acids such as citric acid and tricarballylic acid
- alkyls such as methanesulfonic acid.
- the base examples include sodium hydroxide, potassium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, barium hydroxide, guanidine, trimethylsulfonium hydroxide, sodium ethoxide, diazabicycloundecene, hydrazine, phosphazene, Examples include proazaphosphatran, ethanolamine, ethylenediamine, triethylamine, trioctylamine, and alkoxysilane having an amino group. Two or more of these may be mixed and used.
- the etching solution used in the method for producing a patterned conductive laminate of the present invention contains at least one of the acid or base components and a solvent.
- the content of the acid or base contained in the etching solution is 1 to 40% by mass, more preferably 10 to 25% by mass with respect to the total mass of the etching solution.
- the molecular weight of the acid or base, the amount of the generated acid or base, the material and film thickness of the conductive layer to be removed, the heating temperature and the heating time can be appropriately selected.
- the etching solution preferably contains a solvent and an oxidizing agent in addition to the acid or base component.
- the etchant contains a solvent, so that the etching time and speed can be easily controlled, and the non-conductive region (B) that takes the metal amount of the metal-based linear structure can be easily formed.
- the solvent water that can be typically used is methanol, ethanol, 1,2-propanediol, n-butanol, terpineol, acetyl terpineol, butyl carbitol, ethyl cellosolve, Alcohols such as ethylene glycol, triethylene glycol, tetraethylene glycol, and glycerol, acetates such as ethyl acetate and butyl acetate, ketones such as acetone, acetophenone, ethyl methyl ketone, and methyl isobutyl ketone, toluene, xylene, and benzyl alcohol Aromatic hydrocarbons such as, ethylene glycol monoalkyl ethers such as tri
- the etching solution can further reduce the etching time by containing an oxidizing agent, and can easily form a non-conductive region (B) that takes the metal amount of the metal-based linear structure in a short time.
- the oxidizing agent include manganese (IV) oxide (manganese dioxide, MnO 2 ), lead oxide (IV) (lead dioxide, PbO 2 ), copper oxide (II) (CuO), silver oxide (I) (Ag 2 O) oxides, peroxides such as hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), persulfuric acid (H 2 SO 5 ) , Salts of oxo acids such as nitrate, chlorate, hypochlorite, iodate, bromate, chromate, permanganate, vanadate, bismuthate, chlorine (Cl 2 ), Examples thereof include simple substances such as bromine (Br 2 ), io
- these compounds, simple substances, or composites having other compounds in a part of the structure may be used.
- addition compounds such as sodium percarbonate (2Na 2 CO 3 / 3H 2 O 2 ), persulfate potassium hydride (KHSO 5) 2 moles of potassium hydrogen sulfate (KHSO 4) 1 mol of potassium sulfate (K 2 SO 4) persulfate is 1 consisting mole triple salt (2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO 4) And double salts. Two or more of these may be mixed and used.
- the etching time is further shortened by heating and patterning at 30 to 60 ° C. using an etching solution consisting of a mixture of an acid and an oxidizing agent and satisfying the following (III) to (IV). It is possible to improve the productivity and reduce the cost of the patterned conductive laminate of the present invention, which is more preferable.
- the acid / oxidizer molar ratio is 1500/1 to 1/2.
- the total concentration of the acid and the oxidizing agent is 10 to 40% by mass.
- the metal-based linear structure in which the acid is a conductive component can be more efficiently removed by the action of the oxidant.
- Preferred examples of the acid include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, and oxalic acid
- preferred examples of the oxidizing agent include hydrogen peroxide. A mixture of these acids and hydrogen peroxide may be used. It can be preferably used.
- the etching time is shortened.
- the etching time can be easily adjusted, which is preferable because the productivity of the patterned conductive laminate is further improved.
- the acid / oxidizing agent molar ratio can be adjusted as appropriate depending on the type of acid and oxidizing agent used, and the concentration of the acid and oxidizing agent described in (IV) below. 1000/1 to 6/1, more preferably 600/1 to 6/1, still more preferably 300/1 to 20/1.
- the concentration of the acid and the oxidizing agent combined may be appropriately adjusted within the above range according to the acid to be used, the kind of the oxidizing agent, and the molar ratio of the acid / oxidizing agent, but preferably 15 to 40. % By mass, more preferably 20 to 40% by mass.
- the etching rate may become extremely fast and the control of etching may be difficult, and the above-mentioned item (II) (in the non-conductive region (B))
- the metal amount of the metal-based linear structure by fluorescent X-rays of the patterned conductive laminate is 0.5 to 0.9 times the amount of metal by fluorescent X-rays of the patterned conductive laminate in the conductive region (A). ) May be difficult, and is preferably 40% by mass or less.
- the concentration of the acid and the oxidizing agent combined can be adjusted by appropriately increasing or decreasing the aforementioned solvent.
- water having good compatibility with acids and oxidizing agents is particularly preferable among the above-mentioned solvents, and methanol, ethanol, 1,2-propanediol and n-butanol can be added in a small amount together with water.
- the pot life (life) of the etching solution can also be adjusted.
- the acid and oxidant components are more likely to act and the etching time can be shortened. Therefore, it is preferable.
- the heating temperature may be appropriately adjusted according to the acid used, the type of oxidizing agent, the molar ratio of acid / oxidizing agent, and the combined concentration of the acid and oxidizing agent, but is preferable because the etching solution temperature is easy to control. Is 40-50 ° C.
- the upper and lower limits of the heating temperature are not particularly limited, but if it is less than 30 ° C, control at a low temperature may be difficult or the action and penetration of the etching solution component may be slow, and preferably 30 ° C or higher. If the temperature exceeds 60 ° C., the acid or oxidant reacts excessively before acting with the metal-based linear structure which is a conductive component, or the acid, oxidant or solvent volatilizes and the concentration of the etching solution changes. In some cases, the pot life (lifetime) of the etching solution may deteriorate.
- the content of the acid or base in the etching paste that can be used in producing the patterned conductive laminate of the present invention is 1 to 80% by mass, more preferably 10 to 70%, in the components excluding the solvent. % By mass, more preferably 20 to 70% by mass.
- the molecular weight of the compound, the amount of acid or base generated, the material and film thickness of the conductive layer to be removed, the heating temperature and the heating time can be appropriately selected.
- the etching paste preferably contains one or more of a solvent, a resin, and a leveling agent in addition to the acid or base component.
- the same solvent as the above-mentioned etching agent can be used, and two or more of them may be mixed and used.
- the content of the solvent is preferably 1% by mass or more in the etching paste, more preferably 30% by mass or more, and further preferably 50% by mass or more. By setting the content of the solvent to 1% by mass or more, the fluidity of the etching paste can be improved and the applicability can be further improved.
- the content of the solvent is preferably 99.9% by mass or less, and more preferably 95% by mass or less. By setting the content of the solvent to 99.9% by mass or less, the fluidity during heating can be maintained in an appropriate range, and a desired pattern can be accurately maintained.
- a resin is contained in the etching paste because non-Newtonian fluidity can be imparted to the etching paste and application to the conductive laminate is facilitated. Moreover, the flow of the etching paste during the heat treatment can be suppressed, and the accuracy of the application position can be improved.
- the resin include polystyrene resin, polyacrylic resin, polyamide resin, polyimide resin, polymethacrylic resin, melamine resin, urethane resin, benzoguanamine resin, phenol resin, silicone resin, and fluorine resin. Two or more of these may be contained.
- hydrophilic resin such as nonionic, anionic, amphoteric, or cationic
- water a basic aqueous solution described later, or an aqueous solution of an organic solvent. Can be reduced.
- Such hydrophilic resins include polydialkylaminoethyl methacrylate, polydialkylaminoethyl acrylate, polydialkylaminoethyl methacrylamide, polydialkylaminoethyl acrylamide, polyepoxyamine, polyamidoamine, dicyandiamide-formalin condensate, polydimethyldiallylammonium chloride.
- Guar hydroxypropyltrimonium chloride polyamine polyamide epichlorohydrin, polyvinylamine, polyallylamine, polyacrylamine, polyquaternium-4, polyquaternium-6, polyquaternium-7, polyquaternium-9, polyquaternium-10, polyquaternium-11, polyquaternium-16, Polyquaternium-28, Polyquaternium-32, Poly Otanium-37, polyquaternium-39, polyquaternium-51, polyquaternium-52, polyquaternium-44, polyquaternium-46, polyquaternium-55, polyquaternium-68, polyvinylpyrrolidone, hydrophilic polyurethane, polyvinyl alcohol, polyethyloxazoline, polyacrylic acid, Gelatin, hydroxyalkyl guar, guar gum, locust bean gum, carrageenan, alginic acid, gum arabic, pectin, xanthan gum, cellulose, ethylcellulose, hydroxypropyl
- hydrophilic resins are preferable because they have high solubility, so that the conductive layer can be removed in a short time in the step of removing the conductive layer by washing with a liquid after the heat treatment.
- polyquaternium-10 has a trimethylammonium group at the end of the side chain, the trimethylammonium group is cationized under acidic conditions, exhibits high solubility due to the action of electrostatic repulsion, and dehydration polycondensation occurs due to heating. Difficult to maintain high solvent solubility even after heating. For this reason, after the heat treatment, the conductive film can be removed in a short time in the step of removing the conductive layer by washing with a liquid, which is preferable.
- the content of the resin in the etching paste is preferably 0.01 to 80% by mass in the components excluding the solvent.
- the resin content is preferably as small as possible within a range in which the non-Newtonian fluidity can be maintained because the heating temperature required for removing the conductive layer can be kept low and the heating time can be shortened.
- the etching paste may contain a leveling agent.
- the leveling agent imparts high penetrating power to the etching paste and facilitates etching of the metal-based linear structure.
- the leveling agent is preferably a compound having a property of reducing the surface tension of the removing agent to less than 50 mN / m.
- it even if it is a compound which has a property which reduces surface tension to less than 50 mN / m, it shall classify
- leveling agents include acrylic compounds such as modified polyacrylates and acrylic resins, vinyl compounds and vinyl resins having double bonds in the molecular skeleton, alkyloxysilyl groups, and / or polysiloxane skeletons.
- leveling agents include a silicone compound, a silicone resin, a fluorine compound having a fluorinated alkyl group and / or a fluorinated phenyl group, and a fluorine resin. Depending on the material and polarity of the surface of the matrix, these can be appropriately selected and used.
- fluorine compounds and fluorine resins having a fluorinated alkyl group and / or a fluorinated phenyl group have a surface tension reducing ability.
- the content of the leveling agent is 0.001 to 10 in the components excluding the solvent from the balance between the surface active ability such as the wettability to the conductive laminate and the leveling property and the content of the acid or base of the obtained coating film. % By mass is preferable, 0.01 to 5% by mass is more preferable, and 0.05 to 3% by mass is even more preferable.
- the etching paste is composed of inorganic fine particles such as titanium oxide, alumina, silica, thixotropic agent that can impart thixotropic properties, antistatic agent, antifoaming agent, viscosity modifier, light resistance stabilizer, weather resistance.
- agents heat-resistant agents, antioxidants, rust inhibitors, slip agents, waxes, mold release agents, compatibilizers, dispersants, dispersion stabilizers, rheology control agents, and the like.
- An example is given and demonstrated about the method of etching the electrically conductive laminated body of this invention using an etching paste.
- An etching paste is applied to a portion to be removed on the conductive layer side of the conductive laminate in the present invention.
- the etching paste can be applied using a known method regardless of the type, size, and shape of the conductive laminate.
- As the coating method for example, screen printing method, dispenser method, stencil printing method, pad printing method, spray coating method, ink jet method, micro gravure printing method, knife coating method, spin coating method, slit coating method, roll coating method, Examples include, but are not limited to, curtain coating and flow coating.
- the conductive laminate coated with the etching paste is heat-treated.
- the heat treatment temperature is preferably lower than the boiling point of components other than the solvent, and is preferably 80 to 200 ° C.
- the heat treatment means can be selected according to the purpose and application, and examples thereof include, but are not limited to, a hot plate, a hot air oven, an infrared oven, and microwave irradiation with a frequency of 300 megahertz to 3 terahertz.
- the etching paste and the dissolved or decomposed material of the conductive component are removed by washing with a liquid to obtain a desired pattern.
- the liquid used in the washing step is preferably one in which the resin contained in the etching paste dissolves, and specifically includes ketones such as acetone, alcohols such as methanol, and organic solvents such as tetrahydrofuran. Examples include, but are not limited to, an aqueous solution containing a solvent, a basic aqueous solution containing sodium hydroxide, ethanolamine, triethylamine and the like, and pure water. In order to wash without residue in the washing step, the liquid may be heated to 25 to 100 ° C. and used.
- Heat-treated patterned conductive laminate The patterned conductive laminate of the present invention is a heat-treated patterned conductive laminate that is further heat-treated at 60 to 150 ° C.
- the heat treatment method can be selected depending on the purpose and application, and examples thereof include, but are not limited to, a hot plate, a hot air oven, an infrared oven, and microwave irradiation with a frequency of 300 megahertz to 3 terahertz.
- the conductive laminate and patterned conductive laminate of the present invention preferably have a total light transmittance of 80% or more based on JIS K7361-1 (1997) when incident from the conductive layer side.
- the touch panel incorporating the conductive laminate and / or the patterned conductive laminate of the present invention as a transparent conductive laminate exhibits excellent transparency, and displays the display provided on the lower layer of the touch panel using the transparent conductive laminate. Vividly recognized.
- the transparency in the present invention means that the total light transmittance based on JIS K7361-1 (1997) when incident from the conductive layer side is 80% or more, preferably 85% or more, more Preferably it is 90% or more.
- a method for increasing the total light transmittance for example, a method for increasing the total light transmittance of a substrate to be used, a method for reducing the film thickness of the conductive layer, and a method in which the conductive layer becomes an optical interference film. And the like.
- a method of increasing the total light transmittance of the base material a method of reducing the thickness of the base material or a method of selecting a base material made of a material having a large total light transmittance can be mentioned.
- a substrate having a high visible light total light transmittance can be suitably used.
- the total light transmittance based on JIS K7361-1 (1997) is 80. % Or more, more preferably 90% or more of transparency.
- Specific examples of a material for a base material (hereinafter simply referred to as a base material) having a total light transmittance of 80% or more based on JIS K7361-1 (1997) include transparent resins and glass. .
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyamide, polyimide, polyphenylene sulfide, aramid, polyethylene, polypropylene, polystyrene, polylactic acid, polyvinyl chloride, polycarbonate, polymethyl methacrylate, and the like.
- Acrylic / methacrylic resins cycloaliphatic acrylic resins, cycloolefin resins, triacetyl cellulose, ABS, polyvinyl acetate, melamine resins, phenolic resins, elemental chlorine (Cl elements) such as polyvinyl chloride and polyvinylidene chloride , Resin containing elemental fluorine (F element), silicone-based resin, and a mixture and / or copolymerization of these resins.
- As glass ordinary soda glass can be used. That.
- these several base materials can also be used in combination.
- a composite substrate such as a substrate in which a resin and glass are combined and a substrate in which two or more kinds of resins are laminated may be used.
- the shape of the base material it may be a film that can be wound up with a thickness of 250 ⁇ m or less, or a substrate with a thickness of more than 250 ⁇ m, as long as it is within the range of the total light transmittance.
- a resin film having a thickness of 250 ⁇ m or less is preferable, a resin film having a thickness of 190 ⁇ m or less, more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
- polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and mixing with PEN and A copolymerized PET film or polypropylene film can be preferably used.
- the surface opposite to the conductive side (the side on which the conductive layer is laminated in the present invention) with respect to the base material is provided with wear resistance, high surface hardness, solvent resistance, stain resistance, etc.
- the provided hard coat treatment may be performed.
- the conductive material (metal-based linear structure) reflects and absorbs light due to the physical properties of the conductive component itself. Therefore, in order to increase the total light transmittance of the transparent conductive laminate including the conductive layer provided on the substrate, the matrix is made of a transparent material and the conductive layer is an optical interference film. It is effective to lower the average reflectance at the side wavelength of 380 to 780 nm to 4% or less, preferably to 3% or less, and more preferably to 2% or less. When the average reflectance is 4% or less, a performance with a total light transmittance of 80% or more when used for touch panel applications can be obtained with good productivity.
- the surface resistance value on the conductive layer side is preferably 1 ⁇ 10 0 ⁇ / ⁇ or more and 1 ⁇ 10 4 ⁇ / ⁇ or less, more preferably. It is 1 ⁇ 10 1 ⁇ / ⁇ or more and 1.5 ⁇ 10 3 or less. By being in this range, it can be preferably used as a conductive laminate for a touch panel. That is, if it is 1 ⁇ 10 0 ⁇ / ⁇ or more, the power consumption can be reduced, and if it is 1 ⁇ 10 4 ⁇ / ⁇ or less, the influence of errors in the coordinate reading of the touch panel can be reduced.
- additives can be added to the base material and / or the conductive layer used in the present invention within a range not impairing the effects of the present invention.
- additives include organic and / or inorganic fine particles, crosslinking agents, flame retardants, flame retardant aids, heat stabilizers, oxidation stabilizers, leveling agents, slip activators, antistatic agents, ultraviolet absorbers, Light stabilizers, nucleating agents, dyes, fillers, dispersants, coupling agents and the like can be used.
- FIG. 1 A schematic cross-sectional view showing an example of the touch panel of the present invention is shown in FIG.
- the touch panel of the present invention is a single or a plurality of patterned conductive laminates (for example, FIG. 1) having a conductive layer having a network structure made of a metal-based linear structure, or further combined with other members. Examples include a resistive touch panel and a capacitive touch panel.
- the conductive layer of the patterned conductive laminate of the present invention includes any one or a combination of metal-based linear structures as indicated by reference numerals 5, 6, 7, and 8 in FIG. , 12 to form a network structure having contacts.
- the touch panel on which the patterned conductive laminate of the present invention is mounted is obtained by, for example, bonding the patterned conductive laminate 13 by bonding with a bonding layer 17 such as an adhesive as shown in FIG.
- a base 18 on the screen side of the touch panel and a hard coat layer 19 laminated on the base on the screen side of the touch panel may be provided.
- Such a touch panel is used, for example, by attaching a lead wire, a drive unit, etc., and incorporating it on the front surface of the liquid crystal display.
- Conductive component structure shape
- conductive component network state Using an insulation resistance meter (manufactured by Sanwa Denki Keiki Co., Ltd., DG6)
- the conductive layer or conductive region is specified. If it is difficult to specify, a low resistivity meter Loresta-EP MCP-T360 (Mitsubishi Chemical Corporation or a ring type probe (URS probe MCP-HTP14 manufactured by Mitsubishi Chemical Corporation) connected to a high resistivity meter ( Similarly, each position of the sample is evaluated using a Hiresta-UP MCP-HT450 manufactured by Mitsubishi Chemical Corporation to identify the conductive region (A) and the non-conductive region (B).
- the surface of the sample on the conductive layer side or the surface of each of the conductive region (A) and the non-conductive region (B) is scanned with a scanning transmission electron microscope (Hitachi High-Technologies Corporation, Hitachi scanning transmission electron microscope HD-2700) or an electric field.
- a scanning transmission electron microscope Hitachi High-Technologies Corporation, Hitachi scanning transmission electron microscope HD-2700
- the acceleration voltage was 3 kV
- the observation magnification and the image contrast were appropriately adjusted, and observation was performed at each magnification.
- the analysis method was first performed by combining the analysis methods of the group (2i), and components that could not be detected by the analysis of the group (2i) were analyzed by combining the analysis methods of the group (2ii).
- the measurement method of each group was applied in order from the one shown above, and the following measurement method was used when the previous method was not possible.
- the above-mentioned ones were also used preferentially, and those that can be measured with fewer combinations were preferentially applied.
- XRD X-ray diffraction
- ND neutron diffraction
- LEED low-energy electron diffraction
- RHEED high-speed reflection electron diffraction
- AAS ultraviolet photoelectron spectroscopy
- UPS ultraviolet photoelectron spectroscopy
- AES Auger electron spectroscopy
- XPS X-ray photoelectron spectroscopy
- XRF X-ray fluorescence elemental analysis
- ICP-AES inductively coupled plasma emission spectroscopy
- EPMA electron microanalysis
- PIXE Charged particle excitation X-ray spectroscopy
- RBS or LEIS low energy ion scattering spectroscopy
- MEIS medium energy ion scattering spectroscopy
- ISS or HEIS high energy ion scattering spectroscopy
- GPC gel permeation chromatography
- TEM-EDX scanning electron microscope-energy dispersive X-ray spectroscopic analysis
- the conductive region (A) of the conductive laminate is specified by the evaluation method described in (1).
- the conductive component was identified by applying the evaluation method (2) above to the conductive component.
- the peak area of the peak corresponding to hydrogen (proton, H) in the carbon-carbon double bond group part of the functional group containing the carbon-carbon double bond group in the obtained 1 H-NMR spectrum (reacted to another bond) Corresponding to the carbon (carbon double bond group which does not exist in the carbon-carbon double bond group itself), and hydrogen (proton, H) of TBE added as an internal standard
- the content ratio of carbon-carbon double bond groups is calculated from the amount of preparative material and TBE concentration of the exfoliated or separated product of the cross-linked layer using the area ratio with the peak area to be obtained, and this is included in the cross-linking unit structure mass content Rate.
- Average surface thickness T of the matrix of the conductive layer or conductive region (A), average diameter r of the metal-based linear structure First of all, the vicinity of the portion of the sample to be observed is embedded in ice, frozen and fixed, and then a rotary microtome manufactured by Nippon Microtome Laboratories Co., Ltd. is used. Cut in any direction.
- the thickness of two places (reference numeral 21) each having an average diameter r separated from both ends of the cross section of the metal-based linear structure per field of view is calculated, the average value is calculated, and the surface thickness of the conductive layer or matrix of the conductive region t was determined. Similarly, the surface thickness t was obtained for a total of 10 fields of view, and the average value was defined as the surface average thickness T of the conductive layer or conductive region matrix. In this measurement, a magnification that can secure three significant digits was selected, and in the calculation, the value was obtained by rounding off the fourth digit. (6ii) Average diameter r of metallic linear structure For one specimen, images including a cross section of a metal-based linear structure obtained from different parts were prepared for 10 visual fields.
- the cross-sectional diameters of all the metal-based linear structures within 10 fields of view were determined, and the total average value was defined as the average diameter r.
- the average diameter r was defined as the average diameter r.
- a magnification that can secure three significant digits was selected, and in the calculation, the value was obtained by rounding off the fourth digit.
- the shortest diameter was adopted as the diameter of each cross section.
- each of the conductive region (A) and non-conductive region (B) was measured at five locations, and the peak intensity for each. The average value of was calculated. Subsequently, the ratio of the metal amount was calculated by dividing the average value of the peak intensity of the non-conductive region (B) by the average value of the peak intensity of the conductive region (A).
- Pattern treatment (8i) Fabrication of patterned conductive laminate by etching solution The laminates of each Example and Comparative Example and a dry film resist film (Sunfort SPG-152 manufactured by Asahi Kasei Co., Ltd.) at 110 ° C. Thermal lamination was performed, and further, exposure processing was performed using the pattern mask shown in FIG. 5, and then development processing was performed using a 3% by mass sodium carbonate aqueous solution to prepare a resist patterning sample. Next, the resist patterning sample was etched by immersing it under the conditions of each example and comparative example using an etching solution described later, to obtain a sample of the patterned conductive laminate. In the obtained sample of the patterned conductive laminate, the portion corresponding to reference numeral 27 in FIG.
- the sample was drained with compressed air and dried in an infrared oven at 80 ° C. for 1 minute to obtain a sample of the patterned conductive laminate.
- the portion corresponding to reference numeral 27 in FIG. 5 is a non-patterned portion (etching process), and the portion corresponding to reference numeral 28 in FIG. .
- Insulation test Using an insulation resistance meter (manufactured by Sanwa Denki Keiki Co., Ltd., DG6) for the etched portion, the presence or absence of conduction was confirmed. The resistance value between terminals was 25 V, and 40 M ⁇ or more was determined to be acceptable (insulation was good).
- the boundary is not visible 4: The boundary is slightly visible 3: The thin boundary is visible 2: The boundary is visible 1: The boundary is clearly visible (8v) Processing time (etching time) The etching processing time (immersion time) in (8i) or (8ii) was defined as the processing time. Note that the minimum time during which the etched portion in the test (8iii) was insulated was defined as the etching processing time. Considering the mass productivity of pattern processing, the case where the etching processing time was within 5 minutes was accepted and the case requiring a longer time was rejected. (8vi) Resistance to pattern processing (existence of abnormality (change in appearance) of conductive layer) (8i) or (8ii) The portion corresponding to FIG.
- the haze in the thickness direction of the patterned conductive laminate can be The region (A) was measured by making light incident from the conductive layer side, and the non-conductive region (B) was measured from the dispersion layer side. For 5 samples, the conductive region (A) haze value Hz 1 and the non-conductive region (B) haze value Hz 2 were measured.
- Hz 1 / Hz 2 obtained by dividing the value of Hz 1 by the value of Hz 2 per sample was obtained, and the average value of 5 samples was calculated, which was defined as Hz 1 / Hz 2 .
- a magnification that can secure two significant digits was selected, and in the calculation, the third digit was rounded off to obtain a value.
- Substrate A Polyethylene terephthalate film ("Lumirror” (registered trademark) U48 manufactured by Toray Industries, Inc.) ⁇ Thickness 125 ⁇ m
- Base material B Polyethylene terephthalate film ("Lumirror” (registered trademark) U48 manufactured by Toray Industries, Inc.) ⁇ Thickness 50 ⁇ m ⁇ Conductive material>
- Each conductive material used in each example and comparative example is shown below.
- Conductive material A “silver nanowire” A silver nanowire conductive material (short axis: 50 to 100 nm, long axis: 20 to 40 ⁇ m) obtained by the method described in Example 1 (synthesis of silver nanowire) of JP-T-2009-505358.
- Conductive material B Copper nanowire” Copper nanowire conductive material (short axis: 10 to 20 nm, long axis: 1 to 100 ⁇ m) obtained by the method described in Production Example 1 and Example 2 of JP-A-2002-266007.
- Conductive material C "Silver nanowire / copper nanowire mixed conductive material" A silver nanowire / copper nanowire mixed conductive material obtained by mixing the conductive material A “silver nanowire” and the conductive material B “copper nanowire” in a mass ratio of 6: 4.
- Silver nanoparticle conductive material A silver nanoparticle conductive material (particle size: 9 to 12 nm) obtained by the method described in Examples ((2) Preparation of silver nanocolloid coating solution) of JP-A-2001-243841.
- Conductive material E “Acicular silicon dioxide-based / ATO (antimony-doped tin oxide) composite compound conductive material” Dentor TM100 (short axis: 700 to 900 nm, long axis: 15 to 25 ⁇ m) manufactured by Otsuka Chemical Co., Ltd. ⁇ Matrix> The materials (matrix materials, additives) used to prepare the compositions for forming the matrix of each Example and Comparative Example are shown below.
- Matrix material A An acrylic composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as an acryloyl group (Flucure HC-6, manufactured by Soken Chemical Co., Ltd., solid content concentration 51 mass%).
- Matrix material B Acrylic / urethane acrylate mixed composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as an acryloyl group (Forseed No. 420C, China Paint Co., Ltd., solid content concentration 50 mass%).
- Matrix material C A methacrylic composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as a methacryloyl group (Kyoeisha Chemical Co., Ltd. Light Ester TMP, solid concentration 100 mass%).
- Matrix material D A urethane acrylate composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as an acryloyl group (Negami Kogyo Co., Ltd. Art Resin UN-904M, solid content concentration 80 mass%).
- Matrix material E A urethane acrylate composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as an acryloyl group (AT-600 manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 100% by mass).
- Matrix material F A polyfunctional acrylic / methacrylate mixed composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as acryloyl group and methacryloyl group (Flucure HCE-032, manufactured by Soken Chemical Co., Ltd., solid) (Minute concentration 51.4% by mass).
- Matrix material G A methacrylic polymer obtained by polymerization as described below (solid content concentration: 100% by mass).
- a mixture of a compound having one carbon-carbon double bond group that contributes to the polymerization reaction as a methacryloyl group and Methyl Methacrylate also known as methyl methacrylate, 2-methyl-2-methyl propenoate, abbreviated MMA
- Methyl Methacrylate also known as methyl methacrylate, 2-methyl-2-methyl propenoate, abbreviated MMA
- MMA Methyl Methacrylate
- Matrix material H An acrylic composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as an acryloyl group (Kyoeisha Chemical Co., Ltd. Light Acrylate BP-10EA, solid content concentration 100 mass%).
- Matrix material Polyester-modified silicone-based (terminal hydroxyl group (hydroxyl group) polyester-modified dimethylpolysiloxane) composition (Shin-Etsu Chemical) X-22-8300, solid concentration 25% by mass).
- Matrix material J An acrylic composition containing a compound having two or more carbon-carbon double bond groups contributing to the polymerization reaction as an acryloyl group (light acrylate PE-4A manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 100% by mass).
- Treatment agent 1 1705.8 parts by mass of hydrochloric acid (special grade manufactured by Sasaki Chemical Co., Ltd., hydrogen chloride 35% by mass) and 24.8 parts by mass of nitric acid (special grade manufactured by Sasaki Chemical Co., Ltd., 60% by mass) and 135.8 masses of pure water
- Treatment agent 2 (etching solution) Pure water in 220 parts by mass of hydrochloric acid (special grade manufactured by Sasaki Chemical Co., Ltd., hydrogen chloride 35% by mass) and 0.34 part by mass of hydrogen peroxide (special grade manufactured by Kanto Chemical Co., Ltd., 30% by mass hydrogen peroxide) Add 122.34 parts by mass, and prepare an etching solution having a concentration of 22.5% by mass of hydrogen chloride and hydrogen peroxide in a mass ratio of 750.7: 1 (molar ratio 700: 1) and hydrogen chloride and hydrogen peroxide combined. did.
- Treatment agent 3 (etching solution) Pure water in 220 parts by mass of hydrochloric acid (special grade manufactured by Sasaki Chemical Co., Ltd., hydrogen chloride 35% by mass) and 0.48 part by mass of hydrogen peroxide (special grade manufactured by Kanto Chemical Co., Ltd., 30% by mass hydrogen peroxide) Add 122.38 parts by mass, and prepare an etching solution with a concentration of hydrogen chloride and hydrogen peroxide of 536.2: 1 (molar ratio of 500: 1) and a concentration of 22.5% by mass of hydrogen chloride and hydrogen peroxide. did.
- Treatment agent 4 (etching solution) Pure water in 220 parts by mass of hydrochloric acid (special grade manufactured by Sasaki Chemical Co., Ltd., hydrogen chloride 35% by mass) and 2.39 parts by mass of hydrogen peroxide (special grade manufactured by Kanto Chemical Co., Ltd., 30% by mass hydrogen peroxide) Add 123.02 parts by mass and prepare an etching solution with a concentration of hydrogen chloride and hydrogen peroxide of 107.2: 1 (molar ratio of 100: 1) and a concentration of 22.5% by mass of hydrogen chloride and hydrogen peroxide. did.
- hydrochloric acid special grade manufactured by Sasaki Chemical Co., Ltd., hydrogen chloride 35% by mass
- hydrogen peroxide special grade manufactured by Kanto Chemical Co., Ltd., 30% by mass hydrogen peroxide
- Treatment agent 5 (etching solution) Pure water in 150 parts by mass of hydrochloric acid (special grade manufactured by Sasaki Chemical Co., Ltd., hydrogen chloride 35% by mass) and 40.7 parts by mass of hydrogen peroxide (special grade manufactured by Kanto Chemical Co., Ltd., 30% by mass hydrogen peroxide) 179.07 parts by mass was added, and a mass ratio of hydrogen chloride and hydrogen peroxide of 4.3: 1 (molar ratio of 4: 1) and an etching solution having a concentration of 17.5% by mass of hydrogen chloride and hydrogen peroxide were prepared. did.
- Treatment agent 6 100 parts by mass of hydrochloric acid (special grade manufactured by Sasaki Chemical Co., Ltd., hydrogen chloride 35% by mass) and 27.13 parts by mass of hydrogen peroxide (special grade manufactured by Kanto Chemical Co., Ltd., 30% by mass hydrogen peroxide) Add 217.98 parts by mass, and prepare an etching solution with a concentration of hydrogen chloride and hydrogen peroxide of 4.3: 1 (molar ratio of 4: 1) and a concentration of 12.5% by mass of hydrogen chloride and hydrogen peroxide. did.
- Treatment agent 7 (etching paste)
- 70 g of ethylene glycol manufactured by Wako Pure Chemical Industries, Ltd.
- 30 g of N, N′-dimethylpropyleneurea (manufactured by Tokyo Chemical Industry Co., Ltd.)
- 5 g of sodium nitrate are mixed and mixed with polyquaternium-10.
- 5 g manufactured by ISP Japan
- 0.5 g of thixatrol MAX manufactured by Elementis Japan, polyester amide derivative
- etching paste After removing the container from the oil bath and allowing to cool to room temperature, 0.5 g of a leveling agent (DIC Corporation, F-555) and p-toluenesulfonic acid monohydrate (Tokyo Chemical Industry Co., Ltd.) 10 g of boiling point under atmospheric pressure: 103-106 ° C. was added and stirred for 15 minutes. The resulting solution was filtered through a membrane filter (Omnipore membrane PTFE manufactured by Millipore Corporation, nominal 0.45 ⁇ m diameter) to prepare an etching paste.
- a leveling agent DIRC Corporation, F-555
- p-toluenesulfonic acid monohydrate Tokyo Chemical Industry Co., Ltd.
- acrylic resin Form GS-1000 manufactured by Soken Chemical Co., Ltd., solid content concentration 30% by mass
- This needle-shaped silicon dioxide-based / ATO (antimony-doped tin oxide) composite compound dispersion was applied to one side of the substrate A using a slit die coat equipped with a shim made of sus (sim thickness 100 ⁇ m) at 120 ° C.
- the conductive component was laminated and dried for 5 minutes.
- the matrix-forming composition was applied using a slit die coat in which a material having a sus material (shim thickness 50 ⁇ m) was mounted on the surface of the base material on which the conductive component was laminated, and the coating composition was formed at 120 ° C. for 2 minutes. After drying, ultraviolet rays were irradiated at 180 mJ / cm 2 and cured to form a conductive layer having an average surface thickness T of the matrix of 950 nm to obtain a conductive laminate.
- a sus material shim thickness 50 ⁇ m
- Pattern processing (8i) Preparation of patterned conductive laminate by etching solution, and 7 in the etching solution of treatment agent 1 heated to 40 ° C. A sample of the patterned conductive laminate was produced by immersion for etching and etching.
- Example 2 Using the conductive material A, a silver nanowire dispersion was obtained by the method disclosed in Example 8 (nanowire dispersion) of JP-T-2009-505358. A dispersion medium was added to the silver nanowire dispersion so that the concentration of silver nanowires was 0.05% by mass to prepare a silver nanowire dispersion coating liquid. This silver nanowire-dispersed coating liquid was applied to one side of the substrate A using a slit die coat equipped with a shim made of sus (sim thickness 50 ⁇ m) and dried at 120 ° C. for 2 minutes to form a conductive component.
- the matrix-forming composition was applied using a slit die coat in which a shim made of sus (material thickness of 50 ⁇ m) was mounted on the surface of the base material on which the conductive component was laminated, and the composition was formed at 120 ° C. for 2 minutes. After drying, ultraviolet rays were irradiated at 80 mJ / cm 2 and cured to form a conductive layer having an average surface thickness T of the matrix of 730 nm to obtain a conductive laminate.
- a shim made of sus material thickness of 50 ⁇ m
- the conductive laminate was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersing in an etching solution of treatment agent 1 heated to 40 ° C. for 5 minutes to prepare a patterned conductive laminate sample. .
- Example 3 A composition prepared from 76.5 g of matrix material E, 3.60 g of additive A, 3.60 g of additive B, 1400 g of ethyl acetate and 1400 g of ethyl acetate was used as a composition for forming a matrix, and a conductive layer having a surface average thickness T of 600 nm was formed. Except for the above, a conductive laminate was obtained in the same manner as in Example 2, and a sample of the patterned conductive laminate was produced.
- Example 4 The composition for forming the matrix was prepared from 95.6 g of matrix material D, 3.60 g of additive A, 3.60 g of additive B, and 2140 g of ethyl acetate, and a conductive layer having a surface average thickness T of 400 nm was formed. Except for the above, a conductive laminate was obtained in the same manner as in Example 2, and a sample of the patterned conductive laminate was produced.
- Example 5 The composition for forming the matrix was prepared from 76.5 g of matrix material C, 3.60 g of additive A, 3.60 g of additive B, and 2900 g of ethyl acetate, and further cured by irradiating with 130 mJ / cm 2 of ultraviolet rays to form a matrix surface
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having an average thickness T of 300 nm was formed.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 2 except that the time for the etching treatment was 4 minutes.
- Example 6 The composition for forming the matrix was prepared from 76.5 g of matrix material C, 3.60 g of additive A, 3.60 g of additive B, 3230 g of ethyl acetate, and further cured by irradiation with ultraviolet rays of 130 mJ / cm 2 to form a matrix surface.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having an average thickness T of 270 nm was formed.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 2 except that the etching time was 3 minutes.
- Example 7 Except that a composition for forming a matrix was prepared from 150 g of matrix material A, 3.60 g of additive A, 3.60 g of additive B, 3430 g of ethyl acetate, and a conductive layer having a surface average thickness T of 250 nm was formed. A conductive laminate was obtained in the same manner as Example 2. Next, a sample of the patterned conductive laminate was produced in the same manner as in Example 6.
- Example 8 The composition for forming the matrix was prepared from 58.2 g of matrix material A, 4.7 g of matrix material B, 1.56 g of additive A, 1.56 g of additive B, 1500 g of ethyl acetate, and an average surface thickness T of the matrix of 250 nm.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer was formed.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 6.
- Example 9 As a composition for forming a matrix, a material prepared from 58.2 g of matrix material A, 4.7 g of matrix material B, 1.56 g of additive A, 1.56 g of additive B, 1650 g of ethyl acetate, and 1650 g of ethyl acetate was used. A conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer was formed. Next, a sample of the patterned conductive laminate was produced in the same manner as in Example 2 except that the etching treatment time was 2 minutes.
- Example 10 As a composition for forming a matrix, a material prepared from 58.2 g of matrix material A, 4.7 g of matrix material B, 1.56 g of additive A, 1.56 g of additive B, 2060 g of ethyl acetate, and an average surface thickness T of the matrix of 180 nm A conductive laminate was obtained in the same manner as in Example 2 except that the conductive layer was formed. Next, a sample of the patterned conductive laminate was produced in the same manner as in Example 2 except that the etching process was performed for 1 minute.
- Matrix material F149g as compositions for matrix formation, additives A3.60G, additives B3.60G, use was prepared from ethyl acetate 4820G, and further ultraviolet 180 mJ / cm 2 irradiated to be cured, the surface average thickness of the matrix A conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having a T of 180 nm was formed. Next, a sample of the patterned conductive laminate was produced in the same manner as in Example 6.
- Example 12 A conductive laminate was obtained in the same manner as in Example 10 except that the conductive layer having an average surface thickness T of 180 nm was formed by irradiating with 130 mJ / cm 2 of ultraviolet rays. Next, etching was performed for 1 minute in the same manner as in Example 10 to prepare a sample of the patterned conductive laminate.
- Example 13 As a composition for forming a matrix, a material prepared from 58.2 g of matrix material A, 4.7 g of matrix material B, 1.56 g of additive A, 1.56 g of additive B, 2710 g of ethyl acetate and 2710 g of ethyl acetate was further irradiated with 180 mJ / cm 2 of ultraviolet rays.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having a matrix average surface thickness T of 140 nm was formed by curing.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 9.
- Example 14 As a composition for forming a matrix, a composition prepared from 58.2 g of matrix material A, 4.7 g of matrix material B, 1.56 g of additive A, 1.56 g of additive B, 3220 g of ethyl acetate, and 3220 g of ethyl acetate was further irradiated with ultraviolet rays at 180 mJ / cm 2.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having a matrix surface average thickness T of 120 nm was formed by curing.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 10.
- Example 15 A conductive component was laminated on one side of the substrate A in the same manner as in Example 2 except that the conductive material B was used.
- the matrix material A15g as compositions for matrix formation, additives A0.24G, additives B0.24G, additives C0.24G, use was prepared from ethyl acetate 1178G, ultraviolet 180 mJ / cm 2 irradiated to cure
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having a surface average thickness T of 75 nm was formed.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 6.
- Example 16 A conductive component was laminated and formed in the same manner as in Example 2 except that the conductive material C was used. Subsequently, the matrix was laminated
- Example 17 A conductive laminate was obtained in the same manner as in Example 10 except that the substrate B was used, and a sample of the patterned conductive laminate was produced.
- Example 18 The conductive laminate formed in Example 12 was subjected to an etching process under the conditions of Example 9 to produce a patterned conductive laminate sample.
- Example 19 A sample of the patterned conductive laminate was prepared in the same manner as in Example 18 except that the etching treatment was performed by immersing in the etching solution of treatment agent 1 heated to 50 ° C. for 1 minute.
- Example 20 The conductive laminate formed in Example 8 was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersion for 2.5 minutes in an etching solution of treatment agent 2 heated to 40 ° C. A sample of the laminate was produced.
- Example 21 The conductive laminate formed in Example 8 was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersion for 2 minutes in an etching solution of treatment agent 3 heated to 40 ° C. A sample of was prepared.
- Example 22 The conductive laminate formed in Example 8 was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersing in an etching solution of treatment agent 4 heated to 40 ° C. for 0.5 minutes to form a patterned conductive material. A sample of the laminate was prepared.
- Example 23 The conductive laminate formed in Example 8 was used as a resist patterning sample in the same manner as in Example 1.
- the patterned conductive laminate was etched by immersing in an etching solution of treatment agent 5 heated to 40 ° C. for 1 minute. A sample of was prepared.
- Example 24 The conductive laminate formed in Example 8 was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersion for 2 minutes in an etching solution of treatment agent 6 heated to 40 ° C. A sample was prepared.
- Example 25 The conductive laminate formed in Example 8 was processed by the method described in (8ii) above using the etching paste of the treating agent 7 to prepare a sample of the patterned conductive laminate.
- Example 26 A sample of the patterned conductive laminate produced in Example 19 was heat-treated at 130 ° C. for 3 minutes using a hot air oven (Espec Corp. thermostatic safety oven with safety door SPHH-201) for 3 minutes. A sample of the conductive conductive laminate was produced.
- a hot air oven Espec Corp. thermostatic safety oven with safety door SPHH-201
- Example 27 A sample of the heat-treated patterned conductive laminate was produced in the same manner as in Example 26 except that the heat treatment was performed at 60 ° C. for 10 minutes.
- Example 28 A sample of the patterned conductive laminate produced in Example 25 was heat-treated at 130 ° C. for 5 minutes using a hot air oven (Espec Corp., constant temperature safety oven with safety door SPHH-201), and a heat treatment pattern A sample of the conductive laminate was prepared.
- a hot air oven Espec Corp., constant temperature safety oven with safety door SPHH-201
- Example 29 The composition for forming the matrix was prepared from 76.5 g of matrix material C, 3.60 g of additive A, 3.60 g of additive B, 3500 g of ethyl acetate, and further cured by irradiation with 250 mJ / cm 2 of ultraviolet rays to form a matrix surface.
- a conductive laminate of the present invention was obtained in the same manner as in Example 2 except that a conductive layer having an average thickness T of 250 nm was formed.
- Example 30 A composition prepared from 58.2 g of matrix material A, 4.7 g of matrix material B, 1.56 g of additive A, 1.56 g of additive B, 1.56 g of additive B and 2710 g of ethyl acetate was used as a composition for forming a matrix, and further irradiated with 130 mJ / cm 2 of ultraviolet rays.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having a matrix surface average thickness T of 140 nm was formed by curing.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 9.
- Example 31 As a composition for forming a matrix, a material prepared from 58.2 g of matrix material A, 4.7 g of matrix material B, 1.56 g of additive A, 1.56 g of additive B, 3220 g of ethyl acetate, and 3220 g of ethyl acetate was further irradiated with 250 mJ / cm 2 of ultraviolet rays.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having a matrix surface average thickness T of 120 nm was formed by curing.
- a sample of the patterned conductive laminate was produced in the same manner as in Example 10.
- Example 32 A conductive component was laminated on one side of the substrate A in the same manner as in Example 2 except that the conductive material B was used.
- a matrix composition prepared from 15 g of matrix material A, 0.24 g of additive A, 0.24 g of additive B, 0.24 g of additive C, and 1178 g of ethyl acetate was used and cured by irradiation with 250 mJ / cm 2 of ultraviolet rays.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having a surface average thickness T of 75 nm was formed.
- a patterned sample was produced in the same manner as in Example 6.
- Example 2 A conductive material was applied in the same manner as in Example 2 except that the concentration of the silver nanowire-dispersed coating liquid (conductive composition) was 0.01% by mass. Silver nanowires did not form a network structure in the conductive material coating layer obtained under these conditions.
- Example 7 a laminated body having an average surface thickness T of the matrix of 250 nm was obtained. Since the laminated body of this comparative example did not show electroconductivity, pattern processing was not implemented.
- Example 4 Using the conductive material D, a silver nanoparticle dispersion liquid was obtained by the method described in Example ((2) Preparation of silver nanocolloid coating solution) in JP-A-2001-243841, and JP-A-2001-243841 The silver nanoparticle dispersion liquid was applied to one side of the substrate A by the method disclosed in [Example 1], and a conductive component was laminated. Subsequently, the matrix was apply
- the conductive laminate thus obtained was used as a resist patterning sample in the same manner as in Example 1, and was immersed in an etching solution of treatment agent 1 heated to 40 ° C. for 15 minutes for etching treatment. A sample was made. In addition, the sample of the patterned electrically conductive laminate could not be produced when the immersion time in the etching solution was 14 minutes (insulation test failed).
- the conductive laminate of this comparative example had a metal content ratio of 0.39, which failed the pattern non-visibility test. Furthermore, the etching processing time was 15 minutes, and the processing time was extremely long.
- Example 5 From the composition of the compound containing no carbon-carbon double bond group that contributes to the polymerization reaction prepared by laminating and forming conductive components in the same manner as in Example 2, mixing 200 g of matrix material I and 1970 g of ethyl acetate and stirring. A conductive laminate was obtained in the same manner as in Example 2 except that the matrix forming composition was used and a conductive layer having an average surface thickness T of the matrix of 250 nm was formed. This conductive laminate had a surface resistance value of 165 ⁇ / ⁇ and a total light transmittance of 91.2%. Next, when a sample of the patterned conductive laminate was prepared in the same manner as in Example 2, the conductive layer was completely peeled off at the stage of the etching treatment, and the patterned conductive laminate sample could not be obtained. .
- Comparative Example 6 A composition for forming a matrix comprising a composition of a compound having a carbon-carbon double bond group contributing to one polymerization reaction, using a composition prepared from 50 g of matrix material G and 2120 g of ethyl acetate as a composition for forming a matrix Except for the above, a conductive laminate was obtained in the same manner as in Comparative Example 5.
- the matrix of this conductive layer had a cross-linking unit structure mass content of 24% by mass and a stretching vibration peak intensity ratio ⁇ 1 / ⁇ 2 of 0.26, but contributed to the polymerization reaction. Since the compound having a compound is composed of one compound, a crosslinked structure is not formed.
- This conductive laminate had a surface resistance value of 159 ⁇ / ⁇ and a total light transmittance of 91.0%.
- composition for forming a matrix a material prepared from 76.5 g of matrix material H, 3.60 g of additive A, 3.60 g of additive B, 1400 g of ethyl acetate, and further irradiated with ultraviolet rays at 250 mJ / cm 2 , the surface average thickness of the matrix A conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having T of 600 nm was formed.
- the matrix of the conductive layer was composed of two compounds having a carbon-carbon double bond group contributing to the polymerization reaction, and the peak intensity ratio ⁇ 1 / ⁇ 2 of stretching vibration was 0.20.
- the mass content was 6% by mass.
- This conductive laminate had a surface resistance value of 608 ⁇ / ⁇ and a total light transmittance of 87.1%.
- composition for forming the matrix was prepared from a matrix material J25.5 g, additive A 1.2 g, additive B 1.2 g, and ethyl acetate 1630 g, and further cured by irradiation with 250 mJ / cm 2 of ultraviolet rays to form a matrix surface.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having an average thickness T of 180 nm was formed.
- the matrix of this conductive layer had a cross-linking unit structure mass content of 27% by mass.
- the conductive laminate was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersion for 12 minutes in an etching solution of treatment agent 1 heated to 40 ° C., thereby preparing a patterned conductive laminate sample. . It should be noted that a sample of the patterned conductive laminate could not be produced when the immersion time in the etching solution was 11 minutes (insulation test failed).
- the conductive laminate of this comparative example had a metal content ratio of 0.39, which failed the pattern non-visibility test. Furthermore, the etching processing time was 12 minutes, and the processing time was extremely long.
- Example 9 The same silver nanowire dispersion coating liquid (conductive composition) as used in Example 2 was applied to one side on the substrate A using a slit die coat equipped with a thick shim (shim thickness 150 ⁇ m) made of sus. Coating and drying at 120 ° C. for 5 minutes were performed to form a conductive component.
- composition prepared from 153 g of matrix material E, 7.20 g of additive A, 7.20 g of additive B, 1460 g of ethyl acetate, and 1460 g of ethyl acetate was used as a composition for forming a matrix.
- a laminate was obtained in the same manner as in Example 2 except that the layer to be formed was formed.
- the conductive laminate was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersion for 35 minutes in an etching solution of treatment agent 1 heated to 40 ° C. However, a sample of the patterned conductive laminate could be produced. There was no (insulation test failed), so no further etching treatment was performed.
- the pattern invisibility test was performed on the sample etched for 35 minutes, the pattern invisibility was most determined to be 5 but the portion corresponding to FIG.
- the value of the ratio of the metal amount of the portion corresponding to the reference numeral 28 (pattern processing (etching processing) processing portion) is 0.95 when the pattern processing (etching processing unprocessed portion) is calculated to be 0.95. ) Has hardly progressed.
- Example 10 A conductive laminate was obtained in the same manner as in Example 6 except that the ultraviolet ray was irradiated at 320 mJ / cm 2 and cured. The matrix of this conductive layer had a peak intensity ratio ⁇ 1 / ⁇ 2 value of 0.18 for stretching vibration.
- the conductive laminate was used as a resist patterning sample in the same manner as in Example 1, and was etched by immersing in an etching solution of treatment agent 1 heated to 40 ° C. for 30 minutes to prepare a patterned conductive laminate sample. . It should be noted that a sample of the patterned conductive laminate could not be produced when the immersion time in the etching solution was 29 minutes (insulation test failed).
- the conductive laminate of this comparative example had a metal amount ratio of 0.47, and the pattern non-visibility test was rejected. Furthermore, the etching processing time was 30 minutes, and the processing time was extremely long.
- the composition for forming the matrix was prepared from a matrix material J25.5 g, additive A 1.2 g, additive B 1.2 g, and ethyl acetate 1630 g, and further cured by irradiation with 250 mJ / cm 2 of ultraviolet rays to form a matrix surface.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having an average thickness T of 180 nm was formed.
- the matrix of this conductive layer had a cross-linking unit structure mass content of 27% by mass.
- the conductive laminate was used as a resist patterning sample by the above-described method, and immersed in an etching solution heated to 40 ° C. for 12 minutes for etching treatment to prepare a patterned sample. It should be noted that a sample of the patterned conductive laminate could not be produced when the immersion time in the etching solution was 11 minutes (insulation test failed).
- the conductive laminate of this comparative example failed in the etching process time of 12 minutes, and the process time was extremely long.
- composition for forming the matrix was prepared from 15 g of matrix material A, 0.36 g of additive A, 0.36 g of additive B, and 1480 g of ethyl acetate, and further cured by irradiation with ultraviolet rays at 250 mJ / cm 2 to obtain the average surface thickness of the matrix.
- a conductive laminate was obtained in the same manner as in Example 2 except that a conductive layer having T of 60 nm was formed.
- composition comprising a matrix material E153g, additive A 7.20g, additive B 7.20g, and ethyl acetate 1460g as a composition for forming a matrix, and a layer comprising a conductive material and a matrix having a matrix surface average thickness T of 1100 nm A laminate was obtained in the same manner as in Example 2 except that was formed.
- the conductive laminate of the present invention can be suitably used for touch panel applications because the processing time for forming a pattern on an electrode member that uses the conductive laminate for a touch panel or the like can be shortened. Furthermore, the conductive laminate of the present invention can be suitably used for display members such as liquid crystal displays, organic electroluminescence (organic EL), and electronic paper, and electrode members used in solar cell modules and the like.
- display members such as liquid crystal displays, organic electroluminescence (organic EL), and electronic paper, and electrode members used in solar cell modules and the like.
- Substrate 2 Conductive region (A) observed from a direction perpendicular to the laminated surface 3: Non-conductive region (B) observed from a direction perpendicular to the laminated surface 4: Conductive region (A) observed from a direction perpendicular to the laminated surface 5: Single fibrous conductor (an example of a metal-based linear structure) 6: An aggregate of fibrous conductors (an example of a metal-based linear structure) 7: Nanowire (an example of a metal-based linear structure) 8: Needle-like conductor such as whisker (an example of a metal-based linear structure) 9: Matrix 10: Contact formed by overlapping of fibrous conductors 11: Contact formed by overlapping of nanowires 12: Contact formed by overlapping of needle-like conductors such as whiskers 13: Patterned conductivity incorporated in a touch panel Laminate 14: Base material of patterned conductive laminate incorporated in touch panel 15: Conductive region (A) of patterned conductive laminate incorporated in touch panel 16: Non-
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Position Input By Displaying (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
[1]基材の少なくとも片面に、金属系線状構造体からなるネットワーク構造を有する導電成分と、マトリックスとからなる導電層を配置した導電積層体であって、該マトリックスが下記(i)~(iv)を満たす導電積層体。
(i)重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物が重合反応した構造を含む高分子から構成される。
(ii)マトリックスの全質量に対する炭素-炭素二重結合基由来の構造の炭素-炭素二重結合基の単位構造(>C=C<:式量24)部分の質量含有率が9~26質量%である。
(iii)FT-IR-ATR法にて求めた前記マトリックスの炭素-炭素二重結合の伸縮振動のピーク強度ν1と炭素-水素単結合(C-H)の伸縮振動のピーク強度ν2が、ν1/ν2≧0.2の関係を満たす。
(iv)前記導電層のマトリックスの表面平均厚みTが70~1000nmである。
[2]前記金属系線状構造体の平均径rと前記導電層のマトリックスの表面平均厚みTが、1.8≦T/r≦10の関係を満たす前記[1]に記載の導電積層体。
[3]前記金属系線状構造体が、銀ナノワイヤーである前記[1]または[2]に記載の導電積層体。
[4]基材の少なくとも片側に、マトリックス中にネットワーク構造を有する金属系線状構造体を含む導電領域(A)と、マトリックス中に孤立分散した金属系分散体を含む非導電領域(B)とを面内に有するパターン化導電層を有し、下記(I)および(II)を満たすパターン化導電積層体。
(I)前記マトリックスは、重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物が重合反応した構造を含む高分子で構成され、かつ、前記マトリックスの全質量に対する炭素-炭素二重結合基由来の構造の炭素-炭素二重結合基の単位構造(>C=C<:式量24)部分の質量含有率が9~26質量%であり、FT-IR-ATR法にて求めた炭素-炭素二重結合の伸縮振動のピーク強度ν1と炭素-水素単結合(C-H)の伸縮振動のピーク強度ν2の関係が、ν1/ν2≧0.2である。
(II)前記非導電領域(B)において蛍光X線により定量される金属成分の量が、前記導電領域(A)において蛍光X線により定量される金属成分の量の0.5~0.9倍である。
[5]前記導電領域(A)における前記パターン化導電積層体のヘイズ値Hz1と、前記非導電領域(B)における前記パターン化導電積層体のヘイズ値Hz2との関係が、0.8≦Hz1/Hz2≦1.5を満たす前記[4]に記載のパターン化導電積層体。
[6]基材の少なくとも片側に、マトリックス中にネットワーク構造を有する金属系線状構造体を含む導電層を有する導電積層体の導電層上にパターンに応じたエッチング防止層を積層すると共に、エッチング防止層の非積層領域を酸および酸化剤を含み下記(III)および(IV)を満たすエッチング液を用いて、30~60℃で加熱して非導電領域を形成する前記[4]または[5]に記載のパターン化導電積層体の製造方法。
(III)酸/酸化剤のモル比率が1500/1~1/2である。
(IV)酸と酸化剤を合わせた濃度が10~40質量%である。
[7]前記[4]または[5]に記載のパターン化導電積層体を、60~150℃にて30秒~10分間加熱処理する加熱処理パターン化導電積層体の製造方法。
[8]前記[1]~[3]に記載の導電積層体を用いてなるタッチパネル。
[9]前記[4]または[5]に記載のパターン化導電積層体、前記[6]の製造方法により得たパターン化導電積層体、前記[7]に記載の製造方法にて得た加熱処理パターン化導電積層体のいずれかを用いてなるタッチパネル。
本発明の導電積層体は、基材の少なくとも片面に、金属系線状構造体からなるネットワーク構造を有する導電成分と、マトリックスとからなる導電層を配置した導電積層体であって、該マトリックスが下記(i)~(iv)を満たすものである。
(i)重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物が重合反応した構造を含む高分子から構成される。
(ii)マトリックスの全質量に対する炭素-炭素二重結合基由来の構造の炭素-炭素二重結合基の単位構造(>C=C<:式量24)部分の質量含有率が9~26質量%である。
(iii)FT-IR-ATR法にて求めた前記マトリックスの炭素-炭素二重結合の伸縮振動のピーク強度ν1と炭素-水素単結合(C-H)の伸縮振動のピーク強度ν2が、ν1/ν2≧0.2の関係を満たす。
(iv)前記導電層のマトリックスの表面平均厚みTが70~1000nmである。
[パターン化導電積層体]
本発明のパターン化導電積層体は、基材の少なくとも片側に、パターン化導電層を有する。
(I)はマトリックスに関する条件、(II)は金属成分に関する条件である。
(I)はさらに2つの条件からなる。前記マトリックスは、重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物が重合反応した構造を含む高分子で構成され、前記マトリックスの全質量に対する炭素-炭素二重結合基由来の構造の炭素-炭素二重結合基の単位構造(>C=C<:式量24)部分の質量含有率(以下、架橋単位構造質量含有率と記すこともある)が9~26質量%である(I-1)。そして、FT-IR-ATR法にて求めた炭素-炭素二重結合の伸縮振動のピーク強度ν1と炭素-水素単結合(C-H)の伸縮振動のピーク強度ν2の関係が、ν1/ν2≧0.2である(I-2)。
(II)は、前記非導電領域(B)の蛍光X線による前記金属系線状構造体の金属含有量が、前記導電領域(A)の蛍光X線による金属含有量の0.5~0.9倍であることを規定する。
[導電成分]
本発明の導電積層体の導電層の導電成分は金属系線状構造体である。導電成分を導電性の高い金属系線状構造体とすることで導電性に優れた導電層を得ることができるので、マトリックス成分量を多くすることができ、それによりパターン化の処理に対する耐性を向上させることができる。
[ネットワーク構造を有する金属系線状構造体]
導電領域(A)の導電成分はネットワーク構造を有する金属系線状構造体である。導電成分を導電性の高いネットワーク構造を有する金属系線状構造体とすることで配合量に比して導電性に優れた導電領域(A)を得ることができるので、導電領域(A)中のマトリックス含有比率を高くすることができ、それによりパターン化の処理に対する耐性を向上させる。
[孤立分散した金属系分散体]
非導電領域(B)は、金属成分として孤立分散した金属系分散体を含む。本発明でいう孤立分散した金属系分散体とは、金属系分散体の個別の形状にかかわらず、ネットワーク構造を有さないことをいう。具体的には、マトリックス中に分散した金属系線状構造体またはその他の金属系成分のマトリックス中での含有濃度を低くしたり、金属成分の形状を金属同士が接触しにくい球状にしたり、線状構造体の長さを短くしたりすることで、金属系線状構造体同士の接点を離すことで、それぞれの金属成分を孤立化させ、金属成分間の接点をなくしたり、金属成分間に接点がある場合でも、金属成分の分散している数に対しての接点の数を少ない状態としているものである。
[マトリックス]
本発明において、導電層およびパターン化導電層を構成するマトリックスは、(i)重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物が重合反応した構造を含む高分子から構成される。かかる高分子は、重合反応に寄与する炭素-炭素二重結合基を2個以上有するモノマー、オリゴマー、ポリマーからなる組成物を、該炭素-炭素二重結合基内の炭素-炭素二重結合を反応点として重合反応することで炭素-炭素単結合を形成して得られた高分子である。
(1)核磁気共鳴分光法(1H-NMR、13C-NMR、29Si-NMR、19F-NMR)、二次元核磁気共鳴分光法(2D-NMR)、赤外分光光度法(IR)、ラマン分光法、各種質量分析法(ガスクロマトグラフィー-質量分析法(GC-MS)、熱分解ガスクロマトグラフィー-質量分析法(熱分解GC-MS)、マトリックス支援レーザー脱離イオン化質量分析(MALDI-MS)、飛行時間型質量分析法(TOF-MS)、飛行時間型マトリックス支援レーザー脱離イオン化質量分析(MALDI-TOF-MS)、ダイナミック二次イオン質量分析法(Dynamic-SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、スタティック二次イオン質量分析法(Static-SIMS)等)。
(2)X線回折法(XRD)、中性子回折法(ND)、低速電子線回折法(LEED)、高速反射電子線回折法(RHEED)、原子吸光分析法(AAS)、紫外光電子分光法(UPS)、オージェ電子分光法(AES)、X線光電子分光法(XPS)、蛍光X線元素分析法(XRF)、誘導結合プラズマ発光分光法(ICP-AES)、電子線マイクロアナリシス法(EPMA)、荷電粒子励起X線分光法(PIXE)、低エネルギーイオン散乱分光法(RBSまたはLEIS)、中エネルギーイオン散乱分光法(MEIS)、高エネルギーイオン散乱分光法(ISSまたはHEIS)、ゲル浸透クロマトグラフィー(GPC)、透過電子顕微鏡-エネルギー分散X線分光分析(TEM-EDX)、走査電子顕微鏡-エネルギー分散X線分光分析(SEM-EDX)、その他元素分析。
[(ii)導電領域(A)と非導電領域(B)の金属含有量の比]
本発明のパターン化導電積層体は、非導電領域(B)の蛍光X線による金属含有量が、前記導電領域(A)の蛍光X線による金属含有量の0.5~0.9倍である。このような導電領域(A)と非導電領域(B)の金属含有量の比を採ることで、パターン非視認性の高いパターン化導電積層体となる。
[導電層の形成方法]
本発明における導電層を基材上に形成する方法としては、金属系線状構造体やマトリックスの種類により最適な方法を選択すればよく、キャスト、スピンコート、ディップコート、バーコート、スプレー、ブレードコート、スリットダイコート、グラビアコート、リバースコート、スクリーン印刷、鋳型塗布、印刷転写、インクジェットなどのウエットコート法等、一般的な方法を挙げることができる。なかでも、導電層を均一に積層できかつ基材への傷が入りにくいスリットダイコート、もしくは導電層を均一にかつ生産性良く形成できるマイクログラビアを使用したウエットコート法が好ましい。尚、導電層を基材上に形成するにあたり、導電材(金属系線状構造体)からなるネットワーク構造を有する導電成分を予め基材上に配置した後に、マトリックスを配置し、導電成分と複合化することで導電層を形成してもよく、また、導電材とマトリックスを予め混合して導電マトリックス組成物とし、その導電マトリックス組成物を基材上に積層することでネットワーク構造を有する導電成分を含む導電層を形成してもよい。なお、上記導電材は、単一の素材からなるものでもよいし、複数の素材の混合物であってもよい。マトリックスも同様に、単一の素材からなるものでもよいし、複数の素材の混合物であってもよい。
[パターン化導電積層体の製造方法]
本発明のパターン化導電積層体は、非導電領域(B)を、前述の通り、(II)非導電領域(B)において蛍光X線により定量される金属成分の量が、導電領域(A)において蛍光X線により定量される金属成分の量の0.5~0.9倍の関係を満たすものであるが、かかる関係を満たすようにパターン化導電積層体を製造する方法は、特に限定されず、例えば次の(1)~(3)の方法が挙げられる。
導電領域(A)、非導電領域(B)のそれぞれの領域を形成するには各種方法(例えば、スクリーン印刷、鋳型塗布、印刷転写、インクジェット法、ディスペンサー法、ステンシル印刷法、パッド印刷法、スプレー塗布等)を用いることができる。その際、基材上に導電領域(A)及び非導電領域(B)を同時に形成してもよく、また、いずれか一方の領域を形成した後にもう一方の領域を形成することもできる。かかる場合の導電領域(A)の形成方法は後述の[導電層の形成方法]を適用することができる。また、非導電領域(B)は、金属系成分として金属系線状構造体を使用する場合は、マトリックス形成用の組成物として金属系線状構造体の含有濃度の低いものを使用することで、金属系成分として線状構造体以外を用いる場合には、形状を金属同士が接触しにくい球状にすることで、金属系成分同士の接点を離して孤立分散した状態とし、非導電性を得ることができる。
予め導電成分のみを基材の一方の面の全面に積層した後に、パターン化積層体において導電領域(A)とすべき領域のみにマトリックス形成用の組成物を塗布して硬化した後、パターン化積層体において非導電領域(B)とすべき領域の導電材を後述するエッチング液等で除去する。次いで、導電成分を除去した非導電領域とすべき領域に非導電領域形成用の塗剤を塗布して硬化する方法が挙げられる。
基材全面に後述するマトリックス中にネットワーク構造を有する金属系線状構造体を含む導電層を形成後、非導電領域(B)を形成したい領域に、後述するエッチング液やエッチングペースト等の処理剤を作用させ導電層をエッチング処理することで導電経路を切断し金属成分を孤立分散状態とし、非導電性とする方法が挙げられる。具体的には、非導電領域(B)を形成したい領域をエッチング処理する方法としては、導電層の形成後、パターンに応じたエッチング防止層を積層することでエッチング防止層の非積層領域をエッチングすることができる。導電経路を切断する態様は特には限定されず、処理剤によって例えば、金属系線状構造体の一部溶解もしくは表面を化学的に変化させることで接点部もしくは金属系線状構造体を絶縁性とすることで非導電性にする、金属系線状構造体を一部溶解させて金属系線状構造体の一部を切断する、等が挙げられる。なお、前記導電層のうち前記操作により非導電領域となった部分以外が導電領域となる。
[処理剤]
上記パターン化導電積層体の製造方法における(3)の方法に用いられる処理剤としては、酸もしくは塩基成分を含有する溶液であるエッチング液や酸もしくは塩基成分を含有する半固形のエッチングペーストが挙げられる。酸もしくは塩基成分を含有することで、導電層上の金属系線状構造体を選択的に除去し、非導電領域(B)における金属量を制御しやすくなり、パターン非視認性の高いパターン化導電積層体を得やすくなる。
[エッチング液]
本発明のパターン化導電積層体の製造方法において用いるエッチング液は、前記酸もしくは塩基成分のうち少なくとも1種と溶媒とを含む。エッチング液に含まれる前記酸または塩基の含有量は、エッチング液全質量に対し1~40質量%、より好ましくは10~25質量%である。ただし、この範囲に限定されず、酸または塩基の分子量、発生する酸または塩基の量、除去される導電層の材質や膜厚、加熱温度や加熱時間により適宜選択できる。
(III)酸/酸化剤のモル比率が1500/1~1/2である。
(IV)酸と酸化剤を合わせた濃度が10~40質量%である。
[エッチングペースト]
本発明のパターン化導電積層体を製造する際に用いることができるエッチングペーストの、前記酸または塩基の含有量は、溶媒を除いた成分中1~80質量%であり、より好ましくは10~70質量%、さらに好ましくは20~70質量%である。ただし、この範囲に限定されず、化合物の分子量、発生する酸または塩基の量、除去される導電層の材質や膜厚、加熱温度や加熱時間により適宜選択できる。
[加熱処理パターン化導電積層体]
本発明のパターン化導電積層体は、さらに60~150℃にて30秒~10分間加熱処理した加熱処理パターン化導電積層体とすることで、さらにパターン非視認性が向上し、パターン部分が視認しにくくなる。加熱処理方法は、目的や用途に応じて選択でき、例えば、ホットプレート、熱風オーブン、赤外線オーブン、周波数300メガヘルツ~3テラヘルツのマイクロ波照射などが挙げられるがこれらに限定されない。
[評価方法]
まず、各実施例および比較例における評価方法を説明する。
絶縁抵抗計(三和電気計器(株)製、DG6)を用いて、サンプルの各面に探針をあて、通電の有無からサンプルの導電層または導電領域を特定する。特定が困難な場合は、低抵抗率計Loresta-EP MCP-T360(三菱化学(株)、もしくは、リングタイププローブ(三菱化学(株)製 URSプローブ MCP-HTP14)を接続した高抵抗率計(三菱化学(株)製 Hiresta-UP MCP-HT450)を用いて同様にサンプルの各位置を評価し導電領域(A)及び非導電領域(B)を特定する。
サンプルから導電層またはパターン化導電層(導電領域(A)および/または非導電領域(B))を剥離し、溶解する溶剤に溶解させた。必要に応じ、シリカゲルカラムクロマトグラフィー、ゲル浸透クロマトグラフィー、液体高速クロマトグラフィー等に代表される一般的なクロマトグラフィー等を適用し、それぞれ単一物質に分離精製した。
(2i)核磁気共鳴分光法(1H-NMR、13C-NMR、29Si-NMR、19F-NMR)、二次元核磁気共鳴分光法(2D-NMR)、赤外分光光度法(IR)、ラマン分光法、各種質量分析法(ガスクロマトグラフィー-質量分析法(GC-MS)、熱分解ガスクロマトグラフィー-質量分析法(熱分解GC-MS)、マトリックス支援レーザー脱離イオン化質量分析(MALDI-MS)、飛行時間型質量分析法(TOF-MS)、飛行時間型マトリックス支援レーザー脱離イオン化質量分析(MALDI-TOF-MS)、ダイナミック二次イオン質量分析法(Dynamic-SIMS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、スタティック二次イオン質量分析法(Static-SIMS)等)。
(2ii)X線回折法(XRD)、中性子回折法(ND)、低速電子線回折法(LEED)、高速反射電子線回折法(RHEED)、原子吸光分析法(AAS)、紫外光電子分光法(UPS)、オージェ電子分光法(AES)、X線光電子分光法(XPS)、蛍光X線元素分析法(XRF)、誘導結合プラズマ発光分光法(ICP-AES)、電子線マイクロアナリシス法(EPMA)、荷電粒子励起X線分光法(PIXE)、低エネルギーイオン散乱分光法(RBSまたはLEIS)、中エネルギーイオン散乱分光法(MEIS)、高エネルギーイオン散乱分光法(ISSまたはHEIS)、ゲル浸透クロマトグラフィー(GPC)、透過電子顕微鏡-エネルギー分散X線分光分析(TEM-EDX)、走査電子顕微鏡-エネルギー分散X線分光分析(SEM-EDX)、ガスクロマトグラフィー(GC)、その他元素分析。
先ず、(1)に記載の評価方法にて、導電積層体の導電領域(A)を特定する。次いで、導電成分を対象に、前記(2)の評価方法を適用して導電成分の同定を行った。
前記(2)の評価方法を実施の後、得られた導電層または導電領域(A)の剥離物もしくは分離物のうち任意の一部を分取し質量を測定した。その後、予め質量を測定した1,1,2,2-テトラブロモエタン(以下TBEと略す)を適宜重クロロホルム等で希釈して既知の濃度とする内標準溶液を用意した。前記分取したサンプルに前記TBE内標準溶液を添加し、この試験溶液を1H-NMR測定を行った。次いで得られた1H-NMRスペクトルの炭素-炭素二重結合基を含む官能基の炭素-炭素二重結合基部分の水素(プロトン、H)に該当するピークのピーク面積(反応して別結合を形成している炭素-炭素二重結合基(厳密には炭素-炭素二重結合基自身では存在していない)も含む)と、内標準として添加したTBEの水素(プロトン、H)に該当するピーク面積との面積比率を用いて、架橋層の剥離物もしくは分離物の分取物質量およびTBE濃度から、炭素-炭素二重結合基の含有率を算出し、これを架橋単位構造質量含有率とした。
炭素-炭素二重結合の伸縮振動のピーク強度ν1、炭素-水素単結合(C-H)の伸縮振動のピーク強度ν2、及びそのピーク強度比ν1/ν2は、FT-IR法のうちFT-IR-ATR(減衰全反射、Attenuated Total Reflectance)法にて以下のようにして求めた。
先ず、サンプルの観察したい部分近傍を氷で埋包し凍結固着後、日本ミクロトーム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にダイヤモンドナイフをセットして積層体平面に垂直な方向に切断した。
(6i)導電層または導電領域(A)のマトリックスの表面平均厚みT
1検体につき、異なる部分から得た金属系線状構造体の断面を含む画像を10視野分準備した。1視野につき金属系線状構造体の断面の両端からそれぞれ平均径r分離れた2箇所(符号21)の厚みを測定し、その平均値を算出し、導電層または導電領域のマトリックスの表面厚みtを求めた。同様に計10視野について表面厚みtを求め、その平均値を導電層または導電領域のマトリックスの表面平均厚みTとした。本測定に当たっては、有効数字3桁が確保できる倍率を選択し、計算に当たっては、4桁目を四捨五入して値を求めた。
(6ii)金属系線状構造体の平均径r
1検体につき、異なる部分から得た金属系線状構造体の断面を含む画像を10視野分準備した。次いで、10視野内の全て金属系線状構造体の断面の径を求め、その全平均値を平均径rとした。なお、本測定に当たっては、有効数字3桁が確保できる倍率を選択し、計算に当たっては、4桁目を四捨五入して値を求めた。なお、金属系ナノワイヤーの各断面においては、最短径を各断面の径として採用した。
(3)にて特定した導電成分の金属について、導電領域(A)と非導電領域(B)の金属量を以下の方法で測定した。
(8i)エッチング液によるパターン化導電積層体の作製
各実施例および比較例の積層体とドライフィルムレジストフィルム(旭化成(株)製サンフォートSPG-152)とを110℃にて熱ラミネートを行い、更に図5に示すパターンマスクを使用して露光処理した後、3質量%の炭酸ナトリウム水溶液を使用し現像処理を行い、レジストパターニングサンプルを作製した。次いでレジストパターニングサンプルを、後述するエッチング液を用いて各実施例および比較例の条件にて浸漬することでエッチング処理し、パターン化導電積層体のサンプルを得た。得られたパターン化導電積層体のサンプルは、図5符号27に該当する部分がパターン加工(エッチング処理)非処理部分で、図5符号28に該当する部分がパターン加工(エッチング処理)部分である。
(8ii)エッチングペーストによるパターン化導電積層体のサンプルの作製
実施例に記載の導電積層体の導電領域側に、後述する処理剤6をsus#500メッシュを用いて乾燥後の膜厚が2.4μmとなるように、図5と同様の印刷パターンにてスクリーン印刷した。処理剤を塗布後、赤外線オーブンに入れ、130℃で3分間加熱処理し、オーブンから取り出し室温まで放冷した後、25℃の純水を用いて1分間洗浄を行い付着している処理剤および分解物を除去した。次いで、圧空で水切りしてから赤外線オーブンで80℃1分間乾燥し、パターン化導電積層体のサンプルを得た。得られたパターン化導電積層体のサンプルは、図5符号27に該当する部分がパターン加工(エッチング処理)非処理部分で、図5符号28に該当する部分がパターン加工(エッチング処理)部分である。
(8iii)絶縁試験
エッチング部について絶縁抵抗計(三和電気計器(株)製、DG6)を用いて、導通の有無を確認した。端子間抵抗値が25Vで40MΩ以上を合格(絶縁性が良好)とした。
(8iv)パターン非視認性試験
三波長蛍光灯下目視にて、エッチング部分とエッチングしていない部分の境目を観察し、境目の非視認性について、非視認性が最も高いものを5、最も低いものを1とする下記5段階に分類した。3~5の判定を合格、1または2の判定を不合格とした。
4:境目が極僅かに見える
3:薄い境目が見える
2:境目が見える
1:境目が明らかに見える
(8v)処理時間(エッチング時間)
(8i)または(8ii)におけるエッチング処理時間(浸漬時間)を処理時間とした。尚、(8iii)の試験におけるエッチング部が絶縁した最小の時間をエッチング処理時間とした。パターン処理の量産性を考慮し、エッチング処理時間が5分以内の場合を合格とし、それより長い時間を要する場合を不合格とした。
(8vi)パターン処理に対する耐性(導電層の異常(外観変化)有無)
(8i)または(8ii)のパターン化サンプルの導電側の図5符号27に該当する部分(パターン加工(エッチング処理)未処理部分)を(8ii)の方法にて試験し導通の有無を確認した。次いで、導通する場合は耐性ありとし合格、絶縁の場合は、導電層の剥離もしくは導電性の低下が発生したと判断し、耐性なしで不合格とした。
(8vii)エッチング液により作製したパターン化導電積層体の導電部の導電性
パターン化導電層の図5符号27に該当する導電領域を(8iii)の方法にて試験し導通の有無を確認した。次いで、導通する場合を合格、絶縁の場合を不合格とした。
導電積層体の導電層側の表面抵抗値を、非接触式抵抗率計(ナプソン(株)製 NC-10)を用い渦電流方式で100mm×50mmのサンプルの中央部分を測定した。5サンプルについて平均値を算出し、これを表面抵抗値R0[Ω/□]とした。検出限界を超えて表面抵抗値が得られなかった場合は、次いで以下の方法にて測定した。
濁度計(曇り度計)NDH2000(日本電色工業(株)製)を用いてJIS K7361-1(1997年)に基づいて、導電積層体厚み方向の全光線透過率を、導電層側から光を入射させて測定した。5サンプルについて測定した値から平均値を算出し、これを全光線透過率とした。
濁度計(曇り度計)NDH2000(日本電色工業(株)製)を用いてJIS K7361-1(1997年)に基づいて、パターン化導電積層体厚み方向のヘイズを、導電領域(A)は導電層側から、非導電領域(B)は分散層側から、光を入射させて測定した。5サンプルについて導電領域(A)ヘイズ値Hz1及び非導電領域(B)ヘイズ値Hz2を測定した。1サンプルにつきHz1の値をHz2の値で除したHz1/Hz2を求め、5サンプルの平均値を算出し、これをHz1/Hz2とした。本測定に当たっては、有効数字2桁が確保できる倍率を選択し、計算に当たっては、3桁目を四捨五入して値を求めた。
[材料]
<基材>
各実施例及び比較例に使用した基材を以下に示す。
・ポリエチレンテレフタレートフィルム(東レ(株)製 “ルミラー”(登録商標)U48)
・厚み125μm
(2)基材B
・ポリエチレンテレフタレートフィルム(東レ(株)製 “ルミラー”(登録商標)U48)
・厚み50μm
<導電材>
各実施例及び比較例に用いた各導電材を以下に示す。
特表2009-505358号公報の例1(銀ナノワイヤーの合成)に記載の方法にて得た銀ナノワイヤー導電材(短軸:50~100nm、長軸:20~40μm)。
特開2002-266007号公報の製造例1、実施例2に記載の方法にて得た銅ナノワイヤー導電材(短軸:10~20nm、長軸:1~100μm)。
前記導電材A「銀ナノワイヤー」と前記導電材B「銅ナノワイヤー」とを質量比6:4となるように混合して得た銀ナノワイヤー・銅ナノワイヤー混合導電材。
特開2001-243841号公報の実施例((2)銀ナノコロイド塗布液の調整)に記載の方法にて得た銀ナノ微粒子導電材(粒径:9~12nm)。
大塚化学(株)製 デントールTM100(短軸:700~900nm、長軸:15~25μm)。
<マトリックス>
各実施例及び比較例のマトリックスの形成用の組成物を調製するのに使用した材料(マトリックス材料、添加剤)を以下に示す。
アクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有するアクリル系組成物(綜研化学(株)製 フルキュアHC-6、固形分濃度51質量%)。
アクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有するアクリル系/ウレタンアクリレート系混合組成物(中国塗料(株)製 フォルシードNo.420C、固形分濃度50質量%)。
メタクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有するメタクリル系組成物(共栄社化学(株)製 ライトエステルTMP、固形分濃度100質量%)。
アクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有するウレタンアクリレート系組成物(根上工業(株)製 アートレジンUN-904M、固形分濃度80質量%)。
アクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有するウレタンアクリレート系組成物(共栄社化学(株)製 AT-600、固形分濃度100質量%)。
アクリロイル基およびメタクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有する多官能アクリル系/メタクリレート系混合組成物(綜研化学(株)製 フルキュアHCE-032、固形分濃度51.4質量%)。
下記のように重合して得たメタクリル系重合体(固形分濃度100質量%)。
アクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有するアクリル系組成物(共栄社化学(株)製 ライトアクリレートBP-10EA、固形分濃度100質量%)。
重合反応に寄与する炭素-炭素二重結合基を含有しない化合物の組成物で、熱により硬化するポリエステル変性シリコーン系(末端水酸基(ヒドロキシル基)ポリエステル変性ジメチルポリシロキサン)組成物(信越化学工業(株)製 X-22-8300、固形分濃度25質量%)。
アクリロイル基として重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物を含有するアクリル系組成物(共栄社化学(株)製 ライトアクリレートPE-4A、固形分濃度100質量%)。
・極大吸収波長240nmの光重合開始剤(チバ・ジャパン(株)製 Ciba “IRGACURE”(登録商標)184)。
・極大吸収波長300nmの光重合開始剤(チバ・ジャパン(株)製 Ciba “IRGACURE”(登録商標)907)。
・極大吸収波長320nmの光重合開始剤(チバ・ジャパン(株)製 Ciba “IRGACURE”(登録商標)369)。
[処理剤]
各実施例及び比較例のパターン処理試験に使用した処理剤の調製方法を以下に示す。
塩酸(佐々木化学薬品(株)製特級グレード、塩化水素35質量%)170質量部と硝酸(佐々木化学薬品(株)製特級グレード、60質量%)24.8質量部に純水135.8質量部を加え、塩化水素と硝酸の質量比率4:1(モル比率6.9:1)、塩化水素と硝酸を合わせた濃度22.5質量%のエッチング液を調製した。
塩酸(佐々木化学薬品(株)製特級グレード、塩化水素35質量%)220質量部と過酸化水素(関東化学(株)製特級グレード、過酸化水素30質量%)0.34質量部に純水122.34質量部を加え、塩化水素と過酸化水素の質量比率750.7:1(モル比率700:1)、塩化水素と過酸化水素を合わせた濃度22.5質量%のエッチング液を調製した。
塩酸(佐々木化学薬品(株)製特級グレード、塩化水素35質量%)220質量部と過酸化水素(関東化学(株)製特級グレード、過酸化水素30質量%)0.48質量部に純水122.38質量部を加え、塩化水素と過酸化水素の質量比率536.2:1(モル比率500:1)、塩化水素と過酸化水素を合わせた濃度22.5質量%のエッチング液を調製した。
塩酸(佐々木化学薬品(株)製特級グレード、塩化水素35質量%)220質量部と過酸化水素(関東化学(株)製特級グレード、過酸化水素30質量%)2.39質量部に純水123.02質量部を加え、塩化水素と過酸化水素の質量比率107.2:1(モル比率100:1)、塩化水素と過酸化水素を合わせた濃度22.5質量%のエッチング液を調製した。
塩酸(佐々木化学薬品(株)製特級グレード、塩化水素35質量%)150質量部と過酸化水素(関東化学(株)製特級グレード、過酸化水素30質量%)40.7質量部に純水179.07質量部を加え、塩化水素と過酸化水素の質量比率4.3:1(モル比率4:1)、塩化水素と過酸化水素を合わせた濃度17.5質量%のエッチング液を調製した。
塩酸(佐々木化学薬品(株)製特級グレード、塩化水素35質量%)100質量部と過酸化水素(関東化学(株)製特級グレード、過酸化水素30質量%)27.13質量部に純水217.98質量部を加え、塩化水素と過酸化水素の質量比率4.3:1(モル比率4:1)、塩化水素と過酸化水素を合わせた濃度12.5質量%のエッチング液を調製した。
容器にエチレングリコール(和光純薬工業(株)製)70g、N,N’-ジメチルプロピレン尿素(東京化成工業(株)製)30g、硝酸ナトリウム5gを入れて混合し、これに、ポリクオタニウム-10(ISPジャパン製)5gとチキソ剤としてチクサトロールMAX(エレメンティスジャパン(株)製、ポリエステルアミド誘導体)0.5gを加え、オイルバスで60℃に加熱しながら30分間撹拌した。
導電材Eを用い、バインダー成分としてアクリル系樹脂(綜研化学(株)製 フォレットGS-1000、固形分濃度30質量%)を固形分全体に対する導電材が60質量%となるように混合(固形分混合比:バインダー成分/導電材=40質量%/60質量%)し、次いでこの混合液に塗料固形分濃度50質量%となるように酢酸エチルを加えて濃度調整し、針状二酸化ケイ素系・ATO(アンチモンドープ酸化錫)複合化合物分散液を得た。この針状二酸化ケイ素系・ATO(アンチモンドープ酸化錫)複合化合物分散液を、材質がsusのシム(シム厚み100μm)を装着したスリットダイコートを使用して基材Aの片面に塗布、120℃で5分間乾燥し導電成分を積層形成した。
導電材Aを用い、特表2009-505358号公報の例8(ナノワイヤー分散)に開示されている方法にて銀ナノワイヤー分散液を得た。この銀ナノワイヤー分散液に、銀ナノワイヤーの濃度が0.05質量%となるように分散媒を追加し、銀ナノワイヤー分散塗液を調製した。この銀ナノワイヤー分散塗液を、材質がsusのシム(シム厚み50μm)を装着したスリットダイコートを使用して基材Aの片面に塗布、120℃で2分間乾燥し導電成分を積層形成した。
マトリックス形成用の組成物としてマトリックス材料E76.5g、添加剤A3.60g、添加剤B3.60g、酢酸エチル1400gから調製したものを用い、マトリックスの表面平均厚みTが600nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得、パターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料D95.6g、添加剤A3.60g、添加剤B3.60g、酢酸エチル2140gから調製したものを用い、マトリックスの表面平均厚みTが400nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得、パターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料C76.5g、添加剤A3.60g、添加剤B3.60g、酢酸エチル2900gから調製したものを用い、さらに紫外線を130mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが300nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、エッチング処理する時間を4分間とした以外は実施例2と同様にしてパターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料C76.5g、添加剤A3.60g、添加剤B3.60g、酢酸エチル3230gから調製したものを用い、さらに紫外線を130mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが270nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、エッチング処理する時間を3分間とした以外は実施例2と同様にして、パターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料A150g、添加剤A3.60g、添加剤B3.60g、酢酸エチル3430gから調製したものを用い、マトリックスの表面平均厚みTが250nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例6と同様にしてパターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料A58.2g、マトリックス材料B4.7g、添加剤A1.56g、添加剤B1.56g、酢酸エチル1500gから調製したものを用い、マトリックスの表面平均厚みTが250nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例6と同様にしてパターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料A58.2g、マトリックス材料B4.7g、添加剤A1.56g、添加剤B1.56g、酢酸エチル1650gから調製したものを用い、マトリックスの表面平均厚みTが220nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、エッチング処理する時間を2分間とした以外は実施例2と同様にして、パターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料A58.2g、マトリックス材料B4.7g、添加剤A1.56g、添加剤B1.56g、酢酸エチル2060gから調製したものを用い、マトリックスの表面平均厚みTが180nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、エッチング処理する時間を1分間とした以外は実施例2と同様にして、パターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料F149g、添加剤A3.60g、添加剤B3.60g、酢酸エチル4820gから調製したものを用い、さらに紫外線を180mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが180nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例6と同様にしてパターン化導電積層体のサンプルを作製した。
紫外線を130mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが180nmの導電層を形成したこと以外は実施例10と同様にして、導電積層体を得た。次いで、実施例10と同様に1分間エッチング処理し、パターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料A58.2g、マトリックス材料B4.7g、添加剤A1.56g、添加剤B1.56g、酢酸エチル2710gから調製したものを用い、さらに紫外線を180mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが140nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例9と同様にしてパターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料A58.2g、マトリックス材料B4.7g、添加剤A1.56g、添加剤B1.56g、酢酸エチル3220gから調製したものを用い、さらに紫外線を180mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが120nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例10と同様にしてパターン化導電積層体のサンプルを作製した。
導電材Bを用いた他は、実施例2と同様にして基材Aの片面に導電成分を積層形成した。
導電材Cを用いたこと以外は実施例2と同様にして導電成分を積層形成した。次いで、実施例10と同様にマトリックスを積層し、導電積層体を得、パターン化導電積層体のサンプルを作製した。
基材Bを用いたこと以外は、実施例10と同様にして導電積層体を得、パターン化導電積層体のサンプルを作製した。
実施例12において形成した導電積層体に、実施例9の条件でエッチング処理を行い、パターン化導電積層体のサンプルを作製した。
50℃に加熱した処理剤1のエッチング液中に1分間浸漬してエッチング処理する以外は実施例18と同様にして、パターン化導電積層体のサンプルを作製した。
実施例8において形成した導電積層体を、実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤2のエッチング液中に2.5分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。
実施例8において形成した導電積層体を、実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤3のエッチング液中に2分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。
実施例8において形成した導電積層体を、実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤4のエッチング液中に0.5分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。
実施例8において形成した導電積層体を、実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤5のエッチング液中に1分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。
実施例8において形成した導電積層体を、実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤6のエッチング液中に2分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。
実施例8において形成した導電積層体を、処理剤7のエッチングペーストを用いて前記(8ii)項に記載の方法にて処理し、パターン化導電積層体のサンプルを作製した。
実施例19により作製したパターン化導電積層体のサンプルを、熱風オーブン(エスペック(株)製 安全扉つき恒温器セーフティーオーブン SPHH-201)を用いて130℃にて3分間加熱処理し、加熱処理パターン化導電積層体のサンプルを作製した。
加熱処理する条件を60℃にて10分間としたこと以外は、実施例26と同様にして加熱処理パターン化導電積層体のサンプルを作製した。
実施例25により作製したパターン化導電積層体のサンプルを、熱風オーブン(エスペック(株)製 安全扉つき恒温器セーフティーオーブン SPHH-201)を用いて130℃にて5分間加熱処理し、加熱処理パターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料C76.5g、添加剤A3.60g、添加剤B3.60g、酢酸エチル3500gから調製したものを用い、さらに紫外線を250mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが250nmの導電層を形成したこと以外は実施例2と同様にして、本発明の導電積層体を得た。
(実施例30)
マトリックス形成用の組成物としてマトリックス材料A58.2g、マトリックス材料B4.7g、添加剤A1.56g、添加剤B1.56g、酢酸エチル2710gから調製したものを用い、さらに紫外線を130mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが140nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例9と同様にしてパターン化導電積層体のサンプルを作製した。
マトリックス形成用の組成物としてマトリックス材料A58.2g、マトリックス材料B4.7g、添加剤A1.56g、添加剤B1.56g、酢酸エチル3220gから調製したものを用い、さらに紫外線を250mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが120nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例10と同様にしてパターン化導電積層体のサンプルを作製した。
導電材Bを用いた他は、実施例2と同様にして基材Aの片面に導電成分を積層形成した。
基材Aに導電層を設けずに、基材のみとした。
銀ナノワイヤー分散塗液(導電組成物)の濃度を0.01質量%としたこと以外は実施例2と同様にして導電材を塗布した。本条件で得られた導電材の塗布層中では銀ナノワイヤーはネットワーク構造を形成していなかった。
基材Aの片面に実施例2と同様の方法にて導電材Aの銀ナノワイヤーからなる導電成分のみを積層し、マトリックスを塗布しない状態の積層体を得た。この積層体は、表面抵抗値が204Ω/□、全光線透過率が91.1%であった。次いで、マトリックスを設けていない積層体の状態でパターン処理したところ、40℃に加熱した処理剤1を使用したエッチング処理にて導電成分が全て剥離してしまいパターン化導電積層体のサンプルを得ることができなかった。
導電材Dを用い、特開2001-243841号公報の実施例((2)銀ナノコロイド塗布液の調整)に記載の方法にて銀ナノ微粒子分散液を得、同特開2001-243841号公報の[実施例1]に開示されている方法にて銀ナノ微粒子分散液を基材Aの片面に塗布し、導電成分を積層形成した。次いで、実施例7と同様にマトリックスを塗布し、非ワイヤー形状である球状の導電成分を含む導電積層体を得た。そのようにして得た導電積層体を実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤1のエッチング液中に15分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。尚、エッチング液中に浸漬する時間が14分間ではパターン化導電積層体のサンプルを作製できなかった(絶縁試験が不合格)。
実施例2と同様にして導電成分を積層形成し、マトリックス材料I200g、酢酸エチル1970gを混合、撹拌して調製した、重合反応に寄与する炭素-炭素二重結合基を含有しない化合物の組成物からなるマトリックス形成用の組成物を用い、マトリックスの表面平均厚みTが250nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。この導電積層体は、表面抵抗値が165Ω/□、全光線透過率が91.2%であった。次いで、実施例2と同様にしてパターン化導電積層体のサンプルを作製しようとしたところ、エッチング処理の段階で導電層が全て剥離してしまいパターン化導電積層体のサンプルを得ることができなかった。
マトリックス形成用の組成物としてマトリックス材料G50g、酢酸エチル2120gから調製したものを用い、1個の重合反応に寄与する炭素-炭素二重結合基を有する化合物の組成物からなるマトリックス形成用の組成物としたこと以外は、比較例5と同様にして、導電積層体を得た。この導電層のマトリックスは、架橋単位構造質量含有率が24質量%であり、伸縮振動のピーク強度比ν1/ν2が0.26であったが、重合反応に寄与する炭素-炭素二重結合基を有する化合物が1個の化合物からなるため架橋構造を形成していない。この導電積層体は、表面抵抗値が159Ω/□、全光線透過率が91.0%であった。次いで、実施例2と同様にしてパターン化導電積層体のサンプルを作製しようとしたところ、エッチング処理の段階で導電層が全て剥離してしまいパターン化導電積層体のサンプルを得ることができなかった。
マトリックス形成用の組成物としてマトリックス材料H76.5g、添加剤A3.60g、添加剤B3.60g、酢酸エチル1400gから調製したものを用い、さらに紫外線を250mJ/cm2照射し、マトリックスの表面平均厚みTが600nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。導電層のマトリックスは、重合反応に寄与する炭素-炭素二重結合基を有する化合物が2個の化合物からなり、伸縮振動のピーク強度比ν1/ν2が0.20であったが、架橋単位構造質量含有率が6質量%であった。この導電積層体は、表面抵抗値が608Ω/□、全光線透過率が87.1%であった。次いで、実施例1と同様にしてパターン化導電積層体のサンプルを作製しようとしたところ、エッチング処理の段階で導電層が全て剥離してしまいパターン化導電積層体のサンプルを得ることができなかった。
マトリックス形成用の組成物としてマトリックス材料J25.5g、添加剤A1.2g、添加剤B1.2g、酢酸エチル1630gから調製したものを用い、さらに紫外線を250mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが180nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。この導電層のマトリックスは、架橋単位構造質量含有率が27質量%であった。次いで、導電積層体を実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤1のエッチング液中に12分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。尚、エッチング液中に浸漬する時間が11分間ではパターン化導電積層体のサンプルを作製できなかった(絶縁試験が不合格)。
実施例2にて使用したのと同じ銀ナノワイヤー分散塗液(導電組成物)を、材質がsusの厚手シム(シム厚み150μm)を装着したスリットダイコートを使用して基材A上の片面に塗布、120℃で5分間乾燥し導電成分を積層形成した。
紫外線を320mJ/cm2照射し硬化させたこと以外は、実施例6と同様にして、導電積層体を得た。この導電層のマトリックスは、伸縮振動のピーク強度比ν1/ν2の値が0.18であった。次いで、導電積層体を実施例1と同様にしてレジストパターニングサンプルとし、40℃に加熱した処理剤1のエッチング液中に30分間浸漬してエッチング処理し、パターン化導電積層体のサンプルを作製した。尚、エッチング液中に浸漬する時間が29分間ではパターン化導電積層体のサンプルを作製できなかった(絶縁試験が不合格)。
(比較例11)
マトリックス形成用の組成物としてマトリックス材料J25.5g、添加剤A1.2g、添加剤B1.2g、酢酸エチル1630gから調製したものを用い、さらに紫外線を250mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが180nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。この導電層のマトリックスは、架橋単位構造質量含有率が27質量%であった。次いで、導電積層体を前記方法によりレジストパターニングサンプルとし、40℃に加熱したエッチング液中に12分間浸漬してエッチング処理し、パターン化サンプルを作製した。尚、エッチング液中に浸漬する時間が11分間ではパターン化導電積層体のサンプルを作製できなかった(絶縁試験が不合格)。
マトリックス形成用の組成物としてマトリックス材料A15g、添加剤A0.36g、添加剤B0.36g、酢酸エチル1480gから調製したものを用い、さらに紫外線を250mJ/cm2照射し硬化させ、マトリックスの表面平均厚みTが60nmの導電層を形成したこと以外は実施例2と同様にして、導電積層体を得た。次いで、実施例2と同様にしてパターン化サンプルを作製しようとしたところ、エッチング処理の段階で導電層が全て剥離してしまいパターン化導電積層体のサンプルを得ることができなかった。
マトリックス形成用の組成物としてマトリックス材料E153g、添加剤A7.20g、添加剤B7.20g、酢酸エチル1460gから調製したものを用い、マトリックスの表面平均厚みTが1100nmの導電材とマトリックスとからなる層を形成したこと以外は実施例2と同様にして積層体を得た。
2:積層面に垂直な方向より観察した導電領域(A)
3:積層面に垂直な方向より観察した非導電領域(B)
4:積層面に垂直な方向より観察した導電領域(A)
5:単一の繊維状導電体(金属系線状構造体の一例)
6:繊維状導電体の集合体(金属系線状構造体の一例)
7:ナノワイヤー(金属系線状構造体の一例)
8:ウィスカーのような針状導電体(金属系線状構造体の一例)
9:マトリックス
10:繊維状導電体の重なりによって形成した接点
11:ナノワイヤーの重なりによって形成した接点
12:ウィスカーのような針状導電体の重なりによって形成した接点
13:タッチパネルに組み込んだパターン化導電積層体
14:タッチパネルに組み込んだパターン化導電積層体の基材
15:タッチパネルに組み込んだパターン化導電積層体の導電領域(A)
16:タッチパネルに組み込んだパターン化導電積層体の非導電領域(B)
17:パターン化導電積層体を積層するための接合層
18:タッチパネルの画面側の基材
19:タッチパネルの画面側の基材に積層したハードコート層
20:導電層表面
21:金属系線状構造体が存在しない部分の表面厚みt
22:集合体を形成する単一の金属系線状構造体
23:金属系線状構造体からなる集合体
24:単一の金属系線状構造体の径
25:金属系線状構造体からなる集合体の金属系線状構造体の径
26:基材
27:パターンマスクの非マスキング部(露光部)もしくはスクリーン印刷パターンの非印刷部(導電積層体の非エッチング部)
28:パターンマスクのマスキング部もしくはスクリーン印刷パターンの印刷部(導電積層体のエッチング部)
Claims (9)
- 基材の少なくとも片面に、金属系線状構造体からなるネットワーク構造を有する導電成分と、マトリックスとからなる導電層を配置した導電積層体であって、該マトリックスが下記(i)~(iv)を満たす導電積層体。
(i)重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物が重合反応した構造を含む高分子から構成される。
(ii)マトリックスの全質量に対する炭素-炭素二重結合基由来の構造の炭素-炭素二重結合基の単位構造(>C=C<:式量24)部分の質量含有率が9~26質量%である。
(iii)FT-IR-ATR法にて求めた前記マトリックスの炭素-炭素二重結合の伸縮振動のピーク強度ν1と炭素-水素単結合(C-H)の伸縮振動のピーク強度ν2が、ν1/ν2≧0.2の関係を満たす。
(iv)前記導電層のマトリックスの表面平均厚みTが70~1000nmである。 - 前記金属系線状構造体の平均径rと前記導電層のマトリックスの表面平均厚みTが、1.8≦T/r≦10の関係を満たす請求項1に記載の導電積層体。
- 前記金属系線状構造体が、銀ナノワイヤーである請求項1または2に記載の導電積層体。
- 基材の少なくとも片側に、マトリックス中にネットワーク構造を有する金属系線状構造体を含む導電領域(A)と、マトリックス中に孤立分散した金属系分散体を含む非導電領域(B)とを面内に有するパターン化導電層を有し、下記(I)および(II)を満たすパターン化導電積層体。
(I)前記マトリックスは、重合反応に寄与する炭素-炭素二重結合基を2個以上有する化合物が重合反応した構造を含む高分子で構成され、かつ、前記マトリックスの全質量に対する炭素-炭素二重結合基由来の構造の炭素-炭素二重結合基の単位構造(>C=C<:式量24)部分の質量含有率が9~26質量%であり、FT-IR-ATR法にて求めた炭素-炭素二重結合の伸縮振動のピーク強度ν1と炭素-水素単結合(C-H)の伸縮振動のピーク強度ν2の関係が、ν1/ν2≧0.2である。
(II)前記非導電領域(B)において蛍光X線により定量される金属成分の量が、前記導電領域(A)において蛍光X線により定量される金属成分の量の0.5~0.9倍である。 - 前記導電領域(A)における前記パターン化導電積層体のヘイズ値Hz1と、前記非導電領域(B)における前記パターン化導電積層体のヘイズ値Hz2との関係が、0.8≦Hz1/Hz2≦1.5を満たす請求項4に記載のパターン化導電積層体。
- 基材の少なくとも片側に、マトリックス中にネットワーク構造を有する金属系線状構造体を含む導電層を有する導電積層体の導電層上にパターンに応じたエッチング防止層を積層すると共に、エッチング防止層の非積層領域を酸および酸化剤を含み下記(III)および(IV)を満たすエッチング液を用いて、30~60℃で加熱して非導電領域を形成する請求項4または5に記載のパターン化導電積層体の製造方法。
(III)酸/酸化剤のモル比率が1500/1~1/2である。
(IV)酸と酸化剤を合わせた濃度が10~40質量%である。 - 請求項4または5に記載のパターン化導電積層体を、60~150℃にて30秒~10分間加熱処理する加熱処理パターン化導電積層体の製造方法。
- 請求項1~3に記載の導電積層体を用いてなるタッチパネル。
- 請求項4もしくは5に記載のパターン化導電積層体、請求項6の製造方法により得たパターン化導電積層体、請求項7に記載の製造方法にて得た加熱処理パターン化導電積層体のいずれかを用いてなるタッチパネル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280035646.2A CN103703519B (zh) | 2011-08-03 | 2012-07-27 | 导电层合体、图案化导电层合体及使用该层合体得到的触控面板 |
JP2012548244A JP5303069B2 (ja) | 2011-08-03 | 2012-07-27 | 導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル |
KR1020147001481A KR20140048211A (ko) | 2011-08-03 | 2012-07-27 | 도전 적층체, 패턴화 도전 적층체 및 그것을 이용하여 이루어지는 터치 패널 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011169866 | 2011-08-03 | ||
JP2011-169866 | 2011-08-03 | ||
JP2011-236911 | 2011-10-28 | ||
JP2011236911 | 2011-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018691A1 true WO2013018691A1 (ja) | 2013-02-07 |
Family
ID=47629215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069133 WO2013018691A1 (ja) | 2011-08-03 | 2012-07-27 | 導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5303069B2 (ja) |
KR (1) | KR20140048211A (ja) |
CN (1) | CN103703519B (ja) |
TW (1) | TW201333773A (ja) |
WO (1) | WO2013018691A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015005332A1 (ja) * | 2013-07-09 | 2015-01-15 | 日東電工株式会社 | 透明導電性フィルムおよび透明導電性フィルムの製造方法 |
JP2016218183A (ja) * | 2015-05-18 | 2016-12-22 | 大日本印刷株式会社 | フォトマスクおよび導電性パターンの製造方法 |
JP2017064701A (ja) * | 2015-09-28 | 2017-04-06 | ゼロックス コーポレイションXerox Corporation | インクジェット印刷を用いたエッチング方法 |
CN113383022A (zh) * | 2019-01-30 | 2021-09-10 | 富士胶片株式会社 | 水显影性柔性版印刷版原版、柔性版印刷版及感光性树脂组合物 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105573542B (zh) * | 2014-11-07 | 2018-07-24 | 宸鸿光电科技股份有限公司 | 制作纳米级导电薄膜的方法及其触控显示装置 |
TWI553933B (zh) * | 2014-12-11 | 2016-10-11 | 財團法人工業技術研究院 | 發光元件、電極結構與其製作方法 |
CN105702875B (zh) | 2014-12-11 | 2018-04-27 | 财团法人工业技术研究院 | 发光元件、电极结构与其制作方法 |
EP3184669B1 (en) * | 2015-12-23 | 2018-07-18 | ATOTECH Deutschland GmbH | Etching solution for copper and copper alloy surfaces |
KR101796991B1 (ko) * | 2016-03-04 | 2017-11-13 | 현대자동차주식회사 | 차량 및 그 제어방법 |
CN107342220B (zh) * | 2017-06-26 | 2019-07-02 | 云谷(固安)科技有限公司 | 金属材料图形化方法 |
CN109933239B (zh) * | 2019-03-12 | 2021-04-30 | 合肥鑫晟光电科技有限公司 | 透明导电结构及其制备方法、显示基板、触控基板 |
CN110172349B (zh) * | 2019-05-08 | 2020-11-20 | 厦门大学 | 一种氮化镓半导体光电化学刻蚀液及加工方法 |
CN111641010A (zh) * | 2020-06-15 | 2020-09-08 | 桂林电子科技大学 | 一种太赫兹波段温控开关器件 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010021224A1 (ja) * | 2008-08-22 | 2010-02-25 | 日立化成工業株式会社 | 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板 |
JP2010507199A (ja) * | 2006-10-12 | 2010-03-04 | カンブリオス テクノロジーズ コーポレイション | ナノワイヤベースの透明導電体およびその適用 |
WO2011162322A1 (ja) * | 2010-06-24 | 2011-12-29 | 富士フイルム株式会社 | 導電膜、タッチパネル及び太陽電池 |
JP2012129176A (ja) * | 2009-12-25 | 2012-07-05 | Fujifilm Corp | 導電性組成物、並びに、それを用いた透明導電体、タッチパネル及び太陽電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5221088B2 (ja) * | 2007-09-12 | 2013-06-26 | 株式会社クラレ | 透明導電膜およびその製造方法 |
WO2009035059A1 (ja) * | 2007-09-12 | 2009-03-19 | Kuraray Co., Ltd. | 導電膜、導電部材および導電膜の製造方法 |
JP5106541B2 (ja) * | 2007-10-26 | 2012-12-26 | 帝人株式会社 | 透明導電性積層体及び透明タッチパネル |
JP2012156094A (ja) * | 2011-01-28 | 2012-08-16 | Toray Ind Inc | 導電積層体およびそれを用いてなるタッチパネル |
JP2012183737A (ja) * | 2011-03-07 | 2012-09-27 | Toray Ind Inc | 導電積層体およびそれを用いてなるタッチパネル |
EP2692525B1 (en) * | 2011-03-28 | 2015-10-28 | Toray Industries, Inc. | Conductive laminated body and touch panel |
-
2012
- 2012-07-27 JP JP2012548244A patent/JP5303069B2/ja not_active Expired - Fee Related
- 2012-07-27 CN CN201280035646.2A patent/CN103703519B/zh not_active Expired - Fee Related
- 2012-07-27 WO PCT/JP2012/069133 patent/WO2013018691A1/ja active Application Filing
- 2012-07-27 KR KR1020147001481A patent/KR20140048211A/ko not_active Application Discontinuation
- 2012-08-01 TW TW101127671A patent/TW201333773A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010507199A (ja) * | 2006-10-12 | 2010-03-04 | カンブリオス テクノロジーズ コーポレイション | ナノワイヤベースの透明導電体およびその適用 |
WO2010021224A1 (ja) * | 2008-08-22 | 2010-02-25 | 日立化成工業株式会社 | 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板 |
JP2012129176A (ja) * | 2009-12-25 | 2012-07-05 | Fujifilm Corp | 導電性組成物、並びに、それを用いた透明導電体、タッチパネル及び太陽電池 |
WO2011162322A1 (ja) * | 2010-06-24 | 2011-12-29 | 富士フイルム株式会社 | 導電膜、タッチパネル及び太陽電池 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015005332A1 (ja) * | 2013-07-09 | 2015-01-15 | 日東電工株式会社 | 透明導電性フィルムおよび透明導電性フィルムの製造方法 |
TWI508104B (zh) * | 2013-07-09 | 2015-11-11 | Nitto Denko Corp | A method for producing a transparent conductive film and a transparent conductive film |
JP2016218183A (ja) * | 2015-05-18 | 2016-12-22 | 大日本印刷株式会社 | フォトマスクおよび導電性パターンの製造方法 |
JP2017064701A (ja) * | 2015-09-28 | 2017-04-06 | ゼロックス コーポレイションXerox Corporation | インクジェット印刷を用いたエッチング方法 |
CN113383022A (zh) * | 2019-01-30 | 2021-09-10 | 富士胶片株式会社 | 水显影性柔性版印刷版原版、柔性版印刷版及感光性树脂组合物 |
EP3919524A4 (en) * | 2019-01-30 | 2022-03-30 | FUJIFILM Corporation | WATER DEVELOPABLE FLEXO PRINTING PLATE, FLEXO PRINTING PLATE AND PHOTOSENSITIVE RESIN COMPOSITION |
CN113383022B (zh) * | 2019-01-30 | 2023-05-30 | 富士胶片株式会社 | 水显影性柔性版印刷版原版、柔性版印刷版及感光性树脂组合物 |
Also Published As
Publication number | Publication date |
---|---|
KR20140048211A (ko) | 2014-04-23 |
CN103703519B (zh) | 2016-01-27 |
TW201333773A (zh) | 2013-08-16 |
JPWO2013018691A1 (ja) | 2015-03-05 |
JP5303069B2 (ja) | 2013-10-02 |
CN103703519A (zh) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5303069B2 (ja) | 導電積層体、パターン化導電積層体およびそれを用いてなるタッチパネル | |
JP5793142B2 (ja) | 導電積層体およびタッチパネル | |
JP6644684B2 (ja) | 金属ナノワイヤおよびポリマーバインダーを主成分とする透明導電性コーティング、その溶液処理、およびパターン化方法 | |
JP5729298B2 (ja) | 導電積層体およびそれを用いてなるタッチパネル | |
TWI549900B (zh) | 奈米結構透明導體之圖案化蝕刻 | |
EP2415849A1 (en) | Agent for removing conductive film and method for removing conductive film | |
JP5428924B2 (ja) | 導電積層体およびそれを用いてなるタッチパネル | |
JPWO2014010270A1 (ja) | 導電積層体、パターン化導電積層体、その製造方法、および、それらを用いてなるタッチパネル | |
KR101959594B1 (ko) | 도전 적층체 및 이를 이용하여 이루어지는 표시체 | |
JP2012183737A (ja) | 導電積層体およびそれを用いてなるタッチパネル | |
JP2014078461A (ja) | 導電積層体の製造方法 | |
JP2013098066A (ja) | 導電積層体およびそれを用いてなるタッチパネル | |
JP2014102962A (ja) | 導電積層体、パターン化導電積層体、その製造方法、および、それらを用いてなるタッチパネル | |
JP2012156094A (ja) | 導電積層体およびそれを用いてなるタッチパネル | |
WO2016163364A1 (ja) | 導電性積層体、タッチパネル及び導電性積層体の製造方法 | |
JP2013230564A (ja) | 透明導電積層体およびそれを用いてなる表示体 | |
TW202240601A (zh) | 透明導電性膜 | |
JP2015082344A (ja) | 導電積層体及びそれを用いてなる表示体 | |
JP2014102963A (ja) | 導電積層体、パターン化導電積層体、その製造方法、および、それらを用いてなるタッチパネル | |
JP2014071999A (ja) | 導電積層体およびそれを用いてなるタッチパネル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012548244 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12820394 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147001481 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12820394 Country of ref document: EP Kind code of ref document: A1 |