WO2010013414A1 - 積層セラミックコンデンサ - Google Patents
積層セラミックコンデンサ Download PDFInfo
- Publication number
- WO2010013414A1 WO2010013414A1 PCT/JP2009/003460 JP2009003460W WO2010013414A1 WO 2010013414 A1 WO2010013414 A1 WO 2010013414A1 JP 2009003460 W JP2009003460 W JP 2009003460W WO 2010013414 A1 WO2010013414 A1 WO 2010013414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- internal electrode
- ceramic capacitor
- dielectric ceramic
- multilayer ceramic
- Prior art date
Links
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 39
- 239000000919 ceramic Substances 0.000 claims abstract description 67
- 239000000203 mixture Substances 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 229910002113 barium titanate Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- -1 barium titanate compound Chemical class 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 2
- 239000010410 layer Substances 0.000 description 67
- 239000000843 powder Substances 0.000 description 15
- 239000004020 conductor Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Definitions
- the present invention generally relates to a multilayer ceramic capacitor, and more particularly to a thin-layer multilayer ceramic capacitor having a dielectric ceramic layer thickness of 1 ⁇ m or less.
- the multilayer ceramic capacitor which is the main application of the present invention is generally manufactured as follows.
- a ceramic green sheet containing a dielectric ceramic raw material, to which a conductive material serving as an internal electrode layer in a desired pattern is applied, is prepared.
- a plurality of ceramic green sheets including the ceramic green sheet provided with the conductive material described above are laminated and thermocompression bonded to produce an integrated raw laminate.
- this raw laminate is fired to obtain a sintered laminate.
- An internal electrode layer made of the above-described conductive material is formed inside the laminate.
- an external electrode is formed on the outer surface of the laminate so as to be electrically connected to a specific internal electrode layer.
- the external electrode is formed, for example, by applying and baking a conductive paste containing conductive metal powder and glass frit on the outer surface of the laminate. In this way, a multilayer ceramic capacitor is completed.
- Patent Document 1 discloses a thin-layer multilayer ceramic capacitor having a dielectric ceramic layer thickness of 2 ⁇ m or less.
- an object of the present invention is to obtain higher high temperature load characteristics in a multilayer ceramic capacitor having a dielectric ceramic layer thickness of 1 ⁇ m or less.
- a multilayer ceramic capacitor according to the present invention is electrically connected to a plurality of laminated dielectric ceramic layers, a plurality of internal electrode layers each disposed between a plurality of dielectric ceramic layers, and a plurality of internal electrode layers.
- a multilayer ceramic capacitor comprising a plurality of external electrodes, wherein tc is 1 ⁇ m or less, where tc is the thickness per layer of the dielectric ceramic layer, and te is the thickness per layer of the internal electrode layer, and tc / Te ⁇ 1 is satisfied.
- the dielectric ceramic constituting the dielectric ceramic layer has a composition containing a barium titanate-based compound as a main component and vanadium (V) as a subcomponent.
- the vanadium content with respect to 100 mol parts of the main component of the dielectric ceramic is preferably 0.02 mol parts or more and 0.20 mol parts or less.
- the main component of the metal component constituting the internal electrode layer is nickel.
- the thickness of the internal electrode layer is the same as the thickness of the dielectric ceramic layer or larger than the thickness of the dielectric ceramic layer, the influence of the compressive stress exerted on the dielectric ceramic layer by the internal electrode layer is affected. Since it becomes large, the grain growth of the ceramic particles during firing can be moderately suppressed. As a result, since the ceramic in the dielectric ceramic layer after firing is composed of fine grains and grains having a sharp particle size distribution, the insulation is less likely to deteriorate even under high temperature load conditions. Thereby, the high temperature load characteristic of the multilayer ceramic capacitor in which the thickness of the dielectric ceramic layer is 1 ⁇ m or less is improved.
- the main component of the composition of the dielectric ceramic layer is a barium titanate compound and vanadium is included as an accessory component
- the grain size distribution in the ceramic layer after firing is further sharpened. Therefore, defects can be reduced even under severer high temperature load conditions. This effect becomes remarkable when the content of vanadium is 0.02 mol part or more and 0.20 mol part or less with respect to 100 mol parts of the main component.
- FIG. 1 is a cross-sectional view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention.
- the multilayer ceramic capacitor 1 includes a ceramic multilayer body 2 having a substantially rectangular parallelepiped shape.
- the ceramic laminate 2 includes a plurality of laminated dielectric ceramic layers 3 and a plurality of internal electrode layers 4 and 5 each formed along an interface between the plurality of dielectric ceramic layers 3.
- the internal electrode layers 4 and 5 are formed so as to reach the outer surface of the ceramic laminate 2.
- the internal electrode layer 4 is drawn to one end face (left end face in FIG. 1) of the ceramic laminate 2.
- the internal electrode layer 5 is drawn out to the other end face (the right end face in FIG. 1) of the ceramic laminate 2.
- the internal electrode layers 4 and the internal electrode layers 5 configured as described above are alternately arranged in the ceramic laminate 2 so that electrostatic capacity can be obtained via the dielectric ceramic layer 3.
- the conductive material of the internal electrode layers 4 and 5 is preferably nickel or a nickel alloy which is low cost.
- external electrodes are arranged on the outer surface and end face of the ceramic laminate 2 so as to be electrically connected to any one of the internal electrode layers 4 and 5.
- 6 and 7 are formed, respectively.
- the conductive material contained in the external electrodes 6 and 7 the same conductive material as in the case of the internal electrode layers 4 and 5 can be used, and copper, silver, palladium, a silver-palladium alloy, and the like can also be used.
- the external electrodes 6 and 7 are formed by applying and baking a conductive paste obtained by adding glass frit to such metal powder.
- the thickness tc of the dielectric ceramic layer 3 referred to in the present invention means an average thickness per layer of the dielectric ceramic layer 3 sandwiched between adjacent internal electrode layers.
- the dielectric ceramic layer 3 as a protective layer portion that exists in the surface layer portion of the ceramic laminate 2 and is not sandwiched between the internal electrode layers 4 and 5 is not an object of tc in the present invention.
- the thickness te of the internal electrode layers 4 and 5 referred to in the present invention is the average thickness of the internal electrode layers that contribute to the formation of capacitance.
- the multilayer ceramic capacitor of the present invention Since the effect of the multilayer ceramic capacitor of the present invention is manifested when tc is 1 ⁇ m or less, the multilayer ceramic capacitor of the present invention is intended for the case where tc is 1 ⁇ m or less.
- tc / te ⁇ 1 the effect of improving the high temperature load characteristics of the multilayer ceramic capacitor is observed.
- the composition of the dielectric ceramic layer 3 of the present invention is not particularly limited as long as it can sufficiently form a capacitance, but the main component is preferably a barium titanate compound.
- the barium titanate-based compound is a perovskite type compound represented by the general formula ABO 3 , and A always includes Ba including at least one selected from the group of elements consisting of Ba, Ca, and Sr.
- B is a compound that necessarily contains Ti, including at least one selected from the group consisting of Ti, Zr, and Hf.
- the perovskite type compound represented by the general formula ABO 3 is preferably BaTiO 3 , and the total substitution amount of other components is 15 mol% or less in order to obtain high dielectric constant and high reliability. preferable. If necessary, subcomponents such as rare earth elements, Mg, and Mn are contained.
- the dielectric ceramic layer 3 in the multilayer ceramic capacitor of the present invention contains vanadium (V) as a subcomponent, further improvement in high temperature load characteristics is observed.
- the above improvement effect becomes more conspicuous when the content mole part of V with respect to 100 mole parts of the main component is in the range of 0.02 to 0.20.
- V may be dissolved in the grains constituting the main component, or may exist as an oxide at the grain boundaries. In any case, an appropriate amount of the V component effectively increases the compressive stress applied to the dielectric ceramic layer by the internal electrode layer, and thus acts to sharpen the grain size distribution after sintering.
- BaCO 3 powder and TiO 2 powder were prepared. These were weighed to a composition of BaTiO 3 , mixed for 24 hours in a ball mill, dried, and then calcined at a temperature of 1100 ° C. to obtain a BaTiO 3 powder having an average particle size of 0.12 ⁇ m. It was.
- MgCO 3 , MnCO 3 , Dy 2 O 3 , and SiO 2 powder have a molar ratio of (BaTiO 3 : Dy: Mg: Mn: Si) of 100: 1.0: 1.0: 0. .3: The mixture was mixed to 1.0, mixed in a ball mill for 5 hours, dried, and pulverized to obtain a ceramic raw material powder.
- a polyvinyl butyral binder and ethanol were added and wet mixed by a ball mill for 24 hours to prepare a ceramic slurry.
- This ceramic slurry was formed into a sheet by a die coater to obtain green sheets having predetermined three types of thickness.
- a conductive paste mainly composed of Ni was screen-printed on the ceramic green sheet, and a conductive paste layer for constituting the internal electrode layer was formed to have a predetermined thickness.
- the paste containing the ceramic raw material powder is made to have a thickness equivalent to the thickness of the conductive paste in a region where the conductive paste is not formed. Applied.
- the laminated body was obtained by laminating
- This laminated body was heated to a temperature of 300 ° C. in an N 2 gas atmosphere to burn the binder, and then a reducing atmosphere composed of H 2 —N 2 —H 2 O gas having an oxygen partial pressure of 10 ⁇ 10 MPa.
- the ceramic laminated body was obtained by baking for 2 hours at the temperature of 1150 degreeC inside.
- a Cu paste containing B 2 O 3 —Li 2 O—SiO 2 —BaO glass frit was applied to both end faces of the ceramic laminate obtained after firing, and baked at a temperature of 800 ° C. in an N 2 gas atmosphere. An external electrode electrically connected to the electrode layer was formed.
- the outer dimensions of the samples Nos. 1 to 9 of the multilayer ceramic capacitor obtained as described above were 0.8 mm in width and 1.6 mm in length.
- the total number of dielectric ceramic layers contributing to the formation of capacitance was 400, and the effective opposing area of the internal electrode layers per layer was 0.9 mm 2 .
- Table 1 shows the values of tc, te, and tc / te of the samples of sample numbers 1 to 9.
- the room temperature dielectric constant, capacitance temperature characteristics, and high temperature load characteristics were evaluated for the multilayer ceramic capacitors obtained as described above. Moreover, in order to confirm a grain growth degree, the average grain diameter after baking was measured. Detailed conditions for evaluation and measurement are shown below.
- Dielectric constant The temperature is 25 ° C., and the applied voltage is 0.5 Vrms at 1 kHz.
- -Temperature characteristics of capacitance The rate of change at a temperature of 85 ° C with respect to the capacitance at a temperature of 25 ° C in the capacitance at the applied voltage.
- High temperature load characteristics At a temperature of 85 ° C., a voltage was applied so that the electric field strength was 4 kV / mm, and the change over time in the insulation resistance was measured. The number of samples was 100, and the samples having an insulation resistance value of 100 k ⁇ or less were determined to be defective before 2000 hours, and the number of defects was counted.
- Table 1 shows the results of dielectric constant, capacitance temperature characteristics, high temperature load characteristics, and average grain diameter of each sample Nos. 1-9.
- MgCO 3 , MnCO 3 , Dy 2 O 3 , SiO 2, V 2 O 5 powder, (BaTiO 3 : Dy: Mg: Mn: Si: V) molar ratio is 100: 1.
- a ceramic raw material powder was obtained by blending in a ratio of 0: 1.0: 0.3: 1.0: x, mixing in a ball mill for 5 hours, drying, and pulverizing. The value of x is as shown in sample numbers 101 to 130 in Table 2.
- the high temperature load characteristic of the multilayer ceramic capacitor having a dielectric ceramic layer thickness of 1 ⁇ m or less is improved, it is possible to cope with the downsizing and large capacity of the multilayer ceramic capacitor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
本実験例は、誘電体セラミック層の組成をある特定の組成に固定し、tcとteを変化させた積層セラミックコンデンサにおいて、tc/teが各種特性に与える影響をみたものである。
・静電容量の温度特性: 上記印加電圧における静電容量において、25℃の温度での静電容量を基準とした85℃の温度における変化率を示す。
・高温負荷特性: 温度85℃にて、電界強度が4kV/mmになるように電圧を印加して、その絶縁抵抗の経時変化を測定した。試料数は各100個であり、2000時間経過するまでに、絶縁抵抗値が100kΩ以下になった試料を不良と判定し、この不良数を計数した。
・平均グレイン径: 焼成後の試料を破断し、1000℃の温度で熱処理した後、破断面を走査型電子顕微鏡(SEM)にて観察した。観察像から、300個の粒子の画像解析を行い、円相当径をグレイン径とし、その平均値を求めた。
本実験例は、誘電体セラミック層の組成と、tcと、teとを変化させた積層セラミックコンデンサにおいて、これらの変化が高温負荷特性に与える影響をみたものである。
2 セラミック積層体
3 誘電体セラミック層
4,5 内部電極層
6,7 外部電極
Claims (4)
- 積層された複数の誘電体セラミック層と、
各々が前記複数の誘電体セラミック層間に配置された複数の内部電極層と、
前記複数の内部電極層に電気的に接続された外部電極とを備える積層セラミックコンデンサであって、
前記誘電体セラミック層の一層当たりの厚みをtcとし、前記内部電極層の一層当たり
の厚みをteとするとき、tcが1μm以下であるとともに、tc/te≦1を満足する
、積層セラミックコンデンサ。 - 前記誘電体セラミック層を構成する誘電体セラミックが、チタン酸バリウム系化合物を主成分とし、副成分にバナジウムを含む組成を有する、請求項1に記載の積層セラミックコンデンサ。
- 前記主成分100モル部に対する前記バナジウムの含有量が、0.02モル部以上0.20モル部以下である、請求項2に記載の積層セラミックコンデンサ。
- 前記内部電極層を構成する金属成分の主成分がニッケルである、請求項1から請求項3までのいずれか1項に記載の積層セラミックコンデンサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010522602A JP5093351B2 (ja) | 2008-07-29 | 2009-07-23 | 積層セラミックコンデンサ |
CN2009801149472A CN102017033B (zh) | 2008-07-29 | 2009-07-23 | 层叠陶瓷电容器 |
US12/907,207 US8009408B2 (en) | 2008-07-29 | 2010-10-19 | Laminated ceramic capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008195201 | 2008-07-29 | ||
JP2008-195201 | 2008-07-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/907,207 Continuation US8009408B2 (en) | 2008-07-29 | 2010-10-19 | Laminated ceramic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010013414A1 true WO2010013414A1 (ja) | 2010-02-04 |
Family
ID=41610129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003460 WO2010013414A1 (ja) | 2008-07-29 | 2009-07-23 | 積層セラミックコンデンサ |
Country Status (4)
Country | Link |
---|---|
US (1) | US8009408B2 (ja) |
JP (2) | JP5093351B2 (ja) |
CN (1) | CN102017033B (ja) |
WO (1) | WO2010013414A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178632A (ja) * | 2010-03-03 | 2011-09-15 | Murata Mfg Co Ltd | 誘電体セラミックおよび積層セラミックコンデンサ |
JP2013067563A (ja) * | 2013-01-09 | 2013-04-18 | Murata Mfg Co Ltd | 誘電体セラミックおよび積層セラミックコンデンサ |
WO2014174875A1 (ja) * | 2013-04-25 | 2014-10-30 | 株式会社村田製作所 | 積層セラミックコンデンサ |
JP2017212276A (ja) * | 2016-05-24 | 2017-11-30 | Tdk株式会社 | 積層セラミックコンデンサ |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101589567B1 (ko) * | 2010-12-06 | 2016-01-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 적층 세라믹 전자부품, 및 적층 세라믹 전자부품의 제조방법 |
JP2012248622A (ja) * | 2011-05-26 | 2012-12-13 | Taiyo Yuden Co Ltd | チップ状電子部品 |
KR101580350B1 (ko) * | 2012-06-04 | 2015-12-23 | 삼성전기주식회사 | 적층 세라믹 부품 |
KR102041629B1 (ko) * | 2013-02-28 | 2019-11-06 | 삼성전기주식회사 | 적층 세라믹 전자부품 및 이의 제조방법 |
JP6632808B2 (ja) * | 2015-03-30 | 2020-01-22 | 太陽誘電株式会社 | 積層セラミックコンデンサ |
JP2019102752A (ja) | 2017-12-07 | 2019-06-24 | 太陽誘電株式会社 | 積層セラミックコンデンサ |
KR102115955B1 (ko) | 2018-09-03 | 2020-05-27 | 삼성전기주식회사 | 적층 세라믹 전자부품 |
KR102191252B1 (ko) | 2018-09-03 | 2020-12-15 | 삼성전기주식회사 | 적층 세라믹 전자부품 |
KR102473419B1 (ko) | 2018-09-03 | 2022-12-02 | 삼성전기주식회사 | 적층 세라믹 전자부품 |
KR102166129B1 (ko) | 2018-09-06 | 2020-10-15 | 삼성전기주식회사 | 적층 세라믹 커패시터 |
KR102473420B1 (ko) | 2018-09-06 | 2022-12-02 | 삼성전기주식회사 | 적층 세라믹 전자부품 |
KR102101933B1 (ko) | 2018-09-06 | 2020-04-20 | 삼성전기주식회사 | 적층 세라믹 전자부품 |
KR102099775B1 (ko) | 2018-09-06 | 2020-04-10 | 삼성전기주식회사 | 적층 세라믹 커패시터 |
KR102070235B1 (ko) | 2018-10-29 | 2020-01-28 | 삼성전기주식회사 | 커패시터 부품 |
KR102319597B1 (ko) | 2019-06-27 | 2021-11-02 | 삼성전기주식회사 | 적층 세라믹 전자부품 |
US11450484B2 (en) * | 2019-12-27 | 2022-09-20 | Murata Manufacturing Co., Ltd. | Multilayer ceramic capacitor |
CN115475797B (zh) * | 2022-09-30 | 2024-04-05 | 肇庆绿宝石电子科技股份有限公司 | 一种叠层电容器及其制造方法、载条清洗液及制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005277178A (ja) * | 2004-03-25 | 2005-10-06 | Tdk Corp | 積層セラミックコンデンサの製造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3882954B2 (ja) * | 1997-03-19 | 2007-02-21 | Tdk株式会社 | チップ型積層セラミックコンデンサ |
JP3275799B2 (ja) * | 1997-09-25 | 2002-04-22 | 株式会社村田製作所 | 誘電体磁器組成物 |
TW434600B (en) * | 1998-02-17 | 2001-05-16 | Murata Manufacturing Co | Dielectric ceramic composition, laminated ceramic capacitor, and method for producing the laminate ceramic capacitor |
JP2001028207A (ja) | 1999-07-14 | 2001-01-30 | Murata Mfg Co Ltd | 導電性ペーストおよびセラミック電子部品 |
US6403513B1 (en) * | 1999-07-27 | 2002-06-11 | Tdk Corporation | Dielectric ceramic composition and electronic device |
JP3827901B2 (ja) | 1999-12-24 | 2006-09-27 | 太陽誘電株式会社 | 積層セラミックコンデンサ |
JP2002164247A (ja) * | 2000-11-24 | 2002-06-07 | Murata Mfg Co Ltd | 誘電体セラミック組成物および積層セラミックコンデンサ |
JP2002187770A (ja) * | 2000-12-15 | 2002-07-05 | Toho Titanium Co Ltd | 誘電体磁器組成物及びこれを用いた積層セラミックコンデンサ |
JP4078910B2 (ja) | 2002-07-25 | 2008-04-23 | 松下電器産業株式会社 | プラズマディスプレイ装置の製造方法 |
JP4110978B2 (ja) * | 2003-01-24 | 2008-07-02 | 株式会社村田製作所 | 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ |
JP2005101547A (ja) * | 2003-08-26 | 2005-04-14 | Tdk Corp | 電子部品の製造方法および電子部品 |
JP2005136046A (ja) | 2003-10-29 | 2005-05-26 | Kyocera Corp | 積層セラミックコンデンサおよびその製法 |
JP4547945B2 (ja) * | 2004-03-11 | 2010-09-22 | Tdk株式会社 | 電子部品、誘電体磁器組成物およびその製造方法 |
JP4203452B2 (ja) * | 2004-06-28 | 2009-01-07 | Tdk株式会社 | 積層型セラミックコンデンサの製造方法 |
JP4491794B2 (ja) | 2004-08-19 | 2010-06-30 | 株式会社村田製作所 | 誘電体セラミック、及び積層セラミックコンデンサ |
WO2006067958A1 (ja) | 2004-12-24 | 2006-06-29 | Murata Manufacturing Co., Ltd. | 誘電体セラミックおよび積層セラミックコンデンサ |
JP2006344669A (ja) * | 2005-06-07 | 2006-12-21 | Tdk Corp | 積層電子部品の製造方法 |
JP4225507B2 (ja) * | 2005-06-13 | 2009-02-18 | Tdk株式会社 | 積層コンデンサ |
JP2007173714A (ja) | 2005-12-26 | 2007-07-05 | Kyocera Corp | 積層セラミックコンデンサおよびその製法 |
JP4771818B2 (ja) | 2006-01-27 | 2011-09-14 | 京セラ株式会社 | 積層セラミックコンデンサ |
JP4983307B2 (ja) | 2006-03-20 | 2012-07-25 | Tdk株式会社 | 積層型電子部品およびその製造方法 |
JP4442596B2 (ja) | 2006-09-08 | 2010-03-31 | Tdk株式会社 | 導電性ペースト、積層セラミック電子部品及びその製造方法 |
JP2008084914A (ja) | 2006-09-26 | 2008-04-10 | Matsushita Electric Ind Co Ltd | 積層コンデンサ |
KR101200129B1 (ko) * | 2007-06-20 | 2012-11-12 | 가부시키가이샤 무라타 세이사쿠쇼 | 유전체 세라믹 조성물 및 적층 세라믹 콘덴서 |
-
2009
- 2009-07-23 JP JP2010522602A patent/JP5093351B2/ja active Active
- 2009-07-23 WO PCT/JP2009/003460 patent/WO2010013414A1/ja active Application Filing
- 2009-07-23 CN CN2009801149472A patent/CN102017033B/zh active Active
-
2010
- 2010-10-19 US US12/907,207 patent/US8009408B2/en active Active
-
2012
- 2012-07-27 JP JP2012166963A patent/JP2012199597A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005277178A (ja) * | 2004-03-25 | 2005-10-06 | Tdk Corp | 積層セラミックコンデンサの製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178632A (ja) * | 2010-03-03 | 2011-09-15 | Murata Mfg Co Ltd | 誘電体セラミックおよび積層セラミックコンデンサ |
US8404607B2 (en) | 2010-03-03 | 2013-03-26 | Murata Manufacturing Co., Ltd. | Dielectric ceramic and laminated ceramic capacitor |
JP2013067563A (ja) * | 2013-01-09 | 2013-04-18 | Murata Mfg Co Ltd | 誘電体セラミックおよび積層セラミックコンデンサ |
WO2014174875A1 (ja) * | 2013-04-25 | 2014-10-30 | 株式会社村田製作所 | 積層セラミックコンデンサ |
US9754720B2 (en) | 2013-04-25 | 2017-09-05 | Murata Manufacturing Co., Ltd. | Multilayer ceramic capacitor |
JP2017212276A (ja) * | 2016-05-24 | 2017-11-30 | Tdk株式会社 | 積層セラミックコンデンサ |
Also Published As
Publication number | Publication date |
---|---|
CN102017033A (zh) | 2011-04-13 |
JPWO2010013414A1 (ja) | 2012-01-05 |
US8009408B2 (en) | 2011-08-30 |
JP5093351B2 (ja) | 2012-12-12 |
JP2012199597A (ja) | 2012-10-18 |
US20110038097A1 (en) | 2011-02-17 |
CN102017033B (zh) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5093351B2 (ja) | 積層セラミックコンデンサ | |
JP5315856B2 (ja) | 積層セラミック電子部品 | |
JP5811103B2 (ja) | 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法 | |
JP4345071B2 (ja) | 積層セラミックコンデンサ、及び該積層セラミックコンデンサの製造方法 | |
US8179662B2 (en) | Monolithic ceramic capacitor | |
JP4786604B2 (ja) | 誘電体磁器及びそれを用いた積層セラミックコンデンサ | |
JP5224147B2 (ja) | 誘電体セラミック、及び積層セラミックコンデンサ | |
CN101628809B (zh) | 介电陶瓷和层积陶瓷电容器 | |
JP5211262B1 (ja) | 積層セラミックコンデンサ | |
US8492301B2 (en) | Dielectric ceramic composition and ceramic electronic component | |
JP7131955B2 (ja) | 積層セラミックコンデンサおよびその製造方法 | |
JP4100173B2 (ja) | 誘電体セラミックおよび積層セラミックコンデンサ | |
KR20130122781A (ko) | 유전체 세라믹 및 적층 세라믹 콘덴서 | |
KR101422127B1 (ko) | 적층 세라믹 콘덴서 | |
JP5240199B2 (ja) | 誘電体セラミック及び積層セラミックコンデンサ | |
JP5454294B2 (ja) | 積層セラミックコンデンサの製造方法 | |
WO2012096223A1 (ja) | 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法 | |
US9570235B2 (en) | Multilayer ceramic capacitor | |
WO2014010376A1 (ja) | 積層セラミックコンデンサおよびその製造方法 | |
JP5800408B2 (ja) | 積層セラミックコンデンサ | |
US8492302B2 (en) | Dielectric ceramic composition and ceramic electronic component | |
JP6665709B2 (ja) | 誘電体組成物及び電子部品 | |
JP6075457B2 (ja) | セラミックグリーンシート、積層セラミックコンデンサの製造方法、および積層セラミックコンデンサ | |
WO2016021370A1 (ja) | 積層セラミックコンデンサ | |
JP7310077B2 (ja) | 誘電体組成物及びこれを含む電子部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980114947.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09802663 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010522602 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09802663 Country of ref document: EP Kind code of ref document: A1 |