WO2010013414A1 - 積層セラミックコンデンサ - Google Patents

積層セラミックコンデンサ Download PDF

Info

Publication number
WO2010013414A1
WO2010013414A1 PCT/JP2009/003460 JP2009003460W WO2010013414A1 WO 2010013414 A1 WO2010013414 A1 WO 2010013414A1 JP 2009003460 W JP2009003460 W JP 2009003460W WO 2010013414 A1 WO2010013414 A1 WO 2010013414A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
internal electrode
ceramic capacitor
dielectric ceramic
multilayer ceramic
Prior art date
Application number
PCT/JP2009/003460
Other languages
English (en)
French (fr)
Inventor
松田真
中村友幸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2010522602A priority Critical patent/JP5093351B2/ja
Priority to CN2009801149472A priority patent/CN102017033B/zh
Publication of WO2010013414A1 publication Critical patent/WO2010013414A1/ja
Priority to US12/907,207 priority patent/US8009408B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention generally relates to a multilayer ceramic capacitor, and more particularly to a thin-layer multilayer ceramic capacitor having a dielectric ceramic layer thickness of 1 ⁇ m or less.
  • the multilayer ceramic capacitor which is the main application of the present invention is generally manufactured as follows.
  • a ceramic green sheet containing a dielectric ceramic raw material, to which a conductive material serving as an internal electrode layer in a desired pattern is applied, is prepared.
  • a plurality of ceramic green sheets including the ceramic green sheet provided with the conductive material described above are laminated and thermocompression bonded to produce an integrated raw laminate.
  • this raw laminate is fired to obtain a sintered laminate.
  • An internal electrode layer made of the above-described conductive material is formed inside the laminate.
  • an external electrode is formed on the outer surface of the laminate so as to be electrically connected to a specific internal electrode layer.
  • the external electrode is formed, for example, by applying and baking a conductive paste containing conductive metal powder and glass frit on the outer surface of the laminate. In this way, a multilayer ceramic capacitor is completed.
  • Patent Document 1 discloses a thin-layer multilayer ceramic capacitor having a dielectric ceramic layer thickness of 2 ⁇ m or less.
  • an object of the present invention is to obtain higher high temperature load characteristics in a multilayer ceramic capacitor having a dielectric ceramic layer thickness of 1 ⁇ m or less.
  • a multilayer ceramic capacitor according to the present invention is electrically connected to a plurality of laminated dielectric ceramic layers, a plurality of internal electrode layers each disposed between a plurality of dielectric ceramic layers, and a plurality of internal electrode layers.
  • a multilayer ceramic capacitor comprising a plurality of external electrodes, wherein tc is 1 ⁇ m or less, where tc is the thickness per layer of the dielectric ceramic layer, and te is the thickness per layer of the internal electrode layer, and tc / Te ⁇ 1 is satisfied.
  • the dielectric ceramic constituting the dielectric ceramic layer has a composition containing a barium titanate-based compound as a main component and vanadium (V) as a subcomponent.
  • the vanadium content with respect to 100 mol parts of the main component of the dielectric ceramic is preferably 0.02 mol parts or more and 0.20 mol parts or less.
  • the main component of the metal component constituting the internal electrode layer is nickel.
  • the thickness of the internal electrode layer is the same as the thickness of the dielectric ceramic layer or larger than the thickness of the dielectric ceramic layer, the influence of the compressive stress exerted on the dielectric ceramic layer by the internal electrode layer is affected. Since it becomes large, the grain growth of the ceramic particles during firing can be moderately suppressed. As a result, since the ceramic in the dielectric ceramic layer after firing is composed of fine grains and grains having a sharp particle size distribution, the insulation is less likely to deteriorate even under high temperature load conditions. Thereby, the high temperature load characteristic of the multilayer ceramic capacitor in which the thickness of the dielectric ceramic layer is 1 ⁇ m or less is improved.
  • the main component of the composition of the dielectric ceramic layer is a barium titanate compound and vanadium is included as an accessory component
  • the grain size distribution in the ceramic layer after firing is further sharpened. Therefore, defects can be reduced even under severer high temperature load conditions. This effect becomes remarkable when the content of vanadium is 0.02 mol part or more and 0.20 mol part or less with respect to 100 mol parts of the main component.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention.
  • the multilayer ceramic capacitor 1 includes a ceramic multilayer body 2 having a substantially rectangular parallelepiped shape.
  • the ceramic laminate 2 includes a plurality of laminated dielectric ceramic layers 3 and a plurality of internal electrode layers 4 and 5 each formed along an interface between the plurality of dielectric ceramic layers 3.
  • the internal electrode layers 4 and 5 are formed so as to reach the outer surface of the ceramic laminate 2.
  • the internal electrode layer 4 is drawn to one end face (left end face in FIG. 1) of the ceramic laminate 2.
  • the internal electrode layer 5 is drawn out to the other end face (the right end face in FIG. 1) of the ceramic laminate 2.
  • the internal electrode layers 4 and the internal electrode layers 5 configured as described above are alternately arranged in the ceramic laminate 2 so that electrostatic capacity can be obtained via the dielectric ceramic layer 3.
  • the conductive material of the internal electrode layers 4 and 5 is preferably nickel or a nickel alloy which is low cost.
  • external electrodes are arranged on the outer surface and end face of the ceramic laminate 2 so as to be electrically connected to any one of the internal electrode layers 4 and 5.
  • 6 and 7 are formed, respectively.
  • the conductive material contained in the external electrodes 6 and 7 the same conductive material as in the case of the internal electrode layers 4 and 5 can be used, and copper, silver, palladium, a silver-palladium alloy, and the like can also be used.
  • the external electrodes 6 and 7 are formed by applying and baking a conductive paste obtained by adding glass frit to such metal powder.
  • the thickness tc of the dielectric ceramic layer 3 referred to in the present invention means an average thickness per layer of the dielectric ceramic layer 3 sandwiched between adjacent internal electrode layers.
  • the dielectric ceramic layer 3 as a protective layer portion that exists in the surface layer portion of the ceramic laminate 2 and is not sandwiched between the internal electrode layers 4 and 5 is not an object of tc in the present invention.
  • the thickness te of the internal electrode layers 4 and 5 referred to in the present invention is the average thickness of the internal electrode layers that contribute to the formation of capacitance.
  • the multilayer ceramic capacitor of the present invention Since the effect of the multilayer ceramic capacitor of the present invention is manifested when tc is 1 ⁇ m or less, the multilayer ceramic capacitor of the present invention is intended for the case where tc is 1 ⁇ m or less.
  • tc / te ⁇ 1 the effect of improving the high temperature load characteristics of the multilayer ceramic capacitor is observed.
  • the composition of the dielectric ceramic layer 3 of the present invention is not particularly limited as long as it can sufficiently form a capacitance, but the main component is preferably a barium titanate compound.
  • the barium titanate-based compound is a perovskite type compound represented by the general formula ABO 3 , and A always includes Ba including at least one selected from the group of elements consisting of Ba, Ca, and Sr.
  • B is a compound that necessarily contains Ti, including at least one selected from the group consisting of Ti, Zr, and Hf.
  • the perovskite type compound represented by the general formula ABO 3 is preferably BaTiO 3 , and the total substitution amount of other components is 15 mol% or less in order to obtain high dielectric constant and high reliability. preferable. If necessary, subcomponents such as rare earth elements, Mg, and Mn are contained.
  • the dielectric ceramic layer 3 in the multilayer ceramic capacitor of the present invention contains vanadium (V) as a subcomponent, further improvement in high temperature load characteristics is observed.
  • the above improvement effect becomes more conspicuous when the content mole part of V with respect to 100 mole parts of the main component is in the range of 0.02 to 0.20.
  • V may be dissolved in the grains constituting the main component, or may exist as an oxide at the grain boundaries. In any case, an appropriate amount of the V component effectively increases the compressive stress applied to the dielectric ceramic layer by the internal electrode layer, and thus acts to sharpen the grain size distribution after sintering.
  • BaCO 3 powder and TiO 2 powder were prepared. These were weighed to a composition of BaTiO 3 , mixed for 24 hours in a ball mill, dried, and then calcined at a temperature of 1100 ° C. to obtain a BaTiO 3 powder having an average particle size of 0.12 ⁇ m. It was.
  • MgCO 3 , MnCO 3 , Dy 2 O 3 , and SiO 2 powder have a molar ratio of (BaTiO 3 : Dy: Mg: Mn: Si) of 100: 1.0: 1.0: 0. .3: The mixture was mixed to 1.0, mixed in a ball mill for 5 hours, dried, and pulverized to obtain a ceramic raw material powder.
  • a polyvinyl butyral binder and ethanol were added and wet mixed by a ball mill for 24 hours to prepare a ceramic slurry.
  • This ceramic slurry was formed into a sheet by a die coater to obtain green sheets having predetermined three types of thickness.
  • a conductive paste mainly composed of Ni was screen-printed on the ceramic green sheet, and a conductive paste layer for constituting the internal electrode layer was formed to have a predetermined thickness.
  • the paste containing the ceramic raw material powder is made to have a thickness equivalent to the thickness of the conductive paste in a region where the conductive paste is not formed. Applied.
  • the laminated body was obtained by laminating
  • This laminated body was heated to a temperature of 300 ° C. in an N 2 gas atmosphere to burn the binder, and then a reducing atmosphere composed of H 2 —N 2 —H 2 O gas having an oxygen partial pressure of 10 ⁇ 10 MPa.
  • the ceramic laminated body was obtained by baking for 2 hours at the temperature of 1150 degreeC inside.
  • a Cu paste containing B 2 O 3 —Li 2 O—SiO 2 —BaO glass frit was applied to both end faces of the ceramic laminate obtained after firing, and baked at a temperature of 800 ° C. in an N 2 gas atmosphere. An external electrode electrically connected to the electrode layer was formed.
  • the outer dimensions of the samples Nos. 1 to 9 of the multilayer ceramic capacitor obtained as described above were 0.8 mm in width and 1.6 mm in length.
  • the total number of dielectric ceramic layers contributing to the formation of capacitance was 400, and the effective opposing area of the internal electrode layers per layer was 0.9 mm 2 .
  • Table 1 shows the values of tc, te, and tc / te of the samples of sample numbers 1 to 9.
  • the room temperature dielectric constant, capacitance temperature characteristics, and high temperature load characteristics were evaluated for the multilayer ceramic capacitors obtained as described above. Moreover, in order to confirm a grain growth degree, the average grain diameter after baking was measured. Detailed conditions for evaluation and measurement are shown below.
  • Dielectric constant The temperature is 25 ° C., and the applied voltage is 0.5 Vrms at 1 kHz.
  • -Temperature characteristics of capacitance The rate of change at a temperature of 85 ° C with respect to the capacitance at a temperature of 25 ° C in the capacitance at the applied voltage.
  • High temperature load characteristics At a temperature of 85 ° C., a voltage was applied so that the electric field strength was 4 kV / mm, and the change over time in the insulation resistance was measured. The number of samples was 100, and the samples having an insulation resistance value of 100 k ⁇ or less were determined to be defective before 2000 hours, and the number of defects was counted.
  • Table 1 shows the results of dielectric constant, capacitance temperature characteristics, high temperature load characteristics, and average grain diameter of each sample Nos. 1-9.
  • MgCO 3 , MnCO 3 , Dy 2 O 3 , SiO 2, V 2 O 5 powder, (BaTiO 3 : Dy: Mg: Mn: Si: V) molar ratio is 100: 1.
  • a ceramic raw material powder was obtained by blending in a ratio of 0: 1.0: 0.3: 1.0: x, mixing in a ball mill for 5 hours, drying, and pulverizing. The value of x is as shown in sample numbers 101 to 130 in Table 2.
  • the high temperature load characteristic of the multilayer ceramic capacitor having a dielectric ceramic layer thickness of 1 ⁇ m or less is improved, it is possible to cope with the downsizing and large capacity of the multilayer ceramic capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 誘電体セラミック層の厚みが1μm以下である積層セラミックコンデンサにおいて、より高い高温負荷特性を得る。積層された複数の誘電体セラミック層と、各々が複数の誘電体セラミック層間に配置された複数の内部電極層と、複数の内部電極層に電気的に接続された外部電極とを備える積層セラミックコンデンサであって、誘電体セラミック層の一層当たりの厚みをtcとし、内部電極層の一層当たりの厚みをteとするとき、tcが1μm以下であるとともに、tc/te≦1を満足する。

Description

積層セラミックコンデンサ
 この発明は、一般的に積層セラミックコンデンサに関し、特定的には誘電体セラミック層の厚みが1μm以下という薄層タイプの積層セラミックコンデンサに関する。
 本発明の主用途である積層セラミックコンデンサは、以下のようにして製造されるのが一般的である。
 まず、その表面に、所望のパターンで内部電極層となる導電材料が付与された、誘電体セラミック原料を含むセラミックグリーンシートが用意される。
 次に、上述した導電材料が付与されたセラミックグリーンシートを含む複数のセラミックグリーンシートが積層されて熱圧着されることによって、一体化された生の積層体が作製される。
 次に、この生の積層体が焼成されることによって、焼結後の積層体が得られる。この積層体の内部には、上述した導電材料で構成された内部電極層が形成されている。
 次いで、積層体の外表面上に、内部電極層の特定のものに電気的に接続されるように、外部電極が形成される。外部電極は、たとえば、導電性金属粉末およびガラスフリットを含む導電性ペーストを積層体の外表面上に付与し、焼き付けることによって形成される。このようにして、積層セラミックコンデンサが完成される。
 近年、機器の小型化および高性能化に伴い、積層セラミックコンデンサにも小型化、大容量化が求められている。これには、誘電体セラミック層の厚みを薄くするのが有効である。特開2005-136046号公報(以下、特許文献1という)には、誘電体セラミック層の厚みが2μm以下の薄層タイプの積層セラミックコンデンサが開示されている。
特開2005-136046号公報
 昨今では、積層セラミックコンデンサにさらなる小型化、大容量化が要求されている。特許文献1に記載の積層セラミックコンデンサでは、誘電体セラミック層の厚みが1μm以下になると、高温負荷条件下における寿命特性が悪くなり、高温負荷試験における不良率が高くなるという課題があった。
 そこで、この発明の目的は、このような問題点に鑑み、誘電体セラミック層の厚みが1μm以下である積層セラミックコンデンサにおいて、より高い高温負荷特性を得ることである。
 この発明に従った積層セラミックコンデンサは、積層された複数の誘電体セラミック層と、各々が複数の誘電体セラミック層間に配置された複数の内部電極層と、複数の内部電極層に電気的に接続された外部電極とを備える積層セラミックコンデンサであって、誘電体セラミック層の一層当たりの厚みをtcとし、内部電極層の一層当たりの厚みをteとするとき、tcが1μm以下であるとともに、tc/te≦1を満足する。
 この発明の積層セラミックコンデンサにおいて、誘電体セラミック層を構成する誘電体セラミックが、チタン酸バリウム系化合物を主成分とし、副成分にバナジウム(V)を含む組成を有することが好ましい。
 また、この発明の積層セラミックコンデンサにおいて、誘電体セラミックの主成分100モル部に対するバナジウムの含有量が、0.02モル部以上0.20モル部以下であることが好ましい。
 さらに、この発明の積層セラミックコンデンサにおいて、内部電極層を構成する金属成分の主成分がニッケルであることが好ましい。
 本発明によれば、内部電極層の厚みが、誘電体セラミック層の厚みと同じ、または、誘電体セラミック層の厚みよりも大きいので、内部電極層が誘電体セラミック層に与える圧縮応力の影響が大きくなるので、焼成時におけるセラミック粒子の粒成長を適度に抑制することができる。その結果として、焼成後の誘電体セラミック層中のセラミックが、微粒でかつ粒度分布のシャープなグレインで構成されるため、高温負荷条件においても絶縁性が低下しにくくなる。これにより、誘電体セラミック層の厚みが1μm以下である積層セラミックコンデンサの高温負荷特性が向上する。
 また、この発明において、誘電体セラミック層の組成の主成分がチタン酸バリウム系化合物であり、副成分としてバナジウムが含まれている場合、焼成後のセラミック層中のグレインの粒度分布がさらにシャープとなるので、より厳しい高温負荷条件においても、不良を減らすことができる。バナジウムの含有量が、主成分100モル部に対して0.02モル部以上0.20モル部以下である場合、この効果が顕著になる。
本発明の一実施形態による積層セラミックコンデンサを図解的に示す断面図である。
 まず、本発明の積層セラミックコンデンサについて、図1の例を用いて説明する。
 図1に示すように、積層セラミックコンデンサ1は、略直方体状のセラミック積層体2を備えている。セラミック積層体2は、複数の積層された誘電体セラミック層3と、各々が複数の誘電体セラミック層3間の界面に沿って形成された複数の内部電極層4および5とを備えている。内部電極層4および5は、セラミック積層体2の外表面にまで到達するように形成される。内部電極層4は、セラミック積層体2の一方側の端面(図1にて左側端面)にまで引き出される。内部電極層5は、セラミック積層体2の他方側の端面(図1にて右側端面)にまで引き出される。このように構成された内部電極層4と内部電極層5とが、セラミック積層体2の内部において、誘電体セラミック層3を介して静電容量を取得できるように交互に配置されている。
 内部電極層4および5の導電材料は、低コストであるニッケルまたはニッケル合金が好ましい。
 前述した静電容量を取り出すために、セラミック積層体2の外表面上であって端面上には、内部電極層4および5のいずれか特定のものに電気的に接続されるように、外部電極6および7がそれぞれ形成されている。外部電極6および7に含まれる導電材料としては、内部電極層4および5の場合と同じ導電材料を用いることができ、さらに、銅、銀、パラジウム、銀-パラジウム合金なども用いることができる。外部電極6および7は、このような金属粉末にガラスフリットを添加して得られた導電性ペーストを付与し、焼き付けることによって形成される。
 本発明でいう誘電体セラミック層3の厚みtcは、隣り合う内部電極層に挟まれた、誘電体セラミック層3の一層当たりの平均厚みのことをいう。セラミック積層体2の表層部に存在して内部電極層4および5に挟まれていない保護層部分としての誘電体セラミック層3は、本発明ではtcの対象とはしない。また、本発明でいう内部電極層4および5の厚みteは、静電容量の形成に寄与する内部電極層の平均厚みである。
 本発明の積層セラミックコンデンサにおける効果は、tcが1μm以下である場合に発現するため、本発明の積層セラミックコンデンサは、tcが1μm以下である場合を対象としている。そして、tc/te≦1である場合、積層セラミックコンデンサの高温負荷特性の改善の効果がみられる。
 本発明の誘電体セラミック層3の組成は、静電容量を十分に形成できるものであれば特に限られるものではないが、主成分はチタン酸バリウム系化合物であることが好ましい。ここでいうチタン酸バリウム系化合物とは、一般式ABOで表されるペロブスカイト型化合物において、AはBa、Ca、Srからなる元素の群より選ばれる少なくとも1種を含んでBaを必ず含み、BはTi、Zr、Hfからなる元素の群より選ばれる少なくとも1種を含んでTiを必ず含む化合物である。特に、一般式ABOで表されるペロブスカイト型化合物は、BaTiOが好ましく、それ以外の成分の置換量の合計が15モル%以下であることが、高い誘電率と高い信頼性を得るうえで好ましい。必要に応じて、希土類元素、Mg、Mn、などの副成分が含有される。
 そして、本発明の積層セラミックコンデンサにおける誘電体セラミック層3が、副成分としてバナジウム(V)を含むとき、高温負荷特性のさらなる改善がみられる。主成分100モル部に対するVの含有モル部が0.02~0.20の範囲であると、上記の改善効果がより顕著になる。
 Vは主成分を構成するグレインの中に固溶していてもよいし、結晶粒界に酸化物として存在していてもよい。いずれにせよ、適量のV成分が、内部電極層が誘電体セラミック層に与える圧縮応力を効果的に増大させるので、焼結後のグレイン粒度分布をよりシャープにするように作用する。
 [実験例1]
 本実験例は、誘電体セラミック層の組成をある特定の組成に固定し、tcとteを変化させた積層セラミックコンデンサにおいて、tc/teが各種特性に与える影響をみたものである。
 BaCO粉末とTiO粉末を用意した。これらをBaTiOの組成になるように秤量し、ボールミルにて24時間混合し、乾燥した後、1100℃の温度にて仮焼を行うことにより、平均粒径0.12μmのBaTiO粉末を得た。
 このBaTiO粉末に対し、MgCO、MnCO、Dy、SiO粉末を、(BaTiO3:Dy:Mg:Mn:Si)のモル比率が100:1.0:1.0:0.3:1.0となるように配合し、ボールミルにて5時間混合し、乾燥し、粉砕することにより、セラミック原料粉末を得た。
 このセラミック原料粉末に、ポリビニルブチラール系バインダーおよびエタノールを加えて、ボールミルにより24時間湿式混合し、セラミックスラリーを作製した。このセラミックスラリーをダイコーターによりシート成形し、所定の3種の厚みのグリーンシートを得た。次に、上記セラミックグリーンシート上にNiを主体とする導電ペーストをスクリーン印刷し、内部電極層を構成するための導電ペースト層を所定の厚みになるように形成した。
 また、面方向で内部電極層がある領域とない領域間の段差対策として、上記セラミック原料粉末を含むペーストを、導電ペーストを形成していない領域に導電ペーストの厚みと同等の厚みになるように塗布した。
 そして、導電ペースト層が形成されたセラミックグリーンシートを、導電ペーストが外側面に露出して引き出されている側が互い違いになるように複数枚積層することにより、積層体を得た。この積層体を、Nガス雰囲気中にて300℃の温度に加熱し、バインダーを燃焼させた後,酸素分圧10-10MPaのH-N-HOガスからなる還元性雰囲気中にて1150℃の温度で2時間焼成することにより、セラミック積層体を得た。
 焼成後得られたセラミック積層体の両端面にB-LiO-SiO-BaOガラスフリットを含有するCuペーストを塗布し、Nガス雰囲気中において800℃の温度で焼き付け、内部電極層と電気的に接続された外部電極を形成した。
 上述のようにして得られた積層セラミックコンデンサの試料番号1~9の各試料の外形寸法は幅0.8mm、長さ1.6mmであった。また、静電容量の形成に寄与する誘電体セラミック層の総数は400であり,一層当たりの内部電極層の有効対向面積は0.9mmであった。また、試料番号1~9の各試料のtc、te、tc/teの値を表1に示す。
 上述のようにして得られた積層セラミックコンデンサに対して、室温の誘電率、静電容量の温度特性、高温負荷特性を評価した。また、粒成長度を確認するため、焼成後の平均グレイン径を測定した。評価、測定の詳細条件を以下に示す。
・誘電率: 温度は25℃、印加電圧は1kHzにて0.5Vrmsである。
・静電容量の温度特性: 上記印加電圧における静電容量において、25℃の温度での静電容量を基準とした85℃の温度における変化率を示す。
・高温負荷特性: 温度85℃にて、電界強度が4kV/mmになるように電圧を印加して、その絶縁抵抗の経時変化を測定した。試料数は各100個であり、2000時間経過するまでに、絶縁抵抗値が100kΩ以下になった試料を不良と判定し、この不良数を計数した。
・平均グレイン径: 焼成後の試料を破断し、1000℃の温度で熱処理した後、破断面を走査型電子顕微鏡(SEM)にて観察した。観察像から、300個の粒子の画像解析を行い、円相当径をグレイン径とし、その平均値を求めた。
 試料番号1~9の各試料の誘電率、静電容量の温度特性、高温負荷特性、平均グレイン径の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、tcが1μm以下の範囲において、tc/teが1以下である試料番号2、3、5、6、8、9の試料において、高温負荷試験における不良個数がゼロとなり、高温負荷特性が向上していることがわかった。また、これらの試料においては、焼成による粒成長が抑えられていることもわかった。
 [実験例2]
 本実験例は、誘電体セラミック層の組成と、tcと、teとを変化させた積層セラミックコンデンサにおいて、これらの変化が高温負荷特性に与える影響をみたものである。
 まず、実験例1と同様にして、BaTiO粉末を得た。
このBaTiO粉末に対し、MgCO、MnCO、Dy、SiO2、粉末を、(BaTiO3:Dy:Mg:Mn:Si:V)のモル比率が100:1.0:1.0:0.3:1.0:xとなるように配合し、ボールミルにて5時間混合し、乾燥し、粉砕することにより、セラミック原料粉末を得た。xの値は、表2の試料番号101~130に示すとおりである。
 この試料番号101~130の各試料のセラミック原料粉末をそれぞれ用いて、実験例1と同様の方法にて、表2の試料番号101~130にて様々な値のtc、te、tc/teを示す積層セラミックコンデンサの試料を得た。
 上述のようにして得られた積層セラミックコンデンサに対して、実験例1と同様に高温負荷特性を評価した。ただし、その評価条件は、負荷の電界強度を6.3kV/mmと高くした点のみ、実験例1より変更した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、試料番号101、106、111、116、121、126の試料は、tc/te≦1を満足してはいるものの、6.3kV/mmという高い負荷条件下では、若干の不良が出た。ただし、Vを副成分として含む試料番号102~105、107~110、112~115、117~120、122~125、127~130の試料については、6.3kV/mmという高い負荷条件下においても、不良がゼロとなった。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。
 誘電体セラミック層の厚みが1μm以下である積層セラミックコンデンサの高温負荷特性が向上するので、積層セラミックコンデンサの小型化と大容量化に対応することができる。
 1 積層セラミックコンデンサ
 2 セラミック積層体
 3 誘電体セラミック層
 4,5 内部電極層
 6,7 外部電極

Claims (4)

  1.  積層された複数の誘電体セラミック層と、
     各々が前記複数の誘電体セラミック層間に配置された複数の内部電極層と、
     前記複数の内部電極層に電気的に接続された外部電極とを備える積層セラミックコンデンサであって、
     前記誘電体セラミック層の一層当たりの厚みをtcとし、前記内部電極層の一層当たり
    の厚みをteとするとき、tcが1μm以下であるとともに、tc/te≦1を満足する
    、積層セラミックコンデンサ。
  2.  前記誘電体セラミック層を構成する誘電体セラミックが、チタン酸バリウム系化合物を主成分とし、副成分にバナジウムを含む組成を有する、請求項1に記載の積層セラミックコンデンサ。
  3.  前記主成分100モル部に対する前記バナジウムの含有量が、0.02モル部以上0.20モル部以下である、請求項2に記載の積層セラミックコンデンサ。
  4.  前記内部電極層を構成する金属成分の主成分がニッケルである、請求項1から請求項3までのいずれか1項に記載の積層セラミックコンデンサ。
     
PCT/JP2009/003460 2008-07-29 2009-07-23 積層セラミックコンデンサ WO2010013414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010522602A JP5093351B2 (ja) 2008-07-29 2009-07-23 積層セラミックコンデンサ
CN2009801149472A CN102017033B (zh) 2008-07-29 2009-07-23 层叠陶瓷电容器
US12/907,207 US8009408B2 (en) 2008-07-29 2010-10-19 Laminated ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008195201 2008-07-29
JP2008-195201 2008-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/907,207 Continuation US8009408B2 (en) 2008-07-29 2010-10-19 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
WO2010013414A1 true WO2010013414A1 (ja) 2010-02-04

Family

ID=41610129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003460 WO2010013414A1 (ja) 2008-07-29 2009-07-23 積層セラミックコンデンサ

Country Status (4)

Country Link
US (1) US8009408B2 (ja)
JP (2) JP5093351B2 (ja)
CN (1) CN102017033B (ja)
WO (1) WO2010013414A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178632A (ja) * 2010-03-03 2011-09-15 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
JP2013067563A (ja) * 2013-01-09 2013-04-18 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
WO2014174875A1 (ja) * 2013-04-25 2014-10-30 株式会社村田製作所 積層セラミックコンデンサ
JP2017212276A (ja) * 2016-05-24 2017-11-30 Tdk株式会社 積層セラミックコンデンサ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589567B1 (ko) * 2010-12-06 2016-01-29 가부시키가이샤 무라타 세이사쿠쇼 적층 세라믹 전자부품, 및 적층 세라믹 전자부품의 제조방법
JP2012248622A (ja) * 2011-05-26 2012-12-13 Taiyo Yuden Co Ltd チップ状電子部品
KR101580350B1 (ko) * 2012-06-04 2015-12-23 삼성전기주식회사 적층 세라믹 부품
KR102041629B1 (ko) * 2013-02-28 2019-11-06 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조방법
JP6632808B2 (ja) * 2015-03-30 2020-01-22 太陽誘電株式会社 積層セラミックコンデンサ
JP2019102752A (ja) 2017-12-07 2019-06-24 太陽誘電株式会社 積層セラミックコンデンサ
KR102115955B1 (ko) 2018-09-03 2020-05-27 삼성전기주식회사 적층 세라믹 전자부품
KR102191252B1 (ko) 2018-09-03 2020-12-15 삼성전기주식회사 적층 세라믹 전자부품
KR102473419B1 (ko) 2018-09-03 2022-12-02 삼성전기주식회사 적층 세라믹 전자부품
KR102166129B1 (ko) 2018-09-06 2020-10-15 삼성전기주식회사 적층 세라믹 커패시터
KR102473420B1 (ko) 2018-09-06 2022-12-02 삼성전기주식회사 적층 세라믹 전자부품
KR102101933B1 (ko) 2018-09-06 2020-04-20 삼성전기주식회사 적층 세라믹 전자부품
KR102099775B1 (ko) 2018-09-06 2020-04-10 삼성전기주식회사 적층 세라믹 커패시터
KR102070235B1 (ko) 2018-10-29 2020-01-28 삼성전기주식회사 커패시터 부품
KR102319597B1 (ko) 2019-06-27 2021-11-02 삼성전기주식회사 적층 세라믹 전자부품
US11450484B2 (en) * 2019-12-27 2022-09-20 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
CN115475797B (zh) * 2022-09-30 2024-04-05 肇庆绿宝石电子科技股份有限公司 一种叠层电容器及其制造方法、载条清洗液及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277178A (ja) * 2004-03-25 2005-10-06 Tdk Corp 積層セラミックコンデンサの製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882954B2 (ja) * 1997-03-19 2007-02-21 Tdk株式会社 チップ型積層セラミックコンデンサ
JP3275799B2 (ja) * 1997-09-25 2002-04-22 株式会社村田製作所 誘電体磁器組成物
TW434600B (en) * 1998-02-17 2001-05-16 Murata Manufacturing Co Dielectric ceramic composition, laminated ceramic capacitor, and method for producing the laminate ceramic capacitor
JP2001028207A (ja) 1999-07-14 2001-01-30 Murata Mfg Co Ltd 導電性ペーストおよびセラミック電子部品
US6403513B1 (en) * 1999-07-27 2002-06-11 Tdk Corporation Dielectric ceramic composition and electronic device
JP3827901B2 (ja) 1999-12-24 2006-09-27 太陽誘電株式会社 積層セラミックコンデンサ
JP2002164247A (ja) * 2000-11-24 2002-06-07 Murata Mfg Co Ltd 誘電体セラミック組成物および積層セラミックコンデンサ
JP2002187770A (ja) * 2000-12-15 2002-07-05 Toho Titanium Co Ltd 誘電体磁器組成物及びこれを用いた積層セラミックコンデンサ
JP4078910B2 (ja) 2002-07-25 2008-04-23 松下電器産業株式会社 プラズマディスプレイ装置の製造方法
JP4110978B2 (ja) * 2003-01-24 2008-07-02 株式会社村田製作所 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP2005101547A (ja) * 2003-08-26 2005-04-14 Tdk Corp 電子部品の製造方法および電子部品
JP2005136046A (ja) 2003-10-29 2005-05-26 Kyocera Corp 積層セラミックコンデンサおよびその製法
JP4547945B2 (ja) * 2004-03-11 2010-09-22 Tdk株式会社 電子部品、誘電体磁器組成物およびその製造方法
JP4203452B2 (ja) * 2004-06-28 2009-01-07 Tdk株式会社 積層型セラミックコンデンサの製造方法
JP4491794B2 (ja) 2004-08-19 2010-06-30 株式会社村田製作所 誘電体セラミック、及び積層セラミックコンデンサ
WO2006067958A1 (ja) 2004-12-24 2006-06-29 Murata Manufacturing Co., Ltd. 誘電体セラミックおよび積層セラミックコンデンサ
JP2006344669A (ja) * 2005-06-07 2006-12-21 Tdk Corp 積層電子部品の製造方法
JP4225507B2 (ja) * 2005-06-13 2009-02-18 Tdk株式会社 積層コンデンサ
JP2007173714A (ja) 2005-12-26 2007-07-05 Kyocera Corp 積層セラミックコンデンサおよびその製法
JP4771818B2 (ja) 2006-01-27 2011-09-14 京セラ株式会社 積層セラミックコンデンサ
JP4983307B2 (ja) 2006-03-20 2012-07-25 Tdk株式会社 積層型電子部品およびその製造方法
JP4442596B2 (ja) 2006-09-08 2010-03-31 Tdk株式会社 導電性ペースト、積層セラミック電子部品及びその製造方法
JP2008084914A (ja) 2006-09-26 2008-04-10 Matsushita Electric Ind Co Ltd 積層コンデンサ
KR101200129B1 (ko) * 2007-06-20 2012-11-12 가부시키가이샤 무라타 세이사쿠쇼 유전체 세라믹 조성물 및 적층 세라믹 콘덴서

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277178A (ja) * 2004-03-25 2005-10-06 Tdk Corp 積層セラミックコンデンサの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178632A (ja) * 2010-03-03 2011-09-15 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
US8404607B2 (en) 2010-03-03 2013-03-26 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
JP2013067563A (ja) * 2013-01-09 2013-04-18 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
WO2014174875A1 (ja) * 2013-04-25 2014-10-30 株式会社村田製作所 積層セラミックコンデンサ
US9754720B2 (en) 2013-04-25 2017-09-05 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
JP2017212276A (ja) * 2016-05-24 2017-11-30 Tdk株式会社 積層セラミックコンデンサ

Also Published As

Publication number Publication date
CN102017033A (zh) 2011-04-13
JPWO2010013414A1 (ja) 2012-01-05
US8009408B2 (en) 2011-08-30
JP5093351B2 (ja) 2012-12-12
JP2012199597A (ja) 2012-10-18
US20110038097A1 (en) 2011-02-17
CN102017033B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5093351B2 (ja) 積層セラミックコンデンサ
JP5315856B2 (ja) 積層セラミック電子部品
JP5811103B2 (ja) 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法
JP4345071B2 (ja) 積層セラミックコンデンサ、及び該積層セラミックコンデンサの製造方法
US8179662B2 (en) Monolithic ceramic capacitor
JP4786604B2 (ja) 誘電体磁器及びそれを用いた積層セラミックコンデンサ
JP5224147B2 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
CN101628809B (zh) 介电陶瓷和层积陶瓷电容器
JP5211262B1 (ja) 積層セラミックコンデンサ
US8492301B2 (en) Dielectric ceramic composition and ceramic electronic component
JP7131955B2 (ja) 積層セラミックコンデンサおよびその製造方法
JP4100173B2 (ja) 誘電体セラミックおよび積層セラミックコンデンサ
KR20130122781A (ko) 유전체 세라믹 및 적층 세라믹 콘덴서
KR101422127B1 (ko) 적층 세라믹 콘덴서
JP5240199B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
JP5454294B2 (ja) 積層セラミックコンデンサの製造方法
WO2012096223A1 (ja) 積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法
US9570235B2 (en) Multilayer ceramic capacitor
WO2014010376A1 (ja) 積層セラミックコンデンサおよびその製造方法
JP5800408B2 (ja) 積層セラミックコンデンサ
US8492302B2 (en) Dielectric ceramic composition and ceramic electronic component
JP6665709B2 (ja) 誘電体組成物及び電子部品
JP6075457B2 (ja) セラミックグリーンシート、積層セラミックコンデンサの製造方法、および積層セラミックコンデンサ
WO2016021370A1 (ja) 積層セラミックコンデンサ
JP7310077B2 (ja) 誘電体組成物及びこれを含む電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114947.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522602

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802663

Country of ref document: EP

Kind code of ref document: A1