WO2009090846A1 - 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法 - Google Patents

複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法 Download PDF

Info

Publication number
WO2009090846A1
WO2009090846A1 PCT/JP2008/073660 JP2008073660W WO2009090846A1 WO 2009090846 A1 WO2009090846 A1 WO 2009090846A1 JP 2008073660 W JP2008073660 W JP 2008073660W WO 2009090846 A1 WO2009090846 A1 WO 2009090846A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
silver
composite silver
composite
silver nanoparticles
Prior art date
Application number
PCT/JP2008/073660
Other languages
English (en)
French (fr)
Inventor
Teruo Komatsu
Original Assignee
Applied Nanoparticle Laboratory Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2008/054971 external-priority patent/WO2009116136A1/ja
Application filed by Applied Nanoparticle Laboratory Corporation filed Critical Applied Nanoparticle Laboratory Corporation
Priority to KR1020107017975A priority Critical patent/KR101222304B1/ko
Priority to EP08870788.0A priority patent/EP2298471B1/en
Priority to JP2009549977A priority patent/JP4680313B2/ja
Priority to CN2008801281306A priority patent/CN101990474B/zh
Priority to US12/735,435 priority patent/US8348134B2/en
Priority to PCT/JP2008/073751 priority patent/WO2009090849A1/ja
Publication of WO2009090846A1 publication Critical patent/WO2009090846A1/ja
Priority to US13/707,384 priority patent/US8906317B2/en
Priority to US13/707,298 priority patent/US8459529B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01002Helium [He]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to a composite silver nanoparticle in which an organic coating layer made of an organic substance is formed around a silver nucleus consisting of a large number of silver atoms. In particular, the organic coating layer is diffused by heating to a predetermined temperature.
  • the present invention relates to composite silver nanoparticles that are metallized, that is, silver, composite silver nanopaste, a manufacturing method thereof, a manufacturing apparatus, a joining method, and a pattern forming method.
  • solder is an alloy of Sn and Pb, and the use of Pb is being banned as a recent environmental preservation measure. Therefore, a Pb-free alternative solder replacing the conventional solder is being developed.
  • the melting point of eutectic solder of Sn and Pb is 183 ° C.
  • the melting point of Sn / Ag / Cu solder which is a conventional alternative solder is 217 ° C.
  • solder does not contain Pb and has a low metallization temperature, but it also has high safety, no corrosiveness, and good electrical and thermal conductivity. Is desired. Silver attracted attention as a material that meets this expectation. Moreover, ultra-fine composite silver nanoparticles have been developed to lower the melting point.
  • Patent Document 1 Japanese Patent No. 3205793 (Japanese Patent Laid-Open No. 10-183207) has been published as Patent Document 1.
  • Silver organic compounds (especially silver organic complexes) were selected as starting materials.
  • the silver organic compound In an inert gas atmosphere in which air is shut off, the silver organic compound is heated at a temperature not lower than the decomposition start temperature and lower than the complete decomposition temperature, and the organic substance derived from the silver organic compound is placed around the decomposed and reduced silver core.
  • Composite silver nanoparticles were produced as a coating layer. This process is a solid-gas reaction.
  • the particle size of silver nuclei is 1 to 100 nm, and is therefore commonly referred to as composite silver nanoparticles.
  • composite silver nanoparticles having an organic coating layer of stearic acid groups around a silver core having a particle size of 5 nm are obtained. Generated.
  • the generation temperature is as high as 250 ° C.
  • the metallization temperature of the composite silver nanoparticles is as extremely high as 220 ° C.
  • Silver nanoparticles having a high production temperature also have a high silveration temperature. Considering that the melting point of general Sn—Pb solder is 183 ° C. and the desired bonding temperature is 200 ° C. or less, the metallization temperature (silvering temperature) is too high at 220 ° C.
  • the metallization temperature is high because of the large particles in a dumpling state and the decomposition temperature of the stearic acid group is high.
  • the inventor has confirmed that the silver nucleus is not a single crystal but a simple atomic group or a polycrystal. When silver nuclei are polycrystalline or disordered, electron scattering and heat scattering occur at many grain interfaces, resulting in a decrease in electrical conductivity and thermal conductivity.
  • Patent Document 2 is an invention in which the inventor also participated as one of the inventors.
  • a metal organic compound was dissolved and dispersed in an organic solvent or water to successfully produce composite silver nanoparticles coated with the organic material derived from the metal organic compound. This process is a solid-liquid reaction.
  • this composite silver nanoparticle was observed with a high-resolution transmission electron microscope, a lattice image was confirmed in the silver nucleus, and it was confirmed to be a single crystal silver nucleus.
  • the metal organic compound is dissolved and dispersed as a molecule in a solvent, the molecule is reduced to precipitate silver atoms, and single crystals are formed by recombination of silver atoms. That is, the single crystallinity is considered to be caused by intermolecular reaction.
  • silver nuclei are single crystals, there is an advantage of high electrical conductivity and thermal conductivity.
  • the silvering temperature it is written in [0076] that the composite silver nanoparticles coated with stearic acid groups were heated at 250 ° C. for 10 minutes. That is, the weak point of Patent Document 2 is that the silvering temperature is as high as 250 ° C.
  • the reason for the high silveration temperature is that the decomposition temperature of the organic acid group constituting the coating layer is high because it starts from a silver organic compound such as silver acetate, silver hexanoate, or silver octoate. Further ingenuity is required to reduce the metallization temperature to 200 ° C or lower.
  • Patent Document 3 The inventor is one of the inventors of this international publication.
  • a plurality of inventions are disclosed. Among them, a method for treating a metal inorganic compound with a surfactant was first disclosed, and the way of starting with a metal inorganic compound was opened. That is, a first step of colloiding a metal inorganic compound with a surfactant in a non-aqueous solvent to form an ultrafine particle precursor, and a reducing agent is added to the colloidal solution to reduce the ultrafine particle precursor. And a second step of generating composite metal nanoparticles in which a surfactant shell is formed as a coating layer on the outer periphery of the metal core.
  • the above-described method has a feature that since the metal inorganic compound is dissolved in a non-aqueous solvent, the produced composite metal nanoparticles are dispersed in the non-aqueous solvent and are not likely to be in a dumpling state.
  • examples are copper oleate, silver abietate, silver acetate, nickel oleate, diethylhexaneindium, copper acetate, silver stearate, and only organometallic compounds are implemented.
  • the metallization temperature of the composite silver nanoparticles produced from silver stearate was found to be as high as 220 ° C. Further ingenuity is required to reduce the metallization temperature to 200 ° C or lower.
  • Patent Document 3 since determination of single crystallinity / polycrystallinity of silver nuclei is not made, it is impossible to determine the quality of the electrical conductivity and thermal conductivity of the composite metal nanoparticles.
  • Patent Document 4 discloses composite metal nanoparticles in which a coating layer made of an organic compound containing an alcoholic hydroxyl group having 4 or more carbon atoms is formed around a metal core having a particle diameter of 1 to 100 nm obtained from a metal salt. ing. Moreover, higher alcohols having 6 or more carbon atoms are described as organic compounds containing an adsorbing functional group.
  • Patent Document 5 discloses a composite metal nanoparticle having a central portion composed of a metal nucleus and an organic coating layer having a thermal desorption start temperature of 140 ° C. or higher and lower than 190 ° C. around the core.
  • a manufacturing method it is described that a composite metal nanoparticle having an inorganic metal salt and an organic substance coexisting, an inorganic metal salt is decomposed to form a metal nucleus, and an organic coating layer is formed around the metal core is described. Yes.
  • composite metal nanoparticles in which an organic coating layer is formed around an inorganic metal salt or a decomposed inorganic metal compound are also disclosed.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2007-95510 is disclosed as Patent Document 6.
  • Claim 1 of Patent Document 6 includes a metal core composed of a metal component derived from a metal salt represented by the chemical formula (RA) n -M, and an organic coating layer derived from the metal salt.
  • a conductive paste made of composite metal nanoparticles and an organic solvent is disclosed.
  • R is a hydrocarbon group having 4 to 9 carbon atoms
  • A is COO, OSO 3 , SO 3 or OPO 3
  • M is a silver, gold or platinum group.
  • composite silver nanoparticles are included.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2004-107728 is disclosed as Patent Document 7.
  • Claim 1 of Patent Document 7 describes composite metal nanoparticles having an organic coating layer mainly composed of C, H and / or O around a metal core having an average particle size of 100 nm or less. Is produced from an organic acid metal salt.
  • Japanese Patent No. 3205793 Japanese Patent Laid-Open No. 10-183207 JP 2003-342605 A WO00 / 076699 WO01 / 070435 WO2005 / 075132 JP 2007-95510 A JP 2004-107728 A
  • Patent Document 4 describes that in the case of composite silver nanoparticles having a particle diameter of 5 to 10 nm, if the decomposition temperature of the organic compound is 80 ° C. or lower, the silver film forming temperature is 80 ° C., and the decomposition temperature is 80 ° C. It is described that a silver film can be formed by heating to the decomposition temperature if it is at or above.
  • the above description is merely a wishful observation, and no such example is described in the embodiment. The following is a concrete description.
  • Example 1 when copper formate and 1-decanol are reacted, the solution is discolored from around 185 ° C. to form composite silver nanoparticles, and the silvering firing temperature is 200 to 350 ° C., 250 to 300 ° C. Is preferred.
  • Example 2 describes that composite silver nanoparticles were formed from solution of silver carbonate and myristic acid (C number of 14) at 230 ° C. by solution discoloration, and a silver coating film was formed at 250 ° C. in air firing. .
  • formation of composite silver nanoparticles was confirmed from silver carbonate and stearyl alcohol (C number is 18) by solution discoloration by heating at 150 ° C. for 1 hour, but the silvering temperature in a nitrogen atmosphere was confirmed.
  • Example 4 formation of composite silver nanoparticles was confirmed from silver carbonate and phenol (C number is 6) by solution discoloration by heating at 180 ° C. for 1 hour, and the silvering temperature is described as 300 ° C.
  • Example 5 generation of composite silver nanoparticles was confirmed from copper acetate and lauryl alcohol (C number: 12) by solution discoloration by heating at 100 ° C. for 1 hour, but silveration was performed in an atmosphere of hydrogenated nitrogen. The temperature was 250 ° C.
  • Example 6 formation of composite platinum nanoparticles was confirmed by solution discoloration from platinum chloride and ethylene glycol (C number is 2) by heating at 180 ° C. for 1 hour, but the heat treatment temperature was 300 ° C. there were.
  • Example 7 formation of composite copper nanoparticles was confirmed by solution discoloration at 110 ° C. from copper acetate and lauryl alcohol (C number: 12), but the copperization temperature in a nitrogen atmosphere was 300 ° C. there were.
  • Example 8 formation of composite copper nanoparticles was confirmed by solution discoloration at 150 ° C. from copper acetate, ethanol (C number is 2) and nonionic surfactant (sorbitan tristearate). However, the copperization temperature in a nitrogen atmosphere was 300 ° C.
  • any of the composite silver nanoparticles has a metallization temperature much higher than 200 ° C., and no composite metal nanoparticles that achieve the desired metallization temperature of 200 ° C. or less have been generated.
  • Patent Document 5 describes that it cannot be understood. It is described that when an inorganic metal salt and an organic substance are allowed to coexist, an organic coating layer is formed around the central core containing the inorganic metal salt or the decomposed inorganic metal compound.
  • page 6 shows that when a mixture of silver carbonate (inorganic metal salt) and myristyl alcohol (organic substance, C number is 14) is reacted at 120 ° C. for 2 hours, the organic substance is physically adsorbed on silver or silver carbonate. It is described that nanoparticles are produced. It is clear from the following reaction formula that when an organic substance adheres around silver carbonate, the thermal decomposition temperature at which silver is precipitated from silver carbonate exceeds 400 ° C.
  • Patent Document 5 show the opposite of the present invention and cannot even be used as a reference.
  • myristyl alcohol has a C number of 14 and a large molecular weight, increases the weight of the organic coating layer with respect to the silver core, increases the firing temperature, increases the amount of exhaust gas during firing, and causes a large amount of voids during bonding. This has the disadvantage that the qualification as a bonding paste is reduced.
  • the composite metal nanoparticles of Patent Document 6 are different from the present invention in that a metal nucleus and an organic coating layer are formed as a decomposition product obtained by decomposing a metal salt, and start from an organic metal compound.
  • a silver nucleus is formed from silver carbonate and an organic coating layer is formed from alcohol, and the manufacturing method is completely different.
  • the organic coating layer is a bonding group of a hydrocarbon group and COO, OSO 3 , SO 3, or OPO 3 , has a complicated structure, and has a high decomposition temperature.
  • SO X which is an air pollution component is generated by firing, and does not conform to environmental standards.
  • the organic coating layer is an organic acid group, and the aeration temperature is considerably high.
  • the [0031] describes that the melting point is 210 ° C.
  • [0068] describes that firing is performed in a temperature range of 210 to 250 ° C. Therefore, the metallization of 200 ° C. or lower, preferably 150 ° C. or lower, which is the object of the present invention, cannot be realized at all in Patent Document 7.
  • the crystallinity of the metal nucleus is not described or suggested at all, and it is impossible to judge whether the electrical conductivity and the thermal conductivity are good or bad.
  • the present invention has been made in view of the above problems, and has established a method and a production apparatus for producing composite silver nanoparticles having an organic coating layer derived from an alcohol having 1 to 12 carbon atoms at a low temperature.
  • the present invention provides an alcohol-derived organic coating-type composite silver nanoparticle that has a silver nucleus weight considerably increased due to its small number and realizes a metallization temperature (silverization temperature) of 200 ° C. or less. Since the alcohol-derived organic coating layer is composed of one or more alcohol molecule derivatives, alcohol molecule residues or alcohol molecules, only H2O and CO2 are produced even when baked, and is completely compatible with environmental standards. Moreover, since it is metalized at 200 ° C.
  • the decomposition start temperature T1 and the decomposition temperature T2 were successfully limited to the range of T2-100 ⁇ T1 ⁇ T2, and composite silver nanoparticles capable of low-temperature firing were successfully manufactured. Since the generation temperature PT (° C.) of such composite silver nanoparticles can be smaller than the metallization temperature T3, the low temperature generation in which the inequality of PT ⁇ T3 ⁇ 200 ° C. is established is successful.
  • the alcohol-derived substance is specifically an alcohol derivative, an alcohol residue, or an alcohol molecule, and only H2O and CO2 are generated by firing, so that it is also effective for bonding electronic components such as semiconductors. It is possible to apply.
  • Alcohol derivatives include carboxylic acids and carboxylic acid groups, as well as alkoxides and alkoxide groups, and include all compounds derived from alcohols by chemical reactions.
  • the present invention has been made in order to solve the above-mentioned problems.
  • the first embodiment of the present invention is a method in which a carbon atom is formed around a silver nucleus having an average particle diameter of 1 to 20 nm composed of an aggregate of silver atoms.
  • a second aspect of the present invention is a composite silver nanoparticle according to the first aspect, wherein a plurality of the composite silver nanoparticles are aggregated to form an aggregate.
  • the third form of the present invention is composite silver nanoparticles in which the organic coating layer contains at least an alkoxide group and / or a carboxylic acid group in the first or second form.
  • DTA differential thermal analysis
  • thermogravimetry In the composite silver nanoparticles, the relationship between the decomposition start temperature T1 (° C.) obtained from TG) and the decomposition temperature T2 (° C.) obtained from differential thermal analysis (DTA) is T2-100 ⁇ T1 ⁇ T2.
  • the sixth aspect of the present invention is a composite silver nanoparticle according to the fourth or fifth aspect, wherein the generation temperature PT (° C.) for generating the composite silver nanoparticle is lower than the metallization temperature T3 (° C.).
  • a seventh aspect of the present invention is the composite silver according to any one of the first to sixth aspects, wherein a lattice image is observed in the silver nucleus when the composite silver nanoparticles are observed with a high resolution transmission electron microscope. Nanoparticles.
  • the decomposition start temperature T1 (° C.), the decomposition temperature T2 (° C.), and the metallization temperature T3 (° C.) are the rate of temperature increase.
  • the ninth form of the present invention is a composite silver nanoparticle using a silver salt and an alcohol having 1 to 12 carbon atoms as starting materials in any of the first to eighth forms.
  • the tenth form of the present invention is a composite silver nanopaste containing at least the composite silver nanoparticles of any of the first to ninth forms, and having a solvent and / or a viscosity imparting agent added thereto.
  • the eleventh form of the present invention is a composite silver nanopaste blended with silver fine particles in the tenth form.
  • the composite silver nanopaste satisfies T3 ⁇ Tp3 ⁇ T3 + 50 when the metallization temperatures are T3 (° C.) and Tp3 (° C.).
  • silver salt fine particles are mixed in an alcohol solvent having 1 to 12 carbon atoms to prepare an alcohol solution, and the alcohol solution is kept in a reaction chamber at a predetermined generation temperature PT for a predetermined generation time.
  • the silver salt fine particles are reduced by heating to form silver nuclei having an average particle size of 1 to 20 nm by the alcohol solvent, and an alcohol molecule derivative of the alcohol solvent, an alcohol molecule residue, or This is a method for producing composite silver nanoparticles for forming an organic coating layer composed of one or more alcohol molecules.
  • a fifteenth aspect of the present invention is a method for producing composite silver nanoparticles according to the fourteenth aspect, wherein the silver salt fine particles are dispersed or dissolved in the alcohol solvent.
  • a sixteenth aspect of the present invention is the composite silver nanoparticle according to the fourteenth or fifteenth aspect, wherein the alcohol solution is an excess alcohol solution in which the alcohol solvent is added in excess of the number of moles of the silver salt fine particles. It is a manufacturing method.
  • the metallization temperature T3 (degreeC) obtained from the manufacturing method of the composite silver nanoparticle which is 200 degrees C or less.
  • the eighteenth aspect of the present invention is a method for producing composite silver nanoparticles according to the seventeenth aspect, wherein the generation temperature PT (° C.) is lower than the metallization temperature T3 (° C.).
  • the nineteenth aspect of the present invention is the method for producing composite silver nanoparticles according to any one of the fourteenth to eighteenth aspects, wherein the generation time of the composite silver nanoparticles is 60 minutes or less.
  • the twentieth aspect of the present invention is the method for producing composite silver nanoparticles according to any one of the fourteenth to nineteenth aspects, wherein the alcohol solution is cooled after the production time to stop the production reaction.
  • the silver salt fine particles are refined until the particle diameter is in the range of 10 nm to 1000 nm. It is a manufacturing method of the described composite silver nanoparticle.
  • the twenty-second aspect of the present invention is the composite silver nanoparticle according to any one of the sixteenth to twenty-first aspects, wherein the molar ratio of the alcohol solvent to the silver salt fine particles in the excess alcohol solution is adjusted to a range of 5 to 100. It is a manufacturing method.
  • a twenty-third aspect of the present invention is a method for producing composite silver nanoparticles, wherein the composite silver nanoparticles are separated from the alcohol solution in which the composite silver nanoparticles are produced in any one of the fourteenth to twenty-second forms.
  • the twenty-fourth aspect of the present invention is a raw material mixer for preparing an alcohol solution by mixing silver salt fine particles with an alcohol solvent, and generating the composite silver nanoparticles by heating the alcohol solution with a heater at a predetermined temperature for a predetermined time. And a component purifier for separating composite silver nanoparticles from the alcohol solution supplied from the cooler, and a cooler for cooling the alcohol solution supplied from the reactor. And a composite silver nanoparticle production apparatus in which the raw material mixer, the reactor, the cooler, and the component purifier are connected in a continuous, partially continuous, or batch process.
  • a twenty-fifth aspect of the present invention is the apparatus for producing composite silver nanoparticles according to the twenty-fourth aspect, wherein the silver salt fine particles charged into the raw material mixer are refined in advance.
  • a finer for refining silver salt fine particles in an alcohol solution supplied from the raw material mixer, and a refined alcohol solution formed by the finer Is an apparatus for producing composite silver nanoparticles for supplying the above to the reactor.
  • the composite silver nanoparticles are treated with alcohol by treating the purified liquid containing the composite silver nanoparticles supplied from the component purifier. It is a manufacturing apparatus of the composite silver nanoparticle collect
  • the component purifier comprises a centrifugal ultrafiltration device, and diffuses the composite silver nanoparticles into the extraction solvent through micropores. It is a manufacturing apparatus of the composite silver nanoparticle which is made to form the said refinement
  • a twenty-ninth aspect of the present invention is the composite silver nanoparticle according to the twenty-eighth aspect, wherein the ultrafiltration device comprises a triple tube of an inner tube, an intermediate tube, and an outer tube, and the inner tube and the inner tube are rotated coaxially.
  • the excess alcohol solution that has generated is supplied to a middle passage between the inner tube and the middle tube, the micropores are formed on the surface of the inner tube, and the extraction solvent is supplied to the inner passage inside the inner tube,
  • the composite silver nanoparticles are an apparatus for producing composite silver nanoparticles that are selectively diffused from the middle passage into the extraction solvent through the micropores.
  • a composite silver nanopaste of any one of the tenth to thirteenth aspects is prepared, a paste layer is formed by applying the composite silver nanopaste to a lower body, and the paste layer is formed on the paste layer.
  • the upper body is placed, the paste layer is silvered by heating, and the lower body and the upper body are joined.
  • a composite silver nanopaste of any one of the tenth to thirteenth aspects is prepared, and the composite silver nanopaste is applied to a predetermined pattern on a surface of a substrate to form a paste pattern.
  • a pattern forming method in which the paste pattern is silvered by heating to form a silver pattern.
  • an alcohol molecule derivative having 1 to 12 carbon atoms, an alcohol molecule residue, or an alcohol molecule residue around the silver nucleus having an average particle diameter of 1 to 20 nm composed of an aggregate of silver atoms is provided.
  • Alcohol molecule derivatives are all alcohol derivatives derived from alcohol molecules and include carboxylic acids, carboxylic acid groups, alkoxides, alkoxide groups, and the like.
  • An alcohol molecule residue is a residue from which some components of an alcohol molecule are separated, including alkoxides and alkoxide groups, and other cleavage residues. The alcohol molecule is the alcohol molecule itself.
  • the silver core particle diameter of the composite silver nanoparticles is 1 to 20 nm, and the particle diameter of the composite silver nanoparticles themselves increases by the thickness of the alcohol organic coating layer, but the number of carbons is limited to 1 to 12, so that The thickness is not so large. The smaller the number of carbon atoms, the smaller the thickness, and at the same time, the silver nucleus weight ratio increases and the bonding strength increases.
  • composite silver nanoparticles in which a plurality of composite silver nanoparticles are aggregated to form an aggregate.
  • the composite silver nanoparticles of the present invention have the property of being monodispersed in an organic solvent.
  • the composite silver nanoparticles may agglomerate to form aggregates due to the collision action during production.
  • the aggregates are also combined with composite silver nanoparticles. Called.
  • the particle size distribution of the powder in which the composite silver nanoparticles are aggregated is distributed from small to large, the minimum limit is a single composite silver nanoparticle particle diameter d 0 , and the maximum limit is 1/3 of the aggregation number N. Since it is proportional to the power, d 0 (Nmax) 1/3 .
  • composite silver nanoparticle powder having a particle size distribution in this way large and small composite silver nanoparticles sinter while embedding gaps between each other. .
  • composite silver nanoparticles are provided in which the organic coating layer has at least an alkoxide group and / or a carboxylic acid group.
  • a composite silver nanoparticle in which a plurality of aggregates are formed is provided.
  • the molecular formula of the alcohol is C n H 2n + 1 OH
  • the alkoxide group is C n H 2n + 1 O
  • a lower alkoxide group corresponds to the alkoxide group.
  • the alkoxide group may be called an alcohol molecule residue, but may be called an alcohol molecule derivative.
  • the carboxylic acid group is C n-1 H 2n-1 COO, but a lower carboxylic acid group may also be used.
  • This carboxylic acid group is contained in the alcohol molecule derivative.
  • the organic coating layer contains a carboxylic acid group or an alkoxide group, the composite silver nanoparticles are extremely safe.
  • generation changes with time may become a carboxylic acid group, may become an alkoxide group, and may change into those mixed layers.
  • C n H 2n + 1 O is an alkoxide group in a narrow sense, but in the present invention, it is used in a broad sense when referring to an alkoxide-coated composite silver nanoparticle, and means a composite silver nanoparticle having the alcohol-derived organic coating layer. . Since the organic coating material is all derived from alcohol, and the safety of alcohol is extremely high compared to other organic substances, the composite silver nanoparticles of the present invention are guaranteed in safety, environmental protection and ease of handling.
  • the metallization temperature T3 (° C.) obtained from differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • Composite silver nanoparticles having a temperature of 200 ° C. or less are provided.
  • the organic coating layer is oxidized to generate reaction heat, and a large DTA peak is formed.
  • this DTA peak is composed of a single peak, the temperature at which this single peak ends is the metallization temperature T3 (° C.).
  • the temperature at which the final peak ends is the metallization temperature T3 (° C.).
  • the ending temperature of the TG curve corresponds to the metallization temperature T3 (° C.).
  • the metallization temperature T3 is within 200 ° C., the composite silver nanoparticles can be fired at a low temperature.
  • the temperature increase rate VT during DTA measurement increases, the temperature T3 also increases.
  • the present inventor studied low-temperature firing type composite silver nanoparticles and developed composite silver nanoparticles satisfying T3 ⁇ 150 ° C. or T2 ⁇ 150 ° C. This has led to the development of a range of composite silver nanoparticles. Even if the conventional literature is examined, composite silver nanoparticles having T3 ⁇ 200 ° C. do not exist, and composite silver nanoparticles having T3 ⁇ 200 ° C. are realized for the first time by the present invention.
  • the development of composite silver nanoparticles having a metallization temperature T3 of 200 ° C. or lower has succeeded in providing an alternative solder having high characteristics comparable to the melting point of 183 ° C. of conventional Sn—Pb solder.
  • the composite silver nanoparticles of the present invention have structures such as electronic materials such as printed wiring and conductive materials, magnetic materials such as magnetic recording media, electromagnetic wave absorbers and electromagnetic wave resonators, far infrared materials and composite film forming materials. It can be applied to various uses such as materials, ceramics and metal materials such as sintering aids and coating materials, and medical materials.
  • the decomposition start temperature T1 (from thermogravimetry (TG)) ° C) and the decomposition temperature T2 (° C) obtained from the differential thermal analysis (DTA) are composite silver nanoparticles in which T2-100 ⁇ T1 ⁇ T2.
  • the decomposition start temperature T1 (° C.) can be measured by the decrease start temperature of the TG curve, but changes when the TG curve decreases linearly from the beginning and decreases from the midway to a quadratic curve.
  • a point, that is, a deviation point from a straight line can be defined as a decomposition start temperature T1.
  • the linear region shows a decrease region of the pure alcohol component.
  • a temperature at which the DTG curve starts to fall from a certain value may be defined as a decomposition start temperature T1.
  • the decomposition temperature T2 at which the organic coating layer undergoes strong oxidative decomposition is defined as the peak temperature when the DTA peak is a single peak, and the first first peak temperature when the DTA peak is a plurality of peaks. In the range of T2-100 ⁇ T1 ⁇ T2, it means that the decomposition start temperature T1 exists within the range of 100 ° C.
  • T2-100 ⁇ T1 ⁇ T2 ⁇ T3 ⁇ 200 ° C. all the temperatures T1, T2, and T3 are present in a low temperature region of 200 ° C. or lower, which means that the composite silver nanoparticles of the present invention are for low temperature firing, and the characteristics of the composite silver nanoparticles according to the present invention one of.
  • the present invention confirms that the inequality of T2-100 ⁇ T1 ⁇ T2 holds.
  • composite silver nanoparticles having a production temperature PT (° C.) for producing the composite silver nanoparticles lower than the metallization temperature T3 (° C.).
  • the metallization temperature T3 is T3 ⁇ 200 (° C.).
  • PT ⁇ T3 (° C.) Therefore, when both are combined, PT ⁇ T3 ⁇ 200 (° C.) is obtained. . Therefore, since the production temperature PT is lower than the metallization temperature T3 having a maximum value of 200 ° C., composite silver nanoparticles for low temperature production are provided in the present invention.
  • a composite silver nanoparticle in which a lattice image is observed in a silver nucleus when the composite silver nanoparticle is observed with a high resolution transmission electron microscope.
  • a transmission electron microscope JEM-2000FX with an acceleration voltage of 200 kV installed at Kyoto University
  • a lattice image was confirmed in the silver nuclei of the composite silver nanoparticles in a monodispersed state.
  • the silver nucleus diameter was in the range of 1 to 20 nm, and the lattice spacing was 0.24 nm, which was found to match the spacing of the (111) plane of bulk silver.
  • the silver nucleus is not polycrystalline but is a single crystal of silver or a state close to a single crystal. Therefore, the composite silver nanoparticles coated with the alcohol-derived material according to the present invention have high crystallinity to such an extent that a lattice image is observed, and as a result, there are almost no grain boundaries inside the silver nucleus, so that the electron scattering It has been proved to have high electrical conductivity and high thermal conductivity. It was discovered that this was a revolutionary new substance that completely denied the polycrystallinity that was previously said. The fact that a lattice image is observed in a silver nucleus having an organic coating layer derived from alcohol is a fact that has been revealed for the first time by the present invention.
  • the temperature increase rate VT is changed within the range of 1 to 20 (° C./min)
  • the decomposition start temperature T1 increases by about 50 ° C.
  • the decomposition temperature T2 increases by about 60 ° C.
  • the metallization temperature T3 is about 70%.
  • the T1, T2, T3 is considered to increase by about 50 ° C, about 60 ° C, and about 70 ° C, respectively.
  • these temperature increases depend on the carbon number of the organic coating layer, but also somewhat on the silver nucleus particle size.
  • composite silver nanoparticles using a silver salt and an alcohol having 1 to 12 carbon atoms as starting materials are provided.
  • silver salts inorganic silver salts and organic silver salts can be used.
  • Inorganic silver salts include silver carbonate, silver chloride, silver nitrate, silver phosphate, silver sulfate, silver borate, silver fluoride, and organic silver salts.
  • fatty acid salts such as silver formate and silver acetate, sulfonates, and silver salts of hydroxy, thiol and enol groups.
  • a silver salt composed of C, H, O and Ag or a silver salt composed of C, O and Ag is preferable.
  • the composite silver nanoparticles of the present invention can be produced at a relatively low temperature with either an inorganic silver salt or an organic silver salt by the reducing power of the alcohol.
  • Inorganic silver salts are sparingly soluble in alcohol, while organic silver salts are soluble in alcohol and sparingly soluble.
  • There are very few alcohol-soluble organic silver salts such as silver abitienate, and inorganic silver salts and many organic silver salts may be considered to be hardly soluble in alcohol.
  • the composite silver nanoparticles of the present invention are written as CnAgAL in the following notation.
  • C1 is methanol
  • C2 is ethanol
  • C3 propanol
  • C4 is butanol
  • C5 is pentanol
  • C6 is hexanol
  • C7 is heptanol
  • C8 is octanol
  • C9 is nonanol
  • C10 is decanol
  • C11 undecanol
  • C12 is dodecanol.
  • a composite silver nanopaste containing at least the composite silver nanoparticles of any one of the first to ninth forms and added with a solvent and / or a viscosity imparting agent.
  • the solvent is a material in which powder composed of composite silver nanoparticles is dispersed to form a solution.
  • alcohol, acetone, toluene, xylene, propanol, ether, petroleum ether, benzene, or the like can be used.
  • the viscosity-imparting agent is a material that imparts a viscosity that is easy to add to the solution, such as turpentine oil, terpineol, methylcellulose, ethylcellulose, butyral, various terpene derivatives, IBCH (isobornylcyclohexanol), glycerin, Alcohol that is solid at room temperature of C14 or higher can be used.
  • terpene derivatives include 1,8-terpine monoacetate and 1,8-terpine diacetate.
  • IBCH is rosin-like, glycerin is syrup-like, and alcohols of C14 or higher have a solid-liquid change property, and are non-flowing at 10 ° C. or less.
  • the composite silver nanoparticles of the present invention are mixed and dispersed in the non-flowable viscosity imparting agent to form a non-flowable paste, the composite silver nanoparticles are fixed in a dispersed state at a low temperature of 10 ° C. or lower. Aggregation of nanoparticles does not occur. If the non-flowable paste is heated immediately before use, it can be fluidized and applied as a paste, and the function as a paste can be exhibited. Needless to say, if a solvent is added to the non-flowable paste immediately before use, it becomes a flowable paste without heating and can function as a paste. Since the composite silver nanoparticles of the present invention have a metallization temperature T3 of 200 ° C.
  • the firing temperature of the paste is not determined only by the metallization temperature of the composite silver nanoparticles, but also depends on the evaporation temperature and decomposition temperature of the solvent and / or the viscosity-imparting agent. Moreover, it is necessary to evaporate and decompose by heating, and carbonized residue is excluded. Moreover, the paste which added only the solvent, the paste which added only the viscosity agent, and the paste which added both the solvent and the viscosity agent can be utilized as a usage form.
  • a composite silver nanopaste containing silver fine particles is provided.
  • the composite silver nanoparticles are composed of silver nuclei and an organic coating layer, and the silver content in the composite silver nanoparticles increases as the number of carbons (C number) of the alcohol-derived substance constituting the organic coating layer decreases.
  • silver fine particles may be blended in the paste. The smaller the particle size of the silver fine particles, the better.
  • a range of 50 nm to 5 ⁇ m is appropriate, but a silver fine particle of 0.1 ⁇ m to 1 ⁇ m is more preferable, and composite silver nanoparticles There is size compatibility with.
  • the mass ratio between the composite silver nanoparticles and the silver fine particles can be adjusted appropriately.
  • the composite silver nanopaste when the composite silver nanopaste is subjected to thermal analysis in the atmosphere at a heating rate VT (° C./min), it is obtained from thermogravimetry (TG) and differential thermal analysis (DTA).
  • VT heating rate
  • DTA differential thermal analysis
  • a composite silver nanopaste in which the paste decomposition start temperature Tp1 (° C.), the paste decomposition temperature Tp2 (° C.), and the paste metalization temperature Tp3 (° C.) increases as the temperature increase rate VT increases can be provided.
  • the definitions of the paste decomposition start temperature Tp1 (° C.), paste decomposition temperature Tp2 (° C.) and paste metallization temperature Tp3 (° C.) of the composite silver nanopaste of the present invention are as follows.
  • T1 (° C.), decomposition temperature T2 (° C.) and metallization temperature T3 (° C.).
  • a solvent and / or a viscosity-imparting agent is added to the composite silver nanoparticle. Therefore, before the composite silver nanoparticle is oxidatively decomposed, Oxidative decomposition precedes. Therefore, the TG curve and the DTA curve are preceded by the solvent and / or viscosity-imparting curve, followed by the curve of the composite silver nanoparticles.
  • the first rapid decrease that appears in the TG curve forms the first deep valley in the DTG curve that is the differential curve, and the temperature at which the DTG curve becomes almost zero after the valley is restored starts paste decomposition. It can be determined that the temperature is Tp1.
  • This Tp1 gives the second decreasing start temperature of the DT curve.
  • Tp2 the paste decomposition temperature
  • the steep final peak appearing at the end of the DTA peak is considered to be a binding energy emission peak in which the bare silver nuclei remaining after the organic coating layer is oxidatively decomposed are bonded to each other.
  • the point at which this final peak falls and breaks in the horizontal direction is defined as the paste metalization temperature Tp3 (° C.). These paste temperatures satisfy the inequality Tp1 ⁇ Tp2 ⁇ Tp3.
  • the paste decomposition start temperature Tp1 increases by about 50 ° C.
  • the paste decomposition temperature Tp2 increases by about 65 ° C.
  • Tp2 and Tp3 are considered to increase by about 50 ° C, about 65 ° C, and about 80 ° C, respectively.
  • these temperature increases depend on the carbon number of the organic coating layer, but also somewhat on the silver nucleus particle size.
  • T3 (° C.) and Tp3 (° C.) a composite silver nanopaste satisfying T3 ⁇ Tp3 ⁇ T3 + 50 can be provided.
  • VT temperature rising rate
  • the expression (P3) is expressed.
  • silver salt fine particles are mixed in an alcohol solvent having 1 to 12 carbon atoms to prepare an alcohol solution, and the alcohol solution is formed at a predetermined generation temperature PT in a reaction chamber.
  • the silver salt fine particles are reduced with the alcohol solvent by heating for a period of time to form silver nuclei having an average particle diameter of 1 to 20 nm, and alcohol molecule derivatives, alcohol molecule residues of the alcohol solvent are formed around the silver nuclei.
  • a method for producing composite silver nanoparticles for forming an organic coating layer composed of one or more alcohol molecules is provided.
  • An alcohol solution is a mixture of silver salt and alcohol.
  • the silver salt fine particles are surrounded by alcohol and become a stable monodispersed colloid when the particle diameter of the silver salt fine particles is reduced.
  • the alcohol may precipitate.
  • the silver salt fine particles are in a dispersed state for a certain time after mixing and stirring, the reaction may be completed during that time.
  • alcohol itself has a reducing action, but alcohol easily changes to an aldehyde even at a production temperature of 200 ° C. or lower, and this aldehyde has a strong reducing action.
  • the generation temperature PT is set to 200 ° C. or less, for example, composite silver nanoparticles having a low metallization temperature T3 can be generated.
  • the production temperature PT is set lower than the metallization temperature T3 ( ⁇ 200 ° C.) to produce composite silver nanoparticles for low-temperature firing.
  • the average particle diameter of the silver nuclei is 1 to 20 nm, but if the silver salt fine particles are thoroughly refined, composite silver nanoparticles having a smaller particle diameter can be produced.
  • a method for producing composite silver nanoparticles in which the silver salt fine particles are dispersed or dissolved in the alcohol solvent can be provided.
  • the silver salt fine particles used in the present invention inorganic silver salts and organic silver salts can be used.
  • the inorganic silver salts include silver carbonate, silver chloride, silver nitrate, silver phosphate, silver sulfate, silver borate, and silver fluoride.
  • Organic silver salts include fatty acid salts such as silver formate and silver acetate, sulfonates, and silver salts of hydroxy, thiol and enol groups.
  • a silver salt composed of C, H, O and Ag or a silver salt composed of C, O and Ag is preferable.
  • the reason is that atoms such as P, S, and N may diffuse into semiconductors and ceramics to become impurities and reduce physical properties.
  • silver carbonate (Ag 2 CO 3 ) is most preferable.
  • alcohol is used as a solvent, the composite silver nanoparticles of the present invention can be produced at a relatively low temperature with either an inorganic silver salt or an organic silver salt by the reducing power of the alcohol. Inorganic silver salts are sparingly soluble in alcohol, while organic silver salts are soluble in alcohol and sparingly soluble.
  • alcohol-soluble organic silver salts such as silver abitienate, and inorganic silver salts and many organic silver salts may be considered to be hardly soluble in alcohol.
  • the alcohol-soluble silver salt is dissolved in alcohol at the molecular level, and the reactivity with the alcohol is increased.
  • the alcohol-insoluble silver salt is finely divided and mixed and dispersed in alcohol, and when the fine particle size is reduced to nano-size, it can be stably dispersed in an alcohol solvent to increase the reactivity with alcohol. it can.
  • the alcohol solution is an excess alcohol solution in which the alcohol solvent is added in excess of the number of moles of the silver salt fine particles.
  • the alcohol mass is much more excessive than the silver salt mass.
  • the molar ratio of alcohol is considerably larger than the stoichiometric ratio to obtain an excess alcohol solution.
  • the degree of excess increases, the composite silver nanoparticles produced are less likely to collide with each other, and the association and aggregation of the composite silver nanoparticles can be prevented.
  • the metallization temperature T3 becomes too high, and the metallization temperature T3 may be set to 200 ° C. or higher. In this production method, the metallization temperature T3 was successfully reduced to 200 or less for the first time by using an excess alcohol solution.
  • the metallization temperature T3 (° C.) obtained from differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • the paste metallization temperature Tp3 can also be adjusted to 250 ° C. or lower from the equation (p3), and a low-temperature firing paste can be provided.
  • the eighteenth aspect of the present invention it is possible to provide a method for producing composite silver nanoparticles in which the generation temperature PT (° C.) is lower than the metalization temperature T3 (° C.).
  • the formation temperature PT of the composite silver nanoparticles tends to be smaller than the atmospheric metallization temperature T3, that is, PT ⁇ T3. Therefore, when T3 ⁇ 200 (° C.), the production temperature PT becomes PT ⁇ T3 ⁇ 200 (° C.), and a method for producing composite silver nanoparticles produced at low temperature and fired at low temperature can be provided.
  • the nineteenth aspect of the present invention it is possible to provide a method for producing composite silver nanoparticles in which the generation time of the composite silver nanoparticles is 60 minutes or less. Since the composite silver nanoparticles are gradually generated in the alcohol solution, it was confirmed that when the generation time is lengthened, the aggregation of the composite silver nanoparticles occurs and the particle diameter of the composite silver nanoparticles increases. In consideration of this point, the generation time is limited to 60 minutes, and within this time, composite silver nanoparticles having a target silver nucleus particle size can be produced. In addition, the fact that the organic coating layer becomes thinner as the carbon number becomes smaller, and the fact that the aggregation is accelerated by the action was also confirmed. Therefore, it is important to further shorten the generation time from 60 minutes as the carbon number decreases.
  • the twentieth aspect of the present invention there is provided a method for producing composite silver nanoparticles in which the alcohol solution is cooled after the production time to stop the production reaction. At the end of the formation time, the alcohol solution was cooled to rapidly stop the formation reaction. At the same time, the agglomeration reaction could be reduced, and homogeneous composite silver nanoparticles with uniform particle sizes could be produced. The faster the cooling rate, the better.
  • the cooling device an electrical cooling device, a fluid cooling device, or the like can be used. Simply, cooling to 0 ° C. with ice water is effective. Furthermore, the reaction can be rapidly stopped by immersing the reaction vessel in liquid nitrogen.
  • the twenty-first aspect of the present invention there is provided a method for producing composite silver nanoparticles in which the silver salt fine particles are refined until the particle diameter is in the range of 10 nm to 1000 nm.
  • the average particle diameter of commercially available silver salt fine particles is 10 ⁇ m, but there is a large variation in the particle size distribution, and there are also 50 ⁇ m particles. Therefore, this is pulverized by a mixer so that the average particle size is as uniform as possible, 10 ⁇ m.
  • centrifugal rotation is performed together with the beads, and the silver salt fine particles are forcibly pulverized by the beads to reduce the particle size of the silver salt fine particles to a range of 10 nm to 1000 nm.
  • the smaller the particle size Composite silver nanoparticles with uniform and small silver core particle size can be produced.
  • the twenty-second aspect of the present invention there is provided a method for producing composite silver nanoparticles wherein the molar ratio of the alcohol solvent to the silver salt in the excess alcohol solution is adjusted to a range of 5 to 200.
  • the molar ratio of alcohol solvent to silver salt is adjusted in the range of 5 to 200. If it is 5 or less, the aggregation of the composite silver nanoparticles is conspicuous, and if it is 100 or more, particularly 200 or more, the alcohol cost becomes too high, which is uneconomical, and the reaction chamber becomes large and the equipment cost becomes excessive. Further, the molar ratio is more preferably in the range of 10-100.
  • a method for producing composite silver nanoparticles wherein the composite silver nanoparticles are separated from the alcohol solution in which the composite silver nanoparticles are produced. It is most desirable that the silver salt fine particles and the alcohol react completely in the reaction vessel, and the composite silver nanoparticles and the alcohol remain in the reaction vessel. However, unreacted silver salt and composite silver nanoparticles may coexist, and it is better to isolate only the composite silver nanoparticles from the reaction vessel to improve the purity of the composite silver nanoparticles. Even if some silver salt remains as an impurity, the silver salt is also decomposed by firing.
  • a raw material mixer that prepares an alcohol solution by mixing silver salt fine particles with an alcohol solvent, and the composite silver nanoparticles by heating the alcohol solution at a predetermined temperature for a predetermined time with a heater.
  • a component purifier for separating composite silver nanoparticles from the alcohol solution supplied from the cooler, and a cooler for cooling the alcohol solution supplied from the reactor.
  • the apparatus comprises: a raw material mixer that mixes silver salt fine particles with an alcohol solvent to prepare an alcohol solution; and a reactor that generates composite silver nanoparticles by heating the alcohol solution at a predetermined temperature for a predetermined time with a heater.
  • a reactor that generates composite silver nanoparticles by heating the alcohol solution at a predetermined temperature for a predetermined time with a heater.
  • the reactor comprises a heating device and a reaction vessel, and as the heating device, an induction heating device, an infrared heating device, a plasma heating device, a laser heating device, an ultrasonic heating device, or a combination heating device thereof can be used.
  • This apparatus may be a continuous production apparatus or a batch production apparatus.
  • the raw material mixer, the reactor, the cooler, and the component purifier are connected in a continuous, partially continuous or batch type.
  • An apparatus for producing silver nanoparticles can be provided.
  • An apparatus for producing composite silver nanoparticles is provided. This apparatus makes it possible to mass-produce composite silver nanoparticles at high speed, and to provide an alternative solder mass production apparatus that replaces Sn—Pb solder.
  • a case where beads are introduced into the raw material mixer to make the raw material mixer a raw material refinement mixer is also included in this embodiment.
  • an apparatus for producing composite silver nanoparticles wherein the silver salt fine particles charged into the raw material mixer are refined in advance. If the silver carbonate charged into the raw material mixer is refined in advance by a mixer or beads, it is possible to guarantee the refinement and uniformity of the silver salt fine particles to be reacted, and as a result, the composite silver produced The particle size uniformity of the nanoparticles can be enhanced.
  • the silver salt fine particles may be refined by a mixer in the raw material mixer.
  • a production apparatus in which a fine pulverizer, a raw material mixer, a reactor, a cooler, and a component purifier are configured as a continuous type or a batch type.
  • the fine pulverizer may be first-stage refined by a mixer, and the raw material refined mixer may be positioned as ultrafine refined by beads.
  • a finer for further refinement of silver salt fine particles in the alcohol solution supplied from the raw material mixer, and a refined alcohol solution formed by the finer are reacted with each other.
  • An apparatus for producing composite silver nanoparticles to be supplied to a vessel is provided. Therefore, as a device form, a production device is provided in which a raw material mixer, a micronizer, a reactor, a cooler, and a component purifier are configured in a continuous type or a batch type. This arrangement is different from the above-described configuration in that a micronizer is arranged between the raw material mixer and the reactor. In any case, the finer the silver salt fine particles, the finer the composite silver nanoparticles and the finer and uniform particle size.
  • the composite silver that recovers the composite silver nanoparticles as an alcohol wet state or powder by treating the purified liquid containing the composite silver nanoparticles supplied from the component purifier.
  • An apparatus for producing nanoparticles is provided.
  • the separation method include a membrane separation method and an evaporation drying method. In the wet state, the powder is moistened with a small amount of a solvent such as alcohol, and the powder can be prevented from scattering.
  • the component purifier comprises a centrifugal ultrafiltration device, and the composite silver nanoparticles are diffused into the extraction solvent through micropores to form the purified liquid.
  • An apparatus for producing nanoparticles is provided.
  • the particle size order is silver salt fine particles> composite silver nanoparticles> alcohol.
  • the mass order is considered to be silver salt fine particles> composite silver nanoparticles> alcohol. Therefore, the alcohol with a light mass is blown out and separated by the centrifugal method.
  • the composite silver nanoparticles are diffused and separated in an extraction solvent such as hexane and toluene.
  • an extraction solvent such as hexane and toluene.
  • the silver salt can also be separated.
  • alcohol and silver carbonate can be reused, and it is possible to recover pure composite silver nanoparticle powder free from impurities.
  • the ultrafiltration device comprises an inner tube, an intermediate tube, and an outer tube triple tube, and the inner tube and the intermediate tube are rotated coaxially to generate the composite silver nanoparticles.
  • the alcohol solution is supplied to the middle passage between the inner tube and the middle tube, the micropores are formed on the surface of the inner tube, the extraction solvent is supplied to the inner passage inside the inner tube, and the composite silver nano
  • An apparatus for producing composite silver nanoparticles is provided in which particles are selectively diffused from the middle passage through the micropores into the extraction solvent.
  • Alcohol with a small mass is blown outward by centrifugal force, and if a small minute hole is formed in the wall surface of the middle tube, it is separated from this minute hole into an outer passage formed between the middle tube and the outer tube.
  • the Only fine silver salt particles remain in the middle passage. In this way, alcohol, unreacted silver salt fine particles, and composite silver nanoparticles are separated from each other by this apparatus.
  • a composite silver nanopaste according to any one of the tenth to thirteenth aspects is prepared, and the paste layer is formed by applying the composite silver nanopaste to a lower body.
  • a joining method in which an upper body is arranged on top and the paste layer is silvered by heating to join the lower body and the upper body.
  • This embodiment is a method of joining two objects using composite silver nanopaste.
  • One object is referred to as a lower body and the other object is referred to as an upper body. Strong bonding can be achieved by silvering.
  • the silver film is excellent in electrical conductivity and thermal conductivity and can be fired at a low temperature, it is possible to join low melting point objects.
  • a composite silver nanopaste according to any one of the tenth to thirteenth aspects is prepared, and the composite silver nanopaste is applied onto a surface of a substrate in a predetermined pattern to form a paste pattern.
  • a pattern forming method of forming and silvering the paste pattern by firing to form a silver pattern For example, when a silver film having a predetermined pattern is formed on a resin substrate having a low melting point, a method for forming a silver film having various patterns on various materials at a low temperature is provided according to the embodiment of the present invention.
  • FIG. 1 is an explanatory diagram of a first step of a low-temperature generation reaction of composite silver nanoparticles according to the present invention.
  • FIG. 2 is an explanatory diagram of the second step of the low-temperature generation reaction of the composite silver nanoparticles according to the present invention.
  • FIG. 3 is a detailed flow diagram illustrating a low temperature generation procedure of composite silver nanoparticles according to the present invention.
  • FIG. 4 is a detailed flow diagram of a manufacturing apparatus showing a low temperature generation procedure by the composite silver nanoparticle manufacturing apparatus according to the present invention.
  • FIG. 7 is a relationship diagram between the production amount and production temperature of C6AgAL according to the present invention.
  • FIG. 8 is a relationship diagram between the substance component (%) of C6AgAL and the production temperature according to the present invention.
  • FIG. 14 is a relationship diagram between the absorption intensity of C8AgAL and the generation time according to the present invention.
  • FIG. 15 is a graph showing the relationship between the optical density and the photon energy in the surface plasmon transition region indicating the generation of C10AgAL according to the present invention.
  • FIG. 16 is a graph showing the relationship between the optical density indicating aldehyde formation and the photon energy in the surface plasmon transition region in C10AgAL production according to the present invention.
  • FIG. 17 is a graph showing the relationship between the absorption intensity and production temperature of C10AgAL according to the present invention.
  • FIG. 18 is a graph showing the relationship between the absorption intensity and generation time of C10AgAL according to the present invention.
  • FIG. 19 is a transmission electron micrograph showing a lattice image of C10AgAL produced at 90 ° C.
  • FIG. 20 is a transmission electron micrograph showing a lattice image of C12AgAL produced at 126 ° C.
  • FIG. 21 is a particle size distribution diagram of C12AgAL shown in FIG. FIG.
  • FIG. 24 is a transmission electron microscope diagram showing a lattice image of C2AgAL according to the present invention.
  • FIG. 26 is a transmission electron microscope diagram showing a lattice image of C4AgAL according to the present invention.
  • FIG. 27 is a relationship diagram between the production temperature PT and the decomposition temperature T2 of the composite silver nanoparticles CnAgAL (C1 to C12) according to the present invention.
  • FIG. 28 is a relationship diagram between the decomposition start temperature T1 and the decomposition temperature T2 of the composite silver nanoparticles CnAgAL (C1 to C12) according to the present invention.
  • FIG. 29 is a relationship diagram showing a range T2-60 ⁇ T1 ⁇ T2 of the decomposition start temperature T1 of the composite silver nanoparticles CnAgAL (C1 to C12) according to the present invention.
  • FIG. 27 is a relationship diagram between the production temperature PT and the decomposition temperature T2 of the composite silver nanoparticles CnAgAL (C1 to C12) according to the present invention.
  • FIG. 28 is a relationship diagram between
  • FIG. 30 is a graph showing the relationship between the characteristic temperature (PT, T1, T2, T3) and the C number of the composite silver nanoparticles CnAgAL (C1 to C12) according to the present invention at a heating rate of 1 ° C./min.
  • FIG. 37 is a graph showing the relationship between the characteristic temperature (PT, T1, T2, T3) and the C number at a rate of temperature increase of 1 ° C./min for composite silver nanoparticles CnAgAL (C1 to C12) of another example.
  • FIG. 38 is a relationship diagram showing a range T2-90 ⁇ T1 ⁇ T2 of the decomposition start temperature T1 of composite silver nanoparticles CnAgAL (C1 to C12) of another example.
  • FIG. 51 is a relationship diagram between the characteristic temperatures (T1, T2, T3, Tp1, Tp2, Tp3) of CnAgAL and PCnAgAL obtained in FIGS.
  • FIG. 52 is a magnitude relationship diagram of characteristic temperatures (T1, T2, T3, Tp1, Tp2, Tp3) of CnAgAL and PCnAgAL obtained from FIG.
  • FIG. 1 is an explanatory diagram of a first step of a low-temperature generation reaction of composite silver nanoparticles according to the present invention.
  • the inorganic compound used as a raw material is silver salt (1).
  • silver salts inorganic silver salts and organic silver salts can be used.
  • Inorganic silver salts include silver carbonate, silver chloride, silver nitrate, silver phosphate, silver sulfate, silver borate, silver fluoride, and organic silver salts.
  • fatty acid salts such as silver formate and silver acetate, sulfonates, and silver salts of hydroxy, thiol and enol groups.
  • silver salts composed of C, H, O, Ag silver salts composed of C, H, Ag, silver salts composed of H, O, Ag, silver salts composed of C, O, Ag, O
  • a silver salt made of Ag is preferable in that it contains no impurities. The reason is that only H 2 O, CO 2 , O 2, and the like are generated by firing even when a silver salt is mixed as an impurity in the generated composite silver nanoparticles.
  • silver carbonate Ag 2 CO 3 will be described later as a suitable silver salt, but it goes without saying that other silver salts are similarly used.
  • R n in the formula (3) represents a hydrocarbon group of alcohol.
  • the carbon number n is limited to 1-12.
  • the silver salt fine particles are insoluble in alcohol, but the hydrophilic group OH of the alcohol has a property of easily binding to the surface of the silver salt fine particles.
  • the hydrophobic group R n of the alcohol has a high affinity with alcohol solvent. Therefore, as shown in the formula (4), when the silver salt fine particles are dispersed in the alcohol solvent, the alcohol is adsorbed on the surface of the silver salt fine particles and floats in the alcohol solution. When the particle diameter of the silver salt fine particles is small, a stable silver salt fine particle colloid is formed. On the other hand, when the silver salt fine particles have a large particle size, they may precipitate, but if the floating state continues for several tens of minutes, there is no problem, and the reaction may be carried out with gentle stirring.
  • FIG. 2 is an explanatory diagram of the second step of the low-temperature generation reaction of the composite silver nanoparticles according to the present invention.
  • silver carbonate is described as an example here as a silver salt, but the same applies to other silver salts.
  • Silver carbonate on the surface of the silver carbonate fine particles reacts with alcohol to form aldehyde R n-1 CHO simultaneously with silveration, as shown in formula (5).
  • aldehyde R n-1 CHO simultaneously with silveration, as shown in formula (5).
  • Formula (6) there is also a reaction route in which silver alkoxide AgOR n is immediately generated without forming an aldehyde.
  • the aldehyde has a strong reducing action, and as shown in formula (7), silver carbonate is reduced to form carboxylic acid R n-1 COOH simultaneously with silveration.
  • the intermediately produced Ag, AgOR n , and R n-1 COOH aggregate with each other by the reactions shown in Formula (8) and Formula (9), and form Ag k + m (OR n ) m , Ag k + m as composite silver nanoparticles.
  • (OR n ) m R n-1 COOH is produced.
  • These composite silver nanoparticles are illustrated in equations (10) and (11).
  • the reaction is a surface reaction of silver carbonate fine particles.
  • the reaction continues while gradually penetrating from the surface into the interior, and the silver carbonate fine particles serving as the central nucleus are converted into silver nuclei.
  • composite silver nanoparticles represented by formula (10) and formula (11) are produced.
  • Formula (10) and Formula (11) show the constitutive formula of the silver coating and the organic coating layer formed around it.
  • the organic coating layer may be an alkoxide group OR n or a carboxylic acid R n-1 COOH. Of course, there may be a carboxylic acid group R n-1 COO in which H is eliminated from a carboxylic acid (fatty acid). Accordingly, the organic coating layer also has an alkoxide, an alkoxide group, a carboxylic acid, a carboxylic acid group, or a mixed form thereof.
  • FIG. 3 is a detailed flow chart showing a low-temperature generation procedure for composite silver nanoparticles according to the present invention.
  • step n 3 the silver salt excess alcohol solution is rotated together with the beads, and the silver salt particles are gradually ground to be ultrafine. The relationship between the bead particle size and the silver salt ultrafine particle size will be described later with reference to Table 2.
  • This predetermined temperature corresponds to the generation temperature PT.
  • Table 2 is a relationship table between the bead particle size and the silver salt ultrafine particle size including Ag2CO3. The smaller the bead particle size, the smaller the ultrafine particle size, and the smaller the particle size of CnAgAL produced above.
  • the particle diameter of the beads is from 1 mm to 0.03 mm, so that the ultrafine particle diameter can be freely controlled in the range of 5000 nm to 10 nm.
  • FIG. 4 is a detailed flow chart of a manufacturing apparatus showing a low-temperature generation procedure by the composite silver nanoparticle manufacturing apparatus according to the present invention.
  • This flowchart corresponds to each manufacturing stage of the manufacturing apparatus of FIG.
  • step s 3 the ultrafine silver salt alcohol solution is supplied to the reactor and heated at a production temperature for a predetermined time (production time) to produce CnAgAL.
  • the extracted alcohol solution is immediately cooled and the production reaction is stopped.
  • step s 7 CnAgAL particles for each production temperature are subjected to various measurements.
  • FIG. 5 is a block diagram of a composite silver nanoparticle production apparatus according to the present invention.
  • the function of each partial device of the manufacturing apparatus corresponds to each step shown in FIG.
  • the ultrafine refiner 10 includes a raw material mixer 11 and an ultrafine vessel 12. An excessive predetermined amount of alcohol and a predetermined amount of silver salt are put into the raw material mixer 11, and a mixer is provided therein. This refined excess alcohol solution is supplied from the inlet 13 to the ultrafine container 12 in the direction of arrow a.
  • the ultrafine container 12 is filled with a large number of beads 17, and a rotating blade 16 is rotated by a rotating shaft 15 inserted in the central tube 14, and the silver salt refined particles are polished by the beads 17. It is crushed and the silver salt refined particles are converted into silver salt ultra refined particles.
  • the ultrafine excess alcohol solution is supplied to the reactor 20 in the direction of arrow b.
  • the ultrafine excess alcohol solution is supplied from the raw material supply port 21 to the reaction tube 22, heated by the heater 23, and CnAgAL is generated in the generation region 24. Further, the reaction solution is supplied in the direction of the arrow c, and the temperature of the reaction solution is lowered by the cooling region 26 by the cooler 25, and the production reaction is rapidly stopped. The generated alcohol solution is supplied from the generation discharge port 27 to the component purifier 30 in the direction of arrow d.
  • the component purifier 30 is a triple tube of an outer tube 31, an intermediate tube 32, and an inner tube 34.
  • the intermediate tube 32 rotates in the direction of arrow e
  • the inner tube 34 rotates in the direction of arrow f
  • the outer tube 31 It is a fixed tube that does not rotate.
  • An infinite number of fine holes 35 having such a size that CnAgAL can pass through are formed in the peripheral wall surface of the inner tube 34.
  • an infinite number of ultrafine holes 33 that are large enough to allow alcohol molecules to pass through are formed on the peripheral wall surface of the intermediate tube 32.
  • An inner passage 36 is opened in the inner tube 34, an intermediate passage 37 is formed in a gap between the inner tube 34 and the middle tube 32, and an outer space is formed in the gap between the inner tube 32 and the outer tube 31.
  • a passage 38 is formed.
  • the middle passage 36 is supplied with an extraction solvent HE such as hexane for diffusively dispersing CnAgAL.
  • the generated alcohol solution delivered from the generation discharge port 27 is supplied to the middle passage 37 in the direction of the arrow d.
  • the produced alcohol solution contains the produced composite silver nanoparticles CnAgAL, unreacted silver salt, and alcohol.
  • the alcohol molecule having the lightest mass moves to the outer passage 38 through the ultrafine hole 33 by centrifugal force.
  • CnAgAL diffuses into the extraction solvent HE in the inner passage 36 through the fine holes 35.
  • Unreacted silver salt remains in the middle passage 37.
  • the intermediate separator 40 includes an alcohol separation container 42 and a silver salt separation container 41.
  • the alcohol flowing out from the outer passage 38 is collected in the alcohol separation container 42, and the unreacted silver salt flowing out from the middle passage 37 is collected in the silver salt separation container 41.
  • the extraction solvent containing CnAgAL flowing out from the inner passage 36 is supplied to the powder recovery device 50 in the direction of arrow h.
  • the CnAgAL extraction solution is sprayed as a mist 53 from the spray 51 to the dryer 52, the extraction solvent evaporates, and CnAgAL is pulverized.
  • the CnAgAL powder is recovered from the hopper 54 to the powder recovery container 56 via the recovery tube 55.
  • FIG. 6 is a purification method diagram using a component purifier of the manufacturing apparatus of FIG.
  • the generated alcohol solution AS supplied to the middle passage 37 is a mixed solution of silver salt AG, composite silver nanoparticles CA, and alcohol molecules AL.
  • the extraction solvent HE is supplied to the inner passage 36.
  • the substance in the middle passage 37 discharges the lightest alcohol molecule AL from the ultrafine hole 33 to the outer passage 38 by a strong centrifugal force.
  • the composite silver nanoparticles CA penetrate diffusively from the micropores 35 to the extraction solvent HE.
  • the extraction solution containing the composite silver nanoparticles CA is discharged from the inner passage 36, the unreacted silver salt AG is discharged from the middle passage 37, and the alcohol AL is discharged from the outer passage 38. In this way, three types of substances are separated and recovered.
  • Example 1 C6AgAL
  • Table 3 shows the measurement data obtained from experiments for C6AgAL, such as “Production amount of C6AgAL in low temperature production reaction”, “Mass of each substance amount in low temperature production of C6AgAL” and “Relationship between production temperature and characteristic temperature of C6AgAL”.
  • Production amount of C6AgAL in the low temperature production reaction As shown in the table, detailed experimental data relating to the production time and production amount of C6AgAL for each production temperature is described.
  • the “mass of each substance amount in low-temperature production of C6AgAL” includes the mass of silver carbonate and C6AgAL contained in the product at each production temperature (70 ° C., 80 ° C., 90 ° C., 100 ° C., 111.5 ° C.). The ratio and the mass ratio of the organic component and Ag contained in C6AgAL are described. Here, the total mass of the product or C6AgAL is 1. “Relationship between generation temperature and characteristic temperature of C6AgAL” includes TG decrease start temperature T1 (° C.), DTA peak temperature T2 (° C.), and metallization temperature T3 of C6AgAL generated at each generation temperature PT (° C.). ° C).
  • the generation temperature PT can be freely changed, and when the generation temperature PT increases, the decomposition start temperature T1 corresponding to the TG decrease start temperature, the decomposition temperature T2 corresponding to the DTA first peak temperature, the TG decrease end temperature, or the DTA
  • the metallization temperature T3 corresponding to the final peak end temperature tends to gradually increase. Therefore, it is possible to produce the composite silver nanoparticles while freely designing the production temperature PT so that the decomposition temperature T2 is 150 ° C. or lower.
  • the metallization temperature T3 only rises a few degrees above the decomposition temperature T2.
  • the TG curve is a thermogravimetric curve and indicates weight reduction in%, and the TG curve starts to decrease indicates that organic substances are diffused from the organic coating layer. Therefore, the TG decrease start temperature, that is, the decomposition start temperature T1 corresponds to the decomposition start temperature of the organic substance.
  • the DTA curve is a differential thermal analysis curve and shows exotherm in ⁇ V. An increase in the DTA curve indicates that heat is generated by the decomposition reaction, and a decrease in the DTA curve indicates cooling. When the DTA curve forms a peak, the decomposition exotherm reaches its maximum at the peak temperature, indicating that the decomposition reaction has reached the peak.
  • the decomposition temperature is defined by the DTA first peak temperature.
  • the present inventors consider that the final DTA peak in the DTA peak is a binding energy emission peak in which bare silver nuclei are bonded to each other after the organic coating layer is diffused. Therefore, the DTA first peak temperature T2 indicates a decomposition temperature at which the decomposition of the organic matter proceeds at the highest speed. When the organic matter is completely diffused, heat generation stops, the peak rapidly decreases, and the temperature that has completely decreased corresponds to the metallization (silvering) temperature T3.
  • the TG curve rapidly decreases at the decomposition temperature T2, and as a result of the total amount of organic matter being diffused, the TG curve converges to a constant value at the metallization temperature T3.
  • increasing or decreasing the DTA curve or decreasing the TG curve indicates that another reaction other than the composite silver nanoparticle has occurred and requires separate analysis.
  • the DTA first peak appearing in the DTA curve indicates the decomposition diffusion of the organic coating layer in the composite silver nanoparticles.
  • FIG. 7 is a relationship diagram between the production amount and production temperature of C6AgAL according to the present invention.
  • the vertical axis represents the production amount (g) of C6AgAL
  • each temperature production amount (g) shown in Table 3 is a black rhombus
  • each temperature production amount (g) per minute is a black circle
  • the integral production amount (g) Are plotted with black triangles for each generation temperature PT (° C.).
  • C6AgAL was produced even at 100 ° C. or lower, and it was confirmed that the composite silver nanoparticles according to the present invention were produced at a low temperature.
  • FIG. 8 is a relationship diagram between the substance component (%) of C6AgAL and the production temperature according to the present invention. That is, FIG. 8 shows the mass ratio (%) of silver carbonate and C6AgAL described in “mass of each substance amount in low temperature production of C6AgAL” in Table 3 with respect to the production temperature PT (° C.), Plotted with black squares, the mass ratio (%) of the organic component amount and Ag amount contained in C6AgAL is plotted with black rhombus and black triangle, respectively, against the production temperature PT (° C.).
  • the mass ratio of silver carbonate decreases, the mass ratio of C6AgAL (black squares) increases, and it can be seen that 6AgAL is produced using silver carbonate as a raw material.
  • C6AgAL was produced even at a production temperature of 100 ° C. or lower, and it was confirmed that the composite silver nanoparticles according to the present invention were produced at a low temperature using silver carbonate as a raw material.
  • generated has a high ratio (black triangle) of Ag amount also in low temperature production
  • the arrow PT indicates the generation temperature (° C.)
  • T 1 indicates the decomposition start temperature (° C.)
  • T 2 indicates the decomposition temperature
  • T 3 indicates the metallization temperature (° C.). This is described in “Relationship between C6AgAL Production Temperature and Characteristic Temperature”, and is estimated from the thermal analysis of FIGS. 9 to 13.
  • the DTA peak is a single peak, whereas in FIGS. 12 to 13, the DTA peak is a double peak.
  • the DTA first peak is a decomposition peak in which decomposition occurs rapidly
  • the DTA final peak that is, the DTA second peak
  • the DTA first peak and the DTA second peak are also present in FIGS. 9 to 11, but they are close to each other, so that they appear to be only a single peak due to overlap.
  • the decomposition temperature T2 and the metallization temperature T3 are all 150 ° C. or less.
  • the decomposition start temperature T1 is included within 60 ° C. below the decomposition temperature T2. That is, if C6AgAL obtained at a production temperature of 100 ° C. or lower is used, a suitable alternative solder material that can decompose and metallize organic substances contained at 150 ° C. or lower can be provided.
  • T1 105 ° C.
  • the TG decrease start temperature T1 is included within 60 ° C. below the DTA peak temperature T2.
  • Example 2 C8AgAL
  • Table 4 describes the measurement results of plasmon absorption and aldehyde absorption in low-temperature production of C8AgAL. Samples were taken at each temperature while raising the temperature in the reaction tube, and the optical density (OD) of the absorption peak (wavelength: 410 nm) and aldehyde absorption (wavelength: 290 nm) of the nanoparticle plasmon was measured.
  • the reaction time is the time required to reach each temperature, and corresponds to the production time of C8AgAL.
  • the peak position of the nanoparticle plasmon corresponds to the resonance energy of the surface plasmon in the nanoparticle.
  • FIG. 14 is a relationship diagram between the absorption intensity of C8AgAL and the generation time according to the present invention.
  • the absorption intensity and reaction temperature (generation temperature) described in Table 4 are plotted against the reaction time
  • the absorption intensity of the nanoparticle plasmon is plotted with a black circle
  • the aldehyde optical density is plotted with a black rhombus.
  • the silver carbonate on the surface of the silver carbonate fine particles reacts with alcohol to produce aldehyde R n-1 CHO simultaneously with silveration, and silver carbonate is reduced by the strong reducing action of the aldehyde.
  • the carboxylic acid R n-1 COOH is formed.
  • the intermediately produced Ag, AgOR n , and R n-1 COOH aggregate with each other to produce composite silver nanoparticles.
  • FIG. 14 it can be seen that in the first 10 minutes, the absorption intensity of the nanoparticle plasmon increases rapidly, and the nanoparticles grow rapidly.
  • the optical density of the aldehyde increases slowly.
  • the silveration of the silver carbonate by the reaction with the alcohol and the reduction reaction of the produced aldehyde enhance the silveration of the silver carbonate. It can be seen that silver nanoparticles are generated with high efficiency.
  • reaction temperature reaction temperature
  • this measurement also demonstrates that composite silver nanoparticles are produced with high efficiency at 100 ° C. or less.
  • decrease of nanoparticle plasmon absorption intensity is due to the increase of the composite silver nanoparticle produced
  • Example 1 also measures the nanoparticle plasmon absorption intensity and the aldehyde optical density, but since the same results as in Example 2 are obtained, description of the measurement results is omitted.
  • the thermal analysis regarding Example 2 the result similar to Example 1 was obtained, and the production
  • the DTA peak temperature T2 is 150 ° C. or less
  • the TG decrease start temperature T1 is also within 60 ° C. below the T2, and the organic coating layer is decomposed and metallized within 150 ° C. Has been confirmed.
  • FIG. 15 is a graph showing the relationship between the optical density and the photon energy in the surface plasmon transition region indicating the generation of C10AgAL according to the present invention.
  • C10AgAL as in Example 2, optical measurement was performed in the surface plasmon transition region, and as shown in the figure, the increase in the absorption intensity due to the surface plasmon of the nanoparticles as the temperature increased was measured.
  • the absorption by the surface plasmon is the maximum in the spectrum having a production time of 17 minutes and a production temperature of 81.9 ° C.
  • FIG. 16 is a relationship diagram between optical density and photon energy showing aldehyde formation in a C10AgAL production test according to the present invention.
  • Silver carbonate on the surface of the silver carbonate fine particles reacts with alcohol to produce aldehyde simultaneously with silvering, and as the temperature rises and production time increases, the increase in absorption intensity by aldehyde has been measured. That is, it is proved that the aldehyde absorption is maximized and the reduction of silver carbonate by the aldehyde is promoted at an elapsed time of 17 minutes and a production temperature of 81.9 ° C.
  • FIG. 17 is a graph showing the relationship between the absorption intensity and the generation temperature of C10AgAL according to the present invention.
  • the absorption intensity of the surface plasmon shown in FIGS. 15 and 16 is plotted with black circles, and the aldehyde optical density is plotted with black squares against the generation temperature. It can be seen that before the generation temperature PT reaches 100 ° C., the absorption intensity of the surface plasmon increases rapidly and the aldehyde absorption increases. That is, as described above, silver carbonate is silvered by reaction with alcohol, and silver carbonate is enhanced by reduction reaction with the generated aldehyde, and composite silver nanoparticles are produced at a high efficiency at 100 ° C. or lower. Has been.
  • Table 5 is a list of “C10AgAL plasmon absorption generation temperature / time dependency” and “C10AgAL aldehyde absorption temperature / time dependency”. Plasmon absorption and aldehyde absorption were measured while gradually raising the temperature (generation temperature) of the reaction vessel.
  • FIG. 18 is a graph showing the relationship between the absorption intensity and the generation time of C10AgAL according to the present invention.
  • This figure plots the surface plasmon absorption intensity shown in Table 5 with black circles and the aldehyde optical density with black rhombuses against the generation time. Absorption intensity of surface plasmon and aldehyde absorption increase rapidly, and the generation time is maximized at 17 minutes.
  • the silver carbonate is silvered by reaction with alcohol and the generated aldehyde is reduced for a short time. It can be seen that silveration of silver carbonate is performed with high efficiency. It can be seen that when the production temperature PT is 100 ° C. or lower, the production of C10AgAL occurs rapidly within several tens of minutes.
  • FIG. 19 is a high-resolution transmission electron microscope view of C10AgAL produced at 90 ° C.
  • a magnified view of the transmission electron microscope image clearly shows a lattice image of silver nuclei of the silver nanoparticles, demonstrating extremely high crystallinity. From these lattice images, it was found that the silver nuclei were almost single crystallized. From this high crystallinity, it can be concluded that the composite silver nanoparticles of the present invention have high electrical conductivity and high thermal conductivity.
  • FIG. 20 is a transmission electron micrograph of C12AgAL produced at 126 ° C.
  • a transmission electron microscope image of C12AgAL is also observed, and in the enlarged view, a lattice image of silver nanoparticles is clearly seen, and it can be seen that it is highly crystallized. From this lattice image, it can be judged that it is almost a single crystal. From this single crystallinity, it can be concluded that the composite silver nanoparticles of the present invention have high electrical conductivity and high thermal conductivity.
  • T1AgAL it can be seen that C1AgAL is generated at 100 ° C.
  • FIG. 24 is a transmission electron micrograph of C2AgAL produced at 65 ° C.
  • a transmission electron microscope image of C2AgAL is also observed, and in the enlarged view, a lattice image of silver nanoparticles is clearly seen, and it can be seen that it is highly crystallized. From this lattice image, it can be judged that it is almost a single crystal.
  • the lattice spacing of the lattice image is 0.24 nm.
  • FIG. 26 is a transmission electron micrograph of C4AgAL produced at 80 ° C.
  • a transmission electron microscope image of C4AgAL is also observed, and in the enlarged view, a lattice image of silver nanoparticles is clearly seen, and it can be seen that it is highly crystallized.
  • the lattice spacing of the lattice image is 0.24 nm. Since the lattice spacing d of the (111) plane of the bulk silver crystal coincides with 0.24 nm, it was found that the lattice image represents the (111) plane.
  • the upper silver nucleus can be determined to be a single crystal, but the lower silver nucleus can be determined to be a single crystal or a twin crystal. Due to this high degree of crystallinity, it can be concluded that the composite silver nanoparticles of the present invention have high electrical conductivity and high thermal conductivity.
  • Table 6 shows specific values of the production temperature PT, the decomposition start temperature T1 (° C.), the decomposition temperature T2 (° C.), and the metallization temperature T3 (° C.) in Examples 1 to 12. Except for C12AgAL, it is clear that the generation temperature PT is 100 ° C. or less, the decomposition temperature T2 and the metallization temperature T3 are 150 ° C. or less, and the decomposition start temperature T1 is within 60 ° C. below the decomposition temperature T2. became.
  • the production temperature PT of C12AgAL is 126 ° C., but the decomposition temperature T2 and the metallization temperature T3 are 150 ° C.
  • the condition that the decomposition start temperature T1 is within 60 ° C. below the decomposition temperature T2 is also the other CnAgAL It turned out to be the same. Therefore, it was found that the conditions under which the decomposition temperature T2 is 150 ° C. or less and the conditions where the decomposition start temperature T1 is within 60 ° C. below the decomposition temperature T2 are common conditions for CnAgAL of C1 to C12. In the measurement of CnAgAL, the inequality “T2-60 ⁇ T1 ⁇ T2” was obtained.
  • Table 7 is a list of relationships between the production temperature PT and the decomposition temperature T2 in the composite silver nanoparticles.
  • FIG. 27 illustrates the data in Table 7, where the horizontal axis represents the production temperature PT (° C.) and the vertical axis represents the decomposition temperature T2 (° C.).
  • Table 8 is a list of relationships between the decomposition start temperature T1 and the decomposition temperature T2 in the composite silver nanoparticles.
  • FIG. 28 illustrates the data of Table 8, where the horizontal axis represents the decomposition start temperature T1 (° C.) and the vertical axis represents the decomposition temperature T2 (° C.). As is apparent from FIG. 28, the decomposition temperature T2 is 150 ° C. or lower, and the decomposition start temperature T1 is 140 ° C. or lower.
  • Table 9 is a list of relationships between the decomposition start temperature T1, the decomposition temperature T2, and T2-60 in the composite silver nanoparticles.
  • T2-60 is described for the determination of satisfaction in the range of T2-60 ⁇ T1 ⁇ T2. In the above embodiment, it is numerically clear that the above range is satisfied.
  • FIG. 29 illustrates the data in Table 9, where the horizontal axis indicates the C number and the vertical axis indicates the characteristic temperature.
  • the characteristic temperatures of the present invention are the generation temperature PT, the decomposition start temperature T1, the decomposition temperature T2, and the metallization temperature T3.
  • T2-60 is also included as the characteristic temperature.
  • the black square is the decomposition temperature T2
  • the black triangle is T2-60
  • the black circle indicates the decomposition start temperature T2. Since all the black circles exist between the black triangle and the black square, it was proved to the above embodiment that the inequality condition of T2-60 ⁇ T1 ⁇ T2 is satisfied for C1 to C12.
  • Table 10 is a list of the production temperature PT, the decomposition start temperature T1 (° C.), the decomposition temperature T2 (° C.), the metallization temperature T3 (° C.), and the boiling point BT of the alcohol corresponding to the C number in Examples 1 to 12.
  • FIG. 30 illustrates the data in Table 10, where the horizontal axis indicates the C number of the alcohol-derived organic coating layer, and the vertical axis indicates the characteristic temperature.
  • the characteristic temperatures of the present invention are the production temperature PT, the decomposition start temperature T1, the decomposition temperature T2, the metallization temperature T3, and the alcohol boiling point BT.
  • FIG. 30 includes all the main conditions of the present invention.
  • the conditions of the generation temperature PT ⁇ 100 ° C. are all satisfied except for C12.
  • the DTA peak temperature T2 ⁇ 150 ° C. is satisfied for all of C1 to C12.
  • the metallization temperature T3 ⁇ 150 ° C. is established for all of C1 to C12.
  • T2-60 ⁇ T1 ⁇ 150 ° C. is established for all of C1 to C12.
  • the heating temperature is controlled by the boiling point BT of the alcohol.
  • the boiling point BT of methanol of C1 is 64.7 ° C.
  • the alcohol temperature does not exceed 64.7 ° C.
  • the alcohol boiling point BT increases as the C number increases.
  • the production temperature can be set higher than the boiling point by pressure boiling.
  • the production temperature can be set lower than the boiling point by boiling under reduced pressure.
  • Table 11 is a list of lattice images of CnAgAL in C1 to C12 by a high-resolution transmission electron microscope.
  • a lattice image of silver nuclei was confirmed, and it was proved that crystallinity was extremely high.
  • the present inventors have confirmed the lattice image of silver nuclei with alkoxide-coated silver nanoparticles for the first time, and alkoxide-coated silver having a high degree of crystallinity such as single crystal or twin crystal of silver nuclei. Succeeded in providing nanoparticles. Therefore, it was demonstrated that the electrical conductivity and thermal conductivity of the CnAgAL of the present invention are extremely high.
  • Examples 011 to 123 Properties of C1 to C12 composite silver nanopaste
  • a composite silver nanopaste was prepared using the composite silver nanoparticles produced according to the present invention.
  • the following three types of pastes were prepared from each of C1 to C12 CnAgAL.
  • At least one of CnAgAL has the metallization temperature T3 shown in Examples 1 to 12, and the rest of CnAgAL has a metallization temperature T3 that is slightly different from the metallization temperature T3 of the above example. However, all metallization temperatures T3 are selected to be 150 ° C.
  • the solvent was selected from methanol, ethanol, butanol, xylene, toluene, hexane.
  • the viscosity-imparting agent was selected from turpentine oil, terpineol, terpine derivative (mixture of 1,8-terpine monoacetate and 1,8-terpin diacetate), methylcellulose. Methylcellulose is a powder and is always used in combination with a solvent.
  • the particle size of silver particles, the type of solvent, the type of viscosity imparting agent, the mass% of each component, and the paste baking temperature in the atmosphere are as described in Tables 12 and 13. Tables 12 and 13 show the metallization temperature T3 (° C.) and actual air paste firing temperature (° C.) of Cn to C12 CnAgAL.
  • the paste firing temperature in the atmosphere is set higher than the metallization temperature T3 of CnAgAL. This is because it is necessary not only to metallize CnAgAL, but also to evaporate the solvent and evaporate or decompose the viscosity-imparting agent. Moreover, although the metallization temperature T3 of CnAgAL is 150 ° C. or less, if it is fired at a temperature higher than the metallization temperature, an excellent metal film can be formed and a silver film with high electrical conductivity can be formed. Therefore, as shown in Tables 12 and 13, the paste firing temperature in the atmosphere was set higher than the metallization temperature T3, and it was confirmed that the silver film characteristics improved as the temperature increased.
  • the paste firing temperature in the atmosphere was adjusted to 200 ° C. or lower. Moreover, when a terpine derivative is used as a viscosity imparting agent, the firing temperature is further increased. Furthermore, when methylcellulose was used as a viscosity imparting agent, the firing temperature was set to a higher level of 400 ° C and 450 ° C. As described above, the paste baking temperature in the air depends on the air diffusion temperature of the viscosity imparting agent.
  • Example 124 Joining of semiconductor electrode and circuit board
  • a bonding test was performed with the semiconductor chip as the upper body and the circuit board as the lower body.
  • the electrode end of the semiconductor chip was inserted into the through hole of the circuit board, and the composite silver nanopaste of Example 011 to Example 123 was applied to the contact portion between them to obtain 36 types of paste specimens.
  • the said coating part was heated locally with the paste baking temperature of Table 12 and Table 13, and the said coating part was metallized, and joining was completed. After cooling, when the appearance of the joint was inspected with an optical microscope, there were no problems with the 36 types of specimens. An electrical continuity test and an electrical resistance measurement were performed, and it was confirmed that it functions effectively as an alternative solder. From the 36 kinds of joining tests, it was found that the composite silver nanopaste according to the present invention can be used industrially as an alternative solder.
  • Example 125 Formation of silver pattern on heat-resistant glass substrate
  • the composite silver nanopastes of Examples 011 to 123 were screen-printed on this base to obtain 36 types of test bodies on which a predetermined paste pattern was formed.
  • the said test body was heated with the air paste baking temperature of Table 12 and Table 13 with an electric furnace, and the silver pattern was formed from the said paste pattern.
  • the surface of the silver pattern was inspected with an optical microscope, there were no problems with 36 types of specimens. From the 36 types of pattern formation tests, it was found that the composite silver nanopaste according to the present invention can be used industrially as a silver pattern forming material.
  • FIGS. 31 to 36 are thermal analysis diagrams of another composite silver nanoparticle C1AgAL to C12AgAL at a heating rate of 1 ° C./min.
  • Each thermal analysis diagram is composed of a TG curve and a DTA curve.
  • the decomposition start temperature T1 is a TG decrease start temperature
  • the decomposition temperature T2 is a DTA first peak temperature
  • the metallization temperature T3 is a TG decrease end temperature or a DTA final peak end temperature.
  • These specific temperatures and generation temperatures PT are listed in Table 14, and the temperatures of T1, T2, and T3 are estimated from the thermal analysis of FIGS. Further, FIG.
  • C1AgAL to C3AgAL have a single DTA peak
  • C4AgAL to C12AgAL in FIGS. 32 to 36 have a double peak.
  • the DTA first peak is a decomposition peak in which decomposition occurs rapidly
  • the DTA final peak that is, the DTA second peak
  • the DTA first peak and the DTA second peak exist, but they are close to each other, so they only appear to be a single peak due to overlap. I think.
  • the mass is reduced due to the decomposition of the organic coating layer.
  • the entire amount of the organic coating layer is diffused at the metallization temperature T3 at which the final DTA peak is lowered, and the silver nuclei of the composite silver nanoparticles are bonded to each other to complete silvering.
  • Table 15 is a list of relationships between the decomposition start temperature T1, the decomposition temperature T2, and T2-90 in the composite silver nanoparticles of Examples 1001 to 1012. T2-90 is described for the determination of satisfaction in the range of T2-90 ⁇ T1 ⁇ T2. In the above embodiment, it is numerically clear that the above range is satisfied.
  • FIG. 38 illustrates the data in Table 15, where the horizontal axis indicates the C number and the vertical axis indicates the characteristic temperature.
  • the characteristic temperatures of the present invention are the generation temperature PT, the decomposition start temperature T1, the decomposition temperature T2, and the metallization temperature T3.
  • T2-90 is also included as the characteristic temperature.
  • the black square is the decomposition temperature T2
  • the black triangle is T2-90
  • the black circle indicates the decomposition start temperature T2. Since all the black circles exist between the black triangle and the black square, it was proved against the second embodiment that the inequality condition of T2-90 ⁇ T1 ⁇ T2 is satisfied for C1 to C12.
  • the differential thermal weight (DTG) estimated from this TG is plotted together with the DTA and TG measurement results.
  • the decomposition start temperature T1 is a TG decrease start temperature
  • the decomposition temperature T2 is a DTA first peak temperature
  • the metallization temperature T3 is a TG decrease end temperature or a DTA final peak end temperature. From the plot of DTG, it can be seen that the decomposition start temperature T1 is a temperature at which a linear TG decrease changes to a curvilinear TG decrease. That is, in the plot of DTG, the TG decrease rate tends to become a substantially constant at a temperature lower than the decomposition start temperature T1, and the TG decrease rate increases rapidly when the decomposition start temperature T1 is exceeded.
  • the linear decrease in TG is slight, and is considered to be a component due to evaporation of the residue and the like contained in the composite silver nanoparticle powder serving as a TG sample. Therefore, the TG decrease start temperature estimated from the decomposition start temperature T1 can be referred to as the TG decrease start temperature of pure composite silver nanoparticles, and it is reasonable to estimate the decomposition start temperature T1 from this TG decrease start temperature. It can be said that.
  • the DTG plots in FIGS. 39 to 44 have a dip structure that is minimized at or near the positions of the DTA first peak, the DTA second peak, and the final peak, and the TG reduction rate is maximized.
  • the TG reduction rate is maximal and the heat dissipation associated with the decomposition of organic matter is maximal at or near each peak temperature of DTA, indicating good agreement.
  • the metallization temperature T3 is exceeded, the DTG becomes substantially zero, and it is more clearly shown that the decrease in TG is completed with the metallization of the composite silver nanoparticles.
  • the temperature increase rate VT of the composite silver nanoparticles C10AgAL is changed in the range of 1 to 20, and the decomposition start temperature T1, the decomposition temperature T2, and the metal in FIGS.
  • the conversion temperature T3 increases as the temperature increase rate VT increases.
  • the temperature increase rate VT increases, the time until the predetermined temperature is reached is shortened, and the time integral value of the amount of heat applied to the composite silver nanoparticles is decreased. This is a major factor, and the decomposition start temperature T1, the decomposition temperature T2, and the metallization temperature T3 are increased as the temperature increase rate VT is increased.
  • the paste decomposition start temperature Tp1 in FIGS. 45 to 50 indicates the temperature at which the viscosity imparting agent contained in the composite silver nanopaste evaporates and the decrease in TG accompanying the decomposition of the organic coating layer is started.
  • the DTG plot becomes substantially zero or a value near zero at the paste decomposition start temperature Tp1, and the second decrease start temperature of DTG is given.
  • a DTA peak appears in the DTA curve, and the DTA first peak temperature that appears first is the paste decomposition temperature Tp2 (° C.).
  • the steep final peak appearing at the end of the DTA peak is considered to be a binding energy emission peak in which the bare silver nuclei remaining after the organic coating layer is oxidatively decomposed are bonded to each other.
  • the point at which this final peak falls and breaks in the horizontal direction is defined as the paste metalization temperature Tp3 (° C.). These paste temperatures satisfy the inequality Tp1 ⁇ Tp2 ⁇ Tp3.
  • Table 16 shows the decomposition start temperature T1, decomposition temperature T2, and metallization temperature T3 of the composite silver nanoparticle powder estimated from FIGS. 39 to 50, the decomposition start temperature Tp1, the decomposition temperature Tp2, and the metal of the composite silver paste.
  • the characteristic temperature consisting of the conversion temperature Tp3 is described.
  • FIG. 51 is a relationship diagram between the characteristic temperature (T1, T2, T3, Tp1, Tp2, Tp3) of CnAgAL and PCnAgAL obtained in FIG. 39 to FIG. As shown in Table 16 and FIG.
  • Tp1 when the temperature increase rate VT is changed by a range of 1 to 20 (° C./min), the paste decomposition start temperature Tp1 increases by about 50 ° C., and the paste decomposition temperature Tp2 is about 65
  • Tp2 and Tp3 are considered to increase by about 50 ° C, about 65 ° C, and about 80 ° C, respectively.
  • these temperature increases depend on the carbon number of the organic coating layer, but also somewhat on the silver nucleus particle size.
  • VT temperature increase
  • the TG decrease start temperature T1 of the composite silver nanoparticles is in the range of T2-90 ⁇ T1 ⁇ T2.
  • Such composite silver nanoparticles can be produced by lowering the production temperature PT to 160 ° C. or less, more preferably 140 ° C. or less, and include a DTA peak temperature T2, a TG decrease start temperature T1, and a production temperature PT. Are linked to each other.
  • the metallization temperature T3 is only a few degrees higher than the DTA peak temperature T2, and since the DTA peak temperature T2 is 200 ° C. or less, the metallization temperature T3 is also approximately 200 ° C. or less. Therefore, metallization at about 200 ° C. or less is achieved by producing composite silver nanoparticles at a low temperature. Since the melting point of the conventional Sn—Pb solder is 183 ° C., the composite silver nanoparticles of the present invention can be used as a lead-free alternative solder and can be used as a silver film forming material. Since the generation temperature is 160 ° C. or lower, the cost of the manufacturing apparatus and manufacturing equipment can be greatly reduced.
  • the composite silver nanoparticles of the present invention have structures such as electronic materials such as printed wiring and conductive materials, magnetic materials such as magnetic recording media, electromagnetic wave absorbers and electromagnetic wave resonators, far infrared materials and composite film forming materials. It can be applied to various uses such as materials, ceramics and metal materials such as sintering aids and coating materials, and medical materials. Furthermore, according to this invention, the cheap manufacturing method and manufacturing apparatus of composite silver nanoparticle can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 複合銀ナノ粒子の低温生成方法を確立し、銀原子の集合体からなる平均粒径が1~20nmの範囲にある銀核の周囲に、炭素数が1~12のアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層を形成した複合銀ナノ粒子、この複合銀ナノ粒子を少なくとも含有し溶剤及び/又は粘性付与剤を添加した複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法を提供する。複合銀ナノ粒子の製法では、銀塩微粒子を過剰なアルコール溶媒中に混合させて過剰アルコール溶液を調製し、反応室中で所定温度で所定時間だけ反応させることにより、アルコールの還元作用により低温で銀塩から銀核が形成され、前記アルコール由来の有機被覆層を銀核周囲に形成している。

Description

複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
 本発明は、多数の銀原子からなる銀核の周囲に有機物からなる有機被覆層を形成した複合銀ナノ粒子に関し、特に詳細には、所定温度に加熱することにより前記有機被覆層を気散させて、金属化、即ち銀化する複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法に関する。
 一般に、半導体、電子回路、電子機器などは各種の電子部品を基板に半田で溶融固定して電気的導通性を確保している。しかし、従来の半田はSnとPbの合金であり、近年の環境保全対策としてPbの使用が禁止されつつあるため、前記従来半田に替わるPbフリーの代替半田が開発されつつある。SnとPbの共晶半田の融点は183℃であり、従来代替半田であるSn・Ag・Cu半田の融点は217℃である。樹脂基板に半田付けする場合には、樹脂の耐熱性は低いから、従来の代替半田では融点が高過ぎて、樹脂基板を損傷することが有り、低温用半田が要望されていた。上記の従来代替半田の融点から考慮しても、200℃以下で接合できる代替半田が切望されている。
 代替半田の特性として、Pbを含有せず、しかも金属化温度が低いことは当然であるが、その他に安全性が高く、腐食性が無く、しかも電気伝導性や熱伝導性が良好であることが要望されている。この期待に応える素材として銀が注目された。しかも、融点を低下させるために、超微粒子の複合銀ナノ粒子が開発されるに到った。
 特許文献1として特許第3205793号公報(特開平10-183207号)が公開された。出発物質として銀有機化合物(特に銀有機錯体)が選択された。空気を遮断した不活性ガス雰囲気下で、前記銀有機化合物を分解開始温度以上で、且つ完全分解温度未満の温度で加熱し、分解還元された銀核の周囲に前記銀有機化合物由来の有機物を被覆層とした複合銀ナノ粒子が製造された。この製法は固体-気体反応である。銀核の粒径は1~100nmであり、そのため通称で複合銀ナノ粒子と称される。具体的には、固形のステアリン酸銀100gを窒素気流下のフラスコ内において250℃で4時間加熱すると、粒径5nmの銀核の周囲にステアリン酸基の有機被覆層を有する複合銀ナノ粒子が生成された。
 前記製法では、ステアリン酸銀の固形物を溶媒無しに加熱するため、生成された複合銀ナノ粒子が分散し難く、多数の複合銀ナノ粒子が団子状態に結合した大きな2次粒子になる欠点がある。しかも、生成温度は250℃と高く、複合銀ナノ粒子の金属化温度は220℃と極めて高いことが分かる。生成温度が高い銀ナノ粒子は銀化温度も高くなる。一般のSn-Pb半田の融点が183℃であり、切望される接合温度が200℃以下であることを考慮すると、前記金属化温度(銀化温度)が220℃では高すぎ、低温用の代替半田として使用することは困難であった。金属化温度が高いのは、団子状態の巨大粒子であり、且つステアリン酸基の分解温度が高いためであると考えられる。しかも、前記銀核は単結晶ではなく、単なる原子集団であり、若しくは多結晶であることをその発明者から確認している。銀核が多結晶や無秩序の場合、多数の粒界面での電子散乱や熱散乱が生じ、その結果、電気伝導度や熱伝導度が低下する原因となる。
 次に、特許文献2として特開2003-342605号公報が公開された。前記特許文献2は、発明者の一人として本発明者も参加した発明である。金属有機化合物を有機溶媒や水中に溶解・分散させて、前記金属有機化合物由来の有機物を被覆した複合銀ナノ粒子の製造に成功した。この製法は固体-液体反応である。しかも、この複合銀ナノ粒子を高分解能透過型電子顕微鏡で観察すると、銀核に格子像が確認され、単結晶銀核であることが確認された。固液反応法に基づき、金属有機化合物が分子として溶媒中に溶解分散し、前記分子を還元して銀原子を析出させ、銀原子同士の再結合により単結晶化したものと考えられる。即ち、その単結晶性は分子間反応に起因すると考えられる。銀核が単結晶であるから、電気伝導度や熱伝導度が高い利点がある。しかし、銀化温度については、[0076]に、ステアリン酸基被覆の複合銀ナノ粒子を250℃で10分間加熱した、と書かれている。つまり、銀化温度が250℃とかなり高温であることが、特許文献2の弱点である。銀化温度が高い理由は、酢酸銀、ヘキサン酸銀、オクタン酸銀などの銀有機化合物から出発しているため、被覆層を構成する有機酸基の分解温度が高いためである。金属化温度を200℃以下にする更なる工夫が必要である。
 そこで、特許文献3としてWO00/076699号公報が公開された。本発明者はこの国際公開公報の発明者の一人である。この公開公報には複数の発明が開示されているが、その中でも金属無機化合物を界面活性剤を用いて処理する方法が初めて公開され、金属無機化合物を出発物質とする道が開かれた。即ち、金属無機化合物を界面活性剤を用いて非水系溶媒中でコロイド化して超微粒子前駆体を形成する第1工程と、このコロイド溶液中に還元剤を添加して前記超微粒子前駆体を還元し、金属核の外周に界面活性剤殻を被覆層として形成した複合金属ナノ粒子を生成する第2工程から構成される。
 前記方法は、非水系溶媒に金属無機化合物を溶解させるから、生成した複合金属ナノ粒子同士が非水系溶媒中に分散し、団子状態になり難い特徴を有している。しかし、実施例は、オレイン酸銅、アビエチン酸銀、酢酸銀、オレイン酸ニッケル、ジエチルヘキサンインジウム、酢酸銅、ステアリン酸銀であり、有機金属化合物しか実施されていない。しかも、ステアリン酸銀から生成された複合銀ナノ粒子の金属化温度は220℃と高いことが分かった。金属化温度を200℃以下にする更なる工夫が必要である。Sn-Pb半田よりも更に高特性にするには、金属化温度を150℃以下にする一層の努力が要求される。しかも、特許文献3では、銀核の単結晶性・多結晶性の判定がなされていないから、複合金属ナノ粒子の電気伝導性や熱伝導性の良否が判定不能である。
 以上の状況下で、特許文献4としてWO01/070435号公報が公開され
た。この国際公開公報には、金属塩から得られる粒径が1~100nmの金属核の周囲に炭素数4以上のアルコール性水酸基を含む有機化合物からなる被覆層を形成した複合金属ナノ粒子が開示されている。しかも、吸着性を有する官能基を含む有機化合物として、炭素数6以上の高級アルコールが記載されている。
 更に、特許文献5としてWO2005/075132号公報が公開された。この公報には、中心部が金属核からなり、その周囲に熱脱離開始温度が140℃以上で190℃未満の有機物の被覆層を有した複合金属ナノ粒子が開示されている。製法として、無機金属塩と有機物質を共存させ、無機金属塩が分解して金属核が形成され、その周囲に有機物の被覆層が形成された複合金属ナノ粒子が製造されることが記載されている。また、無機金属塩又は分解生成された無機金属化合物の周囲に有機物の被覆層が形成された複合金属ナノ粒子も開示されている。
 特許文献6として特開2007-95510号公報が公開されている。特許文献6の請求項1には、(R-A)-Mの化学式で表現される金属塩に由来する金属成分から構成された金属コアと、前記金属塩に由来する有機被覆層からなる複合金属ナノ粒子と有機溶媒よりなる導電性ペーストが開示されている。Rは炭素数4~9の炭化水素基、AはCOO、OSO、SO又はOPOであり、Mは銀、金又は白金族である。従って、複合銀ナノ粒子が包含されている。
 特許文献7として特開2004-107728号公報が開示されている。特許文献7の請求項1には、平均粒径100nm以下の金属核の周囲にC、H及び/又はOを主成分とする有機被覆層を有する複合金属ナノ粒子が記載され、この有機被覆層は有機酸金属塩から生成されたものであることが記載されている。
特許第3205793号(特開平10-183207号) 特開2003-342605号 WO00/076699号 WO01/070435号 WO2005/075132号 特開2007-95510号 特開2004-107728号
 特許文献4には、5~10nmの粒径の複合銀ナノ粒子は、有機化合物の分解温度が80℃以下であれば、銀皮膜形成温度は80℃になることが記載され、分解温度が80℃以上であれば、その分解温度にまで加熱すれば銀皮膜を形成できることが記載されている。しかし、前述内容は単なる希望的観測であるに過ぎず、実施例には、そのような例は一切記載されていない。以下に、具体的に述べてみよう。
 実施例1には、ギ酸銅と1-デカノールを反応させると、185℃付近から溶液が変色して複合銀ナノ粒子ができ、その銀化焼成温度は200~350℃であり、250~300℃が好ましいと記載されている。実施例2には、炭酸銀とミリスチン酸(C数は14)から、230℃で溶液変色により複合銀ナノ粒子ができたと記載され、空気中焼成では250℃で銀コーティング膜が形成されている。実施例3では、炭酸銀とステアリルアルコール(C数は18)から、150℃にて1時間加熱で溶液変色により複合銀ナノ粒子の生成が確認されているが、窒素雰囲気下での銀化温度は250℃と記載されている。実施例4では、炭酸銀とフェノール(C数は6)から、180℃にて1時間加熱で溶液変色により複合銀ナノ粒子の生成が確認され、銀化温度は300℃と記載されている。実施例5では、酢酸銅とラウリルアルコール(C数は12)から、100℃にて1時間加熱で溶液変色により複合銀ナノ粒子の生成が確認されたが、水素添加窒素の雰囲気下では銀化温度は250℃であった。
 更に、実施例6では、塩化白金とエチレングリコール(C数は2)から、180℃にて1時間加熱で溶液変色により複合白金ナノ粒子の生成が確認されたが、加熱処理温度は300℃であった。実施例7では、酢酸銅とラウリルアルコール(C数は12)から、110℃にて溶液変色により複合銅ナノ粒子の生成が確認されているが、窒素雰囲気下での銅化温度は300℃であった。最後に、実施例8では、酢酸銅とエタノール(C数は2)とノニオン性界面活性剤(ソルビタントリステアレート)から、150℃にて溶液変色により複合銅ナノ粒子の生成が確認されているが、窒素雰囲気下での銅化温度は300℃であった。
 以上のように、特許文献3の8個の実施例では、C数14以上の有機被覆層を有した銀核が記載されているだけで、しかも銀化温度(金属化温度)は200℃以上の高温である。炭素数が14以上であるから分子量が大きくなり、有機被覆層の重量が銀核重量に対し相対的に増大し、有機分量が増大した分だけ焼成時の排ガス量が増え、ペーストとしての適格性が低下する。しかも、いずれの複合銀ナノ粒子も金属化温度が200℃をかなり超えており、切望される200℃以下の金属化温度を実現する複合金属ナノ粒子は生成されていない。従って、代替半田として不適格であることが明らかである。即ち、本発明の目的であるアルコール由来の有機被覆層、換言すれば、炭素数が1~12のアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層を有することによって、200℃以下の金属化、更に好ましくは150℃以下の金属化を達成するには、ほど遠い状態であることが明白である。しかも、銀や銅の金属核について、単結晶核か多結晶核のいずれであるかは記載もされず、示唆さえされていないのが実情である。従って、電気伝導性や熱伝導性の良否に関しては全く判定不能である。
 特許文献5には、理解不能の事が記載されている。無機金属塩と有機物質を共存させると、無機金属塩又は分解された無機金属化合物を含む中心核の周囲に有機物の被覆層が形成されると記載されている。例えば、6頁には、炭酸銀(無機金属塩)とミリスチルアルコール(有機物質、C数は14)の混合物を120℃で2時間反応させると、有機物が銀又は炭酸銀に物理吸着した複合銀ナノ粒子が生成される、と記載されている。炭酸銀の周囲に有機物が付着すると、炭酸銀から銀析出する熱分解温度は400℃を超えることは、以下の反応式から明白である。
  AgCO→AgO+CO (150℃<T<210℃) (A)
  AgO→2Ag+1/2O (T>400℃)      (B)
まず、式(A)の反応が生起するが、式(B)の分解温度は400℃以上であり、200℃以下の金属化を達成できず、融点183℃のSn-Pb半田の代替品としても不適格である。しかも、銀核の結晶性は全く記載されておらず、電気伝導性と熱伝導性の良否の判定は全く不能である。
 更に、手続補正書により補正された請求項7には、炭酸銀とミリスチルアルコールとを共存させて加熱し、70℃以上、140℃未満の温度T(℃)で、下記の式(C)が成立する時間t(h)にわたって加熱して得られた複合銀ナノ粒子が記載されている。
 7.85≦(T+273)(20+logt)×10-3≦7.98  (C)
 式(C)に、T=70℃を代入して保持時間t(h)を計算すると、794h≦t≦1995hとなり、70℃での生成時間は794時間~1995時間になり、日数換算すると33日~83日になり、生成時間は月単位になる。これは明らかに間違っている。T=100℃を代入すると、11.22h≦t≦24.54hなり、生成時間は半日~1日となる。この結果は本発明とは全く逆のことを示している。T=140℃を代入すると、0.1h≦t≦0.2hとなり、換言するとt=6分~12分であるから、やっとナノ銀生成に妥当な領域に入るが、上記(C)式の限界領域で妥当になっても、それは指針にもならない式であることは明白である。しかも、T=200℃にすれば反応時間は数十秒~数秒ということになり、これも本発明者の結果とは全く異なる。数十秒~数秒の反応時間では複合銀ナノ粒子を生成する化学反応を制御することすら不可能である。勿論、上記(C)式は140℃以下の制限があるから、200℃に適用することができないことは当然である。後述する本発明者等の発明によれば、反応温度が50℃~200℃の範囲では、反応時間は1時間以内であり、温度が高くなるにつれて反応時間は急速に短縮され、200℃では数分にする必要がある。その理由は、反応時間が長くなると複合ナノ粒子が急速に凝集し、しかも金属化が同時的に発生するからである。特許文献5の内容は、本発明とは全く逆の事を示しており、参考にさえすることができない。また、ミリスチルアルコールはC数が14と分子量が大きく、銀核に対する有機被覆層の重量が増大して、焼成温度が高くなると同時に、焼成時の排ガス量が増大して、接合時に大量のボイドが生じ、接合用ペーストとしての適格性が低下する欠点を有する。
 特許文献6の複合金属ナノ粒子は、金属塩を分解した分解生成物として金属核と有機被覆層が形成されるもので、有機金属化合物から出発する点で本発明とは異なる。本発明は、炭酸銀から銀核を形成し、アルコールから有機被覆層を形成するもので、製法が全く異なっている。しかも、有機被覆層は炭化水素基とCOO、OSO、SO又はOPOとの結合基であり、構造が複雑で分解温度が高い。特に、硫黄Sが含まれているため、焼成により大気汚染成分であるSOが生成され、環境基準に適合しないものである。[0018]に記載されるように、金属化温度を150℃程度に達成できても、実施することが不可能な複合金属ナノ粒子である。また、半導体接合には不適なSやPを含有しており、半導体接合時にSやPが半導体中へ拡散するおそれがあるため、半導体接合には使用できない弱点を有する。しかも、金属核の結晶性は全く記載も示唆もされておらず、電気伝導性と熱伝導性の良否の判定は全く不能である。
 特許文献7の複合金属ナノ粒子は、有機酸金属塩を分解して有機被覆層が形成されるから、有機被覆層は有機酸基であり、気散温度はかなり高くなる。その[0031]には融点が210℃であることが記載され、[0068]には210~250℃の温度範囲で焼成することが記載されている。従って、本発明が目的とする200℃以下、好ましくは150℃以下の金属化は、特許文献7では到底実現できない。しかも、金属核の結晶性は全く記載も示唆もされておらず、電気伝導性と熱伝導性の良否の判定は全く不能である。
 本発明は、上記課題に鑑みてなされたものであって、C数が1~12のアルコール由来の有機被覆層を有した複合銀ナノ粒子を低温で生成する方法及び製造装置を確立し、C数が小さいために銀核重量が従来よりかなり増大し、且つ200℃以下の金属化温度(銀化温度)を実現したアルコール由来有機被覆型の複合銀ナノ粒子を提供するものである。前記アルコール由来有機被覆層は、アルコール分子誘導体、アルコール分子残基又はアルコール分子の一種以上からなるから、焼成してもH2OとCO2が生成されるだけであり、環境基準に完全に適合する。しかも、200℃以下で金属化するから、Pb-Sn半田の代替半田として利用できる。しかも、分解開始温度T1と分解温度T2の相互関係がT2-100≦T1≦T2の範囲に制限することに成功し、低温焼成が可能な複合銀ナノ粒子を製造することに成功した。そのような複合銀ナノ粒子の生成温度PT(℃)は金属化温度T3より小さくできるから、PT≦T3≦200℃の不等式が成立する低温生成に成功したものである。しかも、本発明方法により製造される複合銀ナノ粒子を高分解能透過電子顕微鏡により観察すると、格子像が明瞭に確認され、結晶性の高い複合銀ナノ粒子であることが実証された。従って、高い電気伝導性及び熱伝導性を有する複合銀ナノ粒子を製造することに成功したものである。同時に、前記複合銀ナノ粒子を含んだ複合銀ナノペーストを提供する。この複合銀ナノペーストを用いて半導体や電子部品の接合を行う接合方法を確立し、同時に低融点基板に銀パターンを焼成するパターン形成方法を確立した。更に、前述した様に、アルコール由来物質とは、具体的にはアルコール誘導体、アルコール残基又はアルコール分子であり、焼成してH2OとCO2しか発生しないから、半導体などの電子部品接合にも有効に適用することが可能である。アルコール誘導体にはカルボン酸やカルボン酸基、またアルコキシドやアルコキシド基も含まれ、アルコールから化学反応により誘導される化合物全般が包含される。
 本発明は上記課題を解決するために為されたものであり、本発明の第1形態は、銀原子の集合体からなる平均粒径が1~20nmの範囲にある銀核の周囲に、炭素数が1~12のアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層を形成した複合銀ナノ粒子である。
 本発明の第2形態は、前記第1形態において、前記複合銀ナノ粒子が複数個凝集して凝集体を形成した複合銀ナノ粒子である。
 本発明の第3形態は、前記第1又は第2形態において、前記有機被覆層がアルコキシド基及び/又はカルボン酸基を少なくとも含有する複合銀ナノ粒子である。
 本発明の第4形態は、前記第1、第2又は第3形態において、前記複合銀ナノ粒子を昇温速度VT=1℃/minで大気中熱分析した場合に、示差熱分析(DTA)から得られる金属化温度T3(℃)が200℃以下の複合銀ナノ粒子である。
 本発明の第5形態は、前記第1~第4形態のいずれかにおいて、前記複合銀ナノ粒子を昇温速度VT=1(℃/min)で大気中熱分析した場合に、熱重量測定(TG)から得られる分解開始温度T1(℃)と示差熱分析(DTA)から得られる分解温度T2(℃)の関係が、T2-100≦T1≦T2である複合銀ナノ粒子である。
 本発明の第6形態は、前記第4又は第5形態において、前記複合銀ナノ粒子を生成する生成温度PT(℃)が前記金属化温度T3(℃)より小さい複合銀ナノ粒子である。
 本発明の第7形態は、前記第1~第6形態のいずれかにおいて、前記複合銀ナノ粒子を高分解能透過型電子顕微鏡で観察した場合に、前記銀核に格子像が観察される複合銀ナノ粒子である。
 本発明の第8形態は、前記第4~第7形態のいずれかにおいて、前記分解開始温度T1(℃)、前記分解温度T2(℃)及び前記金属化温度T3(℃)が前記昇温速度VTの増加に従って増加する複合銀ナノ粒子である。
 本発明の第9形態は、前記第1~第8形態のいずれかにおいて、銀塩と炭素数1~12のアルコールを出発原料とする複合銀ナノ粒子である。
 本発明の第10形態は、前記第1~第9形態のいずれかの複合銀ナノ粒子を少なくとも含有し、溶剤及び/又は粘性付与剤を添加した複合銀ナノペーストである。
 本発明の第11形態は、前記第10形態において、銀微粒子を配合した複合銀ナノペーストである。
 本発明の第12形態は、前記第10又は第11形態において、前記複合銀ナノペーストを昇温速度VT(℃/min)で大気中熱分析した場合に、熱重量測定(TG)及び示差熱分析(DTA)から得られるペースト分解開始温度Tp1(℃)、ペースト分解温度Tp2(℃)及びペースト金属化温度Tp3(℃)が前記昇温速度VTの増加に従って増加する複合銀ナノペーストである。
 本発明の第13形態は、前記第10、第11又は第12形態において、前記複合銀ナノ粒子及び前記複合銀ナノペーストを昇温速度VT=1~20(℃/min)で大気中熱分析した場合に、夫々の金属化温度をT3(℃)及びTp3(℃)としたとき、T3≦Tp3≦T3+50が成立する複合銀ナノペーストである。
 本発明の第14形態は、銀塩微粒子を炭素数1~12のアルコール溶媒中に混合してアルコール溶液を調製し、前記アルコール溶液を反応室中で所定の生成温度PTで所定の生成時間だけ加熱して、前記アルコール溶媒により前記銀塩微粒子を還元して平均粒径が1~20nmの銀核を形成し、この銀核の周囲に前記アルコール溶媒のアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層を形成する複合銀ナノ粒子の製法である。
 本発明の第15形態は、前記第14形態において、前記銀塩微粒子が前記アルコール溶媒に分散又は溶解している複合銀ナノ粒子の製法である。
 本発明の第16形態は、前記第14又は第15形態において、前記アルコール溶液は、前記アルコール溶媒が前記銀塩微粒子のモル数よりも過剰に添加された過剰アルコール溶液である複合銀ナノ粒子の製法である。
 本発明の第17形態は、前記第14、第15又は第16形態において、前記複合銀ナノ粒子を昇温速度VT=1(℃/min)で大気中熱分析したとき、示差熱分析(DTA)から得られる金属化温度T3(℃)が200℃以下である複合銀ナノ粒子の製法。
 本発明の第18形態は、前記第17形態において、前記生成温度PT(℃)が前記金属化温度T3(℃)より小さい複合銀ナノ粒子の製法である。
 本発明の第19形態は、前記第14~第18形態のいずれかにおいて、前記複合銀ナノ粒子の前記生成時間は60分以内である複合銀ナノ粒子の製法である。
 本発明の第20形態は、前記第14~第19形態のいずれかにおいて、前記生成時間後に前記アルコール溶液を冷却して生成反応を停止させる複合銀ナノ粒子の製法である。
 本発明の第21形態は、前記第14~第20形態のいずれかにおいて、前記銀塩微粒子は粒径が10nm~1000nmの範囲になるまで微細化処理される請求項13~19のいずれかに記載の複合銀ナノ粒子の製法である。
 本発明の第22形態は、前記第16~第21形態のいずれかにおいて、前記過剰アルコール溶液における前記アルコール溶媒の銀塩微粒子に対するモル比は5~100の範囲に調整される複合銀ナノ粒子の製法である。
 本発明の第23形態は、前記第14~第22形態のいずれかにおいて、前記複合銀ナノ粒子が生成された前記アルコール溶液から前記複合銀ナノ粒子を分離する複合銀ナノ粒子の製法である。
 本発明の第24形態は、銀塩微粒子をアルコール溶媒に混合してアルコール溶液を調製する原料混合器と、前記アルコール溶液を加熱器により所定温度で所定時間だけ加熱して複合銀ナノ粒子を生成する反応器と、前記反応器から供給される前記アルコール溶液を冷却する冷却器とを有し、前記冷却器から供給されるアルコール溶液から複合銀ナノ粒子を分離する成分精製器を付設することができ、前記原料混合器と前記反応器と前記冷却器と成分精製器が連続式、一部連続式又はバッチ式に接続される複合銀ナノ粒子の製造装置である。
 本発明の第25形態は、前記第24形態において、前記原料混合器に投入される銀塩微粒子は事前に微細化処理されている複合銀ナノ粒子の製造装置である。
 本発明の第26形態は、前記第24形態において、前記原料混合器から供給されるアルコール溶液中の銀塩微粒子を微細化する微細化器と、前記微細化器により形成された微細化アルコール溶液を前記反応器に供給する複合銀ナノ粒子の製造装置である。
 本発明の第27形態は、前記第24~第26形態のいずれかにおいて、前記成分精製器から供給される前記複合銀ナノ粒子を含有する精製液を処理して、前記複合銀ナノ粒子をアルコール湿式状態又は粉体として回収する複合銀ナノ粒子の製造装置である。
 本発明の第28形態は、前記第24~第27形態のいずれかにおいて、前記成分精製器は遠心限外濾過装置から構成され、微細孔を介して前記複合銀ナノ粒子を抽出溶媒中に拡散させて前記精製液を形成する複合銀ナノ粒子の製造装置である。
 本発明の第29形態は、前記第28形態において、前記限外濾過装置は内管、中管、外管の三重管からなり、前記内管及び中管を同軸回転させ、前記複合銀ナノ粒子を生成した過剰アルコール溶液は前記内管と中管の間の中通路に供給され、前記微細孔は前記内管の表面に形成され、前記内管内部の内通路に前記抽出溶媒を供給し、前記複合銀ナノ粒子は前記中通路から前記微細孔を介して前記抽出溶媒中に選択的に拡散される複合銀ナノ粒子の製造装置である。
 本発明の第30形態は、前記第10~第13形態のいずれかの複合銀ナノペーストを用意し、前記複合銀ナノペーストを下体に塗着してペースト層を形成し、前記ペースト層上に上体を配置し、加熱により前記ペースト層を銀化して前記下体と前記上体を接合する接合方法である。
 本発明の第31形態は、前記第10~第13形態のいずれかの複合銀ナノペーストを用意し、前記複合銀ナノペーストを基体の面上に所定パターンに塗着してペーストパターンを形成し、加熱により前記ペーストパターンを銀化して銀パターンを形成するパターン形成方法である。
 本発明の第1形態によれば、銀原子の集合体からなる平均粒径が1~20nmの範囲にある銀核の周囲に、炭素数が1~12のアルコール分子誘導体、アルコール分子残基又はアルコール分子の一種以上からなる有機被覆層を形成した複合銀ナノ粒子が提供される。炭素数(C数)が1~12のアルコールであるから、C14以上と比較してアルコール分子量が従来よりも比較的小さく、焼成時の排ガス量が少ないだけにボイド発生量が少なくなり、接合強度が高く且つ銀核重量比が増大する利点がある。有機被覆層はアルコール由来成分から構成されるので、手肌に付着しても安全であり、焼成によりCOとHOが気散するだけであるから極めて安全で、環境保全に有効である。アルコール分子誘導体とはアルコール分子から誘導生成されるアルコール誘導物質全般であり、カルボン酸やカルボン酸基、アルコキシドやアルコキシド基などが含まれる。アルコール分子残基とはアルコール分子の一部成分が分離された残基であり、アルコキシドやアルコキシド基も含まれ、その他の切断残基も含まれる。アルコール分子とはアルコール分子自体である。
 複合銀ナノ粒子の銀核粒径は1~20nmであり、複合銀ナノ粒子自体の粒径はアルコール有機被覆層の厚み分だけ増大するが、炭素数が1~12に制限されるから、その厚みはそれほど大きくない。炭素数が小さくなるほどその厚みも小さくなり、同時に銀核重量比が増大し、接合強度も強くなる性質を有する。
 本発明の第2形態によれば、複合銀ナノ粒子が複数個凝集して凝集体を形成した複合銀ナノ粒子が提供される。本発明の複合銀ナノ粒子は有機溶媒中で単分散する性質を有するが、生成中の衝突作用で凝集して凝集体を形成する場合があり、本発明ではその凝集体も複合銀ナノ粒子と称する。その結果、複合銀ナノ粒子が集合した粉体の粒度分布は小から大へ分布し、最小限界は単一の複合銀ナノ粒子粒径dであり、最大限界は凝集個数Nの1/3乗に比例するから、d(Nmax)1/3になる。このように粒径が分布した複合銀ナノ粒子粉体を用いると、大小の複合銀ナノ粒子が相互に隙間を埋設しながら焼結するから、隙間が少ない分だけ接合強度が増大する効果を有する。
 本発明の第3形態によれば、有機被覆層がアルコキシド基及び/又はカルボン酸基を少なくとも有した複合銀ナノ粒子が提供される。複数個凝集して凝集体を形成した複合銀ナノ粒子が提供される。アルコールの分子式をC2n+1OHとしたとき、そのアルコキシド基とはC2n+1Oであり、更に低級のアルコキシド基でも、前記アルコキシド基に相当する。アルコキシド基はアルコール分子残基といっても良いが、アルコール分子誘導体といっても構わない。また、アルコールの分子式をC2n+1OHとしたとき、そのカルボン酸基とはCn-12n-1COOであるが、更に低級のカルボン酸基でも構わない。このカルボン酸基はアルコール分子誘導体に含まれる。有機被覆層がカルボン酸基やアルコキシド基を含む場合には、複合銀ナノ粒子が極めて安全である。また、生成後の有機被覆層が時間的に変化して、カルボン酸基になったり、アルコキシド基になったり、それらの混合層に変化する事もある。C2n+1Oは狭義のアルコキシド基であるが、本発明でアルコキシド被覆複合銀ナノ粒子と称する場合は広義の意味で使用され、前記アルコール由来有機被覆層を有した複合銀ナノ粒子を意味する。有機被覆層の材料は全てアルコール由来であり、アルコールの安全性は他の有機物と比較して極めて高いから、本発明の複合銀ナノ粒子は、安全性、環境保全性、取扱容易性において保証される。
 本発明の第4形態によれば、前記複合銀ナノ粒子を昇温速度VT=1℃/minで大気中熱分析した場合に、示差熱分析(DTA)から得られる金属化温度T3(℃)が200℃以下の複合銀ナノ粒子が提供される。複合銀ナノ粒子を大気中で示差熱分析(DTA)すると、有機被覆層が酸化して反応熱が発生し、大きなDTAピークが形成される。このDTAピークが単一ピークで構成される場合には、この単一ピークが終了した温度が金属化温度T3(℃)である。前記DTAピークが複数ピークで構成される場合には、最終ピークが終了した温度が金属化温度T3(℃)である。熱重量測定(TG)の観点では、TG曲線の減少終了温度が前記金属化温度T3(℃)に相当する。本発明では、前記金属化温度T3が200℃以内であるから、複合銀ナノ粒子を低温焼成することが可能になる。DTA測定時の昇温速度VTが大きくなると、前記温度T3も増大するが、本発明ではVT=1℃/minで測定した場合の金属化温度T3(℃)が200℃以下である。
 当初、本発明者は、低温焼成型の複合銀ナノ粒子を研究し、T3≦150℃又はT2≦150℃を満足する複合銀ナノ粒子を開発したが、更に研究を重ねてT3≦200℃の範囲の複合銀ナノ粒子を開発するに到ったものである。従来文献を検討しても、T3≦200℃の複合銀ナノ粒子は存在せず、本発明によりT3≦200℃の複合銀ナノ粒子が初めて実現したものである。
 金属化温度T3が200℃以下の複合銀ナノ粒子の開発により、従来のSn-Pb半田の融点183℃に匹敵する高特性の代替半田を提供することに成功したものである。金属化温度T3が200℃以下であるから、製造装置や製造設備のコストも大幅に低減できる。従って、本発明の複合銀ナノ粒子は、プリント配線・導電性材料などの電子材料、磁気記録媒体・電磁波吸収体・電磁波共鳴器などの磁性材料、遠赤外材料・複合皮膜形成材などの構造材料、焼結助剤・コーティング材料などのセラミックス・金属材料、医療材料などの各種用途に適用できる。
 本発明の第5形態によれば、前記複合銀ナノ粒子を昇温速度VT=1(℃/min)で大気中熱分析した場合に、熱重量測定(TG)から得られる分解開始温度T1(℃)と示差熱分析(DTA)から得られる分解温度T2(℃)の関係が、T2-100≦T1≦T2である複合銀ナノ粒子である。前記分解開始温度T1(℃)はTG曲線の減少開始温度で測定できるが、初めからTG曲線が直線的に減少し、途中から直線から離れて2次曲線的に減少する場合には、その変化点、即ち直線からの乖離点を分解開始温度T1と定義できる。直線領域は純粋のアルコール成分の減少域を示すとも理解できる。TG曲線の微分曲線、即ちDTG曲線を用いると、DTG曲線が一定値から下降し始める温度を分解開始温度T1と定義してもよい。有機被覆層が強力に酸化分解を受ける分解温度T2は、DTAピークが単一ピークの場合にはそのピーク温度、またDTAピークが複数ピークの場合には最初の第1ピーク温度で定義される。T2-100≦T1≦T2の範囲では、分解開始温度T1が分解温度T2の下方100℃の範囲内に存在することを意味しており、第4形態のT2≦T3≦200℃と組み合わせると、T2-100≦T1≦T2≦T3≦200℃となる。従って、各温度T1、T2、T3の全てが200℃以下の低温領域に存在し、本発明の複合銀ナノ粒子が低温焼成用であることを意味し、本発明に係る複合銀ナノ粒子の特性の一つである。
 本発明者は、2種類のCnAgAL(n=1~12)の熱解析測定を実行し、第1種類ではT2-60≦T1≦T2、第2種類ではT2-90≦T1≦T2を結論として得た。これらを纏めて、本発明では、T2-100≦T1≦T2の不等式が成立することを確認したものである。
 本発明の第6形態によれば、前記複合銀ナノ粒子を生成する生成温度PT(℃)が前記金属化温度T3(℃)より小さい複合銀ナノ粒子が提供される。第4形態によれば、金属化温度T3はT3≦200(℃)であり、本形態では、PT≦T3(℃)であるから、両者を組み合わせると、PT≦T3≦200(℃)となる。従って、生成温度PTは200℃を最大値とする金属化温度T3よりも小さいから、本発明では低温生成用の複合銀ナノ粒子が提供される。
 本発明の第7形態によれば、前記複合銀ナノ粒子を高分解能透過型電子顕微鏡で観察した場合に、銀核に格子像が観察される複合銀ナノ粒子が提供される。京都大学に設置されている加速電圧200kVの透過型電子顕微鏡JEM-2000FXにより本発明の複合銀ナノ粒子を撮影すると、単分散した状態にある複合銀ナノ粒子の銀核に格子像が確認された。その銀核直径は1~20nmの範囲にあり、格子間隔は0.24nmとなり、バルク銀の(111)面の面間隔と一致することが分かった。この結果から、銀核は多結晶ではなく、銀の単結晶であるか、単結晶に近い状態にあることが分かった。従って、本発明に係るアルコール由来物質により被覆された複合銀ナノ粒子は、格子像が観察される程度に結晶性が高く、その結果、銀核内部に粒界が殆んど無いため、電子散乱性や熱散乱性が小さく、高電気伝導性と高熱伝導性を有することが実証された。従来から言われていた多結晶性を完全に否定した画期的な新物質であることが分かった。アルコール由来の有機被覆層を有した銀核に格子像が観察されることは、本発明により初めて明らかになった事実である。
 本発明の第8形態によれば、前記分解開始温度T1(℃)、前記分解温度T2(℃)及び前記金属化温度T3(℃)が前記昇温速度VTの増加に従って増加する複合銀ナノ粒子が提供される。前記昇温速度VTを1~20(℃/min)の範囲だけ変化すると、分解開始温度T1は約50℃ほど増加し、分解温度T2は約60℃ほど増加し、金属化温度T3は約70℃ほど増加する傾向が見られる。第4形態及び第5形態ではVT=1(℃/min)でT1、T2、T3を定義したから、同じ複合銀ナノ粒子をVT=20(℃/min)で測定すると、前記T1、T2、T3は夫々約50℃、約60℃、約70℃増加すると考えられる。しかし、これらの温度増加量は有機被覆層の炭素数に依存することは云うまでもなく、銀核粒径にも多少は依存すると考えられる。
 本発明の第9形態によれば、銀塩と炭素数1~12のアルコールを出発原料とする複合銀ナノ粒子が提供される。銀塩としては、無機銀塩と有機銀塩が利用でき、無機銀塩には炭酸銀、塩化銀、硝酸銀、リン酸銀、硫酸銀、ほう酸銀、フッ化銀などがあり、また有機銀塩にはギ酸銀、酢酸銀などの脂肪酸塩、スルホ酸塩、ヒドロキシ基・チオール基・エノール基の銀塩などがある。この中でもC、H、OとAgからなる銀塩又はC、OとAgからなる銀塩が好ましい。その理由は、P、S、Nといった原子は半導体やセラミックスに拡散して不純物となり物性を低下させる可能性があるからである。その観点から、炭酸銀(AgCO)が最も好適である。アルコールを溶媒として用いるから、アルコールの還元力により、無機銀塩でも有機銀塩でも比較的低温で本発明の複合銀ナノ粒子が生成できる。無機銀塩はアルコールに難溶性であるが、有機銀塩はアルコールに溶解するものと難溶性のものがある。アルコール溶解性有機銀塩としてはアビチエン酸銀など極めて少数であり、無機銀塩と多くの有機銀塩はアルコール難溶性と考えてよい。
 本発明の複合銀ナノ粒子は、以下の表記ではCnAgALと書かれる。n=1~12に対応して、C1AgAL、C2AgAL、C3AgAL、C4AgAL、C5AgAL、C6AgAL、C7AgAL、C8AgAL、C9AgAL、C10AgAL、C11AgAL、C12AgALが存在する。その意味は、炭素数n=1~12のアルコールから生成された複合銀ナノ粒子である。従って、C1はメタノール、C2はエタノール、C3はプロパノール、C4はブタノール、C5はペンタノール、C6はヘキサノール、C7はヘプタノール、C8はオクタノール、C9はノナノール、C10はデカノール、C11はウンデカノール、C12はドデカノールを意味している。n=偶数のアルコールは天然植物由来のアルコールであり、他方、n=奇数は化学合成アルコールであるから、n=偶数のアルコールは比較的安価であり、安価な複合銀ナノ粒子を提供できる。また、炭素数nが少なくなるに応じて銀核の重量比が高くなり、銀量の多い複合銀ナノ粒子を提供できる。
 本発明の第10形態によれば、前記第1~第9形態のいずれかの複合銀ナノ粒子を少なくとも含有し、溶剤及び/又は粘性付与剤を添加した複合銀ナノペーストが提供される。
前記溶剤は複合銀ナノ粒子からなる粉体を分散させて溶液化する材料であり、例えばアルコール、アセトン、トルエン、キシレン、プロパノール、エーテル、石油エーテル、ベンゼンなどが利用できる。前記粘性付与剤は前記溶液に添加して塗着し易い粘性を付与する材料であり、例えばテレピンオイル、ターピネオール、メチルセルロース、エチルセルロース、ブチラール、各種テルペン誘導体、IBCH(イソボルニルシクロヘキサノール)、グリセリン、C14以上の常温で固形のアルコールなどが利用できる。テルペン誘導体としては1,8-テルピンモノアセテート、1,8-テルピンジアセテートなどがある。IBCHは松脂状、グリセリンはシロップ状、C14以上のアルコールは固液変化する性質を有し、10℃以下では非流動性を有する。前記非流動性粘性付与剤に本発明の複合銀ナノ粒子を混合分散させて非流動性ペーストにすれば、10℃以下の低温では複合銀ナノ粒子が分散状に固定されているから、複合銀ナノ粒子同士の凝集が生起しない。使用する直前に前記非流動性ペーストを加熱すれば流動化してペーストとして塗着可能になり、ペーストとしての機能を発揮できる。また、使用直前に前記非流動性ペーストに溶剤を添加すれば、加熱しなくても流動性ペーストになり、ペーストとしての機能を発揮できることは云うまでもない。
 本発明の複合銀ナノ粒子は金属化温度T3が200℃以下であるから、前記溶剤及び/又は粘性付与剤の蒸発温度或いは分解温度は極力低く設定されることが望ましい。従って、ペーストの焼成温度は複合銀ナノ粒子の金属化温度だけでは決まらず、溶剤及び/又は粘性付与剤の蒸発温度や分解温度にも依存する。また、加熱により蒸発・分解気散する必要があり、炭化して残留するものは除かれる。また、使用形態として、溶剤だけ添加したペースト、粘性付与剤だけ添加したペースト、溶剤と粘性付与剤の両者を添加したペーストが利用できる。
 本発明の第11形態によれば、銀微粒子を配合した複合銀ナノペーストが提供される。前記複合銀ナノ粒子は銀核と有機被覆層からなり、有機被覆層を構成するアルコール由来物質の炭素数(C数)が少ないほど、複合銀ナノ粒子中での銀含有率は高くなる。更に、ペースト全体として銀含有率を高めるためには、銀微粒子を前記ペースト中に配合すれば良い。銀微粒子の粒径は小さいほど良いが、接合部位の種類に応じて、例えば50nm~5μmの範囲が適当であるが、より好適には0.1μm~1μmの銀微粒子が良く、複合銀ナノ粒子とのサイズ適合性がある。複合銀ナノ粒子と銀微粒子の質量比は適切に調整できる。
 本発明の第12形態によれば、前記複合銀ナノペーストを昇温速度VT(℃/min)で大気中熱分析した場合に、熱重量測定(TG)及び示差熱分析(DTA)から得られるペースト分解開始温度Tp1(℃)、ペースト分解温度Tp2(℃)及びペースト金属化温度Tp3(℃)が前記昇温速度VTの増加に従って増加する複合銀ナノペーストが提供できる。
 本発明の複合銀ナノペーストのペースト分解開始温度Tp1(℃)、ペースト分解温度Tp2(℃)及びペースト金属化温度Tp3(℃)の定義は、前述した本発明の複合銀ナノ粒子における分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)の定義と対応する。ただし、複合銀ナノペーストでは、複合銀ナノ粒子に溶剤及び/又は粘性付与剤が添加されているから、複合銀ナノ粒子が酸化分解される前に、溶剤及び/又は粘性付与剤の脱離や酸化分解が先行する。従って、TG曲線及びDTA曲線に溶剤及び/又は粘性付与剤の曲線が先行し、その後に複合銀ナノ粒子の曲線が後続する。つまり、TG曲線に出現する第1の急激な減少は、その微分曲線であるDTG曲線に最初の深い谷間を形成し、この谷間が復帰してDTG曲線がほぼゼロになった温度がペースト分解開始温度Tp1と判断できる。このTp1はDT曲線の第2の減少開始温度を与える。このペースト分解開始温度Tp1の後に、DTA曲線においてDTAピークが出現し、その最初に出現するDTA第1ピーク温度がペースト分解温度Tp2(℃)である。DTAピークの最後に出現する急峻な最終ピークは、有機被覆層が酸化分解された後に残留する裸の銀核同士が結合する結合エネルギーの放出ピークと考えられる。この最終ピークが落ちて横方向に折れる点がペースト金属化温度Tp3(℃)と定義される。これらのペースト温度は、Tp1≦Tp2≦Tp3の不等式を満足する。
 前記昇温速度VTを1~20(℃/min)の範囲だけ変化すると、ペースト分解開始温度Tp1は約50℃ほど増加し、ペースト分解温度Tp2は約65℃ほど増加し、ペースト金属化温度Tp3は約80℃ほど増加する傾向が見られる。従って、複合銀ナノペーストをVT=1(℃/min)で昇温しながらTp1、Tp2、Tp3を測定し、同じ複合銀ナノペーストをVT=20(℃/min)で測定すると、前記Tp1、Tp2、Tp3は夫々約50℃、約65℃、約80℃増加すると考えられる。しかし、これらの温度増加量は有機被覆層の炭素数に依存することは云うまでもなく、銀核粒径にも多少は依存すると考えられる。
 本発明の第13形態によれば、前記複合銀ナノ粒子及び前記複合銀ナノペーストを昇温速度VT=1~20(℃/min)で大気中熱分析した場合に、夫々の金属化温度をT3(℃)及びTp3(℃)としたとき、T3≦Tp3≦T3+50が成立する複合銀ナノペーストが提供できる。本発明者の研究によれば、複合銀ナノ粒子(CnAgAL、n=1~12と表記)のT1、T2、T3と、複合銀ナノペースト(PCnAgAL、n=1~12と表記)のTp1、Tp2、Tp3の間には、昇温速度VT=1~20(℃/min)の範囲で、次の不等式がほぼ満足されることが分かった。
   T1(VT)≦Tp1(VT)≦T1(VT)+100   (P1)
   T2(VT)≦Tp2(VT)≦T2(VT)+70    (P2)
   T3(VT)≦Tp3(VT)≦T3(VT)+50    (P3)
本形態は(P3)式を表現したものである。この不等式により、複合銀ナノ粒子の特性温度T1、T2、T3を測定することによって、その複合銀ナノペーストの特性温度のTp1、Tp2、Tp3を推定することが可能になった。
 本発明の第14形態によれば、銀塩微粒子を炭素数1~12のアルコール溶媒中に混合してアルコール溶液を調製し、前記アルコール溶液を反応室中で所定の生成温度PTで所定の生成時間だけ加熱して、前記アルコール溶媒により前記銀塩微粒子を還元して平均粒径が1~20nmの銀核を形成し、この銀核の周囲に前記アルコール溶媒のアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層を形成する複合銀ナノ粒子の製法が提供される。
 アルコール溶液とは、銀塩とアルコールの混合液であり、アルコール量を増加させて、生成された複合銀ナノ粒子がアルコール中を浮遊する状態にすれば、相互の衝突確率が低減し、複合銀ナノ粒子の会合が阻止できる。また、大量のアルコール分子を前記銀塩微粒子の表面に吸着させ、表面反応を促進させる。アルコールの一般式はROH(Rは炭化水素基)であり、Rは疎水基で、OHは親水基であるから、考え方を変えればアルコールは界面活性作用を有した界面活性剤である。銀塩の多くはアルコール難溶性であるが、銀塩微粒子表面はアルコールのOH基が結合しやすい性質を有している。従って、銀塩微粒子はアルコールで取り囲まれ、銀塩微粒子の粒径が小さくなると安定な単分散コロイドになると云っても良い。銀塩微粒子の粒径が大きくなると、アルコール中を沈殿する可能性があるが、混合攪拌して一定時間分散状態にある場合には、その間に反応を完了させれば良い。
 また、アルコール自体でも還元作用を有するが、アルコールは200℃以下の生成温度でもアルデヒドに容易に変化し、このアルデヒドは強力な還元作用を有する。つまり、前記銀塩微粒子の表面にアルコール及び/又はアルデヒドが作用して次第に銀が析出し、最終的には銀塩微粒子の全領域が還元されて銀核へと転化する。この銀核の周囲に、アルコールに由来するアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層が形成されて複合銀ナノ粒子が生成される。生成温度PTを例えば200℃以下に設定すれば、金属化温度T3の低い複合銀ナノ粒子を生成できる。本発明では、生成温度PTを金属化温度T3(≦200℃)より低く設定して、低温焼成用の複合銀ナノ粒子を生成する。銀核の平均粒径は1~20nmであるが、銀塩微粒子の微細化処理を徹底的に行えば、より小さな粒径の複合銀ナノ粒子を製造することができる。
 本発明の第15形態によれば、前記銀塩微粒子が前記アルコール溶媒に分散又は溶解している複合銀ナノ粒子の製法が提供できる。
 本発明において使用される銀塩微粒子としては、無機銀塩と有機銀塩が利用でき、無機銀塩には炭酸銀、塩化銀、硝酸銀、リン酸銀、硫酸銀、ほう酸銀、フッ化銀などがあり、また有機銀塩にはギ酸銀、酢酸銀などの脂肪酸塩、スルホ酸塩、ヒドロキシ基・チオール基・エノール基の銀塩などがある。この中でもC、H、OとAgからなる銀塩又はC、OとAgからなる銀塩が好ましい。その理由は、P、S、Nといった原子は半導体やセラミックスに拡散して不純物となり物性を低下させる可能性があるからである。その観点から、炭酸銀(AgCO)が最も好適である。アルコールを溶媒として用いるから、アルコールの還元力により、無機銀塩でも有機銀塩でも比較的低温で本発明の複合銀ナノ粒子が生成できる。無機銀塩はアルコールに難溶性であるが、有機銀塩はアルコールに溶解するものと難溶性のものがある。アルコール溶解性有機銀塩としては例えばアビチエン酸銀など極めて少数であり、無機銀塩と多くの有機銀塩はアルコール難溶性と考えてよい。アルコール溶解性銀塩はアルコールに分子レベルで溶解し、アルコールとの反応性が高められる。他方、アルコール難溶性銀塩は微粒子化してアルコールに混合分散され、その微粒子サイズがナノサイズにまで微細化されると、アルコール溶媒中に安定して分散し、アルコールとの反応性を高めることができる。
 本発明の第16形態によれば、前記アルコール溶液は、前記アルコール溶媒が前記銀塩微粒子のモル数よりも過剰に添加された過剰アルコール溶液である複合銀ナノ粒子の製法が提供される。
 本製法では、アルコール質量は、銀塩質量よりもかなり過剰である。例えば、銀塩が炭酸銀の場合を例に取ると、通常の銀アルコキシドの生成は下記の式(D)で与えられる。
  AgCO+2ROH→2ROAg+CO+HO   (D)
つまり、炭酸銀:アルコール=1モル:2モルであり、このモル比が化学量論比である。本製法では、アルコールのモル比を前記化学量論比よりかなり大きくして過剰アルコール溶液とする。この過剰度が高まるほど、生成された複合銀ナノ粒子が相互に衝突し難くなり、複合銀ナノ粒子の会合と凝集を阻止することができる。複合銀ナノ粒子が凝集して大きくなると、金属化温度T3が高くなり過ぎ、金属化温度T3を200℃以上にする可能性が有る。本製法では、過剰アルコール溶液にすることによって、初めて金属化温度T3を200以下に低下させることに成功した。
 本発明の第17形態によれば、前記複合銀ナノ粒子を昇温速度VT=1(℃/min)で大気中熱分析したとき、示差熱分析(DTA)から得られる金属化温度T3(℃)が200℃以下である複合銀ナノ粒子の製法が提供される。金属化温度T3が200℃以下に調整されると、そのペースト金属化温度Tp3も(p3)式から250℃以下に調整することが可能になり、低温焼成用ペーストの提供が可能になる。
 本発明の第18形態によれば、前記生成温度PT(℃)が前記金属化温度T3(℃)より小さい複合銀ナノ粒子の製法が提供できる。本発明者の経験によれば、複合銀ナノ粒子の生成温度PTはその大気中金属化温度T3より小さい傾向、つまりPT≦T3の関係がある。従って、T3≦200(℃)とすると、生成温度PTでは、PT≦T3≦200(℃)となり、低温生成且つ低温焼成の複合銀ナノ粒子の製法を提供することができる。
 本発明の第19形態によれば、前記複合銀ナノ粒子の前記生成時間が60分以内である複合銀ナノ粒子の製法を提供できる。複合銀ナノ粒子は次第にアルコール溶液中に生成されるから、生成時間を長くすると、複合銀ナノ粒子同士の凝集が生起し、複合銀ナノ粒子の粒径が増大する事実を確認した。この点を考慮し、生成時間を60分以内に制限し、この時間内であれば目的とする銀核粒径の複合銀ナノ粒子を製造することができる。また、炭素数が小さくなると、有機被覆層が薄くなり、その作用で凝集が加速する事実も確認した。従って、炭素数が小さくなるほど生成時間を60分よりも更に短縮することが重要になる。
 本発明の第20形態によれば、前記生成時間後に前記アルコール溶液を冷却して生成反応を停止させる複合銀ナノ粒子の製法が提供される。生成時間が終了すると、アルコール溶液を冷却して生成反応を急速に停止させ、このことにより同時に凝集反応も低下でき、粒径が揃った均質な複合銀ナノ粒子を製造できるようになった。冷却速度は急速なほどよく、冷却装置として電気的冷却装置、流体による冷却装置などが利用できる。単純には、氷水で0℃に冷却すると効果的である。更に、反応容器を液体窒素に浸漬して生成反応の急速停止を行なうことも出来る。
 本発明の第21形態によれば、前記銀塩微粒子は粒径が10nm~1000nmの範囲になるまで微細化処理される複合銀ナノ粒子の製法が提供される。市販の銀塩微粒子の平均粒径は10μmであるが、粒径分布のバラツキが大きく、50μmの粒子も存在する。従って、これをミキサーで粉砕してできるだけ均一な平均粒径10μmにする。その次に、ビーズと一緒に遠心回転させ、ビーズにより銀塩微粒子を強制粉砕して、銀塩微粒子の粒径を10nm~1000nmの範囲になるまで微細化するが、その粒径が小さいほど、均一で小さな銀核粒径を有した複合銀ナノ粒子を製造できる。
 本発明の第22形態によれば、前記過剰アルコール溶液における前記アルコール溶媒の銀塩に対するモル比は5~200の範囲に調整される複合銀ナノ粒子の製法が提供される。アルコール溶媒の銀塩に対するモル比は5~200の範囲に調製される。5以下では、複合銀ナノ粒子の凝集が目立ち、100以上、特に200以上ではアルコールコストが高くなりすぎ不経済であり、また反応室も大きくなり設備コストが過大になる。更に、前記モル比は10~100の範囲がより好ましい。
 本発明の第23形態によれば、前記複合銀ナノ粒子が生成された前記アルコール溶液から複合銀ナノ粒子を分離する複合銀ナノ粒子の製法である。銀塩微粒子とアルコールは反応容器内で完全に反応して、反応容器内に複合銀ナノ粒子とアルコールが残留することが最も望ましい。しかし、未反応の銀塩と複合銀ナノ粒子が共存する場合も有り、複合銀ナノ粒子だけを反応容器から単離して、複合銀ナノ粒子の純度を向上するほうが良い。また、多少の銀塩が不純物として残留しても、焼成により銀塩も分解する。
 本発明の第24形態によれば、銀塩微粒子をアルコール溶媒に混合してアルコール溶液を調製する原料混合器と、前記アルコール溶液を加熱器により所定温度で所定時間だけ加熱して複合銀ナノ粒子を生成する反応器と、前記反応器から供給される前記アルコール溶液を冷却する冷却器とを有し、前記冷却器から供給されるアルコール溶液から複合銀ナノ粒子を分離する成分精製器を付設することができ、前記原料混合器と前記反応器と前記冷却器と成分精製器が連続式、一部連続式又はバッチ式に接続される複合銀ナノ粒子の製造装置が提供できる。
 本装置は、銀塩微粒子をアルコール溶媒に混合させてアルコール溶液を調製する原料混合器と、前記アルコール溶液を加熱器により所定温度で所定時間だけ加熱して複合銀ナノ粒子を生成する反応器と、前記反応器から供給されるアルコール溶液を冷却する冷却器から基本的に構成される。この基本構成に、前記冷却器から供給されるアルコール溶液から複合銀ナノ粒子を分離する成分精製器を付設することもできる。前記反応器は、加熱装置と反応容器から構成され、前記加熱装置としては、誘導加熱装置・赤外線加熱装置・プラズマ加熱装置・レーザー加熱装置・超音波加熱装置・又はそれらの組合せ加熱装置が利用できる。本装置としては、連続製造装置でもバッチ式製造装置でもよく、そのため、前記原料混合器と前記反応器と前記冷却器と成分精製器が連続式、一部連続式又はバッチ式に接続される複合銀ナノ粒子の製造装置が提供できる。有する複合銀ナノ粒子の製造装置が提供される。本装置により、複合銀ナノ粒子を高速大量製造することが可能になり、Sn-Pb半田に替わる代替半田の量産装置を提供できる。前記原料混合器の中にビーズを投入して、原料混合器を原料微細化混合器とする場合も本形態に包含される。
 本発明の第25形態によれば、前記原料混合器に投入される銀塩微粒子は事前に微細化処理されている複合銀ナノ粒子の製造装置が提供される。前記原料混合器に投入される炭酸銀はミキサーやビーズにより事前に微細化されていれば、反応させる銀塩微粒子の粒径の微細化と均一性を保証でき、その結果、生成される複合銀ナノ粒子の粒径均一性を高度化できる。勿論、前記原料混合器の中でミキサーにより前記銀塩微粒子を微細化しても良いことは云うまでも無い。従って、装置形態として、微細粉砕器と原料混合器と反応器と冷却器と成分精製器を連続式又はバッチ式に構成した製造装置が提供される。微細粉砕器はミキサーによる第1段微細化とし、原料微細化混合器はビーズによる超微細化と位置づけても良い。
 本発明の第26形態によれば、前記原料混合器から供給されるアルコール溶液中の銀塩微粒子を更に微細化する微細化器と、前記微細化器により形成された微細化アルコール溶液を前記反応器に供給する複合銀ナノ粒子の製造装置が提供される。従って、装置形態として、原料混合器と微細化器と反応器と冷却器と成分精製器を連続式又はバッチ式に構成した製造装置が提供される。この装置配置では、原料混合器と反応器の間に微細化器を配置した点で、上述の構成と異なる。いずれにしても、銀塩微粒子を微細化すればするほど、複合銀ナノ粒子の微細化と粒径の微小化・均一化を達成できる。
 本発明の第27形態によれば、前記成分精製器から供給される前記複合銀ナノ粒子を含有する精製液を処理して、前記複合銀ナノ粒子をアルコール湿式状態又は粉体として回収する複合銀ナノ粒子の製造装置が提供される。最終的に複合銀ナノ粒子が分散した精製液を抽出し、この抽出液から溶媒を分離すれば、最終的に目的とする複合銀ナノ粒子が単離できる。分離方法には、膜分離法、蒸発乾燥法などがある。湿式状態とは、前記粉体が少量のアルコールなどの溶媒により湿っており、粉体の飛散防止を実現できる。
 本発明の第28形態によれば、前記成分精製器は遠心限外濾過装置から構成され、微細孔を介して前記複合銀ナノ粒子を抽出溶媒中に拡散させて前記精製液を形成する複合銀ナノ粒子の製造装置が提供される。複合銀ナノ粒子が生成されたアルコール溶液中には、未反応の銀塩微粒子、複合銀ナノ粒子、アルコールが存在し、その粒径順序は、銀塩微粒子>複合銀ナノ粒子>アルコールである。また、質量順序は、銀塩微粒子>複合銀ナノ粒子>アルコールと考えられる。従って、遠心法により、質量の軽いアルコールを外側に飛ばして分離する。また、ヘキサン、トルエンなどの抽出溶媒に複合銀ナノ粒子を拡散させて分離する。その結果、銀塩も分離できる。このように、成分を分離すれば、アルコールや炭酸銀は再使用が可能になり、また不純物が混在しない純粋な複合銀ナノ粒子粉体を回収することが可能になる。
 本発明の第29形態によれば、前記限外濾過装置は内管、中管、外管の三重管からなり、前記内管及び中管を同軸回転させ、前記複合銀ナノ粒子を生成した過剰アルコール溶液は前記内管と中管の間の中通路に供給され、前記微細孔は前記内管の表面に形成され、前記内管内部の内通路に前記抽出溶媒を供給し、前記複合銀ナノ粒子は前記中通路から前記微細孔を介して前記抽出溶媒中に選択的に拡散される複合銀ナノ粒子の製造装置が提供される。質量の小さなアルコールは、遠心力により外方に飛ばされ、中管の壁面に小さな微細孔を形成しておけば、この微細孔から中管と外管の間に形成される外通路に分離される。中通路には銀塩微粒子だけが残留する。このようにして、本装置により、アルコール、未反応銀塩微粒子及び複合銀ナノ粒子が夫々分離される。
 本発明の第30形態によれば、前記第10~第13形態のいずれかの複合銀ナノペーストを用意し、前記複合銀ナノペーストを下体に塗着してペースト層を形成し、前記ペースト層上に上体を配置し、加熱により前記ペースト層を銀化して前記下体と前記上体を接合する接合方法が提供される。本形態は、複合銀ナノペーストを用いた2物体の接合方法であり、一方の物体を下体、他方の物体を上体と称し、両者をペースト層を介して接着させ、焼成してペースト層の銀化により、強固な接合を達成できる。しかも、銀膜は電気伝導性と熱伝導性に優れ、低温焼成が可能であるから、低融点物体同士の接合も可能になる。
 本発明の第31形態によれば、前記第10~第13形態のいずれかの複合銀ナノペーストを用意し、前記複合銀ナノペーストを基体の面上に所定パターンに塗着してペーストパターンを形成し、焼成により前記ペーストパターンを銀化して銀パターンを形成するパターン形成方法が提供される。例えば、低融点の樹脂基板上に所定パターンの銀膜を形成する場合など、本発明形態により各種素材上に種々パターンの銀膜を低温度で形成する方法が提供される。
図1は、本発明に係る複合銀ナノ粒子の低温生成反応の第1工程の説明図である。 図2は、本発明に係る複合銀ナノ粒子の低温生成反応の第2工程の説明図である。 図3は、本発明に係る複合銀ナノ粒子の低温生成手順を示した詳細フロー図である。 図4は、本発明に係る複合銀ナノ粒子の製造装置による低温生成手順を示した製造装置詳細フロー図である。 図5は、本発明に係る複合銀ナノ粒子の製造装置の構成図である。 図6は、図5の製造装置の成分精製器による精製方法図である。 図7は、本発明に係るC6AgALの生成量と生成温度の関係図である。 図8は、本発明に係るC6AgALの物質成分(%)と生成温度の関係図である。 図9は、本発明に係る生成温度PT=70℃のC6AgALの熱解析図である。 図10は、本発明に係る生成温度PT=80℃でのC6AgALの熱解析図(昇温速度1℃/min)である。 図11は、本発明に係る生成温度PT=90℃でのC6AgALの熱解析図(昇温速度1℃/min)である。 図12は、本発明に係る生成温度PT=100℃でのC6AgALの熱解析図(昇温速度1℃/min)である。 図13は、本発明に係る生成温度PT=110℃でのC6AgALの熱解析図(昇温速度1℃/min)である。 図14は、本発明に係るC8AgALの吸収強度と生成時間の関係図である。 図15は、本発明に係るC10AgALの生成を示す光学濃度と表面プラズモン遷移領域の光子エネルギーの関係図である。 図16は、本発明に係るC10AgAL生成においてアルデヒド生成を示す光学濃度と表面プラズモン遷移領域の光子エネルギーの関係図である。 図17は、本発明に係るC10AgALの吸収強度と生成温度の関係図である。 図18は、本発明に係るC10AgALの吸収強度と生成時間の関係図である。 図19は、90℃で生成されたC10AgALの格子像を示す透過電子顕微鏡図である。 図20は、126℃で生成されたC12AgALの格子像を示す透過電子顕微鏡図である。 図21は、図20に示されたC12AgALの粒径分布図である。 図22は、本発明に係る生成温度PT=59℃でのC1AgALの熱解析図(昇温速度1℃/min)である。 図23は、本発明に係る生成温度PT=65℃でのC2AgALの熱解析図(昇温速度1℃/min)である。 図24は、本発明に係るC2AgALの格子像を示す透過電子顕微鏡図である。 図25は、本発明に係る生成温度PT=80℃でのC4AgALの熱解析図(昇温速度1℃/min)である。 図26は、本発明に係るC4AgALの格子像を示す透過電子顕微鏡図である。 図27は、本発明に係る複合銀ナノ粒子CnAgAL(C1~C12)の生成温度PTと分解温度T2の関係図である。 図28は、本発明に係る複合銀ナノ粒子CnAgAL(C1~C12)の分解開始温度T1と分解温度T2の関係図である。 図29は、本発明に係る複合銀ナノ粒子CnAgAL(C1~C12)の分解開始温度T1の範囲T2-60≦T1≦T2を示す関係図である。 図30は、本発明に係る複合銀ナノ粒子CnAgAL(C1~C12)の昇温速度1℃/minにおける特性温度(PT、T1、T2、T3)とC数の関係図である。 図31は、別実施例である複合銀ナノ粒子C1AgAL(PT=40℃)及びC2AgAL(PT=78℃)の熱解析図(昇温速度1℃/min)である。 図32は、別実施例である複合銀ナノ粒子C3AgAL(PT=97℃)及びC4AgAL(PT=117℃)の熱解析図(昇温速度1℃/min)である。 図33は、別実施例である複合銀ナノ粒子C5AgAL(PT=120℃)及びC6AgAL(PT=110℃)の熱解析図(昇温速度1℃/min)である。 図34は、別実施例である複合銀ナノ粒子C7AgAL(PT=132℃)及びC8AgAL(PT=148℃)の熱解析図(昇温速度1℃/min)である。 図35は、別実施例である複合銀ナノ粒子C9AgAL(PT=110℃)及びC10AgAL(PT=140℃)の熱解析図(昇温速度1℃/min)である。 図36は、別実施例である複合銀ナノ粒子C11AgAL(PT=148℃)及びC12AgAL(PT=151℃)の熱解析図(昇温速度1℃/min)である。 図37は、別実施例の複合銀ナノ粒子CnAgAL(C1~C12)の昇温速度1℃/minにおける特性温度(PT、T1、T2、T3)とC数の関係図である。 図38は、別実施例の複合銀ナノ粒子CnAgAL(C1~C12)の分解開始温度T1の範囲T2-90≦T1≦T2を示す関係図である。 図39は、他実施例である複合銀ナノ粒子C10AgAL(PT=176℃)の熱解析図(昇温速度1℃/min)である。 図40は、他実施例である複合銀ナノ粒子C10AgAL(PT=176℃)の熱解析図(昇温速度3℃/min)である。 図41は、他実施例である複合銀ナノ粒子C10AgAL(PT=176℃)の熱解析図(昇温速度5℃/min)である。 図42は、他実施例である複合銀ナノ粒子C10AgAL(PT=176℃)の熱解析図(昇温速度10℃/min)である。 図43は、他実施例である複合銀ナノ粒子C10AgAL(PT=176℃)の熱解析図(昇温速度15℃/min)である。 図44は、他実施例である複合銀ナノ粒子C10AgAL(PT=176℃)の熱解析図(昇温速度20℃/min)である。 図45は、他実施例である複合銀ナノペーストPC10AgAL(PT=176℃)の熱解析図(昇温速度1℃/min)である。 図46は、他実施例である複合銀ナノペーストPC10AgAL(PT=176℃)の熱解析図(昇温速度3℃/min)である。 図47は、他実施例である複合銀ナノペーストPC10AgAL(PT=176℃)の熱解析図(昇温速度5℃/min)である。 図48は、他実施例である複合銀ナノペーストPC10AgAL(PT=176℃)の熱解析図(昇温速度10℃/min)である。 図49は、他実施例である複合銀ナノペーストPC10AgAL(PT=176℃)の熱解析図(昇温速度15℃/min)である。 図50は、他実施例である複合銀ナノペーストPC10AgAL(PT=176℃)の熱解析図(昇温速度20℃/min)である。 図51は、図39~図50で得られたCnAgAL及びPCnAgALの特性温度(T1、T2、T3、Tp1、Tp2、Tp3)と昇温速度との関係図である。 図52は、図51から得られたCnAgALとPCnAgALの特性温度(T1、T2、T3、Tp1、Tp2、Tp3)の大小関係図である。
符号の説明
10    超微細化器
11    原料混合器
12    超微細化容器
13    投入口
14    中心管
15    回転軸
16    回転翼
17    ビーズ
20    反応器
21    原料供給口
22    反応管
23    加熱器
24    生成領域
25    冷却器
26    冷却領域
27    生成吐出口
30    成分精製器
31    外管
32    中管
33    超微細孔
34    内管
35    微細孔
36    内通路
37    中通路
38    外通路
40    中間分離器
41    銀塩分離容器
42    アルコール分離容器
50    粉体回収器
51    スプレー
52    乾燥器
53    ミスト
54    ホッパー
55    回収管
56    粉体回収容器
HE    抽出溶媒
 以下、本発明に係る複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法の実施形態を図面及び表により詳細に説明する。
 図1は、本発明に係る複合銀ナノ粒子の低温生成反応の第1工程の説明図である。原料となる無機化合物は銀塩(1)である。銀塩としては、無機銀塩と有機銀塩が利用でき、無機銀塩には炭酸銀、塩化銀、硝酸銀、リン酸銀、硫酸銀、ほう酸銀、フッ化銀などがあり、また有機銀塩にはギ酸銀、酢酸銀などの脂肪酸塩、スルホ酸塩、ヒドロキシ基・チオール基・エノール基の銀塩などがある。これらの銀塩の中でも、C、H、O、Agからなる銀塩、C、H、Agからなる銀塩、H、O、Agからなる銀塩、C、O、Agからなる銀塩、O、Agからなる銀塩が不純物を含有しない点で好適である。その理由は、生成された複合銀ナノ粒子に銀塩が不純物として混入した場合でも、焼成により、HO、CO、O等しか生成されないからである。本発明の実施例では、炭酸銀AgCOを好適な銀塩として後述するが、同様に他の銀塩でも同様であることは云うまでもない。
 アルコールは式(2)で示されるアルコールが使用される。式(3)のRはアルコールの炭化水素基を示している。炭素数nは1~12に限られる。一般に、銀塩微粒子はアルコール不溶性であるが、アルコールの親水基OHは銀塩微粒子の表面と結合しやすい性質を有する。またアルコールの疎水基Rはアルコール溶媒と親和性が高い。従って、式(4)に示すように、銀塩微粒子をアルコール溶媒に分散させると、銀塩微粒子表面にアルコールが周回状に吸着してアルコール溶液中を浮遊する。銀塩微粒子の粒径が小さい場合には、安定な銀塩微粒子コロイドが形成される。他方、銀塩微粒子の粒径が大きい場合には沈殿する場合もあるが、浮遊状態が数十分継続するなら問題は無く、また緩慢に攪拌しながら反応させてもよい。
 図2は、本発明に係る複合銀ナノ粒子の低温生成反応の第2工程の説明図である。反応式を明確にするため、ここでは銀塩として炭酸銀を例にとって説明するが、他の銀塩の場合でも同様である。炭酸銀微粒子表面の炭酸銀はアルコールと反応して、式(5)に示されるように銀化と同時にアルデヒドRn-1CHOが生成される。また、式(6)に示されるように、アルデヒドが形成されずに、直ちに銀アルコキシドAgORが生成される反応経路も存在する。前記アルデヒドは強力な還元作用を有し、式(7)に示されるように、炭酸銀を還元して、銀化と同時にカルボン酸Rn-1COOHが形成される。中間生成されたAg、AgOR、Rn-1COOHは、式(8)及び式(9)に示される反応により相互に凝集し、複合銀ナノ粒子としてAgk+m(OR、Agk+m(ORn-1COOHが生成される。これらの複合銀ナノ粒子は式(10)及び式(11)に図示されている。前記反応は炭酸銀微粒子の表面反応であり、表面から次第に内部に浸透しながら反応が継続し、中心核となる炭酸銀微粒子は銀核へと転化してゆく。最終的に、式(10)及び式(11)に示される複合銀ナノ粒子が生成される。
 式(10)及び式(11)は、銀核とその周囲に形成される有機被覆層の構成式を示す。有機被覆層はアルコキシド基ORの場合もあれば、カルボン酸Rn-1COOHの場合もある。勿論、カルボン酸(脂肪酸)からHが脱離したカルボン酸基Rn-1COOの場合も有る。従って、有機被覆層は、アルコキシド、アルコキシド基、カルボン酸、カルボン酸基、又はそれらの混合形も存在する。
 表1は、複合銀ナノ粒子の原料(炭酸銀とアルコール)の種類、その質量及び過剰アルコール溶液のモル比を示す。また、表1は、複合銀ナノ粒子の原料の分子量と100g当りのモル数を示す。炭素数(C数)nに対応して、アルコールの個別名称が示される。後述する実施例1はn=6、実施例2はn=8、実施例3はn=10、実施例4はn=12、実施例5はn=1、実施例6はn=2、実施例7はn=4、実施例8はn=3、実施例9はn=5、実施例10はn=7、実施例11はn=9、実施例12はn=11に対応する。
 前述した式(D)に示すように、炭酸銀とアルコールのガス反応では、化学量論比は炭酸銀:アルコール=1モル:2モルである。しかし、表1に示すように、本発明では炭酸銀を過剰なアルコールに分散させる必要がある。これは生成された複合銀ナノ粒子の衝突確率を低下させて、複合銀ナノ粒子の凝集を防止するためである。表1に示すとおり、実施例1~12では、モル比はアルコールモル数/炭酸銀モル数=10~63.9の範囲に調製され、過剰アルコール溶液としている。炭酸銀以外の銀塩でも過剰アルコール溶液に調整する。表1は次の通りである。
Figure JPOXMLDOC01-appb-T000001
 図3は、本発明に係る複合銀ナノ粒子の低温生成手順を示した詳細フロー図である。ステップn=1では、所定量の市販銀塩をミキサーで微細化する。市販銀塩は平均粒径が10μmであっても、そのバラツキは極めて大きい。ミキサーによりほぼ均一粒径10nmに揃える。ステップn=2では、微細化された銀塩粉体を過剰量のアルコールに分散させる。ステップn=3では、銀塩過剰アルコール溶液をビーズと一緒に回転させ、次第に銀塩粒子を磨り潰して超微細化する。ビーズ粒径と銀塩超微細化粒径との関係は、表2により後述する。ステップn=4では、メッシュを通してビーズを回収する。ステップn=5では、最終的にアルコールを添加して、過剰な所定モル比のアルコール溶液を調製する。
 ステップn=6では、超微細化銀塩過剰アルコール溶液を反応容器に投入し、ステップn=7では所定温度まで加熱する。この所定温度は生成温度PTに対応する。ステップn=8では、所定時間だけ前記所定温度で加熱してCnAgALを生成する。ステップn=9では、CnAgAL溶液を所定量だけサンプリングし、更にステップ10で温度を上昇させて更に高温の生成温度でCnAgALを生成させる。この繰り返しにより、各種の生成温度のCnAgALを作成する。抽出されたCnAgAL溶液は、ステップn=11で直ちに氷水で0℃まで急速に冷却され、生成反応が停止される。ステップn=12では、抽出容器からアルコール分を加圧濾過し、ステップn=13では、生成されたCnAgALを固体粉体として回収する。ステップn=14では、作成された各種生成温度のCnAgALが各種測定される。
 表2はビーズ粒径とAg2CO3を含む銀塩超微細化粒径の関係表である。ビーズ粒径が小さい程、超微細化粒径も小さくなり、前述で生成されるCnAgALの粒径も小さくなる。ビーズ粒径は1mm~0.03mmまで存在し、これにより超微細化粒径は5000nm~10nmの範囲に自在に制御できる。
Figure JPOXMLDOC01-appb-T000002
 図4は、本発明に係る複合銀ナノ粒子の製造装置による低温生成手順を示した製造装置詳細フロー図である。このフロー図は、図5の製造装置の各製造段階に対応している。ステップs=1では、所定量の銀塩粉体と過剰アルコールを混合し、ミキサーで銀塩粒子を均一に微細化する。ステップs=2では、銀塩アルコール溶液をビーズで超微細化し、メッシュフィルターでビーズを除去する。従って、この段階で超微細化銀塩アルコール溶液になる。ステップs=3では、超微細化銀塩アルコール溶液を反応器に供給し、生成温度で所定時間(生成時間)だけ加熱してCnAgALが生成される。ここで、アルコールの炭素数nはn=1~12の範囲である。抽出されたアルコール溶液は直ちに冷却され、生成反応が停止される。
 ステップs=4では、生成されたCnAgAL溶液を成分精製器に供給し、遠心限外濾過してCnAgAL精製液を製造する。ステップs=5では、前記アルコール溶液中のアルコール成分はアルコール分離容器に回収され、銀塩は銀塩分離容器に回収される。ステップs=6では、前記CnAgAL精製液を乾燥して抽出溶媒を気化させ、CnAgAL粉体を回収する。ステップs=7では、各生成温度毎のCnAgAL粒子が各種測定にかけられる。
 図5は、本発明に係る複合銀ナノ粒子の製造装置の構成図である。この製造装置の各部分装置の機能は、図4に示される各ステップに対応する。超微細化器10は原料混合器11と超微細化容器12から構成される。過剰所定量のアルコールと所定量の銀塩は原料混合器11に投入され、この中にはミキサーが装備されている。この微細化過剰アルコール溶液は矢印a方向に投入口13から超微細化容器12に供給される。超微細化容器12の内部には、多数のビーズ17が充填されており、中心管14に内挿された回転軸15により回転翼16が回転し、ビーズ17により前記銀塩微細化粒子が磨り潰され、銀塩微細化粒子が銀塩超微細化粒子へと転化する。超微細化過剰アルコール溶液は矢印b方向へと反応器20に供給される。
 反応器20では、超微細化過剰アルコール溶液は原料供給口21から反応管22へと供給され、加熱器23により加熱されて、CnAgALが生成領域24にて生成される。更に矢印c方向に供給され、冷却器25により反応液は冷却領域26により低温化され、生成反応は急速に停止される。前記生成アルコール溶液は生成吐出口27から矢印d方向に成分精製器30へと供給される。
 成分精製器30は外管31と中管32と内管34の三重管であり、中管32は矢印e方向に軸回転し、内管34は矢印f方向に軸回転し、外管31は回転しない固定管である。内管34の周壁面にはCnAgALが通過する程度の大きさを有した微細孔35が無数に形成されている。同時に、中管32の周壁面にはアルコール分子が通過する程度の大きさの超微細孔33が無数に形成されている。
 内管34には内通路36が開いており、内管34と中管32の間の隙間には中通路37が形成されており、また中管32と外管31の間の隙間には外通路38が形成されている。中通路36にはCnAgALを拡散的に分散させるヘキサンなどの抽出溶媒HEを供給する。中通路37には、生成吐出口27から送出される生成アルコール溶液が矢印d方向に従って供給される。
 生成アルコール溶液中には、生成された複合銀ナノ粒子CnAgALと未反応銀塩とアルコールが含まれている。一番質量の軽いアルコール分子は遠心力で超微細孔33を介して外通路38に移動する。CnAgALは微細孔35を介して内通路36の抽出溶媒HEに拡散する。未反応銀塩は中通路37に留まったままである。
 中間分離器40はアルコール分離容器42と銀塩分離容器41から構成される。外通路38から流出するアルコールはアルコール分離容器42に回収され、中通路37から流出する未反応銀塩は銀塩分離容器41に回収される。内通路36から流出するCnAgALを含有した抽出溶媒は粉体回収器50へと矢印h方向へ供給される。
 CnAgAL抽出溶液はスプレー51から乾燥器52へとミスト53として噴霧され、抽出溶媒は蒸発し、CnAgALは粉体化される。CnAgAL粉体はホッパー54から回収管55を介して粉体回収容器56に回収される。
 図6は、図5の製造装置の成分精製器による精製方法図である。中通路37に供給される生成アルコール溶液ASは銀塩AGと複合銀ナノ粒子CAとアルコール分子ALの混合溶液である。内通路36には抽出溶媒HEが供給される。中通路37の物質は強力な遠心力により、一番質量の軽いアルコール分子ALが超微細孔33から外通路38に排出される。複合銀ナノ粒子CAは微細孔35から抽出溶媒HEへと拡散的に浸入する。その結果、内通路36からは複合銀ナノ粒子CAを含有した抽出溶液が排出され、中通路37からは未反応銀塩AGが排出され、外通路38からはアルコールALが排出される。このようにして、3種類の物質が分離回収されることになる。
[実施例1:C6AgAL]
 表3は、C6AgALに関して、実験から得られた測定データ等を「低温生成反応におけるC6AgALの生成量」、「C6AgALの低温生成における各物質量の質量」及び「C6AgALの生成温度と特性温度の関係」として表にまとめたものである。「低温生成反応におけるC6AgALの生成量」には、表に示すように、各生成温度に対するC6AgALの生成時間及び生成量に関する詳細な実験データが記載されている。「C6AgALの低温生成における各物質量の質量」には、前記各生成温度(70℃、80℃、90℃、100℃、111.5℃)において、生成物に含まれる炭酸銀とC6AgALの質量比率とC6AgALに含まれる有機成分とAgの質量比率が記載されている。ここで、生成物又はC6AgALの全質量を1としている。「C6AgALの生成温度と特性温度の関係」には、前記各生成温度PT(℃)で生成されたC6AgALのTG減少開始温度T1(℃)、DTAピーク温度T2(℃)及び金属化温度T3(℃)が記載されている。
 このように、生成温度PTは自由に可変でき、生成温度PTが増加すると、TG減少開始温度に相当する分解開始温度T1、DTA第1ピーク温度に相当する分解温度T2、TG減少終了温度又はDTA最終ピーク終了温度に相当する金属化温度T3は次第に増加する傾向を示す。従って、分解温度T2が150℃以下になるように生成温度PTを設定して、複合銀ナノ粒子を自在に設計しながら製造することが可能である。金属化温度T3は分解温度T2より数℃上昇するだけで有る。熱解析において、TG曲線は熱重量測定曲線で重量減少を%で示し、TG曲線が減少を開始することは有機被覆層から有機物が気散していることを示す。従って、TG減少開始温度即ち分解開始温度T1は有機物の分解開始温度に相当する。DTA曲線は示差熱分析曲線で発熱をμVで示すものである。DTA曲線が上昇することは分解反応により発熱していることを示し、DTA曲線が減少することは冷却していることを示す。DTA曲線がピークを形成すると、そのピーク温度で分解発熱が最大に達し、分解反応がピークに達していることを示す。DTAピークが複数存在する場合には、DTA第1ピーク温度により分解温度を定義する。DTAピークにおけるDTA最終ピークは有機被覆層が気散した後に裸の銀核同士が結合する結合エネルギー放出ピークであると、本発明者は考察している。従って、DTA第1ピーク温度T2は有機物の分解が最高速に進む分解温度を示す。有機物が完全に気散してしまうと発熱は停止し、前記ピークは急速に低下し、低下しきった温度が金属化(銀化)温度T3に相当する。つまり、分解温度T2でTG曲線は急速に低下し、有機物の全量が気散した結果、金属化温度T3でTG曲線は一定値に収斂する。前記DTAピークを通過した後に、DTA曲線が増減したり、TG曲線が減少すると、複合銀ナノ粒子以外の別の反応が生起していることを示し、個別の分析が必要になる。いずれにしても、DTA曲線に出現するDTA第1ピークは複合銀ナノ粒子における有機被覆層の分解気散を示す。
Figure JPOXMLDOC01-appb-T000003
 図7は、本発明に係るC6AgALの生成量と生成温度の関係図である。縦軸はC6AgALの生成量(g)であり、表3に示した各温度生成量(g)を黒菱形で、1分当り各温度生成量(g)を黒丸で、積分生成量(g)を黒三角で各生成温度PT(℃)に対しプロットしている。図から明らかなように、100℃以下においてもC6AgALが生成されており、本発明に係る複合銀ナノ粒子が低温生成されることが確認されたことになる。
 図8は、本発明に係るC6AgALの物質成分(%)と生成温度の関係図である。即ち、図8は、表3の「C6AgALの低温生成における各物質量の質量」に記載される炭酸銀とC6AgALの質量比率(%)を生成温度PT(℃)に対して、それぞれ、黒丸と黒四角でプロットし、C6AgALに含まれる有機成分量とAg量の質量比率(%)を生成温度PT(℃)に対し、それぞれ、黒菱形と黒三角でプロットしている。生成温度の上昇に伴って、炭酸銀の質量比(黒丸)が減少し、C6AgALの質量比(黒四角)が増大しており、炭酸銀を原料として6AgALが生成されていることが解る。特に、100℃以下の生成温度においても、C6AgALが生成されており、本発明に係る複合銀ナノ粒子が炭酸銀を原料として低温生成されることが確認されたことになる。更に、生成されるC6AgALは、低温生成においてもAg量の比率(黒三角)が高く、好適な複合銀ナノ粒子が生成されていることが分かる。従って、本発明に係る複合銀ナノ粒子は、金属含有率が高く、代替半田として好適な材料であることが実証された。
 図9~図13は、それぞれ、本発明に係る生成温度PT=70℃、80℃、90℃、100℃、110℃におけるC6AgALの昇温速度VT=1℃/minでの熱解析図である。図中の矢印PTは生成温度(℃)、T1は分解開始温度(℃)、T2は分解温度、T3は金属化温度(℃)を示しており、これらの具体的な温度は、表3の「C6AgALの生成温度と特性温度の関係」に記載されており、図9~図13の熱解析から見積もられたものである。代表として図9で説明すると、示差熱分析(differential thermal analysis;DTA)では、分解開始温度T1より高温になると、C6AgALの有機被覆層が分解して放熱量が明確に増大していることが分かる。更に、分解温度T2で有機被覆層の分解による放熱量がピーク値を示す。これらの結果は、熱重量測定(thermogravimetry;TG)とも一致し、分解開始温度T1より高温側では、有機被覆層の分解により質量が減少していることが分かる。前記DTA最終ピークが下降した金属化温度T3で有機被覆層の全量が気散し、複合銀ナノ粒子の銀核同士が結合して銀化が完了したことを示す。
 図9~図11では、DTAピークが単一ピークであるが、図12~図13では、DTAピークがダブルピークになっている。前述した様に、DTA第1ピークは急速に分解が生起する分解ピークであり、DTA最終ピーク、つまりDTA第2ピークは裸の銀核同士の結合エネルギーピークと考えると理解が容易になる。実際には、図9~図11でも、DTA第1ピークとDTA第2ピークが存在するが、相互に接近しているため、オーバーラップにより単一ピークに見えているだけであると考える。
 更に、図12に示すように、DTA第1ピーク温度T2では、金属化に伴う放熱量の大きなピーク値が現れ、TGにも窪みが見られる。また、前記DTA最終ピークが低下した金属化温度T3では、TGも一定値になる。その後、TGが緩慢に減少するのは、不純物である炭酸銀の有機物減少であると考えられる。尚、図12~図13では、DTA第1ピークに連続してDTA最終ピークが出現し、この第1ピークのDTA第1ピーク温度T2と金属化温度T3を特性温度として見積もっている。図9~図12に示すように、生成温度PTが70℃~100℃の範囲ある場合、分解温度T2と金属化温度T3は、全て150℃以下となっている。しかも、分解開始温度T1は分解温度T2の下側60℃以内に含まれている。即ち、100℃以下の生成温度で得られたC6AgALを用いれば、150℃以下で含有される有機物が分解され、金属化させることができる好適な代替半田材料を提供することができる。また、図13では、分解温度T2と金属化温度T3が、それぞれ、T2=153℃とT3=161℃となっているが、150℃を僅かに越えるだけであり、代替半田の材料として利用することができる。また、T1=105℃であり、TG減少開始温度T1はDTAピーク温度T2の下側60℃以内に含まれている。
[実施例2:C8AgAL]
 表4は、C8AgALの低温生成におけるプラズモン吸収とアルデヒド吸収の測定結果を記載したものである。反応管内の温度を上昇させながら各温度でサンプルを採取し、ナノ粒子プラズモンの吸収ピーク(波長:410nm)とアルデヒド吸収(波長:290nm)の光学濃度(O.D.)を測定している。反応時間は、各温度に到達するまでの時間であり、C8AgALの生成時間に相当する。また、ナノ粒子プラズモンのピーク位置は、ナノ粒子における表面プラズモンの共鳴エネルギーに相当する。
Figure JPOXMLDOC01-appb-T000004
 図14は、本発明に係るC8AgALの吸収強度と生成時間の関係図である。この図は、表4に記載した吸収強度と反応温度(生成温度)を反応時間に対し、ナノ粒子プラズモンの吸収強度を黒丸で、アルデヒド光学濃度を黒菱形でプロットしている。図2の説明において述べたように、炭酸銀微粒子表面の炭酸銀はアルコールと反応して、銀化と同時にアルデヒドRn-1CHOが生成され、アルデヒドの強力な還元作用により炭酸銀が還元されて銀化されると共に、カルボン酸Rn-1COOHが形成される。中間生成されたAg、AgOR、Rn-1COOHは相互に凝集し、複合銀ナノ粒子が生成される。図14において、最初の10分間にナノ粒子プラズモンの吸収強度が急激に増大して、ナノ粒子が急速に成長していることが分かる。他方、アルデヒド光学濃度は緩慢に増加し、上述のように、アルコールとの反応による炭酸銀の銀化と共に、生成されたアルデヒドの還元反応により、炭酸銀の銀化が増強され、短時間で複合銀ナノ粒子が高効率に生成されていることが分かる。更に、生成時間10分での生成温度(反応温度)は、90℃であり、100℃以下で複合銀ナノ粒子が高効率に生成されることがこの測定からも実証されたことになる。尚、ナノ粒子プラズモン吸収強度の減少は、凝集して生成される複合銀ナノ粒子の増加によるものと考えられる。
 また、実施例1のC6AgALにおいても、ナノ粒子プラズモン吸収強度とアルデヒド光学濃度の測定を行っているが、実施例2と同様の結果が得られているため、測定結果の記載を省略する。また、実施例2に関する熱分析においても実施例1と同様の結果が得られており、100℃以下での複合銀ナノ粒子の生成が確認されている。また、DTAピーク温度T2は150℃以下であり、TG減少開始温度T1も前記T2の下側60℃以内に存することが確認され、有機被膜層の分解及び金属化が150℃以内で発生することが確認されている。
[実施例3:C10AgAL]
 図15は、本発明に係るC10AgALの生成を示す光学濃度と表面プラズモン遷移領域の光子エネルギーの関係図である。C10AgALに関しても、実施例2と同様に、表面プラズモン遷移領域における光学測定を行っており、図に示すように、温度の上昇に伴うナノ粒子の表面プラズモンによる吸収強度の増大が測定されている。C10AgALの生成では、生成時間17分、生成温度81.9℃のスペクトルで表面プラズモンによる吸収が最大となっている。
 図16は、本発明に係るC10AgALの生成試験においてアルデヒド生成を示す光学濃度と光子エネルギーの関係図である。炭酸銀微粒子表面の炭酸銀はアルコールと反応して、銀化と同時にアルデヒドが生成され、温度の上昇及び生成時間の増大に伴って、アルデヒドによる吸収強度の増大が測定されている。即ち、経過時間17分、生成温度81.9℃で、アルデヒド吸収が最大に成り、アルデヒドによる炭酸銀の還元が促進されることを証明している。
 図17は、本発明に係るC10AgALの吸収強度と生成温度の関係図である。この図は、図15及び図16に示した表面プラズモンの吸収強度を黒丸で、アルデヒド光学濃度を黒四角で生成温度に対してプロットしたものである。生成温度PTが100℃に到達する前に、表面プラズモンの吸収強度が急激に増大し、アルデヒド吸収が増大していることが分かる。即ち、前述のように、アルコールとの反応による炭酸銀の銀化と共に、生成されたアルデヒドによる還元反応により、炭酸銀の銀化が増強され、100℃以下で複合銀ナノ粒子が高効率に生成されている。
 表5は、「C10AgALのプラズモン吸収の生成温度・生成時間依存性」と「C10AgALのアルデヒド吸収の生成温度・生成時間依存性」の一覧表である。反応容器の温度(生成温度)を次第に上昇させながら、プラズモン吸収とアルデヒド吸収を測定した。
Figure JPOXMLDOC01-appb-T000005
 図18は、本発明に係るC10AgALの吸収強度と生成時間の関係図である。この図は、生成時間に対して、表5に示した表面プラズモンの吸収強度を黒丸で、アルデヒド光学濃度を黒菱形でプロットしたものである。表面プラズモンの吸収強度とアルデヒド吸収が急激に増大し、生成時間が17分で共に最大となっており、アルコールとの反応による炭酸銀の銀化と共に、生成されたアルデヒドの還元反応により、短時間で炭酸銀の銀化が高効率に行われることがわかる。生成温度PTが100℃以下で、C10AgALの生成が数十分以内に急速に生起することが認められる。
 図19は、90℃で生成されたC10AgALの高分解能透過型電子顕微鏡図である。透過型電子顕微鏡像の拡大図では、明確に銀ナノ粒子の銀核の格子像が見られ、結晶性が極めて高いことが実証された。これらの格子像から、銀核はほぼ単結晶化していることが分かった。この高度結晶性により、本発明の複合銀ナノ粒子は高電気伝導性と高熱伝導性を有することが結論できる。尚、複合銀ナノ粒子の有機被覆層は、透過電子顕微鏡で観察することができないため、図中では見えていないが、前述の実験結果からも、有機被覆層が形成されていることは明らかである。更に、3000個の複合銀ナノ粒子の直径を測定し、平均粒径DをD=4.5±1(nm)と見積もっており、好適なサイズの複合銀ナノ粒子が得られていることが分かる。
[実施例4:C12AgAL]
 図20は、126℃で生成されたC12AgALの透過電子顕微鏡図である。C12AgALに関しても透過型電子顕微鏡像を観察しており、その拡大図では、明確に銀ナノ粒子の格子像が見られており、高度に結晶化していることが分かる。この格子像から、ほぼ単結晶であると判断できる。この単結晶性により、本発明の複合銀ナノ粒子は高電気伝導性と高熱伝導性を有することが結論できる。
 3000個の複合銀ナノ粒子の直径を測定し、平均粒径DをD=3±1(nm)と見積もっている。C12AgALの生成温度は、126℃と100℃を越えているが、D=3±1(nm)と極めて小さな粒径の複合銀ナノ粒子が得られている。
 図21は、図20に示されたC12AgALの粒径分布図である。前述のように、3000個の複合銀ナノ粒子の直径を測定し、平均粒径Dを見積もっており、粒径分布はガウス分布に従うものと考えられ、この分布から平均粒径DがD=3±1(nm)と見積もられている。
[実施例5:C1AgAL]
 図22は、本発明に係る生成温度PT=59℃のC1AgALの熱解析図(VT=1℃/min)である。実施例1と同様に、TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が、T1=70℃、T2=123℃、T3=141℃と見積もられている。C1AgALにおいても、100℃以下でC1AgALが生成されると共に、150℃以下で有機被膜層等の有機成分が分解され、更に金属化されることが分かる。T2-T1=53(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることが分かった。前記60℃はこの53℃を含む境界値として設定されたものである。C1AgALのように、炭素数が小さな複合銀ナノ粒子の場合、銀の含有比率が高く、有機成分の少ない代替半田材料やパターン材料の金属素材として用いることができる。
[実施例6:C2AgAL]
 図23は、本発明に係る生成温度PT=65℃のC2AgALの熱解析図(VT=1℃/min)である。図に示すように、炭素数が小さなC2AgALにおいても、TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が測定され、T1=109℃、T2=111℃、T3=115℃と見積もられた。したがって、100℃以下で生成されたC2AgALは、150℃以下でその有機被膜層等の有機成分が分解され、金属化することが実験的に確かめられた。また、T2-T1=2(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることが分かった。
 図24は、65℃で生成されたC2AgALの透過型電子顕微鏡図である。C2AgALに関しても透過型電子顕微鏡像を観察しており、その拡大図では、明確に銀ナノ粒子の格子像が見られており、高度に結晶化していることが分かる。この格子像から、ほぼ単結晶であると判断できる。格子像の面間隔は0.24nmである。バルク銀結晶の格子定数a=0.40862nmから計算すると、(111)面の面間隔d=a/√3=0.24nmとなるから、前記格子像は(111)面を表すことが分かった。この単結晶性により、本発明の複合銀ナノ粒子は高電気伝導性と高熱伝導性を有することが結論できる。
[実施例7:C4AgAL]
 図25は、本発明に係る生成温度PT=80℃のC4AgALの熱解析図である。C4AgALにおいても、TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が測定され、T1=103℃、T2=120℃、T3=122℃と見積もられた。以上から、100℃以下で生成されたC4AgALは、150℃以下でその有機被膜層等の有機成分が分解され、金属化することが実験的に確かめられている。また、T2-T1=17(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることも確認された。
 図26は、80℃で生成されたC4AgALの透過型電子顕微鏡図である。C4AgALに関しても透過型電子顕微鏡像を観察しており、その拡大図では、明確に銀ナノ粒子の格子像が見られており、高度に結晶化していることが分かる。格子像の面間隔は0.24nmである。バルク銀結晶の(111)面の面間隔d=0.24nmと一致するから、前記格子像は(111)面を表すことが分かった。上側の銀核は単結晶であると判断できるが、下側の銀核は、単結晶又は双晶であると判断できる。この高度の結晶性により、本発明の複合銀ナノ粒子は高電気伝導性と高熱伝導性を有することが結論できる。
[実施例8:C3AgAL]
 生成温度PT=88℃のC3AgALについて熱解析を行なった。TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が測定され、T1=112℃、T2=129℃、T3=132℃が得られた。従って、100℃以下で生成されたC3AgALは、150℃以下でその有機被膜層等の有機成分が分解され、金属化することが実験的に確かめられた。また、T2-T1=17(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることが分かった。更に、高分解能透過型電子顕微鏡によりC3AgAL粒子の銀核にも格子像が観察された。前述と同様であるから、TG・DTA曲線と電子顕微鏡図は省略する。
[実施例9:C5AgAL]
 生成温度PT=89℃のC5AgALについて熱解析を行なった。TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が測定され、T1=117℃、T2=134℃、T3=138℃が得られた。従って、100℃以下で生成されたC5AgALは、150℃以下でその有機被膜層等の有機成分が分解され、金属化することが実験的に確かめられた。T2-T1=17(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることが分かった。また、高分解能透過型電子顕微鏡によりC5AgAL粒子の銀核にも格子像が観察された。前述と同様であるから、TG・DTA曲線と電子顕微鏡図は省略する。
[実施例10:C7AgAL]
 生成温度PT=92℃のC7AgALについて熱解析を行なった。TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が測定され、T1=120℃、T2=135℃、T3=141℃が得られた。これから、100℃以下で生成されたC7AgALは、150℃以下でその有機被膜層等の有機成分が分解され、金属化することが実験的に確かめられた。T2-T1=15(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることが分かった。また、高分解能透過型電子顕微鏡によりC7AgAL粒子の銀核にも格子像が観察された。前述と同様であるから、TG・DTA曲線と電子顕微鏡図は省略する。
[実施例11:C9AgAL]
 生成温度PT=94℃のC9AgALについて熱解析を行なった。TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が測定され、T1=124℃、T2=138℃、T3=144℃が得られた。これから、100℃以下で生成されたC9AgALは、150℃以下でその有機被膜層等の有機成分が分解され、金属化することが実験的に確かめられた。T2-T1=14(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることが分かった。また、高分解能透過型電子顕微鏡によりC9AgAL粒子の銀核にも格子像が観察された。前述と同様であるから、TG・DTA曲線と電子顕微鏡図は省略する。
[実施例12:C11AgAL]
 生成温度PT=98℃のC11AgALについて熱解析を行なった。TG及びDTAから分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)が測定され、T1=127℃、T2=141℃、T3=148℃が得られた。これから、100℃以下で生成されたC11AgALは、150℃以下でその有機被膜層等の有機成分が分解され、金属化することが実験的に確かめられた。T2-T1=14(℃)であるから、TG減少開始温度T1はDTAピーク温度T2の下方60℃以内にあることが分かった。また、高分解能透過型電子顕微鏡によりC11AgAL粒子の銀核にも格子像が観察された。前述と同様であるから、TG・DTA曲線と電子顕微鏡図は省略する。
 表6には、実施例1~12における生成温度PT、分解開始温度T1(℃)、分解温度T2(℃)及び金属化温度T3(℃)の具体的な値が記載されている。C12AgALを除いて生成温度PTは100℃以下であり、分解温度T2及び金属化温度T3は150℃以下であり、且つ分解開始温度T1は分解温度T2の下方60℃以内に存在することが明らかとなった。C12AgALの生成温度PTは126℃であるが、分解温度T2及び金属化温度T3は150℃以下であり、且つ分解開始温度T1は分解温度T2の下方60℃以内に存在する条件も、他のCnAgALと同様であることが分かった。従って、分解温度T2が150℃以下の条件、及び分解開始温度T1が分解温度T2の下方60℃以内に存在する条件は、C1~C12のCnAgALで共通条件であることが分かった。上記のCnAgALの測定では、T2-60≦T1≦T2の」不等式が得られた。
Figure JPOXMLDOC01-appb-T000006
 表7は複合銀ナノ粒子における生成温度PTと分解温度T2の関係一覧表である。図27は表7のデータを図示したもので、横軸を生成温度PT(℃)及び縦軸を分解温度T2(℃)で表現したものである。分解温度T2が150℃以下の条件は、生成温度PT=111.5℃のC6AgALだけであり、他のC6AgALはT2≦150℃を満足している。従って、本実施形態では、分解温度T2≦150℃が得られた。
Figure JPOXMLDOC01-appb-T000007
 表8は、複合銀ナノ粒子における分解開始温度T1と分解温度T2の関係一覧表である。図28は表8のデータを図示したもので、横軸を分解開始温度T1(℃)及び縦軸を分解温度T2(℃)で表現したものである。図28から明白なように、分解温度T2が150℃以下であり、且つ分解開始温度T1は140℃以下が成立している。
Figure JPOXMLDOC01-appb-T000008
 表9は、複合銀ナノ粒子における分解開始温度T1、分解温度T2、及びT2-60の関係一覧表である。T2-60は、T2-60≦T1≦T2の範囲の満足性の判定のために記載されている。上記実施形態では、上記範囲が満足されていることは数値的に明らかである。
Figure JPOXMLDOC01-appb-T000009
 図29は、表9のデータを図示したもので、横軸はC数、縦軸は特性温度を示す。本発明の特性温度は、生成温度PT、分解開始温度T1、分解温度T2、金属化温度T3であるが、図29では、T2-60も特性温度として包含される。黒四角は分解温度T2であり、黒三角はT2-60であり、黒丸は分解開始温度T2を示す。全ての黒丸が黒三角と黒四角の間に存在するから、T2-60≦T1≦T2の不等式条件がC1~C12について成立していることが上記実施形態に対して実証された。
 表10は実施例1~12における生成温度PT、分解開始温度T1(℃)、分解温度T2(℃)、金属化温度T3(℃)及びC数対応アルコールの沸点BTの一覧表である。C数対応アルコールとは、C数=nならC2n+1OHを意味する。
Figure JPOXMLDOC01-appb-T000010
 図30は、表10のデータを図示したもので、横軸はアルコール由来有機被覆層のC数、縦軸は特性温度を示す。本発明の特性温度は、生成温度PT、分解開始温度T1、分解温度T2、金属化温度T3及びアルコール沸点BTである。図30に本発明の主要な条件が全て含まれている。生成温度PT≦100℃の条件については、C12以外では全て成立している。DTAピーク温度T2≦150℃については、C1~C12の全てで成立している。金属化温度T3≦150℃については、C1~C12の全てで成立している。T2-60≦T1≦150℃についても、C1~C12の全てで成立している。本発明は過剰アルコール溶液内での銀塩反応であるが、加熱温度制御に関しては、アルコールの沸点BTで制御することも行なっている。例えば、C1のメタノールの沸点BT=64.7℃であるから、アルコールを沸騰状態で反応させても、アルコール温度は64.7℃を超えず、生成温度PTはPT=64.7℃(=BT)に固定される。しかし、アルコール沸点BTはC数の増加に応じて上昇する。沸点の低いアルコールでは、加圧沸騰により、生成温度を沸点より高く設定することが可能である。また、沸点の高いアルコールでは、減圧沸騰により生成温度を沸点より低く設定することが可能になる。
 表11はC1~C12におけるCnAgALの高分解能透過型電子顕微鏡による格子像の一覧表である。C1~C12の複合銀ナノ粒子の全てにおいて、銀核の格子像が確認され、結晶性が極めて高いことが実証されている。このように、アルコキシド被覆銀ナノ粒子で銀核の格子像を確認したのは、本発明者が初めてであり、銀核の単結晶性又は双晶性など、高度の結晶性を有するアルコキシド被覆銀ナノ粒子を提供することに成功した。従って、本発明のCnAgALの電気導電性と熱伝導性は極めて高いことが実証された。
Figure JPOXMLDOC01-appb-T000011
[実施例011~123:C1~C12の複合銀ナノペーストの特性]
 次に、本発明により生成された複合銀ナノ粒子を用いて複合銀ナノペーストを作成した。C1~C12のCnAgALの夫々から次の3種類のペーストを作成した。(1)CnAgAL+粘性付与剤、(2)CnAgAL+溶剤+粘性付与剤、(3)CnAgAL+銀粒子+溶剤+粘性付与剤。CnAgALの少なくとも一つは実施例1~12に示された金属化温度T3を有し、CnAgALの残りは金属化温度T3が前記実施例の金属化温度T3とやや異なるものが用いられている。しかし、金属化温度T3は全て150℃以下のものが選択されている。銀粒子の粒径は0.4μmと1.0μmの2種類が使用された。溶剤は、メタノール、エタノール、ブタノール、キシレン、トルエン、ヘキサンから選択された。粘性付与剤は、テレピンオイル、ターピネオール、テルピン誘導体(1,8-テルピンモノアセテートと1,8-テルピンジアセテートの混合物)、メチルセルロースから選択された。メチルセルロースは粉体であり、必ず溶剤と併用される。銀粒子の粒径、溶剤の種類、粘性付与剤の種類、各成分のmass%及び大気中ペースト焼成温度は表12及び表13に記載された通りである。C1~C12のCnAgALの金属化温度T3(℃)と実際の大気中ペースト焼成温度(℃)が表12及び表13に記載されている。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 大気中ペースト焼成温度はCnAgALの金属化温度T3よりも高く設定されている。その理由は、CnAgALを金属化させるだけでなく、溶剤を蒸発させたり、粘性付与剤を蒸発又は分解気散させる必要があるからである。また、CnAgALの金属化温度T3は150℃以下であるが、金属化温度よりも高い温度で焼成すると、秀麗な金属膜が形成でき、しかも電気伝導度の高い銀膜を形成できるからでもある。従って、表12及び表13に示されるように、大気中ペースト焼成温度は前記金属化温度T3よりも高く設定され、高温ほど銀膜特性の向上が確認された。粘性付与剤としてテレピンオイルを使用した場合では、大気中ペースト焼成温度は200℃以下に調整された。また、粘性付与剤としてテルピン誘導体を使用した場合には、更に焼成温度を高くしている。更に、粘性付与剤としてメチルセルロースを使用した場合には、焼成温度は400℃、450℃と一層高く設定された。以上のように、大気中ペースト焼成温度は粘性付与剤の気散温度に依存する。
 実施例011~実施例123に示される36種類のペーストを耐熱ガラス基板に塗着し、表12及び表13の大気中ペースト焼成温度で焼成したところ、ガラス基板には秀麗な銀膜が形成された。形成された銀膜表面を光学顕微鏡で観察し、比抵抗を測定したところ、実用に耐える銀膜であることが確認され、本発明の複合銀ナノペーストが有効であることが結論された。
[実施例124:半導体電極と回路基板との接合]
 半導体チップを上体とし、回路基板を下体として接合試験を行った。半導体チップの電極端を回路基板のスルーホールに挿入し、両者間の接触部に実施例011~実施例123の複合銀ナノペーストを塗着して、36種のペースト試験体を得た。その後、前記塗着部を表12及び表13に記載のペースト焼成温度で局所的に加熱して、前記塗着部を金属化させ、接合を完了した。冷却した後、光学顕微鏡により、前記接合部の外観を検査したところ、36種の試験体で問題はなかった。電気導通試験と電気抵抗測定を行なったが、代替半田として有効に機能していることが確認された。前記36種類の接合試験から、本発明に係る複合銀ナノペーストは代替半田として工業的に利用できることが分かった。
[実施例125:耐熱ガラス基板上への銀パターンの形成]
 耐熱ガラス基板を基体とし、この基体上に実施例011~実施例123の複合銀ナノペーストをスクリーン印刷して、所定パターンのペーストパターンを形成した36種類の試験体を得た。その後、前記試験体を電気炉により表12及び表13に記載の大気中ペースト焼成温度で加熱して、前記ペーストパターンから銀パターンを形成した。冷却した後、光学顕微鏡により、前記銀パターンの表面を検査したところ、36種の試験体で問題はなかった。前記36種類のパターン形成試験から、本発明に係る複合銀ナノペーストは銀パターン形成用材料として工業的に利用できることが分かった。
[実施例1001~1012:CnAgAL(n=1~12)の第2実施形態の熱解析]
 前述したように、第1実施形態のCnAgAL(n=1~12)に対して熱解析を行なって、表10、図29及び図30の特性温度の一覧を得た。この点を更に検討するため、本発明者は別の複合銀ナノ粒子CnAgAL(n=1~12)に対して、第2実施形態として、特性温度の一覧を得る実験を行なった。
 図31~図36は、別の複合銀ナノ粒子C1AgAL~C12AgALに対し昇温速度1℃/minで行なった熱解析図であり、各熱解析図はTG曲線とDTA曲線から構成される。分解開始温度T1はTG減少開始温度であり、分解温度T2はDTA第1ピーク温度であり、金属化温度T3はTG減少終了温度又はDTA最終ピーク終了温度である。これらの具体的な温度と生成温度PTは、表14に記載されており、T1、T2及びT3の温度は図31~図13の熱解析から見積もられたものである。更に、図37には、実施例1001~1012の複合銀ナノ粒子CnAgAL(C1~C12)の昇温速度1℃/minにおける特性温度(PT、T1、T2、T3)とC数の関係図として、表14に示した温度をプロットしている。
Figure JPOXMLDOC01-appb-T000014
 図31及び図32のC1AgAL~C3AgALでは、DTAピークが単一ピークであり、図32~図36のC4AgAL~C12AgALでは、DTAピークがダブルピークになっている。前述した様に、DTA第1ピークは急速に分解が生起する分解ピークであり、DTA最終ピーク、つまりDTA第2ピークは裸の銀核同士の結合エネルギーピークと考えると理解が容易になる。実際には、図31及び図32のC1AgAL~C3AgALでも、DTA第1ピークとDTA第2ピークが存在するが、相互に接近しているため、オーバーラップにより単一ピークに見えているだけであると考える。
 図32~図36に示したC2AgAL~C12AgALのDTAでは、分解開始温度T1より高温になると、C6AgALの有機被覆層が分解して放熱量が明確に増大していることが分かる。このような傾向は、図32に示したC1AgALのDTAでは明確に見られていないが、これは複合銀ナノ粒子以外の成分による放熱のために明確に現れていないと考えている。しかしながら、図32~図36のC1AgAL~C12AgALでは、分解温度T2で有機被覆層の分解による放熱量がピーク値を示し、TGとも一致している。分解開始温度T1より高温側では、有機被覆層の分解により質量が減少していることが分かる。また、前記DTA最終ピークが下降した金属化温度T3で有機被覆層の全量が気散し、複合銀ナノ粒子の銀核同士が結合して銀化が完了していることが分かる。
 図32のC4AgALに示すように、DTA第1ピーク温度T2では、金属化に伴う放熱量の大きなピーク値が現れ、TGにも窪みが見られる。更に、連続してDTA第2ピークとDTA最終ピークが現れ、このDTA最終ピークが低下した金属化温度T3では、TGも一定値になる。その後、TGが緩慢に増加するのは、不純物である炭酸銀の分解によるものと考えられる。尚、図32~図36に示したC4AgAL~C12AgALのDTAでは、第1ピークのDTA第1ピーク温度T2と金属化温度T3を特性温度として見積もっている。
 図37に示すように、C1AgAL~C7AgAL及びC9AgALでは、分解温度T2と金属化温度T3は、全て200℃以下となっている。即ち、別実施例の複合銀ナノ粒子を昇温速度VT=1℃/minで大気中熱分析した結果、DTAから得られる金属化温度T3(℃)が200℃以下の複合銀ナノ粒子が生成されることが明らかとなった。従って、低温焼成で金属化させることができる好適な代替半田材料を提供することができる。また、C8AgALとC10AgAL~C12AgALにおいて、金属化温度T3は、200℃近傍か僅かに200℃を超える程度であり、代替半田の材料として利用することができる。しかも、C1AgAL~C12AgALにおいて、分解開始温度T1は分解温度T2の下側100℃以内に含まれている。
Figure JPOXMLDOC01-appb-T000015
 表15は、実施例1001~1012の複合銀ナノ粒子における分解開始温度T1、分解温度T2、及びT2-90の関係一覧表である。T2-90は、T2-90≦T1≦T2の範囲の満足性の判定のために記載されている。上記実施形態では、上記範囲が満足されていることは数値的に明らかである。
 図38は、表15のデータを図示したもので、横軸はC数、縦軸は特性温度を示す。本発明の特性温度は、生成温度PT、分解開始温度T1、分解温度T2、金属化温度T3であるが、図38では、T2-90も特性温度として包含される。黒四角は分解温度T2であり、黒三角はT2-90であり、黒丸は分解開始温度T2を示す。全ての黒丸が黒三角と黒四角の間に存在するから、T2-90≦T1≦T2の不等式条件がC1~C12について成立していることが第2実施形態に対して実証された。
 図39~44は、他実施例である複合銀ナノ粒子C10AgAL(PT=176℃)の熱解析図であり、昇温速度VTを1~20℃/minの範囲で変化させている。図39~44では、DTAとTGの測定結果と共に、このTGから見積もられた微分熱重量(DTG)をプロットしている。図39~図44では昇温速度VTが、ぞれぞれ、VT=1℃/min、3℃/min、5℃/min、10℃/min、15℃/min、20℃/minとなっている。図39~図44において、分解開始温度T1はTG減少開始温度であり、分解温度T2はDTA第1ピーク温度であり、金属化温度T3はTG減少終了温度又はDTA最終ピーク終了温度である。DTGのプロットから、分解開始温度T1とは、直線的なTGの減少から曲線的なTGの減少に変化する温度であることが分かる。即ち、DTGのプロットにおいて、分解開始温度T1より低温側では、TG減少率が略定数となる傾向を示し、分解開始温度T1を越えるとTG減少率が急激に増加している。直線的なTGの減少は僅かであり、TGの試料となる複合銀ナノ粒子粉体に含まれた残留物等の蒸発による成分と考えられる。従って、分解開始温度T1を見積もったTG減少開始温度とは、純粋な複合銀ナノ粒子のTG減少開始温度と云うことができ、このTG減少開始温度から分解開始温度T1を見積もることは妥当であったと云える。
 更に、図39~図44のDTGプロットには、DTA第1ピーク、DTA第2ピーク及び最終ピークの位置又はその近傍で極小となるディップ構造があり、TG減少率が極大となっている。これらのディップ構造においてTG減少率が極大となることと、DTAの各ピーク温度又はその近傍において、有機物の分解に伴う放熱量が極大となることは整合しており、良い一致を示している。更に、金属化温度T3を越えるとDTGは略ゼロとなり、複合銀ナノ粒子の金属化に伴って、TGの減少が終了していることがより明確に示されている。
 前述のように、図39~図44では、複合銀ナノ粒子C10AgALの昇温速度VTを1~20の範囲で変化させており、図39~図44における分解開始温度T1、分解温度T2、金属化温度T3は、昇温速度VTの増大に伴って上昇している。昇温速度VTが増大することにより所定温度に到達するまでの時間が短くなり、複合銀ナノ粒子に加えられる熱量の時間積分値が減少する。これが主要な要因となり、分解開始温度T1、分解温度T2及び金属化温度T3が昇温速度VTの増大に伴って上昇している。
 図45~図50は、他実施例である複合銀ナノペーストPC10AgAL(PT=176℃)の熱解析図であり、昇温速度VTを1~20℃/minの範囲で変化させている。図45~図50では、DTAとTGと共にこのTGから見積もった微分熱重量(DTG)をプロットしている。図45~図50では昇温速度VTが、ぞれぞれ、VT=1℃/min、3℃/min、5℃/min、10℃/min、15℃/min、20℃/minとなっている。図45~図50のDTGにおいて、ペースト分解開始温度Tp1より低温側では、複合銀ナノペーストに含まれる粘性付与剤の蒸発によるディップ構造が見られる。即ち、複合銀ナノペーストでは、複合銀ナノ粒子に溶剤及び/又は粘性付与剤が添加されているから、複合銀ナノ粒子が酸化分解される前に、溶剤及び/又は粘性付与剤の脱離や酸化分解が先行する。
 従って、図45~図50におけるペースト分解開始温度Tp1は、複合銀ナノペーストに含まれる粘性付与剤の蒸発し、前記有機被膜層の分解に伴うTGの減少が開始される温度を示している。図45~図50では、ペースト分解開始温度Tp1でDTGのプロットがほぼゼロになるか又はゼロ近傍の値となり、DTGの第2の減少開始温度を与えている。このペースト分解開始温度Tp1の後に、DTA曲線においてDTAピークが出現し、その最初に出現するDTA第1ピーク温度がペースト分解温度Tp2(℃)である。DTAピークの最後に出現する急峻な最終ピークは、有機被覆層が酸化分解された後に残留する裸の銀核同士が結合する結合エネルギーの放出ピークと考えられる。この最終ピークが落ちて横方向に折れる点がペースト金属化温度Tp3(℃)と定義される。これらのペースト温度は、Tp1≦Tp2≦Tp3の不等式を満足する。
Figure JPOXMLDOC01-appb-T000016
 表16には、図39~図50から見積もられた複合銀ナノ粒子粉体の分解開始温度T1、分解温度T2及び金属化温度T3と複合銀ペーストの分解開始温度Tp1、分解温度Tp2及び金属化温度Tp3からなる特性温度を記載している。更に、図51は、表16に示した図39~図50で得られたCnAgAL及びPCnAgALの特性温度(T1、T2、T3、Tp1、Tp2、Tp3)と昇温速度との関係図である。表16及び図51に示すように、前記昇温速度VTを1~20(℃/min)の範囲だけ変化すると、ペースト分解開始温度Tp1は約50℃ほど増加し、ペースト分解温度Tp2は約65℃ほど増加し、ペースト金属化温度Tp3は約80℃ほど増加する傾向が見られる。従って、複合銀ナノペーストをVT=1(℃/min)で昇温しながらTp1、Tp2、Tp3を測定し、同じ複合銀ナノペーストをVT=20(℃/min)で測定すると、前記Tp1、Tp2、Tp3は夫々約50℃、約65℃、約80℃増加すると考えられる。しかし、これらの温度増加量は有機被覆層の炭素数に依存することは云うまでもなく、銀核粒径にも多少は依存すると考えられる。
 図52は、図51から得られたCnAgALとPCnAgALの特性温度(T1、T2、T3、Tp1、Tp2、Tp3)の大小関係図である。図50から、複合銀ナノ粒子(CnAgAL、n=1~12と表記)及び複合銀ナノペースト(PCnAgAL、n=1~12と表記)を昇温速度VT=1~20(℃/min)で大気中熱分析した場合、粉体分解開始温度T1とペースト分解開始温度Tp1では、T1(VT)≦Tp1(VT)≦T1(VT)+100の関係が成り立っている。更に、粉体分解温度T2とペースト分解温度Tp2の関係と粉体金属化温度T3(℃)とペースト金属化温度Tp3(℃)の関係をまとめると、昇温速度VT=1~20(℃/min)の範囲において、図52に示す(P1)~(P3)の不等式がほぼ満足されることが分かった。これらの不等式により、複合銀ナノ粒子の特性温度T1、T2、T3を測定することによって、その複合銀ナノペーストの特性温度のTp1、Tp2、Tp3を推定することが可能になった。
 本発明は、上記実施形態や変形例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々変形例、設計変更などをその技術的範囲内に包含するものであることは云うまでもない。
 本発明によれば、DTAピーク温度T2が200℃以下であり、アルコール残基、アルコール誘導体又はアルコール分子の一種以上の有機被覆層を有し、銀核粒径が1~20nmの複合銀ナノ粒子が提供される。また、前記複合銀ナノ粒子のTG減少開始温度T1はT2-90≦T1≦T2の範囲にある。このような複合銀ナノ粒子は、生成温度PTを160℃以下、より好ましくは140℃以下に低下させることにより生成することが可能であり、DTAピーク温度T2、TG減少開始温度T1及び生成温度PTは相互にリンクした関係にある。金属化温度T3はDTAピーク温度T2から数℃高いだけであり、DTAピーク温度T2が200℃以下であるから、金属化温度T3もほぼ200℃以下になる。従って、複合銀ナノ粒子を低温生成することにより、ほぼ200℃以下での金属化を達成したものである。従来のSn-Pb半田の融点が183℃であるから、本発明の複合銀ナノ粒子は鉛フリーの代替半田として用いることができ、また銀膜形成材料として利用できる。生成温度が160℃以下であるから、製造装置や製造設備のコストも大幅に低減できる。従って、本発明の複合銀ナノ粒子は、プリント配線・導電性材料などの電子材料、磁気記録媒体・電磁波吸収体・電磁波共鳴器などの磁性材料、遠赤外材料・複合皮膜形成材などの構造材料、焼結助剤・コーティング材料などのセラミックス・金属材料、医療材料などの各種用途に適用できる。更に、本発明によれば、複合銀ナノ粒子の安価な製造方法や製造装置を提供することができる。

Claims (31)

  1. 銀原子の集合体からなる平均粒径が1~20nmの範囲にある銀核の周囲に、炭素数が1~12のアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層を形成したことを特徴とする複合銀ナノ粒子。
  2. 前記複合銀ナノ粒子が複数個凝集して凝集体を形成した請求項1に記載の複合銀ナノ粒子。
  3. 前記有機被覆層がアルコキシド基及び/又はカルボン酸基を少なくとも含有する請求項1又は2に記載の複合銀ナノ粒子。
  4. 前記複合銀ナノ粒子を昇温速度VT=1℃/minで大気中熱分析した場合に、示差熱分析(DTA)から得られる金属化温度T3(℃)が200℃以下である請求項1、2又は3に記載の複合銀ナノ粒子。
  5. 前記複合銀ナノ粒子を昇温速度VT=1(℃/min)で大気中熱分析した場合に、熱重量測定(TG)から得られる分解開始温度T1(℃)と示差熱分析(DTA)から得られる分解温度T2(℃)の関係が、T2-100≦T1≦T2である請求項1~4のいずれかに記載の複合銀ナノ粒子。
  6. 前記複合銀ナノ粒子を生成する生成温度PT(℃)が前記金属化温度T3(℃)より小さい請求項4又は5に記載の複合銀ナノ粒子。
  7. 前記複合銀ナノ粒子を高分解能透過型電子顕微鏡で観察した場合に、前記銀核に格子像が観察される請求項1~6のいずれかに記載の複合銀ナノ粒子。
  8. 前記分解開始温度T1(℃)、前記分解温度T2(℃)及び前記金属化温度T3(℃)が前記昇温速度VTの増加に従って増加する請求項4~7のいずれかに記載の複合銀ナノ粒子。
  9. 銀塩と炭素数1~12のアルコールを出発原料とする請求項1~8のいずれかに記載の複合銀ナノ粒子。
  10. 請求項1~9のいずれかに記載の複合銀ナノ粒子を少なくとも含有し、溶剤及び/又は粘性付与剤を添加したことを特徴とする複合銀ナノペースト。
  11. 銀微粒子を配合した請求項10に記載の複合銀ナノペースト。
  12. 前記複合銀ナノペーストを昇温速度VT(℃/min)で大気中熱分析した場合に、熱重量測定(TG)及び示差熱分析(DTA)から得られるペースト分解開始温度Tp1(℃)、ペースト分解温度Tp2(℃)及びペースト金属化温度Tp3(℃)が前記昇温速度VTの増加に従って増加する請求項10又は11に記載の複合銀ナノペースト。
  13. 前記複合銀ナノ粒子及び前記複合銀ナノペーストを昇温速度VT=1~20(℃/min)で大気中熱分析した場合に、夫々の金属化温度をT3(℃)及びTp3(℃)としたとき、T3≦Tp3≦T3+50が成立する請求項10、11又は12に記載の複合銀ナノペースト。
  14. 銀塩微粒子を炭素数1~12のアルコール溶媒中に混合してアルコール溶液を調製し、前記アルコール溶液を反応室中で所定の生成温度PTで所定の生成時間だけ加熱して、前記アルコール溶媒により前記銀塩微粒子を還元して平均粒径が1~20nmの銀核を形成し、この銀核の周囲に前記アルコール溶媒のアルコール分子誘導体、アルコール分子残基、又はアルコール分子の一種以上からなる有機被覆層を形成することを特徴とする複合銀ナノ粒子の製法。
  15. 前記銀塩微粒子が前記アルコール溶媒に分散又は溶解している請求項14に記載の複合銀ナノ粒子の製法。
  16. 前記アルコール溶液は、前記アルコール溶媒が前記銀塩微粒子のモル数よりも過剰に添加された過剰アルコール溶液である請求項14又は15に記載の複合銀ナノ粒子の製法。
  17. 前記複合銀ナノ粒子を昇温速度VT=1(℃/min)で大気中熱分析したとき、示差熱分析(DTA)から得られる金属化温度T3(℃)が200℃以下である請求項14、15又は16に記載の複合銀ナノ粒子の製法。
  18. 前記生成温度PT(℃)が前記金属化温度T3(℃)より小さい請求項17に記載の複合銀ナノ粒子の製法。
  19. 前記複合銀ナノ粒子の前記生成時間は60分以内である請求項14~18のいずれかに記載の複合銀ナノ粒子の製法。
  20. 前記生成時間後に前記アルコール溶液を冷却して生成反応を停止させる請求項14~19のいずれかに記載の複合銀ナノ粒子の製法。
  21. 前記銀塩微粒子は粒径が10nm~1000nmの範囲になるまで微細化処理される請求項14~20のいずれかに記載の複合銀ナノ粒子の製法。
  22. 前記過剰アルコール溶液における前記アルコール溶媒の銀塩微粒子に対するモル比は5~100の範囲に調整される請求項16~21のいずれかに記載の複合銀ナノ粒子の製法。
  23. 前記複合銀ナノ粒子が生成された前記アルコール溶液から前記複合銀ナノ粒子を分離する請求項14~22のいずれかに記載の複合銀ナノ粒子の製法。
  24. 銀塩微粒子をアルコール溶媒に混合してアルコール溶液を調製する原料混合器と、前記アルコール溶液を加熱器により所定温度で所定時間だけ加熱して複合銀ナノ粒子を生成する反応器と、前記反応器から供給される前記アルコール溶液を冷却する冷却器とを有し、前記冷却器から供給されるアルコール溶液から複合銀ナノ粒子を分離する成分精製器を付設することができ、前記原料混合器と前記反応器と前記冷却器と成分精製器が連続式、一部連続式又はバッチ式に接続されることを特徴とする複合銀ナノ粒子の製造装置。
  25. 前記原料混合器に投入される銀塩微粒子は事前に微細化処理されている請求項24に記載の複合銀ナノ粒子の製造装置。
  26. 前記原料混合器から供給されるアルコール溶液中の銀塩微粒子を微細化する微細化器と、前記微細化器により形成された微細化アルコール溶液を前記反応器に供給する請求項24に記載の複合銀ナノ粒子の製造装置。
  27. 前記成分精製器から供給される前記複合銀ナノ粒子を含有する精製液を処理して、前記複合銀ナノ粒子をアルコール湿式状態又は粉体として回収する請求項24~26のいずれかに記載の複合銀ナノ粒子の製造装置。
  28. 前記成分精製器は遠心限外濾過装置から構成され、微細孔を介して前記複合銀ナノ粒子を抽出溶媒中に拡散させて前記精製液を形成する請求項24~27のいずれかに記載の複合銀ナノ粒子の製造装置。
  29. 前記限外濾過装置は内管、中管、外管の三重管からなり、前記内管及び中管を同軸回転させ、前記複合銀ナノ粒子を生成した過剰アルコール溶液は前記内管と中管の間の中通路に供給され、前記微細孔は前記内管の表面に形成され、前記内管内部の内通路に前記抽出溶媒を供給し、前記複合銀ナノ粒子は前記中通路から前記微細孔を介して前記抽出溶媒中に選択的に拡散される請求項28に記載の複合銀ナノ粒子の製造装置。
  30. 請求項10~13のいずれかに記載の複合銀ナノペーストを用意し、前記複合銀ナノペーストを下体に塗着してペースト層を形成し、前記ペースト層上に上体を配置し、加熱により前記ペースト層を銀化して前記下体と前記上体を接合することを特徴とする接合方法。
  31. 請求項10~13のいずれかに記載の複合銀ナノペーストを用意し、前記複合銀ナノペーストを基体の面上に所定パターンに塗着してペーストパターンを形成し、加熱により前記ペーストパターンを銀化して銀パターンを形成することを特徴とするパターン形成方法。
PCT/JP2008/073660 2008-01-17 2008-12-25 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法 WO2009090846A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020107017975A KR101222304B1 (ko) 2008-01-17 2008-12-25 복합 은나노입자, 복합 은나노 페이스트, 그 제법, 제조장치, 접합방법 및 패턴 형성방법
EP08870788.0A EP2298471B1 (en) 2008-01-17 2008-12-25 Composite silver nanoparticles, composite silver nanopaste, and production methodof the same
JP2009549977A JP4680313B2 (ja) 2008-01-17 2008-12-25 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
CN2008801281306A CN101990474B (zh) 2008-01-17 2008-12-25 复合银纳米粒子、复合银纳米糊膏、其制法、制造装置、接合方法及图案形成方法
US12/735,435 US8348134B2 (en) 2008-01-17 2008-12-25 Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method
PCT/JP2008/073751 WO2009090849A1 (ja) 2008-01-17 2008-12-26 ワイヤボンディング方法及び電子部品実装体
US13/707,384 US8906317B2 (en) 2008-01-17 2012-12-06 Production apparatus of composite silver nanoparticle
US13/707,298 US8459529B2 (en) 2008-01-17 2012-12-06 Production method of composite silver nanoparticle

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JPPCT/JP2008/050558 2008-01-17
PCT/JP2008/050558 WO2009090748A1 (ja) 2008-01-17 2008-01-17 複合銀ナノ粒子、その製法及び製造装置
JPPCT/JP2008/054971 2008-03-18
PCT/JP2008/054971 WO2009116136A1 (ja) 2008-03-18 2008-03-18 複合銀ナノペースト、その製法及びナノペースト接合方法
JPPCT/JP2008/061822 2008-06-30
PCT/JP2008/061822 WO2009090767A1 (ja) 2008-01-17 2008-06-30 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
JPPCT/JP2008/062238 2008-07-04
PCT/JP2008/062238 WO2009116185A1 (ja) 2008-03-18 2008-07-04 複合銀ナノペースト、その製法、接合方法及びパターン形成方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/735,435 A-371-Of-International US8348134B2 (en) 2008-01-17 2008-12-25 Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method
US13/707,298 Division US8459529B2 (en) 2008-01-17 2012-12-06 Production method of composite silver nanoparticle
US13/707,384 Division US8906317B2 (en) 2008-01-17 2012-12-06 Production apparatus of composite silver nanoparticle

Publications (1)

Publication Number Publication Date
WO2009090846A1 true WO2009090846A1 (ja) 2009-07-23

Family

ID=42813479

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2008/050558 WO2009090748A1 (ja) 2008-01-17 2008-01-17 複合銀ナノ粒子、その製法及び製造装置
PCT/JP2008/061822 WO2009090767A1 (ja) 2008-01-17 2008-06-30 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
PCT/JP2008/073660 WO2009090846A1 (ja) 2008-01-17 2008-12-25 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/050558 WO2009090748A1 (ja) 2008-01-17 2008-01-17 複合銀ナノ粒子、その製法及び製造装置
PCT/JP2008/061822 WO2009090767A1 (ja) 2008-01-17 2008-06-30 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法

Country Status (6)

Country Link
US (3) US8348134B2 (ja)
EP (1) EP2298471B1 (ja)
JP (1) JP4680313B2 (ja)
KR (1) KR101222304B1 (ja)
CN (1) CN101990474B (ja)
WO (3) WO2009090748A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132082A (ja) * 2010-12-24 2012-07-12 Mitsubishi Paper Mills Ltd 銀ナノワイヤの製造方法およびそれを用いた透明導電膜
JP2013036053A (ja) * 2011-08-03 2013-02-21 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013044016A (ja) * 2011-08-24 2013-03-04 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013053335A (ja) * 2011-09-02 2013-03-21 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013072136A (ja) * 2011-09-29 2013-04-22 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013159830A (ja) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc 表面被覆金属ナノ粒子、およびその製造方法
WO2013125604A1 (ja) 2012-02-20 2013-08-29 株式会社応用ナノ粒子研究所 酸素供給源含有複合ナノ金属ペースト及び接合方法
KR20130101986A (ko) * 2010-06-11 2013-09-16 도와 일렉트로닉스 가부시키가이샤 저온 소결성 접합재 및 상기 접합재를 이용한 접합 방법
WO2015004770A1 (ja) 2013-07-11 2015-01-15 株式会社応用ナノ粒子研究所 ナノ粒子の製造方法、製造装置及び自動製造装置
JP5950427B1 (ja) * 2015-06-12 2016-07-13 株式会社フェクト 銀鏡膜層形成用組成液の製造方法及び銀鏡膜層の形成方法
JP2018125360A (ja) * 2017-01-30 2018-08-09 株式会社日本スペリア社 熱電変換モジュールおよびその製造方法
TWI678710B (zh) * 2014-11-12 2019-12-01 日商哈利瑪化成股份有限公司 導電性糊劑及基板

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895962B2 (en) 2010-06-29 2014-11-25 Nanogram Corporation Silicon/germanium nanoparticle inks, laser pyrolysis reactors for the synthesis of nanoparticles and associated methods
KR101296327B1 (ko) * 2010-12-29 2013-08-14 포항공과대학교 산학협력단 표면 개질된 금속 나노입자 및 그 용도
US8882934B2 (en) 2011-09-02 2014-11-11 Mitsubishi Materials Corporation Solder powder, and solder paste using solder powder
US20140318618A1 (en) * 2011-11-21 2014-10-30 Hanwha Chemical Corporation Paste composition for front electrode of solar cell and solar cell using the same
KR101609497B1 (ko) * 2012-01-20 2016-04-05 도와 일렉트로닉스 가부시키가이샤 접합재 및 그것을 이용한 접합 방법
CN104203457B (zh) 2012-03-30 2016-04-13 应用纳米粒子研究所株式会社 含铜填料复合纳米金属软膏剂及其接合方法
JP6271716B2 (ja) 2013-05-24 2018-01-31 帝人株式会社 シリコン/ゲルマニウム系ナノ粒子及び高粘度アルコール溶媒を含有する印刷用インク
KR101887290B1 (ko) * 2013-10-07 2018-08-09 후루카와 덴키 고교 가부시키가이샤 접합 구조 및 전자부재 접합 구조체
WO2015129466A1 (ja) * 2014-02-27 2015-09-03 学校法人関西大学 銅ナノ粒子及びその製造方法、銅ナノ粒子分散液、銅ナノインク、銅ナノ粒子の保存方法及び銅ナノ粒子の焼結方法
WO2015137109A1 (ja) 2014-03-11 2015-09-17 富士電機株式会社 半導体装置の製造方法および半導体装置
JP6373066B2 (ja) * 2014-05-30 2018-08-15 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
WO2016080528A1 (ja) * 2014-11-21 2016-05-26 日清エンジニアリング株式会社 銀微粒子
JP5953361B2 (ja) * 2014-12-10 2016-07-20 株式会社伊東化学研究所 ナノ接合剤用ナノ粒子
KR20170011663A (ko) 2015-07-23 2017-02-02 덕산하이메탈(주) 발열 및 비정질 특성을 갖는 솔더 분말 제조 방법, 솔더 페이스트 제조 방법 및 솔더 페이스트를 이용한 저온 접합 방법
JP6920029B2 (ja) 2016-04-04 2021-08-18 日亜化学工業株式会社 金属粉焼結ペースト及びその製造方法、導電性材料の製造方法
JP6927490B2 (ja) * 2017-05-31 2021-09-01 株式会社応用ナノ粒子研究所 放熱構造体
CN107538147A (zh) * 2017-08-14 2018-01-05 武汉工程大学 一种复合纳米银焊料及由其制备而成的连接件
CN107538148B (zh) * 2017-08-14 2020-07-28 武汉工程大学 一种复合纳米银焊膏及其应用
KR101888526B1 (ko) 2017-08-28 2018-08-14 덕산하이메탈(주) 발열 및 비정질 특성을 갖는 솔더 분말 제조 방법, 솔더 페이스트 제조 방법 및 솔더 페이스트를 이용한 저온 접합 방법
JP7075785B2 (ja) * 2018-03-08 2022-05-26 スタンレー電気株式会社 回路基板、電子回路装置、および、回路基板の製造方法
CN111558728B (zh) * 2020-05-13 2022-12-27 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种多尺寸复合的纳米银膏及其制备方法
CN112117205B (zh) * 2020-09-15 2024-01-16 桂林航天工业学院 一种锡基钎料封装焊点的制备方法
CN113056088B (zh) * 2021-03-02 2021-09-03 福建钰辰微电子有限公司 高性能柔性电路板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076699A1 (en) 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
JP3205793B2 (ja) 1996-12-19 2001-09-04 株式会社巴製作所 超微粒子及びその製造方法
WO2001070435A1 (fr) 2000-03-22 2001-09-27 Ebara Corporation Particules metalliques composites ultrafines
JP2003342605A (ja) 2002-05-21 2003-12-03 Akio Komatsu 超微粒子、超微粒子結晶膜及び超微粒子結晶の製造方法
JP2004107728A (ja) 2002-09-18 2004-04-08 Ebara Corp 接合材料及び接合方法
WO2005075132A1 (ja) 2004-02-04 2005-08-18 Ebara Corporation 複合型ナノ粒子及びその製造方法
JP2007095510A (ja) 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd 導電性ペースト
JP2007191789A (ja) * 2005-12-19 2007-08-02 Fujifilm Corp コア/シェル型粒子およびその製造方法
JP2007254841A (ja) * 2006-03-24 2007-10-04 Nagaoka Univ Of Technology 表面に有機物被膜を形成した金属超微粒子の製造方法及び該製造方法に使用する製造装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063564A (en) * 1960-02-24 1962-11-13 Detrex Chem Ind Centrifugal extractor
FR2668076B1 (fr) * 1990-10-18 1993-04-30 Kodak Pathe Procede de separation de constituants solides d'une suspension et dispositif de mise en óoeuvre du procede.
JPH06163234A (ja) * 1992-11-26 1994-06-10 Kao Corp 表面処理磁性粉の製造方法及び磁気記録媒体用塗膜
JP3429958B2 (ja) * 1996-08-28 2003-07-28 三井金属鉱業株式会社 銀コロイド液の製造方法
US5792351A (en) * 1996-09-26 1998-08-11 The United States Of America As Represented By The Secretary Of The Navy Spinning filter separation system for oil spill clean-up operation
JP2001513697A (ja) * 1997-02-24 2001-09-04 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー エアロゾル法及び装置、粒子製品、並びに該粒子製品から製造される電子装置
US6486413B1 (en) * 1999-11-17 2002-11-26 Ebara Corporation Substrate coated with a conductive layer and manufacturing method thereof
US6599356B2 (en) * 2000-06-28 2003-07-29 Seiko Epson Corporation Method for manufacturing pigment dispersed liquid, and pigment dispersed liquid, and ink for ink-jet printer recording using said pigment dispersed liquid
JP3900248B2 (ja) * 2001-03-30 2007-04-04 ハリマ化成株式会社 多層配線板およびその形成方法
US7238472B2 (en) * 2001-05-25 2007-07-03 Nanosphere, Inc. Non-alloying core shell nanoparticles
US6951666B2 (en) * 2001-10-05 2005-10-04 Cabot Corporation Precursor compositions for the deposition of electrically conductive features
US7553512B2 (en) * 2001-11-02 2009-06-30 Cabot Corporation Method for fabricating an inorganic resistor
US6713241B2 (en) * 2002-08-09 2004-03-30 Eastman Kodak Company Thermally developable emulsions and imaging materials containing binder mixture
US6878184B1 (en) * 2002-08-09 2005-04-12 Kovio, Inc. Nanoparticle synthesis and the formation of inks therefrom
US6630291B1 (en) * 2002-08-21 2003-10-07 Eastman Kodak Company Thermally sensitive imaging materials containing phthalazine precursor
EP1578559B1 (en) * 2002-09-18 2009-03-18 Ebara Corporation Bonding method
JP2005157190A (ja) * 2003-11-28 2005-06-16 Konica Minolta Medical & Graphic Inc 有機銀塩粒子の製造方法及び熱現像画像記録材料
FR2862955B1 (fr) * 2003-12-02 2006-03-10 Commissariat Energie Atomique Nanocristaux inorganiques a couche de revetement organique, leur procede de preparation, et materiaux constitues par ceux-ci.
JP2005165006A (ja) * 2003-12-03 2005-06-23 Konica Minolta Medical & Graphic Inc 有機銀塩粒子の製造方法及び銀塩光熱写真ドライイメージング材料
US7208134B2 (en) * 2003-12-18 2007-04-24 Massachusetts Institute Of Technology Bioprocesses enhanced by magnetic nanoparticles
JP4020948B2 (ja) * 2004-02-04 2007-12-12 株式会社荏原製作所 複合型ナノ粒子の製造方法
US7524351B2 (en) * 2004-09-30 2009-04-28 Intel Corporation Nano-sized metals and alloys, and methods of assembling packages containing same
KR100633695B1 (ko) * 2004-12-08 2006-10-11 제일모직주식회사 초대입경 마블칩을 함유한 인조 대리석의 제조방법
WO2006076610A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation Controlling ink migration during the formation of printable electronic features
JP4301247B2 (ja) * 2005-01-21 2009-07-22 昭栄化学工業株式会社 球状銀粉末の製造方法
TWI285568B (en) * 2005-02-02 2007-08-21 Dowa Mining Co Powder of silver particles and process
JP5177339B2 (ja) * 2005-09-30 2013-04-03 関東化学株式会社 金属ナノ粒子、それを含む触媒及びアルキン化合物の水素化方法
JP2007204778A (ja) * 2006-01-31 2007-08-16 Ebara Corp 接合材料
JP2007238979A (ja) * 2006-03-06 2007-09-20 Daiken Kagaku Kogyo Kk 金属粉体、その製造方法及び導体用ペースト
TWI399759B (zh) * 2006-06-30 2013-06-21 Mitsubishi Materials Corp 形成太陽電池之電極用組成物及該電極之形成方法以及使用依該形成方法所得電極之太陽電池
JP2008077048A (ja) * 2006-08-23 2008-04-03 Fujifilm Corp 熱現像感光材料
US20080152534A1 (en) * 2006-12-21 2008-06-26 Jingwu Zhang Self-assembling raman-active nanoclusters
JP4872663B2 (ja) * 2006-12-28 2012-02-08 株式会社日立製作所 接合用材料及び接合方法
JP4873160B2 (ja) * 2007-02-08 2012-02-08 トヨタ自動車株式会社 接合方法
US20090181183A1 (en) * 2008-01-14 2009-07-16 Xerox Corporation Stabilized Metal Nanoparticles and Methods for Depositing Conductive Features Using Stabilized Metal Nanoparticles
TWI456707B (zh) * 2008-01-28 2014-10-11 Renesas Electronics Corp 半導體裝置及其製造方法
US20090214764A1 (en) * 2008-02-26 2009-08-27 Xerox Corporation Metal nanoparticles stabilized with a bident amine
JP5203769B2 (ja) * 2008-03-31 2013-06-05 富士フイルム株式会社 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体
JP4454673B2 (ja) * 2008-08-01 2010-04-21 株式会社新川 金属ナノインクとその製造方法並びにその金属ナノインクを用いるダイボンディング方法及びダイボンディング装置
US8382878B2 (en) * 2008-08-07 2013-02-26 Xerox Corporation Silver nanoparticle process
US7922939B2 (en) * 2008-10-03 2011-04-12 The Board Of Trustees Of The University Of Illinois Metal nanoparticle inks
TWI395613B (zh) * 2009-03-31 2013-05-11 Yeu Kuang Hwu 微粒及其形成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205793B2 (ja) 1996-12-19 2001-09-04 株式会社巴製作所 超微粒子及びその製造方法
WO2000076699A1 (en) 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
WO2001070435A1 (fr) 2000-03-22 2001-09-27 Ebara Corporation Particules metalliques composites ultrafines
JP2003342605A (ja) 2002-05-21 2003-12-03 Akio Komatsu 超微粒子、超微粒子結晶膜及び超微粒子結晶の製造方法
JP2004107728A (ja) 2002-09-18 2004-04-08 Ebara Corp 接合材料及び接合方法
WO2005075132A1 (ja) 2004-02-04 2005-08-18 Ebara Corporation 複合型ナノ粒子及びその製造方法
JP2007095510A (ja) 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd 導電性ペースト
JP2007191789A (ja) * 2005-12-19 2007-08-02 Fujifilm Corp コア/シェル型粒子およびその製造方法
JP2007254841A (ja) * 2006-03-24 2007-10-04 Nagaoka Univ Of Technology 表面に有機物被膜を形成した金属超微粒子の製造方法及び該製造方法に使用する製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2298471A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101709302B1 (ko) * 2010-06-11 2017-02-22 도와 일렉트로닉스 가부시키가이샤 저온 소결성 접합재 및 상기 접합재를 이용한 접합 방법
KR20130101986A (ko) * 2010-06-11 2013-09-16 도와 일렉트로닉스 가부시키가이샤 저온 소결성 접합재 및 상기 접합재를 이용한 접합 방법
JP2012132082A (ja) * 2010-12-24 2012-07-12 Mitsubishi Paper Mills Ltd 銀ナノワイヤの製造方法およびそれを用いた透明導電膜
JP2013036053A (ja) * 2011-08-03 2013-02-21 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013044016A (ja) * 2011-08-24 2013-03-04 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013053335A (ja) * 2011-09-02 2013-03-21 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013072136A (ja) * 2011-09-29 2013-04-22 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013159830A (ja) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc 表面被覆金属ナノ粒子、およびその製造方法
US9956610B2 (en) 2012-02-20 2018-05-01 Applied Nanoparticle Laboratory Corporation Oxygen source-containing composite nanometal paste and joining method
WO2013125604A1 (ja) 2012-02-20 2013-08-29 株式会社応用ナノ粒子研究所 酸素供給源含有複合ナノ金属ペースト及び接合方法
WO2015004770A1 (ja) 2013-07-11 2015-01-15 株式会社応用ナノ粒子研究所 ナノ粒子の製造方法、製造装置及び自動製造装置
US10427220B2 (en) 2013-07-11 2019-10-01 Applied Nanoparticle Laboratory Corporation Nanoparticle production method, production device and automatic production device
TWI678710B (zh) * 2014-11-12 2019-12-01 日商哈利瑪化成股份有限公司 導電性糊劑及基板
JP5950427B1 (ja) * 2015-06-12 2016-07-13 株式会社フェクト 銀鏡膜層形成用組成液の製造方法及び銀鏡膜層の形成方法
JP2017002219A (ja) * 2015-06-12 2017-01-05 株式会社フェクト 銀鏡膜層形成用組成液の製造方法及び銀鏡膜層の形成方法
JP2018125360A (ja) * 2017-01-30 2018-08-09 株式会社日本スペリア社 熱電変換モジュールおよびその製造方法

Also Published As

Publication number Publication date
CN101990474A (zh) 2011-03-23
JPWO2009090846A1 (ja) 2011-05-26
US8906317B2 (en) 2014-12-09
WO2009090767A1 (ja) 2009-07-23
US20130098205A1 (en) 2013-04-25
EP2298471A1 (en) 2011-03-23
US8348134B2 (en) 2013-01-08
EP2298471A4 (en) 2013-07-24
KR20100113566A (ko) 2010-10-21
CN101990474B (zh) 2013-09-04
WO2009090748A1 (ja) 2009-07-23
US8459529B2 (en) 2013-06-11
KR101222304B1 (ko) 2013-01-15
US20110042447A1 (en) 2011-02-24
US20130164187A1 (en) 2013-06-27
EP2298471B1 (en) 2020-02-05
JP4680313B2 (ja) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4680313B2 (ja) 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
US6730400B1 (en) Ultrafine composite metal particles and method for manufacturing same
KR100781586B1 (ko) 코어-셀 구조의 금속 나노입자 및 이의 제조방법
Yin et al. Colloidal synthesis of hollow cobalt sulfide nanocrystals
KR101387374B1 (ko) 은 입자 분말 및 이의 제조법
WO2011007608A1 (ja) 3金属成分型複合ナノ金属ペースト、接合方法及び電子部品
JP6037893B2 (ja) 金属微粒子組成物、接合材、電子部品、接合層の形成方法、導体層の形成方法及びインク組成物
EP2990142B1 (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
WO2018190246A1 (ja) 銅粒子混合物及びその製造方法、銅粒子混合物分散液、銅粒子混合物含有インク、銅粒子混合物の保存方法及び銅粒子混合物の焼結方法
WO2011007442A1 (ja) 2種金属成分型複合ナノ金属ペースト、接合方法及び電子部品
JP6422289B2 (ja) ニッケル粒子組成物、接合材及び接合方法
JP6042747B2 (ja) ニッケル微粒子、その使用方法及びニッケル微粒子の製造方法
TW201542731A (zh) 接合用組成物及使用該組成物之金屬接合體
JP2019067514A (ja) 導体形成用組成物、並びに接合体及びその製造方法
JP2005298921A (ja) 複合金属超微粒子及びその製造方法
Bhagathsingh et al. Low temperature synthesis and thermal properties of Ag–Cu alloy nanoparticles
JP6126426B2 (ja) 接合方法
JP5124822B2 (ja) 複合金属粉体およびその分散液の製造法
WO2019171908A1 (ja) 金属粒子凝集体及びその製造方法並びにペースト状金属粒子凝集体組成物及びこれを用いた複合体の製造方法
TW201606890A (zh) 接合用組成物及使用該組成物之金屬接合體
JP6338419B2 (ja) 金属粒子組成物、接合材及びそれを用いた接合方法
Sun et al. Fabrication of high reliability Cu joints at low temperatures using synergistic effect of organic composition for power device packaging
JP2010192172A (ja) 燃料電池用合金触媒電極の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128130.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009549977

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008870788

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107017975

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12735435

Country of ref document: US