WO2005075132A1 - 複合型ナノ粒子及びその製造方法 - Google Patents

複合型ナノ粒子及びその製造方法 Download PDF

Info

Publication number
WO2005075132A1
WO2005075132A1 PCT/JP2005/002098 JP2005002098W WO2005075132A1 WO 2005075132 A1 WO2005075132 A1 WO 2005075132A1 JP 2005002098 W JP2005002098 W JP 2005002098W WO 2005075132 A1 WO2005075132 A1 WO 2005075132A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
organic substance
composite
nanoparticles
temperature
Prior art date
Application number
PCT/JP2005/002098
Other languages
English (en)
French (fr)
Inventor
Yusuke Chikamori
Naoaki Ogure
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to JP2005517831A priority Critical patent/JPWO2005075132A1/ja
Priority to EP05710150A priority patent/EP1716947A4/en
Priority to US10/587,335 priority patent/US7799425B2/en
Publication of WO2005075132A1 publication Critical patent/WO2005075132A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/827Nanostructure formed from hybrid organic/inorganic semiconductor compositions
    • Y10S977/83Inorganic core or cluster coated with organic or biological shell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to composite nanoparticles (composite metal nanoparticles or composite inorganic metal compound nanoparticles) and a method of manufacturing the same, and in particular, the main components of a bonding material used to bond electrodes of a semiconductor device.
  • the present invention relates to composite nano particles used as a material and a method for producing the same.
  • metal nanoparticles With the miniaturization of semiconductor devices and electric / electronic parts, the applicability of metal particles with a particle diameter of 100 nm or less, so-called, metal nanoparticles to semiconductor devices, etc. has attracted attention.
  • Examples of the application of the metal nanoparticles to semiconductor devices and the like include those related to wiring formation and conductive paste with a small amount of liquid containing metal nanoparticles.
  • Sn—P b solder which is widely used for bonding various devices to the substrate in the process of mounting semiconductor devices, bonding between electrodes of high power semiconductor devices, etc. There is a need to replace it with one that does not contain lead.
  • Sn-Pb-based solders low-temperature solders such as normal 60% Sn- 40% Pb are mainly replaced with Sn-Ag-Cu-based lead-free solders.
  • Sn-95% Pb-based high-temperature solder which has a melting point of about 300 ° C, has no prospect of a lead-free solder material to replace this.
  • the Sn-95% Pb high-temperature solder is replaced with a bonding material mainly composed of composite nanoparticles with metal nanoparticles or inorganic metal compound nanoparticles as the core, and the nanoparticles themselves have If the use of high temperature solder can be totally eliminated by performing bonding based on low temperature sinterability, the advantage is considered to be extremely large.
  • metal nanoparticles are known to take different properties from bulk materials as their particle size decreases. This is thought to be because, in the case of metal nanoparticles, the proportion of atoms contained in one nanoparticle that are exposed to the surface is much larger than in the case of Balta.
  • Be One of the typical properties of these metal nanoparticles is the temperature at which sintering takes place. Table 1 shows the sintering start temperatures of various metal nanoparticles having a particle diameter of about 20 to 50 nm (Sai Ichinose, Yoshiharu Ozaki, Seiichiro Kagashi, “Ultrafine particle technology entrance” (19 8 8 7 Ohm company)).
  • metal nanoparticles are generally found to start sintering at a temperature significantly lower than commercially used powders.
  • lead-containing solder is widely used as a joining material for electrical parts, semiconductor devices, etc. The possibility of substitution is considered to be large.
  • metal nanoparticles generally have extremely high surface activity, they tend to approach and attract each other and aggregate even at normal temperature. And, once the metal nanoparticles cause aggregation, the particles become coarse, so the unique properties of the metal nanoparticles are rapidly lost. For this reason, it was generally considered difficult to apply metal nanoparticles to the formation of fine interconnections in semiconductors, the embedding of extremely small diameter vias, and the like.
  • composite metal nanoparticles have been developed in which individual metal nanoparticles are surrounded and protected by an organic coating.
  • a method of covering and protecting the surface of metal nanoparticles with this organic substance (1) physical means, before metal particles collide and cause aggregation during formation of metal nanoparticles, individual particles Two methods are generally used: a method of forming a solvent-coated film on the particle surface, and (2) coexistence of a solvent, a metal salt, a protective agent, a reducing agent, etc. in a liquid phase system and heating this. are known.
  • silver stearate is used as a raw material, which is heated to 250 ° C. in a nitrogen gas atmosphere to form composite silver nanoparticles. It has been proposed (see, for example, Japanese Patent Application Laid-Open No. 10 0 1 8 3 2 0 7). In this case, as shown in FIG. 1, around an average particle size d 2 of of about 5 nm of metal metal nuclei 2 2 consisting of (silver) component For example, the thickness h 2 is 1.5 degree of organic matter 2 4 Composite type silver nanoparticles 20 are produced.
  • the composite type silver nanoparticles 20 are for removing at least 2 5 0 of the metal nuclei 2 2 uniformly by desorbing the organic matter 2 4 from the surface of the metal nuclei (metal component) 2 2. It is known that a temperature of at least ° C is required, and the joining temperature of the joining material containing this as the main material is also 250 ° C or higher. This is because the organic substance 24 reacts with the metal core 22 and the organic substance 24 chemically bonds to the surface of the metal core 22 through the organic metal compound in which the metal (silver) is incorporated. Therefore, it is thought that this is because the binding energy is also large, and a high temperature (energy) is required to break this bond and desorb the organic substance 24 from the metal core 22.
  • composite type silver nanoparticles in the same manner as described above by heating in the presence of metal salt and alcohol organic matter and heating the temperature above the decomposition start temperature of alcohol organic matter.
  • metal salt and alcohol organic matter for example, International Publication No. 0 1/7 0 4 3 5 Pamphlet.
  • composite silver nanoparticles are produced, for example, in which an organic particle having a thickness of about 1.5 nm is coated around a metal core composed of a metal (silver) component having an average particle diameter of about 7 to 10 nm.
  • this composite type silver nanoparticle also requires a temperature of at least 250 ° C. or more to desorb the organic matter from the surface of the metal core and to sinter the metal core uniformly.
  • the bonding temperature of the bonding material containing this as the main material will also be 250 ° C or higher. This is also considered to be because the organic substance is chemically bonded to the surface of the metal core through the organometallic compound, as described above. Disclosure of the invention
  • a temperature of at least about 250 ° C. or more is necessary to dissociate the organic matter from the metal core and sinter the metal core uniformly.
  • the bonding temperature of the bonding material mainly composed of composite metal nanoparticles also becomes about 250 ° C. or higher. Therefore, bonding of semiconductor devices and electrical parts, etc. Judging from the current situation where the heating temperature (bonding temperature) required for solder bonding, which is often used in Japan, is around 200 ° C, the conventional composite metal nanoparticle-based bonding material is used for bonding. The temperature required is too high.
  • the present invention has been made in view of the above circumstances, and the temperature at which the metal core is uniformly sintered by desorbing the organic substance from the metal core is significantly reduced, or the organic substance is removed from the central portion containing the organic metal compound.
  • An object of the present invention is to propose a composite type nanoparticle which can be applied as an alternative to bonding by soldering by significantly reducing the temperature at which the center part is metallized by detachment and a method of manufacturing the same.
  • the composite nanoparticle of the present invention has a central portion composed of a metal component, and the metal component is surrounded by an organic substance physically bound thereto.
  • the organic substance in the structure surrounded by the organic substance physically bound to the metal component (metal nucleus) in the central part, the organic substance is different from the chemical bond, and on the surface of the metal component It is loosely bound, and therefore, at a much lower temperature than conventional composite metal nanoparticles, in which the organic matter is chemically bound around the metal component (metal core) via the organometallic compound. And, with low energy, the organic matter can be desorbed from the surface of the metal component (metal core).
  • Another composite type nanoparticle of the present invention is composed of a metal component in the center, and around the metal component, an organic substance having a thermal desorption start temperature of 140 ° C. or more and less than 190 ° C. It is surrounded.
  • the composite type nanoparticles can be obtained.
  • the bonding temperature can be made around 200 ° C. or around.
  • Still another composite type nanoparticle of the present invention has a central portion composed of a metal component, and the metal component is surrounded by an organic material having a desorption energy of 0.3 e V or less per metal atom. There is.
  • the organic substance surrounding the central metal component from the metal component can be intervened through the organometallic compound.
  • Organic matter with much lower energy than conventional composite metal nanoparticles chemically bonded around metal components (metal nuclei) Can be released from the surface of the metal component (metal core).
  • the organic substance preferably consists of carbon, hydrogen and oxygen only. If the organic matter of the composite type nanoparticles contains an element other than carbon (C), hydrogen (H) or oxygen (O), such as nitrogen (N) or sulfur (S), the organic matter is released from the metal component Even if this is done, the N or S component contained in the organic matter may remain in the sintered metal obtained by sintering the metal component, and as a result, the conductivity etc. may be adversely affected. By using organic substances that do not contain N or S, the phenomenon that N or S remains after the elimination of organic substances is eliminated, and the conductivity decreases due to the remaining N or S components. It can eliminate the negative effects of
  • the metal component is composed of, for example, at least one of Cu, Ag, Pt, Pd, Ni, Au, Ru and Rh.
  • the content of the metal component is 50 to 99% by weight of the whole.
  • the average particle size of the central portion is preferably 1 to 100 nm. Even if the particle size of the central part (metal component) of the composite type nanoparticles changes, the thickness of the organic coating surrounding the same is basically the same, so the weight ratio of the metal component to the organic substance is , It changes with the particle size of the metal component. That is, if the particle size of the metal component is too small, the ratio of the organic substance to the whole relatively increases, and as a result, it is difficult to rapidly separate the organic substance from the metal component when it is fired. On the other hand, if the particle size of the metal component becomes too large, the characteristics as metal nanoparticles are rapidly lost, and it becomes difficult to maintain, for example, the essential low temperature sinterability in bonding.
  • the average particle diameter of the central portion (metal component) is preferably 1 to 20 nm, particularly preferably 5 to 15 nm.
  • Still another composite type nanoparticle of the present invention contains at least an inorganic metal compound in the center, and the center is covered with an organic substance that is physically adsorbed.
  • the central portion contains an inorganic metal compound that is thermally decomposed at a relatively low temperature, and the peripheral portion of the central portion is It becomes stable state only by coating with organic matter. Therefore, it can be metallized at a temperature around 200 ° C. lower than that of conventional composite metal nanoparticles.
  • the organic substance preferably consists of carbon, hydrogen and oxygen only. Since organic substances only need to cover the central part containing a metal inorganic compound with a weak binding strength to the extent of physical adsorption, they have a functional group containing an element having strong binding power to metal elements such as nitrogen and sulfur. There is no need. Also, by using an organic substance consisting only of carbon, hydrogen and oxygen, there is no risk that nitrogen or sulfur will remain in the metal when metallizing a metal inorganic compound.
  • the inorganic metal compound is preferably made of an inorganic compound of at least one metal of Cu, Ag, Pt, ⁇ d, Ni, Au, Ru and Rh.
  • the metal element any one of those listed above may be used, but in some cases, a mixture of these may be used.
  • the inorganic compound may be in any form as long as it can be thermally decomposed at a low temperature, but carbonates and oxides that do not cause problems such as residue during decomposition are preferable.
  • the inorganic metal salt and the organic substance are allowed to coexist, the inorganic metal salt is decomposed to form metal nanoparticles, and the metal nanoparticles and the organic matter react with each other.
  • the metal salt and the organic substance are heated to a predetermined temperature and held for a certain period of time so that the organic substance is physically adsorbed around the metal nanoparticles without forming the organometallic compound.
  • the inorganic metal salt and the organic substance are allowed to coexist, and heating to a predetermined temperature and holding for a certain period of time causes physical adsorption of the central metal component (metal core), not chemical bonding.
  • an inorganic metal salt and an organic substance coexist, and at least a part of the inorganic metal salt reacts with the organic substance to form an organometallic compound.
  • the inorganic metal salt and the organic substance are heated to a predetermined temperature so that the organic substance is physically adsorbed around the central portion including the inorganic metal salt or the inorganic metal compound generated by thermal decomposition thereof. Heat to and hold for a fixed time.
  • the inorganic metal salt and the organic substance coexist, and heating to a predetermined temperature and holding for a certain period of time causes at least the central portion containing the inorganic metal compound to be physically adsorbed rather than chemically bonded.
  • Composite nanoparticles composite inorganic metal compound nanoparticles having a structure surrounded by bound organic substances can be produced.
  • the inorganic metal salt is silver carbonate, the organic material and this is preferably a higher alcohol.
  • the higher alcohol is a triglyceride alcohol, and the heating temperature is
  • the temperature is preferably 70 ° C. or more and less than 140 ° C.
  • silver carbonate (inorganic metal salt) and myristyl alcohol (organic substance) are heated at a temperature of 70.degree. C. or more and less than 140.degree. C. for a predetermined time, for example, 2 h at a temperature of 120.degree. ⁇
  • a composite type nanoparticle in which the organic substance is physically bonded to the metal component or the inorganic metal compound without being chemically bonded to the metal component (silver) or the inorganic metal compound (silver carbonate) by holding. Can be generated.
  • silver carbonate (inorganic metal salt) and ferris alcohol (organic substance) are heated for 2 h at a temperature of 140 ° C exceeding the above limit range, the organic matter is the metal component (silver).
  • Still another composite type nanoparticle of the present invention is prepared by causing an inorganic metal salt and an organic substance to coexist and heating, and the heating temperature is T (° C.), and the holding time at this temperature is t (h), It is manufactured by holding so that the following formula (2) holds.
  • the central portion (metal component and Z or inorganic metal compound) is removed
  • the organic matter to be protected is bound loosely to the surface of the core, unlike physisorption or chemical bonding on the surface of the core. Because of this, organic matter is chemically bound around the metal component (metal core) and The organic substance can be desorbed from the central part by heating at, for example, 140.degree. C. or more and less than 190.degree. C. at a temperature much lower than that of the conventional composite metal nanoparticles.
  • FIG. 1 is a view schematically showing a conventional composite metal nanoparticle.
  • FIG. 2 is a view schematically showing a composite type nanoparticle (composite type metal nanoparticle) according to the embodiment of the present invention.
  • FIG. 3 is a view schematically showing a composite type nanoparticle (composite type inorganic metal compound nanoparticle) according to another embodiment of the present invention.
  • FIG. 4 is a view schematically showing a composite type nanoparticle (composite type inorganic metal compound nanoparticle) according to still another embodiment of the present invention.
  • FIG. 5 is a flow chart showing an example of a model of the formation reaction of composite nanoparticles according to the embodiment of the present invention.
  • Fig. 6 is a graph showing the correlation between the nanoparticle formation temperature and the particle size (average value) as the relationship between the calculated value and the measured value by Allenius.
  • FIG. 7 is a flow chart showing another example of a model of the formation reaction of composite nanoparticles according to the embodiment of the present invention.
  • Fig. 8A is a graph showing a thermal analysis curve (DTA curve and TG curve) of the composite nanoparticles of the present invention
  • Fig. 8B is a thermal analysis curve of composite metal (silver) nanoparticles of a comparative example. (DTA curve and TG curve)
  • FIG. 9 is a graph showing a thermal analysis curve of another composite nanoparticle of the present invention.
  • FIG. 10 is a diagram showing a spectrum when a constituent substance of the composite type nanoparticle (sample material) of the present invention is qualitatively analyzed and identified by the X-ray diffraction method.
  • FIG. 11 is a spectrum obtained by performing GC (gas chromatography) single mass spectrometry / identification of the composite type nanoparticle (sample material) of the present invention by heating.
  • FIG. 12 is a graph showing the relationship between the heating temperature / holding time and the thermal desorption temperature of the organic substance when the composite nanoparticle of the present invention is formed.
  • FIG. 2 schematically shows a composite nanoparticle (composite metal nanoparticle) according to an embodiment of the present invention.
  • this composite type nanoparticle 10 has a central portion composed of a metal component (metal core) 12, and the metal component 12 is surrounded by an organic substance 14 physically attached in a adsorptive manner. It has a configuration.
  • the organic substance 14 plays a role as a protective film of the metal component 12.
  • the composite metal nanoparticles 10 are small and have excellent dispersion stability.
  • organic compound 14 is different from the chemical bond, Loosely bonded to the surface of the metal component 12
  • organic compound 24 is chemically bonded to the periphery of metal component (metal core) 22 via an organometallic compound, as compared with conventional composite metal nanoparticles 20.
  • the organic substance 14 can be desorbed from the surface of the metal component (metal core) 12 at a much lower temperature and with a low energy.
  • the thermal desorption start temperature from the metal component 12 surface of the organic substance 14 of the composite type nanoparticle 10 is 140 ° C. or more and less than 190 ° C.
  • the thermal desorption initiation temperature from the metal component 12 of the organic substance 14 surrounding the metal component 12 of the central part is made 140.degree. C. or more and less than 190.degree. C.
  • the bonding temperature can be set to about 200 ° C.
  • bonding using solder inside and outside at a heating temperature (bonding temperature) of 200 ° C which is often used for bonding of semiconductor devices and electrical parts, is a method to which this composite type nanoparticle 10 is applied. It can be substituted.
  • the desorption energy from the surface of the metal component 12 of the organic substance 14 of the composite metal nanoparticle 10 is 0.3 eV or less per metal atom. As a result, this desorption energy is extremely small compared to the desorption energy from the surface of the metal component (metal nucleus) 22 of the organic substance 24 in the conventional composite metal nanoparticles 20 shown in FIG. can do.
  • Organic matter 14 consists of carbon (C), hydrogen (H) and oxygen (O).
  • nitrogen (N 2) or sulfur (S 2) in the organic substance 1 4 of the composite metal nanoparticle 10 After making the organic substance 14 be desorbed from the metal component 12 by not containing any impurities, N and S remain in the metal part, thereby sintering the metal component 12
  • the conductivity of the sintered metal obtained by the above can be prevented from being lowered by remaining N and S components.
  • the metal component 12 consists of at least one of Cu, Ag, Pt, Pd, Ni, Au, Ru and Rh. Further, the content of the metal component 12 is preferably 50 to 99% by weight, and the average particle diameter of the metal component (central part) 12 is generally 1 to L O O n m.
  • the weight ratio of metal component 1 2 to organic substance 1 4 is the particle size of metal component 1 2 d! It changes with That is, when the particle diameter d of the metal component 12 is too small, the ratio of the organic substance 14 to the whole relatively increases, and as a result, when it is fired, the desorption of the organic substance 14 from the metal component 12 is rapidly It is difficult to do On the other hand, if the particle diameter d i of the metal component 12 becomes too large, the characteristics as metal nanoparticles are rapidly lost, and it becomes difficult to maintain the low temperature sinterability, which is indispensable for bonding.
  • the sintering start temperature of the metal component 12 is known to decrease as the particle diameter d decreases, but the particle diameter d at which the effect starts to appear is 100 nm or less.
  • the average particle diameter of the metal component (metal core) 12 is preferably 1 to 20 ti m, and particularly preferably 5 to 15 nm.
  • FIG. 3 schematically shows a composite nanoparticle (composite inorganic metal compound nanoparticle) according to another embodiment of the present invention.
  • this composite type nanoparticle 30 is composed of a metal component (metal core) 34 with a central part 32 and an inorganic metal compound 36 surrounding the periphery of the metal component 34.
  • the metal compound 3 6 is surrounded by a physisortically bound organic substance 3 8.
  • the organic substance 38 plays a role as a protective film, and thus, by coating the periphery of the central part 32 with the organic substance 38, a composite type having a small tendency to aggregate and having excellent dispersion stability is obtained.
  • Nanoparticles 30 are constructed.
  • the organic substance 38 which is physically and adsorpically bound around the inorganic metal compound 36 in the central part 32 is surrounded, the organic substance 38 is chemically It is loosely bound to the surface of the inorganic metal compound 36, unlike other bonds. Therefore, the organic substance 38 can be desorbed from the surface of the inorganic metal compound 36 at a much lower temperature and lower energy than the conventional composite metal nanoparticle 20 (see FIG. 1). .
  • the thermal desorption starting temperature from the surface of the inorganic metal compound 3 6 of the organic substance 3 8 of the composite type nanoparticles 30 and the thermal decomposition starting temperature of the inorganic metal compound 3 6 are 140 ° C. or higher, 190 ° C. It is less than C.
  • the thermal desorption start temperature from the surface of the inorganic metal compound 36 of the organic substance 38 and the thermal decomposition start temperature of the inorganic metal compound 36 are from 140 ° C. or more to less than 190 ° C.
  • the organic substance 38 is composed of carbon (C), hydrogen (H) and oxygen (O) as described above.
  • the inorganic metal compound 36 is composed of an inorganic compound of at least one of Cu, Ag, Pt, Pd, Ni, Au, Ru and Rh.
  • the metal element may be any one of those listed here, but in some cases, a mixture of these may be used.
  • the inorganic metal compound 36 may contain an alloy composed of the above metal.
  • the inorganic compound may be in any form as long as it can be pyrolyzed at a low temperature, but carbonates and oxides which are less likely to cause problems such as residue during decomposition are preferred.
  • the particle diameter d 3 of the central part 32 of the composite type nanoparticle 30 is generally 1 0 0 nm or less as in the above example, but preferably 1 to 2 0 nm. Particularly preferred is 5 to 15 nm.
  • FIG. 4 schematically shows a composite nanoparticle (composite inorganic metal compound nanoparticle) according to still another embodiment of the present invention.
  • the central part 42 is composed of a mixture of the metal component 44 and the inorganic metal compound 46, and around this central part 42 is physically adsorbed. It has a configuration surrounded by bound organic matter 48.
  • the organic substance 48 plays a role as a protective film, and thus, by coating the periphery of the central part 42 with the organic substance 48, a composite which is less prone to aggregation and has excellent dispersion stability is obtained.
  • Type nano particle 40 is constructed.
  • the organic substance 48 is different from the chemical bond in the structure of the metal component 44 and the inorganic metal compound 46 on the surface. Loosely coupled. Therefore, the organic substance 48 can be detached from the surface of the central portion 42 at a much lower temperature and lower energy than the conventional composite metal nanoparticles 20.
  • the thermal desorption initiation temperature of the central portion 42 of the organic substance 48 of the composite type nanoparticles 30 and the thermal decomposition initiation temperature of the inorganic metal compound 46 are 140 ° C. or more and less than 190 ° C.
  • the thermal desorption initiation temperature from the central portion 42 of the organic substance 48 and the thermal decomposition initiation temperature of the inorganic metal compound 46 can be set to about 200.degree.
  • the organic matter 48 consists of carbon (C), hydrogen (H) and oxygen (O), as described above.
  • the inorganic metal compound 46 is an inorganic compound of at least one of Cu, Ag, Pt, Pd, Ni, Au, Ru and Rh.
  • the particle diameter d 4 of the central part 42 of the composite type nanoparticle 40 is generally 10 0 nm or less, but is preferably 1 to 2 O nm, as in the above-mentioned example. Particular preference is given to 15 nm.
  • FIG. 5 shows an example of a model of the formation reaction of the composite nanoparticle 10 according to the embodiment of the present invention shown in FIG.
  • the case of composite nanoparticles (composite silver nanoparticles) in which the metal component (metal core) is made of silver will be described in detail below.
  • the composition of the metal core does not have to be specified as silver, and it is a matter of course that the production method can be carried out in a similar form also in the case of a metal core having a composition other than silver.
  • silver carbonate as a metal salt which is a raw material
  • a silyl still alcohol as an organic substance are uniformly mixed.
  • the melting point of this triglyceride alcohol is 36.4 ° C. and is solid at normal temperature.
  • the silver carbonate is decomposed to form metal (silver) nanoparticles, and the metal (silver) nanoparticles and the organic matter react with each other to generate an organic metal compound.
  • the mixture is heated to a predetermined temperature, for example 70 ° C. or higher, to a predetermined temperature less than 140 ° C., such that the organic matter is physically attached around the metal (silver) nanoparticles without being This temperature is maintained for a fixed time.
  • composite nanoparticles (composite metal (silver) nanoparticles) 10 in which 14 are bound by physical adsorption around metal (silver) component 12 are formed.
  • the formation mechanism of composite metal (silver) nanoparticles is considered as follows. Formation of complex metal (silver) nanoparticles>
  • Myristyl alcohol melts at 36.4 ° C., and silver carbonate disperses in the melted milletyl alcohol. And, for example, 1 2 0.
  • silver carbonate is first decomposed as in the following formula (3).
  • Ag 2 C 0 3 constituting the core breaks up into fine particles sequentially while causing the reaction of formula (3).
  • the molecular state of A g 20 is finally generated (molecular dispersion state).
  • the molecular Ag 2 0 is easily reduced to form atomic silver (silver atom), and this atomic silver is aggregated in a short time to form silver nano particles of a certain size, for example, about 9 nm. Grow to particles.
  • atomic silver since atomic silver is active, it is unstable in a single dispersed state, and therefore, a plurality of atomic silver condenses to grow into aggregates of a certain size.
  • a certain number of atomic silver aggregates to form nuclei of particles of a certain size. If the size of the nucleus reaches a certain critical value or more due to the thermal activation process, then aggregation and growth will continue stably, and metal (silver) nanoparticles of a certain equilibrium size (eg 9 nm) To reach.
  • a certain critical value or more due to the thermal activation process then aggregation and growth will continue stably, and metal (silver) nanoparticles of a certain equilibrium size (eg 9 nm) To reach.
  • the aggregation of the silver particles is to reduce the total surface energy of the whole system, but when the particles grow to a certain size, the growth is stopped by the action of the organic substances present around them, and the silver nanoparticles Surface covered with organic matter It becomes. As a result, the aggregation / coalescence of atomic silver and silver particles is stopped, and composite silver nanoparticles independently dispersed in myristyl alcohol are formed.
  • the giant surface energy of the nanoparticle surface immediately starts aggregation of the nanoparticles at high speed, but when the nanoparticle growth progresses to a certain size
  • the relative growth rate is reduced (stable growth), and the interaction with the surrounding organic matter takes place more actively, and the surface of the metal nanoparticles is protected by the organic matter.
  • the composite silver nanoparticles thus produced are present in myristyl alcohol in an independent ⁇ dispersed form.
  • the relationship between heating temperature and particle growth is considered. Nucleation occurs in more places, as higher heating temperatures increase the nucleation frequency of metal (silver) particles. As a result, a large number of nuclei are formed, and each of them grows by taking in the surrounding atomic silver, so that the surrounding atomic silver is rapidly depleted. Resulting in. Thus, the size of each silver nanoparticle is reduced. In other words, since the growth starts from small nuclei, the particle size after growth is smaller than at low temperature.
  • the particle diameter of the metal particles produced by this method becomes smaller as the heating-holding temperature becomes higher. This is consistent with the mechanism by which metal nuclei are generated and grown from the metal atoms present in the solution in supersaturated state by the thermal activation process.
  • This organic substance has a linear structure consisting of C 1 H 2 O, and has a form in which the organic substance is physically and adsorptively bound to metal particles. That is, according to this example, for example, by holding a mixture of silver carbonate and myristyl alcohol at 120 for 2 h for 2 h, the physical adsorption around metal (silver) component 12 shown in FIG. Composite nanoparticles (complex metal (silver) nanoparticles) surrounded by organic compounds 14 can be generated.
  • Composite nanoparticles (composite metal (silver) nanoparticles) 10 shown in FIG. 2 are produced when silver carbonate is completely decomposed. However, as shown in FIG. 7, when silver aggregation occurs during decomposition of silver carbonate due to manufacturing conditions, undecomposed silver carbonate particles adhere around the silver particles, as shown in FIG.
  • the central portion 32 is composed of a metal component (metal core) 34 and an inorganic metal compound 36 surrounding the metal component 34, and the inorganic metal compound 36 is physically attached around it.
  • a composite nanoparticle (composite inorganic metal compound nanoparticle) 30 having a configuration surrounded by the organic substance 38 is formed.
  • an inorganic metal salt and an organic substance coexist, and at least a part of the inorganic metal salt reacts with the organic substance to form an organic metal compound, or an inorganic metal salt or its thermal decomposition
  • an organic metal compound or an inorganic metal salt or its thermal decomposition
  • the organic matter gradually changes.
  • Ru that is, as described above, the organic substance has a linear structure consisting of C—H—O at the beginning of formation, but the organic substance and the metal are maintained by being maintained at a temperature higher than a predetermined temperature for a certain time or more. It is thought that the interaction with the compound proceeds and the organometal compound becomes dominantly present. That is, the organic substance that was originally physically adsorbed is transformed into an organometallic compound.
  • FIGS. 8A and 8B Thermal decomposition curves (DTA curve and TG curve) of silver nanoparticles (comparative example) are shown in FIGS. 8A and 8B.
  • the heating rate is 5 ° C / min.
  • the present invention shown in FIG. 8A is at about 180.degree. C. and the comparative example shown in FIG. 8B is at about .220.degree. It is considered that peaks (exothermic reaction) have occurred, and desorption and / or decomposition of the organic substance from the surface of the metal component (metal nucleus) has occurred near this temperature. That is, in the present invention, the peak temperature is about 40 ° C. lower than that of the comparative example. Moreover, in the present invention, the peak is generated very sharply, but in the comparative example, the width of the peak is widely spread.
  • the present invention produced by holding at 120 ° CX 2 h for heating decomposes the organic matter at a much lower temperature than the comparative example produced by heating and holding at 140 ° CX 2 h. And desorbed from the silver component (silver core).
  • the desorption energy required for this is extremely small at 0.3 eV per silver atom, which is about 1/8 of that of the conventional example.
  • the uniformity of the particle characteristics is high (because the peak of the curve appears sharply). This can be said to be a very convenient property for bonding applying the low temperature sinterability of composite silver nanoparticles.
  • the present invention shown in FIG. 8A is the comparison shown in FIG. 8B.
  • the weight loss occurs much more rapidly, which indicates that the desorption of the organic matter occurs rapidly.
  • the uniformity of the particle characteristics including the particle diameter of the composite type silver nanoparticles according to the present invention is high, and the detachment of the organic matter from all of the particles starts at the same time when the temperature in the system reaches a predetermined temperature. Is shown.
  • the uniformity of the particle characteristics is at least inferior to that of the present invention, and for this reason, all the organic substances are eliminated from the metal component (metal core).
  • the organic substance detach from the metal component (metal core) in a short time, so the composite silver nanoparticles of the present invention are applied to the bonding of the comparative example. It is suitable for eliminating the inconveniences of welding and for causing good bonding.
  • Fig. 8A shows the thermal control of the ordinary temperature control level, that is, the thermal condition of the composite type nanoparticles formed within the control temperature of the holding temperature within ⁇ 0.5 ° C under the heating and holding conditions of 120 ° CX 2 h.
  • the decomposition curve is shown.
  • the thermal decomposition curve of the particles is shown in FIG.
  • the peak temperature in the DTA curve is about 178.degree. C., and although the peak temperature is approximately the same as that shown in FIG. 8A, the peak of the curve is extremely narrow.
  • the change behavior of the TG curve at that temperature is also extremely rapid. This is considered to be attributable to the fact that the uniformity of the particle characteristics is extremely high, and the composite type nanoparticles produced by the strict holding temperature control are suitable for use in high quality bonding. .
  • Fig. 10 shows the same composition as shown in Fig. 9.
  • the complex was generated under the temperature control to make the control deviation within ⁇ 0. 1 ° C under the heating and holding conditions of 120 ° C CX 2 h. It shows the spectrum of X-ray diffraction qualitatively analyzed and identified the constituent substances of type nanoparticles (test material). From FIG. 10, it can be seen that the composite nano particles have the form of composite inorganic metal compound nano particles containing at least both silver carbonate and metallic silver.
  • Tetradecanol (another name of myristyl alcohol) accounts for about 60 wt ° / o of the whole organic matter, which is considered to be derived from myristyl alcohol used as a raw material.
  • the composite nanoparticles of the present invention can be uniformly dispersed in a solvent such as toluene.
  • the composite nanoparticles of the present invention are characterized by having no dispersibility with respect to the organic substance.
  • the composite metal nanoparticles of the present invention have the possibility of being dispersed in water to which a surfactant has been added. Temperature x time effect>
  • Table 2 shows the temperature-time parameter (Laser-Miller parameter; I) that quantitatively describes the effect of the thermal activation process according to the following equation (4).
  • the amount of progress of the reaction is represented by a parameter in the form of T ⁇ (C + 1 ogt) in the phenomenon where the thermal activation process typified by atomic diffusion is the basis, and this value If is the same, the general law holds that the same property, state, is reached. Therefore, it is represented by the equation (4); I is often used as an index of the reaction amount by thermal activation as a Larson 'Miller parameter.
  • the Larson 'mirror parameters in the case of heating ⁇ holding at 100 ° CX 1 4 h, and 120 ° CX 2 h are respectively 7. 9 8 and In the case of heating equal to 140 ° CX 2 h, the Larson Miller parameter ⁇ is 8.38, which is much larger than the former, and this heating ⁇ It is considered that the organic metal compound was formed by the retention time effect. In other words, even if it is in the same category of composite type nanoparticles, in the case of ⁇ ⁇ .
  • Equation (4) although the value of constant C used is 20 which is often used in high temperature deformation of metal, it is similar also in the case of organic metal compound formation in that atomic diffusion becomes elementary process. It is assumed that it can be handled.
  • the Larson Miller parameter ⁇ is at least 7. 9 in order to obtain composite silver nanoparticles of the desired properties. It is necessary to carry out heating and holding to be 8 or less. As a practical heating operation (heating and holding), for example, it is appropriate to perform a treatment of holding at a heating temperature of 120 ° C. for 2 h, and at 120 ° C. or higher, the phenomenon progresses. As the speed increases, the risk of producing organometallic compounds increases.
  • the heating temperature is as low as 100 ° C. In this case, since the holding time needs to be extremely long, the manufacturing time tends to be long, which is an uneconomical process. Therefore, the heating temperature
  • Table 3 shows composite silver nanoparticles (invention) produced by heating and holding silver carbonate and myristyl alcohol at 120 ° CX 2 h as described above, and also at 140 ° CX.
  • Composite type silver nanoparticles (comparative example 1) produced by heating and holding for 2 h and silver stearate as a raw material, and this produced a composite produced by heating to 250 ° C. in a nitrogen gas atmosphere
  • the production conditions and characteristics of the silver nanoparticles (Comparative Example 2) and the bonding start temperature when these are used as main materials of the bonding material are shown. ⁇ Table 3 ⁇
  • Table 4 shows the comparison in the case of manufacturing by changing the heating temperature and the heating time in the practice of the present invention. ⁇ Table 4 ⁇
  • FIG. 12 shows how the thermal desorption temperature of an organic substance changes depending on the heating temperature and holding time at the time of production in the present invention.
  • Figure 12 is created by plotting the temperature corresponding to the first peak of the thermal analysis curve (TG curve) as the value on the horizontal axis.
  • Figure 12 enables quantitative estimation of the effect of heating temperature and holding time on organic substance releasability during production.
  • the composite nanoparticle of the present invention is used as a main component of a bonding material used to bond, for example, between electrodes of a semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

複合型ナノ粒子は、金属核から有機物を脱離させて、金属核を均一に焼結させる温度を大幅に低減させて、はんだによる接合の代替として応用できるようにする。複合型ナノ粒子(10)は、中心部が金属成分(12)からなり、該金属成分の周りを物理吸着的に結合した有機物(14)で取囲んだ構造を有しており、無機金属塩と有機物質とを共存させ、無機金属塩が分解して金属ナノ粒子が生成され、金属ナノ粒子と有機物が反応を起して有機金属化合物が生成されることなく、金属ナノ粒子の周りに有機物が物理吸着的に結合されるように金属塩と有機物質を所定の温度に加熱し一定時間保持することによって生成される。

Description

複合型ナノ粒子及びその製造方法 技術分野
本発明は、 複合型ナノ粒子 (複合型金属ナノ粒子または複合型無機金 属化合物ナノ粒子) 及びその製造方法に係り、 特に半導体装置の電極間 等を接合するのに使用される接合材料の主材として用いられる複合型ナ ノ粒子及びその製造方法に関する。
背景技術 細
半導体装置や電気 ·電子部品の小型化に伴い、 粒径が 1 0 0 n m以下 の金属粒子、 所謂、 金属ナノ粒子の半導体装置等への応用可能性が注目 を集めている。 この金属ナノ粒子の半導体装置等への応用としては、 例 えば、 金属ナノ粒子を含む微量液体による配線形成や導電性ペース トに 関するものが挙げられる。
従来、半導体装置の実装工程に於ける各種デバイスの基板への接合や、 大電力の半導体装置の電極間接合等に広く用いられる S n— P b系はん だは、 環境保全の観点等から、 鉛を含まないもので代替することが求め られている。 S n— P b系はんだのうち、 通常の 6 0 % S n— 4 0 % P b等の低温はんだは、 主として、 S n—A g— C u系の無鉛はんだによ つて、 これを代替する技術がほぼ確立されている。 しかしながら、 融点 が 3 0 0 °C程度の S n— 9 5 % P b系の高温はんだは、 これを代替する 無鉛組成のはんだ材料の目途が未だ立っていないのが現状である。 そこ で、 S n— 9 5 % P b系の高温はんだを、 金属ナノ粒子または無機金属 化合物ナノ粒子を核とした複合型ナノ粒子を主材とする接合材料で代替 し、 ナノ粒子自体が持つ低温焼結性に基づく接合を行うことによって、 高温はんだ使用を全廃出来れば、 その利点は著しく大きなものとなると 考えられる。
一般的に金属ナノ粒子は、 その粒径が小さくなるにしたがって、 バル クの材料とは異なる性質を帯びることが知られている。 これは、 金属ナ ノ粒子の場合、 1個のナノ粒子に含まれる原子のうち表面に露出してい るものの割合が、 バルタの場合に比べて遙かに大きいためであると考え られる。 この金属ナノ粒子の代表的な性質の一つとして、 焼結の起る温 度がある。 表 1は、 2 0〜 5 0 n m程度の粒径の各種金属ナノ粒子の焼 結開始温度を示す (一ノ瀬昇、 尾崎義治、 賀集誠一郎、 「超微粒子技術入 門」 ( 1 9 8 8 . 7 オーム社) 参照)。
【表 1】 金属 m n m 焼結開始献 °C
F e 5 0 300〜400
A g 2 0 60〜80
N i 2 0 〜200
C u 200 表 1で明らかなように、 金属ナノ粒子は、 通常、 工業的に用いられる 粉体よりも著しく低い温度で焼結を開始することがわかる。 このような 金属ナノ粒子の低温焼結性を利用して、 低温での部材の接合に金属ナノ 粒子を応用することで、 電気部品や半導体装置等の接合材料として多用 されている鉛入りはんだを代替する可能性が大きいと考えられる。
一方、 金属ナノ粒子は、 一般に表面の活性が著しく高いので、 常温で も金属ナノ粒子同士が接近して引合い、 凝集してしまう傾向を持ってい る。 そして、 金属ナノ粒子が一旦凝集を起せば、 粒子は粗大化してしま うので、 金属ナノ粒子としてのユニークな特性は急速に失われる。 この ため、 金属ナノ粒子を半導体の微細配線形成や極細径ビアの埋込み等に 応用することは、 一般に困難であると考えられていた。
このため、 個々の金属ナノ粒子の周囲を有機物からなる被覆で囲んで 保護するようにした複合型金属ナノ粒子が開発されている。 この有機物 で金属ナノ粒子の表面を被覆して保護する方法としては、 (1 )物理的手 段によって、 金属ナノ粒子を形成する途中で、 粒子同士が衝突して凝集 を起す前に、 個々の粒子表面に溶剤被覆膜を形成する方法、 及び (2 ) 液相系内に溶媒、 金属塩、 保護剤及び還元剤などを共存させ、 これを加 熱することによる方法の 2つの方法が一般に知られている。
( 1 ) の物理的手段による金属ナノ粒子の生成を経由する方法では、 主としてガス中で、 原料金属を蒸発させる必要があり、 このため生産性 が低く、 コス トの高いプロセスにつながりやすいという欠点がある。 一 方、 (2 ) の液相法では、 大気圧下での粒子原料の液状化を伴いながら、 複合型金属ナノ粒子を形成するので、 ( 1 ) の方法に比べ、 安価で量産性 のあるプロセスを容易に構築できる利点がある。
( 2 ) の方法を使用したものとして、 例えばステアリン酸銀を原料と し、 これを窒素ガス雰囲気中で 2 5 0 °Cに加熱することによって複合型 銀ナノ粒子を生成するようにした方法が提案されている (例えば、 特開 平 1 0— 1 8 3 2 0 7号公報参照)。 この場合、 図 1に示すように、 例え ば平均粒径 d 2が 5 n m程度の金属 (銀) 成分からなる金属核 2 2の周り を、厚さ h 2が 1 . 5 程度の有機物 2 4で被覆した複合型銀ナノ粒子 2 0が生成される。 この複合型銀ナノ粒子 2 0は、 金属核 (金属成分) 2 2の表面から有機物 2 4を脱離させて、 金属核 2 2同しを均一に焼結 させるのに、 少なく とも 2 5 0 °C以上の温度が必要で、 これを主材とし た接合材料の接合温度も 2 5 0 °C以上となることがわかっている。 これ は、 有機物 2 4が金属核 2 2と反応し、 金属 (銀) を内部に取込んだ有 機金属化合物を介して、 有機物 2 4が金属核 2 2の表面に化学的に結合 しており、 このため、 結合エネルギも大きく、 この結合を解いて有機物 2 4を金属核 2 2から脱離させるのに、 高い温度 (エネルギ) を必要と するためであると考えられる。
また、 金属塩とアルコール系有機物とを共存させて、 アルコール系有 機物の分解開始温度以上の加熱を行うことによって、 前述と同様に、 複 合型銀ナノ粒子を生成することが提案されている (例えば、 国際公開第 0 1 / 7 0 4 3 5号パンフレツト)。 この場合、 例えば平均粒径 7〜 1 0 n m程度の金属 (銀) 成分からなる金属核の周りを厚さ 1 . 5 n m程度 の有機物で被覆した複合型銀ナノ粒子が生成される。 この複合型銀ナノ 粒子も、 前述と同様に、 金属核の表面から有機物を脱離させて、 金属核 を均一に焼結させるのに、 少なく とも 2 5 0 °C以上の温度が必要で、 こ れを主材とした接合材料の接合温度も 2 5 0 °C以上となることがわかつ ている。 これも、 前述と同様に、 有機物が金属核の表面に有機金属化合 物を介して化学的に結合しているためであると考えられる。 発明の開示
従来の複合型金属ナノ粒子にあっては、 金属核から有機物を脱離させ て、 金属核を均一に焼結させるのに、 少なく とも約 2 5 0 °C以上の温度 が必要であり、 この複合型金属ナノ粒子を主材とした接合材料の接合温 度も約 2 5 0 °C以上となる。 このため、 半導体装置や電気部品の接合等 で多用されている、 はんだ接合に必要とされる加熱温度 (接合温度) が 2 0 0 °C内外の現状から判断すると、 従来の複合型金属ナノ粒子を主材 とした接合材料では、 接合に要する温度が高過ぎる。
本発明は上記事情に鑑みてなされたもので、 金属核から有機物を脱離 させて金属核を均一に焼結させる温度を大幅に低減させるか、 または無 機金属化合物を含む中心部から有機物を脱離させて該中心部を金属化さ せる温度を大幅に低減させて、 はんだによる接合の代替に応用できるよ うにした複合型ナノ粒子及びその製造方法を提案することを目的とする。 本発明の複合型ナノ粒子は、 中心部が金属成分からなり、 該金属成分 の周りを物理吸着的に結合した有機物で取囲んでいる。
このように、 中心部の金属成分 (金属核) の周りを物理吸着的に結合 した有機物で取囲んだ構造にあっては、 有機物は、 化学的な結合とは異 なり、 金属成分の表面に緩く結合されており、 このため、 有機物が有機 金属化合物を介して化学的に金属成分 (金属核) の周囲に強固に結合し た従来の複合型金属ナノ粒子に比べ、 遙かに低い温度で、 かつ低いエネ ルギで有機物を金属成分(金属核)の表面から脱離させることができる。 本発明の他の複合型ナノ粒子は、 中心部が金属成分からなり、 該金属 成分の周りを、 熱脱離開始温度が 1 4 0 °C以上で、 1 9 0 °C未満の有機 物で取囲んでいる。
このように、 中心の金属成分の周りを取囲む有機物の該金属成分から の熱脱離開始温度を 1 4 0 °C以上で、 1 9 0 °C未満とすることで、 この 複合型ナノ粒子 (複合型金属ナノ粒子) を、 例えば接合材料の主材とし て使用した場合、 接合温度を 2 0 0 °C内外とすることができる。 これに よって、半導体装置や電気部品の接合等で多用されている、加熱温度(接 合温度) が 2 0 0 °C内外のはんだによる接合を、 この複合型ナノ粒子を 応用した方法で代替することができる。
本発明の更に他の複合型ナノ粒子は、 中心部が金属成分からなり、 該 金属成分の周りを、脱離エネルギが金属原子 1個当り 0 . 3 e V以下の有 機物で取囲んでいる。
このように、 中心の金属成分の周りを取囲む有機物の該金属成分から の脱離エネルギを金属原子 1個当たり 0 . 3 e V以下とすることで、 有 機物が有機金属化合物を介して化学的に金属成分 (金属核) の周囲に結 合した従来の複合型金属ナノ粒子に比べ、 遙かに低いエネルギで有機物 を金属成分 (金属核) の表面から脱離させることができる。
前記有機物は、 炭素、 水素及び酸素のみからなることが好ましい。 複合型ナノ粒子の有機物に窒素 (N ) や硫黄 (S》 等のように、 炭素 ( C ) , 水素 (H ) または酸素 (O ) 以外の元素を含む場合、 有機物を金 属成分から脱離させても、 有機物中に含まれる Nまたは S成分が金属成 分を焼結させた焼結金属中に残留し、 その結果、 導電性等に悪影響を及 ぼす場合がある。 複合型ナノ粒子として、 有機物に Nや Sが含まれない ものを使用することで、 有機物の脱離後に Nや Sが残留する現象をなく し、 これによつて、 Nや S成分の残留による導電率の低下等の悪影響を なくすことができる。
前記金属成分は、 例えば C u, A g , P t , P d, N i, A u , R u 及び R hのうちの少なく とも 1種からなる。
前記金属成分の含有量が全体の 5 0〜 9 9重量%であることが好まし い。
前記中心部の平均粒径は、 1〜 1 0 0 n mであることが好ましい。 複合型ナノ粒子の中心部 (金属成分) の粒径が変化しても、 これを取 囲む有機物被覆の厚さは基本的に同じであり、 このため、 金属成分と有 機物の重量比は、 金属成分の粒径によって変化する。 すなわち、 金属成 分の粒径が小さ過ぎると、全体に占める有機物の比率が相対的に高まり、 その結果、 焼成した場合に有機物の金属成分からの脱離を速やかに行う ことは困難となる。 一方、 金属成分の粒径が大きくなり過ぎれば、 金属 ナノ粒子としての特徴は急速に失われ、 例えば接合で不可欠の低温焼結 性を維持することが困難となる。 つまり、 金属粒子の焼結開始温度は粒 径が小さくなると低下することが知られているが、 その効果が現れ始め るのは 1 0 0 n m以下である。 2 0 n m以下になるとその効果が顕著と なり、 特に 1 0 n m以下になると焼結開始温度が大きく低下する。 従つ て、 利用面を考えると、 中心部 (金属成分) の平均粒径は、 l〜 2 0 n mであるのが好ましく、 5〜 1 5 n mであるのが特に好ましい。
本発明の更に他の複合型ナノ粒子は、 中心部に少なく とも無機金属化 合物を含み、 該中心部の周りを物理吸着的に結合した有機物で被覆して いる。
従来の金属ナノ粒子の場合は、'裸のままでは化学的に極めて活性であ り、 有機物で被覆することによって安定化させる必要がある。 この発明 の複合型ナノ粒子 (複合型無機金属化合物ナノ粒子) の場合は、 中心部 に比較的低温で熱分解する無機金属化合物を含んでおり、 物理吸着程度 の弱い結合力で該中心部の周囲を有機物で被覆するだけで安定な状態と なる。 このため従来の複合型金属ナノ粒子より低い 2 0 0 °C前後の温度 で金属化させることが出来る。
前記有機物は、 炭素、 水素及び酸素のみからなることが好ましい。 有 機物は、 物理吸着程度の弱い結合力で金属無機化合物を含む中心部を被 覆すれば足りるので、 窒素や硫黄など金属元素に対して強い結合力を有 する元素を含む官能基を持つ必要はない。 また、 炭素、 水素及ぴ酸素の みからなる有機物を使用することで、 金属無機化合物を金属化させた際 に窒素や硫黄が金属中に残留する恐れもない。
前記無機金属化合物は、 C u , A g , P t , Ρ d , N i, A u , R u 及び R hのうちの少なく ともいずれかの金属の無機化合物からなること が好ましい。 金属元素としては、 ここに掲げたもののうちのどれか一種 類であってもよいが、 場合によってはこれらの混合物であっても良い。 また無機化合物の形態としては低温で熱分解するものであればどのよう なものであってもよいが、 分解する際に残留などの問題を起さない炭酸 塩や酸化物などが好ましい。
本発明の複合型ナノ粒子の製造方法は、 無機金属塩と有機物質とを共 存させ、 前記無機金属塩が分解して金属ナノ粒子が生成され、 金属ナノ 粒子と有機物が反応を起して有機金属化合物が生成されることなく、 金 属ナノ粒子の周りに有機物が物理吸着的に結合されるように前記金属塩 と有機物質を所定の温度に加熱し一定時間保持する。
これにより、 無機金属塩と有機物質とを共存させ、 所定の温度に加熱 し一定時間保持することで、 中心部の金属成分 (金属核) の周りを、 化 学的結合ではなく、 物理吸着的に結合した有機物で取囲んだ構造の複合 型ナノ粒子 (複合型金属ナノ粒子) を生成することができる。
本発明の他の複合型ナノ粒子の製造方法は、 無機金属塩と有機物質と を共存させ、 前記無機金属塩の少なく とも一部が前記有機物質と反応を 起して有機金属化合物が生成されることなく、 前記無機金属塩ないしそ の熱分解により生成された無機金属化合物を含む中心部の周りに有機物 が物理吸着的に結合されるように前記無機金属塩と前記有機物質を所定 の温度に加熱し一定時間保持する。 これにより、 無機金属塩と有機物質とを共存させ、 所定の温度に加熱 し一定時間保持することで、 少なく とも無機金属化合物を含む中心部の 周りを、 化学的結合ではなく、 物理吸着的に結合した有機物で取囲んだ 構造の複合型ナノ粒子 (複合型無機金属化合物ナノ粒子) を生成するこ とができる。
本発明の好ましい一態様は、 前記無機金属塩と前記有機物質の加熱温 度を T (°C)、 この温度での保持時間を t (h) としたとき、下記の式( 1 ) が成立する。
(T+ 2 73 ) (20 + l o g t)X 1 0_3≤ 7. 98 ( 1 ) 前記無機金属塩は炭酸銀で、 前記有機物質は高級アルコールであるこ とが好ましい。
前記高級アルコールは、 ミ リスチルアルコールで、 前記加熱温度は、
70°C以上、 140°C未満であることが好ましい。
このように、 例えば炭酸銀(無機金属塩) とミリスチルアルコール(有 機物質) とを 70°C以上、 1 40°C未満の温度で所定時間、 例えば 1 2 0°Cの温度で 2 h加熱 ·保持することで、 有機物が金属成分 (銀) また は無機金属化合物 (炭酸銀) に化学的に結合されることなく、 金属成分 または無機金属化合物に物理吸着的に結合された複合型ナノ粒子を生成 することができる。 なお、 炭酸銀 (無機金属塩) とミ リ スチルアルコー ル (有機物質) を、 上記限界範囲を超える 1 40°Cの温度で 2 h加熱 - 保持した場合には、 有機物が金属成分 (銀) または無機金属化合物 (炭 酸銀) と反応して有機金属化合物が生成され、 金属成分または無機金属 化合物に有機金属化合物を介して化学的に強固に結合された複合型ナノ 粒子が生成される。
本発明の更に他の複合型ナノ粒子は、 無機金属塩と有機物質とを共存 させて加熱し、 加熱温度を T (°C)、 この温度での保持時間を t (h) と したとき、 下記の (2) 式が成立するように保持することにより製造さ れる。
(T + 27 3 ) ( 20 + 1 o g t ) X 1 O-3≤ 7. 98 ( 2 ) 本発明の複合型ナノ粒子によれば、 中心部 (金属成分及び Zまたは無 機金属化合物) を取囲んで保護する有機物は、 中心部の表面に物理吸着 的に、 つまり化学的な結合とは異なり、 中心部の表面に緩く結合されて いる。 このため、 有機物が化学的に金属成分 (金属核) の周囲に結合し た従来の複合型金属ナノ粒子に比べ、遙かに低い温度で、例えば 1 4 0 °C 以上、 1 9 0 °C未満の加熱で有機物を中心部から脱離させることができ る。 これによつて、 半導体装置や電気部品の接合等で多用されている、 加熱温度 (接合温度) が 2 0 0 °C内外のはんだによる接合を、 この複合 型ナノ粒子を応用した方法で代替することができる。 図面の簡単な説明
図 1は、 従来の複合型金属ナノ粒子を模式的に示す図である。
図 2は、 本発明の実施の形態の複合型ナノ粒子 (複合型金属ナノ粒子) を模式的に示す図である。
図 3は、 本発明の他の実施の形態の複合型ナノ粒子 (複合型無機金属 化合物ナノ粒子) を模式的に示す図である。
図 4は、 本発明の更に他の実施の形態の複合型ナノ粒子 (複合型無機 金属化合物ナノ粒子) を模式的に示す図である。
図 5は本発明の実施の形態に係る複合型ナノ粒子の生成反応のモデル の一例を示すフローチヤ一トである。
図 6は、 ナノ粒子の生成温度と粒径 (平均値) の相関をァレニウスに よる計算値と実測値の関係として示すグラフである。
図 7は本発明の実施の形態に係る複合型ナノ粒子の生成反応のモデル の他の例を示すフローチャートである。
図 8 Aは、 本発明の複合型ナノ粒子の熱分析曲線 (D T A曲線及び T G曲線) を示すグラフで、 図 8 Bは、 比較例の複合型金属 (銀) ナノ粒 子の熱分析曲線 (D T A曲線及び T G曲線) を示すグラフである。
図 9は、 本発明の他の複合型ナノ粒子の熱分析曲線を示すグラフであ る。
図 1 0は、 本発明の複合型ナノ粒子 (供試材) の構成物質を X線回折 法によって定性的に分析-同定したときのスぺク トラムを示す図である。 図 1 1は、 本発明の複合型ナノ粒子 (供試材) の加熱による G C (ガ スクロマトグラフィー) 一質量分析 · 同定を行って得られたスぺク トラ ムである。
図 1 2は、 本発明の複合型ナノ粒子生成時の加熱温度 ·保持時間と有 機物の熱脱離温度の関係を示すグラフである。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して説明する。
図 2は、 本発明の実施の形態の複合型ナノ粒子 (複合型金属ナノ粒子) を模式的に示す。 図 2に示すように、 この複合型ナノ粒子 1 0は、 中心 部が金属成分 (金属核) 1 2からなり、 この金属成分 1 2の周りを物理 吸着的に結合した有機物 1 4で取囲んだ構成をしている。 この有機物 1 4は、 金属成分 1 2の保護皮膜としての役割を果たすもので、 このよう に、 金属成分 1 2の周囲を有機物 1 4で被覆することにより、 金属成分 1 2同士が凝集する傾向が小さく、 分散安定性が優れた複合型金属ナノ 粒子 1 0が構成される。
このように、 中心部の金属成分 (金属核) 1 2の周りを物理吸着的に 結合した有機物 1 4で取囲んだ構造にあっては、 有機物 1 4は、 化学的 な結合とは異なり、 金属成分 1 2の表面に緩く結合されている。 このた め、 図 1に示す、 有機物 2 4が、 有機金属化合物を介して化学的に金属 成分 (金属核) 2 2の周囲に強固に結合した従来の複合型金属ナノ粒子 2 0に比べ、 遙かに低い温度で、 かつ低いエネルギで有機物 1 4を金属 成分 (金属核) 1 2の表面から脱離させることができる。
この複合型ナノ粒子 1 0の有機物 1 4の金属成分 1 2表面からの熱脱 離開始温度は、 1 4 0 °C以上、 1 9 0 °C未満である。 このように、 中心 部の金属成分 1 2の周りを取囲む有機物 1 4の該金属成分 1 2からの熱 脱離開始温度を 1 4 0 °C以上で、 1 9 0 °C未満とすることで、 この複合 型ナノ粒子 1 0を、 例えば接合材料の主材として使用した場合、 この接 合温度を約 2 0 0 °Cとすることができる。 これによつて、 半導体装置や 電気部品の接合等で多用されている、 加熱温度 (接合温度) が 2 0 0 °C 内外のはんだによる接合を、 この複合型ナノ粒子 1 0を応用した方法で 代替することができる。
また、 この複合型金属ナノ粒子 1 0の有機物 1 4の金属成分 1 2表面 からの脱離エネルギは、 金属原子 1個当り 0 . 3 e V以下である。 これに より、 この脱離エネルギを、 図 1に示す、 従来の複合型金属ナノ粒子 2 0における有機物 2 4の金属成分 (金属核) 2 2の表面からの脱離エネ ルギに比べ、 著しく小さくすることができる。
有機物 1 4は、 炭素 (C )、 水素 (H ) 及び酸素 (O ) からなる。 この ように、 複合型金属ナノ粒子 1 0の有機物 1 4に窒素 (N ) や硫黄 (S ) 等が含まれないようにすることで、 有機物 1 4を金属成分 1 2から脱離 させた後、 金属部分に Nや Sが残留し、 これによつて、 金属成分 1 2を 焼結することによって得られる焼結金属の導電率が、 残留する Nや S成 分によって低下してしまうことを防止することができる。
金属成分 1 2は、 C u, A g , P t, P d, N i, A u , R u及び R hのうちの少なく とも 1種からなる。 また、 金属成分 1 2の含有量が 5 0〜 9 9重量%であることが好ましく、 金属成分 (中心部) 1 2の平均 粒径 は、 一般的には、 1〜; L O O n mである。
ここで、複合型金属ナノ粒子 1 0の金属成分 1 2の粒径 が変化して も、 これを取囲む有機物 1 4の被覆厚さ h!は基本的に同じであり、 この ため、 金属成分 1 2と有機物 1 4の重量比は、 金属成分 1 2の粒径 d! によって変化する。 すなわち、 金属成分 1 2の粒径 d が小さ過ぎると、 全体に占める有機物 1 4の比率が相対的に高まり、 その結果、 焼成した 場合に有機物 1 4の金属成分 1 2からの脱離を速やかに行うことは困難 となる。 一方、 金属成分 1 2の粒径 d iが大きくなり過ぎれば、 金属ナノ 粒子としての特徴は急速に失われ、 接合で不可欠の低温焼結性も維持す ることが困難となる。 つまり、 金属成分 1 2の焼結開始温度は粒径 d が小さくなると低下することが知られているが、 その効果が現れ始める 粒径 d は 1 0 0 n m以下である。粒径が 2 0 n m以下になるとその効果 が顕著となり、 特に 1 0 n m以下になると焼結開始温度が大きく低下す る。 従って、 利用面を考えると、 金属成分 (金属核) 1 2の平均粒径 は、 1〜 2 0 ti mであるのが好ましく、 5〜 1 5 n mであるのが特に好 ましい。
図 3は、 本発明の他の実施の形態の複合型ナノ粒子 (複合型無機金属 化合物ナノ粒子) を模式的に示す。 図 3に示すように、 この複合型ナノ 粒子 3 0は、 中心部 3 2が金属成分 (金属核) 3 4と該金属成分 3 4の 周囲を包囲する無機金属化合物 3 6からなり、 この無機金属化合物 3 6 の周りを物理吸着的に結合した有機物 3 8で取囲んだ構成をしている。 この有機物 3 8は、保護皮膜としての役割を果たすもので、このように、 中心部 3 2の周囲を有機物 3 8で被覆することにより、 凝集する傾向が 小さく、 分散安定性が優れた複合型ナノ粒子 3 0が構成される。
このように、 中心部 3 2の無機金属化合物 3 6の周りを物理吸着的に 結合した有機物 3 8で取囲んだ構造にあっては、 有機物 3 8は、 化学的 な結合とは異なり、 無機金属化合物 3 6の表面に緩く結合されている。 このため、 従来の複合型金属ナノ粒子 2 0 (図 1参照) に比べ、 遙かに 低い温度で、 かつ低いエネルギで有機物 3 8を無機金属化合物 3 6の表 面から脱離させることができる。
この複合型ナノ粒子 3 0の有機物 3 8の無機金属化合物 3 6表面から の熱脱離開始温度、 及び無機金属化合物 3 6の熱分解開始温度は、 1 4 0 °C以上、 1 9 0 °C未満である。 このように、 有機物 3 8の無機金属化 合物 3 6表面からの熱脱離開始温度、 及び無機金属化合物 3 6の熱分解 開始温度を 1 4 0 °C以上で、 1 9 0 °C未満とすることで、 この複合型ナ ノ粒子 3 0を、 例えば接合材料の主材として使用した場合、 この接合温 度を約 2 0 0 °Cとすることができる。
有機物 3 8は、 前述と同様に、 炭素 (C )、 水素 (H ) 及び酸素 (O ) からなる。
無機金属化合物 3 6は、 C u, A g , P t , P d , N i , A u , R u 及び R hのうちの少なく ともいずれかの金属の無機化合物からなる。 金 属元素としては、 ここに掲げたもののうちのどれか一種類であってもよ いが、 場合によってはこれらの混合物であっても良い。 また、 無機金属 化合物 3 6には上記金属から成る合金を含んでいてもよい。 また無機化 合物の形態としては低温で熱分解するものであればどのようなものであ つてもよいが、 分解する際に残留などの問題を起こしにくい炭酸塩や酸 化物などが好ましい。
ここで、複合型ナノ粒子 3 0の中心部 3 2の粒径 d 3は、前述の例と同 様に、 一般には 1 0 0 n m以下であるが、 1〜 2 0 n mであるのが好ま しく、 5〜 1 5 n mであるのが特に好ましい。
図 4は、 本発明の更に他の実施の形態の複合型ナノ粒子 (複合型無機 金属化合物ナノ粒子) を模式的に示す。 図 4に示すように、 この複合型 ナノ粒子 4 0は、 中心部 4 2が金属成分 4 4と無機金属化合物 4 6の混 合物からなり、 この中心部 4 2の周りを物理吸着的に結合した有機物 4 8で取囲んだ構成をしている。 この有機物 4 8は、 保護皮膜としての役 割を果たすもので、 このように、 中心部 4 2の周囲を有機物 4 8で被覆 することにより、 凝集する傾向が小さく、 分散安定性が優れた複合型ナ ノ粒子 4 0が構成される。
このように、 金属成分 4 4と無機金属化合物 4 6の混合物からなる中 心部 4 2の周りを物理吸着的に結合した有機物 48で取囲んだ構造にあ つては、 有機物 48は、 化学的な結合とは異なり、 金属成分 44及ぴ無 機金属化合物 46の表面に緩く結合されている。 このため、 従来の複合 型金属ナノ粒子 20に比べ、 遙かに低い温度で、 かつ低いエネルギで有 機物 48を中心部 4 2の表面から脱離させることができる。
この複合型ナノ粒子 30の有機物 48の中心部 4 2からの熱脱離開始 温度、 及び無機金属化合物 46の熱分解開始温度は、 140°C以上、 1 90°C未満である。 このように、 有機物 48の中心部 42からの熱脱離 開始温度、及ぴ無機金属化合物 46の熱分解開始温度を 140°C以上で、 1 9 0°C未満とすることで、 この複合型ナノ粒子 40を、 例えば接合材 料の主材として使用した場合、 この接合温度を約 200°Cとすることが できる。
有機物 4 8は、 前述と同様に、 炭素 (C)、 水素 (H) 及び酸素 (O) 力、らなる。 また、 無機金属化合物 46は、 C u, A g , P t , P d, N i , A u , R u及び R hのうちの少なく ともいずれかの金属の無機化合 物からなる。 更に、 複合型ナノ粒子 40の中心部 4 2の粒径 d 4は、 前述 の例と同様に、 一般には 1 0 O nm以下であるが、 1〜 2 O nmである のが好ましく、 5〜 1 5 n mであるのが特に好ましい。
図 5は、 図 2に示す、 本発明の実施の形態に係る複合型ナノ粒子 1 0 の生成反応のモデルの一例を示す。 この例では、 金属成分 (金属核) が 銀からなる複合型ナノ粒子 (複合型銀ナノ粒子) の場合について、 以下 に詳述する。 なお、 金属核の組成は、 銀に特定する必要はなく、 製造方 法としては、 銀以外の組成の金属核の場合についても、 類似の形態をと つて行うことが出来ることは勿論である。
先ず、 原料たる金属塩としての炭酸銀と有機物質としてのミ リスチル アルコールとを均一に混合する。 このミ リスチルアルコールの融点は、 3 6. 4°Cであり、 常温では固体である。 そして、 この炭酸銀とミ リス チルアルコールの混合物を、 炭酸銀が分解して金属 (銀) ナノ粒子が生 成され、 金属 (銀) ナノ粒子と有機物が反応を起して有機金属化合物が 生成されることなく、 金属 (銀) ナノ粒子の周りに有機物が物理吸着的 に結合されるように、 所定の温度、 例えば 70 °C以上で、 140°C未満 の所定の温度に加熱して、 この温度を一定時間保持する。 例えば、 炭酸 銀とミ リスチルアルコールの混合物を 1 20 °Cで 2 h加熱■保持する。 これによつて、 この例によれば、 図 2において、 金属 (銀) 成分 1 2 の平均粒径 d iが約 9 nm、有機物 1 4の被覆厚さ h が約 1. 5 n mで、 この有機物 1 4が金属 (銀) 成分 1 2の周りを物理的吸着によって結合 した複合型ナノ粒子 (複合型金属 (銀) ナノ粒子) 1 0が生成される。 複合型金属 (銀) ナノ粒子の生成機構は、 以下のように考えられる。 く複合型金属 (銀) ナノ粒子の生成 >
ミリスチルアルコールは 3 6. 4°Cで融解し、 炭酸銀はこの溶融した ミ リスチルアルコール中に分散する。 そして、 例えば、 1 2 0。Cの加熱 によって、 炭酸銀は、 先ず次式 (3) のように分解する。
A g 2 C03 → A g 20 + C 02 (3) 式 (3) の反応による生成物は、 ある程度の粒子サイズをなしている 力 、 この場合、原料の炭酸銀(A g 2C03)が一定の大きさの核をなし、 その周囲を酸化銀 (Ag 20) で包囲された形態をとつている。
更に、この加熱'保持に伴って、 コアを構成する A g 2 C03が、式(3) の反応を起しつつ、 順次微細な粒子に分裂する。 この反応を繰返すこと によって、 最終的に分子状態の A g 20が生成される (分子分散状態)。 その直後、 分子状の A g 2〇は、 簡単に還元されて原子状銀 (銀原子) が 生成され、 この原子状銀は、 短時間で凝集して一定サイズ、 例えば 9 n m程度の銀ナノ粒子にまで成長する。つまり、原子状銀は、活性なため、 単独で分散した状態では不安定であり、 このため、 複数の原子状銀が凝 集して一定のサイズの凝集体に成長する。 これは、 系を加熱しているこ とによって、 ミ リスチルアルコールが常時蒸発しているため、 時間の経 過と共に銀濃度が高まり、 いずれ系内に銀濃度が高い状態、 すなわち銀 の過飽和状態が生じ、 その結果、 不可避的に系内で均一核生成を起すた めである。 これは、 冷却中に溶融金属中で凝固の核生成が起る均一核生 成と類似の現象と考えられる。
ここで、 原子状銀が一定数凝集することによって、 一定サイズの粒子 の核が形成される。 熱活性化過程によって、 核の大きさが一定の臨界値 以上に到達したものは、 その後安定的に凝集 ·成長を続け、 ある平衡的 な大きさ (例えば 9 nm) の金属 (銀) ナノ粒子に到達する。
銀粒子が凝集するのは、 系全体の表面エネルギの総和を減少させるた めであるが、 一定の大きさに成長した時点で、 周囲に存在する有機物の 作用によって成長が停止し、 銀ナノ粒子の表面が有機物で覆われた状態 となる。 これによつて、 原子状銀や銀粒子同士の凝集 '合体は停止し、 ミリスチルアルコール中に独立に分散した複合型銀ナノ粒子が生成され る。
すなわち、 ナノ粒子表面に金属が露出している場合、 ナノ粒子表面の 巨大な表面エネルギによって、 即座に高速度でナノ粒子の凝集が開始さ れるが、 一定のサイズまでナノ粒子の成長が進むと、 相対的な成長速度 が低下 (安定成長) し、 周囲の有機物との間の相互作用の方が活発に起 るようになり、 金属ナノ粒子の表面は、 有機物によって被覆■保護され る。 こうして出来た複合型銀ナノ粒子は、 独立 ·分散した形態で、 ミリ スチルアルコール中に存在する。
ぐ粒子成長の温度依存性 >
ここで、 加熱温度と粒子成長の関係を考察する。 加熱温度が高いと、 金属 (銀) 粒子の核発生頻度が増大するので、 核発生はより多くの場所 で起る。 その結果、 核は多数個形成され、 それぞれが周囲の原子状銀を 取込んで成長していくので、 周囲の原子状銀は、 早期に減少 '枯渴し、 銀粒子の成長は早期に停止してしまう。 したがって、 それぞれの銀ナノ 粒子の大きさは小さくなる。 つまり、 もともと小さい核から成長が始ま るので、 成長後の粒子サイズも低温の場合より小さくなる。
逆に低い温度で加熱■保持を行う場合は、 粒子の核発生頻度が低くな り、 系内に発生する核数は相対的に少なくなる。 このため、 少ない核が 周囲の原子状銀を大量に取込み、 この結果、 それぞれの銀粒子は大きな サイズになるまで成長出来ることになる。 この現象を、 図 6のナノ粒子 の生成温度と粒径 (平均値) の相関 (ァレニウス (Arrhenius) による計 算値と実測値の関係) として示す。
以上のように、 この方法によって製造される金属粒子の粒径は、加熱 - 保持温度が高いほど小さくなる。 これは、 液中に過飽和状態で存在する 金属原子から熱活性化過程によつて金属核が生成 ·成長して行く機構が 働くことと符合している。
実際に使う粒子の粒径をどの程度にするかは、 粒子を適用する分野や 用途によって決める必要がある。 例えば、 触媒を目的として使う場合、 表面積の合計が多いほど効果が大きいので、 粒径は小さいほどよい。 一 方、 接合部材として本粒子を用いる場合、 接合時に有機物の殻を効率よ く分解し除去する必要がある。 このため、 金属焼結を迅速に起すために は、 粒子サイズを極度に小さくするのは不都合である。 これは、 有機物 を分解し離脱させるためには、 これと反応する酸素との結合を起すこと が必要であって、 この酸素の供給及び反応で生じたガスを拡散させるた めの流路を確保することが不可欠なためである。 すなわち、 粒子サイズ が過度に小さいと粒間の隙間も小さくなるので、 気体の出入りが困難に なるという弊害を生む。 したがって、適度なサイズを選択するのが良い。 ぐ有機物による保護被覆の挙動 >
前述のように、 金属 (銀) 粒子の周囲が有機物によって被覆されて保 護された状態になると、 粒子としての成長は停止する。 この有機物は、 C一 H— Oからなる直鎖型の構造をとつており、 有機物が金属粒子に物 理吸着的に結合した形態をとつている。 つまり、 この例によれば、 例え ば炭酸銀とミリスチルアルコールの混合物を 1 2 0でで 2 h加熱 ·保持 することによって、 図 2に示す、 金属 (銀) 成分 1 2の周りを物理吸着 的に結合した有機物 1 4で取囲んだ複合型ナノ粒子 (複合型金属 (銀) ナノ粒子) 1 0を生成することができる。
図 2に示す複合型ナノ粒子 (複合型金属 (銀) ナノ粒子) 1 0は、 炭 酸銀が完全に分解した時に生成される。 しかし、 製造条件とのかねあい で、図 7に示すように、炭酸銀の分解途中で銀の凝集を起こす場合には、 未分解の炭酸銀粒子が銀粒子の周囲に付着して、 図 3に示す、 中心部 3 2が金属成分 (金属核) 3 4と該金属成分 3 4の周囲を包囲する無機金 属化合物 3 6からなり、 この無機金属化合物 3 6の周りを物理吸着的に 結合した有機物 3 8で取囲んだ構成の複合型ナノ粒子 (複合型無機金属 化合物ナノ粒子) 3 0が生成される。
つまり、 無機金属塩と有機物質とを共存させ、 無機金属塩の少なく と も一部が有機物質と反応を起して有機金属化合物が生成されることなく、 無機金属塩ないしその熱分解により生成された無機金属化合物を含む中 心部の周りに有機物質が物理吸着的に結合されるように無機金属塩と有 機物質を所定の温度に加熱し一定時間保持することで、 少なく とも無機 金属化合物を含む中心部の周りを、 化学的結合ではなく、 物理吸着的に 結合した有機物で取囲んだ構造の複合型ナノ粒子 (複合型無機金属化合 物ナノ粒子) を生成することができる。
これに対して、 例えば炭酸銀とミ リスチルアルコールの混合物を上記 よりも高温の 1 4 0 °Cで 2 h加熱 .保持すると、 有機物は徐々に変化す る。 すなわち、 有機物は、 前述のように、 形成当初、 C— H— Oからな る直鎖型の構造をとっているが、 所定温度より高い温度に一定時間以上 保持されることによって、 有機物と金属との相互作用が進行し、 有機金 属化合物が支配的に存在するようになると考えられる。 すなわち、 元来 物理吸着していた有機物が、 有機金属化合物へと変質する。
つまり、 炭酸銀とミリスチルアルコールの混合物を 1 20 °Cで 2 h加 熱 -保持するだけでは、 有機金属化合物の生成に至ることはなく、 有機 物は弱く吸着した物理吸着状態を維持するが、 1 4 0°CX 2 hの加熱 · 保持を行えば、 吸着した有機物と金属が反応を起して有機金属化合物を 生成し、 複雑な構造の被覆を持つ複合型金属ナノ粒子を形成することに なる。 以上の機構によって、 1 20°CX 2 hの加熱 '保持と、 1 4 0°C X 2 hの加熱,保持とでは全く異なる複合型金属ナノ粒子が生成される。 ここで、 前述のようにして、 1 2 0°CX 2 hの加熱■保持によって生 成した複合型銀ナノ粒子 (本発明) と、 1 40°CX 2 hの加熱 ·保持に よって生成した複合型銀ナノ粒子 (比較例) の熱分解曲線 (DTA曲線 及び TG曲線) を図 8 A及ぴ 8 Bに示す。 なお、 図 8 A及ぴ図 8 Bに示 す熱分解曲線を求めた時の昇温速度は、 5°C/m i nである。
図 8 A及ぴ 8 Bで明らかなように、 DTA曲線では、 図 8 Aに示す本 発明では、 約 1 8 0°Cで、 図 8 Bに示す比較例では、 約.22 0°Cでピー ク (発熱反応) がそれぞれ生じており、 この温度付近で有機物の金属成 分 (金属核) 表面からの脱離及び/または分解が生じていると考えられ る。 つまり、 本発明にあっては、 比較例に比べて、 ピーク温度が約 4 0°C も低い。 しかも、本発明では、 ピークが非常にシャープに生じているが、 比較例にあっては、 ピークの幅が広範囲に拡がっている。
これにより、 1 2 0°CX 2 hの加熱'保持によって生成した本発明は、 1 4 0 °C X 2 hの加熱 .保持によって生成した比較例に比べ、 有機物が 遙かに低温で分解■蒸散され、 銀成分 (銀核) から脱離する。 また、 そ のために必要な脱離エネルギが銀原子 1個当り 0. 3 e Vと極めて小さ く、 従来例のそれの 1 / 8程度となっている。 しかも、 粒子特性の均一 度が高い (曲線のピークがシャープに発現しているため) ということが 明らかとなっている。 これは、 複合型銀ナノ粒子の低温焼結性を応用す る接合には極めて好都合な特性と言える。
また、 TG曲線では、 図 8 Aに示す本発明の方が、 図 8 Bに示す比較 例に比べて、 重量減少が遙かに急激に生じており、 有機物の脱離が急速 に生じることを示している。 これは、 本発明による複合型銀ナノ粒子の 粒子径を含む粒子特性の均一度が高く、 系内が所定の温度に到達した瞬 間に殆ど全部の粒子で一斉に有機物の脱離が始まることを示している。 これに対して、 比較例の複合型銀ナノ粒子では、 少なく とも粒子特性の 均一度が本発明のそれより劣っており、 このために、 全ての有機物が金 属成分 (金属核) から脱離を開始するのに余計な時間がかかることを示 す。 均一な金属焼結を起すためには、 有機物が短時間で金属成分 (金属 核)から脱離することが必須条件なので、本発明の複合型銀ナノ粒子は、 比較例のそれを接合に応用する上での不都合を解消し、 良好な接合を起 すために好適なものとなっている。
図 8 Aは、 1 2 0 °C X 2 hの加熱 '保持条件で、 通常の温度管理レべ ル、 つまり保持温度の制御偏差を ± 0 . 5 °C以内として生成した複合型 ナノ粒子の熱分解曲線を示している。 1 2 0 °C X 2 hの加熱 ·保持条件 で、 通常の温度管理レベルより遙かに厳しく、 ± 0 . 1 °C以内の制御偏 差となるような温度管理を行って生成した複合型ナノ粒子の熱分解曲線 を図 9に示す。
図 9から明らかなように、 D T A曲線におけるピーク温度は、 約 1 7 8 °Cで、 図 8 Aに示すそれとほぼ同じであるにも拘わらず、 曲線のピー クは著しく幅が狭くなつており、 その温度での T G曲線の変化挙動も極 めて急激なものとなっている。 これは、 厳格な保持温度管理を行うこと によって生成した複合型ナノ粒子は、 その粒子特性の均一度が極めて高 くなることに起因すると考えられ、 高品質の接合に使用するのに好適と なる。
図 1 0は、 図 9に示すのと同様に、 1 2 0 °C X 2 hの加熱 .保持条件 で、 ± 0 . 1 °C以内の制御偏差となるような温度管理を行って生成した 複合型ナノ粒子 (供試材) の構成物質を X線回折法によって定性的に分 析■ 同定したときのスペク トルを示す。 図 1 0から、 この複合型ナノ粒 子は、 少なく とも炭酸銀と金属銀を共に含む、 複合型無機金属化合物ナ ノ粒子の形態を有していることが判る。
なお、 エネルギレベルの違いに起因して、 X線回折法では有機物の検 出は不可能である。
そこで、 この複合型ナノ粒子 (複合型無機金属化合物ナノ粒子) の有 機物層を調べるため、 試料の加熱による GC (ガスク口マトグラフィー) 一質量分析 · 同定を行った。 図 1 1は、 その結果の一例を示す。 図 1 1 から明らかなように、 有機物の主成分は、 分子式中に Cを 1 4個有する アルコール =テトラデカノールと判明した。
テトラデカノール (ミ リスチルアルコールの別称) は、 有機物全体の 6 0 w t °/o程度を占めており、 これは原料として用いたミ リスチルアル コールから由来したものであると考えられる。
更に、 本発明の複合型ナノ粒子と従来の複合型ナノ粒子との間の大き な違いとして、有機物質に対する分散性の違いを指摘することが出来る。 すなわち、 比較例の複合型ナノ粒子は、 トルエン等の溶剤に均一に分散 させることが出来る。 ところが、 本発明の複合型ナノ粒子は、 有機物質 に対する分散性が無いことを特徴としている。 なお、 本発明の複合型金 属ナノ粒子は、 界面活性剤を加えた水には分散可能性を持っている。 ぐ温度 X時間効果 >
以上述べたように、 保持時間を 2 hで一定とした場合、 加熱■保持温 度が 1 2 0°C (本発明) と 1 40°C (比較例) では全く異なる性質の複 合型銀ナノ粒子が生じる。 これは主として金属核の周囲に存在する有機 物の被覆形態の本質的違いに基づくと考えられる。つまり、このように、 わずか 2 0°Cの温度の違いで、 化学反応速度が急激に増加して、 大きく 性状の異なる結果を得られるのは、 有機物の被覆形成機構が熱活性化過 程によって引き起こされ、 図 5において、 粒子生成時間の大半は、 有機 物被覆の形成,変化 (吸着 · 有機金属化合物形成等) に費消されている ためであると考えられる。
熱活性化過程の効果を定量的に記述する温度時間パラメータ (ラーソ ン - ミラーパラメータ; I) を次式 (4) によって計算すると、 表 2のよ うになる。 原子の拡散を典型例とする熱活性化過程が根底にある現象に おいては、 反応の進行量が T\ (C+ 1 o g t ) の形のパラメータで表示 されることがわかっており、 この値が同じならば、 同じ性質、 状態に到 達しているという一般的法則が成り立っている。 そこで、 式 (4) に示 す; Iをラーソン ' ミラーパラメータとして熱活性化による反応量の指標 として用いることが多い。
λ = T! ( 20 + 1 o g t ) X 1 0- 3 (4) ίτ,:加熱温度 (K)、 t :保持時間 (h)〕 【表 2】 加熱温度 (°C) 保持時間(h) λ
100 14 7. 98
120 2 7. 98
140 2 8. 38 表 2で明らかなように 1 0 0°CX 1 4 h、 と 1 2 0°CX 2 hの加熱 · 保持の場合のラーソン ' ミラーパラメータ; は、 夫々共に 7. 9 8と等し い値を示すが、 1 4 0°CX 2 hの加熱 '保持の場合、 ラーソン . ミラー パラメータ λは、 8. 3 8と前者よりも遙かに大きな値を示しており、 こ の加熱 ·保持時間効果によつて有機金属化合物を形成したと考えられる。 言い換えると、 複合型ナノ粒子という同じ範疇にあっても、 λ Ί . 9 8 ( 1 2 0 °CX 2 h、 1 00°CX 1 4 h) の場合、 有機金属化合物は 生じないが、 少なく とも、 λ == 8. 3 8 ( 1 4 0 °C X 2 h ) 以上の熱履歴 を受ければ、 有機金属化合物の生成反応が生じ、 その結果、 前述のよう な著しい粒子性状の差異が生起されることになる。 したがって、 ラーソ ン■ ミラーパラメータ の大小は有機金属化合物形成の有無と符合して いる。
なお、 式 (4) では定数 Cの値として金属の高温変形でよく使われる 2 0を用いているが、 原子の拡散が素過程になるという点で有機金属化 合物形成の場合も類似の扱いが出来ると仮定している。
このように、 有機金属化合物が形成される反応が起きる条件を考慮す ることによって、 所望の性状の複合型銀ナノ粒子を得るためには、 ラー ソン · ミラーパラメータ λが、 少なく とも 7. 9 8以下となるような加 熱 ·保持を行うことが必要となる。 実用的な加熱操作 (昇温■保持) と しては、 例えば加熱温度 1 2 0°Cで 2 h保持の処理を行うのが適当であ り、 1 2 0°C以上では、 現象の進行速度が高まるので、 有機金属化合物 を生成するリスクが大きくなる。
—方、 表 2から明らかなように、 加熱温度が 1 0 0°Cのように低くな ると、 保持時間を著しく長く とる必要を生じるので、 製造時間が長引く ことになつて、 不経済なプロセスとなり易い。 したがって、 加熱温度が
8 0〜 1 2 0°C程度で、 保持時間が 1〜 24 h程度の範囲内で、 ラーソ ン - ミラーパラメータ λ力 S 7. 9 8以下となるような加熱 ·保持条件を満 足しながら、 現実的に実行可能な温度 ·保持時間を選定することが望ま しい。
表 3は、 前述のように、 炭酸銀とミ リスチルアルコールを 1 2 0 °CX 2 hの加熱 ·保持することによって生成した複合型銀ナノ粒子 (本発明) と、 同じく 1 4 0°CX 2 hの加熱 ·保持することによって生成した複合 型銀ナノ粒子 (比較例 1 ) と、 ステアリン酸銀を原料とし、 これを窒素 ガス雰囲気中で 2 5 0°Cに加熱することによって生成した複合型銀ナノ 粒子 (比較例 2) の製造条件、 特性及びこれらを接合材料の主材として 使用した時の接合開始温度を示す。 【表 3】
Figure imgf000022_0001
* 1 aC/m i nの昇温による熱分析測定直 本発明と比較例 1の結果から明らかなように、 わずか 20°Cの生成温 度の違いによって、 有機物の熱脱離温度、 及び接合開始温度が大きく異 なっており、 本発明による複合型銀ナノ粒子の優位性が明らかとなって いることが判る。
表 4は、 本発明の実施にあたり加熱温度と加熱時間を変化して製造す る場合の比較を示す。 【表 4】
Figure imgf000023_0001
*ラーソン ' ミラーパラメータ; 1 = 7 . 8 5 (—定) の場合 表 4の製造条件は、 いずれもラーソン · ミラーパラメータ λ = 7 . 8 5 (—定) としている。 表 4に示すように、 製造時の加熱温度、 保持時間 が異なっても、 ラーソン ' ミラーパラメータえが等しいので、 同じ形態 の粒子が生成し、 有機物の熱脱離温度が 1 8 0 °C程度と、 互いに等しく なっていることを確認している。
図 1 2は、 本発明における製造時の加熱温度 ·保持時間によって、 有 機物の熱脱離温度がどのように変化するかを示す。 図 1 2は、 熱分析曲 線 (T G曲線) の第 1ピーク相当温度を横軸の値としてプロッ トして作 成している。
図 1 2によって、 製造時の加熱温度 ·保持時間の有機物脱離性に及ぼ す影響を定量的に見積ることが可能となる。 産業上の利用の可能性
本発明の複合型ナノ粒子は、 例えば半導体装置の電極間等を接合する のに使用される接合材料の主材として利用される。

Claims

請求の範囲
1. 中心部が金属成分からなり、 該金属成分の周りを物理吸着的に結 合した有機物で取囲んでいる複合型ナノ粒子。
2. 中心部が金属成分からなり、 該金属成分の周りを、 熱脱離開始温 度が 1 4 0°C以上で、 1 9 0°C未満の有機物で取囲んでいる複合型ナノ 粒子。 3. 中心部が金属成分からなり、 該金属成分の周りを、 脱離エネルギ が金属原子 1個当り 0.
3 e V以下の有機物で取囲んでいる複合型ナノ 粒子。
4. 前記有機物は、 炭素、 水素及ぴ酸素のみからなることを特徴とす る請求項 1乃至 3のいずれかに記載の複合型ナノ粒子。
5. 前記金属成分は、 C u , A g , P t, P d, N i , A u , R u及 ぴ R hのうちの少なく とも 1種からなることを特徴とする請求項 1乃至 3のいずれかに記載の複合型ナノ粒子。
6. 前記金属成分の含有量が 5 0〜 9 9重量 °/0であることを特徴とす る請求項 1乃至 3のいずれかに記載の複合型ナノ粒子。
7. 前記中心部の平均粒径が、 1〜 1 0 0 nmであることを特徴とす る請求項 1乃至 3のいずれかに記載の複合型ナノ粒子。
8. 中心部に少なく とも無機金属化合物を含み、 該中心部の周りを物 理吸着的に結合した有機物で被覆している複合型ナノ粒子。
9. 前記有機物は、 炭素、 水素及ぴ酸素のみからなることを特徴とす る請求項 8記載の複合型ナノ粒子。
1 0. 前記無機金属化合物は、 C u, A g , P t, P d, N i , A u , R u及び R hのうちの少なく ともいずれかの金属の無機化合物からなる ことを特徴とする請求項 8記載の複合型無機金属化合物ナノ粒子。
1 1. 金属成分の含有量が 5 0〜 9 9重量%であることを特徴とする 請求項 8記載の複合型ナノ粒子。
1 2. 前記中心部の平均粒径が、 1〜 1 0 0 n mであることを特徴と する請求項 8記載の複合型ナノ粒子。
1 3. 無機金属塩と有機物質とを共存させ、
前記無機金属塩が分解して金属ナノ粒子が生成され、 金属ナノ粒子と 有機物が反応を起して有機金属化合物が生成されることなく、 金属ナノ 粒子の周りに有機物が物理吸着的に結合されるように前記金属塩と有機 物質を所定の温度に加熱し一定時間保持することを特徴とする複合型ナ ノ粒子の製造方法。
1 4. 無機金属塩と有機物質とを共存させ、
前記無機金属塩の少なく とも一部が前記有機物質と反応を起して有機 金属化合物が生成されることなく、 前記無機金属塩ないしその熱分解に より生成された無機金属化合物を含む中心部の周りに有機物質が物理吸 着的に結合されるように前記無機金属塩と前記有機物質を所定の温度に 加熱し一定時間保持することを特徴とする複合型ナノ粒子の製造方法。
1 5. 前記無機金属塩と前記有機物質の加熱温度を T (で)、 この温度 での保持時間を t (h) としたとき、 下記の式 ( 1) が成立することを 特徴とする請求項 1 3または 1 4記載の複合型ナノ粒子の製造方法。
(T + 2 7 3 ) ( 2 0 + l o g t ) X 1 0"3≤ 7. 9 8 ( 1 )
1 6. 前記無機金属塩は炭酸銀で、 前記有機物質は高級アルコールで あることを特徴とする請求項 1 3または 1 4記載の複合型ナノ粒子の製 造方法。
1 7. 前記高級アルコールは、 ミ リスチルアルコールで、 前記加熱温 度は、 70°C以上、 140°C未満であることを特徴とする請求項 1 6記 載の複合型ナノ粒子の製造方法。
1 8. 無機金属塩と有機物質とを共存させて加熱し、加熱温度を T ( )、 この温度での保持時間を t (h) としたとき、 下記の (2) 式が成立す るように保持することにより製造された複合型ナノ粒子。
(T + 2 73 ) (20 + l o g t ) X 1 0 "3≤ 7. 9 8 (2)
1 9. 前記無機金属塩は炭酸銀で、 前記有機物質は高級アルコールで あることを特徴とする請求項 1 8記載の複合型ナノ粒子。
20. 前記高級アルコールはミ リスチルアルコールで、 前記加熱温度 は 7 0°C以上、 1 40°C未満であることを特徴とする請求項 1 9記載の 複合型ナノ粒子。
PCT/JP2005/002098 2004-02-04 2005-02-04 複合型ナノ粒子及びその製造方法 WO2005075132A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005517831A JPWO2005075132A1 (ja) 2004-02-04 2005-02-04 複合型ナノ粒子
EP05710150A EP1716947A4 (en) 2004-02-04 2005-02-04 COMPOSITE PARTICLES AND METHOD FOR THE PRODUCTION THEREOF
US10/587,335 US7799425B2 (en) 2004-02-04 2005-02-04 Composite nanoparticles method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-028699 2004-02-04
JP2004028699 2004-02-04

Publications (1)

Publication Number Publication Date
WO2005075132A1 true WO2005075132A1 (ja) 2005-08-18

Family

ID=34835932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002098 WO2005075132A1 (ja) 2004-02-04 2005-02-04 複合型ナノ粒子及びその製造方法

Country Status (6)

Country Link
US (1) US7799425B2 (ja)
EP (1) EP1716947A4 (ja)
JP (1) JPWO2005075132A1 (ja)
KR (1) KR20060128997A (ja)
TW (1) TW200536638A (ja)
WO (1) WO2005075132A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080635A (ja) * 2005-09-13 2007-03-29 Toda Kogyo Corp 導電部形成用粒子
JP2007204778A (ja) * 2006-01-31 2007-08-16 Ebara Corp 接合材料
JP2008212976A (ja) * 2007-03-05 2008-09-18 Toda Kogyo Corp 接合部材および接合方法
EP1979101A2 (en) * 2005-12-15 2008-10-15 Optomec Design Company Method and apparatus for low-temperature plasma sintering
US20090162448A1 (en) * 2007-12-20 2009-06-25 Nucryst Pharmaceuticals Corp. Metal Carbonate Particles and Methods of Making Thereof
WO2009090846A1 (ja) 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
US7955411B2 (en) 2006-12-28 2011-06-07 Hitachi, Ltd. Low temperature bonding material comprising metal particles and bonding method
JP2013079430A (ja) * 2011-10-05 2013-05-02 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013079431A (ja) * 2011-10-05 2013-05-02 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
US8497022B2 (en) 2009-07-16 2013-07-30 Applied Nanoparticle Laboratory Corporation Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
US9496068B2 (en) 2009-04-17 2016-11-15 Yamagata University Coated silver nanoparticles and manufacturing method therefor
US10632746B2 (en) 2017-11-13 2020-04-28 Optomec, Inc. Shuttering of aerosol streams
US10994473B2 (en) 2015-02-10 2021-05-04 Optomec, Inc. Fabrication of three dimensional structures by in-flight curing of aerosols

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895994B2 (ja) * 2006-12-28 2012-03-14 株式会社日立製作所 金属粒子を用いた接合方法及び接合材料
JP5255870B2 (ja) * 2007-03-26 2013-08-07 株式会社半導体エネルギー研究所 記憶素子の作製方法
GB0800549D0 (en) * 2008-01-14 2008-02-20 Smith & Nephew Composite material
WO2009139747A1 (en) * 2008-05-16 2009-11-19 Utc Power Corporation A stabilized platinum catalyst
WO2009139749A1 (en) * 2008-05-16 2009-11-19 Utc Power Corporation A fuel cell having a stabilized cathode catalyst
KR100978671B1 (ko) * 2008-08-05 2010-08-30 삼성전기주식회사 금속입자 분산액
US8603864B2 (en) * 2008-09-11 2013-12-10 Infineon Technologies Ag Method of fabricating a semiconductor device
US8512417B2 (en) 2008-11-14 2013-08-20 Dune Sciences, Inc. Functionalized nanoparticles and methods of forming and using same
US8080495B2 (en) * 2010-04-01 2011-12-20 Cabot Corporation Diesel oxidation catalysts
US8101680B1 (en) 2010-10-12 2012-01-24 Sabic Innovative Plastics Ip B.V. Methods of preparing polymer nanocomposites
DE102010042721A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Ausgangswerkstoff einer Sinterverbindung und Verfahren zur Herstellung der Sinterverbindung
DE102010042702A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Ausgangswerkstoff einer Sinterverbindung und Verfahren zur Herstellung der Sinterverbindung
WO2013108408A1 (ja) * 2012-01-20 2013-07-25 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP5832355B2 (ja) * 2012-03-30 2015-12-16 東光株式会社 面実装インダクタの製造方法
DE102012222416A1 (de) * 2012-12-06 2014-06-12 Robert Bosch Gmbh Verfahren zum Verbinden von wenigstens zwei Komponenten unter Verwendung eines Sinterprozesses
US20170348903A1 (en) * 2015-02-10 2017-12-07 Optomec, Inc. Fabrication of Three-Dimensional Materials Gradient Structures by In-Flight Curing of Aerosols
CN105345314B (zh) * 2015-08-21 2017-09-29 江苏广昇新材料有限公司 一种高精密纳米焊锡膏用助焊剂
CN105478755B (zh) * 2016-01-13 2018-05-01 合肥工业大学 一种非金属元素掺杂碳包覆金属纳米粒子磁性复合材料的制备方法
EP3508891A4 (en) * 2016-08-30 2019-11-06 Panasonic Intellectual Property Management Co., Ltd. COLOR CONVERSION ELEMENT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264610A (ja) * 1990-03-15 1991-11-25 Nok Corp 超微粒子の製造方法
WO2001070435A1 (fr) * 2000-03-22 2001-09-27 Ebara Corporation Particules metalliques composites ultrafines

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121425A (en) * 1994-07-29 2000-09-19 Nanoprobes, Inc. Metal-lipid molecules
JP2000015097A (ja) 1998-06-30 2000-01-18 Toyota Motor Corp 触媒の製造方法
JP3368211B2 (ja) 1998-07-14 2003-01-20 有限会社山本バイオクリーン・システム 貝殻の処理設備および貝殻の処理方法
US6262129B1 (en) * 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
AU5248600A (en) 1999-06-15 2001-01-02 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
JP2001288467A (ja) 2000-04-06 2001-10-16 Toshiba Corp 酸化物複合体粒子とその製造方法、蛍光体とその製造方法、カラーフィルターとその製造方法、ならびにカラー表示装置
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
JP4035654B2 (ja) 2001-06-29 2008-01-23 株式会社デンソー 触媒粒子およびその製造方法
KR100438408B1 (ko) * 2001-08-16 2004-07-02 한국과학기술원 금속간의 치환 반응을 이용한 코어-쉘 구조 및 혼합된합금 구조의 금속 나노 입자의 제조 방법과 그 응용
US6860924B2 (en) * 2002-06-07 2005-03-01 Nanoscale Materials, Inc. Air-stable metal oxide nanoparticles
US7537803B2 (en) * 2003-04-08 2009-05-26 New Jersey Institute Of Technology Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
US7879696B2 (en) * 2003-07-08 2011-02-01 Kovio, Inc. Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
JP4418220B2 (ja) * 2003-09-09 2010-02-17 日立ソフトウエアエンジニアリング株式会社 耐久性に優れたナノ粒子及びその製造方法
JP2005097642A (ja) 2003-09-22 2005-04-14 Tanaka Kikinzoku Kogyo Kk 貴金属−金属酸化物複合クラスター
US7361410B2 (en) * 2003-12-29 2008-04-22 Intel Corporation External modification of composite organic inorganic nanoclusters comprising raman active organic compound
TWI285631B (en) * 2004-04-07 2007-08-21 Taiwan Textile Res Inst Hydrophilic magnetic metal oxide powder and producing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264610A (ja) * 1990-03-15 1991-11-25 Nok Corp 超微粒子の製造方法
WO2001070435A1 (fr) * 2000-03-22 2001-09-27 Ebara Corporation Particules metalliques composites ultrafines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1716947A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080635A (ja) * 2005-09-13 2007-03-29 Toda Kogyo Corp 導電部形成用粒子
JP4624222B2 (ja) * 2005-09-13 2011-02-02 戸田工業株式会社 導電部形成用粒子
EP1979101A2 (en) * 2005-12-15 2008-10-15 Optomec Design Company Method and apparatus for low-temperature plasma sintering
EP1979101B1 (en) * 2005-12-15 2018-02-21 Optomec Design Company Method and apparatus for low-temperature plasma sintering
JP2007204778A (ja) * 2006-01-31 2007-08-16 Ebara Corp 接合材料
US8821676B2 (en) 2006-12-28 2014-09-02 Hitachi, Ltd. Low temperature bonding material comprising coated metal nanoparticles, and bonding method
US7955411B2 (en) 2006-12-28 2011-06-07 Hitachi, Ltd. Low temperature bonding material comprising metal particles and bonding method
JP2008212976A (ja) * 2007-03-05 2008-09-18 Toda Kogyo Corp 接合部材および接合方法
US20090162448A1 (en) * 2007-12-20 2009-06-25 Nucryst Pharmaceuticals Corp. Metal Carbonate Particles and Methods of Making Thereof
US8865227B2 (en) * 2007-12-20 2014-10-21 Smith & Nephew (Overseas) Limited Metal carbonate particles and methods of making thereof
WO2009090846A1 (ja) 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
US8459529B2 (en) 2008-01-17 2013-06-11 Applied Nanoparticle Laboratory Corporation Production method of composite silver nanoparticle
US8906317B2 (en) 2008-01-17 2014-12-09 Applied Nanoparticle Laboratory Corporation Production apparatus of composite silver nanoparticle
US8348134B2 (en) 2008-01-17 2013-01-08 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method
US9496068B2 (en) 2009-04-17 2016-11-15 Yamagata University Coated silver nanoparticles and manufacturing method therefor
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
US8497022B2 (en) 2009-07-16 2013-07-30 Applied Nanoparticle Laboratory Corporation Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
JP2013079431A (ja) * 2011-10-05 2013-05-02 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
JP2013079430A (ja) * 2011-10-05 2013-05-02 Nippon Synthetic Chem Ind Co Ltd:The 金属複合超微粒子の製造方法
US10994473B2 (en) 2015-02-10 2021-05-04 Optomec, Inc. Fabrication of three dimensional structures by in-flight curing of aerosols
US10632746B2 (en) 2017-11-13 2020-04-28 Optomec, Inc. Shuttering of aerosol streams
US10850510B2 (en) 2017-11-13 2020-12-01 Optomec, Inc. Shuttering of aerosol streams

Also Published As

Publication number Publication date
EP1716947A4 (en) 2009-07-22
US20070160837A1 (en) 2007-07-12
JPWO2005075132A1 (ja) 2007-08-02
US7799425B2 (en) 2010-09-21
EP1716947A1 (en) 2006-11-02
KR20060128997A (ko) 2006-12-14
TW200536638A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
WO2005075132A1 (ja) 複合型ナノ粒子及びその製造方法
CN109562493B (zh) 含金属粒子的组合物
CN107848077B (zh) 含金属微粒的组合物
JP4020948B2 (ja) 複合型ナノ粒子の製造方法
JP5151476B2 (ja) インク組成物及び金属質材料
KR101866111B1 (ko) 저온 소결성이 우수한 은 페이스트 및 당해 은 페이스트의 제조 방법
TW200932928A (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
EP2311586A1 (en) Metal microparticle containing composition and process for production of the same
JP2013047365A (ja) 銅微粒子分散液およびその製造方法、銅微粒子およびその製造方法、銅微粒子を含む銅ペースト、並びに銅被膜およびその製造方法
JP2009167436A (ja) 接合用材料および接合形成方法
US20090107584A1 (en) Solder and methods of making solder
JP2007126691A (ja) 複合型無機金属化合物ナノ粒子及びその製造方法
JP5932638B2 (ja) 導電性ペースト用銅粉及び導電性ペースト
JP2005298921A (ja) 複合金属超微粒子及びその製造方法
JP6453735B2 (ja) 貴金属粉末の製造方法
JPH1058190A (ja) 半田粉及びその製造方法、及びその半田粉を用いた半田ペースト
JP2008063668A (ja) 複合型ナノ粒子
WO2006038411A1 (ja) 白金粉末およびその製造方法
JP6626572B2 (ja) 金属接合材料及びその製造方法、並びにそれを使用した金属接合体の製造方法
JP4051661B2 (ja) はんだペースト用Au−Sn合金粉末
JP5512487B2 (ja) 金微粒子の製造方法
JP6462932B1 (ja) 金属粉末
JP6338419B2 (ja) 金属粒子組成物、接合材及びそれを用いた接合方法
JP4991028B2 (ja) 鉛フリーはんだ合金の処理方法
JP2020122175A (ja) ナノ銀粒子を用いた接合材料及び接合方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005517831

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007160837

Country of ref document: US

Ref document number: 10587335

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005710150

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067015658

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005710150

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067015658

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10587335

Country of ref document: US