WO2009011162A1 - 軌道系電動車両のバッテリ搭載構造 - Google Patents

軌道系電動車両のバッテリ搭載構造 Download PDF

Info

Publication number
WO2009011162A1
WO2009011162A1 PCT/JP2008/058004 JP2008058004W WO2009011162A1 WO 2009011162 A1 WO2009011162 A1 WO 2009011162A1 JP 2008058004 W JP2008058004 W JP 2008058004W WO 2009011162 A1 WO2009011162 A1 WO 2009011162A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
air
track
vehicle
chamber
Prior art date
Application number
PCT/JP2008/058004
Other languages
English (en)
French (fr)
Inventor
Katsuaki Morita
Masaya Mitake
Mitsuaki Hoshi
Kousuke Katahira
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to US12/312,910 priority Critical patent/US8511237B2/en
Priority to JP2009523563A priority patent/JP5010682B2/ja
Publication of WO2009011162A1 publication Critical patent/WO2009011162A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • B61C3/02Electric locomotives or railcars with electric accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/06Power storing devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0455Removal or replacement of the energy storages
    • B60K2001/0472Removal or replacement of the energy storages from below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/18Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/30Trolleys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/143Busses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • B60Y2200/912Electric vehicles with power supply external to vehicle, e.g. trolley buses or trams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to a track-type electric vehicle that travels on a dedicated track, for example, an electric vehicle of a track-type transportation system, or a combination that allows other vehicles (automobiles) to travel not only on a dedicated track but also on a tramway.
  • TECHNICAL FIELD The present invention relates to a battery mounting structure for supplying electric power to a motor in a track electric vehicle traveling on a track. Background art
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 4 _ 6 6 8 8 9
  • Patent 3 1 4 9 4 9 3 A gazette Patent Document 2
  • Patent Document 1 in the electric motor drive bus 01 that travels by the driving force of the electric motor, the battery unit 0 2 is placed on the roof 0 3 of the bus 0 1 and the front wheel shaft. 0 Installed at a position corresponding to the upper part of 4 and traveling with a load balance between the rear wheel shaft 0 5 and the front wheel shaft 0 4 when a drive source such as an electric motor is mounted behind the rear wheel shaft 0 5 A technology that improves the cooling performance by running wind by ensuring stability and installing on the roof 03 is shown.
  • Patent Document 2 As shown in FIG. It is housed in an extension duct 0 1 1 that extends downward in the longitudinal direction of the vehicle body, the front side of the extension duct 0 1 1 is connected to the air conditioning unit 0 1 2, and the rear side is the rear side of the rear seat Connected to the inlets 0 1 3 formed in the site.
  • a technique is shown in which indoor air is sucked from an inlet port 0 1 3 and the air heated by cooling the battery 0 10 with the air enters the air conditioning unit 0 1 2 and is warmed by the air conditioning unit.
  • the battery placement technology disclosed in Patent Document 2 uses a cabin air conditioner to cool the battery 0 10, and the air that flows through the battery 0 10 is opened to the rear of the room 0 Incorporated from 1 to 3. For this reason, the battery compartment in which the battery 0 1 0 is installed cannot be sealed with the passenger compartment, so that the battery 0 10 may be affected by flammable gas generated from the electrolyte or electrolyte. There is.
  • track-type electric vehicles such as the above-mentioned new transportation system are generally larger than passenger cars, trucks, and buses, so the power supplied to drive the motor requires a large current, and the battery capacity The battery's total weight and total volume are heavier than passenger cars, ⁇ racks, and paths, requiring a large space. This makes it difficult to secure an appropriate installation location. Disclosure of the invention
  • the present invention has been made in view of such a background, and in a track electric vehicle, the weight balance of the entire vehicle is good, the battery has good cooling performance, and It is an object of the present invention to provide a battery mounting structure that improves the safety by keeping the battery chamber and the cabin sealed.
  • the present invention achieves the above-mentioned object, and in a battery mounting structure of a track-type electric vehicle that travels on a track by driving power from a battery, a battery module (hereinafter referred to as a battery) formed by connecting a plurality of battery cells.
  • a battery module hereinafter referred to as a battery
  • the battery chamber is partitioned from the vehicle interior side by a partition plate having a hermetically sealed structure, and the battery is placed on the floor surface or wall surface of the vehicle body.
  • An intake port and an exhaust port for introducing and discharging outside air from the vehicle are provided in the room, and the battery room is configured to be cooled by outside air.
  • the battery chamber is formed on the floor of the vehicle interior of the track-type electric vehicle and the battery is arranged. Therefore, it is not necessary to reinforce the vehicle body and increase the mechanical strength. In other words, the floor structure originally has sufficient mechanical strength to carry passengers. Therefore, the conventional floor structure of a track-type electric vehicle powered from the outside of the vehicle can be used as it is.
  • the battery compartment is partitioned from the vehicle interior side by a partition plate having a hermetic structure, and the battery compartment communicates with the outside of the vehicle through the intake and exhaust ports, so that the battery can be cooled by the outside air.
  • the safety of the electrolyte is ensured without being affected by the flammable gas from the electrolyte inside the passenger compartment.
  • the battery chamber is provided so as to protrude into the passenger compartment on both sides of the vehicle in the center in the front-rear direction of the vehicle.
  • the battery chamber is located below the passenger seat.
  • the battery chamber is located below the passenger seat, so that the battery chamber can be effectively used.
  • the battery chamber monitors battery temperature, current, and voltage to detect battery abnormality and control battery power supply from the battery.
  • a control device should be installed.
  • the battery chamber can be used effectively, and the battery control device can be united and handled together with the battery, so that it is easy to respond to changes in the control specifications of the battery control device and repairs. Workability is improved. Furthermore, it is preferable that both the intake port and the exhaust port are formed on the side wall surface of the vehicle body. According to such a configuration, it affects the devices and cables installed below the floor surface. Therefore, it is possible to improve the cooling efficiency by the outside air of the battery chamber by improving the degree of freedom of the installation positions of the P and air outlets and the exhaust ports.
  • both the air inlet and the air outlet may be formed on the floor surface of the vehicle body.
  • the air outlet is installed on the side wall surface, when the vehicle stops at the station, The problem of circulating air flow directly inside the battery chamber is eliminated.
  • the cool air from the air conditioner for the guest room is circulated to the battery chamber, and the air in the battery chamber is cooled in the battery chamber via a heat exchange pipe. It is characterized by.
  • the air in the battery room is cooled using the cool air from the air conditioner for the guest room, and the battery can be cooled by the air. Therefore, the battery can be controlled to operate in an optimum temperature environment. become. As a result, the load on the battery can be reduced and the service life of the battery can be extended.
  • the present invention is characterized in that the air in the battery chamber is cooled by generating cold air with the pressure air from the air source of the vehicle and supplying it directly into the battery chamber.
  • the cold air is generated by using, for example, the pressure air for the brake, using the pressure air as an air source for operating the vehicle equipment. That is, when pressurized air is supplied, cold air is generated by passing the compressed air through a low-temperature air generator that ejects cold air and hot air. Then, the generated cool air is directly introduced into the battery chamber.
  • the cool air is directly introduced into the battery compartment, the battery cooling effect is great, and it is possible to control the battery to operate in the optimum temperature environment quickly.
  • the As a result the load on the battery can be reduced and the service life of the battery can be extended.
  • the system can be configured easily.
  • the supply and discharge of the outside air from the intake port and the exhaust port, and the circulation of the air or the cold air in the battery chamber in which the supply of the outside air is cut off are made into a battery temperature, a battery room temperature, and an outside air temperature. Based on this, the cooling control device should be used.
  • optimal battery cooling is performed based on the battery temperature, battery indoor temperature, and outside air temperature, so the battery can be controlled to operate in the optimal temperature environment, and the battery service life Can be extended.
  • the battery is arranged vertically, and the circulating flow direction of the air or the cold air is made to flow upward and downward from the lower part to the upper part of the battery.
  • the cooling effect of the battery can be efficiently obtained by the thermal convection effect of the cold air in the battery chamber.
  • a battery mounting structure in which the overall weight balance of the vehicle is good, the cooling performance of the battery is good, and the safety between the battery chamber and the cabin is maintained and the safety is improved. Can do.
  • the track may be a dedicated track on which only the electric vehicle travels, or may be a combined track on which the electric vehicle and another vehicle (such as an automobile) can travel. Even in a track-type electric vehicle that runs on a track, it is possible to obtain a battery mounting structure that provides a good weight balance of the entire vehicle, good cooling performance of the battery, and also improves the safety by keeping the battery compartment and the cabin sealed. it can.
  • FIG. 1 is a cross-sectional side view of an essential part showing the overall configuration of the first embodiment of the present invention.
  • FIG. 2 is a sectional front view of an essential part showing the first embodiment.
  • FIG. 3 is a sectional plan view of an essential part showing the first embodiment.
  • FIG. 4 is an explanatory diagram showing the use of the upper surface of the battery chamber.
  • (A) is useful as a chair.
  • (B) is an explanatory view showing a case of using as a luggage storage.
  • FIG. 5 is an explanatory view showing the second embodiment, (a) is a cross-sectional side view of the main part, (b) is a cross-sectional view in the direction of arrow A of (), and (c) is (a ) Is a cross-sectional view in the direction of arrow B.
  • FIG. 6 is a cross-sectional plan view of an essential part of the third embodiment.
  • FIG. 7 is a cross-sectional side view of an essential part showing the overall configuration of the fourth embodiment.
  • FIG. 8 is an enlarged side view of a portion C in FIG.
  • FIG. 9 is an enlarged plan view of a portion C in FIG.
  • Fig. 10 shows the air flow in the battery compartment in the D-D cross section of Fig. 8, where (a) is the initial operation in winter, (b) is in the case of winter battery heating, (c) Is in the summer.
  • FIG. 11 shows the fifth embodiment and is an enlarged side view of a portion C in FIG.
  • FIG. 12 is an enlarged plan view of a portion C in FIG.
  • Fig. 13 shows the air flow in the battery compartment in the EE cross section of Fig. 11, where (a) is the initial operation in winter, (b) is in winter battery heat generation, and (c) is in summer. This is the case for the season.
  • FIG. 14 shows the sixth embodiment and corresponds to FIG. 8 of the fourth embodiment.
  • FIG. 15 is a plan view of FIG.
  • Fig. 16 shows the air flow in the battery compartment in the FF cross section of Fig. 14, where (a) is the initial operation in winter, (b) is in winter battery heat generation, (c) Is in the summer.
  • FIG. 17 shows the seventh embodiment and corresponds to FIG. 11 of the fifth embodiment.
  • FIG. 18 is a plan view of FIG.
  • Fig. 19 shows the air flow in the battery compartment in the GG cross section of Fig. 17, where (a) is the initial operation in winter, (b) is in the winter battery heat generation, (c) Is in the summer.
  • FIG. 20 is an explanatory diagram showing the prior art.
  • FIG. 21 is an explanatory diagram showing the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
  • a vehicle of a track-type traffic system used for traveling in an airport will be described as an example.
  • the vehicle 1 is an electrically driven vehicle that includes rubber tires 3 at the lower four corners as wheels and travels on a track (traveling road surface 5 in the present embodiment) with electric power from a battery 33.
  • the track (traveling road surface 5) may be a dedicated track for the vehicle 1 or a combined track on which other vehicles can travel.
  • the following embodiments are also the same.
  • the track-type electric vehicle 1 includes a floor surface 9, a side wall surface 11, a roof 13, and a front and rear end wall surface 15, and a vehicle interior 17 is formed. It has a cab 19 (in the case of manned driving vehicles) and a cabin 21 in the middle of the vehicle. In addition, two sliding entrance doors 23 are provided at the front and rear, and a window 25 is formed at the center.
  • an air conditioner 29 for the guest room is installed at a symmetrical position with respect to the center of the vehicle in the front-rear direction, and communicates with each other by a pipe 31, so that the cold air flows into the ceiling 27 portion. It is designed to be discharged into the cabin 21 from the formed outlet.
  • the guide track or guide wall is provided along the running road surface 5, and a guide wheel attached to the vehicle carriage is inserted or applied to the guide groove. In contact therewith, a mechanism for steering the steering mechanism of the vehicle 1 in conjunction with the movement of the guide wheel is provided.
  • the vehicle 1 includes a motor (electric motor) (not shown) for driving the rubber tire 3, and a battery 33 that sends a driving current to the motor is mounted.
  • the battery 33 is made of a lithium ion battery, and a plurality of battery cells (for example, 4 V) (for example, 8) are connected to each other, and the packaged battery module is packed in units of 10 to several tens of ports. It is composed. This battery module is hereinafter referred to as battery 33.
  • the battery 33 is accommodated in a battery chamber 35 that is formed so as to protrude into the cabin 21 in the center of the vehicle.
  • the battery chamber 35 is formed on the floor surface 9, and the battery chamber 35 is partitioned from the inner side of the cabin 21 by a partition plate 37 having a sealed structure.
  • the partition plate 37 is formed of a metal plate, is formed in a substantially rectangular parallelepiped shape so as to protrude to the inside of the guest room 21, and further, a heat insulating material 39 such as a glass wool is provided inside the battery chamber 35. Affixed so that the heat in the battery chamber 3 5 and the heat transfer between the guest room 2 1 are insulated. As a result, the cooling effect in the battery chamber 35 is ensured, and the temperature in the guest room 21 is not affected by the heat in the battery chamber 35.
  • the battery 3 3 is stacked in the battery chamber 3 5 by stacking three stages in the vehicle vertical direction with the longitudinal direction of the battery 3 3 facing the vehicle width direction.
  • the battery 3 3 is stacked in the battery chamber 3 5 by stacking three stages in the vehicle vertical direction with the longitudinal direction of the battery 3 3 facing the vehicle width direction.
  • seven rows are arranged side by side on both sides, an appropriate number of stages and rows can be set according to the required motor current.
  • Each battery 33 is positioned and fixed by a fixing means so as not to be displaced in the battery chamber 35.
  • the floor surface 9 is formed with an intake port 41 for introducing outside air into the battery chamber 35, and the side wall surface 11 is provided with an exhaust port 43 for discharging hot air from the battery chamber 35. ing.
  • the intake port 41 and the exhaust port 43 are provided at a plurality of locations in the longitudinal direction of the vehicle according to the number of batteries 33.
  • an exhaust fan (not shown) may be installed at the exhaust port 4 3 in order to forcibly exhaust the hot air in the battery chamber 3 5, and a battery fan integrated in the battery 3 3 may be installed. May be installed.
  • the battery chamber 3 5 is formed on the floor surface 9 in the guest room 21 and the battery 3 3 is arranged, the battery can be mounted on the roof or other than the bottom of the floor. Since it is mounted on the floor 9, there is no need to reinforce the vehicle body and increase the mechanical strength. In other words, the floor structure originally has sufficient mechanical strength to carry passengers. Therefore, the conventional floor structure of an electric track system powered from the outside of the vehicle can be used as it is.
  • the battery chamber 3 5 is partitioned from the inside of the guest room 2 1 by a partition plate 3 7 having a sealed structure, and a heat insulating material is attached to the inside of the battery chamber 3 5.
  • the battery is connected to the outside of the vehicle through the opening 43, so that the battery can be cooled by the outside air, and the battery electrolyte is not affected by flammable gas from the electrolyte inside the vehicle, ensuring safety. Is done.
  • the battery chamber 35 is provided on both sides of the vehicle in the center in the front-rear direction of the vehicle so as to protrude into the passenger compartment 21, the vehicle weight balance is good and the running stability of the vehicle does not deteriorate.
  • the battery compartment 3 5 is installed under each cab in the front and rear of the vehicle from the viewpoint of ensuring a large space in the cabin 21. May be.
  • a seat cushion 3 8 may be installed on the upper surface of the partition plate 37 that forms the battery chamber 35, and may be used as a seat 40.
  • a handrail 4 2 may be installed on the upper surface of the partition plate 3 7 to be used as a luggage storage area.
  • the arrangement of the batteries 33 is set to be increased by one line in the vehicle width direction with respect to the first embodiment. Furthermore, it differs from the first embodiment in that a battery control device 44 that monitors and controls the state of the notch 33 is provided in the battery chamber 35. Since the other components are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the battery controller 4 4 monitors the temperature, current, and voltage of the battery 33, and if the battery 33 is in abnormal use, for example, if the battery temperature (electrolyte temperature) is higher than the reference temperature, When the value or voltage value indicates an overloaded condition, the battery management status is notified to the operation management control center or the driver, and the supply current from the battery 33 is automatically controlled for safety measures. It may be controlled to be taken.
  • the first embodiment is formed with an inlet 41 for introducing outside air into the battery chamber 35 on the floor surface 9, and on the side wall surface 11.
  • An exhaust port 4 3 for discharging hot air from the battery chamber 3 5 is provided.
  • both the intake port 41 and the exhaust port 43 are formed on the side wall surface 11 of the vehicle body. It shows the totality.
  • both the air inlet 4 1 and the air outlet 4 3 are formed on the side wall surface 11 of the vehicle body, the PJ: Since the air vent 4 1 and the air outlet 4 3 can be provided, the degree of freedom in designing the installation position of the air intake 4 1 and; ⁇ vent 4 3 is improved and the cooling efficiency of the battery chamber 3 5 by the outside air is improved. It can be arranged.
  • both the P inlet 41 and the exhaust outlet 4 3 may be formed on the floor 9 of the vehicle body. In this case, the exhaust outlet 4 3 is installed on the side wall 11. In this case, as shown in Fig. 2, when the vehicle 1 stops at the station, there is no possibility that the circulating air flow in the battery chamber 35 will directly hit the passengers of the platform. Absent.
  • a part of the cool air cooled by the air conditioner 29 for the guest room is led to the heat exchange pipe in the battery chamber 35 in the first embodiment, and the battery is passed through the heat exchange pipe.
  • the air in the chamber 35 is cooled, and the battery 33 is indirectly cooled by the cooled air.
  • the other components are the same as those in the first embodiment, so the same reference numerals are given and the description is omitted.
  • a duct / duhi user that evenly discharges the cold air generated by the air conditioner 29 for the guest room 21 to the guest room passes through the front and rear. From here, a part of the cold air is introduced by a cold air introduction duct 50 formed in the vertical direction along the side wall surface of the vehicle. As shown in FIG. 8, a cold air introduction fan 52 is installed at a downstream portion of the cold air introduction duct 50 so as to flow into the battery chamber 35.
  • the cool air that has flowed into the battery chamber 3 5 is changed in direction by the rectifying plates 5 4 A, 5 4 B, 5 4 C, 5 4 D, and 5 4 E in the duct on the inlet side, and extends in the longitudinal direction of the vehicle.
  • a plurality of heat exchange pipes 5 6 A, 5 6 B, 5 6 C, 5 6 D, and 5 6 E flow in parallel.
  • inlet duct rectifier plates 5 4 A to 5 4 E are long so that the cold air flows smoothly from the upstream heat exchange pipe 5 6 A to the downstream heat exchange pipe 5 6 E without being biased. Is set so that the angle toward the heat exchange pipes 5 6 A to 5 6 E becomes larger as it goes downstream, and the inlet duct to the most downstream heat exchange pipe 5 6 E is set.
  • the inner current plate 5 4 E is the longest and the inclination angle is set to be large.
  • the heat exchange pipes 5 6 A to 5 6 E are installed close to the inside end of the battery 33, and a heat radiation fin (not shown) is provided on the outer periphery of the pipe member. It is formed to increase the heat exchange efficiency.
  • a warm air exhaust fan 62 is installed upstream of the warm air exhaust duct 60, pushing the warm air into the warm air exhaust duct 60 and returning it to the piping 3 1 of the air conditioner 2 9 for the cabin. Circulating to the return side of 9.
  • a plurality of air inlets 6 4 are provided in the lower part of the side wall surface 11 of the battery chamber 35, and a plurality of air outlets 6 6 are provided in the upper part.
  • an intake on-off valve 68 and an exhaust on-off valve 70 are respectively attached to the exhaust port 66, and an exhaust fan 72 is installed in the exhaust port 66.
  • FIG. 10 (a;), (b), (c)
  • the battery fan 7 4 is built in and integrated with each battery 3 3. And the air flow is created in the longitudinal direction of the battery 3 3.
  • the airflow guide plate 7 6 is connected to the heat exchange pipes 5 6 A to 5 "6 E through the exhaust port so that the air in 5 is circulated. From 6 to 6, the heat exchange pipes 5 6 A to 5 6 E and the battery 33 are surrounded.
  • a plurality of battery indoor air conditioners 7 8 A, 7 8 B, and 7 8 C are attached to the vehicle outer end of the battery 33 in the vertical direction.
  • the air conditioning plates 7 8 A to 7 8 C are configured so that the angle can be freely set.
  • the battery and the exhaust port 6 4 and the exhaust port 6 6 are closed and the battery is closed.
  • the angle of the battery indoor air conditioners 7 8 A to 7 8 C is set so that the air flow from the refan 7 4 circulates (Fig. 10 (a), (c)). 6 When 6 is opened and the exhaust fan 7 2 is activated and the outside air is introduced and exhausted by the exhaust fan 7 2, the angle can be changed so that the outside air is easily introduced and exhausted (Fig. 10). (b)).
  • a cooling control device 80 is provided, and by the cooling control device 80, cooling in the battery chamber 35 by supplying and discharging outside air from the P and air outlets 6 4 and 6 6 and the battery chamber 3 Cooling by air circulation in 5 is controlled based on battery temperature, battery room temperature, and outside air temperature.
  • the opening and closing of the P-air opening / closing valve 6 8, the opening / closing of the exhaust opening / closing valve 70, the operation of the exhaust fan 7 2, and the operation of the battery fan 7 4 are automatically controlled so that the battery temperature approaches the target temperature. .
  • the temperature of the battery 33 is detected from the electrolyte temperature, the temperature of the battery chamber 35 is detected, and the battery temperature or the battery room temperature is higher than the outside air temperature.
  • the 33 ⁇ 4 air on / off valve 6 8 is closed, the exhaust on / off valve 70 is closed, the exhaust fan 7 2 is inactivated, and the battery It becomes the internal circulation mode in the chamber 35, and air circulates as shown by the arrow.
  • the battery fan 74 is activated, and the battery indoor air conditioning plates 7 8 A to 7 8 C are set to an angle suitable for internal circulation.
  • the intake on / off valve 6 8 is turned on as shown in Fig. 10 (b). Open, open the exhaust on / off valve 70, and operate the exhaust fan 72 to enter the outside air Z release mode, where the outside air flows as shown by the arrow. At this time, the battery fan 74 is activated, and the battery room air conditioners 7 8 A to 78 C are set at an angle suitable for introduction / discharge.
  • the fifth embodiment differs from the fourth embodiment in that the installation state of the battery 33 is horizontally placed in the fourth embodiment, but is vertically placed in the fifth embodiment. The same as in the fourth embodiment.
  • a part of the cool air generated by the air conditioner 29 for the guest room flows into one end portion of the battery chamber 35 by the cool air introducing duct 90.
  • a cold air introduction fan 92 is installed at a downstream portion of the cold air introduction duct 90 and flows into the battery chamber 35.
  • the cool air that has flowed into the battery chamber 3 5 is changed in direction by the rectifying plates 9 4 A, 9 4 B, and 9 4 C in the inlet side, and extends in the longitudinal direction of the vehicle.
  • the heat exchange pipes 9 6 A, 9 6 B, 9 6 C, 9 6 D are flown into.
  • the rectifying plates 9 4 A, 9 4 B, and 9 4 C in the plurality of inlet side ducts are not evenly distributed from the heat exchange pipe 9 6 A on the upstream side to the heat exchange pipe 9 6 D on the downstream side.
  • the length gradually increases as it goes downstream so that it flows into the smooth, and the inclination of the rectifying plate toward the heat exchange pipes 9 6 A, 9 6 B, 9 6 C, 9 6 D goes downstream. Therefore, it is set to be small so as to face the pipe direction.
  • the heat exchange pipes 9 6 A, 9 6 B, 9 6 C, and 9 6 D are installed close to the upper end of the patch 3 3.
  • the length and inclination of the rectifying plates 94A, 94B, 94C in the duct on the inlet side and the rectifying plates 98A, 98B, 98C in the discharge side duct are fixed.
  • a warm air exhaust fan 102 is installed upstream of the warm air exhaust duct 100 to push the warm air to the warm air exhaust duct 100 and return it to the return side of the air conditioner 29 for the guest room.
  • the individual batteries 33 are arranged vertically, and the battery fan 74 of the notch 33 creates an air flow from the bottom to the top as shown in Figs. 13 (a), (b), and (c). It has become.
  • air is circulated in the battery chamber 35 when the intake on / off valve 68 and the exhaust on / off valve 70 are both closed.
  • the airflow guide plate 116 is installed from the heat exchange pipes 96A, 96B, 96C, 96D to the exhaust port 66 so as to surround the heat exchange pipes 96A, 96B, 96C, 96D.
  • a circulation path 118 is formed in the vertical direction.
  • the components corresponding to the battery room air conditioner plates 78A, 78B, 78C of the fourth embodiment are not installed. That is, in the fifth embodiment, since the batteries 33 are vertically arranged, the air from the bottom to the top is caused by the notch fan 74 and the heat convection by guiding the air to the lower part of the battery 33 through the circulation path 118. This is because it is easy to occur and it is not necessary to generate a horizontal air flow to each battery stacked horizontally as in the fourth embodiment.
  • the system can be configured with a simple structure.
  • a cooling control device 120 is provided, and the cooling control device 120 performs cooling by supplying and discharging outside air from the intake port 64 and the exhaust port 66 and cooling by circulating air in the battery chamber 35. It is controlled based on the battery indoor temperature and the outside air temperature, and automatically controls the battery temperature to approach the target temperature.
  • the battery room air conditioner 7 of the fourth embodiment 7 Since there are no 8 A, 7 8 B, and 7 8 C, control of these is not necessary.
  • the intake on / off valve 6 8 is opened as shown in Fig. 13 (b). Then, the exhaust opening / closing valve 70 is opened and the exhaust fan 72 is operated, so that the outside air flows into the outside air introduction / discharge mode as shown by the arrow. At this time, the battery fan 7 4 operates and flows so as to be discharged from the exhaust port 6 6.
  • the battery 33 since the battery 33 is vertically arranged in the battery chamber 35, the circulating flow direction of the air or the cold air is caused to flow from the bottom to the top of the battery 33.
  • the cooling effect of the battery 33 can be efficiently obtained by the thermal convection effect of air or cold air.
  • the cooling control device 1 2 0 performs optimum battery cooling based on the battery temperature, the battery indoor temperature, and the outside air temperature. Control that operates is possible, and the service life of the battery 33 can be extended.
  • the cool air cooled by the air conditioner 29 is used for the battery chamber 35.
  • the heat exchange pipes 5 6 A to 5 6 E and 9 6 A to 9 6 D are led to cool the air in the battery chamber 3 5 by the heat exchange pipes to indirectly cool the battery 3 3.
  • the pressure air from the vehicle air source was introduced into the low temperature air generator 1 3 1 and generated from the low temperature air generator 1 3 1 The difference is that the cool air is led directly into the battery chamber 3 5 to cool the battery 3 3.
  • the sixth embodiment corresponds to the case where the battery of the fourth embodiment is placed horizontally
  • the next seventh embodiment corresponds to the case where the battery of the fifth embodiment is placed vertically. As shown in FIGS. 14 and 15, cold air flows directly into one end of the battery chamber 35.
  • This cold air is created by using pressurized air as an air source for operating vehicle equipment, for example, by using pressure air for brakes.
  • the low-temperature air generator 1 3 1 generates cold air and hot air using the flow of vortex generated in the vessel when high-pressure air is introduced into the container without using any refrigerant. It is a vessel.
  • the inlet of the low-temperature air generator 1 3 1 is equipped with an electromagnetic valve 1 3 2 that controls the supply of compressed air, so that cold air flows into the battery chamber 3 5 when the electromagnetic valve 1 3 2 is turned on and off. It has become.
  • the cold air flowing into the battery chamber 3 5 is guided to the side wall surface 1 1 side of the vehicle body of each battery 3 3 by the cold air pipes 1 3 4, drilled toward the battery 3 3, and the cold air outlet 1 3 6 It is supposed to flow out of.
  • the cold air tubes 1 3 4 extend in the vehicle front-rear direction and are arranged in parallel in the vertical direction corresponding to the respective stages of the battery 33 corresponding to the three-stage stacking of the batteries 33.
  • an airflow guide plate 1 3 8 surrounds the battery 33 and extends to the exhaust port 66.
  • a plurality of battery indoor air conditioners 1 OA, 1 4 0 B are vertically installed at the outer end of the battery 3 3, and the battery indoor air conditioners 1 4 0 A, 1 4 0 B are angled. Is free Set to
  • a cooling control device 1 4 2 is provided, cooling by supplying and discharging outside air from the P inlet 6 4 and exhaust 6 6, cooling by circulating air in the battery chamber 3 5, and generation of low temperature air Cooling by the cool air discharged directly from the vessel 1 3 1 is controlled based on the battery temperature, the battery room temperature, and the outside air temperature, and is automatically controlled so that the battery temperature approaches the target temperature.
  • Valve 6 8 is closed, exhaust on / off valve 70 is closed, exhaust fan 7 2 is inactive, and the internal circulation mode in battery chamber 35 is entered, and air circulates as shown by the arrow.
  • the battery fan 74 is activated, and the battery indoor air conditioning plates 14 40 A and 14 40 B are set at an angle suitable for internal circulation.
  • the intake opening / closing valve 68 is opened as shown in Fig. 16 (b). Then, open the exhaust on / off valve ⁇ 0 and actuate the exhaust fan 72 to enter the outside air introduction / release mode, and the outside air flows as shown by the arrows. At this time, the battery fan 74 is activated, and the notch indoor air conditioning plates 14 40 A and 14 OB are set at an angle suitable for introduction / discharge.
  • the cooling control device 1 4 2 directly controls the battery 3 3 by the cool air from the low temperature air generator 1 3 1 based on the notch temperature, the battery indoor temperature, and the outside air temperature.
  • the cooling effect of the battery 3 3 is further increased, so that the battery 3 3 can be controlled to operate in the optimum temperature environment quickly, and the service life of the battery 3 3 can be extended. Can do.
  • compressed air can be introduced from a pressurized air source placed under the floor, a portion of the cold air generated by the air conditioner 29 for the cabin 21 is transferred from the ceiling to the floor to the vehicle side wall. This eliminates the need for piping such as a cold air introduction duct that leads along, and simplifies the system.
  • the seventh embodiment corresponds to the fifth embodiment, and the sixth embodiment is different from the sixth embodiment in which the installation state of the battery 33 is horizontal, but the seventh embodiment is vertical. Others are the same as in the sixth embodiment.
  • the pressure air from the vehicle air source is introduced into one end portion of the battery chamber 3 5 to the low temperature air generator 1 5 1, and the cold air generated from the low temperature air generator 1 5 1 is introduced.
  • Qi flows in.
  • the inlet of the low-temperature air generator 1 5 1 is provided with an electromagnetic valve 1 5 2 that controls the introduction of pressurized air. Flows into the battery chamber 35.
  • the low temperature air generator 1 51 is the same as the low temperature air generator 1 3 1 described in the sixth embodiment.
  • the cold air flowing into the battery chamber 3 5 is guided to the floor 9 side of the vehicle body at the lower part of each battery 3 3 by the cold air pipes 1 5 4, drilled toward the battery 3 3, and the cold air outlet 1 5 It is supposed to flow out of 6.
  • the cold wind tubes 15 4 extend in the vehicle longitudinal direction corresponding to the three rows of the batteries 33 and are arranged in parallel in the horizontal direction.
  • the air flow guide plate 1558 extends to the exhaust port 66 so as to cover the battery 33.
  • a circulation path 160 is formed in the vertical direction at the vehicle outer end of the battery 33.
  • a cooling control device 1 6 2 is provided, cooling by supplying and discharging the outside air from the P inlet port 6 4 and the exhaust port 6 6 and cooling by circulating air in the battery chamber 3 5, Cooling by the cool air directly discharged from the low-temperature air generator 1 5 1 is controlled based on the battery temperature, the battery indoor temperature, and the outside air temperature, and automatically controls the battery temperature to approach the target temperature.
  • Valve 6 8 is closed, exhaust on / off valve 70 is closed, exhaust fan 7 2 is inactive, and the internal circulation mode in battery chamber 35 is entered, and air circulates as shown by the arrow.
  • the battery fan 74 is activated and circulates from the top to the bottom through the circulation path 160.
  • the intake on / off valve 68 is opened as shown in Fig. 19 (b). Then, the exhaust on / off valve 70 is opened, the exhaust fan 72 is operated, and the outside air flows as indicated by the arrow in the Z air release mode. At this time, the battery fan 7 4 operates and flows so as to be discharged from the exhaust port 6 6.
  • the effect of directing the cool air from the low-temperature air generator 1 51 to the battery chamber 3 5 and directly cooling the battery 3 3 is the same as that of the sixth embodiment, but according to the seventh embodiment,
  • the battery 33 In the battery chamber 35, the battery 33 is vertically arranged, and the circulating flow direction of the air or the cold air flows from the lower part of the battery 33 to the upper part in the height direction of the battery 33.
  • the cooling effect of the battery 33 can be more effectively obtained by the thermal convection effect of air or cold air.
  • the present invention it is possible to obtain a battery mounting structure in which the overall weight balance of the vehicle is good, the cooling performance of the battery is good, and the safety is improved by maintaining the hermetic seal between the battery compartment and the cabin. It can be provided for track-based electric vehicles used in transportation systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Algebra (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

軌道系電動車両において、車両全体の重量バランスがよく、バッテリの冷却性がよく、しかもバッテリ室と客室との密閉性を保って安全性が向上するバッテリ搭載構造を提供することを課題とする。軌道系電動車両1のバッテリ搭載構造において、バッテリセルを複数個接続して形成されるバッテリモジュール(バッテリ)33を複数個並べて収容するバッテリ室35を車体の床面9上に形成し、該バッテリ室35は車室内側とは密閉構造の仕切板37によって仕切られ、車体の床面9または側壁面11には前記バッテリ室35内に車外気を導入および排出する吸気口41および排気口43が設けられ、前記バッテリ室35内が外気によって冷却可能に構成する。

Description

明 細 書 軌道系電動車両のバッテリ搭載構造 技術分野
本発明は、 専用軌道を走行する軌道系電動車両、 例えば軌道系交通システムの 電動車両において、 または、 専用軌道のみでなく、 路面電車の軌道のように他車 両 (自動車) が走行可能な併用軌道を走行する軌道系電動車両において、 電動機 に電力を供給するバッテリの搭載構造に関する。 背景技術
バッテリュニットからの電力の供給によって駆動される電動車両は、 近年広く 普及しているが、 バッテリが重量物であり、 さらに冷却が必要なことから、 設置 場所等について種々開発がなされ、 提案もされている。
一方、 軌道系電動車両においては、 従来から、 軌道に沿って設置された架線等 の給電システムによつて車両に電力を供給しているが、 定められた軌道をゴムタ ィャで走行する新交通システム等の電動車両においては、 システムの簡素化から 架線レスシステムが望まれており、 バッテリ駆動による電動車両のシステムとす る場合には、 そのバッテリの設置場所について改良が必要になる。
乗用車、 バス、 トラック等を含めた電動車両のバッテリ配置については、 例え ば、特開 2 0 0 4 _ 6 6 8 8 9号公報(特許文献 1 )、 および特許 3 1 4 9 4 9 3 号公報 (特許文献 2 ) が知られている。
かかる特許文献 1においては、 図 2 0に示すように、 電動機の駆動力によって 走行する電動機駆動バス 0 1において、 バッテリュニット 0 2をバス 0 1のル一 フ 0 3上であって前輪軸 0 4の上方に相当する位置に設置して、 電動機等の駆動 源が後輪軸 0 5の後方に搭載される場合における、 後輪軸 0 5と、 前輪軸 0 4と の荷重バランスを取って走行安定性を確保するとともに、 ルーフ 0 3上に設置す ることによつて走行風による冷却性を向上する技術が示されている。
また、 特許文献 2においては、 図 2 1に示すように、 バッテリ 0 1 0を座席の 下方に車体前後方向に延在して設けられた延長ダクト 0 1 1内に収容し、 該延長 ダクト 0 1 1の前方側を空調ュニット 0 1 2に接続し、 後方側を後部座席の後ろ 側部位に形成された吸入口 0 1 3に接続している。 室内空気を吸入口 0 1 3から 吸入してその空気でバッテリ 0 1 0を冷却して暖められた空気が、 空調ュニット 0 1 2に入り込み空調ュニットで暖められる技術が示されている。
前記特許文献 1に示されたバッテリ配置技術では、 ルーフ 0 3上に重量の重い バッテリを搭載するために、 ルーフ 0 3を含めた車体の機械的強度を増加させる 必要があり、 車体重量が増加する問題を有し、 さらに、 ルーフ 0 3上に重量の重 ぃバッテリを搭載すると車両の重心位置が高くなり走行安定性が悪化するおそれ も有している。
また、 特許文献 2に示されたバッテリ配置技術は、 客室空調を利用してバッテ リ 0 1 0を冷却するものであり、 ノ ッテリ 0 1 0に流す空気を室内後部に開口し た吸入口 0 1 3から取り入れている。 このために、 パッテリ 0 1 0が設置されて いるバッテリ室と客室との密閉性が保てないため、 バッテリ 0 1 0の電解液ゃ電 解液から発生する可燃性ガス等の影響を受けるおそれがある。
さらに、 定められた軌道をゴムタイヤで走行する新交通システム等の電動車両 においては、 床下には車両の制御機器やケーブルが配置されているため、 バッテ リ設置に十分なスペースを確保することが難しく、 また、 十分なスペースを確保 するには車両構造を大きく変更しなければならず、 従来の車両外部から給電され る車両を流用する場合には大きな設計変更が必要となる。
また、 前記新交通システム等の軌道系の電動車両は、 一般に車両自体が、 乗用 車、 トラック、 バスに比べて大型であるため、 電動機を駆動する供給電力も大電 流を要し、 バッテリ容量も大きくなり、 バッテリの総重量、 総体積も乗用車、 卜 ラック、 パスに比べて重く、 広いスペースを必要とする。 このため、 適切な設置 場所を確保することが困難となる。 発明の開示
そこで、 本発明はこのような背景に鑑みてなされたものであり、 軌道系電動車 両において、 車両全体の重量バランスがよく、 バッテリの冷却性がよく、 しかも バッテリ室と客室との密閉性を保つて安全性が向上するバッテリ搭載構造を提供 することを課題とする。
本発明は前述の目的を達成するものであり、 バッテリからの駆動電力によって 軌道を走行する軌道系電動車両のパッテリ搭載構造において、 バッテリセルを複 数個接続して形成されるバッテリモジュール (以下バッテリという) を複数個並 ベて収容するバッテリ室を車体の床面上に形成し、 該バッテリ室は車室内側とは 密閉構造の仕切板によって仕切られ、 車体の床面または壁面には前記バッテリ室 内に車外気を導入および排出する吸気口および排気口が設けられ、 前記バッテリ 室内が外気によつて冷却可能に構成されたことを特徴とする。
かかる発明によれば、 軌道系電動車両の車室内の床面上にバッテリ室を形成し てバッテリを配置するため、車体を補強して機械的強度を増加させる必要がない。 すなわち、 元々床構造は乗客を乗せるために機械的強度が充分に確保されている ためである。 従って、 従来の車両外部から給電される軌道系電動車両の床構造を そのまま流用することができる。
また、 バッテリ室は車室内側とは密閉構造の仕切板によって仕切られ、 さらに バッテリ室内は吸気口および排気口によつて車外と連通するため、 外気によって バッテリの冷却が可能であるとともに、 バッテリの電解液ゃ該電解液からの可燃 性ガス等の影響を車室内側では受けず安全性が確保される。
また、 好ましくは、 前記バッテリ室が前記車両の前後方向の中央部の車両両側 に客室内に張り出して設けられるとよい。
このような構成によると、 車両中央部に配置されるため、 車両の重量バランス がよく車両の走行安定性が悪化することもない。
また、 車両中央部に配置されるため、 車両前後からの衝突に対して衝撃が緩和 されるため安全性が高まる。
さらに、好ましくは、前記バッテリ室が乗客の座席の下方に位置されるとよく、 このようにバッテリ室が乗客の座席の下方に位置されることで、 バッテリ室の配 置スペースの有効利用がなされる。
さらに、 好ましくは、 前記バッテリ室にはパッテリの温度、 電流、 電圧を監視 してバッテリの異常を検出した際に該バッテリからの給電を制御するバッテリ制 御装置が設置されるとよい。
このような構成によれば、 バッテリ室内を有効利用できるとともに、 バッテリ 制御装置をュニッ卜化してバッテリと共に取り扱うことができるため、 バッテリ 制御装置の制御仕様変更への対応や修理への対応が容易となり作業性が向上する。 さらに、 好ましくは、 前記吸気口および排気口が共に車体の側壁面に形成され ているとよく、 このような構成によれば、 床面の下方に設置されている機器類お よびケーブル類に影響せずに吸気口、 排気口を設けることができため、 P及気口お よび排気口の設置位置の自由度が向上しパッテリ室の外気による冷却効率を向上 する配置とすることができる。
また、 好ましくは、 前記吸気口および排気口が共に車体の床面に形成されてい てもよく、 この場合には、 排気口を側壁面に設置した場合に、 車両が駅停車時に ホームの乗客へバッテリ室内の循環空気流が直接当たるおそれがあるという問題 が解消される。
さらに、 本発明においては、 客室用の空調機からの冷気を前記バッテリ室へ循 環せしめて、 前記バッテリ室にて熱交換パイプを介してバッテリ室内の空気が冷 却されるように構成したことを特徴とする。
かかる構成によれば、 客室用の空調機からの冷気を用いてバッテリ室の空気が 冷却され、 その空気によってバッテリを冷却することができるため、 バッテリを 最適な温度環境において作動するように制御可能になる。 その結果、 バッテリの 負荷を軽減できバッテリの使用寿命を延長することができる。
また、 車両の空気源からの圧力空気により冷気をつくつて直接前記バッテリ室 内へ供給して、 前記バッテリ室内の空気が冷却されるように構成したことを特徴 とする。
かかる構成によれば、 車両の機器を作動させる空気源としての圧力空気を用い て、 例えばブレーキ用の圧力空気を用いて冷気をつくる。 すなわち、 圧力空気を 供給すると、 冷気と熱気とを噴出する低温空気発生器に圧力空気を通して冷気を 生成する。 そして、 生成した冷気を直接的にバッテリ室内に導入する。
従って、 冷気を直接的にバッテリ室内に導入するため、 バッテリの冷却効果が 大きく、 迅速にバッテリを最適な温度環境において作動するように制御可能にな る。 その結果、 バッテリの負荷を軽減できバッテリの使用寿命を延長することが できる。
また、 客室用の空調機を用いずに、 車両の空気源としての圧力空気を利用する ことで簡単に冷気をつくることができるので、 システムを簡単に構成できる。 また、 好ましくは、 前記吸気口および排気口からの外気の供給と排出と、 外気 の供給を遮断したバッテリ室内における前記空気または冷気の循環とを、 バッテ リ温度、 バッテリ室内温度、 外気温度とに基づいて冷却制御装置によって制御す るとよい。
かかる構成によれば、 バッテリ温度、 パッテリ室内温度、 外気温度に基づいて 最適なパッテリ冷却が行なわれるため、 ノ ッテリを最適な温度環境において作動 するような制御が可能になり、 ノ ツテリの使用寿命を延長することができる。 さらに、 好ましくは、 前記バッテリ室内において、 バッテリが縦配置されると ともに、 前記空気または冷気の循環流方向が前記バッテリの下部から上部へと上 下方向に流されるとよく、 このような構成によると、 バッテリ室内において冷気 の熱対流効果によつてバッテリの冷却効果が効率的に得られる。
本発明によれば、 軌道系電動車両において、 車両全体の重量バランスがよく、 バッテリの冷却性がよく、 しかもバッテリ室と客室との密閉性を保って安全性が 向上するバッテリ搭載構造を得ることができる。
なお、 本発明においては、 前記軌道が、 前記電動車両のみが走行する専用軌道 であっても、 前記電動車両および他の車両 (自動車等) が走行可能な併用軌道で あってもよく、 いずれの軌道を走行する軌道系電動車両においても、 車両全体の 重量バランスがよく、 バッテリの冷却性がよく、 しかもバッテリ室と客室との密 閉性を保つて安全性が向上するバッテリ搭載構造を得ることができる。 図面の簡単な説明
第 1図は、 本発明の第 1実施形態の全体構成を示す要部断面側面図である。 第 2図は、 第 1実施形態を示す要部断面正面図である。
第 3図は、 第 1実施形態を示す要部断面平面図である。
第 4図は、バッテリ室の上面の用途を示す説明図であり、 (a )は椅子として利 用する場合を示し、 (b) は荷物置場として利用する場合を示す説明図である。 第 5図は、 第 2実施形態を示す説明図であり、 (a) は要部断面側面図であり、 (b) は ) の A矢視方向の断面図であり、 (c) は (a) の B矢視方向の断面 図である。
第 6図は、 第 3実施形態の要部断面平面図である。
第 7図は、 第 4実施形態の全体構成を示す要部断面側面図である。
第 8図は、 図 7の C部分の拡大側面図である。
第 9図は、 図 7の C部分の拡大平面図である。
第 10図は、 図 8の D— D断面図におれるバッテリ室内の空気の流れを示し、 (a) は冬季の運転初期の場合、 (b) は冬季パッテリ発熱時の場合、 (c) は夏 季の場合である。
第 11図は、 第 5実施形態を示し、 図 7の C部分の拡大側面図である。
第 12図は、 図 7の C部分の拡大平面図である。
第 13図は、図 11の E— E断面図におけるバッテリ室内の空気の流れを示し、 (a) は冬季の運転初期の場合、 (b) は冬季バッテリ発熱時の場合、 (c) は夏 季の場合である。
第 14図は、 第 6実施形態を示し、 第 4実施形態の図 8に対応する図である。 第 15図は、 図 14の平面図である。
第 16図は、図 14の F— F断面図におれるバッテリ室内の空気の流れを示し、 (a) は冬季の運転初期の場合、 (b) は冬季バッテリ発熱時の場合、 (c) は夏 季の場合である。
第 17図は、第 7実施形態を示し、第 5実施形態の図 11に対応する図である。 第 18図は、 図 17の平面図である。
第 19図は、図 17の G— G断面図におれるバッテリ室内の空気の流れを示し、 (a) は冬季の運転初期の場合、 (b) は冬季バッテリ発熱時の場合、 (c) は夏 季の場合である。
第 20図は、 従来技術を示す説明図である。
第 21図は、 従来技術を示す説明図である。 発明を実施するための最良の形態
以下、 本発明を図に示した実施例を用いて詳細に説明する。 但し、 この実施例 に記載されている構成部品の寸法、 材質、 形状、 その相対配置などは特に特定的 な記載がない限り、 この発明の範囲をそれのみに限定する趣旨ではなく、 単なる 説明例にすぎない。
(第 1実施形態)
図 1〜図 4を参照して、 本発明の第 1実施形態について説明する。
軌道系電動車両 1として空港内の移動等に利用される軌道系交通システムの車 両を例に説明する。 図 1に示すよう、 車両 1は、 車輪として下部四隅にゴムタイ ャ 3を備え、 軌道 (本実施形態では走行路面 5) をバッテリ 33からの電力で走 行する電気駆動車両である。 なお、 軌道 (走行路面 5) は、 車両 1の専用軌道で あっても、 他車両が走行可能な併用軌道であっても良い。 以下の実施形態も同様 である。
図 1、 2に示すように軌道系電動車両 1は、床面 9と側壁面 11と屋根 13と、 さらに前後の端壁面 15とによって車室 17を形成し、 車室 17は車両前後の部 分の運転室 19 (有人運転車両の場合) と、 車両中間部の客室 21とを有して構 成されている。 また、 前後に 2箇所スライド式の乗降ドア 23が設けられ、 中央 部には窓 25が形成されている。
さらに車両 1の天井 27と屋根 13との間には、 客室用の空調機 29が車両の 前後方向の中心対して対称の位置に設置され、 互いに配管 31によって連通し、 冷気が天井 27部分に形成された放出口から客室 21内に放出されるようになつ ている。
定められた軌道の走行は、 特に図示していないが、 走行路面 5に沿ってガイド 溝やガイド壁が設けられて、 そのガイド溝ゃガイド壁に車両台車に取り付けられ たガイド輪が挿入または当接して、 そのガイド輪の動きに連動して車両 1の操舵 機構が操舵される機構が設けられている。
また、このようなガイド輪による自動操舵機構を設けていない場合であっても、 走行路面 5上に設置された位置センサからの情報、 GPS (G l oba l Po s i t i on i ng Sys t em) からの情報、 さらにタイヤ 3の回転数パル ス信号、 駆動モータの回転数パルス信号からの情報等を基にして自車両位置を算 出して、 走行制御装置の記憶部に記憶されている走行軌道データと照らし合わせ て、 操舵パターンを決定して自動操舵するようになっている。
車両 1は、 ゴムタイヤ 3を駆動するために図示しないモータ (電動機) を備え ており、 モータに駆動電流を送るバッテリ 3 3が装着されている。 このバッテリ 3 3は、 リチウムイオン電池からなっていて、 バッテリセル (例えば 4 V) が複 数個 (例えば 8個) 接続されて十〜数十ポルト単位で、 パッケージングされた状 態バッテリモジュールを構成している。 このバッテリモジュールを、 以下バッテ リ 3 3という。
バッテリ 3 3は、 車両中央部の客室 2 1内に張り出して形成されたバッテリ室 3 5内に収容されている。 このバッテリ室 3 5は、 床面 9上に形成され、 該バッ テリ室 3 5は客室 2 1の内部側とは密閉構造の仕切板 3 7によって仕切られてい る。
また、 仕切板 3 7は金属板によって形成され、 略直方体形状に客室 2 1内側に 張り出すように形成され、 さらにバッテリ室 3 5の内側には、 例えばグラスウー ルのような断熱材 3 9が貼付されて、 バッテリ室 3 5の熱と客室 2 1との伝熱が 断熱されるようになっている。 これによつて、 バッテリ室 3 5内の冷却効果が確 保されるとともに、 客室 2 1内の温度がバッテリ室 3 5内の熱によって影響を受 けないようになつている。
また、 図 1、 2、 3に示すように、 バッテリ 3 3は、 バッテリ室 3 5内に、 Ά ッテリ 3 3の長手方向を車幅方向に向けて、 車両上下方向に 3段積み重ねて、 車 両前後に 7列並設して収容した例を示してあるが、 必要とするモータ電流に応じ て適宜の段数、 列数を設定することができる。
また、 各バッテリ 3 3はバッテリ室 3 5内でずれないように固定手段によって 位置決め固定されている。
床面 9には、 車外気をパッテリ室 3 5内に導入する吸気口 4 1が形成され、 ま た、 側壁面 1 1にはバッテリ室 3 5から熱気を排出する排気口 4 3が設けられて いる。 これら吸気口 4 1、 排気口 4 3は、 車両長手方向にバッテリ 3 3の数に応 じて複数個所に設けられている。 なお、 排気口 4 3には、 バッテリ室 3 5内の熱気を強制的に排出するために、 図示しない排気ファンを設置してもよく、 さらにバッテリ 3 3に一体的に内蔵さ れるバッテリファンを設置してもよい。
以上のように、 客室 2 1内の床面 9上にバッテリ室 3 5を形成してバッテリ 3 3を配置するため、 屋根上や床下以外の部位でのバッテリ搭載が可能となり、 さ らに、 床面 9上に搭載するため、 車体を補強して機械的強度を増加させる必要が ない。 すなわち、 元々床構造は乗客を乗せるために機械的強度が充分に確保され ているためである。 従って、 従来の車両外部から給電される軌道系電動車両の床 構造をそのまま流用することができる。
また、 バッテリ室 3 5は客室 2 1内側とは密閉構造の仕切板 3 7によって仕切 られ、 さらに断熱材がバッテリ室 3 5の内側に装着され、 さらにバッテリ室 3 5 は吸気口 4 1および排気口 4 3によって車外と連通するため、 外気によってバッ テリの冷却が可能であるとともに、 バッテリの電解液ゃ該電解液からの可燃性ガ ス等の影響を車室内側では受けず安全性が確保される。
また、 バッテリ室 3 5が車両の前後方向の中央部の車両両側に客室 2 1内に張 り出して設けられるため、 車両の重量バランスがよく車両の走行安定性が悪化す ることない。
また、 車両中央部に配置されるため、 車両前後からの衝突に対して衝撃が緩和 されるため安全性が高まる。
なお、 車両前後からの衝突に対しての安全性においては犠牲になるが、 客室 2 1内のスペースを広く確保できるという観点から、 バッテリ室 3 5を車両前後の それぞれの運転台下に設置してもよい。
図 4 ( a )、 ( b ) を参照して、 バッテリ室 3 5の上面の利用ついて説明する。 図 4 ( a) に示すようにバッテリ室 3 5を形成する仕切板 3 7の上面にシート クッション 3 8を設置して座席 4 0として利用してもよく、 さらに図 4 ( b) に 示すように仕切板 3 7の上面に手すり 4 2を設置して荷物置場として利用しても よい。
(第 2実施形態)
次に、 図 5 ( a )、 (b )、 ( c ) を参照して、 第 2実施形態について説明する。 この第 2実施形態は、 第 1実施形態に対して、 バッテリ 3 3の配列が車幅方向 に対して一列増やして設定したものである。 さらに、 第 1実施形態に対して、 ノ ッテリ 3 3の状態を監視制御するバッテリ制御装置 4 4をバッテリ室 3 5内に設 置した点が相違する。 その他の構成部品については第 1実施形態と同様のため同 一符号を付して説明は省略する。
バッテリ 3 3の配列を車幅方向に対して一列増やして設定したため、 合計バッ テリ容量を増加でき、 バッテリ全体のバッテリ寿命を延長することができる。 また、 バッテリ制御装置 4 4は、 ノ ッテリ 3 3の温度、 電流、 電圧を監視して バッテリ 3 3の使用状態が異常な場合、 たとえばバッテリ温度 (電解液温度) が 基準温度以上の場合、 電流値、 電圧値が過負荷状態ゃバッテリ上がり状態を示す 場合等において、 運行管理制御センタ一や運転者に異常を知らせるとともに、 自 動的にバッテリ 3 3からの供給電流を制御して安全処置がとられるように制御し てもよい。
このようにバッテリ制御装置 4 4がバッテリ室 3 5内に設置されることによつ て、 バッテリ室 3 5内を有効利用できるとともに、 バッテリ制御装置 4 4をュニ ット化してバッテリ 3 3と共に取り扱うことができるため、 バッテリ制御装置 4 4の制御仕様変更への対応や修理への対応が容易となり作業性が向上する。 (第 3実施形態)
次に、 図 6を参照して、 第 3実施形態について説明する。
この第 3実施形態は、 第 1実施形態が、 図 2に示すように、 床面 9に車外気を バッテリ室 3 5内に導入する吸気口 4 1が形成され、 また、 側壁面 1 1にバッテ リ室 3 5から熱気を排出する排気口 4 3が設けられているが、 この第 3実施形態 においては、 吸気口 4 1および排気口 4 3が共に車体の側壁面 1 1に形成されて いる塲合を示す。
このように、 吸気口 4 1および排気口 4 3が共に車体の側壁面 1 1に形成され ていると、 床面 9の下方に設置されている機器類およびケーブル類に影響せずに PJ:気口 4 1、 排気口 4 3を設けることができため、 吸気口 4 1および;^気口 4 3 の設置位置の設計自由度が向上しバッテリ室 3 5の外気による冷却効率を向上す る配置とすることができる。 なお、 図示していないが、 P及気口 4 1および排気口 4 3が共に車体の床面 9に 形成されていてもよく、 この場合には、 排気口 4 3を側壁面 1 1に設置した場合 には、 図 2に示すように車両 1が駅停車時にホームの乗客へバッテリ室 3 5内の 循環空気流が直接当たるおそれがないため、 ホームドア 4 6等の防御壁を設ける 必要がない。
(第 4実施形態)
次に、 図 7〜1 0を参照して、 第 4実施形態について説明する。
この第 4実施形態は、 第 1実施形態に対して客室用の空調機 2 9によって冷却 された冷気の一部をバッテリ室 3 5内の熱交換パイプに導いて、 熱交換パイプを 介してバッテリ室 3 5内の空気を冷却して、 該冷却された空気によってバッテリ 3 3を間接的に冷却するものである。 その他の構成部品については、 第 1実施形 態と同様であるため、 同一符号を付して説明を省略する。
図 7に示すように、 バッテリ室 3 5の一端部には、 客室 2 1用の空調機 2 9に よって生成された冷気を客室に均等放出するダクト兼デュヒユーザーが前後に通 つている。 ここから冷気の一部を車両側壁面に沿って上下方向に形成された冷気 導入ダクト 5 0によって流入される。 そして、 図 8に示すように、 冷気導入ダク ト 5 0の下流部位には冷気導入ファン 5 2が設置され、 バッテリ室 3 5内に流入 されるようになつている。 バッテリ室 3 5内に流入した冷気は、 入口側ダクト内 整流板 5 4 A、 5 4 B、 5 4 C、 5 4 D、 5 4 Eによって方向が変えられて車両 前後方向に伸びて上下に並設される複数本の熱交換パイプ 5 6 A、 5 6 B、 5 6 C、 5 6 D、 5 6 Eに流入される。
複数の入口側ダクト内整流板 5 4 A〜 5 4 Eは、 冷気が上流側の熱交換パイプ 5 6 Aから下流側の熱交換パイプ 5 6 Eまで偏らずにスムーズに流入するように、 長さが、 下流に行くに従つて順次長くなり、 さらに熱交換パイプ 5 6 A〜 5 6 E へ向かう角度が大きくなるように設定され、 最も下流側の熱交換パイプ 5 6 Eへ の入口側ダクト内整流板 5 4 Eが最も長く傾斜角度が大きく設定されている。 なお、 図 9に示すように、 熱交換パイプ 5 6 A〜 5 6 Eは、 バッテリ 3 3の室 内側端部に近接して設置されていて、 パイプ部材の外周には図示しない放熱フィ ンが形成されて熱交換効率を高めようになっている。 熱交換パイプ 5 6 A〜 5 6 Eの排出側には、 排出側ダクト内整流板 5 8 A、 5 8 B、 5 8 C、 5 8 D、 5 8 Eがそれぞれ設けられ、 この排出側ダクト内整流板 5 8 A〜 5 8 Eも、 入口側ダクト内整流板 5 4 A〜 5 4 Eと同様に、 熱交換パイ プ 5 6 A〜 5 6 Eから排出される暖気を暖気排出ダクト 6 0に向かわして空調機
2 9のリターン側へスムーズに戻すように、 その長さ、 傾きが設定されている。 なお、 これらの入口側ダクト内整流板 5 4 A〜5 4 E、 排出側ダクト内整流板
5 8 A〜5 8 Eの長さ、 傾きは固定されて設定されている。
さらに、 暖気排出ダクト 6 0の上流側には暖気排出フアン 6 2が設置され、 暖 気を暖気排出ダクト 6 0へ押し出し、 客室用の空調機 2 9の配管 3 1へ戻して、 空調機 2 9のリタ一ン側へ循環させている。
このようにして、 空調機 2 9による冷気をバッテリ室 3 5内に導いて熱交換パ ィプ 5 6 A〜5 6 Eを介してバッテリ室 3 5内の空気を冷却して間接的にバッテ リ 3 3を冷却している。
また、 外気による冷却については、 バッテリ室 3 5の側壁面 1 1側の下部に複 数の吸気口 6 4が設けられ、 上部には複数の排気口 6 6が設けられて、 吸気口 6 4および排気口 6 6には、 それぞれ吸気開閉弁 6 8と排気開閉弁 7 0とが取り付 けられとともに、 排気口 6 6には、 排気ファン 7 2が設置されている。
さらに、 個々のバッテリ 3 3には、 図 9、 図 1 0 ( a;)、 (b )、 ( c ) のバッテ リ 3 3に示すように、 バッテリファン 7 4が内蔵されて一体形成されており、 バ ッテリ 3 3の長手方向に空気の流れを作るようになつている。
吸気開閉弁 6 8、 および排気開閉弁 7 0が共に閉じているときに、 バッテリ室
3 5内の空気が循環するように、 図 1 0 ( a )、 (b )、 ( c ) に示すように、 気流 誘導板 7 6が熱交換パイプ 5 6 A〜 5 "6 Eから排気口 6 6にかけて、 熱交換パイ プ 5 6 A〜5 6 Eとバッテリ 3 3とを囲って設置されている。
また、 バッテリ室 3 5内において、 バッテリ 3 3の車外側端部には、 バッテリ 室内整風板 7 8 A、 7 8 B、 7 8 Cが上下方向に複数枚取り付けられていて、 こ のバッテリ室内整風板 7 8 A〜7 8 Cは角度が自由に設定されるように構成され ている。
すなわち、 バッテリ室 3 5内で、 P及気口 6 4および排気口 6 6を閉じてバッテ リファン 7 4による空気の流れが循環するようにバッテリ室内整風板 7 8 A〜 7 8 Cの角度が設定され (図 1 0 ( a )、 (c ))、 また、 吸気口 6 4および排気口 6 6を開いて、 排気ファン 7 2を作動して外気を排気ファン 7 2によって導入、 排 出するときには、 外気を導入し排出し易いように角度が変えられるようになって いる (図 1 0 ( b ))。
さらに、 冷却制御装置 8 0が設けられ、 該冷却制御装置 8 0によって、 P及気口 6 4および排気口 6 6からの外気の供給と排出によるバッテリ室 3 5内の冷却と、 バッテリ室 3 5内における空気の循環による冷却とが、 バッテリ温度、 パッテリ 室内温度、 外気温度とに基づいて制御される。
すなわち、 P及気開閉弁 6 8の開閉、 排気開閉弁 7 0の開閉、 排気ファン 7 2の 作動、 バッテリファン 7 4の作動を、 バッテリ温度が目標の温度に近づくように 自動的に制御する。
例えば、 外気温度から冬季を判断した場合であって、 バッテリ 3 3の温度を電 解液温度から検出し、 さらにバッテリ室 3 5の温度を検出し、 バッテリ温度また はバッテリ室内温度が外気温度より低い冬季の早朝または運用初期のときには、 図 1 0 ( a ) に示すように、 3¾気開閉弁6 8を閉、 排気開閉弁 7 0を閉、 排気フ アン 7 2を非作動にして、 バッテリ室 3 5内での内部循環モードとなって矢印の ように空気が循環する。 このときバッテリファン 7 4は作動し、 バッテリ室内整 風板 7 8 A〜 7 8 Cは内部循環に適した角度に設定される。
次に、 外気温度から冬季を判断した場合であって、 バッテリ温度またはバッテ リ室内温度が外気温度より高いバッテリ発熱時のときには、 図 1 0 ( b ) に示す ように、吸気開閉弁 6 8を開、排気開閉弁 7 0を開、排気フアン 7 2を作動して、 外気の導入 Z放出モードとなって矢印のように外気が流れる。 このときバッテリ ファン 7 4は作動し、 バッテリ室内整風板 7 8 A〜 7 8 Cは導入/放出に適した 角度に設定される。
次に、 外気温度から夏季を判断した場合には、 空調機 2 9による冷気がバッテ リ室 3 5の内部に導かれて熱交換パイプ 5 6 A〜 5 6 Eを介してバッテリ 3 3を 間接的に冷却する。 図 1 0 ( c ) に示すように、 図 1 0 ( a) と同様に、 吸気開 閉弁 6 8を閉、 お気開閉弁 7 0を閉、 排気ファン 7 2を非作動にして、 バッテリ 室 3 5内での内部循環モードとなって矢印のように空気が循環する。 以上のように、冷却制御装置 8 0によって、バッテリ温度、バッテリ室内温度、 外気温度に基づいて最適なバッテリ冷却が行なわれるため、 バッテリ 3 3を鍅適 な温度環境において作動する制御が可能になり、 バッテリ 3 3の使用寿命を延長 できる。
(第 5実施形態)
次に、 図 1 1〜1 3を参照して、 第 5実施形態について説明する。
第 5実施形態は、 第 4実施形態とバッテリ 3 3の設置状態が、 第 4実施形態で は横置きであったものが、 第 5実施形態では縦置きであることが相違し、 他は第 4実施形態と同様である。
図 1 1に示すように、 バッテリ室 3 5の一端部には、 客室用の空調機 2 9によ つて生成された冷気の一部が冷気導入ダク卜 9 0によって流入される。 そして、 冷気導入ダクト 9 0の下流部位には冷気導入ファン 9 2が設置され、 バッテリ室 3 5内に流入されるようになっている。 バッテリ室 3 5内に流入した冷気は、 入 口側ダクト内整流板 9 4 A、 9 4 B、 9 4 Cによって方向が変えられて車両前後 方向に伸びて水平方向に並設される複数本の熱交換パイプ 9 6 A、 9 6 B、 9 6 C、 9 6 Dに流入される。
このとき、 複数の入口側ダクト内整流板 9 4 A、 9 4 B、 9 4 Cは、 冷気が上 流側の熱交換パイプ 9 6 Aから下流側の熱交換パイプ 9 6 Dまで偏らずにスムー ズに流入するように、 長さが、 下流に行くに従って順次長くなり、 さらに熱交換 パイプ 9 6 A、 9 6 B、 9 6 C、 9 6 Dへ向かう整流板の傾斜は下流に行くにし たがってパイプ方向を向くように小さくなる設定されている。 なお、 熱交換パイ プ 9 6 A、 9 6 B、 9 6 C、 9 6 Dは、 パッチリ 3 3の上端部に近接して設置さ れている。
熱交換パイプ 9 6 A、 9 6 B、 9 6 C、 9 6 Dの排出側には、 排出側ダクト内 整流板 9 8 A、 9 8 B、 9 8 Cが設けられ、 この排出側ダクト内整流板 9 8 A、
9 8 B、 9 8 Cも、 入口側ダクト内整流板 9 4 A、 9 4 B、 9 4 Cと同様に、 熱 交換パイプ 9 6 A、 9 6 B、 9 6 C、 9 6 Dから排出される暖気を暖気排出ダク ト 1 0 0に向わせて空調機 2 9のリターン側へスムーズに戻すように、 長さ、 傾 きが設定されている。
これらの入口側ダクト内整流板 94 A、 94B、 94C、 排出側ダクト内整流 板 98A、 98B、 98 Cの長さ、 傾きは固定されて設定されている。
また、 暖気排出ダクト 100の上流側には暖気排出ファン 102が設置され、 暖気を暖気排出ダクト 100へ押し出し、 客室用の空調機 29のリターン側へ戻 すようになっている。
さらに、 個々のバッテリ 33は縦配置され、 図 13 (a)、 (b)、 (c) に示す ように、 ノ ッテリ 33のバッテリファン 74によって、 下から上方向に空気の流 れを作るようになつている。 そして、 吸気開閉弁 68、 および排気開閉弁 70が 共に閉じているときに、バッテリ室 35内で、空気が循環するように、図 13 (a)、 (b)、 (c) に示すように、 気流誘導板 116が熱交換パイプ 96 A、 96B、 96C、 96 Dから排気口 66にかけて、熱交換パイプ 96A、 96B、 96 C、 96Dを囲って設置されている。 また、 循環路 118が上下方向に形成されてい る。
第 5実施形態では、 第 4実施形態のバッテリ室内整風板 78 A、 78B、 78 Cに相当する構成部品は設置されていない。 すなわち、 第 5実施形態では、 バッ テリ 33がそれぞれ縦置きであるため、 循環路 118によってバッテリ 33の下 部に空気を導くことで、 ノ ッテリファン 74及び熱対流によって、 下から上への 流れが生じやすく、 第 4実施形態のように横積みされる各バッテリへの横方向の 空気の流れを生成する必要がないためである。
従って、 第 5実施形態では、 構成部品が簡素化されるため、 簡単な構造でシス テムを構成できる。
また、 冷却制御装置 120が設けられ、 該冷却制御装置 120によって、 吸気 口 64および排気口 66からの外気の供給と排出による冷却と、 バッテリ室 35 内における空気の循環による冷却とが、 バッテリ温度、 バッテリ室内温度、 外気 温度とに基づいて制御され、 バッテリ温度が目標の温度に近づくように自動的に 制御する。
なお、 バッテリ温度が目標の温度に近づくように自動的に制御する点は、 第 4 実施形態と同様であるが、 本実施形態では第 4実施形態のバッテリ室内整風板 7 8 A、 7 8 B、 7 8 Cがないため、 これらに対する制御は不要である。
具体的には、 外気温度から冬季を判断した場合であって、 バッテリ温度または パッテリ室内温度が外気温度より低い冬季の早朝または運用初期のときには、 図 1 3 ( a) に示すように、 P及気開閉弁 6 8を閉、 排気開閉弁 7 0を閉、 排気ファ ン 1 1 2を非作動にして、 バッテリ室 3 5内での内部循環モードとなって矢印の ように空気が循環する。 このときバッテリファン 7 4は作動し、 循環路 1 1 8を 上から下に通って循環する。
また、 外気温度から冬季を判断した場合であって、 バッテリ温度またはバッテ リ室内温度が外気温度より高いバッテリ発熱時のときには、 図 1 3 ( b) に示す ように、吸気開閉弁 6 8を開、排気開閉弁 7 0を開、排気フアン 7 2を作動して、 外気の導入ノ放出モ一ドとなって矢印のように外気が流れる。 このときバッテリ ファン 7 4は作動し、 排気口 6 6から排出されるように流れる。
また、 外気温度から夏季を判断した場合には、 空調機 2 9による冷気がバッテ リ室 3 5の内部に導かれて熱交換パイプ 9 6 A〜9 6 Dを介してバッテリ 3 3を 間接的に冷却する。 図 1 3 ( c ) に示すように、 図 1 3 ( a ) と同様に、 P及気開 閉弁 6 8を閉、 お気開閉弁 7 0を閉、 排気ファン 7 2を非作動にして、 バッテリ 室 3 5内での内部循環モードとなって、 循環路 1 1 8を通って上から下に矢印の ように冷気が循環する。
また、 本実施形態によれば、 バッテリ室 3 5内において、 バッテリ 3 3が縦配 置されるため、 前記空気または冷気の循環流方向が前記バッテリ 3 3の下から上 方向に流されることによって、 空気または冷気の熱対流効果によってバッテリ 3 3の冷却効果が効率的に得られる。
以上のように第 5実施形態によれば、 冷却制御装置 1 2 0によって、 バッテリ 温度、 バッテリ室内温度、 外気温度に基づいて最適なバッテリ冷却が行なわれる ため、バッテリ 3 3を最適な温度環境において作動するような制御が可能になり、 バッテリ 3 3の使用寿命を延長することができる。
(第 6実施形態)
次に、 図 1 4〜1 6を参照して、 第 6実施形態について説明する。
第 4、 5実施形態は、 空調機 2 9によって冷却された冷気をバッテリ室 3 5の 熱交換パイプ 5 6 A〜5 6 E、 9 6 A〜9 6 Dに導いて、 該熱交換パイプによつ てバッテリ室 3 5内の空気を冷却してバッテリ 3 3を間接的に冷却するものであ つたが、 第 6実施形態、 および次の第 7実施形態では、 車両の空気源からの圧力 空気を低温空気発生器 1 3 1に導入し、 低温空気発生器 1 3 1から発生した冷気 をバッテリ室 3 5の内部に直接導いてバッテリ 3 3を冷却する点で相違する。 本 第 6実施形態は第 4実施形態のバッテリを横置きにした場合に対応し、 次の第 7 実施形態が第 5実施形態のパッテリを縦置きにした場合に対応するものである。 図 1 4及び図 1 5に示すように、 バッテリ室 3 5の一端部には、 冷気が直接流 入するようになっている。
この冷気は、 車両の機器を作動させる空気源としての圧力空気を用いて、 例え ばブレーキ用の圧力空気を用いてつくる。
すなわち、 圧力空気を供給すると、 冷気と熱気とを噴出する低温空気発生器 1 3 1に圧力空気を通して冷気を生成する。 そして、 生成した冷気を直接的にバッ テリ室 3 5内に導入する。
なお、 低温空気発生器 1 3 1は、 冷媒を一切使用せずに高圧の圧力空気を容器 内に導入すると、 器内に発生した渦流の流れを利用して冷気と熱気とを発生する 冷気発生器である。
低温空気発生器 1 3 1の入口部には圧縮空気の供給を制御する電磁バルブ 1 3 2が設けられて、 電磁バルブ 1 3 2の ON、 O F Fで冷気がバッテリ室 3 5内に 流入するようになっている。
バッテリ室 3 5内に流入した冷気は、 冷風管 1 3 4によって、 各バッテリ 3 3 の車体の側壁面 1 1側に導かれて、 バッテリ 3 3に向かって穿設されて冷風口 1 3 6から流出するようになっている。
冷風管 1 3 4は、 バッテリ 3 3の 3段積みに対応してバッテリ 3 3の各段に対 応して車両前後方向に伸びて上下方向に並設されている。
バッテリ室 3 5内において、 図 1 6 ( a)、 (b )、 ( c ) に示すように気流誘導 板 1 3 8がバッテリ 3 3を囲って排気口 6 6まで伸びている。 またバッテリ 3 3 の車外側端部には、 バッテリ室内整風板 1 O A, 1 4 0 Bが上下方向に複数枚 取り付けられていて、 このバッテリ室内整風板 1 4 0 A、 1 4 0 Bは角度が自由 に設定される。
また、 冷却制御装置 1 4 2が設けられ、 P及気口 6 4および排気口 6 6からの外 気の供給と排出による冷却と、バッテリ室 3 5内における循環空気による冷却と、 低温空気発生器 1 3 1から直接放出された冷気による冷却とが、 バッテリ温度、 バッテリ室内温度、 外気温度とに基づいて制御され、 バッテリ温度が目標の温度 に近づくように自動的に制御される。
具体的には、 外気温度から冬季を判断した場合であって、 バッテリ温度または バッテリ室内温度が外気温度より低い冬季の早朝または運用初期のときには、 図 1 6 ( a ) に示すように、 吸気開閉弁 6 8を閉、 排気開閉弁 7 0を閉、 排気ファ ン 7 2を非作動にして、 バッテリ室 3 5内での内部循環モードとなって矢印のよ うに空気が循環する。 このときバッテリファン 7 4は作動し、 バッテリ室内整風 板 1 4 0 A、 1 4 0 Bは内部循環に適した角度に設定される。
また、 外気温度から冬季を判断した場合であって、 バッテリ温度またはバッテ リ室内温度が外気温度より高いバッテリ発熱時のときには、 図 1 6 ( b ) に示す ように、吸気開閉弁 6 8を開、排気開閉弁 Ί 0を開、排気フアン 7 2を作動して、 外気の導入/放出モードとなつて矢印のように外気が流れる。 このときバッテリ ファン 7 4は作動し、 ノ ッテリ室内整風板 1 4 0 A、 1 4 O Bは導入/放出に適 した角度に設定される。
また、 外気温度から夏季を判断した場合には、 電磁バルブ 1 3 2が ONして低 温空気発生器 1 3 1からの冷気が冷風管 1 3 4を介して、 バッテリ 3 3の端部に 放出されると、 直接その冷気によってバッテリ 3 3が冷却される。 そして図 1 3 ( c ) に示すように、 図 1 3 ( a) と同様に、 P及気開閉弁 6 8を閉、 排気開閉弁 7 0を閉、 排気ファン 7 2を非作動にして、 バッテリ室 3 5内での内部循環モー ドとなって矢印のように冷気が循環する。
以上のように第 6実施形態によれば、 冷却制御装置 1 4 2によって、 ノ ッテリ 温度、 バッテリ室内温度、 外気温度に基づいて、 低温空気発生器 1 3 1からの冷 気によって直接バッテリ 3 3の冷却ができるため、 バッテリ 3 3の冷却効果が一 層大きくなり、 迅速にバッテリ 3 3を最適な温度環境において作動するような制 御が可能になり、 バッテリ 3 3の使用寿命を延長することができる。 さらに、 客室用の空調機 2 9を用いずに、 車両の空気源としての圧力空気を用 いて低温空気発生器 1 3 1によって簡単に冷気をつくることができるので、 シス テムを簡単に構成できる。
また、 床下に配設されている圧力空気源から圧力空気を導入できるため、 冷気 を客室 2 1用の空調機 2 9によって生成された冷気の一部を天井部分から床部分 まで車両側壁面に沿って導く冷気導入ダクト等の配管が不要になり、 システムを 簡素化できる。
(第 7実施形態)
次に、 図 1 7〜1 9を参照して、 第 7実施形態について説明する。
第 7実施形態が第 5実施形態に対応するものであり、 前記第 6実施形態はバッ テリ 3 3の設置状態が横置きであつたものが、 第 7実施形態では縦置きであるこ とが相違し、 他は第 6実施形態と同様である。
図 1 7に示すように、 バッテリ室 3 5の一端部には、 車両の空気源からの圧力 空気を低温空気発生器 1 5 1に導入し、 該低温空気発生器 1 5 1から発生した冷 気が流入される。 そして、 図 1 7に示すように、 低温空気発生器 1 5 1の入り口 部には圧力空気の導入を制御する電磁バルブ 1 5 2が設けられて電磁バルブ 1 5 2の〇 N、 O F Fで冷気がバッテリ室 3 5内に流入するようになつている。 低温 空気発生器 1 5 1については、 第 6実施形態で説明した低温空気発生器 1 3 1と 同様のものである。
バッテリ室 3 5内に流入した冷気は、 冷風管 1 5 4によって、 各バッテリ 3 3 の下部に車体の床面 9側に導かれて、 バッテリ 3 3に向かって穿設されて冷風口 1 5 6から流出するようになっている。
冷風管 1 5 4は、 バッテリ 3 3の 3列に対応してバッテリ 3 3の各列の下 ¾ ^こ 車両前後方向に伸びて水平方向に並設されている。
また、 バッテリ室 3 5内において、 図 1 9 ( a )、 (b )、 ( c ) に示すように気 流誘導板 1 5 8がバッテリ 3 3を覆うように排気口 6 6まで伸びている。 またバ ッテリ 3 3の車外側端部には、 循環路 1 6 0が上下方向に形成されている。 また、 冷却制御装置 1 6 2が設けられ、 P及気口 6 4および排気口 6 6からの外 気の供給と排出による冷却と グテリ室 3 5内における循環空気による冷却と、 低温空気発生器 1 5 1から直接放出された冷気による冷却とが、 バッテリ温度、 バッテリ室内温度、 外気温度とに基づいて制御され、 バッテリ温度が目標の温度 に近づくように自動的に制御する。
具体的には、 外気温度から冬季を判断した場合であって、 バッテリ温度または バッテリ室内温度が外気温度より低い冬季の早朝または運用初期のときには、 図 1 9 ( a ) に示すように、 吸気開閉弁 6 8を閉、 排気開閉弁 7 0を閉、 排気ファ ン 7 2を非作動にして、 バッテリ室 3 5内での内部循環モードとなって矢印のよ うに空気が循環する。 このときバッテリファン 7 4は作動し、 循環路 1 6 0を通 つて上から下に循環する。
また、 外気温度から冬季を判断した場合であって、 バッテリ温度またはバッテ リ室内温度が外気温度より高いバッテリ発熱時のときには、 図 1 9 ( b) に示す ように、吸気開閉弁 6 8を開、排気開閉弁 7 0を開、排気ファン 7 2を作動して、 外気の導入 Z放出モードとなつて矢印のように外気が流れる。 このときバッテリ ファン 7 4は作動し、 排気口 6 6から排出されるように流れる。
また、 外気温度から夏季を判断した場合には、 電磁バルブ 1 3 2が ONして冷 気が冷風管 1 3 4を介して、 バッテリ 3 3の端部に放出されると、 直接その冷気 によってバッテリ 3 3が冷却される。 そして図 1 9 ( c ) に示すように、 図 1 9 ( a ) と同様に、 P及気開閉弁 6 8を閉、 排気開閉弁 7 0を閉、 排気ファン 7 2を 非作動にして、 バッテリ室 3 5内での内部循環モードとなって、 循環路 1 6 0を 通つて上から下に矢印のように冷気が循環する。
低温空気発生器 1 5 1からの冷気をバッテリ室 3 5内に導いて直接バッテリ 3 3を冷却することによる効果は、 前記第 6実施形態と同様であるが、 本第 7実施 形態によれば、 バッテリ室 3 5内において、 バッテリ 3 3が縦配置されるととも に、 前記空気または冷気の循環流方向が前記バッテリ 3 3の下部から上部へとバ ッテリ 3 3の高さ方向に流されることによって、 空気または冷気の熱対流効果に よってバッテリ 3 3の冷却効果が一層効果的に得られる。 その結果、 迅速にバッ テリ 3 3を最適な温度環境において作動するような制御が可能になり、 バッテリ 3 3の使用寿命を延長することができる。 産業上の利用可能性
本発明によれば、 車両全体の重量バランスがよく、 バッテリの冷却性がよく、 しかもバッテリ室と客室との密閉性を保って安全性が向上するバッテリ搭載構造 を得ることができるので、 軌道系交通システム等に用いられる軌道系電動車両に 提供できる。

Claims

請 求 の 範 囲
1 . バッテリからの駆動電力によって軌道を走行する軌道系電動車両のバッテ リ搭載構造において、
バッテリセルを複数個接続して形成されるバッテリモジュール (以下バッテリ という) を複数個並べて収容するバッテリ室を車体の床面上に形成し、 該バッテ リ室は車室内側とは密閉構造の仕切板によって仕切られ、 車体の床面または壁面 には前記バッテリ室内に車外気を導入および排出する吸気口および排気口が設け られ、 前記バッテリ室内が外気によつて冷却可能に構成されたことを特徴とする 軌道系電動車両のバッテリ搭載構造。
2 . 前記バッテリ室が前記車両の前後方向の中央部の車両両側に客室内に張り出 して設けられることを特徴とする請求項 1記載の軌道系電動車両のバッテリ搭載 構;
3 . 前記バッテリ室が乗客の座席の下方に位置されることを特徴とする請求項 2記載の軌道系電動車両のバッテリ搭載構造。
4. 前記バッテリ室にはバッテリの温度、 電流、 電圧を監視してバッテリの異 常を検出した際に該バッテリからの給電を制御するバッテリ制御装置が設置され ていることを特徴とする請求項 1記載の軌道系電動車両のバッテリ搭載構造。
5 . 前記吸気口および排気口が共に車体の側壁面に形成されていることを特徴 とする請求項 1記載の軌道系電動車両のバッテリ搭載構造。
6 . 前記吸気口および排気口が共に車体の床面に形成されていることを特徴と する請求項 1記載の軌道系電動車両のバッテリ搭載構造。
7 . 客室用の空調機からの冷気を前記バッテリ室へ循環せしめて、 前記バッテ リ室にて熱交換パイプを介してバッテリ室内の空気が冷却されるように構成した ことを特徴とする請求項 1記載の軌道系電動車両のバッテリ搭載構造。
8 . 車両の空気源からの圧力空気により冷気をつくつて直接前記バッテリ室内 へ供給して、 前記バッテリ室内の空気が冷却されるように構成したことを特徴と する請求項 1記載の軌道系電動車両のバッテリ搭載構造。
9 . 前記吸気口および排気口からの外気の供給と排出と、 外気の供給を遮断し たバッテリ室内における前記空気または冷気の循環とが、 バッテリ温度、 パッテ リ室内温度、 外気温度とに基づいて冷却制御装置によって制御されることを特徴 とする請求項 7または 8記載の軌道系電動車両のバッテリ搭載構造。
1 0 . 前記バッテリ室内において、 バッテリが縦配置されるとともに、 前記空 気または冷気の循環流方向が前記バッテリの下部から上部へと上下方向に流され ることを特徴とする請求項 7または 8記載の軌道系電動車両のバッテリ搭載構造。
1 1 . 前記軌道が、 前記電動車両のみが走行する専用軌道であることを特徴と する請求項 1記載の軌道系電動車両のパッテリ搭載構造。
1 2 . 前記軌道が、 前記電動車両および他の車両が走行可能な併用軌道である ことを特徴とする軌道系電動車両のバッテリ搭載構造。
PCT/JP2008/058004 2007-07-19 2008-04-18 軌道系電動車両のバッテリ搭載構造 WO2009011162A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/312,910 US8511237B2 (en) 2007-07-19 2008-04-18 Guideway electric vehicle mounted with batteries
JP2009523563A JP5010682B2 (ja) 2007-07-19 2008-04-18 軌道系電動車両のバッテリ搭載構造および軌道系電動車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-188679 2007-07-19
JP2007188679 2007-07-19

Publications (1)

Publication Number Publication Date
WO2009011162A1 true WO2009011162A1 (ja) 2009-01-22

Family

ID=40259505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058004 WO2009011162A1 (ja) 2007-07-19 2008-04-18 軌道系電動車両のバッテリ搭載構造

Country Status (4)

Country Link
US (1) US8511237B2 (ja)
JP (1) JP5010682B2 (ja)
TW (1) TWI342275B (ja)
WO (1) WO2009011162A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073439A (ja) * 2007-09-25 2009-04-09 Kinki Sharyo Co Ltd 鉄道車両
JP2009234310A (ja) * 2008-03-26 2009-10-15 Hitachi Ltd 軌条車両
WO2011038855A1 (de) * 2009-09-29 2011-04-07 Li-Tec Battery Gmbh Konstruktionsteil für ein fahrzeug mit elektroenergiezellen
JP2011188727A (ja) * 2010-02-15 2011-09-22 Denso Corp 電気自動車の緊急通知システム
CN102211529A (zh) * 2010-04-12 2011-10-12 张作彬 节能环保智能型观光游览车
JP4879370B1 (ja) * 2011-03-07 2012-02-22 三菱電機株式会社 車両用制御装置
EP2423998A1 (en) * 2009-04-24 2012-02-29 Nissan Motor Co., Ltd. Battery pack
JP2012201138A (ja) * 2011-03-24 2012-10-22 Toyo Electric Mfg Co Ltd 強制風冷式半導体冷却装置
JP2013512137A (ja) * 2009-11-27 2013-04-11 尹学▲軍▼ 電動車両の電気エネルギー急速補給方法及びその給電装置
KR20130041476A (ko) * 2011-10-17 2013-04-25 현대자동차주식회사 차량의 배터리 탑재장치
KR20140134294A (ko) 2012-08-01 2014-11-21 니혼 덴산 산쿄 가부시키가이샤 배터리 교환 로봇의 교시 방법 및 배터리 교환 로봇
JP2014235900A (ja) * 2013-06-03 2014-12-15 株式会社デンソー 電池冷却装置
JP2016005391A (ja) * 2014-06-18 2016-01-12 近畿車輌株式会社 鉄道車両
JP2016022853A (ja) * 2014-07-22 2016-02-08 積水化成品工業株式会社 保護カバー
JP2016130047A (ja) * 2015-01-13 2016-07-21 株式会社Ihi 鉄道車両
CN106004897A (zh) * 2016-08-10 2016-10-12 中车资阳机车有限公司 一种机车动力电池组散热系统
JP2017045700A (ja) * 2015-08-28 2017-03-02 株式会社Ihi バッテリー装置及び鉄道車両
CN109927535A (zh) * 2017-12-16 2019-06-25 郑州宇通客车股份有限公司 导风罩
JP2021086728A (ja) * 2019-11-27 2021-06-03 株式会社日立製作所 蓄電池システム及びその冷却制御方法
CN113442955A (zh) * 2021-07-01 2021-09-28 中车青岛四方车辆研究所有限公司 一种有轨电车车顶逆变器箱
JPWO2023053252A1 (ja) * 2021-09-29 2023-04-06

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3017986B1 (en) * 2008-06-27 2022-11-09 Proterra Operating Company, Inc. Vehicle battery systems and method
CN103038975B (zh) 2010-04-26 2016-09-14 普罗特拉公司 用于电动车在充电站自动连接和充电的系统与方法
KR101297176B1 (ko) * 2010-06-03 2013-08-21 주식회사 엘지화학 신규한 구조의 전지모듈
GB2485383A (en) * 2010-11-11 2012-05-16 Ecotricity Group Ltd A battery housing and a vehicle comprising such a housing
FR2970456B1 (fr) * 2011-01-13 2013-05-24 Sncf Engin ferroviaire comprenant au moins un module extractible de batteries.
DK201100052U4 (da) * 2011-03-15 2012-07-13 Pendelmatic Internat V Jan Moeller Motorkøretøj med en batteriskiftestation
CN202138210U (zh) * 2011-06-28 2012-02-08 比亚迪股份有限公司 一种电动客车
DE102011078267B4 (de) * 2011-06-29 2022-06-02 Bayerische Motoren Werke Aktiengesellschaft Kühlung von elektrischen Speichereinheiten in einem Fahrzeug
IN2014CN04113A (ja) * 2011-12-09 2015-07-10 Mitsubishi Electric Corp
US9315093B2 (en) * 2012-06-01 2016-04-19 Aleees Eco Ark Co. Ltd. Battery module configuration structure for articulated electric bus
DE102012016801B3 (de) 2012-08-23 2014-02-13 Audi Ag Kraftfahrzeug mit Batteriekühlung
JP5897442B2 (ja) * 2012-09-26 2016-03-30 株式会社東芝 鉄道車両
US10135046B2 (en) * 2012-11-30 2018-11-20 Toyota Jidosha Kabushiki Kaisha Temperature regulation structure
CN103273829A (zh) * 2013-05-08 2013-09-04 合肥工业大学 一种电动客车动力电池的成组热控箱体
DE102014210762A1 (de) * 2014-06-05 2015-12-17 Siemens Aktiengesellschaft Wagenkastenmodul für ein Schienenfahrzeug
ES2907518T3 (es) * 2014-07-30 2022-04-25 Creatio Irizar Group Innovation Center Aie Autobús
JP6385766B2 (ja) 2014-09-17 2018-09-05 株式会社東芝 車両用蓄電池装置
KR101829093B1 (ko) * 2014-10-22 2018-03-29 주식회사 엘지화학 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법
DE102015003643B3 (de) * 2015-03-19 2016-06-16 Audi Ag Kraftfahrzeug
JP6326007B2 (ja) * 2015-06-12 2018-05-16 株式会社Subaru 車載二次電池の冷却装置
FR3051407B1 (fr) * 2016-05-18 2018-06-15 Bluebus Vehicule electrique terrestre de transport en commun, de type bus, muni de capot(s) de protection des batteries
IT201700007795A1 (it) * 2017-01-25 2018-07-25 Iveco France Sas Sistema di alimentazione elettrica per autobus urbano
US10608303B2 (en) * 2017-02-08 2020-03-31 Denso Corporation Power source apparatus and work machine having the same
US20200358150A1 (en) * 2018-02-02 2020-11-12 Cummins Inc. System for thermal management of a battery
KR102177713B1 (ko) * 2018-08-28 2020-11-11 타타대우상용차 주식회사 전기자동차용 배터리팩의 열관리 장치
LU100955B1 (en) * 2018-10-05 2020-04-06 Alpha Ec Ind 2018 S A R L Electric bus seat and electric battery arrangement
CN109412025B (zh) * 2018-11-19 2024-03-26 中国人民解放军32181部队 一种储能舱结构
IT201900003499A1 (it) * 2019-03-11 2020-09-11 Iveco Spa Veicolo provvisto di sistema di sicurezza per il thermal runaway
US11201374B2 (en) 2019-11-13 2021-12-14 Giuseppe IERADI Electric vehicle battery system
CN113544930B (zh) * 2020-02-21 2023-07-14 华为数字能源技术有限公司 充电桩及其控制方法
CN113328164A (zh) * 2020-02-28 2021-08-31 郑州宇通客车股份有限公司 一种车辆热管理控制方法、装置和热管理系统
US11437665B2 (en) * 2020-06-29 2022-09-06 Rocky Research Battery thermal and power control system
US11542020B2 (en) * 2021-01-29 2023-01-03 Textron Innovations Inc. Electric aircraft side access batteries and single file passenger seating
DE102021202476A1 (de) * 2021-03-15 2022-09-15 Psa Automobiles Sa Gehäuse für eine Kraftfahrzeugbatterie
BR102021008478A2 (pt) * 2021-04-30 2022-11-16 Marcopolo Sa Módulo de associação, processo de associação da região traseira da carroceria em um chassi de veículos de transporte coletivo e veículo elétrico de transporte coletivo
CN115123318B (zh) * 2022-07-19 2023-04-25 中车唐山机车车辆有限公司 轨道车辆电气设备安装系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157662A (en) * 1980-05-09 1981-12-04 Japan National Railway Under-floor apparatus chamber for car
JPS63145123A (ja) * 1986-12-10 1988-06-17 Mitsubishi Motors Corp 電気自動車
JP2000350411A (ja) * 1999-06-01 2000-12-15 Railway Technical Res Inst 密閉型機器の冷却・清浄システム
JP2006101698A (ja) * 2000-06-06 2006-04-13 Hitachi Ltd バッテリ駆動の鉄道列車
JP2007095482A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 電源装置と電池の冷却方法
JP2007182208A (ja) * 2005-12-09 2007-07-19 Kinki Sharyo Co Ltd 床下機器の設置方法と設置構造
JP2008062680A (ja) * 2006-09-05 2008-03-21 Kawasaki Heavy Ind Ltd 低床式路面電車

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1556161A (en) * 1975-09-10 1979-11-21 Lucas Industries Ltd Electrically driven vehicles
JPH0728100Y2 (ja) * 1989-08-11 1995-06-28 レンゴー株式会社 連結用包装箱
JP3149493B2 (ja) 1991-12-27 2001-03-26 株式会社デンソー 電気自動車用空調装置
JPH07292602A (ja) * 1994-04-21 1995-11-07 Motoi Ariga 路面走行バスの交通渋滞回避の方法
JP3586022B2 (ja) * 1994-12-08 2004-11-10 弘 二見 水中陸走行体
US6450103B2 (en) * 1996-05-07 2002-09-17 Einar Svensson Monorail system
JP2001101698A (ja) 1999-09-28 2001-04-13 Ricoh Co Ltd 光情報記録再生システム
JP2001310733A (ja) 2000-04-28 2001-11-06 Fuji Heavy Ind Ltd 自動運行車両
DE10110424A1 (de) * 2001-03-05 2002-09-12 Siemens Duewag Gmbh Angetriebenes Schienenfahrzeug, insbesondere für die Personenbeförderung im Nah- und Regionalverkehr
JP3756435B2 (ja) * 2001-09-03 2006-03-15 本田技研工業株式会社 自動車の高圧電装冷却装置
JP2003284623A (ja) * 2002-03-28 2003-10-07 Japan Storage Battery Co Ltd 移動体
JP2004066889A (ja) 2002-08-02 2004-03-04 Mitsubishi Fuso Truck & Bus Corp バッテリユニット搭載構造
JP3784813B2 (ja) * 2003-11-26 2006-06-14 本田技研工業株式会社 車両モータ用高圧電装の冷却装置及びハイブリッド車両
US7353900B2 (en) * 2004-09-21 2008-04-08 Nissan Motor Co., Ltd. Battery cooling system
JP2006192969A (ja) 2005-01-11 2006-07-27 Sanyo Electric Co Ltd 車両用の電源装置
JP2006216303A (ja) * 2005-02-02 2006-08-17 Denso Corp 発熱機器の冷却構造
JP4369382B2 (ja) 2005-03-01 2009-11-18 三菱電機株式会社 交通システム
JP2008068652A (ja) * 2006-09-12 2008-03-27 Toyota Motor Corp 蓄電装置およびこれを備えた自動車
JP4748010B2 (ja) * 2006-09-19 2011-08-17 トヨタ自動車株式会社 電源装置
JP5328124B2 (ja) * 2007-09-25 2013-10-30 近畿車輌株式会社 蓄電装置を搭載する鉄道車両
JP2009161122A (ja) * 2008-01-09 2009-07-23 Kinki Sharyo Co Ltd 鉄道車両
JP2009165315A (ja) * 2008-01-09 2009-07-23 Kinki Sharyo Co Ltd 鉄道車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157662A (en) * 1980-05-09 1981-12-04 Japan National Railway Under-floor apparatus chamber for car
JPS63145123A (ja) * 1986-12-10 1988-06-17 Mitsubishi Motors Corp 電気自動車
JP2000350411A (ja) * 1999-06-01 2000-12-15 Railway Technical Res Inst 密閉型機器の冷却・清浄システム
JP2006101698A (ja) * 2000-06-06 2006-04-13 Hitachi Ltd バッテリ駆動の鉄道列車
JP2007095482A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 電源装置と電池の冷却方法
JP2007182208A (ja) * 2005-12-09 2007-07-19 Kinki Sharyo Co Ltd 床下機器の設置方法と設置構造
JP2008062680A (ja) * 2006-09-05 2008-03-21 Kawasaki Heavy Ind Ltd 低床式路面電車

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073439A (ja) * 2007-09-25 2009-04-09 Kinki Sharyo Co Ltd 鉄道車両
JP2009234310A (ja) * 2008-03-26 2009-10-15 Hitachi Ltd 軌条車両
EP2423998A1 (en) * 2009-04-24 2012-02-29 Nissan Motor Co., Ltd. Battery pack
US8748029B2 (en) 2009-04-24 2014-06-10 Nissan Motor Co., Ltd. Battery pack
EP2423998A4 (en) * 2009-04-24 2014-04-02 Nissan Motor BATTERY PACK
CN102414867A (zh) * 2009-04-24 2012-04-11 日产自动车株式会社 电池组
CN102574447A (zh) * 2009-09-29 2012-07-11 锂电池科技有限公司 用于附带电能单元的交通工具的结构部件
WO2011038855A1 (de) * 2009-09-29 2011-04-07 Li-Tec Battery Gmbh Konstruktionsteil für ein fahrzeug mit elektroenergiezellen
US9321433B2 (en) 2009-11-27 2016-04-26 Xuejun Yin Method for quickly supplying electric energy to electric vehicle and power supply device thereof
JP2013512137A (ja) * 2009-11-27 2013-04-11 尹学▲軍▼ 電動車両の電気エネルギー急速補給方法及びその給電装置
JP2011188727A (ja) * 2010-02-15 2011-09-22 Denso Corp 電気自動車の緊急通知システム
CN102211529A (zh) * 2010-04-12 2011-10-12 张作彬 节能环保智能型观光游览车
JP4879370B1 (ja) * 2011-03-07 2012-02-22 三菱電機株式会社 車両用制御装置
JP2012201138A (ja) * 2011-03-24 2012-10-22 Toyo Electric Mfg Co Ltd 強制風冷式半導体冷却装置
KR20130041476A (ko) * 2011-10-17 2013-04-25 현대자동차주식회사 차량의 배터리 탑재장치
KR101693889B1 (ko) 2011-10-17 2017-01-09 현대자동차주식회사 차량의 배터리 탑재장치
KR20140134294A (ko) 2012-08-01 2014-11-21 니혼 덴산 산쿄 가부시키가이샤 배터리 교환 로봇의 교시 방법 및 배터리 교환 로봇
KR101595684B1 (ko) 2012-08-01 2016-02-18 니혼 덴산 산쿄 가부시키가이샤 배터리 교환 로봇의 티칭 방법 및 배터리 교환 로봇
JP2014235900A (ja) * 2013-06-03 2014-12-15 株式会社デンソー 電池冷却装置
JP2016005391A (ja) * 2014-06-18 2016-01-12 近畿車輌株式会社 鉄道車両
JP2016022853A (ja) * 2014-07-22 2016-02-08 積水化成品工業株式会社 保護カバー
JP2016130047A (ja) * 2015-01-13 2016-07-21 株式会社Ihi 鉄道車両
JP2017045700A (ja) * 2015-08-28 2017-03-02 株式会社Ihi バッテリー装置及び鉄道車両
CN106004897A (zh) * 2016-08-10 2016-10-12 中车资阳机车有限公司 一种机车动力电池组散热系统
CN109927535A (zh) * 2017-12-16 2019-06-25 郑州宇通客车股份有限公司 导风罩
CN109927535B (zh) * 2017-12-16 2023-11-17 宇通客车股份有限公司 导风罩
JP2021086728A (ja) * 2019-11-27 2021-06-03 株式会社日立製作所 蓄電池システム及びその冷却制御方法
CN113442955A (zh) * 2021-07-01 2021-09-28 中车青岛四方车辆研究所有限公司 一种有轨电车车顶逆变器箱
JPWO2023053252A1 (ja) * 2021-09-29 2023-04-06
WO2023053252A1 (ja) * 2021-09-29 2023-04-06 三菱電機株式会社 車載機器
JP7433547B2 (ja) 2021-09-29 2024-02-19 三菱電機株式会社 車載機器

Also Published As

Publication number Publication date
TWI342275B (en) 2011-05-21
JPWO2009011162A1 (ja) 2010-09-16
TW200904667A (en) 2009-02-01
US8511237B2 (en) 2013-08-20
US20090320715A1 (en) 2009-12-31
JP5010682B2 (ja) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5010682B2 (ja) 軌道系電動車両のバッテリ搭載構造および軌道系電動車両
US9583800B2 (en) Vehicle and method for controlling same
JP3932185B2 (ja) 燃料電池搭載型電気自動車および燃料電池システムボックス
CN107662483B (zh) 车辆构造
JP6308009B2 (ja) 電池パック
JP3125198B2 (ja) 電気自動車におけるバッテリ温度制御装置
JP2005047489A (ja) 車両用電装ユニットの加温冷却装置およびハイブリッド車両
CN105270136A (zh) 最大化具有双蒸发器和双加热器芯体的气候控制系统的电气化车辆中的除霜模式
CN103921649A (zh) 用于车辆的回气管道
KR20110081622A (ko) 전기자동차 및 전기자동차의 배터리 냉각 방법
CN103219560B (zh) 驱动电池装置及具有驱动电池装置的机动车辆
US20130237138A1 (en) High-voltage equipment cooling system for electric vehicle and high-voltage equipment cooling method for electric vehicle
CN105313643A (zh) 电气化车辆的热泵辅助发动机冷却
WO2013089509A1 (ko) 전기 자동차의 배터리 냉각 시스템
EP3560789B1 (en) Railway vehicle and method of controlling the same
JP2007153053A (ja) 車両に搭載された電気機器の冷却装置
JP5831343B2 (ja) 電源装置を搭載した車両の外部給電用インバータの搭載構造
KR20130025244A (ko) 전기자동차
KR20130068982A (ko) 배터리 모듈 어셈블리 및 그를 갖는 전기자동차
JP4525577B2 (ja) 蓄電機構の制御装置
JP2003100272A (ja) ハイブリッド自動車のバッテリー搭載装置
JP4691999B2 (ja) 車両
KR101858692B1 (ko) 전기자동차
CN114683921A (zh) 换电站
KR102604976B1 (ko) 초소형 전기자동차용 에어컨디셔너

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009523563

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12312910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740848

Country of ref document: EP

Kind code of ref document: A1