WO2008001792A1 - Method for producing composite material for positive electrode of lithium battery - Google Patents

Method for producing composite material for positive electrode of lithium battery Download PDF

Info

Publication number
WO2008001792A1
WO2008001792A1 PCT/JP2007/062847 JP2007062847W WO2008001792A1 WO 2008001792 A1 WO2008001792 A1 WO 2008001792A1 JP 2007062847 W JP2007062847 W JP 2007062847W WO 2008001792 A1 WO2008001792 A1 WO 2008001792A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
composite
electrode active
active material
solvent
Prior art date
Application number
PCT/JP2007/062847
Other languages
English (en)
French (fr)
Inventor
Kazuo Oki
Yasuhisa Fukumoto
Ryuichi Akagi
Kenichi Nishimura
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to US12/303,933 priority Critical patent/US8241525B2/en
Priority to CN2007800237585A priority patent/CN101479866B/zh
Priority to EP07767650.0A priority patent/EP2034541B1/en
Priority to KR1020087031740A priority patent/KR101153532B1/ko
Publication of WO2008001792A1 publication Critical patent/WO2008001792A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing a composite material for a lithium battery positive electrode containing a positive electrode active material and a conductive material.
  • the composite material for a lithium battery positive electrode obtained by the present invention can be suitably used for forming a positive electrode of a lithium ion secondary battery or the like.
  • a lithium ion secondary battery an electrolytic solution containing a lithium salt in a non-aqueous solvent is used, and a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are separated via a separator. It has a structure.
  • a conductive material such as carbon black is added to improve the conductivity.
  • the positive electrode as described above is made of an active material such as LiMn O, or a conductive material such as carbon black.
  • the fine structure of the positive electrode is a structure in which particles of a positive electrode active material having low conductivity and particles of a conductive material having a smaller particle diameter are dispersed / bonded.
  • lithium is occluded in the positive electrode active material at the time of discharge. At that time, the lithium ion is diffused by the action of lithium ions diffusing to the positive electrode side and electrons conducted from the positive electrode current collector. Progresses. Further, at the time of charging, electrons and ionized lithium are released from the positive electrode active material. For this reason, battery characteristics, especially high-speed discharge performance (high output) As factors that affect the process, selection of a highly conductive material and a fine composite structure of a positive electrode active material and a conductive material are very important.
  • Patent Document 1 discloses a positive electrode material in which a positive electrode active material surface is coated with a conductive material at a coverage of 15% or more by a method in which a positive electrode active material and a conductive material are mixed and compressive shear stress is applied in a dry manner. Proposed. Further, it is disclosed that black (graphite) having a particle size of 1 to 20 ⁇ m is added when a positive electrode is produced using this.
  • Patent Document 2 ferrous phosphate hydrate, lithium phosphate, and a carbonaceous material precursor are wet mixed. Then, after removing the solvent to obtain a mixture, a production method for producing a carbon composite material by pulverizing and firing the mixture is proposed.
  • Patent Document 3 an attempt is made to improve the conductive path by adding carbon fiber to the positive electrode active material.
  • Patent Document 4 proposes a positive electrode formed of a composite material obtained by adding and mixing both carbon black and carbon fiber to a positive electrode active material.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-14519
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-292309
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-103392
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-179019
  • the carbon fiber described in Patent Document 3 generally has poor contact efficiency with the positive electrode active material, so that sufficient performance with respect to the conductivity of the positive electrode cannot be obtained.
  • the positive electrode disclosed in Patent Document 4 is formed by dry mixing carbon black, carbon fiber, positive electrode active material, and binder, and then adding a solvent and dispersing slurry dispersed in the solvent. For this reason, it was found that a fine composite structure in which the positive electrode active material and the conductive material are not properly arranged cannot be formed, and the obtained positive electrode does not exhibit sufficient performance with respect to the high-speed discharge performance.
  • the present invention provides a method for producing a composite material for a positive electrode of a lithium battery that is excellent in high-speed discharge performance of the battery.
  • the method for producing a composite material for a lithium battery positive electrode of the present invention is a method for producing a composite material for a lithium battery positive electrode containing a positive electrode active material and a conductive material, and is at least a positive electrode active material in a solvent.
  • FIG. 1 shows a scanning electron micrograph of the positive electrode composite material obtained in Example 1.
  • the production method of the present invention is a method for producing a composite material for a lithium battery positive electrode containing a positive electrode active material and a conductive material, wherein at least the positive electrode active material and the conductive material 1 are dispersed in a solvent.
  • a dispersion step of forcibly dispersing and a method of agglomerating the conductive material 1 together with the positive electrode active material in the solvent, or a method of removing the solvent Forming a composite particle containing the positive electrode active material and the conductive material 1.
  • composite particles having a composite structure capable of smoothly moving electrons and lithium ions can be obtained. Therefore, a lithium ion battery excellent in high-speed discharge characteristics can be provided using the composite particles.
  • a conductive material having self-aggregation property in a solvent is used as the conductive material 1, and the composite particle forming step uses the conductive material 1 together with the positive electrode active material.
  • a method for producing a composite material for a lithium battery positive electrode which is a step of agglomerating in the solvent to obtain the composite particles.
  • the conductive material 1 having self-aggregation property is forcibly dispersed in a solvent together with the positive electrode active material by using the self-aggregating conductive material 1 or the like. It is thought to constitute a fine composite structure that envelops the material. For this reason, the number of contact points between the positive electrode active material and the conductive material 1 is increased, and it is considered that the conductivity is improved, and it is considered that the electrolyte solution is smoothly penetrated and has a structure excellent in Li ion ion diffusion.
  • the second embodiment is the as the conductive material 1, DBP absorption amount of carbon black and / or aspect ratio of 50 to a 200 ⁇ 800cm 3/10 Og: conductive containing 1000 of the fibrous carbon
  • the composite particle forming step is a step of agglomerating the conductive material 1 together with the positive electrode active material in the solvent to obtain the composite particles. is there.
  • the fine composite structure in which the conductive material 1 wraps the positive electrode active material after aggregation can also be formed by the manufacturing method of the second embodiment, and the contact point between the positive electrode active material and the conductive material 1 is It is considered that the conductivity is increased and the conductivity is improved.
  • a porous carbon network with minute gaps can be constructed, it is thought that the electrolyte solution is smoothly permeated and exhibits an excellent structure due to Li ion diffusion.
  • the composite particle formation step removes the solvent from the slurry obtained in the dispersion step to obtain composite particles containing the positive electrode active material and the conductive material 1. And after the composite particle forming step, at least the composite particles and the spacer.
  • This is a method for producing a composite material for a lithium battery positive electrode, further comprising a mixing step of mixing a conductive substance 2 having a tato ratio of 2 to 10:
  • the conductive material having a specific aspect ratio is mixed with the composite particles obtained by removing the solvent of the slurry in which the positive electrode active material and the conductive material are dispersed.
  • the conductive material reliably adheres (partially adheres) to the surface of the positive electrode active material, and exhibits a fine composite structure in which a conductive material having a specific external ratio is interposed between the composite particles. It is conceivable that. For this reason, electrons are sufficiently conducted to the surface of the positive electrode active material through the attached conductive material, and the conductivity is improved.
  • the amount of positive electrode active material attached to the surface can be controlled, and a conductive material having a specific aspect ratio is interposed, so that the electrolyte can be smoothly permeated and Li ion ion diffusion is excellent. It is thought that it becomes.
  • a higher current can be passed during discharge, and it is considered that a Li-ion battery with excellent high-speed discharge characteristics can be obtained.
  • the composite particle formation step removes the solvent from the slurry obtained in the dispersion step to obtain composite particles containing the positive electrode active material and the conductive material 1.
  • a step, after said composite particle formation step, at least, the composite particles, and DBP absorption 100 ⁇ 500cm 3 / 100g lithium ⁇ beam cell positive electrode composite material further comprising a mixing step of mixing the conductive material 2 It is a manufacturing method.
  • the conductive material 1 and the positive electrode active material used in the first embodiment are aggregates of unit particles that are chemically stable in a solvent, and are ultrasonic waves in the solvent, preferably a frequency of 15 to 25 kHz. It is considered that dispersion is made to a state close to unit particles by forced dispersion with ultrasonic waves with an output of 100 to 500W. This unit particle is referred to as “primary particle” in the present invention.
  • a conductive material having self-aggregation property at least in a solvent.
  • a dispersion step in which the material 1) and the positive electrode active material are dispersed in a solvent and forcedly dispersed.
  • the “forced dispersion state” means that when the slurry is sampled and diluted to a predetermined concentration and the average particle size is measured with a particle size distribution measuring device without delay, the average particle size is the primary particle of the positive electrode active material.
  • the dispersion state is within 130% of the diameter (from the viewpoint of comparison with the primary particle diameter of the positive electrode active material, a specific measurement method will be described later in the measurement method of the primary particle diameter of the positive electrode active material).
  • the measured average particle diameter approaches the primary particle diameter of the positive electrode active material (the dispersion state of the conductive material 1 also reaches this measured value). Reflected), it is possible to grasp the state of forced dispersion from this phenomenon.
  • the term “having self-aggregation in a solvent” refers to the property that the average particle size is increased by aggregation after forced dispersion in the solvent to be used, and specifically described in the examples. Defined by measurement method.
  • the self-aggregating conductive material and the positive electrode active material may be added to a solvent and dispersed at the same time, but one of the conductive material and the positive electrode active material is used as a solvent. After adding and dispersing in, the other may be added and dispersed.
  • the conductive material is used. It is preferable to add and disperse in a solvent and then add and disperse the positive electrode active material thereto. In the method of adding and dispersing the positive electrode active material later, it is more preferable to add the positive electrode active material while dispersing with a disperser that preferably mixes the conductive material and the positive electrode active material. .
  • the conductive material having self-aggregation property may be any conductive material that has the property of self-aggregation by forcibly dispersing in a solvent used for dispersion and then leaving it to stand.
  • self-aggregation property Carbon black having carbon, self-aggregating carbon fiber, fibrous carbon such as strong carbon nanotube (CNT), and the like.
  • a conductive substance having no self-aggregation property can be added in the dispersion step.
  • the self-aggregating conductive material is effectively dispersed in a forced manner, and the additional conductive material is effectively dispersed while maintaining the dispersion state.
  • add additional conductive material It is preferable to add and disperse a material (preferably a conductive substance having no cohesiveness, more preferably carbon black having no cohesiveness).
  • the additional conductive material and the positive electrode active material may be mixed in advance, or may be mixed at the same time or sequentially added and dispersed in any order.
  • Carbon black may be any of decomposition methods such as thermal black method and acetylene black method, incomplete combustion methods such as channel black method, gas furnace black method, oil furnace black method, pine smoke method, and lamp black method. Forces that can be used even those manufactured by the manufacturing method Furnace black, acetylene black, and ketjen black (registered trademark) are preferably used from the viewpoint of conductivity, and ketjen black is more preferable. These may be used alone or in combination of two or more.
  • the Ketjen black from the viewpoint of the self-aggregating properties and resulting fine composite structure in a solvent, DBP ones (dibutyl phthalate) absorption amount force S200 ⁇ 800cm 3 / 100g (an example of the second embodiment) preferred .
  • the carbon black having self-aggregation property preferably has a large structure so that it can be aggregated by including the positive electrode active material.
  • the size of the carbon black structure can be judged from the DBP absorption amount.
  • the DBP absorption amount of the carbon black used is preferably 200 cm 3 / l 200 g or more, more preferably 250 cm 3/100 g or more, more preferably 300 cm 3/100 g or more on.
  • DBP absorption amount is more preferably 800 cm 3/100 g is preferably less instrument 700cm 3 Zl00g less or less and more preferably fixture 600cm 3 / l00g.
  • carbon black having a DBP absorption of 200 to 800 cm 3 / l00 g is generally forcedly dispersed in a solvent having a high self-aggregation property and then left to stand to self-aggregate to form composite particles. Since the ability to produce
  • the carbon black having no self-aggregation properties, as the DBP absorption is less than 200cm 3 / l00g can be preferably used.
  • Such carbon black has a structure. It is not developed and can be finely dispersed in a solvent relatively easily, so that it is interposed between the positive electrode active material and self-aggregating carbon black to further improve conductivity. Power S is thought to be possible.
  • the primary particle size of the self-aggregating carbon black is preferably 10 to 100 ⁇ m from the following viewpoints. That is, the primary particle diameter measured with a scanning electron microscope is preferably 10 nm or more, more preferably 15 nm or more, and still more preferably 20 nm or more, from the viewpoint of low primary dispersion. Further, from the viewpoint of reaggregation after dispersion, it is preferably lOOnm or less, more preferably 80 nm or less, and even more preferably 50 nm or less.
  • the aggregated particle size of the carbon black having self-aggregation property is preferably from! To 50 ⁇ m from the following viewpoints. That is, in the first and second embodiments, after carbon black and the positive electrode active material are uniformly mixed and dispersed, composite particles including the positive electrode active material are formed using the self-aggregation force of carbon black. Can do. From such a viewpoint, the aggregated particle diameter of the carbon black having self-aggregation property is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 10 ⁇ or more.
  • the smoothness of the surface of the positive electrode prepared using the composite positive electrode material obtained in the present invention is preferably 50 ⁇ or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m. It is as follows.
  • the content of self-aggregating carbon black is preferably 0.2 to 20 parts by weight with respect to 100 parts by weight of the positive electrode active material from the following viewpoints. That is, from the viewpoint of effectively expressing the self-aggregating force in the composite particle forming step, it is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight with respect to 100 parts by weight of the positive electrode active material. More preferably, it is 1 part by weight or more. Further, from the viewpoint of the balance between the volume resistivity and the total pore volume ratio, it is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and still more preferably 5 parts by weight or less.
  • carbon black having no self-aggregation property when used in combination, its content is preferably 0.2 to 20 parts by weight with respect to 100 parts by weight of the positive electrode active material from the following viewpoints. That is, from the viewpoint of reducing the volume resistivity of the positive electrode material, it is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, and still more preferably 1 part by weight with respect to 100 parts by weight of the positive electrode active material. Part Above. Further, from the viewpoint of coverage on the surface of the positive electrode active material, it is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and still more preferably 5 parts by weight or less.
  • a carbon fiber made of a polymer represented by polyataryl nitrinole (PAN) as a raw material, and a pitch-based carbon fiber made from pitch as a raw material Carbon nanotubes (one shape of graphite, that is, a shape formed by rolling a graph ensheet (Participation in Fine Particle Engineering I-P651, Fuji Techno System Co., Ltd.)) using hydrocarbon gas as a raw material Vapor growth type carbon fiber (eg VGCF: registered trademark), arc discharge method, laser evaporation method, chemical vapor deposition method, etc.
  • carbon nanotubes are preferably used.
  • VGCF and carbon nanotubes which are preferable for fibrous carbon having a small fiber diameter, are preferably used, and carbon nanotubes are particularly preferable.
  • carbon nanotubes can be used for atmosphere gases such as He, Ar, CH, and H.
  • Arc discharge method to evaporate graphite electrode by arc discharge under the atmosphere arc discharge method to evaporate graphite electrode containing metal catalyst such as Ni, Co, Y, Fe, etc. by arc discharge, Ni-Co, Pd Rd, etc.
  • a YAG laser is applied to the graphite mixed with the metal catalyst to evaporate it.
  • the laser evaporation method sends it to an electric furnace heated to about 1200 ° C with an Ar air stream.
  • Pentacarbon iron (Fe (C)) is used as the catalyst.
  • the aspect ratio of the carbon nanotube for example, the smaller the concentration ratio of hydrocarbon (such as benzene) and the atmospheric gas such as hydrogen gas, the smaller the diameter of the generated carbon nanotube and the larger the aspect ratio. Also, the shorter the reaction time, the thinner the carbon nanotubes that are produced, and the higher the aspect ratio.
  • hydrocarbon such as benzene
  • hydrogen gas such as hydrogen gas
  • a fiber-like force bonnet in which fibers are intertwined and aggregated in a yarn ball shape is dispersed by applying a dispersing agent or mechanical stress in the presence of a positive electrode active material. It is considered that composite particles containing the positive electrode active material can be formed by re-aggregation by stopping and then dispersing.
  • the aspect ratio of the fibrous carbon is preferably 50 or more, more preferably from the viewpoint of conductivity. 100 or more, more preferably 200 or more, and from the viewpoint of dispersibility of the fibrous carbon, preferably 20,000 or less, more preferably 5000 or less, more preferably 1000 or less, and even more preferably 600 or less. .
  • fibrous carbon having an aspect ratio of 50 to 20000 generally has a high self-aggregation property, and has a high ability to form composite particles by self-aggregation by forcibly dispersing in a solvent and then leaving to stand. Therefore, it can be suitably used in the present invention.
  • the fiber length of the fibrous carbon is preferably 50 nm or more and 50 ⁇ m or less from the following viewpoints. That is, from the viewpoint of making more contact with the surface of the positive electrode active material and establishing a conductive path, it is preferably 50 nm or more, more preferably 500 nm or more, and further preferably: 1 ⁇ m or more. In addition, from the viewpoint of the smoothness of the surface of the positive electrode prepared using the composite positive electrode material obtained in the present invention, it is preferably 50 zm or less, more preferably 30 zm or less, and even more preferably 1 O zm or less. It is.
  • the fiber diameter of the fibrous carbon is more preferably from lnm to m: from the viewpoint of establishing a conductive path more in contact with the surface of the positive electrode active material, more preferably from force to! More preferably, ⁇ 300 ⁇ m.
  • the content of fibrous carbon is preferably 0.2 to 20 parts by weight with respect to 100 parts by weight of the positive electrode active material from the following viewpoints. That is, from the viewpoint of effectively expressing the self-aggregating force in the composite particle forming step, it is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, and more preferably 100 parts by weight or more of the positive electrode active material. The amount is preferably 1 part by weight or more. Further, from the viewpoint of the balance between the volume resistivity and the total pore volume ratio, it is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and further preferably 5 parts by weight or less.
  • the total amount of carbon is preferably 0.2 to 50 parts by weight with respect to 100 parts by weight of the positive electrode active material from the following viewpoints. That is, from the viewpoint of reducing the volume resistivity of the composite positive electrode material, it is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, and still more preferably 3 parts by weight with respect to 100 parts by weight of the positive electrode active material. That's it. From the viewpoint of increasing the energy density of the composite positive electrode material, it is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 15 parts by weight or less.
  • any conventionally known material may be used.
  • Li'Ni complex oxides such as LiNiO
  • Li'Fe complex oxidations such as LiFeO
  • Examples include LiCoO, LiNiO, MnO, LiMnO, LiMnO, LiMnO, x2 x 2 2 2 x 2 4 x 2-y 4a-Vo, TiS, and the like. Above all, it excels in thermal stability, capacity and output characteristics.
  • LiMn O, LiCoO, LiNiO are preferred from the viewpoint of LiMn O being more preferred
  • the primary particle diameter of the positive electrode active material is preferably 0.1 to lO x m from the following viewpoints. That is, from the viewpoint of safety and stability of the positive electrode active material, and cycle characteristics, it is preferably 0.1 lxm or more, more preferably 0. or more, and still more preferably 0.3 zm or more. From the viewpoint of composite cohesiveness, reactivity, and high-speed discharge in the process, it is preferably 10 zm or less, more preferably 5 zm or less, and even more preferably 2 zm or less.
  • Solvents used for dispersion include N-methyl-2-pyrrolidone (NMP, boiling point 202 ° C), dimethylformamide (DMF, boiling point 153 ° C), dimethylacetamide (boiling point 165 ° C), methyl ester.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • acetamide Boiling point 165 ° C
  • methyl ester methyl ester.
  • tilketone (boiling point 79 ⁇ 5 ° C)
  • tetrahydrofuran boiling point 66 ° C
  • acetone boiling point 56 ⁇ 3 ° C
  • ethanol boiling point 78 ⁇ 3 ° C
  • ethyl acetate Boiling point 76 ⁇ 8 ° C
  • a solvent having a high boiling point and NMP as a solvent
  • methyl ethyl ketone or ethanol having a low boiling point is preferred. preferable.
  • the boiling point of the solvent is preferably 250 ° C or lower, more preferably 100 ° C or lower, and still more preferably 80 ° C or lower, from the viewpoint of ease of drying.
  • the amount of the solvent used is preferably 200 parts by weight or more with respect to 100 parts by weight of the positive electrode active material from the viewpoint of uniformly dispersing the self-aggregating conductive material and the positive electrode active material.
  • the above is more preferable.
  • 1000 parts by weight or less is preferable, and 800 parts by weight or less is more preferable.
  • 100 to 1000 parts by weight is preferable, and 200 to 800 parts by weight is more preferable.
  • the dispersion step as a method of dispersing the conductive material 1 and the positive electrode active material, a method of dispersing with a disperser in a solvent or a method of dispersing with a dispersant is used.
  • the conductive material 1 and the positive electrode active material are dispersed in a solvent to A dispersion step for making it in a dispersed state is included.
  • the positive electrode active material is dispersed to the primary particles.
  • the conductive material 1 is preferably a carbon black having a 200 cm 3/10 Og or more DBP absorption
  • the conductive material 1 is also the primary particle Komata is Ru les, dispersed into primary particles Kinre, to the state I prefer it.
  • Examples of the disperser include an ultrasonic disperser, a stirring disperser, a high-speed rotary shear disperser, a mill disperser, a high-pressure jet disperser, and the like.
  • an ultrasonic disperser and a high-pressure jet disperser are preferably used.
  • the method of dispersing with a dispersing agent is effective as a method of dispersing a positive electrode active material or a conductive material with low self-aggregation property, but a layered additive that does not hinder the formation of composite particles in the composite particle forming step. Les, preferred to use in a range of quantities.
  • a dispersant an anionic, nonionic or cationic surfactant, or a polymeric dispersant can be used as the dispersant.
  • a high molecular dispersant is used from the viewpoint of dispersion performance. Is preferred.
  • polymer dispersant a polycarboxylic acid-based polymer dispersant having a plurality of force propyl groups in the molecule, a polyamine system having a plurality of amino groups in the molecule
  • a polymer dispersant, a polymer dispersant having a plurality of amide groups in the molecule, and a polymer dispersant containing a plurality of polycyclic aromatic compounds in the molecule are preferred.
  • These dispersing agents can be used alone or in admixture of two or more kinds of dispersing agents.
  • the first and second embodiments include a composite particle forming step in which the conductive material 1 is aggregated in the solvent together with the positive electrode active material to obtain the composite particles.
  • this composite particle forming step (hereinafter also referred to as “aggregation step”), since the self-aggregating conductive substance is likely to self-aggregate, self-aggregation is promoted by stopping the disperser, and composite particles (hereinafter, Use a method to obtain a slurry containing agglomerated particles) or a method to obtain a powder of agglomerated particles by forcibly agglomerating the solvent to further increase the agglomeration force in the solvent. That power S.
  • the obtained agglomerated particles preferably have a shape in which the positive electrode active material is surrounded by the conductive material 1.
  • the average particle diameter of the obtained aggregated particles is preferably 1 to 20 xm from the following viewpoints. That is, the average particle diameter of such aggregated particles in powder or solvent is preferably lxm or more. More than 3 / im is more preferable and more than 5 / im is more preferable. Further, from the viewpoint of the surface property of the positive electrode obtained using the present composite particles, it is preferably 20 ⁇ or less, more preferably 15 5 / im or less, and 10 / im or less.
  • the concentration of the aggregated particles in the aggregation process from the viewpoint of suitably obtaining the aggregated particles, 2 to 100% by weight is preferable in the slurry, and 5 to 50% by weight is more preferable 10 to 40% in the slurry. % Is more preferable.
  • the positive electrode composite material after the solvent has been distilled off can reduce the volume resistivity with a smaller amount of the conductive material than the conventional positive electrode composite material, and the amount of the positive electrode active material can be increased accordingly. Therefore, the energy density of the positive electrode can be improved.
  • the volume resistivity of the composite material for the positive electrode is preferably 3 ⁇ ′cm or less, more preferably 2 ⁇ ⁇ cm or less, and more preferably 1.8 ⁇ ′, from the viewpoint of improving high-speed discharge characteristics. cm or less.
  • the total pore volume of the positive electrode composite material after the solvent has been distilled off is preferably from 0.8 to 25 cc / g from the following viewpoints. That is, from the viewpoint of improving high-speed discharge performance, it is preferably 0.8 cc / g or more, more preferably 0.9 cc / g or more, and further preferably lcc / g or more, to appropriately ensure the energy density of the positive electrode. From the viewpoint, it is preferably 25 cc / g or less, more preferably 10 cc / g or less, and still more preferably 5 cc / g or less.
  • the positive electrode active material obtained in the first and second embodiments can be obtained as a slurry or a powder
  • a positive electrode such as a lithium ion secondary battery can be formed using these.
  • a conductive substance may be further added from the viewpoint of enhancing the conductivity as the positive electrode.
  • carbon black, carbon fiber, carbon nanotube, etc. used for forming a composite material for a positive electrode can be used.
  • the DBP absorption amount is high. Carbon black of 100 to 800 cm 3 Zl00 g, particularly ketjen black and acetylene black are preferred.
  • the third embodiment is based on a slurry obtained by dispersing at least the positive electrode active material and the conductive material 1 in a solvent until they are forcibly dispersed.
  • the method includes a composite particle forming step of obtaining composite particles containing the positive electrode active material and the conductive material 1 by removing the solvent.
  • the conductive material 1 and the positive electrode active material used in the third embodiment are aggregates of unit particles that are chemically stable in a solvent, and are ultrasonic in the solvent, preferably at a frequency of 15 to 25 kHz. By forced dispersion with ultrasonic waves with an output of 100-500W, it is considered that the particles are dispersed to a state close to unit particles.
  • the conductive material 1 and the positive electrode active material may be added to a solvent and simultaneously forcibly dispersed.
  • One of the positive electrode active materials may be added to the solvent and forcibly dispersed, and then the other may be added to forcibly disperse.
  • a pulverization step such as wet pulverization may be performed separately or simultaneously with the forced dispersion.
  • the conductive substance 1 is preferably a carbonaceous material, for example, fibrous carbon such as carbon black, carbon fiber, and carbon nanotube.
  • fibrous carbon such as carbon black, carbon fiber, and carbon nanotube.
  • Carbon black used as the conductive material 1 includes decomposition methods such as thermal black method and acetylene black method, channel black method, gas furnace black method, oil furnace black method, pine smoke method, and lamp black method. Force that can be used in any of the incomplete combustion methods Furnace black and acetylene black are preferably used from the viewpoint of conductivity. These may be used alone or in combination of two or more.
  • the primary particle size of the conductive material 1 is smaller than the primary particle size of the positive electrode active material.
  • Primary particle size of 1Z5 or less is preferred 1Z10 or less is more preferred 1Z15 or less is even more preferred.
  • the primary particle size is preferably 1Z5 or less of the primary particle size of the positive electrode active material, more preferably 1Z10 or less, and even more preferably 1Z15 or less.
  • the primary particle size of the conductive material 1, preferably carbon black, is preferably 10 to 100 nm, more preferably 1 from the viewpoints of forced dispersion and adhesion to the positive electrode active material. It is 5 to 80 nm, more preferably 20 to 50 nm.
  • the carbon black having such a primary particle diameter can be adhered to the surface of the positive electrode active material more reliably by making it into fine particles, and the volume resistivity can be further reduced.
  • the fibrous carbon carbon fiber made from a polymer typified by polyacrylonitrile (PAN), pitch-based carbon fiber made from pitch as a raw material, carbon nanotube, and hydrocarbon gas is used.
  • Vapor growth type carbon fiber eg, VGCF
  • VGCF vacuum growth type carbon fiber
  • narrow carbon nanotubes obtained by arc discharge method, laser evaporation method, chemical vapor deposition method, etc. And the like
  • carbon nanotubes are particularly preferable.
  • the content of the conductive material 1 is preferably 0.2 to 8 parts by weight with respect to 100 parts by weight of the positive electrode active material from the following viewpoints. That is, from the viewpoint of reducing the volume resistance of the positive electrode material, it is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, even more preferably 1 part by weight or more with respect to 100 parts by weight of the positive electrode active material. It is. Further, from the viewpoint of coverage on the surface of the positive electrode active material, it is preferably 8 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 3 parts by weight or less.
  • any conventionally known material can be used, for example, Li 'Mn-based composite oxide such as LiMn O, Li' Co-based composite oxide such as LiCoO.
  • Li'Ni complex oxides such as LiNiO and Li'Fe complex oxides such as LiFeO
  • LiMnO is preferred, with LiMnO, LiCoO, and LiNiO being preferred.
  • the primary particle diameter of the positive electrode active material is preferably from 0.5 to 10 zm, more preferably from the viewpoint of safety and stability of the positive electrode active material, cycle characteristics, reactivity, and fast discharge performance. 6 to 5 m, more preferably 0.7 to 2 xm.
  • a solvent used for dispersion various solvents can be used.
  • the boiling point of the solvent is preferably 100 ° C or less, more preferably 90 ° C or less, and even more preferably from the viewpoint of easy drying. Preferably it is below 80 ° C.
  • Specific examples of such a solvent include water, ethanol, acetone, methyl ethyl ketone, toluene, tetrahydrofuran and the like. Of these, from the viewpoints of easy drying and handling properties, ethanol is preferred.
  • the amount of the solvent used is preferably 50 to 1000 parts by weight with respect to 100 parts by weight of the positive electrode active material from the following viewpoints. That is, from the viewpoint of effectively dispersing the conductive material 1 and the positive electrode active material, 50 parts by weight or more is preferable with respect to 100 parts by weight of the positive electrode active material. Further, from the viewpoint of complexity of drying the solvent, 1000 parts by weight or less is preferable, and 800 parts by weight or less is more preferable.
  • a method of forcibly dispersing the conductive material 1 and the positive electrode active material a method of forcibly dispersing with a disperser in a solvent, a method of dispersing with a dispersing agent, a method of using both in combination are used. .
  • a disperser having a dusting action in the case of carbon black, primary particles.
  • the conductive material 1 in which the positive electrode active material is dispersed to the primary particles is also dispersed to the primary particles or a state close to the primary particles.
  • a dispersed state is, for example, the number of primary particles of the conductive material attached to the surface of the positive electrode active material when the obtained positive electrode composite material is observed using a scanning electron microscope (SEM). (For example, an average value of 10 or more primary particles is observed for one particle of the positive electrode active material).
  • Examples of the disperser include an ultrasonic disperser, a stirring disperser, a high-speed rotary shear disperser, a mill disperser, and a high-pressure jet disperser.
  • an ultrasonic disperser and a high-pressure jet disperser are preferably used.
  • a mill type disperser is preferably used as a disperser accompanied by a grinding action.
  • the conductive material 1 may be prepared in advance by wet grinding or dry grinding and dispersed in a solvent.
  • the method using the dispersant is particularly effective for suitably dispersing the conductive material 1.
  • a dispersant an anionic, nonionic or cationic surfactant or a polymeric dispersant can be used as the dispersant.
  • the use of a child dispersant is preferred.
  • polymer dispersant a polycarboxylic acid-based polymer dispersant having a plurality of forceloxyl groups in the molecule, a polyamine-based having a plurality of amino groups in the molecule
  • a polymer dispersant, a polymer dispersant having a plurality of amide groups in the molecule, and a polymer dispersant containing a plurality of polycyclic aromatic compounds in the molecule are preferred.
  • polyamine polymer dispersant examples include comb polymers in which a polyester is grafted to a polyamine such as polyalkyleneamine, polyallylamine, N, N-dimethylaminoethyl methacrylate, and the like.
  • polycarboxylic acid-based polymer dispersants include amidation of various amines and alcohols such as (meth) acrylic acid and (meth) acrylic acid ester copolymers, maleic anhydride copolymers and alkylamines.
  • examples thereof include esterified products, polycarboxylic acid polyesters such as poly (meth) acrylic acid copolymers, and comb polymers grafted with polyalkylene glycol.
  • (meth) acrylic acid refers to acrylic acid or methacrylic acid.
  • a polymer dispersant having a plurality of amide groups in the molecule a copolymer of polyamide, polybutylpyrrolidone, poly N, N-dimethylacrylamide obtained by a condensation reaction, or a polyester or polyalkylene glycol is grafted to this.
  • Examples of the polymer dispersant containing a polycyclic aromatic compound include copolymers of vinyl monomers having a pyrene or quinacridone skeleton and various monomers.
  • the above dispersants can be used alone or in admixture of two or more dispersants.
  • the amount of the dispersant added is 0 with respect to 100 parts by weight of the dispersion target (positive electrode active material + conductive material 1 in the present invention) from the viewpoint of suitably dispersing. :!-20 parts by weight are preferred 0.5-: 10 parts by weight are more preferred.
  • the composite particle forming step in the third embodiment is to obtain composite particles by removing the solvent from the slurry obtained by the dispersion as described above. Removal of the solvent from the slurry can be carried out by heat evaporation, vacuum distillation, spray drying, freeze drying, or the like.
  • the composite particles thus obtained have a structure in which the conductive material 1 is attached to the positive electrode active material.
  • the coverage of the surface of the positive electrode active material with the conductive material 1 can be easily controlled by the content ratio of the conductive material 1 and the positive electrode active material, the size ratio of the particles, and the like.
  • This coverage is preferably 5% or more, more preferably 10% or more from the viewpoint of reducing the volume resistivity, and is preferably 80% or less from the viewpoint of suitably securing a lithium ion diffusion path. 70% or less is more preferable.
  • the third embodiment includes a mixing step of mixing at least the composite particles as described above and the conductive material 2 having an aspect ratio of 2 to 10.
  • the mixing method may be a wet mixing method, a dry mixing method, or a deviation method, but wet mixing is preferable from the viewpoint of uniform mixing.
  • dry mixing powder mixers such as V-type mixers and ribbon-type mixers, and mixers such as kneaders and Henschel mixers can be used.
  • a stirring type mixer having a structure in which mixing is performed with a stirring plate such as a butterfly type, a bowl type, a ribbon type, or a frame type, or a mixing device such as a high-speed disperser or a homomixer can be used.
  • Carbon black having a structure structure is preferable as the conductive material 2 having an aspect ratio of 2 to 10: Carbon black with an aspect ratio in such a range can suitably form voids for the diffusion of Li ions due to the development of the structure of the structure, and interpose between the composite particles to form a suitable conductive path. It is considered possible.
  • Carbon black may exhibit an aggregated structure in which primary particles are branched in an irregular chain with a daisy chain. When such particles are observed with a scanning electron microscope, the aspect ratio of the longest diameter (L) and the shortest diameter (W), that is, L / W, becomes important.
  • the aspect ratio of the conductive substance 2 is 2 or more, preferably 3 or more, more preferably 3.5 or more from the viewpoint of the conductivity of the composite material for the positive electrode, and ensures a lithium ion diffusion path. From this viewpoint, it is 10 or less, preferably 5 or less.
  • Carbon black with a high aspect ratio has an agglomerated structure. Absorption is large. Therefore, DBP absorption amount of carbon black having a structured constitution is preferably 100 cm 3/100 g or more, more preferably 120 cm 3/100 g or more, more preferably 150 cm 3/100 g or more. Further, from the viewpoint of not lowering the electrode density, 5 00cm 3 / l00g less force S Preferably, preferably from 400cm 3 / l00g less force, preferably from 300 cm 3 / l0 Og more preferably less instrument 200cm 3 Zl00g following further.
  • 100 ⁇ 500cm 3 / l00g force S Preferably, preferably from 100 ⁇ 400cm 3 / l00g force, 120 ⁇ 300cm 3 / l00g mosquito More preferably, 150 ⁇ 200cm 3 / l00g mosquito further more preferred arbitrariness.
  • the specific surface area of carbon black is preferably 20 m 3 / g or more, more preferably 30 m 3 / g or more, and more preferably 40 m 3 Zg or more.
  • 2000 m 3 / g or less preferably fixture 500 meters 3 Zg less less more preferably tool 1 00m 3 / g is more preferable.
  • 20 to 2000 m 3 Zg is preferable, 30 to 500 m 3 / g force S is more preferable, and 40 to 100 m 3 / g force S is more preferable.
  • carbon black before being used as the conductive material 1 before being finely divided can be used. More specifically, furnace-type conductive carbon black that thermally decomposes raw material hydrocarbons with the heat of combustion of crude oil and gas to produce carbon black, ketjen black obtained by the heavy oil gasification process, and acetylene gas are heated. Examples include acetylene black obtained by decomposition, such as Lion Ketjen Black EC, Cabot Vulcan XC-72, Degussa Printex L6 and Printex XE2.
  • the particle size of carbon black having a structure structure is represented by the average particle size (aggregated particle size) of aggregates composed of primary particles connected together.
  • Laser diffraction Z-scattering particle size distribution analyzer LA750 Horiba It is calculated
  • This average particle size is preferably 0.05 to: lO xm force S from the viewpoint of the conductivity of the positive electrode and the smoothness of the coating film when the positive electrode material is applied to form a coating film.
  • 0. 08 ⁇ 5 xm is as more preferred, 0.1:! ⁇ mosquitoes still more preferably les, 0
  • the blending amount of the conductive material 2 is preferably 2 parts by weight or more with respect to 100 parts by weight of the positive electrode active material from the viewpoint of reducing volume resistivity by forming a conductive path of the positive electrode obtained.
  • the amount is preferably 4 parts by weight or more, more preferably 8 parts by weight or more.
  • it is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 15 parts by weight or less.
  • the total amount of the conductive material 1 and the conductive material 2 is preferably 3 to 50 parts by weight with respect to 100 parts by weight of the positive electrode active material from the following viewpoints. That is, from the viewpoint of reducing the volume resistance of the composite positive electrode material, the amount is preferably 3 parts by weight or more, more preferably 5 parts by weight or more, and still more preferably 10 parts by weight or more with respect to 100 parts by weight of the positive electrode active material. Further, from the viewpoint of increasing the energy density of the composite positive electrode material, it is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and further preferably 15 parts by weight or less.
  • the volume resistivity of the obtained composite material for positive electrode is preferably 5 ⁇ ⁇ ⁇ m or less, more preferably 3 ⁇ ′cm or less, and further preferably 2 ⁇ . 'Less than cm.
  • the solvent is removed from a slurry obtained by dispersing until at least the positive electrode active material and the conductive material 1 are forcibly dispersed in a solvent, and the positive electrode active material and composite particles of obtaining composite particles containing a conductive material 1, at least those said containing composite particles, and a mixed-mixing the DBP absorption 100 ⁇ 500cm 3 / 100g of conductive material 2.
  • This fourth embodiment also provides the same effects as those of the third embodiment described above.
  • the DBP absorption is measured by the method described in the examples.
  • a preferable example of the configuration requirements in the fourth embodiment is the same as that in the third embodiment described above.
  • the positive electrode composite material produced in the present invention can be obtained as a slurry or a powder. By using these, a positive electrode such as a lithium ion secondary battery can be formed.
  • the positive electrode is formed by applying and drying a slurry obtained by mixing a positive electrode active material, a conductive material, a binder, and a solvent onto a metal foil serving as a current collector. Therefore, the composite material for positive electrode produced by the present invention can be used in the formation of the positive electrode in a slurry state, with a binder added if necessary.
  • the powdery composite material for positive electrode can be used for forming a positive electrode by adding a binder and a solvent as necessary.
  • any conventional binder used for forming a positive electrode can be used.
  • Polyvinylidene fluoride, polyamideimide, polytetrafluoroethylene, polyethylene, polypropylene, polymethyl methacrylate, and the like can be suitably used.
  • any of the conventional solvents used for the formation of positive electrodes can be used.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • dimethylacetamide dimethylacetamide
  • methyl ether methyl ether
  • Tyl ketone tetrahydrofuran, acetone, ethanol, ethyl acetate and the like are preferably used.
  • the current collector any conventional metal foil used for forming a positive electrode can be used.
  • any conventionally known additive used for forming the positive electrode can be added to the slurry.
  • the composite material for positive electrode produced in the present invention has excellent high-speed discharge characteristics of a Li ion secondary battery.
  • the fast discharge characteristic is a ratio power of a discharge amount of 60 C to 1 C, preferably 55% or more, more preferably 60% or more.
  • a method for producing a positive electrode for a lithium battery including a step of applying and drying.
  • the application of the battery using the positive electrode composite material produced in the present invention is not particularly limited.
  • a laptop computer an electronic book player, a DVD player, a portable audio player, a video movie, a portable TV, and a cellular phone.
  • It can be used for electronic devices such as cordless vacuum cleaners, cordless electric tools, batteries for electric vehicles and hybrid cars, and consumer devices such as auxiliary power supplies for fuel cell vehicles.
  • it is suitably used as a battery for automobiles that require particularly high output.
  • DBP absorption was measured based on JISK6217-4.
  • Laser diffraction Z-scattering particle size distribution analyzer LA750 (Horiba Seisakusho) In the case of conductive materials, the relative refractive index is 1
  • the value of 0 was defined as the average particle size of the conductive material and the primary particle size of the positive electrode active material.
  • the average value obtained by measuring the fiber diameter was defined as the fiber diameter. Further, the length of the fiber was measured and averaged to obtain the fiber length.
  • the electrical resistance value of the compressed powder sample compressed into a cylindrical shape was measured by changing the powder sample amount to 0.3g and the pressure during powder compression to 100 kg / cm 2 , and measuring resistance
  • the volume resistivity (electrical resistivity) was calculated from the value by the following formula 1.
  • an insulating cylinder (Bakelite, outer diameter 28 mm, inner diameter 8 mm) and (1) 0.3 g of a powder sample was filled in a cylindrical container composed of electrodes, and the sample was packed with an insulating cylinder.
  • a (+) electrode was inserted into the container and the powder sample was sandwiched between them and placed on a press machine base.
  • a force of 100 kg / cm 2 was applied to the sample in the cylindrical container by a press machine and compressed.
  • the (+) electrode and (1) electrode were connected to the digital multimeter's measurement input cable, and the electrical resistance was measured 3 minutes after the start of compression.
  • p is the electrical resistivity ( ⁇ 'cm)
  • S is the cross-sectional area of the sample (cm 2 )
  • h is the filling height of the sample
  • R is the electrical resistance value ( ⁇ ).
  • the (-) electrode used was made of brass, the electrode surface was 7.8 ⁇ 1 ⁇ ⁇ , and was a pedestal-top electrode with a projection of 5 mm in height, and the (+) electrode was made of brass. Yes, the electrode surface is 7.8 ⁇ 1 ⁇ ⁇
  • Powder sample 20 8 parts by weight, commercially available conductive carbon black powder (product name HS-100, DBP absorption 140cm 3 / 100g) l. 7 parts by weight, polyvinylidene fluoride powder (manufactured by Kureha Kagaku) , # 1300) 2. 5 parts by weight and NMP37. 5 parts by weight were mixed uniformly to prepare a coating paste.
  • the paste was uniformly coated on an aluminum foil (thickness 20 xm) used as a current collector using a coater, and dried at 140 ° C for 10 minutes or more. After drying, the film was formed into a uniform film thickness with a press machine, and then cut into a predetermined size (20 mm x 15 mm) to obtain a test positive electrode. At this time, the thickness of the electrode active material layer was 25 ⁇ m.
  • a test cell was fabricated using the above-described test positive electrode.
  • a metal lithium foil was cut into a predetermined size and used, and Celgard # 2400 (manufactured by Celgard) was used as the separator.
  • the electrolyte is ImolZl LiPF Z ethylene carbonate (EC): Jetilka
  • the conductive material dispersion was sampled, and the average particle size (B) was measured with the LA750 under the same measurement conditions as the average particle size (A).
  • the average particle size (B) was divided by the average particle size (A)
  • a value of 2 or more was defined as a self-aggregating conductive material.
  • Table 1 shows the evaluation results.
  • Example 2 Two parts by weight of carbon nanotubes having a fiber diameter of 20 nm, a fiber length of 10 ⁇ , and an aspect ratio of 500 were added to 500 parts by weight of ethanol, and ultrasonically dispersed (irradiation time: 3 minutes) using an ultrasonic disperser. Then the average particle size 2 / im (- following particle size 25 nm), DBP absorption 155cm 3/10 0 g of carbon black (manufactured by Tokai Carbon Co., # 5500) of the 2 parts by weight of ultrasonic dispersion (irradiation morphism time 1 minute )did.
  • VGCF Two parts by weight of VGCF having a fiber diameter of 120 nm, a fiber length of 10 ⁇ , and an aspect ratio of 83 were added to 500 parts by weight of NMP, and ultrasonically dispersed (irradiation time: 3 minutes) using an ultrasonic disperser.
  • Example 4 after adding a dispersion liquid containing a composite material for a positive electrode under the same conditions as in Example 4 except that the amount of ketjen black added was 4 parts by weight and no additional carbon black was added, In order to evaluate physical properties, the solvent was distilled off to obtain a composite material for a positive electrode. Table 2 shows the physical properties of the obtained composite material for positive electrodes.
  • Example 4 the dispersion containing the composite material for the positive electrode under the same conditions as in Example 4 except that lithium manganate added to the carbon dispersion was used with a primary particle size of 0.5 xm. Then, the solvent was distilled off for physical property evaluation to obtain a composite material for positive electrode. Table 2 shows the physical properties of the obtained composite material for positive electrodes.
  • Example 4 as the lithium manganate added to the carbon dispersion, primary grains A dispersion containing the composite material for positive electrode was obtained under the same conditions as in Example 4 except that a particle diameter of 1.2 ⁇ was used, and then the solvent was distilled off for physical property evaluation to remove the positive electrode. A composite material was obtained. Table 2 shows the physical properties of the obtained composite material for positive electrodes.
  • Example 8 a dispersion containing the positive electrode composite material was obtained under the same conditions as in Example 8 except that FX-35 (Carbon Black manufactured by Denki Kagaku Kogyo Co., Ltd.) was used instead of Ketjen Black. Then, the solvent was distilled off for physical property evaluation to obtain a composite material for positive electrode. Table 2 shows the physical properties of the obtained composite material for positive electrodes.
  • FX-35 Carbon Black manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Example 8 After obtaining a dispersion containing the composite material for the positive electrode under the same conditions as in Example 8, except that in Example 8, # 3050B (carbon black manufactured by Tokai Carbon Co.) was used instead of ketjen black In order to evaluate the physical properties, the solvent was distilled off to obtain a composite material for positive electrode. Table 2 shows the physical properties of the obtained composite material for positive electrodes.
  • Example 4 a dispersion containing a composite material for a positive electrode under the same conditions as in Example 4 was used except that lithium manganate added to the carbon dispersion was used with a primary particle size of 10 ⁇ m. Then, the solvent was distilled off for physical property evaluation to obtain a composite material for positive electrode. Table 2 shows the physical properties of the obtained composite material for positive electrodes.
  • Carbon black manufactured by Tokai Carbon Co., # 5500
  • Carbon black with an average particle size of 2 zm (primary particle size of 50 nm) and DBP absorption of 155 cm 3 Zl00g per 100 parts by weight of lithium manganate with a primary particle size of 0.8 xm 2 parts by weight, 2 parts by weight of Ketjen Black having an average particle size of 10 ⁇ m (subsequent particle size of 35 nm) and a DBP absorption amount of 495 were dry-mixed to obtain a comparative positive electrode material.
  • Obtained material Table 2 shows the physical properties of the materials.
  • Carbon black manufactured by Tokai Carbon Co., Ltd., # 5500
  • Carbon black with an average particle size of 2 / im (primary particle size of 25nm) and DBP absorption of 155cm 3 Zl00g per 100 parts by weight of lithium manganate with a primary particle size of 0.8 ⁇ 2 parts by weight
  • Table 2 shows the physical properties of the obtained material.
  • the composite material of the example in which the positive electrode active material was included in the solvent with the conductive material having self-aggregation property was obtained by dry-mixing the conductive material and the positive electrode active material.
  • it has a low volume resistivity, a high pore volume, and excellent high-speed discharge characteristics.
  • FIG. 1 shows a scanning electron micrograph of the positive electrode composite material obtained in Example 1.
  • the conductive material in which the primary particles appear small in the photograph
  • wraps the positive electrode active material in which the primary particles appear large in the photograph
  • the total pore volume is larger than that of the comparative example, it is considered to be a fine composite structure having appropriate voids.
  • the primary particle From the SEM image taken with a field emission scanning electron microscope (Hitachi S-4000), the primary particle has a shape in which the primary particles are connected in a daisy chain, and the longest diameter is the force of the average particle size soil (average particle size X 0.2).
  • Thirty Bonblack secondary aggregates were extracted, and the ratio of the longest diameter (L) to the shortest diameter (W), that is, the average value of L / W was determined as the aspect ratio.
  • the longest diameter is a line segment where a straight line L passing through (including contacting with) a secondary aggregate region (hereinafter referred to as an aggregate image) of the SEM image of the secondary aggregate is cut into the aggregate image. The length of the longest line segment.
  • the shortest diameter is the distance between two parallel lines that are the farthest away from each other in the straight line group parallel to the straight line corresponding to the longest diameter.
  • the distance between two parallel lines means the linear force perpendicular to the two parallel lines and the length of the line segment cut off by the two parallel lines.
  • the average particle size 1 mu Ie in ethanol 10 0 parts by weight of carbon black of aspect ratio 3.8 (manufactured by Denki Kagaku Kogyo, HS- 100, DBP absorption amount 140cm 3 / 100g) 2. 1 part by weight, ⁇ ⁇ ⁇ ⁇ . Stirred with a homodisper.
  • 20.4 parts by weight of CB-adhered lithium manganate was added, and the mixture was mixed with ⁇ ⁇ . ⁇ .homodisper, and the resulting slurry was evaporated to dryness to obtain a composite material for positive electrode.
  • Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • polyacrylic acid type dispersant isobutylene maleic acid streanolamide
  • the average particle size 1 mu Ie in ethanol 10 0 parts by weight of carbon black of aspect ratio 3.8 (manufactured by Denki Kagaku Kogyo, / HS- 100, DBP absorption amount 140cm 3 100 g) 2. adding 1 part by weight ⁇ ⁇ ⁇ . Stir with homodispers. Next, 20.4 parts by weight of CB-adhered lithium manganate was added, and the mixture was mixed with ⁇ ⁇ . ⁇ .homodisper, and the resulting slurry was evaporated to dryness to obtain a composite material for positive electrode. Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • Example 14 as carbon black added to ethanol, Tokai Carbon # 5500 having an average particle size of 2 ⁇ m was used, and lithium manganate having a primary particle size of 1.2 / im was used. Obtained the composite material for positive electrodes by the same method. Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • Example 14 carbon black added to ethanol was the same except that Tokai Carbon # 5500 having an average particle size of 2 ⁇ m was used and lithium manganate having a primary particle size of 10 zm was used.
  • the composite material for positive electrodes was obtained by this method. Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • Example 14 except for using Tokai Carbon Co., Ltd. # 3800 (—secondary particle size 70 nm) as the carbon black to be added to ethanol, and using lithium manganate with a primary particle size of 1.2 / im.
  • a composite material for positive electrode was obtained in the same manner.
  • Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • a composite material for a positive electrode was obtained in the same manner as in Example 15 except that FX-35 (carbon black manufactured by Denki Kagaku Kogyo Co., Ltd.) was used instead of HS-100.
  • Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • a composite material for a positive electrode was obtained in the same manner as in Example 15 except that Ketjen Black (Carbon Black manufactured by Lion) was used instead of HS_100.
  • Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • a composite material for a positive electrode was obtained in the same manner as in Example 15 except that FW1 (carbon black manufactured by Degussa) was used instead of HS-100.
  • Table 3 shows the physical properties of the obtained composite material for positive electrodes.
  • polyacrylic acid type dispersant isobutylene maleic acid streanolamide
  • a comparative positive electrode material was obtained in the same manner as in Example 14, except that # 7550 (carbon black manufactured by Tokai Carbon Co.) was used instead of HS-100. Table 3 shows the physical properties of the material obtained.
  • the composite material of the example in which the carbon black having a structure is mixed with the composite particles in which the conductive material 1 is adhered to the positive electrode active material is low in volume resistivity. And has excellent high-speed discharge characteristics.
  • Comparative Examples 4 to 5 using the conductive material 1 or the carbon black having the structure structure alone the high-speed discharge characteristics with high volume resistivity were insufficient. Further, even in Comparative Example 6 in which both were simply mixed, the effect of improving the volume resistivity and fast discharge characteristics was small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
リチウム電池正極用複合材料の製造方法
技術分野
[0001] 本発明は、正極活物質及び導電性物質を含有するリチウム電池正極用複合材料 の製造方法に関する。本発明で得られるリチウム電池正極用複合材料は、リチウムィ オン二次電池等の正極の形成に好適に使用することができる。
背景技術
[0002] 近年、石油資源の高騰、国際的な地球環境保護運動の高まりを背景として、電気 自動車、ハイブリッド自動車、燃料電池自動車などが注目されており、その一部が実 用化されている。これらの駆動システムには、補助用電源等として二次電池が不可欠 であり、し力も自動車の急発進 ·急加速に対応できる高出力な二次電池が望まれて いる。また、車への重量負荷、燃費向上の観点から、エネルギー密度の高い二次電 池が望まれる。このような背景から、二次電池の中で最もエネルギー密度が高ぐか つ高出力を発現できるリチウムイオン二次電池が有望視されている。
[0003] リチウムイオン二次電池では、リチウム塩を非水溶媒中に含有する電解液が用いら れ、セパレータを介して正極活物質を備える正極と負極活物質を備える負極とが隔 てられた構造となっている。また、正極では、正極活物質自体の導電性が低いことか ら、導電性を向上させるために、カーボンブラック等の導電性物質が添加されている
[0004] 一般に、上記のような正極は、 LiMn O等の活物質、カーボンブラック等の導電性
2 4
物質、バインダ、及び溶剤を混合したスラリーを集電体となる金属箔に塗布'乾燥す ることにより製造される。その結果、正極の微細構造は、導電性の低い正極活物質の 粒子と、これより粒径の小さい導電性物質の粒子とが分散 *結合した構造となる。
[0005] リチウムイオン二次電池の正極では、放電時にリチウムが正極活物質内に吸蔵され るが、その際、正極側へ拡散するリチウムイオンと正極集電体から導電した電子との 作用によって放電が進行する。また、充電時には、正極活物質から、電子とイオン化 したリチウムとが放出される。このため、電池の特性、特に高速放電性能(高出力化) に影響を与える因子として、導電性の高い導電材料を選択することや、正極活物質と 導電性物質の微細複合構造が非常に重要となる。
[0006] このような理由から、正極に関する微細複合構造の改良が幾つ力、試みられている。
例えば特許文献 1には、正極活物質と導電性物質とを混合して、乾式で圧縮せん断 応力を加える方法により、正極活物質表面に導電性物質を被覆率 15%以上で被覆 した正極材料が提案されている。また、これを用いて正極を作製する際に、粒径 1〜 20 μ mの黒 (グラフアイト)を添加することが開示されてレ、る。
[0007] また、湿式混合により正極複合材料を製造する方法も知られており、例えば特許文 献 2には、リン酸第一鉄含水塩、リン酸リチウム及び炭素質物質前駆体を湿式混合し た後、溶媒を除去して混合物を得た後、これを粉砕、焼成等して炭素複合材料を製 造する製造方法が提案されてレ、る。
[0008] また、特許文献 3では、炭素繊維を正極活物質に添加して導電経路を改善する試 みがなされている。
[0009] 更に、特許文献 4では、カーボンブラックと炭素繊維の両者を正極活物質に添加' 混合した複合材料で形成された正極が提案されている。
[0010] 特許文献 1 :特開 2004— 14519号公報
特許文献 2 :特開 2003— 292309号公報
特許文献 3:特開 2004— 103392号公報
特許文献 4 :特開 2004— 179019号公報
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、特許文献 1に開示される正極材料では、被覆率の制御が困難であり 、導電性物質が正極活物質の表面に緻密に被覆され易いため、 Liイオンの経路が 遮断され、その結果、高速放電性能が向上しに《なる。また、被覆により正極活物 質の導電性は向上するものの、得られる正極の導電性は十分とは言えず、黒鉛を併 用した場合でも、導電性の改善効果はさほど大きくないことが判明した。
[0012] また、特許文献 2に記載された炭素複合材料の製造方法では、カーボンブラック等 の導電性物質を用いるのではなぐポリエチレングリコール等の炭素質物質前駆体を 用いて混合物を得た後、これを粉碎、焼成等している。このため、得られる炭素複合 材料の微細複合構造を制御するのが困難であり、これを用いて得られる正極の高速 放電性能は、特許文献 1に記載の正極材料より優れるとは考えにくい。
[0013] また、特許文献 3に記載される炭素繊維は、一般に正極活物質との接触効率が悪 レ、ことから、正極の導電性等に関して十分な性能が得られない。
[0014] 更に、特許文献 4に開示される正極は、カーボンブラック、炭素繊維、正極活物質、 バインダを乾式混合した後に、溶媒を添加して溶媒に分散したスラリーを用レ、て形成 されるため、正極活物質と導電性物質が必ずしも適切な配置をもった微細複合構造 を形成できず、得られる正極は、高速放電性能に関して、十分な性能を発現しないこ とが判明した。
[0015] そこで、本発明は、電池の高速放電性能に優れるリチウム電池正極用複合材料の 製造方法を提供する。
課題を解決するための手段
[0016] 本発明のリチウム電池正極用複合材料の製造方法は、正極活物質、及び導電性 物質を含有するリチウム電池正極用複合材料の製造方法であって、溶媒中で、少な くとも正極活物質及び導電性物質 1を、分散させて強制分散した状態とする分散ェ 程と、前記溶媒中で前記導電性物質 1を前記正極活物質と共に凝集させる方法、又 は前記溶媒を除去する方法により、前記正極活物質及び前記導電性物質 1を含有 する複合粒子を得る複合粒子化工程とを含むリチウム電池正極用複合材料の製造 方法である。
図面の簡単な説明
[0017] [図 1]実施例 1で得られた正極用複合材料の走査型電子顕微鏡写真を示す。
発明を実施するための最良の形態
[0018] 以下、本発明の実施形態について詳細に説明する。
[0019] 本発明の製造方法は、正極活物質、及び導電性物質を含有するリチウム電池正極 用複合材料の製造方法であり、溶媒中で、少なくとも正極活物質及び導電性物質 1 を、分散させて強制分散した状態とする分散工程と、前記溶媒中で前記導電性物質 1を前記正極活物質と共に凝集させる方法、又は前記溶媒を除去する方法により、 前記正極活物質及び前記導電性物質 1を含有する複合粒子を得る複合粒子化工程 とを含む。この方法により、電子及びリチウムイオンの移動がスムーズに行える複合構 造を有する複合粒子が得られるため、この複合粒子を用いて、高速放電特性に優れ たリチウムイオン電池を提供することができる。
[0020] 本発明の製造方法の実施形態としては、以下に示す第 1〜第 4の実施形態が例示 できる。
[0021] 第 1の実施形態は、前記導電性物質 1として、溶媒中で自己凝集性を有する導電 性物質を用い、前記複合粒子化工程は、前記導電性物質 1を前記正極活物質と共 に前記溶媒中で凝集させて前記複合粒子を得る工程であるリチウム電池正極用複 合材料の製造方法である。
[0022] 第 1の実施形態の製造方法によると、 自己凝集性を有する導電性物質 1等を用い て、正極活物質と共に溶媒中に強制分散させることによって、凝集後に導電性物質 1 が正極活物質を包み込む微細複合構造を構成すると考えられる。このため、正極活 物質と導電性物質 1の接触点が多くなり、導電性が向上すると考えられ、電解液の浸 透がスムーズで Liイオンのイオン拡散に優れた構造を呈すると考えられる。
[0023] 第 2の実施形態は、前記導電性物質 1として、 DBP吸収量が 200〜800cm3/10 Ogであるカーボンブラック及び/又はアスペクト比が 50〜: 1000の繊維状カーボンを 含有する導電性物質を用い、前記複合粒子化工程は、前記導電性物質 1を前記正 極活物質と共に前記溶媒中で凝集させて前記複合粒子を得る工程であるリチウム電 池正極用複合材料の製造方法である。
[0024] 第 2の実施形態の製造方法によっても、凝集後に導電性物質 1が正極活物質を包 み込む微細複合構造を構成できると考えられ、正極活物質と導電性物質 1の接触点 が多くなり、導電性が向上すると考えられる。しかも、微細な隙間を有する多孔のカー ボンネットワークを構築できるため、電解液の浸透がスムーズで Liイオンのイオン拡 散により優れた構造を呈すると考えられる。
[0025] 第 3の実施形態は、前記複合粒子化工程が、前記分散工程で得られるスラリーから 前記溶媒を除去して、前記正極活物質と前記導電性物質 1とを含有する複合粒子を 得る工程であり、前記複合粒子化工程の後、少なくとも、前記複合粒子、及びァスぺ タト比が 2〜: 10の導電性物質 2を混合する混合工程を更に含むリチウム電池正極用 複合材料の製造方法である。
[0026] 第 3の実施形態の製造方法によると、正極活物質と導電性物質が分散したスラリー の溶媒を除去して得られた複合粒子に、特定のアスペクト比を有する導電性物質を 混合することによって、正極活物質の表面に導電性物質が確実に付着 (部分的に被 着)し、その複合粒子間に特定のァスぺ外比を有する導電性物質が介在する微細 複合構造を呈すると考えられる。このため、付着した導電性物質を介して正極活物質 の表面に電子が十分導電され、導電性が向上する。また、正極活物質の表面への付 着量をコントロールすることができ、特定のアスペクト比を有する導電性物質が介在 することによって、電解液の浸透がスムーズで Liイオンのイオン拡散に優れた構造に なると考えられる。その結果、従来の Liイオン二次電池にくらべ、放電時に高い電流 を流すことができ、高速放電特性に優れた Liイオン電池を得ることができると考えら れる。
[0027] 第 4の実施形態は、前記複合粒子化工程が、前記分散工程で得られるスラリーから 前記溶媒を除去して、前記正極活物質と前記導電性物質 1とを含有する複合粒子を 得る工程であり、前記複合粒子化工程の後、少なくとも、前記複合粒子、及び DBP 吸収量 100〜500cm3/100gの導電性物質 2を混合する混合工程を更に含むリチ ゥム電池正極用複合材料の製造方法である。
[0028] 第 4の実施形態の製造方法によっても、上述した第 3の実施形態と同様の効果を奏 する。
[0029] 以下、第 1〜第 4の実施形態の詳細について説明する。なお、本発明における各種 の物性値は、具体的には実施例に記載の方法で測定される値である。
[0030] まず、第 1の実施形態について主に説明する。第 1の実施形態で使用する導電性 物質 1と正極活物質は、溶媒中で化学的に安定な単位粒子の集合物であり、溶媒中 で超音波等で、好ましくは、周波数 15〜25kHz、出力 100〜500Wの超音波で強 制分散させることで、単位粒子に近い状態まで分散されると考えられる。この単位粒 子を本発明では「一次粒子」という。
[0031] 第 1の実施形態は、少なくとも溶媒中で自己凝集性を有する導電性物質 (導電性物 質 1)及び正極活物質を、溶媒中に分散させて強制分散した状態とする分散工程を 含むものである。本発明において「強制分散した状態」とは、スラリーをサンプリングし て所定濃度に希釈し、遅滞なく粒度分布測定装置で平均粒径を測定した際に、当該 平均粒径が正極活物質の一次粒子径の 130%以内になるような分散状態を指す( 正極活物質の一次粒子径と比較する観点から、具体的な測定方法は、正極活物質 の一次粒子径の測定方法にて後述する)。つまり、この状態では、初期の凝集状態 力 強制分散した状態に移行することによって、測定される平均粒径が正極活物質 の一次粒子径に近づき(導電性物質 1の分散状態もこの測定値に反映される)、この 現象から強制分散した状態を把握することができる。なお、「溶媒中で自己凝集性を 有する」とは、用いる溶媒中に強制分散させた後、放置することで凝集により平均粒 径が大きくなる性質をいい、具体的には実施例に記載の測定方法で定義される。
[0032] 上記の分散工程は、自己凝集性の導電性物質と正極活物質とを溶媒中に添加し て、同時に分散させるものでもよいが、上記導電性物質又は正極活物質の一方を溶 媒中に添加して分散させた後、これに他方を添加して分散させるものでもよい。
[0033] 第 1の実施形態では、特に、 自己凝集性の導電性物質を効果的に強制分散させ、 その分散状態を維持しながら正極活物質を効果的に分散させる観点から、当該導電 性物質を溶媒中に添加して分散させた後、これに正極活物質を添加して分散させる 方法が好ましい。後から正極活物質を添加して分散させる方法では、上記導電性物 質と正極活物質を均一に混合させることが好ましぐ分散機で分散を行いながら正極 活物質を添加することがより好ましい。
[0034] 自己凝集性を有する導電性物質としては、分散に用いる溶媒中に強制分散させた 後、放置することで自己凝集する性質を有する導電性物質であればよぐ例えば、 自 己凝集性を有するカーボンブラックや、自己凝集性を有するカーボンファイバー、力 一ボンナノチューブ(CNT)等の繊維状カーボンなどが挙げられる。
[0035] 第 1の実施形態では、自己凝集性を有しない導電性物質を、分散工程で添加する ことも可能である。その場合、自己凝集性の導電性物質を効果的に強制分散させ、 その分散状態を維持しながら追加の導電性物質を効果的に分散させる観点から、 自 己凝集性の導電性物質を溶媒中に添加して分散させた後、これに追加の導電性物 質 (好ましくは凝集性を有しない導電性物質、より好ましくは凝集性を有しないカーボ ンブラック)を添加して分散させることが好ましい。追加の導電性物質と正極活物質と は、予め混合するか、同時に混合してもよぐ順次添加して分散させる場合は、その 順序はいずれでもよい。
[0036] 予め混合する場合は、粉末同士の乾式混合でもよいが、できるだけ均一に混合す る観点から、溶媒中で湿式混合することが好ましい。その際、まず追加の導電性物質 を分散させた後に、正極活物質を添加して、分散、混合させることが好ましい。
[0037] カーボンブラックとしては、サーマルブラック法、アセチレンブラック法等の分解法、 チャンネルブラック法、ガスファーネスブラック法、オイルファーネスブラック法、松煙 法、ランプブラック法等の不完全燃焼法のいずれの製法で製造されたものも使用で きる力 導電性の観点からファーネスブラック、アセチレンブラック、ケッチェンブラック (登録商標)が好ましく用いられ、このうちケッチェンブラックがより好ましい。これらは 単独で用いても良いし、 2種以上を混合しても良い。ケッチェンブラックとしては、溶媒 中での自己凝集性や得られる微細複合構造の観点から、 DBP (フタル酸ジブチル) 吸収量力 S200〜800cm3/100gのもの(第 2の実施形態の一例)が好ましい。
[0038] 自己凝集性を有するカーボンブラックは、正極活物質を包含して凝集できるような、 ストラクチャーの大きなものが好ましい。カーボンブラックのストラクチャーの大きさは、 DBP吸収量から判断でき、電解液のしみ込みを良好にし、 Liイオンの拡散経路を確 保させる観点から、用いるカーボンブラックの DBP吸収量は、好ましくは 200cm3/l 00g以上、より好ましくは 250cm3/100g以上、さらに好ましくは 300cm3/100g以 上である。また、電極密度を低下させない観点から、 DBP吸収量は 800cm3/100g 以下が好ましぐ 700cm3Zl00g以下がより好ましぐ 600cm3/l00g以下が更に 好ましい。
[0039] つまり、 DBP吸収量が 200〜800cm3/l00gであるカーボンブラックは、一般に自 己凝集性が高ぐ溶媒中に強制分散させた後、放置することで自己凝集して複合粒 子を生成する能力が高いため、本発明に好適に用いることができる。
[0040] 自己凝集性を有しないカーボンブラックとしては、 DBP吸収量が 200cm3/l00g 未満のものが好ましく使用できる。このようなカーボンブラックは、ストラクチャーがあま り発達しておらず、比較的容易に溶媒中に微分散させることができるため、正極活物 質と自己凝集性を有するカーボンブラックとの間に介在して、導電性をより向上させ ること力 Sできると考えられる。同様の理由から、 自己凝集性を有するカーボンブラック についても、 DBP吸収量が比較的小さいものと、比較的大きいものとを併用すること 力 凝集性を維持しながら導電性を向上させる上で好ましい。
[0041] また、 自己凝集性のカーボンブラックの一次粒子径は、以下の観点から 10〜: 100η mが好ましい。即ち、走査型電子顕微鏡で測定した一次粒子径が、一次分散のしゃ すさの観点から、好ましくは 10nm以上、より好ましくは 15nm以上、さらに好ましくは 20nm以上である。また、分散後の再凝集のしゃすさの観点から、好ましくは lOOnm 以下、より好ましくは 80nm以下、 50nm以下がさらに好ましい。
[0042] 自己凝集性を有するカーボンブラックの凝集粒径は、以下の観点から:!〜 50 μ m が好ましい。即ち、第 1及び第 2の実施形態ではカーボンブラックと正極活物質を均 一に混合分散したのち、カーボンブラックの自己凝集力を利用して、正極活物質を 包含させた複合粒子を形成させることができる。このような観点から、 自己凝集性を有 するカーボンブラックの凝集粒径は、好ましくは、 1 μ m以上、より好ましくは 5 μ m以 上、更に好ましくは 10 μ ΐη以上である。また、本発明で得られた複合正極材料を用 いて作製された、正極電極表面の平滑性の観点から、好ましくは、 50 μ ΐη以下、より 好ましくは 30 μ m以下、さらに好ましくは 20 μ m以下である。
[0043] 自己凝集性を有するカーボンブラックの含有量としては、以下の観点から正極活物 質 100重量部に対して 0. 2〜20重量部が好ましい。即ち、複合粒子化工程におい て自己凝集力を効果的に発現させる観点から、正極活物質 100重量部に対して、好 ましくは 0. 2重量部以上、より好ましくは、 0. 5重量部以上、更に好ましくは 1重量部 以上である。また、体積抵抗率と全孔容積率とのバランスの観点から、好ましくは 20 重量部以下、より好ましくは 10重量部以下、更に好ましくは 5重量部以下である。
[0044] 自己凝集性を有しないカーボンブラックを併用する場合、その含有量としては、以 下の観点から正極活物質 100重量部に対して 0. 2〜20重量部が好ましい。即ち、 正極材料の体積抵抗率の低減の観点から、正極活物質 100重量部に対して、好ま しくは 0. 2重量部以上、より好ましくは、 0. 5重量部以上、更に好ましくは 1重量部以 上である。また、正極活物質表面への被覆性の観点から、好ましくは 20重量部以下 、より好ましくは 10重量部以下、更に好ましくは 5重量部以下である。
[0045] 一方、第 1及び第 2の実施形態における繊維状カーボンとしては、ポリアタリロニトリ ノレ (PAN)に代表される高分子を原料としたカーボンファイバー、ピッチを原料とした ピッチ系カーボンファイバー、カーボンナノチューブ(グラフアイトの 1枚面つまりグラフ エンシートを卷いて筒状にした形状物 (微粒子工学大系第 I卷 P651、株式会社フジ- テクノシステム) )であって、炭化水素ガスを原料とする気相成長系のカーボンフアイ バー(例えば、 VGCF :登録商標)、アーク放電法、レーザー蒸発法、化学気相成長 法などで得られる、いわゆる狭義のカーボンナノチューブ(以下、狭義のカーボンナノ チューブを単にカーボンナノチューブという)などが好適に用いられる。より多くの導 電経路を構築させる観点から、繊維径の細い繊維状カーボンが好ましぐ VGCFや カーボンナノチューブが好適に用いられ、中でもカーボンナノチューブを用いること が好ましい。カーボンナノチューブは、例えば、 Heや Ar、 CH、 Hなどの雰囲気ガ
4 2
スのもとで、黒鉛電極をアーク放電で蒸発させるアーク放電法、 Niや Co、 Y、 Feなど の金属触媒を含む黒鉛電極をアーク放電で蒸発させるアーク放電法、 Ni— Co、 Pd Rdなどの金属触媒を混ぜた黒鉛に YAGレーザーを当て蒸発させ、 Arの気流で 1 200°C程度に加熱された電気炉に送り出すレーザー蒸発法、触媒にペンタカルボ二 ル鉄 (Fe (C〇) )を用レ、、一酸化炭素を高圧で熱分解する HiPCO法等で得ることが
5
できる。カーボンナノチューブのアスペクト比については、例えば、炭化水素(ベンゼ ン等)と水素ガス等の雰囲気ガスの濃度比が小さいほど、生成するカーボンナノチュ ーブの直径が細くなり、アスペクト比が大きくなる。また、反応時間が短いほど、生成 するカーボンナノチューブの直径が細くなり、やはりアスペクト比が大きくなる。
[0046] 第 1及び第 2の実施形態では、繊維が絡み合って糸玉状に凝集している繊維状力 一ボンを、正極活物質の存在下で分散剤や機械的な応力を加えて分散せしめ、そ の後分散を止めることによって再凝集させることにより、正極活物質を包含させた複 合粒子を形成させることができると考えられる。このような観点から、繊維状カーボン の繊維長(L)に対する繊維径 (W)のアスペクト比、すなわち LZWが重要になる。繊 維状カーボンのアスペクト比は、更に導電性の観点から、好ましくは 50以上、より好ま しくは 100以上、更に好ましくは 200以上であり、繊維状カーボンの分散性の観点か ら、好ましくは 2万以下、より好ましくは 5000以下、さらに好ましくは 1000以下、さら により好ましくは 600以下である。
[0047] つまり、アスペクト比が 50〜20000の繊維状カーボンは、一般に自己凝集性が高く 、溶媒中に強制分散させた後、放置することで自己凝集して複合粒子を生成する能 力が高いため、本発明に好適に用いることができる。
[0048] その際、繊維状カーボンの繊維長は、以下の観点から 50nm以上 50 μ m以下が好 ましレ、。即ち、正極活物質表面とより多く接触し、導電経路を確立する観点から、好ま しくは、 50nm以上、より好ましくは 500nm以上、更に好ましくは: 1 μ m以上である。ま た、本発明で得られた複合正極材料を用いて作製された、正極電極表面の平滑性 の観点から、好ましくは、 50 z m以下、より好ましくは 30 z m以下、さらに好ましくは 1 O z m以下である。
[0049] また、繊維状カーボンの繊維径は、正極活物質表面とより多く接触し、導電経路を 確立させる観点から、 lnm〜: mが好ましぐ:!〜 500nm力 Sより好ましく、:!〜 300η mが更に好ましい。
[0050] 繊維状カーボンの含有量としては、以下の観点から正極活物質 100重量部に対し て 0. 2〜20重量部が好ましい。即ち、複合粒子化工程において自己凝集力を効果 的に発現させる観点から、正極活物質 100重量部に対して、好ましくは 0. 2重量部 以上、より好ましくは、 0. 5重量部以上、更に好ましくは 1重量部以上である。また、 体積抵抗率と全孔容積率とのバランスの観点から、好ましくは 20重量部以下、より好 ましくは 10重量部以下、更に好ましくは 5重量部以下である。
[0051] カーボンの総配合量は、以下の観点から正極活物質 100重量部に対して 0. 2〜5 0重量部が好ましい。即ち、複合正極材料の体積抵抗率低減の観点から、正極活物 質 100重量部に対して、好ましくは 0. 2重量部以上、より好ましくは 0. 5重量部以上 、更に好ましくは 3重量部以上である。また、複合正極材料のエネルギー密度を高め る観点から、好ましくは 50重量部以下、より好ましくは 30重量部以下、更に好ましく は 15重量部以下である。
[0052] 第 1及び第 2の実施形態における正極活物質としては、従来公知の何れの材料も 使用でき、例えば、 LiMn Oなどの Li'Mn系複合酸化物、 LiCoOなどの Li' Co系
2 4 2
複合酸化物、 LiNiOなどの Li'Ni系複合酸化物、 LiFeOなどの Li'Fe系複合酸化
2 2
物などが挙げられ、 Li CoO, Li NiO, MnO, LiMnO, Li Mn〇, Li Mn 〇, x 2 x 2 2 2 x 2 4 x 2-y 4 a -V O , TiS等が挙げられる。なかでも、熱的安定性、及び容量、出力特性に優
2 5 2
れるという観点から、 LiMn O , LiCoO, LiNiOが好ましぐ LiMn Oがより好まし
2 4 2 2 2 4
レ、。
[0053] 正極活物質の一次粒子径は、以下の観点から 0. 1〜: lO x mが好ましい。即ち、正 極活物質の安全性や安定性、サイクル特性の観点から、好ましくは 0. l x m以上、よ り好ましくは 0. 以上、さらに好ましくは、 0. 3 z m以上であり、また、複合粒子ィ匕 工程における複合凝集性や、反応性、高速放電性の観点から 10 z m以下が好ましく 、より好ましくは 5 z m以下、さらに好ましくは 2 z m以下である。
[0054] 分散に用いる溶媒としては、 N—メチル一 2—ピロリドン (NMP、沸点 202°C)、ジメ チルホルムアミド(DMF、沸点 153°C)、ジメチルァセトアミド(沸点 165°C)、メチルェ チルケトン (沸点 79· 5°C)、テトラヒドロフラン (沸点 66°C)、アセトン (沸点 56· 3°C)、 エタノール(沸点 78· 3°C)、酢酸ェチル(沸点 76· 8°C)などが好適に用いられる。こ のうち複合粒子をスラリー状態で得る場合は、沸点の高レ、NMPを溶媒とすることが 好ましぐまた、乾燥粒子の状態で得る場合には、沸点の低いメチルェチルケトンや エタノールが好ましい。
[0055] なお、溶媒の沸点は、乾燥の容易さの観点から、好ましくは 250°C以下、より好まし くは 100°C以下、さらに好ましくは 80°C以下である。
[0056] 溶媒の使用量は、自己凝集性の導電性物質、正極活物質などを均一に分散させる 観点から、正極活物質 100重量部に対して、 100重量部以上が好ましぐ 200重量 部以上がより好ましい。また、溶媒の乾燥の煩雑さや、得られるスラリーの濃度の観点 から、 1000重量部以下が好ましぐ 800重量部以下がより好ましい。以上を総合した 観点から、 100〜: 1000重量部が好ましぐ 200〜800重量部がより好ましい。
[0057] 分散工程において、導電性物質 1および正極活物質を分散させる方法としては、溶 媒中で分散機により分散させる方法や、分散剤により分散させる方法などが用いられ るが、いずれの場合も、導電性物質 1及び正極活物質を溶媒中に分散させて強制分 散した状態とする分散工程が含まれる。強制分散した状態では、正極活物質が一次 粒子まで分散していることが好ましい。また、導電性物質 1が好ましくは 200cm3/10 Og以上の DBP吸収量を有するカーボンブラックである場合、導電性物質 1も一次粒 子又は一次粒子に近レ、状態まで分散してレ、ることが好ましレ、。
[0058] 分散機としては、例えば超音波型分散機、攪拌型分散機、高速回転せん断型分散 機、ミル型分散機、高圧噴射型分散機などが挙げられるが、強制分散させる工程に 使用する場合、超音波型分散機、高圧噴射型分散機が好適に用いられる。
[0059] 分散剤により分散させる方法は、正極活物質や自己凝集性の低い導電性物質を 分散させる方法として有効であるが、複合粒子化工程において複合粒子の生成を妨 げなレヽ添カ卩量の範囲で使用することが好ましレ、。
[0060] 分散剤を使用する場合、分散剤としてはァニオン性、ノニオン性もしくはカチオン性 界面活性剤、または高分子分散剤を用いることが出来るが、分散性能の点から高分 子分散剤の使用が好ましい。
[0061] 高分子分散剤としては種々の化合物を使用することができるが、分子内に複数の力 ルポキシル基を有するポリカルボン酸系高分子分散剤、分子内に複数のアミノ基を 有するポリアミン系高分子分散剤、分子内に複数のアミド基を有する高分子分散剤 や分子内に複数の多環式芳香族化合物を含有する高分子分散剤が好ましい。これ らの分散剤は単独で、あるいは二種以上の分散剤を混合して用いることができる。
[0062] 更に、第 1及び第 2の実施形態は、前記導電性物質 1を前記正極活物質と共に前 記溶媒中で凝集させて前記複合粒子を得る複合粒子化工程を含むものである。この 複合粒子化工程 (以下、「凝集工程」ともいう)は、自己凝集性の導電性物質が自己 凝集しやすいため、分散機を停止することで、 自己凝集を促進させ、複合粒子 (以下 、「凝集粒子」ともいう)を含んだスラリーを得る手法や、溶媒中での凝集力を更に高 めるベぐ溶媒を留去して強制的に凝集させて凝集粒子の粉末を得る手法を用いる こと力 Sできる。
[0063] 得られる凝集粒子は、好ましくは正極活物質を導電性物質 1で取り巻いた形状をし ている。得られる凝集粒子の平均粒径は、以下の観点から l〜20 x mが好ましい。 即ち、このような凝集粒子の粉末状又は溶媒中での平均粒径は、 l x m以上が好ま しぐ 3 /i m以上がより好ましぐ 5 /i m以上が更に好ましい。また、本複合粒子を用い て得られる正極電極の表面性の観点から、好ましくは、 20 μ ΐη以下、より好ましくは 1 5 /i m以下、 10 /i m以下が更に好ましい。
[0064] 凝集工程における凝集粒子の濃度としては、凝集粒子を好適に得る観点から、スラ リー中、 2〜: 100重量%が好ましぐ 5〜50重量%がより好ましぐ 10〜40重量%が 更に好ましい。
[0065] 溶媒を留去した後の正極用複合材料は、従来の正極用複合材料よりも少ない導電 性物質の配合量で体積抵抗率を低減でき、その分、正極活物質を多く配合できるた め、正極のエネルギー密度を向上できる。その場合、正極用複合材料の体積抵抗率 は、高速放電特性向上の観点から、 3 Ω ' cm以下であることが好ましぐより好ましく は 2 Ω · cm以下、更に好ましくは 1. 8 Ω ' cm以下である。
[0066] また、溶媒を留去した後の正極用複合材料の全細孔容量は、以下の観点から 0. 8 〜25cc/gが好ましい。即ち、高速放電性向上の観点から、好ましくは 0· 8cc/g以 上、より好ましくは 0. 9cc/g以上、さらに好ましくは lcc/g以上であり、正極のエネ ルギー密度を適切に確保する観点から、好ましくは 25cc/g以下、より好ましくは 10 cc/g以下、さらに好ましくは 5cc/g以下である。前記観点を総合すると、好ましくは 0. 8〜25cc/g、より好ましくは 0. 9〜: 10cc/g、さらに好ましくは:!〜 5cc/gである 。このような全細孔容量とすることで、 Liイオンの拡散をスムーズにすることができると 考えられる。
[0067] 第 1及び第 2の実施形態で得られる正極活物質はスラリー又は粉末として得ること ができるが、これらを用いて、リチウムイオン二次電池等の正極の形成を行うことがで きる。その際、正極としての導電性を高める観点から、導電性物質を更に添加しても よい。このような導電性物質としては、正極用複合材料の形成に用いるカーボンブラ ック、カーボンファイバー、カーボンナノチューブ等が何れも使用可能である力 正極 としての導電性を高める観点から、 DBP吸収量が 100〜800cm3Zl00gのカーボ ンブラック、特にケッチェンブラック、アセチレンブラックが好ましい。
[0068] 次に、第 3の実施形態について説明する。第 3の実施形態は、溶媒中で少なくとも 正極活物質と導電性物質 1とが強制分散した状態まで分散して得られるスラリーから 溶媒を除去して、前記正極活物質と前記導電性物質 1とを含有する複合粒子を得る 複合粒子化工程を含むものである。第 3の実施形態で使用する導電性物質 1と正極 活物質は、溶媒中で化学的に安定な単位粒子の集合物であり、溶媒中で超音波等 で、好ましくは、周波数 15〜25kHz、出力 100〜500Wの超音波で強制分散させる ことで、単位粒子に近い状態まで分散されると考えられる。
[0069] 導電性物質 1、正極活物質などの強制分散を行う際、導電性物質 1と正極活物質と を溶媒中に添加して、同時に強制分散させるものでもよいが、導電性物質 1又は正 極活物質の一方を溶媒中に添加して強制分散させた後、これに他方を添加してさら に強制分散させるものでもよい。また、導電性物質 1が強制分散したスラリーを得るた めに、湿式粉砕等の粉砕工程を別途又は強制分散と同時に実施してもよい。
[0070] 導電性物質 1としては、炭素質材料が好ましぐ例えば、カーボンブラック、カーボン ファイバー、カーボンナノチューブ等の繊維状カーボンなどが挙げられる。なかでも、 強制分散後の正極活物質への付着性、接触性、若しくは導電性などの観点から、力 一ボンブラックが好ましい。
[0071] 導電性物質 1として用いるカーボンブラックとしては、サーマルブラック法、ァセチレ ンブラック法等の分解法、チャンネルブラック法、ガスファーネスブラック法、オイルフ アーネスブラック法、松煙法、ランプブラック法等の不完全燃焼法のいずれの製法で 製造されたものも使用できる力 導電性の観点からファーネスブラック、アセチレンブ ラックが好ましく用いられる。これらは単独で用いても良いし、 2種以上を混合しても良 レ、。
[0072] 正極活物質の表面に導電性物質 1を効果的に付着させるには、導電性物質 1の一 次粒子径が正極活物質の一次粒子径より小さいことが好ましぐ正極活物質の一次 粒子径の 1Z5以下が好ましぐ 1Z10以下がより好ましぐ 1Z15以下が更に好まし レ、。特に、カーボンブラックを用いる場合、その一次粒子径が、正極活物質の一次粒 子径の 1Z5以下が好ましぐ 1Z10以下がより好ましぐ 1Z15以下が更に好ましレ、
[0073] また、導電性物質 1、好ましくはカーボンブラックの一次粒子径は、強制分散のしゃ すさと正極活物質への付着性の観点から、好ましくは 10〜: 100nm、より好ましくは 1 5〜80nm、さらに好ましくは 20〜50nmである。このような一次粒子径のカーボンブ ラックは、微粒子化されることで、正極活物質の表面により確実に付着させることがで き、体積抵抗率をより低減することができる。
[0074] 一方、繊維状カーボンとしては、ポリアクリロニトリル (PAN)に代表される高分子を 原料としたカーボンファイバー、ピッチを原料としたピッチ系カーボンファイバー、カー ボンナノチューブであって、炭化水素ガスを原料とする気相成長系のカーボンフアイ バー(例えば、 VGCF)、アーク放電法、レーザー蒸発法、化学気相成長法などで得 られる、いわゆる狭義のカーボンナノチューブ(以下、狭義のカーボンナノチューブを 単にカーボンナノチューブという)などが好適に用いられる。より多くの導電経路を構 築させる観点から、繊維径の細い繊維状カーボンが好ましぐ VGCFやカーボンナノ チューブが好適に用いられ、中でもカーボンナノチューブを用いることが好ましい。
[0075] 導電性物質 1の含有量としては、以下の観点から正極活物質 100重量部に対して 0. 2〜8重量部が好ましい。即ち、正極材料の体積抵抗の低減の観点から、正極活 物質 100重量部に対して、好ましくは 0. 2重量部以上、より好ましくは、 0. 5重量部 以上、更に好ましくは 1重量部以上である。また、正極活物質表面への被覆性の観 点から、好ましくは 8重量部以下、より好ましくは 5重量部以下、更に好ましくは 3重量 部以下である。
[0076] 第 3の実施形態における正極活物質としては、従来公知の何れの材料も使用でき、 例えば、 LiMn Oなどの Li' Mn系複合酸化物、 LiCoOなどの Li' Co系複合酸化物
2 4 2
、 LiNiOなどの Li' Ni系複合酸化物、 LiFeOなどの Li' Fe系複合酸化物などが挙
2 2
げられ、 Li CoO , Li NiO , MnO , LiMnO , Li Mn O , Li Mn O , α— V〇 x 2 x 2 2 2 x 2 4 x 2- y 4 2 5
, TiS等が挙げられる。なかでも、熱的安定性、及び容量、出力特性に優れるという
2
観点から、 LiMn O, LiCoO, LiNiOが好ましぐ LiMn〇がより好ましい。
2 4 2 2 2 4
[0077] 正極活物質の一次粒子径は、正極活物質の安全性や安定性、サイクル特性、反 応性、高速放電性の観点から、好ましくは 0. 5〜: 10 z m、より好ましくは 0. 6〜5 m 、さらに好ましくは、 0. 7〜2 x mである。
[0078] 分散に用いる溶媒としては、種々の溶媒を用いることができる力 溶媒の沸点は、 乾燥の容易さの観点から、好ましくは 100°C以下、より好ましくは 90°C以下、さらに好 ましくは 80°C以下である。このような溶媒の具体的なものとして、水、エタノール、ァセ トン、メチルェチルケトン、トルエン、テトラヒドロフランなどが例示される。このうち、乾 燥の容易さやハンドリング性の観点から、エタノールゃメチルェチルケトンが好ましレヽ
[0079] 溶媒の使用量は、以下の観点から正極活物質 100重量部に対して 50〜: 1000重 量部が好ましい。即ち、導電性物質 1、正極活物質などを効果的に分散させる観点 から、正極活物質 100重量部に対して、 50重量部以上が好ましぐ 100重量部以上 力はり好ましい。また、溶媒の乾燥の煩雑さなどの観点から、 1000重量部以下が好 ましぐ 800重量部以下がより好ましい。
[0080] 導電性物質 1および正極活物質を強制分散させる方法としては、溶媒中で分散機 により強制分散させる方法や、分散剤により分散させる方法、両者を併用する方法な どが用レ、られる。特に、導電性物質 1が強制分散したスラリーを効果的に得るために は、粉碎作用(カーボンブラックの場合は一次粒子化)を伴う分散機を用いるのが好 ましい。
[0081] また、強制分散した状態では、正極活物質が一次粒子まで分散していることが好ま しぐ導電性物質 1も一次粒子又は一次粒子に近い状態まで分散していることが好ま しい。このような分散状態は、例えば、走査型電子顕微鏡(SEM)を用いて、得られ た正極用複合材料を観察する際に、正極活物質の表面に付着した導電性物質の一 次粒子の数をカウント(例えば正極活物質の 1個の粒子に対して平均値で 10個以上 の一次粒子が観察される)することによって、確認することができる。
[0082] 分散機としては、例えば超音波型分散機、攪拌型分散機、高速回転せん断型分散 機、ミル型分散機、高圧噴射型分散機などが挙げられるが、強制分散させる工程に 使用する場合、超音波型分散機、高圧噴射型分散機が好適に用いられる。また、粉 砕作用を伴う分散機としては、ミル型分散機が好適に用いられる。なお、予め湿式粉 砕や乾式粉砕によって、導電性物質 1を調製し、これを溶媒に分散させてもよい。
[0083] 分散剤を使用する方法は、特に導電性物質 1を好適に分散させるのに有効である 。分散剤を使用する場合、分散剤としてはァニオン性、ノニオン性もしくはカチオン性 界面活性剤、または高分子分散剤を用いることが出来るが、分散性能の点から高分 子分散剤の使用が好ましい。
[0084] 高分子分散剤としては種々の化合物を使用することができるが、分子内に複数の力 ルポキシル基を有するポリカルボン酸系高分子分散剤、分子内に複数のアミノ基を 有するポリアミン系高分子分散剤、分子内に複数のアミド基を有する高分子分散剤 や分子内に複数の多環式芳香族化合物を含有する高分子分散剤が好ましい。
[0085] ポリアミン系高分子分散剤としてはポリアルキレンァミン、ポリアリルアミンゃ N,N-ジ メチルアミノエチルメタタリレートなどのポリアミンにポリエステルをグラフトさせたくし型 ポリマー等を挙げることができる。
[0086] ポリカルボン酸系高分子分散剤としては (メタ)アクリル酸と (メタ)アクリル酸エステル との共重合体、無水マレイン酸共重合体とアルキルァミンなどの各種アミンゃアルコ ールのアミド化およびエステル化物、およびポリ(メタ)アクリル酸共重合体などのポリ カルボン酸のポリエステルやポリアルキレングリコールをグラフトさせたくし型ポリマー 等を挙げることができる。なお、本明細書において、(メタ)アクリル酸は、アクリル酸又 はメタクリル酸を指す。
[0087] 分子内に複数のアミド基を有する高分子分散剤としては縮合反応によって得られる ポリアミドやポリビュルピロリドンやポリ N,N-ジメチルアクリルアミドの共重合体やこれ にポリエステルやポリアルキレングリコールをグラフトさせたくし型ポリマー等を挙げる こと力 Sできる。
[0088] 多環式芳香族化合物を含有する高分子分散剤としてはピレンやキナクリドン骨格を 有するビニルモノマーと各種モノマーとの共重合体を挙げることが出来る。以上の分 散剤は単独で、あるいは二種以上の分散剤を混合して用いることができる。
[0089] 分散剤を使用する場合、分散剤の添加量は、分散を好適に行う観点から、分散対 象物(本発明では正極活物質 +導電性物質 1) 100重量部に対して、 0. :!〜 20重量 部が好ましぐ 0. 5〜: 10重量部がより好ましい。
[0090] 第 3の実施形態における複合粒子化工程は、上記のような分散によって得られたス ラリーから溶媒を除去して複合粒子を得るものである。スラリーからの溶媒の除去は、 加熱蒸発、減圧留去、スプレードライ、凍結乾燥などによって行うことができる。
[0091] このようにして得られた複合粒子は、導電性物質 1が正極活物質に付着した構造と なるが、導電性物質 1による正極活物質表面に対する被覆率は、導電性物質 1と正 極活物質の含有量比、粒子のサイズ比などによって、容易にコントロールすることが できる。この被覆率は、体積抵抗率を低減させる観点から、好ましくは 5%以上、より 好ましくは 10%以上であり、リチウムイオンの拡散経路を好適に確保する観点から、 8 0%以下が好ましぐ 70%以下がより好ましい。
[0092] 更に、第 3の実施形態は、少なくとも、以上のような複合粒子、及びアスペクト比が 2 〜 10の導電性物質 2を混合する混合工程を含むものである。この工程によって、導 電性物質 1が正極活物質に付着した複合粒子間に、アスペクト比が 2〜: 10の導電性 物質 2が介在する微細複合構造となる。従って、この混合工程では、複合粒子の構 造をできるだけ維持可能な混合方法を採用することが好ましい。
[0093] 混合方法としては、湿式混合、乾式混合のレ、ずれの方法でも可能であるが、均一 混合の観点から湿式混合が好ましい。乾式混合としては、 V型混合機、リボン型混合 機などの粉体混合機や、ニーダーゃヘンシェルミキサーなどの混合機を使用できる。 また、湿式混合としては、バタフライ型、錨型、リボン型、枠型などの撹拌板で混合す る構造の撹拌型混合機や、ハイスピードデイスパーサーやホモミキサーなどの混合装 置が使用できる。
[0094] アスペクト比が 2〜: 10の導電性物質 2としては、ストラクチャー構造を有するカーボ ンブラックが好ましレ、。このような範囲のアスペクト比を持つカーボンブラックは、ストラ クチャ一構造の発達により Liイオンの拡散のための空隙を好適に形成できると共に、 複合粒子間に介在して、好適に導電経路を形成することができると考えられる。
[0095] このようなカーボンブラックとしては、次のようなものが使用できる。カーボンブラック は、一次粒子が数珠繋ぎになった不規則な鎖状に枝分かれした凝集構造を呈して レ、る場合がある。走査型電子顕微鏡でこのような粒子を観察した際に、最長径 (L)と 最短径 (W)のアスペクト比、すなわち L/Wが重要になる。
[0096] 導電性物質 2のアスペクト比は、正極用複合材料の導電性の観点から、 2以上、好 ましくは 3以上、より好ましくは 3. 5以上であり、リチウムイオンの拡散経路を確保する 観点から、 10以下、好ましくは 5以下である。
[0097] 高アスペクト比のカーボンブラックは、凝集構造をとっていることから、一般に DBP 吸収量が大きい。このため、ストラクチャー構造を有するカーボンブラックの DBP吸収 量は、好ましくは 100cm3/100g以上、より好ましくは 120cm3/100g以上、さらに 好ましくは 150cm3/100g以上である。また、電極密度を低下させない観点から、 5 00cm3/l00g以下力 S好ましく、 400cm3/l00g以下力より好ましく、 300cm3/l0 Og以下がさらに好ましぐ 200cm3Zl00g以下がさらにより好ましい。前記観点を総 合すると、 100〜500cm3/l00g力 S好ましく、 100〜400cm3/l00g力より好ましく 、 120〜300cm3/l00gカさらに好ましく、 150〜200cm3/l00gカさらにより好ま しい。
[0098] また、カーボンブラックの比表面積は、 20m3/g以上が好ましぐ 30m3/g以上が より好ましぐ 40m3Zg以上が更に好ましぐ正極の容積を適度に抑え、コンパクトさ を確保する観点から、 2000m3/g以下が好ましぐ 500m3Zg以下がより好ましぐ 1 00m3/g以下が更に好ましい。前記観点を総合すると、 20〜2000m3Zgが好ましく 、 30〜500m3/g力 Sより好ましく、 40〜: 100m3/g力 S更に好ましレヽ。
[0099] 上記のようなストラクチャー構造を有するカーボンブラックとしては、導電性物質 1と して用いられる、微粒子化前のカーボンブラックなどが使用可能である。より具体的 には、原油やガスの燃焼熱によって原料炭化水素を熱分解させカーボンブラックを 生成させるファーネス法導電性カーボンブラック、重質油のガス化プロセスによって 得られるケッチェンブラック、アセチレンガスを熱分解して得られるアセチレンブラック 等を挙げることができ、例えば、ライオン社製ケッチェンブラック EC、キャボット社製バ ルカン XC— 72、デグサ社製 Printex L6や Printex XE2等が市販されている。
[0100] ストラクチャー構造を有するカーボンブラックの粒径は、一次粒子がつながって構 成される凝集体の平均粒径 (凝集粒径)で表され、レーザー回折 Z散乱式粒度分布 測定装置 LA750 (堀場製作所製)を用いた粒度分布の測定によって求められる。こ の平均粒径は、正極の導電性の観点、及び、正極材料を塗工して、塗膜を形成する 際の塗膜の平滑性の観点から、 0. 05〜: lO x m力 S好ましく、 0. 08〜5 x mがより好ま しく、 0. :!〜 カ更に好ましレ、0
[0101] 導電性物質 2の配合量としては、得られる正極の導電経路の形成による体積抵抗 率低減の観点から、正極活物質 100重量部に対して、好ましくは 2重量部以上、より 好ましくは、 4重量部以上、更に好ましくは 8重量部以上である。また、正極用複合材 料のエネルギー密度を高める観点から、好ましくは 50重量部以下、より好ましくは 30 重量部以下、更に好ましくは 15重量部以下である。
[0102] 導電性物質 1と導電性物質 2の総配合量は、以下の観点から正極活物質 100重量 部に対して 3〜50重量部が好ましい。即ち、複合正極材料の体積抵抗低減の観点 から、正極活物質 100重量部に対して、好ましくは 3重量部以上、より好ましくは 5重 量部以上、更に好ましくは 10重量部以上である。また、複合正極材料のエネルギー 密度を高める観点から、好ましくは 50重量部以下、より好ましくは 30重量部以下、更 に好ましくは 15重量部以下である。
[0103] 得られる正極用複合材料の体積抵抗率は、高速放電特性向上の観点から、 5 Ω · ο m以下であることが好ましぐより好ましくは 3 Ω ' cm以下、更に好ましくは 2 Ω ' cm以 下である。
[0104] また、第 4の実施形態は、溶媒中で少なくとも正極活物質と導電性物質 1とが強制 分散した状態まで分散して得られるスラリーから溶媒を除去して、前記正極活物質と 前記導電性物質 1とを含有する複合粒子を得る複合粒子化工程と、少なくとも、前記 複合粒子、及び DBP吸収量 100〜500cm3/100gの導電性物質 2を混合する混 合工程とを含むものである。この第 4の実施形態によっても上述した第 3の実施形態 と同様の効果を奏する。なお、前記 DBP吸収量は、実施例に記載の方法で測定され る。また、上記第 4の実施形態における構成要件の好ましい例については、上述した 第 3の実施形態と同様である。
[0105] 本発明で製造される正極用複合材料は、スラリー又は粉末として得ることができる 力 これらを用いて、リチウムイオン二次電池等の正極の形成を行うことができる。一 般的に、正極の形成は、正極活物質、導電性物質、バインダ、及び溶剤を混合した スラリーを集電体となる金属箔に塗布 ·乾燥することにより行われる。従って、本発明 で製造される正極用複合材料は、スラリー状態のままで、必要に応じてバインダを添 加して、正極の形成に使用できる。あるいは、粉末状の正極用複合材料は、必要に 応じてバインダ、及び溶剤を添加して、正極の形成に使用できる。
[0106] バインダとしては、正極の形成用に使用される従来のバインダが何れも使用できる 、ポリフッ化ビニリデン、ポリアミドイミド、ポリテトラフルォロエチレン、ポリエチレン、 ポリプロピレン、ポリメタクリル酸メチルなどが好適に使用できる。
[0107] 溶媒としては、正極の形成用に使用される従来の溶媒が何れも使用でき、例えば N —メチル一 2_ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルァセトアミ ド、メチルェチルケトン、テトラヒドロフラン、アセトン、エタノール、酢酸ェチルなどが 好適に用レ、られる。集電体としては、正極の形成用に使用される従来の金属箔等が 何れも使用できる。また、正極の形成に使用される従来公知の添加剤を何れもスラリ 一に添カ卩することができる。
[0108] 本発明で製造される正極用複合材料は、正極材料として使用する場合、 Liイオン 二次電池の高速放電特性が優れたものとなる。高速放電特性は、後述する電池特 性評価において、 1Cに対して、 60Cの放電量の割合力 好ましくは 55%以上、より 好ましくは 60%以上である。
[0109] 本発明によれば、本発明のリチウム電池正極用複合材料の製造方法によって正極 用複合材料を得る工程と、その正極用複合材料、溶媒及びバインダを含有するスラリ 一を集電体に塗布して乾燥させる工程とを含むリチウム電池用正極の製造方法を提 供することちできる。
[0110] 本発明で製造される正極用複合材料を用いた電池の用途は、特に限定されないが 、例えばノートパソコン、電子ブックプレーヤー、 DVDプレーヤー、携帯オーディオプ レーヤー、ビデオムービー、携帯テレビ、携帯電話などの電子機器に使用できるほか 、コードレス掃除機やコードレス電動工具、電気自動車、ハイブリッドカーなどのバッ テリー、燃料電池車の補助電源などの民生用機器に使用できる。このうち特に高出 力が求められる自動車用バッテリーとして好適に用いられる。
[0111] 以下、本発明を具体的に示す実施例等について説明する。なお、実施例等におけ る評価項目は下記のようにして測定を行った。
[0112] (l) DBP吸収量
DBP吸収量は、 JISK6217— 4に基づいて測定した。
[0113] (2)導電性物質の平均粒径及び正極活物質の一次粒子径
レーザー回折 Z散乱式粒度分布測定装置 LA750 (堀場製作所製)を用い、ェタノ ールを分散媒とし、超音波 1分照射後の粒度分布を、導電性物質では相対屈折率 1
. 5で測定し、正極活物質では相対屈折率 1. 7で測定したときの体積中位粒径 (D5
0)の値を導電性物質の平均粒径、及び正極活物質の一次粒子径とした。
[0114] (3)カーボンブラックの一次粒子径
電界放出形走查電子顕微鏡(日立製 S— 4000)により撮影した SEM像から、一次 粒子 50個を抽出し、その直径を測定した平均値を一次粒子径とした。
[0115] (4)繊維状カーボンの繊維径および繊維長さ
電界放出形走查電子顕微鏡(日立製 S _4000)により撮影した SEM像から、繊維
30個を抽出し、その繊維径を測定した平均値を繊維径とした。また、繊維の長さを測 定し平均した結果を繊維長とした。
[0116] (5)繊維状カーボンのアスペクト比
繊維状カーボンの繊維長を繊維径で除することで求めた。
[0117] (6)体積抵抗率
JIS K 1469の方法において、粉体試料量を 0· 3g、粉体圧縮時圧力を 100kg/ cm2に変更して、円筒状に圧縮した圧縮粉体試料の電気抵抗値を測定し、測定抵抗 値より下記の式 1により体積抵抗率 (電気抵抗率)を算出した。
[0118] 具体的には、絶縁性円筒(ベークライト製、外径 28mm、内径 8mm)と(一)電極か らなる円筒容器に粉体試料を 0. 3g充填し、試料を詰めた絶縁性円筒容器に(+ )電 極を挿入して粉体試料を挟み、プレス機架台上に設置した。プレス機により円筒容器 内の試料に 100kg/cm2の力を加え、圧縮した。 (+ )電極と(一)電極をデジタルマ ルチメーターの測定用入力ケーブルに接続し、圧縮開始から 3分経過後、電気抵抗 値を測定した。
[0119] p = S/h X R (式 1)
ここで、 pは電気抵抗率(Ω ' cm)、 Sは試料の断面積(cm2)、 hは試料の充填高さ
(cm)、 Rは電気抵抗値( Ω )である。
[0120] 用いた(―)電極は、黄銅製であり、電極面は 7. 8 ± 1πιιη φで、高さ 5mmの突起 部のある台座上電極であり、(+ )電極は、黄銅製であり、電極面は 7. 8 ± 1πιιη φで
、長さ 60mmの棒状電極であった。 [0121] (7)電池の作製
粉体試料 20. 8重量部に対して、市販の導電性カーボンブラック粉末(品名 HS— 1 00、 DBP吸収量 140cm3/100g) l . 7重量部、ポリフッ化ビニリデン粉末(呉羽化 学社製、 # 1300) 2. 5重量部、 NMP37. 5重量部を均一に混合し、塗工用ペースト を調製した。当該ペーストをコーターを用いて集電体として用いたアルミニウム箔 (厚 さ 20 x m)上に均一に塗工し、 140°Cにて 10分以上かけて乾燥した。乾燥後、プレ ス機で均一膜厚に成型した後、所定の大きさ(20mm X 15mm)に切断し、試験用正 極とした。このときの電極活物質層の厚さは 25 μ mであった。
[0122] 上記の試験用正極を用いて試験セルを作製した。負極電極には金属リウチム箔を 所定の大きさに切断して使用し、セパレータはセルガード # 2400 (セルガード社製) を使用した。電解液は ImolZlの LiPF Zエチレンカーボネート(EC):ジェチルカ
6
ーボネート(DEC) (EC : DEC = l : lvolQ/。)を用いた。試験セルの組み立ては、アル ゴン雰囲気下のグローブボックス内で行った。試験セルの組み立て後、 25°Cにて 24 時間放置後、高速放電特性評価を行った。
[0123] (8)高速放電特性評価
試験セルに 0. 2Cにて定電流充放電を行った後、 (1) 0. 5Cで定電流充電した後、 1Cで定電流放電された放電容量 (A)と、さらに(2) 0. 5Cで定電流充電した後、 60 Cで定電流放電された放電容量 (B)との比を高速放電特性とした。
高速放電特性(%) =B/A X 100
[0124] (9)全細孔容積
水銀圧入式細孔分布測定装置 (ポアサイザ一 9320、島津製作所製)を用いて、 0 . 008 !〜 200 z mの範囲の細孔容量を測定し、得られた値を全細孔容積とした。
[0125] (10)自己凝集性試験
導電性物質 2gを、エタノール 500gに添カ卩し、超音波ホモジナイザー(日本精機製 作所製、 MODELUS— 300T)を用いて、周波数 19kHz、出力 300Wで一分間超 音波照射を行った後、超音波照射を停止する。停止した直後に約 lccサンプリングし 、遅滞なくレーザー回折/散乱式粒度分布測定装置 LA750 (堀場製作所製)でェ タノールを分散媒とし、相対屈折率 1. 5で超音波照射をせずにサンプリング液の平 均粒径 (A)を測定する。次に超音波照射を停止してから 3分経過後に導電性物質の 分散液をサンプリングし、平均粒径 (A)と同様の測定条件にて上記 LA750で平均 粒径(B)を測定する。平均粒径(B)を平均粒径 (A)で割った値が 2以上のものを自 己凝集性を有する導電性物質とした。
[0126] その際の評価結果を表 1に示す。
[0127] [表 1]
Figure imgf000026_0001
[0128] 実施例 1
溶媒としてエタノール 500重量部に、導電性物質として繊維径 20nm、繊維長さ 10 z m、アスペクト比 500のカーボンナノチューブを 2重量部添カ卩し、超音波型分散機 を用いて超音波分散 (照射時間 3分)した。次に平均粒径 (—次粒子径 25nm) 、 DBP吸収量 155cm3/l00gのカーボンブラック(東海カーボン社製、 # 5500)を 2重量部加え超音波分散(照射時間 1分)した。このカーボン分散液に超音波照射を しながら、正極活物質として粉砕した一次粒子径 0. 4 z mのマンガン酸リチウム 100 重量部を添加し、更に超音波による分散 (照射時間 2分)を行い、強制分散した状態 にした。その後超音波照射をとめて自己凝集を生じさせたのち、エタノールを留去し 、正極用複合材料を得た。得られた正極用複合材料の物性を表 2に示す。
[0129] 上記において、超音波照射を停止してから 10秒以内にスラリーを 2ccサンプリング し、エタノールを加えてスラリーの透過率が 95%になるまで希釈し、遅滞なくレーザ 一回折/散乱式粒度分布測定装置 LA750 (堀場製作所製)で平均粒径を測定する 。当該平均粒径が、正極活物質の一次粒子径の 130%以内になったとき、「強制分 散した状態」とみなす (以下の実施例も同様)。
[0130] 実施例 2 エタノール 500重量部に繊維径 20nm、繊維長さ 10 μ ΐη、アスペクト比 500のカー ボンナノチューブを 2重量部添加し、超音波型分散機を用いて超音波分散 (照射時 間 3分)した。次に平均粒径 2 /i m (—次粒子径 25nm)、 DBP吸収量 155cm3/10 0gのカーボンブラック(東海カーボン社製、 # 5500)を 2重量部加え超音波分散(照 射時間 1分)した。このカーボン分散液に超音波照射をしながら、一次粒子径 0. 8 μ mのマンガン酸リチウム 100重量部を添加し更に超音波による分散(照射時間 2分) を行い、強制分散した状態にした。その後超音波照射をとめて自己凝集を生じさせ たのち、エタノールを留去し、正極用複合材料を得た。得られた正極用複合材料の 物性を表 2に示す。
[0131] 実施例 3
NMP500重量部に繊維径 20nm、繊維長さ 10 μ πι、アスペクト比 500のカーボン ナノチューブを 2重量部添加し、超音波型分散機を用いて超音波分散 (照射時間 3 分)した。次に平均粒径2 / 111 (—次粒子径2511111)、 08?吸収量15501113/100§の カーボンブラック (東海カーボン社製、 # 5500)を 2重量部加え超音波分散(照射時 間 1分)した。このカーボン分散液に超音波照射をしながら、一次粒子径 0. 8 μ ΐηの マンガン酸リチウム 100重量部を添加し更に超音波による分散(照射時間 2分)を行 レ、、強制分散した状態にした。その後超音波照射をとめ、 ΝΜΡ中でカーボンナノチ ユーブを自己凝集させ、正極用複合材料を含有する分散液を得た。この分散液は、 液体のまま、必要な成分を添加して正極の形成に用いることができる力 物性評価の ために溶媒を留去して正極用複合材料を得た。得られた正極用複合材料の物性を 表 2に示す。
[0132] 実施例 4
ΝΜΡ500重量部に平均粒径 10 μ m (—次粒子径 35nm)、 DBP吸収量 495のケ ッチェンブラックを 2重量部添加し、超音波型分散機を用いて超音波分散 (照射時間 3分)した。次に平均粒径 (—次粒子径 25nm)、 DBP吸収量 155cm3/l 00g のカーボンブラック(東海カーボン社製、 # 5500)を 2重量部加え超音波分散(照射 時間 1分)した。このカーボン分散液に超音波照射をしながら、一次粒子径 0. 8 M m のマンガン酸リチウム 100重量部を添加し更に超音波による分散 (照射時間 2分)を 行レ、、強制分散した状態にした。その後超音波照射をとめ、 NMP中でケッチェンブ ラックを自己凝集させ、正極用複合材料を含有する分散液を得た。この分散液は、液 体のまま、必要な成分を添加して正極の形成に用いることができる力 物性評価のた めに溶媒を留去して正極用複合材料を得た。得られた正極用複合材料の物性を表 2 に示す。
[0133] 実施例 5
NMP500重量部に繊維径 120nm、繊維長さ 10 μ πι、アスペクト比 83の VGCFを 2重量部添加し、超音波型分散機を用いて超音波分散 (照射時間 3分)した。次に平 均粒径 2 μ m (—次粒子径 25nm)、 DBP吸収量 155cm3/l00gのカーボンブラック (東海カーボン社製、 # 5500)を 2重量部加え超音波分散(照射時間 1分)した。この カーボン分散液に超音波照射をしながら、一次粒子径 0. 8 x mのマンガン酸リチウ ム 100重量部を添加し更に超音波による分散 (照射時間 2分)を行い、強制分散した 状態にした。その後超音波照射をとめ、 NMP中で VGCFを自己凝集させ、正極用 複合材料を含有する分散液を得た。この分散液は、液体のまま、必要な成分を添カロ した正極の形成に用いることができる力 物性評価のために溶媒を留去して正極用 複合材料を得た。得られた正極用複合材料の物性を表 2に示す。
[0134] 実施例 6
実施例 4において、ケッチェンブラックの添加量を 4重量部とし、追加のカーボンブ ラックを添加しないこと以外は、実施例 4と同じ条件で正極用複合材料を含有する分 散液を得た後、物性評価のために溶媒を留去して正極用複合材料を得た。得られた 正極用複合材料の物性を表 2に示す。
[0135] 実施例 7
実施例 4において、カーボン分散液に添加するマンガン酸リチウムとして、一次粒 子径が 0. 5 x mのものを用いたこと以外は、実施例 4と同じ条件で正極用複合材料 を含有する分散液を得た後、物性評価のために溶媒を留去して正極用複合材料を 得た。得られた正極用複合材料の物性を表 2に示す。
[0136] 実施例 8
実施例 4において、カーボン分散液に添加するマンガン酸リチウムとして、一次粒 子径が 1. 2 μ ΐηのものを用いたこと以外は、実施例 4と同じ条件で正極用複合材料 を含有する分散液を得た後、物性評価のために溶媒を留去して正極用複合材料を 得た。得られた正極用複合材料の物性を表 2に示す。
[0137] 実施例 9
実施例 8において、ケッチェンブラックの代わりに FX— 35 (電気化学工業社製カー ボンブラック)を用いたこと以外は、実施例 8と同じ条件で正極用複合材料を含有す る分散液を得た後、物性評価のために溶媒を留去して正極用複合材料を得た。得ら れた正極用複合材料の物性を表 2に示す。
[0138] 実施例 10
実施例 8において、ケッチェンブラックの代わりに # 3050B (東海カーボン社製カー ボンブラック)を用いたこと以外は、実施例 8と同じ条件で正極用複合材料を含有す る分散液を得た後、物性評価のために溶媒を留去して正極用複合材料を得た。得ら れた正極用複合材料の物性を表 2に示す。
[0139] 実施例 11
実施例 4において、カーボン分散液に添加するマンガン酸リチウムとして、一次粒 子径が 10 μ mのものを用いたこと以外は、実施例 4と同じ条件で正極用複合材料を 含有する分散液を得た後、物性評価のために溶媒を留去して正極用複合材料を得 た。得られた正極用複合材料の物性を表 2に示す。
[0140] 比較例 1
一次粒子径 0. 8 μ ΐηのマンガン酸リチウム 100重量部に対して、平均粒径 l /i m ( 一次粒子径 50nm)、 DBP吸収量 140cm3/100gのカーボンブラック(電気化学ェ 業社製、 HS— 100) 4重量部を乾式混合し、比較正極材料を得た。得られた材料の 物性を表 2に示す。
[0141] 比較例 2
一次粒子径 0. 8 x mのマンガン酸リチウム 100重量部に対して、平均粒径 2 z m ( 一次粒子径 50nm)、 DBP吸収量 155cm3Zl00gのカーボンブラック(東海カーボ ン社製、 # 5500)を 2重量部、平均粒径 10 x m (—次粒子径 35nm)、 DBP吸収量 495のケッチェンブラック 2重量部を乾式混合し、比較正極材料を得た。得られた材 料の物性を表 2に示す。
[0142] 比較例 3
一次粒子径 0. 8 μ ΐηのマンガン酸リチウム 100重量部に対して、平均粒径 2 /i m ( 一次粒子径 25nm)、 DBP吸収量 155cm3Zl00gのカーボンブラック(東海カーボ ン社製、 # 5500)を 2重量部、繊維径 20nm、繊維長さ 10 μ mのアスペクト比 500の カーボンナノチューブ 2重量部を乾式混合し、比較正極材料を得た。得られた材料 の物性を表 2に示す。
[0143] [表 2]
Figure imgf000031_0001
*1:アスペクト比(一) * 2: DBP吸収量(cm3 100g)
[0144] 表 2の結果が示すように、溶媒中で自己凝集性を有する導電性物質で正極活物質 を包含させた実施例の複合材料は、導電性物質と正極活物質を乾式混合したものよ りも、低い体積抵抗率でかつ、高い細孔容積を有し、優れた高速放電特性を有して いる。
[0145] 一方、図 1は、実施例 1で得られた正極用複合材料の走査型電子顕微鏡写真を示 している。この写真のように、本発明で得られる正極用複合材料は、凝集後に導電性 物質(写真中で一次粒子が小さく見えるもの)が正極活物質(写真中で一次粒子が 大きく見えるもの)を包み込むような微細複合構造を有している。また、比較例とくらべ て全細孔容積が大きいことから、適度な空隙を有する微細複合構造であると考えられ る。
[0146] 次に、実施例 12〜20及び比較例 4〜7について説明する。なお、以下に示す(11 )複合粒子の表面被覆率、(12)カーボンブラックのアスペクト比、及び(13)電池の 作製以外の評価項目等については、上記と同様である。
[0147] (11)複合粒子の表面被覆率
電界放出型走査電子顕微鏡(日立製 S— 4000)により、 SEM— EDS分析を行い 、カーボンの表面被覆率を求めた。
[0148] (12)カーボンブラックのアスペクト比
電界放出型走査電子顕微鏡(日立製 S— 4000)により撮影した SEM像から、一次 粒子が数珠繋ぎとなった形状で、かつ最長径が平均粒径土(平均粒径 X 0. 2)の力 一ボンブラック二次凝集体を 30個抽出し、その最長径 (L)と最短径 (W)の比、すな わち L/Wの平均値をアスペクト比として求めた。なお、最長径とは、前記二次凝集 体の SEM像の二次凝集体域 (以下、凝集体画像という)を通過 (接することを含む) する直線 Lが、凝集体画像に切り取られる線分のうち、最長の線分の長さをいう。また 、最短径とは、直線 Lの中で、最長径に対応する直線に平行な直線群の中で、最も 距離の離れた 2本の平行線の間の距離をいう。ただし、 2本の平行線の間の距離とは 、当該 2本の平行線に垂直な直線力 当該 2本の平行線に切り取られる線分の長さを いう。
[0149] (13)電池の作製 粉体試料 27重量部に対して、ポリフッ化ビニリデン粉末 (呉羽化学社製、 # 1300) 3重量部、 NMP45重量部を均一に混合し、塗工用ペーストを調製した。当該ペース トをコ一ターを用いて集電体として用いたアルミニウム箔(厚さ 20 /i m)上に均一に塗 ェし、 140°Cにて 10分以上かけて乾燥した。乾燥後、プレス機で均一膜厚に成型し た後、所定の大きさ(20mm X 15mm)に切断し、試験用正極とした。このときの電極 活物質層の厚さは 25 μ mであった。
[0150] 実施例 12
エタノール 100重量部に平均粒径 0. 6 μ m (—次粒子径 21nm)の微粒子カーボ ンブラック (東海カーボン社製、 # 7550) 0. 4重量部を添加し、超音波型分散機を用 いて超音波による分散を行った。この分散液に、一次粒子径 0. 8 z mのマンガン酸リ チウム 20重量部を添加し、更に超音波による分散を行った。得られたスラリーを蒸発 させて乾燥固化し、マンガン酸リチウム表面に微粒子カーボンブラックを付着させた 粉末 (CB付着マンガン酸リチウム、表面被覆率 24%)を得た。ついで、エタノール 10 0重量部に平均粒径 1 μ ΐη、アスペクト比 3. 8のカーボンブラック(電気化学工業社 製、 HS— 100、 DBP吸収量 140cm3/100g) 2. 1重量部を加え、 Τ· Κ.ホモディ スパーで撹拌した。次に、 CB付着マンガン酸リチウム 20. 4重量部を加え Τ. Κ.ホモ デイスパーで混合し、得られたスラリーを蒸発させて乾燥固化し、正極用複合材料を 得た。得られた正極用複合材料の物性を表 3に示す。
[0151] 実施例 13
2—ブタノン 100重量部に、ポリアクリル酸系分散剤(イソブチレン マレイン酸ステ ァリノレアミド) 0. 56重量部を添加し、そこに平均粒径 1 μ ΐη (—次粒子径 45nm)、ァ スぺタト比 3. 8のカーボンブラック(電気化学工業社製、 HS— 100、 DBP吸収量 14 0cm3/l00g) l l . 1重量部を加え、スラリーを得た。このスラリーをダイノーミルを用 いて湿式粉砕し、平均粒径 0. (—次粒子径 45nm)の微粒子カーボンブラック スラリーを得た。次に、 2—ブタノン 100重量部に、得られた微粒子カーボンブラックス ラリー 4重量部を添加し、超音波型分散機を用いて超音波による分散を行った。この 分散液に、一次粒子径 0. 8 z mのマンガン酸リチウム 20重量部を添加し、更に超音 波による分散を行った。得られたスラリーを蒸発させて乾燥固化し、マンガン酸リチウ ム表面に微粒子カーボンブラックを付着させた粉末(CB付着マンガン酸リチウム、表 面被覆率 32%)を得た。ついで、エタノール 100重量部に平均粒径 l /i m、ァスぺク ト比 3. 8のカーボンブラック(電気化学工業社製、 HS— 100) 2. 1重量部を加え T. K.ホモディスパーで撹拌した。次に、 CB付着マンガン酸リチウム 20. 4重量部をカロ え T. K.ホモディスパーで混合し、得られたスラリーを蒸発させて乾燥固化し、正極 用複合材料を得た。得られた正極用複合材料の物性を表 3に示す。
[0152] 実施例 14
エタノール 100重量部に平均粒径 0. 8 μ m (—次粒子径 25nm)の微粒子カーボ ンブラック (東海カーボン社製、 # 5500) 0. 4重量部を添加し、超音波型分散機を用 いて超音波による分散を行った。この分散液に、一次粒子径 0. 8 z mのマンガン酸リ チウム 20重量部を添加し、更に超音波による分散を行った。得られたスラリーを蒸発 させて乾燥固化し、マンガン酸リチウム表面に微粒子カーボンブラックを付着させた 粉末 (CB付着マンガン酸リチウム、表面被覆率 48%)を得た。ついで、エタノール 10 0重量部に平均粒径 1 μ ΐη、アスペクト比 3. 8のカーボンブラック(電気化学工業社 製、 HS— 100、 DBP吸収量 140cm3/100g) 2. 1重量部を加え Τ· Κ.ホモディス パーで撹拌した。次に、 CB付着マンガン酸リチウム 20. 4重量部を加え Τ. Κ.ホモ デイスパーで混合し、得られたスラリーを蒸発させて乾燥固化し、正極用複合材料を 得た。得られた正極用複合材料の物性を表 3に示す。
[0153] 実施例 15
実施例 14において、エタノールに添加するカーボンブラックとして平均粒径 2 μ m の東海カーボン社製 # 5500を用いたことと、一次粒子径が 1. 2 /i mのマンガン酸リ チウムを用いたこと以外は同様の方法で正極用複合材料を得た。得られた正極用複 合材料の物性を表 3に示す。
[0154] 実施例 16
実施例 14において、エタノールに添加するカーボンブラックとして平均粒径 2 μ m の東海カーボン社製 # 5500を用いたことと、一次粒子径が 10 z mのマンガン酸リチ ゥムを用いたこと以外は同様の方法で正極用複合材料を得た。得られた正極用複合 材料の物性を表 3に示す。 [0155] 実施例 17
実施例 14において、エタノールに添加するカーボンブラックとして東海カーボン社 製 # 3800 (—次粒子径 70nm)を用いたことと、一次粒子径が 1 · 2 /i mのマンガン酸 リチウムを用いたこと以外は同様の方法で正極用複合材料を得た。得られた正極用 複合材料の物性を表 3に示す。
[0156] 実施例 18
実施例 15において、 HS— 100の代わりに FX— 35 (電気化学工業社製カーボン ブラック)を用いたこと以外は同様の方法で正極用複合材料を得た。得られた正極用 複合材料の物性を表 3に示す。
[0157] 実施例 19
実施例 15におレ、て、 HS _ 100の代わりにケッチェンブラック(ライオン社製カーボ ンブラック)を用いたこと以外は同様の方法で正極用複合材料を得た。得られた正極 用複合材料の物性を表 3に示す。
[0158] 実施例 20
実施例 15において、 HS— 100の代わりに FW1 (デグッサ社製カーボンブラック)を 用いたこと以外は同様の方法で正極用複合材料を得た。得られた正極用複合材料 の物性を表 3に示す。
[0159] 比較例 4
2—ブタノン 100重量部に、ポリアクリル酸系分散剤(イソブチレン マレイン酸ステ ァリノレアミド) 0. 56重量部を添加し、そこに平均粒径 1 μ ΐη (—次粒子径 45nm)、ァ スぺタト比 3. 8のカーボンブラック(電気化学工業社製、 HS— 100、 DBP吸収量 14 0cm3/l00g) l l . 1重量部を加え、スラリーを得た。このスラリーをダイノーミルを用 いて湿式粉砕し、平均粒径 0. 3 z m (—次粒子径 45nm)のカーボンブラックスラリー を得た。次に、 2—ブタノン 80重量部に、得られた微粒子カーボンブラックスラリー 25 重量部を添加し、超音波型分散機を用いて超音波による分散を行った。この分散液 に、一次粒子径 0. 8 z mのマンガン酸リチウム 20重量部を添加し、更に超音波によ る分散を行った。得られたスラリーを蒸発させて乾燥固化し、カーボンブラックと正極 活物質とが複合した比較正極材料を得た。得られた材料の物性を表 3に示す。 [0160] 比較例 5
エタノール 100重量部に平均粒径 1 /i m (—次粒子径 45nm)、アスペクト比 3· 8の カーボンブラック(電気化学工業社製、 HS— 100、 DBP吸収量 140cm3/100g) 2 . 5重量部を加えて撹拌した。この液に、一次粒子径 0. 8 z mのマンガン酸リチウム 2 0重量部を添加し、更に T. K.ホモディスパーで撹拌した。得られたスラリーを蒸発さ せて乾燥固化し、正極活物質と高アスペクト比カーボンブラックが複合した比較正極 材料を得た。得られた材料の物性を表 3に示す。
[0161] 比較例 6
一次粒子径 0. 8 x mのマンガン酸リチウム 100重量部、平均粒径 0. (—次 粒子径 25nm)の微粒子カーボンブラック(東海カーボン社製、 # 5500) 2重量部、 平均粒径 1 μ m (—次粒子径 45nm)、アスペクト比 3. 8のカーボンブラック(電気化 学工業社製、 HS _ 100、 DBP吸収量 140cm3Zl00g) 10. 5重量部をヘンシェル ミキサーで乾式混合し、比較正極材料を得た。得られた材料の物性を表 3に示す。
[0162] 比較例 7
実施例 14において、 HS— 100の代わりに # 7550 (東海カーボン社製カーボンブ ラック)を用いたこと以外は同様の方法で、比較正極材料を得た。得られた材料の物 性を表 3に示す。
[0163] [表 3]
Figure imgf000037_0001
*1:アスペクト比(一)
* 2: DBP吸収量 (cm 100g)
*3:粉砕後
表 3の結果が示すように、正極活物質に導電性物質 1が付着した複合粒子に、スト ラクチャ一構造を有するカーボンブラックを混合した実施例の複合材料は、レ、ずれも 低い体積抵抗率であり、優れた高速放電特性を有している。これに対して、導電性物 質 1又はストラクチャー構造のカーボンブラックを単独で用いた比較例 4〜5では体積 抵抗率が高ぐ高速放電特性が不十分であった。また、両者を単に混合した比較例 6 でも、体積抵抗率や高速放電特性の改善効果は小さかった。

Claims

請求の範囲
[1] 正極活物質、及び導電性物質を含有するリチウム電池正極用複合材料の製造方 法であって、
溶媒中で、少なくとも正極活物質及び導電性物質 1を、分散させて強制分散した状 態とする分散工程と、
前記溶媒中で前記導電性物質 1を前記正極活物質と共に凝集させる方法、又は前 記溶媒を除去する方法により、前記正極活物質及び前記導電性物質 1を含有する複 合粒子を得る複合粒子化工程とを含むリチウム電池正極用複合材料の製造方法。
[2] 前記導電性物質 1として、溶媒中で自己凝集性を有する導電性物質を用い、 前記複合粒子化工程は、前記導電性物質 1を前記正極活物質と共に前記溶媒中 で凝集させて前記複合粒子を得る工程である請求項 1に記載のリチウム電池正極用 複合材料の製造方法。
[3] 前記導電性物質 1として、 DBP吸収量が 200〜800cm3/100gであるカーボンブ ラック及び/又はアスペクト比が 50〜: 1000の繊維状カーボンを含有する導電性物 質を用い、
前記複合粒子化工程は、前記導電性物質 1を前記正極活物質と共に前記溶媒中 で凝集させて前記複合粒子を得る工程である請求項 1に記載のリチウム電池正極用 複合材料の製造方法。
[4] 前記正極活物質の一次粒子径が 0. 1〜: 10 x mである請求項:!〜 3いずれかに記 載のリチウム電池正極用複合材料の製造方法。
[5] 前記分散工程において、前記導電性物質 1と共に、 DBP吸収量が 200cm3Zl00 g未満のカーボンブラックを分散させる請求項 1〜4いずれかに記載のリチウム電池 正極用複合材料の製造方法。
[6] 溶媒を留去した正極用複合材料の体積抵抗率が 3 Ω ' cm以下である請求項:!〜 5 いずれかに記載のリチウム電池正極用複合材料の製造方法。
[7] 溶媒を留去した正極用複合材料の全細孔容量が 0. 8cc/g以上である請求項 1〜
6いずれかに記載のリチウム電池正極用複合材料の製造方法。
[8] 前記導電性物質 1は、 DBP吸収量が 200〜800cm3/100gのケッチェンブラック を含有する請求項 3〜7いずれかに記載のリチウム電池正極用複合材料の製造方法
[9] 前記繊維状カーボンの繊維径が lnm〜l n mである請求項 3〜 7いずれかに記載 のリチウム電池正極用複合材料の製造方法。
[10] 前記複合粒子化工程は、前記分散工程で得られるスラリーから前記溶媒を除去し て、前記正極活物質と前記導電性物質 1とを含有する複合粒子を得る工程であり、 前記複合粒子化工程の後、少なくとも、前記複合粒子、及びアスペクト比が 2〜: 10 の導電性物質 2を混合する混合工程を更に含む請求項 1に記載のリチウム電池正極 用複合材料の製造方法。
[11] 前記複合粒子化工程は、前記分散工程で得られるスラリーから前記溶媒を除去し て、前記正極活物質と前記導電性物質 1とを含有する複合粒子を得る工程であり、 前記複合粒子化工程の後、少なくとも、前記複合粒子、及び DBP吸収量 100〜50
0cm3/100gの導電性物質 2を混合する混合工程を更に含む請求項 1に記載のリチ ゥム電池正極用複合材料の製造方法。
[12] 前記導電性物質 1が、一次粒子径 10〜100nmのカーボンブラックである請求項 1
, 10, 11いずれかに記載のリチウム電池正極用複合材料の製造方法。
[13] 前記溶媒の沸点が 100°C以下である請求項 1 , 10〜: 12いずれかに記載のリチウム 電池正極用複合材料の製造方法。
[14] 前記正極活物質の一次粒子径が 0. 5〜10 / 111でぁる請求項1 , 10〜: 13いずれか に記載のリチウム電池正極用複合材料の製造方法。
[15] 得られる正極用複合材料の体積抵抗率が 5 Ω · cm以下である請求項 1 , 10〜: 14 いずれかに記載のリチウム電池正極用複合材料の製造方法。
PCT/JP2007/062847 2006-06-27 2007-06-27 Method for producing composite material for positive electrode of lithium battery WO2008001792A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/303,933 US8241525B2 (en) 2006-06-27 2007-06-27 Method for producing composite material for positive electrode of lithium battery
CN2007800237585A CN101479866B (zh) 2006-06-27 2007-06-27 锂电池正极用复合材料的制造方法
EP07767650.0A EP2034541B1 (en) 2006-06-27 2007-06-27 Method for producing composite material for positive electrode of lithium battery
KR1020087031740A KR101153532B1 (ko) 2006-06-27 2007-06-27 리튬 전지 양극용 복합재료의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006176852 2006-06-27
JP2006-176852 2006-06-27
JP2006176862 2006-06-27
JP2006-176862 2006-06-27

Publications (1)

Publication Number Publication Date
WO2008001792A1 true WO2008001792A1 (en) 2008-01-03

Family

ID=38845556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062847 WO2008001792A1 (en) 2006-06-27 2007-06-27 Method for producing composite material for positive electrode of lithium battery

Country Status (5)

Country Link
US (1) US8241525B2 (ja)
EP (1) EP2034541B1 (ja)
KR (1) KR101153532B1 (ja)
CN (1) CN101479866B (ja)
WO (1) WO2008001792A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449825A (zh) * 2009-03-31 2012-05-09 宇部兴产株式会社 用于锂离子电池的电极及其制备方法
US20130146819A1 (en) * 2010-01-15 2013-06-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing composite positive electrode active material
JP2014143038A (ja) * 2013-01-23 2014-08-07 Toray Ind Inc 正極活物質と導電性炭素の複合体粒子
US8968934B2 (en) 2008-10-15 2015-03-03 Korea Institute Of Science And Technology Electrode for secondary battery, fabrication method thereof, and secondary battery comprising same
CN104641500A (zh) * 2012-06-20 2015-05-20 卡博特公司 包含石墨烯的电极配制物
US9103052B2 (en) 2008-03-06 2015-08-11 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
JP2021535553A (ja) * 2018-08-20 2021-12-16 キャボット コーポレイションCabot Corporation 導電性添加剤を含む組成物、関連する電極および関連する電池

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2941875B1 (fr) 2009-02-11 2011-09-23 Commissariat Energie Atomique Procede de preparation d'un melange d'une poudre d'un compose actif d'electrode et d'une poudre d'un compose conducteur electronique, melange ainsi obtenu, electrode, cellule et accumulateur
FR2943463B1 (fr) * 2009-03-19 2011-07-01 Arkema France Materiaux composites a base de liants fluores et nanotubes de carbone pour electrodes positives de batteries lithium.
JP2011054559A (ja) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd 正極用粉末および正極合剤
KR101779222B1 (ko) 2009-09-07 2017-09-18 우베 고산 가부시키가이샤 수송용 다층 튜브
KR101104910B1 (ko) * 2009-12-04 2012-01-12 한국과학기술연구원 이차전지용 전극 및 그 제조 방법
KR101166019B1 (ko) 2010-04-30 2012-07-19 삼성에스디아이 주식회사 도전제, 이를 포함하는 리튬 이차 전지 양극용 슬러리 조성물 및 이를 포함하는 리튬 이차 전지
WO2012039563A2 (ko) 2010-09-20 2012-03-29 주식회사 엘지화학 리튬 망간계 산화물을 포함하는 양극 활물질 및 비수 전해질 이차전지
DE102010043470A1 (de) * 2010-11-05 2012-05-10 Evonik Degussa Gmbh Zusammensetzung aus Polyamiden mit niedriger Konzentration an Carbonsäureamidgruppen und elektrisch leitfähigem Kohlenstoff
DE102010043473A1 (de) * 2010-11-05 2012-05-10 Evonik Degussa Gmbh Carbon Nanotubes enthaltende Polyamid 12-Zusammensetzung
JP5839221B2 (ja) 2011-08-26 2016-01-06 トヨタ自動車株式会社 リチウム二次電池
JP6086246B2 (ja) * 2011-11-15 2017-03-01 デンカ株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
CN103545485B (zh) * 2012-07-13 2017-04-05 清华大学 锂离子电池电极的制备方法
CN103545554B (zh) * 2012-07-13 2016-06-08 清华大学 锂离子电池的制备方法
CN103545555B (zh) * 2012-07-13 2016-01-20 清华大学 锂离子电池的制备方法
CN103545556B (zh) * 2012-07-13 2016-01-20 清华大学 薄膜锂离子电池的制备方法
KR102217704B1 (ko) 2013-01-25 2021-02-18 데이진 가부시키가이샤 비수 전해질 2 차 전지용의 초극세 섬유상 탄소, 초극세 섬유상 탄소 집합체, 복합체, 및 전극 활물질층
JP6354135B2 (ja) 2013-02-12 2018-07-11 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
SI3011618T1 (en) * 2013-06-21 2018-06-29 Cabot Corporation Carbon for lithium ion batteries
JP6136765B2 (ja) * 2013-08-28 2017-05-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP6321404B2 (ja) 2014-02-26 2018-05-09 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
JP6291903B2 (ja) 2014-02-26 2018-03-14 株式会社ジェイテクト 混練装置
US9465788B2 (en) 2014-10-09 2016-10-11 Wrap Media, LLC Authoring tool for the authoring of wrap packages of cards
KR102296854B1 (ko) * 2014-11-14 2021-09-01 에스케이이노베이션 주식회사 리튬이온 이차전지
US11870068B2 (en) 2014-11-14 2024-01-09 Sk On Co., Ltd. Lithium ion secondary battery
KR20160139240A (ko) 2015-05-27 2016-12-07 주식회사 엘지화학 전극 합제, 이의 제조방법 및 이를 포함하는 이차전지
KR102086533B1 (ko) * 2016-03-25 2020-03-09 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
TWI650177B (zh) * 2017-05-03 2019-02-11 國立臺灣科技大學 觸媒組成物及其製造方法
CN109659506A (zh) * 2017-10-10 2019-04-19 江西理工大学 锂离子二次电池用正极组合物、锂离子二次电池用正极和锂离子二次电池
CN112106233B (zh) * 2018-05-08 2023-09-19 电化株式会社 锂离子二次电池用正极组合物、锂离子二次电池用正极以及锂离子二次电池
CN109873123A (zh) * 2019-02-14 2019-06-11 嘉兴市得高电源科技有限公司 一种具有分散均匀的电池正极生产工艺
KR20220028933A (ko) * 2020-08-31 2022-03-08 삼성에스디아이 주식회사 전고체 이차전지용 양극층, 이를 포함하는 전고체 이차전지 및 그 제조방법
CN114284465B (zh) * 2021-12-22 2024-07-19 蜂巢能源科技股份有限公司 正极浆料的制备方法、正极极片及锂离子电池
CN114447306A (zh) * 2022-02-10 2022-05-06 湖北亿纬动力有限公司 一种复合正极材料及其制备方法和电化学储能装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162357A (ja) * 1990-10-26 1992-06-05 Asahi Chem Ind Co Ltd 非水系二次電池
JPH08138678A (ja) * 1994-11-16 1996-05-31 Yuasa Corp 正極合剤
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) * 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2003292309A (ja) 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2004103392A (ja) 2002-09-10 2004-04-02 Hitachi Maxell Ltd 非水電解液二次電池
US20040101756A1 (en) 2002-11-19 2004-05-27 Toshihiro Koyama Negative electrode for non-aqueous secondary cell, non-aqueous secondary cell comprising the same, method for producing the same and electronic device comprising non-aqueous secondary cell
JP2004179019A (ja) 2002-11-28 2004-06-24 Sony Corp 非水電解質二次電池用電極及び非水電解質二次電池
JP2005268066A (ja) * 2004-03-19 2005-09-29 Mitsubishi Electric Corp 電池及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529022A (ja) 1991-07-19 1993-02-05 Honda Motor Co Ltd リチウム二次電池用正極の製造方法
JP3389268B2 (ja) * 1992-08-21 2003-03-24 財団法人電力中央研究所 リチウム二次電池
US20020168574A1 (en) * 1997-06-27 2002-11-14 Soon-Ho Ahn Lithium ion secondary battery and manufacturing method of the same
US6589694B1 (en) * 1999-05-14 2003-07-08 Mitsubishi Cable Industries, Ltd. Positive electrode active material, positive electrode active material composition and lithium ion secondary battery
JP4177529B2 (ja) * 1999-08-30 2008-11-05 松下電器産業株式会社 非水電解質二次電池用負極、および非水電解質二次電池
KR100326449B1 (ko) * 2000-01-03 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
JP4941692B2 (ja) 2000-05-16 2012-05-30 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウムマンガン複合酸化物およびその製造方法
JP2003331823A (ja) 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd 非水電解質二次電池、およびその製造方法
JP4134838B2 (ja) 2003-07-22 2008-08-20 株式会社デンソー 電解液として非水溶液を用いる二次電池の正極活物質の製造方法および正極の製造方法
JP2007169139A (ja) 2005-12-22 2007-07-05 Kawai Shokai:Kk 無機発泡板材の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162357A (ja) * 1990-10-26 1992-06-05 Asahi Chem Ind Co Ltd 非水系二次電池
JPH08138678A (ja) * 1994-11-16 1996-05-31 Yuasa Corp 正極合剤
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) * 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2003292309A (ja) 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2004103392A (ja) 2002-09-10 2004-04-02 Hitachi Maxell Ltd 非水電解液二次電池
US20040101756A1 (en) 2002-11-19 2004-05-27 Toshihiro Koyama Negative electrode for non-aqueous secondary cell, non-aqueous secondary cell comprising the same, method for producing the same and electronic device comprising non-aqueous secondary cell
JP2004179019A (ja) 2002-11-28 2004-06-24 Sony Corp 非水電解質二次電池用電極及び非水電解質二次電池
JP2005268066A (ja) * 2004-03-19 2005-09-29 Mitsubishi Electric Corp 電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2034541A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103052B2 (en) 2008-03-06 2015-08-11 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US8968934B2 (en) 2008-10-15 2015-03-03 Korea Institute Of Science And Technology Electrode for secondary battery, fabrication method thereof, and secondary battery comprising same
CN102449825A (zh) * 2009-03-31 2012-05-09 宇部兴产株式会社 用于锂离子电池的电极及其制备方法
US20120171566A1 (en) * 2009-03-31 2012-07-05 Ube Industries, Ltd. Electrode for lithium ion battery and method for producing same
US20130146819A1 (en) * 2010-01-15 2013-06-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing composite positive electrode active material
US9005481B2 (en) * 2010-01-15 2015-04-14 Toyota Jidosha Kabushiki Kaisha Method for manufacturing composite positive electrode active material
CN104641500A (zh) * 2012-06-20 2015-05-20 卡博特公司 包含石墨烯的电极配制物
JP2014143038A (ja) * 2013-01-23 2014-08-07 Toray Ind Inc 正極活物質と導電性炭素の複合体粒子
JP2021535553A (ja) * 2018-08-20 2021-12-16 キャボット コーポレイションCabot Corporation 導電性添加剤を含む組成物、関連する電極および関連する電池
JP7159452B2 (ja) 2018-08-20 2022-10-24 キャボット コーポレイション 導電性添加剤を含む組成物、関連する電極および関連する電池

Also Published As

Publication number Publication date
US20100230641A1 (en) 2010-09-16
CN101479866A (zh) 2009-07-08
EP2034541B1 (en) 2015-06-03
EP2034541A4 (en) 2013-01-30
US8241525B2 (en) 2012-08-14
KR101153532B1 (ko) 2012-06-11
EP2034541A1 (en) 2009-03-11
KR20090016734A (ko) 2009-02-17
CN101479866B (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2008001792A1 (en) Method for producing composite material for positive electrode of lithium battery
JP4102848B2 (ja) リチウム電池正極用複合材料の製造方法
JP5377946B2 (ja) リチウム電池正極用複合材料
KR101267351B1 (ko) 리튬전지 양극용 복합재료
KR101114122B1 (ko) 리튬이온 전지용 복합 양극재료 및 이것을 이용한 전지
JP5475934B1 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用複合負極材料、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5372476B2 (ja) リチウム電池正極用複合材料の製造方法
JPWO2008081944A1 (ja) 非水電解質二次電池用正極材料、それを備えた非水電解質二次電池、及びその製造法
JP2008034376A (ja) リチウムイオン電池用複合正極材料およびこれを用いた電池
JP2003168429A (ja) 非水電解質二次電池
JP4104645B2 (ja) リチウム電池正極用複合材料の製造方法
JP5334506B2 (ja) 非水電解質二次電池の正極用組成物の製造方法
JP2004186075A (ja) 二次電池用電極及びこれを用いた二次電池
JP7372277B2 (ja) 二次電池用電極の製造方法および湿潤粉体
JP2020033244A (ja) グラフェン−Si複合体の製造方法
JP7223999B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
US20240290971A1 (en) Positive electrode composition, positive electrode, and battery
JP7416180B1 (ja) 炭素材料、炭素材料分散組成物、合材スラリー、電極膜、二次電池、および車両
EP4451371A1 (en) Positive electrode composition, positive electrode and production method for same, and battery
JP2017182913A (ja) 複合体及びその製造方法、リチウムイオン二次電池用正極材、並びにリチウムイオン二次電池
JP2024058944A (ja) 負極合材、負極の製造方法、負極および二次電池
JP2023092639A (ja) 非水電解質二次電池用カーボン材料樹脂複合物、それを用いた非水電解質二次電池用分散液、非水電解質二次電池用電極、及び非水電解質二次電池
JP2024007228A (ja) 正極スラリーの製造方法
CN116895736A (zh) 负极和非水电解质二次电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023758.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12303933

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007767650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087031740

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU