WO2007142121A1 - 非水系電解液及び非水系電解液電池 - Google Patents

非水系電解液及び非水系電解液電池 Download PDF

Info

Publication number
WO2007142121A1
WO2007142121A1 PCT/JP2007/061114 JP2007061114W WO2007142121A1 WO 2007142121 A1 WO2007142121 A1 WO 2007142121A1 JP 2007061114 W JP2007061114 W JP 2007061114W WO 2007142121 A1 WO2007142121 A1 WO 2007142121A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
carbonate
compound
electrolyte
less
Prior art date
Application number
PCT/JP2007/061114
Other languages
English (en)
French (fr)
Inventor
Minoru Kotato
Shinichi Kinoshita
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP07744502.1A priority Critical patent/EP2031689B1/en
Priority to KR1020137034535A priority patent/KR20140020334A/ko
Priority to KR1020087029113A priority patent/KR101508788B1/ko
Priority to KR1020147031671A priority patent/KR20150001818A/ko
Priority to KR1020147014631A priority patent/KR20140083054A/ko
Priority to KR1020147031670A priority patent/KR20150001817A/ko
Priority to US12/303,167 priority patent/US20090253045A1/en
Publication of WO2007142121A1 publication Critical patent/WO2007142121A1/ja
Priority to US13/353,803 priority patent/US9231276B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte battery using the same.
  • Non-aqueous electrolyte batteries such as lithium secondary batteries are being put to practical use in a wide range of applications from so-called consumer power sources such as mobile phones and laptop computers to automotive in-vehicle power sources such as automobiles.
  • consumer power sources such as mobile phones and laptop computers
  • automotive in-vehicle power sources such as automobiles.
  • the demand for higher performance of non-aqueous electrolyte batteries in recent years has been increasing, and there is a demand for improved battery characteristics.
  • the electrolyte used for a non-aqueous electrolyte battery is usually composed mainly of an electrolyte and a non-aqueous solvent.
  • the main components of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, jetyl carbonate, and ethyl methyl carbonate; cyclic carboxylic acid esters such as ⁇ -butyrolataton and ⁇ -valerolataton. Is used.
  • Patent Document 1 proposes the use of ethylmethyl carbonate and dimethyl carbonate to suppress the deterioration of overcharge characteristics caused by the reaction of lithium with jetyl carbonate and the deterioration when left in a high temperature environment. ing.
  • Patent Document 2 when a mixture of an asymmetric chain carbonate and a cyclic carbonate having a double bond is used as a nonaqueous solvent, the cyclic carbonate having a double bond preferentially reacts with the negative electrode. It has been proposed that a good-quality film is formed on the negative electrode surface, which suppresses the formation of a non-conductive film on the negative electrode surface due to asymmetric chain carbonate, thus improving storage characteristics and cycle characteristics. Yes.
  • Patent Document 3 proposes to protect the battery by increasing the internal resistance of the battery by mixing an additive that polymerizes at a battery voltage higher than the maximum operating voltage of the battery in the electrolyte.
  • Patent Document 4 states that the battery voltage in the electrolyte is higher than the maximum operating voltage of the battery. It is proposed that the internal electric cutting device provided for overcharge protection is operated reliably by mixing the gas and pressure generating additive by combining them, and these additives include biphenyl, thiophene, furan Aromatic compounds such as are disclosed.
  • Patent Document 5 describes an alkylene containing a fluorine group such as cis-1,5-difluoro-1,3-dioxolane_2_one, trans-1,5-difluoro-1,3-dioxolan-2-one, etc. It is described that a lithium secondary battery having a high capacity and excellent cycle characteristics can be provided by using an electrolytic solution containing carbonate.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-14607
  • Patent Document 2 Japanese Patent Laid-Open No. 11-185806
  • Patent Document 3 Japanese Patent Laid-Open No. 9-106835
  • Patent Document 4 JP-A-9-171840
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-319317
  • the present inventors can solve the above problems by including a compound having a specific structure in a specific electrolyte. As a result, the present invention has been completed.
  • the gist of the present invention is shown below.
  • the non-aqueous electrolyte solution contains a cyclic carbonate having an unsaturated bond, and further contains fluorine having two or more fluorine atoms.
  • the non-aqueous electrolyte solution contains an aromatic compound having a total carbon number of 7 or more and 18 or less, and further contains two or more fluorides.
  • the non-aqueous solvent contains jetyl carbonate, and further contains a fluorinated cyclic carbonate having two or more fluorine atoms.
  • the non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent that dissolves the electrolyte
  • the non-aqueous electrolyte solution is a cyclic sulfonate compound, a disulfonate compound, a nitrile compound, and the following general formula ( 1)
  • a non-aqueous electrolyte solution comprising at least one compound selected from the group consisting of compounds represented by 1) and further containing a fluorinated cyclic carbonate having 2 or more fluorine atoms. .
  • cyclic carbonate having an unsaturated bond is at least one compound selected from the group consisting of vinylene carbonate compounds, vinylethylene carbonate compounds and methyleneethylene carbonate compounds.
  • Non-aqueous electrolyte is at least one compound selected from the group consisting of vinylene carbonate compounds, vinylethylene carbonate compounds and methyleneethylene carbonate compounds.
  • Aromatic compounds having a total carbon number of 7 or more and 18 or less are biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t_butylbenzene, t—
  • the cyclic sulfonate compound is at least one compound selected from the group consisting of 1,3-propane sultone, 1,4 butanes norton, 1,3_propene sultone, and 1,4-butene sultone.
  • Disulfonic acid ester compound strength S ethanediol disulfonates, 1,2-propanediol disulfonates, 1,3-propanediol disulfonates, 1,2-butanediol disulfonates
  • the non-aqueous electrolyte according to (4) above which is at least one compound selected from the group consisting of 1,3_butanediol disulfonates and 1,4_butanediol disulfonates .
  • the nitrile compound is composed of acetonitrile, propionitryl, butyronitrile, valeronitol, crotononitrile, 3-methinolecrotononitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, and fumaronitrile.
  • the carbon number of R 1 to is 2 or more and 8 or less, the nonaqueous electrolytic solution according to (4) above.
  • the fluorinated cyclic carbonate having 2 or more fluorine atoms is a fluorinated styrene carbonate having 2 or more fluorine atoms, as described in any one of (1) to (17) above Non-aqueous electrolyte.
  • Fluorinated cyclic carbonates having two or more fluorine atoms are cis-4,5-diphenoleolone 1,3-dioxolan-2-one, trans-one 4,5_diphnoleolone 1,3-dioxy Any one of the above (1) to (18), characterized in that it is at least one compound selected from the group consisting of solan-2-one and 4,4-difluoro-1,3-dioxolan-2-one force The non-aqueous electrolyte solution described in 1.
  • the non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent that dissolves the electrolyte
  • the non-aqueous electrolyte solution is an electrolyte solution used for a high-voltage battery having a charge end voltage of 4.3 V or higher.
  • a non-aqueous electrolyte containing a fluorinated cyclic carbonate having 2 or more fluorine atoms is an electrolyte solution used for a high-voltage battery having a charge end voltage of 4.3 V or higher.
  • a non-aqueous electrolyte containing a fluorinated cyclic carbonate having 2 or more fluorine atoms.
  • the non-aqueous electrolyte solution includes at least one selected from the group consisting of a cyclic sulfonic acid ester compound, a disulfonic acid ester compound, a nitrile compound, and a compound represented by the following general formula (1).
  • a non-aqueous electrolyte battery comprising a negative electrode and a positive electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is any one of the above (1) to (26)
  • a non-aqueous electrolyte battery characterized by being a non-aqueous electrolyte solution described in 1.
  • the present invention it is possible to provide a non-aqueous electrolyte battery having a high capacity and excellent storage characteristics and cycle characteristics, and to achieve downsizing and high performance of the non-aqueous electrolyte battery. Is possible.
  • the non-aqueous electrolyte solution of the present invention contains the same electrolyte as a normal non-aqueous electrolyte solution and a non-aqueous solvent for dissolving it, and usually contains these as the main components. (Electrolytes)
  • a lithium salt is usually used as the electrolyte. Any lithium salt that is not particularly limited can be used as long as it is known to be used for this purpose. Specific examples include the following.
  • inorganic lithium salts such as LiPF and LiBF; LiCF SO, LiN (CF SO), LiN
  • C F SO lithium cyclic 1,2_perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiN (CF SO) (C F SO), LiC
  • Fluorine-containing organic lithium salts such as LiBF (CF), LiBF (C F), LiBF (CF SO), LiBF (C F SO), and lithium bis (oxalato) borate.
  • LiPF, LiBF, LiCF SO, LiN (CF 2 SO 3), or LiN (CF 3 SO 4) is preferred from the viewpoint of improving battery performance, and LiPF or LiBF is particularly preferable.
  • lithium salts may be used alone or in combination of two or more.
  • a preferred example of using two or more in combination is the combined use of LiPF and LiBF, which has the effect of improving cycle characteristics.
  • the proportion of LiBF in the total of both is preferably 0.01% by weight or more, particularly preferably 0.1% by weight or more, preferably 20% by weight or less, particularly preferably 5% by weight or less. is there. If the lower limit is not reached, the desired effect may not be obtained. If the upper limit is exceeded, the battery characteristics after high-temperature storage may be deteriorated.
  • Another example is the combined use of an inorganic lithium salt and a fluorine-containing organic lithium salt.
  • the proportion of the inorganic lithium salt in the total of both is 70 wt% or more, 99 wt% % Or less is desirable.
  • Fluorine-containing organic lithium salts include LiN (CF SO), LiN (LCN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (CF SO), LiN (
  • lithium cyclic 1,2_perfluoroethanedisulfonylimide lithium cyclic 1,3_perfluoropropane disulfonylimide, or the like.
  • the combined use of both has the effect of suppressing deterioration due to high temperature storage.
  • the nonaqueous solvent is I - if it is intended to include petit port Rataton 55 volume% or more, as the Lithium salt, Shi preferred are combination as LiBF or LiBF and other les.
  • LiBF preferably accounts for 40 mol% or more of the lithium salt.
  • Group power consisting of O, LiN (CF SO) and LiN (C F SO)
  • the concentration of these electrolytes in the non-aqueous electrolyte solution is not particularly limited in order to exhibit the effect of the present invention, but is usually 0.5 mol / liter or more, preferably 0.6 mol / liter. Above, more preferably 0.7 mol / liter or more.
  • the upper limit is usually 3 mol / liter or less, preferably 2 mol Z liter or less, more preferably 1.8 mol Z liter or less, and still more preferably 1.5 mol Z liter or less. If the concentration is too low, the electrical conductivity of the electrolyte solution may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity, and the battery performance may decrease. is there.
  • Non-aqueous solvents can also be appropriately selected from those conventionally known as solvents for non-aqueous electrolyte solutions. Examples thereof include cyclic carbonates having no unsaturated bond, chain force carbonates, cyclic ethers, chain ethers, cyclic carboxylic acid esters, chain carboxylic acid esters, and phosphorus-containing organic solvents.
  • Examples of the cyclic carbonates having no carbon-carbon unsaturated bond include alkylene carbonates having an alkylene group of 2 to 4 carbon atoms such as ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferred from the viewpoint of improving battery characteristics, and ethylene carbonate is particularly preferred.
  • the carbon number of the alkyl group that the dialkyl carbonate preferably constitutes is preferably:! To 5 and particularly preferably 1 to 4, respectively.
  • symmetrical chain alkyl carbonates such as dimethyl carbonate, jetyl carbonate, and di_n_propyl carbonate; ethyl methyl carbonate, methyl_n_propyl carbonate, ethyl_n_propyl carbonate, and the like
  • dialkyl carbonates such as asymmetric chain alkyl carbonates.
  • dimethyl carbonate, jetyl carbonate, and ethyl methyl carbonate are preferred from the viewpoint of improving battery characteristics (particularly, high load discharge characteristics).
  • Examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran.
  • chain ethers examples include dimethoxyethane and dimethoxymethane.
  • cyclic carboxylic acid esters examples include ⁇ -petit ratatones and y-valerolatatanes.
  • chain carboxylic acid esters include methyl acetate, methyl propionate, ethyl propionate, and methyl butyrate.
  • Examples of the phosphorus-containing organic solvent include trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl jetyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, and the like.
  • One preferred combination of non-aqueous solvents is a combination mainly composed of alkylene carbonates and dialkyl carbonates.
  • the total power of alkylene carbonates and dialkyl carbonates in the non-aqueous solvent is 70% by volume or more, preferably 80% by volume or more, more preferably 90% by volume or more, and the alkylene carbonates and dialkyl carbonates.
  • the proportion of alkylene carbonate with respect to the total with alkyl carbonates is 5% or more, preferably 10% or more, more preferably 15% or more, usually 50% or less, preferably 35% or less, more preferably 30% or less, Preferably it is 25% or less.
  • non-aqueous solvents Use of a combination of these non-aqueous solvents is preferable because the balance between cycle characteristics and high-temperature storage characteristics (particularly, remaining capacity and high-load discharge capacity after high-temperature storage) of a battery produced using the non-aqueous solvent is improved.
  • alkylene carbonates and dialkyl carbonates include ethylene carbonate and dimethyl carbonate, ethylene carbonate and jetinorecarbonate, ethylene carbonate and ethinoremethinolecarbonate, ethylene carbonate and dimethinorecarbonate, Jetinore carbonate, ethylene carbonate and Examples thereof include dimethyl carbonate and ethylmethyl carbonate, ethylene carbonate and jetinole carbonate and ethinoremethinolate carbonate, ethylene carbonate and dimethylocarbonate, jetyl carbonate and ethylmethyl carbonate.
  • a combination in which propylene carbonate is further combined with a combination of these ethylene carbonate and dialkyl carbonate is also a preferable combination.
  • the volume ratio of ethylene carbonate to propylene power-bonate is 99 ::! -40: 60 force is preferred, particularly preferably 95: 5-50: 50.
  • the proportion of propylene carbonate in the whole non-aqueous solvent is usually 0.1% by volume or more, preferably 1% by volume or more, more preferably 2% by volume or more, and the upper limit is usually 20% by volume or less, preferably 8% by volume. Volume% or less, more preferably 5 volume% or less.
  • ethylene carbonate and dialkyl carbonates those containing asymmetrical chain alkyl carbonates as dialalkyl carbonates are more preferred. Particularly, ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate are preferred. And ethylene carbonate, symmetric chain alkyl carbonates and asymmetric chain alkyl carbonates such as ethylene carbonate, ethinorecarbonate, ethinoremethinolecarbonate, ethylene carbonate, dimethyl carbonate, jetyl carbonate, and ethylmethyl carbonate. The inclusion is preferable because the balance between the cycle characteristics and the large current discharge characteristics is good. Among them, the asymmetric chain alkyl carbonate is preferably ethyl methyl carbonate, and the alkyl group of the alkyl carbonate preferably has 1 to 2 carbon atoms.
  • the proportion of dimethyl carbonate in the total non-aqueous solvent is usually 10% by volume or more, preferably 20% by volume or more, more preferably 25% by volume or more, and further preferably 30% by volume or more.
  • the upper limit is 90% by volume or less, preferably 80% by volume or less, more preferably 75% by volume or less, and still more preferably 70% by volume or less. The load characteristics are improved.
  • the ratio power of ethylmethyl carbonate in the total non-aqueous solvent is usually 10% by volume or more, preferably 20% by volume or more, more preferably 25% by volume or more, and further preferably 30% by volume or more. Is usually 90% by volume or less, preferably 80% by volume or less, more preferably 75% by volume or less, and even more preferably 70% by volume or less. This is preferable because the balance becomes good.
  • non-aqueous solvents include ethylene carbonate, propylene carbonate, y
  • Non-aqueous electrolytes using this mixed solvent reduce solvent evaporation and leakage even when used at high temperatures.
  • the total power of ethylene carbonate and ⁇ -petit ratatoton in the non-aqueous solvent is preferably 80% by volume or more, more preferably 90% by volume or more, and the volume ratio of ethylene carbonate to ⁇ -butyrorataton is 5: 95 to 45: 5 5 or the total of ethylene carbonate and propylene carbonate in the non-aqueous solvent is preferably 80% by volume or more, more preferably 90% by volume or more, and ethylene carbonate and When a propylene carbonate having a volume ratio of 30:70 to 60:40 is used, the balance between cycle characteristics and high-temperature storage characteristics is generally improved.
  • the capacity of the non-aqueous solvent is a value measured at 25 ° C.
  • the value measured at the melting point is used.
  • the nonaqueous electrolytic solution according to the present invention contains the above-described electrolyte and a nonaqueous solvent, but contains a fluorinated cyclic carbonate having 2 or more fluorine atoms.
  • the number of fluorine atoms in the fluorinated cyclic carbonate having 2 or more fluorine atoms is not particularly limited, but in the case of fluorinated styrene carbonate, the lower limit is usually 2
  • the upper limit is usually 4 or less, and preferably 3 or less.
  • the lower limit is usually 2 or more, and the upper limit is usually 6 or less, preferably 5 or less.
  • those in which two or more fluorine atoms are bonded to the carbon forming the ring structure are preferred from the viewpoint of improving cycle characteristics and storage characteristics.
  • fluorinated cyclic carbonate having two or more fluorine atoms include cis-1,4_difunoleo port_1,3-dixolan_2_on, trans-1,4_difunoleo port_1, 3—Dioxolan _ 2_one, 4, 4_Diphnoreone 1,3—Dioxolan _2_one, trifluoro-1,3-Doxolane 1_one, Tetrafunoleol 1,3-Dioxolane _ 2 —On
  • fluorinated styrene carbonate such as 4, 5-difluoro-4-methylolene 1, 3 — dioxolan _ 2_on, 4, 4_ difnoreo mouth 5—methinol 1,3-dixolan 1 2-on, 4,
  • fluorinated propylene carbonates such as 4,5_trifnoreo mouth_5—methylolene 1,3—diox
  • fluorinated titanium carbonate having 2 or more fluorine atoms is preferred from the viewpoint of improving battery characteristics.
  • cis 4,5-difluoro 1,3 dioxolan-2-on, transformer 4,5 difluoro 1,3 dioxolan 2one, 4,4-difluoro-1,3 dioxolane-2one is particularly preferred.
  • the fluorinated cyclic carbonate having two or more fluorine atoms may be used alone or in combination of two or more.
  • the ratio of the fluorinated cyclic carbonate compound having two or more fluorine atoms in the nonaqueous electrolytic solution is not particularly limited in order to exhibit the effect of the present invention, but is usually 0.001% by weight or more, preferably It is 0.01% by weight or more, more preferably 0.1% by weight or more, particularly preferably 0.2% by weight or more, and most preferably 0.25% by weight or more. If the concentration is lower than this, the effects of the present invention may be difficult to express.
  • the concentration is too high, the swelling of the battery may increase during high-temperature storage, so the upper limit is usually 10% by weight or less, preferably 4% by weight or less, more preferably 2% by weight or less, and particularly preferably 1% by weight. % Or less, most preferably 0.5% by weight or less.
  • One of the present invention is a non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent for dissolving the electrolyte, wherein the non-aqueous electrolyte solution contains a cyclic carbonate having an unsaturated bond, and And cyclic carbonates having an unsaturated bond, characterized by containing a fluorinated cyclic carbonate having two or more fluorine atoms, for example, vinylene carbonate, methinolevylene carbonate, ethinolevylene carbonate, 4, 5— Vinylene carbonate compounds such as dimethylenolevylene carbonate, 4,5_jetyl vinylene carbonate, fluorovinylene carbonate, and the like; butyl ethylene carbonate, 4_methyl _4-vinylethylene carbonate, 4 _ethyl _4—butyl ethylene carbonate, 4 -n-propyl _ 4 _buluethylene carbonate, 5-methyl
  • vinylene carbonate, vinylethylene carbonate, 4-methyl-4-butylethylene carbonate or 4,5-divinylethylene carbonate is more preferable from the viewpoint of improving cycle characteristics, and vinylene carbonate or vinylethylene carbonate is more preferable.
  • vinylene carbonate or vinylethylene carbonate is more preferable.
  • the ratio of the cyclic carbonate having an unsaturated bond in the non-aqueous electrolyte solution is not particularly limited in order to exhibit the effect of the present invention, but is usually 0.001% by weight or more, preferably 0.1. % By weight or more, particularly preferably 0.3% by weight or more, and most preferably 0.5% by weight or more. If the content of the cyclic carbonate having an unsaturated bond in the molecule is too small, the effect of improving the cycle characteristics of the battery may not be sufficiently exhibited. However, if the content of the cyclic carbonate having an unsaturated bond is too large, the amount of gas generated during high-temperature storage tends to increase or the discharge characteristics at low temperatures tend to decrease, so the upper limit is usually 8 wt. % Or less, preferably 4% by weight or less, particularly preferably 3% by weight or less.
  • cyclic carbonates having an unsaturated bond such as vinylene carbonate
  • the cyclic force carbonate having an unsaturated bond reacts with the positive electrode material in the charged state, and immediately under a high-temperature atmosphere, the reaction with the positive electrode material proceeds and the deterioration of the positive electrode active material is promoted, resulting in a decrease in battery characteristics. Or increased gas generation.
  • the fluorinated cyclic carbonate compound having two or more fluorine atoms has a higher reduction reactivity than the fluorinated cyclic carbonate compound having less than two fluorine atoms, It is possible to suppress side reactions occurring in the battery where the film forming ability and the positive electrode protecting ability are high.
  • a film mainly composed of a reductive decomposition product of a fluorinated cyclic carbonate compound having two or more fluorine atoms is formed on the negative electrode surface.
  • a composite film of a cyclic carbonate having an unsaturated bond and a fluorinated cyclic carbonate compound having two or more fluorine atoms contains a large amount of polymer components, and is more stable. It seems that side reactions with liquid components can be suppressed.
  • One aspect of the present invention is a nonaqueous electrolytic solution containing an electrolyte and a nonaqueous solvent for dissolving the electrolyte.
  • the non-aqueous electrolyte contains an aromatic compound having a total carbon number of 7 or more and 18 or less, and further contains a fluorinated cyclic carbonate having 2 or more fluorine atoms.
  • the lower limit of the carbon number of the aromatic compound having a total carbon number of 7 or more and 18 or less is usually 7 or more, preferably 8 or more, more preferably 10 or more, and the upper limit is usually 18 or less.
  • Examples of the aromatic compound having a total carbon number of 7 or more and 18 or less include biphenyl, alkylbiphenyl such as 2-methylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclopentylbenzene, cyclohexylbenzene, Aromatic compounds such as t_butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, 3-fluorobiphenyl, 4 fluorobiphenyl, o cyclohexyl fluoride Partially fluorinated products of the above aromatic compounds such as benzene, p cyclohexylfluorobenzene, 2, 4-difluoroanisole, 2,5 difluoroanisole, 2,6 difluoroanisole, 3, 5 —Fluorofluoric anisole compounds such as difluoroarisol
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, tbutylbenzene, tamylbenzene, diphenyl ether, and dibenzofuran are preferred. Les.
  • Two or more of these may be used in combination.
  • a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene biphenylenoyl, alkylbiphenyl, terphenyl, a partially hydrogenated terphenyl, or cyclohexylbenzene.
  • It is possible to prevent overcharge by using a compound selected from oxygen-free aromatic compounds such as t-butylbenzene and t-amylbenzene together with a compound selected from oxygen-containing aromatic compounds such as diphenyl ether and dibenzofuran.
  • oxygen-containing aromatic compounds such as diphenyl ether and dibenzofuran.
  • the non-aqueous electrolyte solution according to the present invention has excellent safety during overcharge, high-temperature storage characteristics, The reason for improving the characteristics is not clear, and the present invention is not limited to the following principle of operation, but is presumed as follows.
  • aromatic compounds having a total carbon number of 7 or more and 18 or less have the effect of improving safety during overcharge, but these compounds react more on the positive electrode and the negative electrode than the solvent components, so Even when stored at high temperatures, it reacts at sites with high activity of the electrode, and reaction of these compounds may cause a significant increase in the internal resistance of the battery or cause a significant decrease in discharge characteristics after storage at high temperatures due to gas generation. It was.
  • an electrolytic solution containing a fluorinated cyclic carbonate having 2 or more fluorine atoms the coating of the reduction reaction product derived from the fluorinated cyclic carbonate having 2 or more fluorine atoms can be applied to the negative electrode surface from the initial charge.
  • the ratio of the aromatic compound having a total carbon number of 7 or more and 18 or less in the non-aqueous electrolyte is not particularly limited in order to exhibit the effect of the present invention, but is usually 0.001% by weight or more, preferably 0.1% by weight or more, particularly preferably 0.3% by weight or more, most preferably 0.5% by weight or more, and the upper limit is usually 5% by weight or less, preferably 3% by weight or less, particularly preferably 2% by weight. % By weight or less. If the concentration is lower than this lower limit, it may be difficult to achieve the effect of improving safety during overcharge. Conversely, if the concentration is too high, battery characteristics such as high-temperature storage characteristics may deteriorate.
  • One aspect of the present invention is a non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent that dissolves the electrolyte.
  • the non-aqueous solvent contains jetyl carbonate, and further has two or more fluorine atoms. It contains a fluorinated cyclic carbonate.
  • the proportion of jetyl carbonate in the total non-aqueous solvent is not particularly limited in order to exhibit the effects of the present invention, but is usually 10% by volume or more, preferably 20% by volume or more, more preferably 25%.
  • the upper limit is usually 90% by volume or less, preferably 80% by volume or less, more preferably 75% by volume or less, and even more preferably 70% by volume or less. . If the content is within this range, the swelling of the battery during high-temperature storage is suppressed, which is preferable.
  • non-aqueous electrolyte solution according to the present invention improves the high-temperature storage characteristics and cycle characteristics while suppressing the swelling of the battery during high-temperature storage is not clear, and the present invention is not limited to the following operation principle. Although it is not, it is guessed as follows.
  • Jetyl carbonate has a higher boiling point than dimethyl carbonate and ethyl methyl carbonate, and does not generate methane gas even when decomposed. Therefore, it is a preferable solvent in terms of suppressing swelling of the battery during high temperature storage.
  • jetyl carbonate tends to react with lithium more easily than dimethyl carbonate or ethylmethyl carbonate, and in particular, in a battery in which lithium is likely to precipitate due to higher density, it reacts with the precipitated lithium. This is a cause of deterioration of battery characteristics.
  • the coating of the reduction reaction product derived from the fluorinated cyclic carbonate having two or more fluorine atoms can be used during initial charging. Is produced efficiently on the surface of the negative electrode, and some of the reduction products of these compounds move to the surface of the positive electrode to form a film on the surface of the positive electrode, causing side reactions between other electrolyte components and the negative electrode and the positive electrode. This is considered to be because the active material can be used uniformly and the lithium deposition can be suppressed by suppressing the precipitation. Furthermore, even when lithium is precipitated, it is considered that the fluorinated cyclic carbonate having 2 or more fluorine atoms forms a film on the lithium surface and suppresses the reaction with jetyl carbonate.
  • One of the present invention is a nonaqueous electrolyte solution containing an electrolyte and a nonaqueous solvent for dissolving the electrolyte, wherein the nonaqueous electrolyte solution is a cyclic sulfonate compound, a disulfonate ester compound, a nitrile compound, and the following: It contains at least one compound selected from the group consisting of compounds represented by the general formula (1), and further contains a fluorinated cyclic carbonate having two or more fluorine atoms. [0048] [Chemical 3]
  • the type of cyclic sulfonate ester compound is not particularly limited as long as it is a compound having a sulfonate ester structure in a part of the cyclic structure.
  • Specific examples of the cyclic sulfonic acid ester compounds include 1,3_propane sultone, 1,4_butane sultone, 1,3-propylene sultone, 1,4-butene sultone, 1_methyl_1,3_propane sultone, 3 —Methanole 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 3-funoleolone 1,3-propane sultone, and the like.
  • 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, and 4-butene sultone are preferred from the viewpoint of improving storage properties, and 1,3-propa 1,3-propene sultone is more preferable. .
  • the disulfonic acid ester compound is not particularly limited as long as it has two sulfonic acid ester structures in the molecule.
  • Specific examples of the disulfonic acid ester compound include, for example,
  • Ethanediol disulfonates 1, 2 _propanediol dimethanesulfonate, 1, 2 _propanediol jetans nolephonate, 1, 2 _propanediol bis (trifluoromethanesulfonate), 1,2-pan diol diol bis (Pentafluoroethane sulfonate), 1,2_propanediol di (Fluoromethanesulfonate), 1,2-propanediol bis (difluoromethanesulfonate), 1,2-propanediol di (2-fluoroethanesulfonate), 1,2-propanediol bis (2, 1,2-propanediol disulfonates such as 2-difluoroethanesulfonate) and 1,2-propanediol bis (2,2,2_trifluoroethanesulfonate);
  • Ethanediol bis trifluoromethanesulfonate
  • ethanediol bis pentafluoroethanesulfonate
  • ethanediol di fluoromethanesulfonate
  • ethanediol di 2, 2, 2_trif-noreoethane sulfonate
  • other ethanediol disulfonates ethanediol bis (trifluoromethanesulfonate), ethanediol bis (pentafluoroethanesulfonate), ethanediol di (fluoromethanesulfonate), ethanediol di (2-fluoroethanesulfonate), ethanediol bis (2, 2, 2_trif-noreoethane sulfonate) and other ethanediol disulfonates;
  • 1,2-propanediol bis trifluoromethanesulfonate
  • 1,2-propanediol bis pentafluoroethanesulfonate
  • 1,2-propanediol di fluoromethanesulfonate
  • 1,2-propanediol di 2-Fluoroethane sulfonate
  • 1,2-propanediol disulfonates such as 2-propanediol bis (2,2,2-trifluoroethanesulfonate);
  • 1,3-propanediol bis trifluoromethanesulfonate
  • 1,3-propanediol bis pentafluoroethanesulfonate
  • 1,3-propanediol di fluoromethanesulfonate
  • 1,3 propanediol Di 2,3 fluoroethansulfonate
  • 1,3-propanediol disulfonates such as 3-propanediol bis (2, 2, 2-trifluoroethanesulfonate);
  • 1,2_butanediol bis trifluoromethanesulfonate
  • 1,2_butanediol bis pentafluoroethanesulfonate
  • 1,2_butanediol di fluoromethanesulfonate
  • 1,2_butanediol di 2,2,2_trifluoroethanesulfonate
  • 1,3_butanediol bis trifluoromethanesulfonate
  • 1,3_butanediol Bis penentafluoroethane sulfonate
  • 1,3-butanediol di fluoromethane sulfonate
  • 1,3-butanediol di fluoromethane sulfonate
  • 1,3-butanediol di 2,2-trifluoroethanesulfonate
  • 1,4_butanediol bis trifluoromethanesulfonate
  • 1,4_butanediol bis pentafluoroethanesulfonate
  • 1,4_butanediol di fluoromethanesulfonate
  • 1,4_butanediol di 2, 2_trifluoroethane sulfonate
  • 1,4_butanediol bis 2, 2, 2_trifluoroethane sulfonate
  • Etc. are particularly preferred.
  • the type of nitrile compound is not particularly limited as long as it is a compound having a nitrile group in the molecule. Further, it may be a compound having a plurality of nitrile groups in one molecule.
  • dinitrile compounds such as malononitrile, succinonitrile, gnoletaronitrile, adiponitrile, and fumaronitrile.
  • examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an n_propyl group, an i_propyl group, an n_butyl group, an i_butyl group, see-Butyl group, tert_butyl group, pentyl group, cyclopentyl group, cyclohexyl group, and the like include linear, branched or cyclic alkyl groups.
  • the carbon number of ⁇ ⁇ is usually 1 or more as a lower limit from the viewpoint of suppressing gas generation, preferably 2 or more, and usually 12 or less as an upper limit, from the viewpoint of solubility in an electrolyte and battery characteristics. Preferably it is 8 or less, more preferably 4 or less.
  • the alkyl group may be substituted with a fluorine atom
  • examples of the group substituted with a fluorine atom include those of the above alkyl groups such as a trifluoromethyl group, a trifluoroethyl group, and a pentafluoroethyl group. Examples thereof include a partially fluorinated alkyl group and a perfluoroalkyl group.
  • n shows the integer of 0-6.
  • Trimethylphosphonoacetate, methyljetylphosphonoacetate, methyldipropyl phosphonoacetate, methyldipeptylphosphonoacetate, triethylphosphonoacetate, ethyldimethylphosphonoacetate, ethyldipropylphosphonoacetate, Ethyl dipylphosphonoacetate, tripropylphosphonoacetate, propyldimethylphosphonoacetate, propyljetylphosphonoacetate, propyldipeptylphosphonoacetate, tributylphosphonoacetate, butyldimethylphosphonoacetate, butyljetylphosphonoacetate, butyl Dipropylphosphonoacetate, Methylbis (2,2,2-trifluoroethyl) phosphonoacetate, Ethylbis (2,2,2_trifluoroethyl) phosphonoacetate N l compounds such as
  • Trimethyl _4_phosphonobutyrate, methyljetyl _4_phosphonobutyrate, methyl Norresipropyl 4 Phosphonobutyrate, Methyldiptyluate 4 Phosphonobutyrate, Triethylo 4 Phosphonobutyrate, Ethyldimethyl-4 Phosphonobutyrate, Ethyldipropyl 4 Phosphonobutyrate, Ethyldiptylue 4 Phosphonobutyrate, Tripropyl Phosphonobutyrate, propyldimethyl 4-phosphonobutyrate, propyl jetyl _4_phosphonobutyrate, propyldipeptyl _4_phosphonobutyrate, tributyl _4_phosphonobutyrate, butyldimethyl _4_phosphonobuty And compounds of n 3 such as butyl dimethyl _4_phosphonobutyrate, butyl
  • At least one compound selected from the group consisting of these cyclic sulfonic acid ester compounds, disulfonic acid ester compounds, nitrile compounds and compounds represented by the general formula (1) is used alone. However, two or more kinds of compounds may be used in any combination and ratio.
  • the content ratio of these compounds in the non-aqueous electrolyte solution is not particularly limited in order to exhibit the effect of the present invention, but is generally 0. It is 001% by weight or more, preferably 0.01% by weight or more, more preferably 0.1% by weight or more.
  • the upper limit is generally 5% by weight or less, preferably 4% by weight or less, more preferably 3% by weight or less. If the concentration of these compounds is too low, it may be difficult to obtain the improvement effect, while if the concentration is too high, the charge / discharge efficiency may be reduced.
  • the reason why the nonaqueous electrolytic solution according to the present invention improves the high-temperature storage characteristics is not clear.
  • the present invention is not limited to the following operation principle, but is presumed as follows. Cyclic sulfonic acid ester compound, disulfonic acid ester compound, nitrile compound and compound represented by general formula (1) suppress the deterioration on the positive electrode side during high temperature storage by adsorption or forming a protective film on the positive electrode surface. However, there is a tendency that the negative electrode side tends to undergo reductive decomposition, and there are many side reactions on the negative electrode side, and there is a tendency that the negative electrode side resistance is increased and the battery characteristics are deteriorated.
  • a fluorinated cyclic carbonate compound having two or more fluorine atoms When a fluorinated cyclic carbonate compound having two or more fluorine atoms is contained, a fluorinated cyclic carbonate having two or more fluorine atoms It is considered that the compound forms a film on the negative electrode surface at an earlier stage than the reaction of these compounds and can suppress excessive reaction of these compounds.
  • One of the present invention is a non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent that dissolves the electrolyte, and the non-aqueous electrolyte solution is used for a high-voltage battery having a charge end voltage of 4.3 V or more.
  • An electrolytic solution comprising a fluorinated cyclic carbonate having two or more fluorine atoms.
  • the non-aqueous electrolyte according to the present invention is used for a high-voltage battery having a charge end voltage of 4.3 V or more.
  • the lower limit of the voltage of a high-voltage battery having a charge end voltage of 4.3 V or higher is usually 4.3 V or higher, preferably 4.35 V or higher.
  • the upper limit is not particularly limited, but it is 6 V or less, preferably 5 V or less, particularly preferably 4.8 V or less. When the lower limit is exceeded, it is preferable because the effect of improving energy density and cycle characteristics are good.
  • Increasing the voltage of the battery can be achieved by configuring the battery by appropriately selecting the type of active material and the balance between positive and negative electrodes.
  • the battery of the present invention has a charge end voltage of 4.3 V or higher, it has experienced a voltage of 4.3 V or higher at least once. Normally, batteries that have experienced a voltage of 4.3 V or more at least once have had the problem of significant deterioration in battery characteristics that may be caused by a side reaction between the positive electrode and the electrolyte.
  • the battery according to the present invention hardly decomposes the positive electrode, the negative electrode, and the electrolyte under high voltage, the battery can be repeatedly charged and discharged while maintaining high battery characteristics.
  • non-aqueous electrolytes according to the present invention may be used in combination.
  • the non-aqueous electrolyte solution in a non-aqueous electrolyte solution containing an electrolyte and a non-aqueous solvent that dissolves the electrolyte, includes a cyclic carbonate having an unsaturated bond, and an aromatic compound having Z or a total carbon number of not less than 18 and not more than 18.
  • non-aqueous solvent contains jetyl carbonate and / or cyclic sulfonate compound, disulfonate ester compound And at least one compound selected from the group consisting of compounds represented by general formula (1) and further containing a fluorinated cyclic carbonate having two or more fluorine atoms Or non-aqueous electrolytes used in high-voltage batteries having a charge end voltage of 4.3 V or higher.
  • the non-aqueous electrolyte solution according to the present invention may contain various other compounds as auxiliaries as long as the effects of the present invention are not impaired.
  • Carbonate compounds such as fluoroethylene carbonate, erythritan carbonate, spirobisbisdimethylene carbonate, methoxyethyl monomethyl carbonate; succinic anhydride, dartaric anhydride, maleic anhydride, itaconic anhydride, citraconic anhydride, glutaconic anhydride, Carboxylic acid anhydrides such as diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenyl succinic anhydride;
  • Spiro compounds such as 2, 4, 8, 10-tetraoxaspiro [5 ⁇ 5] undecane, 1,9-divininole 2, 4, 8, 10-tetraoxaspiro [5 ⁇ 5] undecane;
  • Nitrogen-containing compounds such as 1_methyl_2-pyrrolidinone, 1_methyl_2-piperidone, 3_methyl_2-oxazolidinone, 3-dimethyl-1-imidazolidinone, N-methylsuccinimide, etc .;
  • Hydrocarbon compounds such as heptane, octane, nonane, decane, cycloheptane, methylcyclohexane, ethylcyclohexane, propylcyclohexane, n-butylcyclohexane, t-butylcyclohexane, dicyclohexyl,
  • the ratio of these auxiliaries in the non-aqueous electrolyte solution is not particularly limited in order to exhibit the effect of the present invention, but is usually 0.01% by weight or more, preferably 0.1% by weight or more.
  • the upper limit is usually 5% by weight or less, preferably 3% by weight or less, particularly preferably 1% by weight or less.
  • the non-aqueous electrolyte solution according to the present invention includes, in a non-aqueous solvent, an electrolyte, at least one compound selected from the group consisting of a fluorinated cyclic carbonate compound having two or more fluorine atoms, and a necessity. Accordingly, it can be prepared by dissolving other compounds.
  • each raw material be dehydrated in advance in order to reduce the water content when the electrolyte solution is used.
  • dehydration should be performed to 50 ppm or less, preferably 30 ppm or less, and particularly preferably 10 ppm or less. Further, after the electrolytic solution is prepared, dehydration, deoxidation treatment, and the like may be performed.
  • the non-aqueous electrolyte of the present invention is suitable for use as a secondary battery among non-aqueous electrolyte batteries, that is, as an electrolyte for a non-aqueous electrolyte secondary battery, for example, a lithium secondary battery.
  • a non-aqueous electrolyte secondary battery using the electrolyte of the present invention will be described.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte battery including a negative electrode and a positive electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte, and the non-aqueous electrolyte is the above-described electrolyte. It is characterized by being.
  • the non-aqueous electrolyte secondary battery according to the present invention is a negative electrode capable of inserting and extracting lithium ions, like the conventionally known non-aqueous electrolyte secondary battery, except that the non-aqueous electrolyte secondary battery is manufactured using the above-described electrolyte of the present invention.
  • a positive electrode and a non-aqueous electrolyte battery containing a non-aqueous electrolyte It is obtained by housing the electrode and the negative electrode in a case through a porous membrane impregnated with the non-aqueous electrolyte solution according to the present invention. Therefore, the shape of the secondary battery according to the present invention is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • a carbonaceous material capable of inserting and extracting lithium, a metal compound, lithium metal, a lithium alloy, and the like can be used.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • preferred are carbonaceous materials and metal compounds capable of occluding and releasing lithium.
  • Graphite has a d-value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method of 0.335 to 0.338 nm, particularly 0.335 to 0.333 nm. Masle.
  • the crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, particularly preferably lOO nm or more.
  • the ash content is usually 1% by weight or less, preferably 0.5% by weight or less, and particularly preferably 0.1% by weight or less.
  • the surface of graphite is coated with amorphous carbon, and graphite having a lattice plane (002 plane) d value of 0.335 to 0.338 nm in X-ray diffraction is used as a core material.
  • a carbonaceous material with a larger d-value of the lattice plane (002 plane) in X-ray diffraction than the core material is attached to the surface, and the lattice plane (002 plane) in X-ray diffraction is greater than that of the core material and core material.
  • the ratio of carbonaceous material with a large d value is 99 / :! ⁇ 80/20.
  • the particle size of the carbonaceous material is a median diameter measured by a laser diffraction / scattering method, usually 1 ⁇ m or more, preferably 3 zm or more, more preferably 5 xm or more, most preferably 7 ⁇ m or more, Usually, it is 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and most preferably 30 xm or less.
  • the specific surface area of the carbonaceous material by the BET method is usually 0.3 m 2 / g or more, preferably 0.5 m 2 / g or more, more preferably 0.7 m 2 Zg or more, and most preferably 0.8 m 2 Zg or more. Yes, usually 25. Om 2 Zg or less, preferably 20. Om 2 / g or less, more preferably 15. Om 2 Zg or less, Is preferably 10. Om 2 / g or less.
  • the carbonaceous material was analyzed by Raman spectrum using an argon ion laser beam, and the peak intensity of the peak P in the range from 1570 to 1620 cm- 1 was I, and from 1300 to 1400 cm- 1
  • the R value ( 1/1) represented by the ratio of I to I
  • Metal compounds capable of inserting and extracting lithium include metals such as Ag, Zn, Al, Ga, In, Si, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. These metals are used as simple substances, oxides, alloys with lithium, and the like. In the present invention, those containing an element selected from Si, Sn, Ge and A1 are preferred. Metal oxides selected from Si, Sn and A1 or lithium alloys are more preferred. These may be powder, thin film, crystalline or amorphous.
  • a metal compound capable of inserting and extracting lithium or an oxide thereof or an alloy with lithium generally has a higher capacity per unit weight than a carbonaceous material typified by graphite, and therefore has a higher energy density. It is suitable for a lithium secondary battery for which is required.
  • the average grain system of the metal compound capable of occluding and releasing lithium or its oxide or alloy with lithium is not particularly limited in order to exhibit the effects of the present invention, but is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less, usually 0.1 ⁇ m or more, preferably 1 m or more, particularly preferably 2 ⁇ or more. If this upper limit is exceeded, electrode expansion may increase and cycle characteristics may be degraded. If the lower limit is not reached, current collection becomes difficult, and the capacity may not be fully developed.
  • Examples of the positive electrode active material include materials capable of inserting and extracting lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide. These compounds are Li CoO, Li NiO, Li MnO, Li Co
  • M ⁇ Li Ni M O, Li Mn M O, etc., where M is usually Fe, Co, Ni, Mn y y 2 X 1-y y 2 X 1-y y 2
  • cobalt and nickel represented by LiCoMO, LiNiMO, LiMnMO, etc.
  • a + b + c l, I a-b
  • ⁇ 0. 1) is preferable, because its structure can be stabilized.
  • the positive electrode active materials may be used alone or in combination.
  • a material in which a substance having a composition different from that of the substance constituting the main cathode active material is attached to the surface of the cathode active material can be used.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, sulfuric acid, etc. Examples include sulfates such as potassium, magnesium sulfate, calcium sulfate, and aluminum sulfate, and carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
  • the amount of the surface adhering substance is not particularly limited in order to exhibit the effects of the present invention, but is preferably a mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably as a lower limit. lppm or more, more preferably lOppm or more, and preferably 20% or less, more preferably 10% or less, more preferably 5% or less as the upper limit.
  • the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. If the amount is too large, the resistance may increase because it inhibits the entry and exit of lithium ions.
  • any material can be used as long as it is a material that is stable with respect to the solvent and the electrolyte used in manufacturing the electrode.
  • fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene
  • polyolefins such as polyethylene and polypropylene
  • polymers having unsaturated bonds such as styrene butadiene rubber, isoprene rubber and butadiene rubber, and copolymers thereof.
  • Acrylic acid polymers such as ethylene 'acrylic acid copolymer, ethylene' methacrylic acid copolymer, and copolymers thereof. It is.
  • the electrode may contain a thickener, a conductive material, a filler, etc. in order to increase mechanical strength and electrical conductivity.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylenosulose, ethinoresenorelose, polyvinylenolenoconole, oxidized starch, phosphate starch, and casein.
  • Examples of the conductive material include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black.
  • the electrode may be manufactured by a conventional method. For example, it can be formed by adding a binder, a thickener, a conductive material, a solvent or the like to a negative electrode or a positive electrode active material to form a slurry, applying it to a current collector, drying it, and then pressing it.
  • a material in which an active material is combined with a binder or a conductive material is roll-formed as it is to form a sheet electrode, a pellet electrode by compression molding, or current collection by a technique such as vapor deposition 'sputtering'
  • a thin film of electrode material can also be formed on the body.
  • the density of the negative electrode active material layer after drying and pressing is usually 1.45 g / cm 3 or more, preferably 1.55 g / cm 3 or more, more preferably 1.60 g. / cm 3 or more, particularly preferably 1.65 g / cm 3 or more.
  • the density of the positive electrode active material layer after drying and pressing is usually 2. Og / cm 3 or more, preferably 2.5 g / cm 3 or more, more preferably 3 Og / cm 3. That's it.
  • the power that can be used for various current collectors Usually metals and alloys are used.
  • the current collector for the negative electrode include copper, nickel, and stainless steel, with copper being preferred.
  • the current collector for the positive electrode include metals such as aluminum, titanium, and tantalum, and alloys thereof, and aluminum or an alloy thereof is preferable.
  • a porous film is interposed between the positive electrode and the negative electrode to prevent a short circuit.
  • the electrolytic solution is used by impregnating the porous membrane.
  • the porous membrane is preferably made of a porous sheet or non-woven fabric made of polyolefin such as polyethylene or polypropylene, which is not particularly limited as long as the material and shape of the porous membrane are stable in the electrolyte and excellent in liquid retention.
  • the material of the battery case used in the battery according to the present invention is also arbitrary, and nickel-coated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, laminate phenol, and the like are used.
  • the operating voltage of the non-aqueous electrolyte secondary battery of the present invention described above is usually in the range of 2V to 6V.
  • 1C represents the current value for discharging the reference capacity of the battery in 1 hour
  • 0.2C represents 1/5 of the current value
  • the battery After the battery was cooled, it was immersed in an ethanol bath to measure the volume, and the amount of gas generated from the volume change before and after continuous charging was determined.
  • X-ray diffraction lattice plane (002 plane) d value is 0.336nm
  • crystallite size (Lc) is 652 ⁇ m
  • ash content is 0.07wt%
  • median diameter by laser diffraction 'scattering method is 12 ⁇ ⁇
  • BET a specific surface area of 7 - 5 m 2 / g by law
  • the positive electrode, negative electrode, and polyethylene separator were laminated in the order of the negative electrode, separator, positive electrode, separator, and negative electrode to produce a battery element.
  • the battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness 40 ⁇ m) were covered with a resin layer while projecting positive and negative terminals, and then the electrolyte was poured into the bag. Then, vacuum sealing was performed to produce a sheet-like battery, and cycle characteristics and discharge storage characteristics were evaluated. The evaluation results are shown in Table 1.
  • a sheet-like lithium secondary battery was prepared in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving LiPF that was mixed and then sufficiently dried to a ratio of 1.0 mol / liter was used. The cycle characteristics and discharge storage characteristics were evaluated. Table 1 shows the evaluation results.
  • Example 1 In the electrolyte solution of Example 1, cis-1,4-difluoro-1,3-dioxolone 2_ A sheet-like lithium secondary battery was fabricated and evaluated for cycle characteristics in the same manner as in Example 1 except that transformer 1,4 difluoro 1,3 dioxolane 1 2 on was used instead of on. . Table 1 shows the evaluation results.
  • a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that the electrolytic solution prepared by dissolution was used, and the cycle characteristics and the discharge storage characteristics were evaluated. Table 1 shows the evaluation results.
  • a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving at a mol / liter ratio was used, and the cycle characteristics and the discharge storage characteristics were evaluated. Table 1 shows the evaluation results.
  • Table 1 Cycle characteristics and discharge storage characteristics
  • the battery according to the present invention has excellent cycle characteristics and storage characteristics.
  • Example 6 In the electrolyte of Example 6, instead of cyclohexylbenzene, 2,4-difluoro A sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that Niol was used, and the continuous charge characteristics were evaluated. Table 2 shows the evaluation results.
  • a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving at a ratio was used, and the continuous charge characteristics were evaluated. Table 1 shows the evaluation results.
  • the battery according to the present invention shows that the electrolyte contains an aromatic compound having a total carbon number of 7 or more and 18 or less after high-temperature storage ( (After continuous charge test) Increase in gas generation and significant decrease in discharge characteristics can be suppressed.
  • a sheet-like lithium secondary battery was prepared in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving so as to have a ratio of 1 to 5 was evaluated, and high voltage cycle characteristics and continuous charge characteristics were evaluated. Table 3 shows the evaluation results.
  • Example 1 except that an electrolyte prepared by dissolving LiPF in ethylene carbonate and ethylmethyl carbonate (volume ratio 3: 7) to a ratio of 1.0 mol Z liter was used.
  • a sheet-like lithium secondary battery was prepared, and the high voltage cycle characteristics and the continuous charge characteristics were evaluated. Table 3 shows the evaluation results.
  • Electrolysis prepared by dissolving LiPF in a mixture of ethylene carbonate, ethylmethyl carbonate and jetyl carbonate (volume ratio 3: 1: 6) to a ratio of 1.0 mol Z liter.
  • a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that the liquid was used, and the high voltage cycle characteristics and the continuous charge characteristics were evaluated. Table 3 shows the evaluation results.
  • a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that the liquid was used, and the high voltage cycle characteristics and the continuous charge characteristics were evaluated. Table 3 shows the evaluation results.
  • a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that an electrolytic solution prepared by dissolution so as to be combined was used, and high voltage cycle characteristics and continuous charge characteristics were evaluated. Table 3 shows the evaluation results.
  • Examples A sheet-like lithium secondary battery was prepared in the same manner as in Example 1, and the high voltage cycle characteristics and the continuous charge characteristics were evaluated. Table 3 shows the evaluation results.
  • a sheet-like lithium secondary battery was produced in the same manner as in Example 1 except that the liquid was used, and the high voltage cycle characteristics and the continuous charge characteristics were evaluated. Table 3 shows the evaluation results.
  • the battery according to the present invention has excellent cycle characteristics, can suppress gas generation after high-temperature storage (after a continuous charge test), and improve discharge characteristics.
  • Non-aqueous electrolyte capable of providing a battery with high capacity and excellent storage characteristics and cycle characteristics And the nonaqueous electrolyte solution battery produced using the same can be provided.

Abstract

 高容量で、保存特性及びサイクル特性に優れた電池を提供可能な非水系電解液および、それを用いて作製された非水系電解液電池を提供する。非水系電解液に、(1)不飽和結合を有する環状カーボネート類を含有し、更に、2以上のフッ素原子を有するフッ素化環状カーボネートを含有する、(2)総炭素数が7以上18以下の芳香族化合物を含有し、更に、2以上のフッ素原子を有するフッ素化環状カーボネートを含有する、(3)ジエチルカーボネートを含有し、更に、2以上のフッ素原子を有するフッ素化環状カーボネートを含有する、又は、(4)環状スルホン酸エステル化合物、ジスルホン酸エステル化合物、ニトリル化合物、及び一般式(1)で表される化合物からなる群より選ばれた少なくとも1種以上の化合物を含有し、更に、2以上のフッ素原子を有するフッ素化環状カーボネートを含有する。或いは、(5)非水系電解液が、充電終止電圧が4.3V以上の高電圧電池に使用される電解液であって、2以上のフッ素原子を有するフッ素化環状カーボネートを含有することを特徴とする。

Description

明 細 書
非水系電解液及び非水系電解液電池
技術分野
[0001] 本発明は、非水系電解液、及びそれを用いた非水系電解液電池に関する。
背景技術
[0002] 携帯電話、ノートパソコンなどのいわゆる民生用の電源から自動車用などの駆動用 車載電源まで広範な用途に、リチウム二次電池などの非水系電解液電池が実用化さ れつつある。し力しながら、近年の非水系電解液電池に対する高性能化の要求はま すます高くなつており、電池特性の改善が要望されている。
非水系電解液電池に用いる電解液は、通常、主として電解質と非水溶媒とから構 成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカー ボネート等の環状カーボネート;ジメチルカーボネートゃジェチルカーボネート、ェチ ルメチルカーボネート等の鎖状カーボネート; γ ブチロラタトン、 γ バレロラタトン 等の環状カルボン酸エステルなどが用いられている。
[0003] また、こうした非水系電解液電池の負荷特性、サイクル特性、保存特性等の電池特 性を改良するために、非水溶媒や電解質について種々の検討がなされている。 特許文献 1には、ジェチルカーボネートによるリチウムとの反応に起因する過充電 特性の悪化や、高温環境下に放置した場合の劣化を抑制するために、ェチルメチル カーボネートとジメチルカーボネートを用いることが提案されている。
[0004] 特許文献 2には、非水溶媒として、非対称鎖状カーボネートと二重結合を有する環 状カーボネートの混合物を用いると、二重結合を有する環状カーボネートが負極と優 先的に反応して負極表面に良質の被膜を形成し、これにより非対称鎖状カーボネー トに起因する負極表面上での不導体被膜の形成が抑制されるので、保存特性とサイ クル特性が向上することが提案されている。
[0005] 特許文献 3には、電解液中に電池の最大動作電圧以上の電池電圧で重合する添 加剤を混合することによって電池の内部抵抗を高くして電池を保護することが提案さ れており、特許文献 4には、電解液中に電池の最大動作電圧以上の電池電圧で重 合することによって気体及び圧力を発生させる添加剤を混合することにより、過充電 保護のために設けた内部電気切断装置を確実に動作させることが提案され、それら の添加剤としてビフヱニル、チォフェン、フラン等の芳香族化合物が開示されている。
[0006] 特許文献 5には、シス一 4, 5—ジフルオロー 1 , 3—ジォキソラン _ 2_オン、トラン ス一 4, 5—ジフルオロー 1 , 3—ジォキソラン一 2_オン等のフッ素基を含むアルキレ ンカーボネートを含有する電解液を用いることにより、高容量でサイクル特性が優れ たリチウム二次電池が提供できることが記載されている。
特許文献 1:特開平 7— 14607号公報
特許文献 2:特開平 11一 185806号公報
特許文献 3:特開平 9一 106835号公報
特許文献 4 :特開平 9一 171840号公報
特許文献 5 :特開 2004— 319317号公報
発明の開示
発明が解決しょうとする課題
[0007] し力、しながら、近年の電池に対する高性能化への要求は、ますます高くなつており 、高容量、高温保存特性、サイクル特性を高い次元で達成することが求められている 高容量化する方法として、限られた電池体積の中にできるだけ多くの活物質を詰め ることが検討されており、電極の活物質層を加圧して高密度化したり、電池内部の活 物質以外の占める体積を極力少なくする設計が一般的となっている。しかし、電極の 活物質層を加圧して高密度化したり、電解液量を少なくすることにより、活物質を均 一に使用することができなくなり、不均一な反応により一部リチウムが析出したり、活 物質の劣化が促進されたりして、十分な特性が得られないという問題が発生しやすく 、特許文献:!〜 5に記載されている電解液を用いた非水系電解液二次電池では、サ イタル特性と高温保存特性とを両立するという点で、未だ満足しうるものではなかった また、エネルギー密度を高める目的から、 4. 2Vを超える高い電圧まで充電して、 電池の動作電圧を高める試みが行われてレ、る。し力、しながら充電電圧が高くなれば なるほど、電池特性の劣化が顕著になる問題もあった。
課題を解決するための手段
[0008] 本発明者らは、上記目的を達成するために種々の検討を重ねた結果、特定の構造 を有する化合物を、特定の電解液中に含有させることによって、上記課題を解決でき ることを見出し、本発明を完成させるに至った。
すなわち、本発明の要旨を以下に示す。
(1) 電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非水 系電解液が、不飽和結合を有する環状カーボネート類を含有し、更に、 2以上のフッ 素原子を有するフッ素化環状カーボネートを含有することを特徴とする非水系電解 液。
(2) 電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非水 系電解液が、総炭素数が 7以上 18以下の芳香族化合物を含有し、更に、 2以上のフ ッ素原子を有するフッ素化環状カーボネートを含有することを特徴とする非水系電解 液。
(3) 電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非水 溶媒がジェチルカーボネートを含有し、更に、 2以上のフッ素原子を有するフッ素化 環状カーボネートを含有することを特徴とする非水系電解液。
(4) 電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非水 系電解液が、環状スルホン酸エステル化合物、ジスルホン酸エステルイ匕合物、二トリ ル化合物、及び下記一般式(1)で表される化合物からなる群より選ばれた少なくとも 1種以上の化合物を含有し、更に、 2以上のフッ素原子を有するフッ素化環状カーボ ネートを含有することを特徴とする非水系電解液。
[0009] [化 1]
Figure imgf000005_0001
[0010] (一般式(1)中、!^〜 は、それぞれ独立して、フッ素原子で置換されていてもよい、 炭素数 1〜 12のアルキル基を示し、 nは 0〜6の整数を示す。)
(5) 不飽和結合を有する環状カーボネート類が、ビニレンカーボネート化合物、ビ ニルエチレンカーボネート化合物およびメチレンエチレンカーボネート化合物からな る群より選ばれる少なくとも一種の化合物であることを特徴とする上記(1)記載の非水 系電解液。
(6) 不飽和結合を有する環状カーボネート類が、ビニレンカーボネート及びビュル エチレンカーボネートのうち少なくとも 1つであることを特徴とする上記(1)または(5) 記載の非水系電解液。
(7) 非水系電解液中における不飽和結合を有する環状カーボネートの割合が、 0. 001重量%以上、 8重量%以下であることを特徴とする上記(1)、(5)または(6)記載 の非水系電解液。
(8) 芳香族化合物の総炭素数が、 10以上 18以下であることを特徴とする上記(2) 記載の非水系電解液。
[0011] (9) 総炭素数が 7以上 18以下の芳香族化合物が、ビフヱニル、アルキルビフヱニル 、ターフェニル、ターフェニルの部分水素化体、シクロへキシルベンゼン、 t_ブチル ベンゼン、 t—アミルベンゼン、ジフエ二ルエーテル、及びジベンゾフランからなる群よ り選ばれる少なくとも 1種の化合物であることを特徴とする上記(2)または(8)記載の 非水系電解液。
(10) 非水系電解液中における総炭素数が 7以上 18以下の芳香族化合物の割合 力 0. 001重量%以上、 5重量%以下であることを特徴とする上記(2)、(8)または( 9)記載の非水系電解液。 (11) 全非水溶媒中に占めるジェチルカーボネートの割合力 10容量%以上、 90 容量%以下であることを特徴とする上記(3)記載の非水系電解液。
(12) 環状スルホン酸エステル化合物が、 1 , 3—プロパンスルトン、 1 , 4 ブタンス ノレトン、 1, 3 _プロペンスルトン、及び 1, 4—ブテンスルトンからなる群より選ばれる 少なくとも 1種の化合物であることを特徴とする上記 (4)記載の非水系電解液。
[0012] (13) ジスルホン酸エステル化合物力 S、エタンジオールジスルホネート類、 1 , 2—プ 口パンジオールジスルホネート類、 1 , 3 _プロパンジオールジスルホネート類、 1 , 2 —ブタンジオールジスルホネート類、 1, 3 _ブタンジオールジスルホネート類、及び 1 , 4_ブタンジオールジスルホネート類からなる群より選ばれる少なくとも 1種の化合 物であることを特徴とする上記 (4)記載の非水系電解液。
(14) 二トリル化合物が、ァセトニトリル、プロピオ二トリル、ブチロニトリル、バレロニト リル、クロトノニトリノレ、 3-メチノレクロトノニトリノレ、マロノ二トリル、スクシノニトリル、グルタ ロニトリル、アジポニトリル、及びフマロニトリルからなる群より選ばれる少なくとも 1種の 化合物であることを特徴とする上記 (4)記載の非水系電解液。
(15) 一般式(1)中、 R1〜 の炭素数が、 2以上、 8以下であることを特徴とする上 記 (4)記載の非水系電解液。
(16) 一般式(1)中、 nが 0, 1または 2であることを特徴とする上記 (4)または(15)記 載の非水系電解液。
[0013] (17) 非水系電解液中の、環状スルホン酸エステル化合物、ジスルホン酸エステル 化合物、二トリル化合物、及び下記一般式(1)で表される化合物からなる群より選ば れた少なくとも 1種以上の化合物の含有割合力 合計で、 0. 001重量%以上、 5重 量%以下であることを特徴とする上記 (4)または(12)〜(: 16)の何れか一項に記載 の非水系電解液。
(18) 2以上のフッ素原子を有するフッ素化環状カーボネートが、 2以上のフッ素原 子を有するフッ素化工チレンカーボネートであることを特徴とする上記(1)〜(17)の 何れか一項に記載の非水系電解液。
(19) 2以上のフッ素原子を有するフッ素化環状カーボネートが、シス—4, 5—ジフ ノレオロー 1 , 3—ジォキソラン一 2 _オン、トランス一 4, 5 _ジフノレオ口一1 , 3—ジォキ ソラン一 2—オン、及び 4, 4ージフルオロー 1 , 3—ジォキソランー2—オン力 なる群 より選ばれる少なくとも 1種の化合物であることを特徴とする上記(1)〜(18)の何れか 一項に記載の非水系電解液。
(20) 非水系電解液に占める、 2以上のフッ素原子を有するフッ素化環状カーボネ ートの割合力 0. 001〜10重量%であることを特徴とする上記(1)〜(19)の何れか 一項に記載の非水系電解液。
(21) 非水系電解液に占める、 2以上のフッ素原子を有するフッ素化環状カーボネ ートの割合力 0. 01〜4重量%であることを特徴とする上記(1)〜(20)の何れか一 項に記載の非水系電解液。
[0014] (22) 電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非水 系電解液が、充電終止電圧が 4. 3V以上の高電圧電池に使用される電解液であつ て、 2以上のフッ素原子を有するフッ素化環状カーボネートを含有することを特徴とす る非水系電解液。
(23) 非水系電解液が、不飽和結合を有する環状カーボネート類を含有することを 特徴とする上記(22)記載の非水系電解液。
(24) 非水系電解液が、総炭素数が 7以上 18以下の芳香族化合物を含有すること を特徴とする上記(22)記載の非水系電解液。
(25) 非水系電解液が、ジェチルカーボネートを含有することを特徴とする上記(22 )記載の非水系電解液。
(26) 非水系電解液が、環状スルホン酸エステル化合物、ジスルホン酸エステル化 合物、二トリル化合物、及び下記一般式(1)で表される化合物からなる群より選ばれ た少なくとも 1種以上の化合物を含有することを特徴とする上記(22)記載の非水系 電解液。
[0015] [化 2] R2
Figure imgf000008_0001
[0016] (一般式(1)中、!^〜 は、それぞれ独立して、フッ素原子で置換されていてもよい、 炭素数 1〜 12のアルキル基を示し、 nは 0〜6の整数を示す。)
(27) リチウムイオンを吸蔵'放出可能な負極及び正極、並びに非水系電解液を含 む非水系電解液電池であって、該非水系電解液が上記(1)〜(26)の何れか一項に 記載の非水系電解液であることを特徴とする非水系電解液電池。
(28) 負極が、炭素質材料、及びリチウムを吸蔵および放出可能な金属化合物のう ち少なくとも 1つを含むことを特徴とする上記(27)に記載の非水系電解液二次電池
(29) 正極が、リチウム遷移金属複合酸化物材料を含むことを特徴とする上記(27) に記載の非水系電解液二次電池。
発明の効果
[0017] 本発明によれば、高容量で、保存特性及びサイクル特性に優れた非水系電解液電 池を提供することができ、非水系電解液電池の小型化、高性能化を達成することが できる。
発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要 件の説明は、本発明の実施態様の一例(代表例)であり、本発明は、これらの内容に 特定はされない。
<非水系電解液 >
本発明の非水系電解液は、常用の非水系電解液と同じぐ電解質及びこれを溶解 する非水溶媒を含有するものであり、通常、これらを主成分とするものである。 (電解質)
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用 レ、ることが知られているものであれば特に制限がなぐ任意のものを用いることができ 、具体的には以下のものが挙げられる。
例えば、 LiPF及び LiBF等の無機リチウム塩; LiCF SO、 LiN (CF SO ) 、 LiN
(C F SO ) 、リチウム環状 1, 2_パーフルォロェタンジスルホニルイミド、リチウム環 状 1, 3—パーフルォロプロパンジスルホニルイミド、 LiN (CF SO ) (C F SO )、 LiC
(CF SO ) 、 LiPF (CF ) 、 LiPF (C F ) 、 LiPF (CF SO ) 、 LiPF (C F SO )
、 LiBF (CF ) 、 LiBF (C F ) 、 LiBF (CF SO ) 、 LiBF (C F SO )等の含フッ 素有機リチウム塩及びリチウムビス (ォキサレート)ボレート等が挙げられる。
[0019] これらのうち、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO ) 又は LiN (C F SO ) が電池性能向上の点から好ましぐ特に LiPF又は LiBFが好ましい。
これらのリチウム塩は単独で用いても、 2種以上を併用してもよい。
2種以上を併用する場合の好ましい一例は、 LiPFと LiBFとの併用であり、サイク ル特性を向上させる効果がある。この場合には、両者の合計に占める LiBFの割合 は、好ましくは 0. 01重量%以上、特に好ましくは 0. 1重量%以上、好ましくは 20重 量%以下、特に好ましくは 5重量%以下である。この下限を下回る場合には所望する 効果が得づらい場合があり、上限を上回る場合は高温保存後の電池特性が低下す る場合がある。
[0020] また、他の一例は、無機リチウム塩と含フッ素有機リチウム塩との併用であり、この場 合には、両者の合計に占める無機リチウム塩の割合は、 70重量%以上、 99重量% 以下であることが望ましい。含フッ素有機リチウム塩としては、 LiN (CF SO ) 、 LiN (
C F SO ) 、リチウム環状 1, 2_パーフルォロェタンジスルホニルイミド、リチウム環 状 1 , 3_パーフルォロプロパンジスルホニルイミドのいずれかであるのが好ましレ、。こ の両者の併用は、高温保存による劣化を抑制する効果がある。
[0021] また、非水溶媒が Ί—プチ口ラタトンを 55容量%以上含むものである場合には、リ チウム塩としては、 LiBF又は LiBFと他のものとの併用が好ましレ、。この場合 LiBF は、リチウム塩の 40モル%以上を占めるのが好ましレ、。特に好ましくは、リチウム塩に 占める LiBFの割合力 S40モル0 /0以上、 95モル0 /0以下であり、残りが LiPF、 LiCF S
4 6 3
O、 LiN (CF SO )及び LiN (C F SO )よりなる群力 選ばれるものからなる組合
3 3 2 2 2 5 2 2
せである。
[0022] 非水系電解液中のこれらの電解質の濃度は、本願発明の効果を発現するために は、特に制限はないが、通常 0. 5モル/リットル以上、好ましくは 0. 6モル/リットル 以上、より好ましくは 0. 7モル/リットル以上である。また、その上限は、通常 3モル/ リットル以下、好ましくは 2モル Zリットル以下、より好ましくは 1. 8モル Zリットル以下、 更に好ましくは 1. 5モル Zリットル以下である。濃度が低すぎると、電解液の電気伝 導度が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度 が低下する場合があり、電池性能が低下する場合がある。
[0023] (非水溶媒)
非水溶媒も、従来から非水系電解液の溶媒として公知のものの中から適宜選択し て用いることができる。例えば、不飽和結合をもたない環状カーボネート類、鎖状力 ーボネート類、環状エーテル類、鎖状エーテル類、環状カルボン酸エステル類、鎖 状カルボン酸エステル類、含燐有機溶媒等が挙げられる。
[0024] 炭素 炭素不飽和結合をもたない環状カーボネート類としては、エチレンカーボネ ート、プロピレンカーボネート、ブチレンカーボネート等の炭素数 2〜4のアルキレン 基を有するアルキレンカーボネート類が挙げられ、これらの中では、エチレンカーボ ネート、プロピレンカーボネートが電池特性向上の点から好ましぐ特に、エチレン力 ーボネートが好ましい。
[0025] 鎖状カーボネート類としては、ジアルキルカーボネートが好ましぐ構成するアルキ ル基の炭素数は、それぞれ、:!〜 5が好ましぐ特に好ましくは 1〜4である。具体的に は例えば、ジメチルカーボネート、ジェチルカーボネート、ジ _ n _プロピルカーボネ ート等の対称鎖状アルキルカーボネート類;ェチルメチルカーボネート、メチル _ n _ プロピルカーボネート、ェチル _ n _プロピルカーボネート等の非対称鎖状アルキル カーボネート類等のジアルキルカーボネートが挙げられる。中でも、ジメチルカーボネ ート、ジェチルカーボネート、ェチルメチルカーボネートが電池特性向上(特に、高負 荷放電特性)の点から好ましレ、。 [0026] 環状エーテル類としては、テトラヒドロフラン、 2—メチルテトラヒドロフラン等が挙げら れる。
鎖状エーテル類としては、ジメトキシェタン、ジメトキシメタン等が挙げられる。
環状カルボン酸エステル類としては、 Ί—プチ口ラタトン、 y—バレロラタトン等が挙 げられる。
[0027] 鎖状カルボン酸エステル類としては、酢酸メチル、プロピオン酸メチル、プロピオン 酸ェチル、酪酸メチル等が挙げられる。
含燐有機溶媒としては、リン酸トリメチル、リン酸トリェチル、リン酸ジメチルェチル、 リン酸メチルジェチル、リン酸エチレンメチル、リン酸エチレンェチル等が挙げられる
[0028] これらは単独で用いても、 2種類以上を併用してもよいが、 2種以上の化合物を併 用するのが好ましい。例えば、アルキレンカーボネート類や環状カルボン酸エステル 類等の高誘電率溶媒と、ジアルキルカーボネート類や鎖状カルボン酸エステル類等 の低粘度溶媒とを併用するのが好ましレ、。
非水溶媒の好ましレ、組合せの一つは、アルキレンカーボネート類とジアルキルカー ボネート類を主体とする組合せである。なかでも、非水溶媒に占めるアルキレンカー ボネート類とジアルキルカーボネート類との合計力 70容量%以上、好ましくは 80容 量%以上、より好ましくは 90容量%以上であり、かつアルキレンカーボネート類とジァ ルキルカーボネート類との合計に対するアルキレンカーボネートの割合が 5%以上、 好ましくは 10%以上、より好ましくは 15%以上であり、通常 50%以下、好ましくは 35 %以下、より好ましくは 30%以下、更に好ましくは 25%以下のものである。これらの 非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と 高温保存特性 (特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良 くなるので好ましい。
[0029] アルキレンカーボネート類とジアルキルカーボネート類の好ましい組み合わせの具 体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートと ジェチノレカーボネート、エチレンカーボネートとェチノレメチノレカーボネート、エチレン カーボネートとジメチノレカーボネートとジェチノレカーボネート、エチレンカーボネートと ジメチルカーボネートとェチルメチルカーボネート、エチレンカーボネートとジェチノレ カーボネートとェチノレメチノレカーボネート、エチレンカーボネートとジメチノレカーボネ 一トとジェチルカーボネートとェチルメチルカーボネート等が挙げられる。
[0030] これらのエチレンカーボネートとジアルキルカーボネート類との組み合わせに、更に プロピレンカーボネートをカ卩えた組み合わせも、好ましい組み合わせとして挙げられ る。
プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレン力 ーボネートの容量比は、 99 ::!〜 40 : 60力好ましく、特に好ましくは 95 : 5〜50: 50で ある。更に、非水溶媒全体に占めるプロピレンカーボネートの割合は、通常 0. 1容量 %以上、好ましくは 1容量%以上、より好ましくは 2容量%以上、また上限は、通常 20 容量%以下、好ましくは 8容量%以下、より好ましくは 5容量%以下である。この濃度 範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとジアルキルカー ボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ま しい。
[0031] エチレンカーボネートとジアルキルカーボネート類との組み合わせの中で、ジアル キルカーボネート類として非対称鎖状アルキルカーボネート類を含有するものが更に 好ましぐ特に、エチレンカーボネートとジメチルカーボネートとェチルメチルカーボネ ート、エチレンカーボネートとジェチノレカーボネートとェチノレメチノレカーボネート、ェ チレンカーボネートとジメチルカーボネートとジェチルカーボネートとェチルメチルカ ーボネートといったエチレンカーボネートと対称鎖状アルキルカーボネート類と非対 称鎖状アルキルカーボネート類を含有するものが、サイクル特性と大電流放電特性 のバランスが良いので好ましい。中でも、非対称鎖状アルキルカーボネート類がェチ ルメチルカーボネートであるのが好ましぐ又、アルキルカーボネートのアルキル基は 炭素数 1〜 2が好ましい。
[0032] また、全非水溶媒中に占めるジメチルカーボネートの割合が、通常 10容量%以上 、好ましくは 20容量%以上、より好ましくは 25容量%以上、更に好ましくは 30容量% 以上であり、また上限は、通常 90容量%以下、好ましくは 80容量%以下、より好まし くは 75容量%以下、更に好ましくは、 70容量%以下となる範囲で含有させると、電池 の負荷特性が向上するので好ましい。
また、全非水溶媒中に占めるェチルメチルカーボネートの割合力 通常 10容量% 以上、好ましくは 20容量%以上、より好ましくは 25容量%以上、更に好ましくは 30容 量%以上であり、また上限は、通常 90容量%以下、好ましくは 80容量%以下、より好 ましくは 75容量%以下、更に好ましくは、 70容量%以下となる範囲で含有させると、 電池のサイクル特性と保存特性とのバランスが良好となるので好ましい。
また、上記アルキレンカーボネート類とジアルキルカーボネート類を主体とする組合 せにおいては、他の溶媒を混合してもよぐ本願発明の効果を発現するためには、特 に制限はないが、負荷特性を重視する場合には、環状カルボン酸エステル類を含有 させない方が好ましい。
[0033] 好ましい非水溶媒の他の例は、エチレンカーボネート、プロピレンカーボネート、 y
—プチ口ラタトン及び γ—バレロラタトンよりなる群から選ばれた 1種の有機溶媒、又 は該群から選ばれた 2以上の有機溶媒からなる混合溶媒を全体の 60容量%以上を 占めるものである。この混合溶媒を用いた非水系電解液は、高温で使用しても溶媒 の蒸発や液漏れが少なくなる。なかでも、非水溶媒に占めるエチレンカーボネートと γ—プチ口ラタトンとの合計力 好ましくは 80容量%以上、より好ましくは 90容量%以 上であり、かつエチレンカーボネートと γ —ブチロラタトンとの容量比が 5 : 95〜45: 5 5であるもの、又は非水溶媒に占めるエチレンカーボネートとプロピレンカーボネート との合計が、好ましくは 80容量%以上、より好ましくは 90容量%以上であり、かつェ チレンカーボネートとプロピレンカーボネートの容量比が 30 : 70〜60: 40であるもの を用いると、一般にサイクル特性と高温保存特性等のバランスがよくなる。
なお、本明細書において、非水溶媒の容量は 25°Cでの測定値である力 エチレン カーボネートのように 25°Cで固体のものは融点での測定値を用いる。
[0034] (2以上のフッ素原子を有するフッ素化環状カーボネート)
本発明に係る非水系電解液は、上述の電解質と非水溶媒を含有するが、これに 2 以上のフッ素原子を有するフッ素化環状カーボネートを含有する。
2以上のフッ素原子を有するフッ素化環状カーボネートのフッ素原子の数としては、 特に制限されないが、フッ素化工チレンカーボネートの場合は、下限としては通常 2 以上であり、上限としては通常 4以下であり、 3以下が好ましい。
フッ素化プロピレンカーボネートの場合は、下限としては通常 2以上であり、上限と しては通常 6以下であり、 5以下が好ましい。特に、環構造を形成する炭素に 2以上 のフッ素原子が結合してレ、るものが、サイクル特性及び保存特性向上の点から好まし レ、。
[0035] 2以上のフッ素原子を有するフッ素化環状カーボネートの具体例としては、シス一 4 , 5_ジフノレオ口 _ 1, 3—ジォキソラン _ 2 _オン、トランス一 4, 5_ジフノレオ口 _ 1, 3—ジォキソラン _ 2_オン、 4, 4_ジフノレオ口一 1, 3—ジォキソラン _ 2_オン、トリ フルオロー 1, 3—ジォキソラン一 2_オン、テトラフノレオロー 1 , 3—ジォキソラン _ 2 —オン等のフッ素化工チレンカーボネートや、 4, 5—ジフルオロー 4—メチノレ一1 , 3 —ジォキソラン _ 2_オン、 4, 4_ジフノレオ口一 5—メチノレ一 1, 3—ジォキソラン一 2 —オン、 4, 4, 5_トリフノレオ口 _ 5—メチノレ一 1 , 3—ジォキソラン一 2_オン、 4, 5 - ジフルオロー 4 トリフルォロメチルー 1 , 3 ジォキソラン 2 オン等のフッ素化プ ロピレンカーボネートが挙げられる。中でも 2以上のフッ素原子を有するフッ素化工チ レンカーボネートが、電池特性向上の点から好ましぐ中でも、シス 4, 5—ジフルォ ロー 1 , 3 ジォキソランー2 オン、トランス 4, 5 ジフルオロー 1 , 3 ジォキソラ ンー2 オン、 4, 4ージフルオロー 1, 3 ジォキソランー2 オンが特に好ましい。
[0036] 2以上のフッ素原子を有するフッ素化環状カーボネートは、単独で用いても、 2種類 以上を併用してもよい。非水系電解液中の 2以上のフッ素原子を有するフッ素化環 状カーボネート化合物の割合は、本願発明の効果を発現するためには、特に制限は ないが、通常 0. 001重量%以上、好ましくは 0. 01重量%以上、より好ましくは 0. 1 重量%以上、特に好ましくは 0. 2重量%以上、最も好ましくは 0. 25重量%以上であ る。これより低濃度では本発明の効果が発現しづらい場合がある。逆に濃度が高す ぎると高温保存時に電池のフクレが増大する場合があるので、上限は、通常 10重量 %以下、好ましくは 4重量%以下、より好ましくは 2重量%以下、特に好ましくは 1重量 %以下、最も好ましくは 0. 5重量%以下である。
[0037] 本発明の一つは、電解質及びこれを溶解する非水溶媒を含む非水系電解液にお いて、該非水系電解液が、不飽和結合を有する環状カーボネート類を含有し、更に 、 2以上のフッ素原子を有するフッ素化環状カーボネートを含有することを特徴とする 不飽和結合を有する環状カーボネート類としては、例えば、ビニレンカーボネート、 メチノレビ二レンカーボネート、ェチノレビ二レンカーボネート、 4, 5—ジメチノレビ二レン カーボネート、 4, 5_ジェチルビ二レンカーボネート、フルォロビニレンカーボネート 、等のビニレンカーボネート化合物;ビュルエチレンカーボネート、 4_メチル _4—ビ ニルエチレンカーボネート、 4 _ェチル _4—ビュルエチレンカーボネート、 4-n- プロピル _ 4 _ビュルエチレンカーボネート、 5 -メチル _ 4 _ビュルエチレンカーボ ネート、 4, 4_ジビニノレエチレンカーボネート、 4, 5_ジビニノレエチレンカーボネート 等のビュルエチレンカーボネート化合物; 4, 4—ジメチル _ 5—メチレンエチレンカー ボネート、 4, 4—ジェチル _ 5—メチレンエチレンカーボネート等のメチレンエチレン カーボネートイ匕合物などが挙げられる。
これらのうち、ビニレンカーボネート、ビュルエチレンカーボネート、 4ーメチルー 4 ビュルエチレンカーボネートまたは 4, 5—ジビニルエチレンカーボネートがサイクル 特性向上の点から好ましぐなかでもビニレンカーボネートまたはビニルエチレンカー ボネートがより好ましい。これらは単独で用いても、 2種類以上を併用してもよい。
[0038] 2種類以上を併用する場合は、ビニレンカーボネートとビニルエチレンカーボネート とを併用するのが好ましい。
非水系電解液中における不飽和結合を有する環状カーボネートの割合は、本願発 明の効果を発現するためには、特に制限はないが、通常 0. 001重量%以上、好まし くは 0. 1重量%以上、特に好ましくは 0. 3重量%以上、最も好ましくは 0. 5重量%以 上である。分子内に不飽和結合を有する環状カーボネートの含有量が少なすぎると 、電池のサイクル特性を向上させるという効果を十分に発揮できえない場合がある。 しかし、不飽和結合を有する環状カーボネートの含有量が多すぎると、高温保存時 にガス発生量が増大したり、低温での放電特性が低下する傾向にあるので、その上 限は、通常 8重量%以下、好ましくは 4重量%以下、特に好ましくは 3重量%以下で ある。
[0039] 本発明に係る非水系電解液が、高温保存特性、サイクル特性を改善する理由は明 らかではなぐまた、本発明は下記作用原理に限定されるものではないが、次のよう に推察される。
まず、ビニレンカーボネート等の不飽和結合を有する環状カーボネート類は、初期 の充電時に還元されて、負極表面にポリマー成分を含む安定な被膜を形成して、保 存特性、サイクル特性を向上することができる。しかし、不飽和結合を有する環状力 ーボネートは充電状態の正極材と反応しやすぐ特に高温雰囲気下では、正極材と の反応が進行し、正極活物質の劣化が促進して、電池特性が低下したり、ガス発生 が増大する問題があった。これに対し、 2以上のフッ素原子を有するフッ素化環状力 ーボネート化合物を含有する場合、 2以上のフッ素原子を有するフッ素化環状カーボ ネートイ匕合物と不飽和結合を有する環状カーボネート類とが、還元反応により負極表 面に複合皮膜を形成するが、その際、 2以上のフッ素原子を有するフッ素化環状力 ーボネート化合物の還元生成物の一部が正極表面に移動して、正極表面に被膜を 形成し、不飽和結合を有する環状カーボネートと正極との接触を防ぎ、不飽和結合 を有する環状カーボネートと正極材との副反応を抑制することができると思われる。
[0040] 更に、 2以上のフッ素原子を有するフッ素化環状カーボネートイ匕合物は、 2未満の フッ素原子を有するフッ素化環状カーボネートィヒ合物に比べて、還元反応性が高い ので、負極における皮膜形成能および、正極保護能力が高ぐ電池内部で生じる副 反応を抑制することができる。
また、不飽和結合を有する環状カーボネート類を含有しない場合は、 2以上のフッ 素原子を有するフッ素化環状カーボネート化合物の還元分解物を主体とする皮膜が 負極表面に形成されるが、この皮膜に比べ、不飽和結合を有する環状カーボネート と、 2以上のフッ素原子を有するフッ素化環状カーボネートィヒ合物との複合皮膜がポ リマー成分を多く含み、より安定性に優れ、負極材と他の電解液成分との副反応を抑 制することができると思われる。
[0041] このように不飽和結合を有する環状カーボネートと 2以上のフッ素原子を有するフッ 素化環状カーボネートィヒ合物との相互作用により、高温保存特性とサイクル特性の 向上を達成することができる。
本発明の一つは、電解質及びこれを溶解する非水溶媒を含む非水系電解液にお いて、該非水系電解液が、総炭素数が 7以上 18以下の芳香族化合物を含有し、更 に、 2以上のフッ素原子を有するフッ素化環状カーボネートを含有することを特徴とす る。
総炭素数が 7以上 18以下の芳香族化合物の炭素数としては、下限としては通常 7 以上、好ましくは 8以上、さらに好ましくは 10以上であり、上限としては通常 18以下で ある。
この下限を上回る場合過充電防止特性が良い。また、この上限を下回る場合電解 液への溶解性が良い。
[0042] 総炭素数が 7以上 18以下の芳香族化合物としては、ビフヱニル、 2 メチルビフエ ニル等のアルキルビフヱニル、ターフェニル、ターフェニルの部分水素化体、シクロ ペンチルベンゼン、シクロへキシルベンゼン、 t_ブチルベンゼン、 t—アミルベンゼン 、ジフヱニルエーテル、ジベンゾフラン等の芳香族化合物;2—フルォロビフエニル、 3—フルォロビフエニル、 4 フルォロビフエニル、 o シクロへキシルフルォ口べンゼ ン、 p シクロへキシルフルォロベンゼン等の前記芳香族化合物の部分フッ素化物; 2, 4—ジフルォロアニソール、 2, 5 ジフルォロアニソール、 2, 6 ジフルォロア二 ソール、 3, 5—ジフルォロア二ソール等の含フッ素ァニソール化合物等が挙げられる
[0043] これらのうち、ビフエ二ル、アルキルビフエニル、ターフェニル、ターフェニルの部分 水素化体、シクロへキシルベンゼン、 t ブチルベンゼン、 t ァミルベンゼン、ジフエ ニルエーテル、ジベンゾフラン等の芳香族化合物が好ましレ、。
これらは 2種類以上併用して用いてもよい。 2種以上併用する場合は、特に、シクロ へキシルベンゼンと t -ブチルベンゼンや t -ァミルベンゼンとの組み合わせや、ビフ ェニノレ、アルキルビフエニル、ターフェニル、ターフェニルの部分水素化体、シクロへ キシルベンゼン、 t_ブチルベンゼン、 t—アミルベンゼン等の酸素を含有しない芳香 族化合物から選ばれるものと、ジフエニルエーテル、ジベンゾフラン等の含酸素芳香 族化合物から選ばれるものとを併用するのが過充電防止特性と高温保存特性のバラ ンスの点力も好ましい。
[0044] 本発明に係る非水系電解液が、過充電時の安全性に優れ、高温保存特性、サイク ル特性を改善する理由は明らかではなぐまた、本発明は下記作用原理に限定され るものではないが、次のように推察される。
一般に、総炭素数が 7以上 18以下の芳香族化合物は、過充電時の安全性を向上 させる効果を有するが、これらの化合物は、溶媒成分よりも正極および負極上で反応 しゃすいために、高温保存時においても電極の活性の高い部位で反応してしまい、 これらの化合物が反応すると電池の内部抵抗が大きく上昇したり、ガス発生により、 高温保存後の放電特性を著しく低下させる原因となっていた。 2以上のフッ素原子を 有するフッ素化環状カーボネートを含有する電解液を用いることにより、 2以上のフッ 素原子を有するフッ素化環状カーボネート由来の還元反応生成物の被膜が、初期 の充電時から負極表面に効率よく生成し、総炭素数が 7以上 18以下の芳香族化合と 負極との反応を抑制すると考えられる。更に、 2以上のフッ素原子を有するフッ素化 環状カーボネート化合物の還元生成物の一部が正極表面に移動して、正極表面に 被膜を形成し、総炭素数が 7以上 18以下の芳香族化合物と正極との接触を防ぎ、総 炭素数が 7以上 18以下の芳香族化合物と正極材との副反応を抑制することができる と思われる。
[0045] このように総炭素数が 7以上 18以下の芳香族化合物と、負極および正極との副反 応を抑制することにより、高温保存後の放電特性の著しい低下を抑制すると考えられ る。
非水系電解液中における総炭素数が 7以上 18以下の芳香族化合物の割合は、本 願発明の効果を発現するためには、特に制限はないが、通常 0. 001重量%以上、 好ましくは 0. 1重量%以上、特に好ましくは 0. 3重量%以上、最も好ましくは 0. 5重 量%以上であり、上限は、通常 5重量%以下、好ましくは 3重量%以下、特に好ましく は 2重量%以下である。この下限より低濃度では過充電時の安全性を向上する効果 が発現しがたい場合がある。逆に濃度が高すぎると高温保存特性などの電池の特性 が低下する場合がある。
[0046] 本発明の一つは、電解質及びこれを溶解する非水溶媒を含む非水系電解液にお いて、該非水溶媒がジェチルカーボネートを含有し、更に、 2以上のフッ素原子を有 するフッ素化環状カーボネートを含有することを特徴とする。 全非水溶媒中に占めるジェチルカーボネートの割合は、本願発明の効果を発現す るためには、特に制限はないが、通常 10容量%以上、好ましくは 20容量%以上、よ り好ましくは 25容量%以上、更に好ましくは 30容量%以上であり、また上限は、通常 90容量%以下、好ましくは 80容量%以下、より好ましくは 75容量%以下、更に好ま しくは、 70容量%以下である。この範囲で含有させると、高温保存時の電池のフクレ が抑制されるので好ましい。
本発明に係る非水系電解液が、高温保存時の電池のフクレを抑制しながら、高温 保存特性、サイクル特性を改善する理由は明らかではなぐまた、本発明は下記作用 原理に限定されるものではないが、次のように推察される。
ジェチルカーボネートは、ジメチルカーボネートや、ェチルメチルカーボネートに比 ベて沸点が高ぐまた、分解してもメタンガスを発生しないので、高温保存時の電池 のフクレ抑制の点では好ましい溶媒である。し力し、ジェチルカーボネートはジメチル カーボネートや、ェチルメチルカーボネートに比べてリチウムと反応しやすい傾向が あり、特に、高密度化によって、リチウムが析出しやすい電池では、析出したリチウム との反応により、電池特性が低下する原因となっていた。 2以上のフッ素原子を有す るフッ素化環状カーボネートを含有する電解液を用いることにより、 2以上のフッ素原 子を有するフッ素化環状カーボネート由来の還元反応生成物の被膜が、初期の充 電時から負極表面に効率よく生成すると共に、これらの化合物の還元生成物の一部 が正極表面に移動して、正極表面に被膜を形成して、他の電解液成分と負極および 正極との副反応を抑制することにより、活物質が均一に使用され、リチウムの析出を 抑制することができるためと考えられる。更に、リチウムが析出した場合においても、 2 以上のフッ素原子を有するフッ素化環状カーボネートが、リチウム表面に皮膜を形成 して、ジェチルカーボネートとの反応を抑制するためと考えられる。
本発明の一つは、 電解質及びこれを溶解する非水溶媒を含む非水系電解液に おいて、該非水系電解液が、環状スルホン酸エステル化合物、ジスルホン酸エステ ル化合物、二トリル化合物、及び下記一般式(1)で表される化合物からなる群より選 ばれた少なくとも 1種以上の化合物を含有し、更に、 2以上のフッ素原子を有するフッ 素化環状カーボネートを含有することを特徴とする。 [0048] [化 3]
Figure imgf000020_0001
(一般式(1)中、!^〜 は、それぞれ独立して、フッ素原子で置換されていてもよい、 炭素数 1〜 12のアルキル基を示し、 nは 0〜6の整数を示す。)
[0049] [環状スルホン酸エステル化合物]
環状スルホン酸エステルイ匕合物としては、環状構造の一部にスルホン酸エステル構 造を有する化合物であれば特にその種類は限定されなレ、。環状スルホン酸エステル 化合物の具体例としては、 1 , 3 _プロパンスルトン、 1, 4 _ブタンスルトン、 1, 3—プ 口ペンスルトン、 1 , 4—ブテンスルトン、 1 _メチル_ 1, 3_プロパンスルトン、 3—メ チノレー 1 , 3—プロパンスルトン、 1—フルオロー 1 , 3—プロパンスルトン、 3—フノレオ ロー 1 , 3—プロパンスルトン等が挙げられる。
これらのうち、 1 , 3—プロパンスルトン、 1, 4—ブタンスルトン、 1 , 3—プロペンスノレ 4ーブテンスルトンが保存特性向上の点から好ましぐなかでも 1 , 3—プロパ 1 , 3—プロペンスルトンがさらに好ましい。
[0050] [ジスルホン酸エステル化合物]
ジスルホン酸エステル化合物としては、分子内に 2つのスルホン酸エステル構造を 有している化合物であれば特にその種類は限定されない。ジスルホン酸エステル化 合物の具体例としては、例えば、
エタンジオールジメタンスルホネート、エタンジォ一ルジェタンスルホネート、エタンジ オールジプロパンスルホネート、エタンジオールジブタンスルホネート、エタンジォ一 ノレビス(トリフルォロメタンスルホネート)、エタンジオールビス(ペンタフルォロエタンス ノレホネート)、エタンジオールビス(ヘプタフルォロプロパンスルホネート)、エタンジォ ールビス(パーフルォロブタンスルホネート)、エタンジオールジ(フルォロメタンスル ホネート)、エタンジオールビス(ジフルォロメタンスルホネート)、エタンジオールジ(2 —フルォロェタンスルホネート)、エタンジオールビス(1, 1—ジフルォロェタンスルホ ネート)、エタンジオールビス(1 , 2—ジフルォロェタンスルホネート)、エタンジォ一 ノレビス(2, 2—ジフルォロェタンスルホネート)、エタンジオールビス(1, 1 , 2_トリフ ノレォロェタンスルホネート)、エタンジオールビス(1, 2, 2 _トリフルォロェタンスルホ ネート)、エタンジオールビス(2, 2, 2_トリフルォロェタンスルホネート)、エタンジォ ールビス(1, 1, 2, 2—テトラフルォロェタンスルホネート)、エタンジオールビス(1 , 2 , 2, 2—テトラフルォロェタンスルホネート)、等のエタンジオールジスルホネート類; [0051] 1 , 2_プロパンジオールジメタンスルホネート、 1 , 2 _プロパンジォールジェタンス ノレホネート、 1, 2 _プロパンジオールジプロパンスルホネート、 1 , 2 _プロパンジォ ールジブタンスルホネート、 1, 2_プロパンジオールビス(トリフルォロメタンスルホネ 一ト)、 1, 2—プロパンジオールビス(ペンタフルォロェタンスルホネート)、 1 , 2—プ 口パンジオールビス(ヘプタフルォロプロパンスルホネート)、 1 , 2—プロパンジォー ノレビス(パーフルォロブタンスルホネート)、 1 , 2—プロパンジオールジ(フルォロメタ ンスルホネート)、 1 , 2—プロパンジオールビス(ジフルォロメタンスルホネート)、 1, 2 プロパンジオールジ(2—フルォロェタンスルホネート)、 1, 2—プロパンジオール ビス(1, 1—ジフルォロェタンスルホネート)、 1, 2—プロパンジオールビス(1 , 2—ジ フルォロェタンスルホネート)、 1, 2—プロパンジオールビス(2, 2—ジフルォロェタン スルホネート)、 1, 2—プロパンジオールビス(1 , 1, 2—トリフルォロェタンスルホネー ト)、 1, 2—プロパンジオールビス(1 , 2, 2—トリフルォロェタンスルホネート)、 1 , 2 —プロパンジオールビス(2, 2, 2_トリフルォロェタンスルホネート)、 1 , 2_プロパン ジオールビス(1, 1 , 2, 2—テトラフルォロェタンスルホネート)、 1 , 2_プロパンジォ ールビス(1, 2, 2, 2—テトラフルォロェタンスルホネート)、等の 1 , 2—プロパンジォ ールジスルホネート類;
[0052] 1 , 3 _プロパンジオールジメタンスルホネート、 1 , 3 _プロパンジォールジェタンス ノレホネート、 1, 3 _プロパンジオールジプロパンスルホネート、 1 , 3 _プロパンジォ ールジブタンスルホネート、 1, 3 _プロパンジオールビス(トリフルォロメタンスルホネ 一ト)、 1, 3—プロパンジオールビス(ペンタフルォロェタンスルホネート)、 1 , 3—プ 口パンジオールビス(ヘプタフルォロプロパンスルホネート)、 1 , 3—プロパンジォー ルビス(パーフルォロブタンスルホネート)、 1 , 3—プロパンジオールジ(フルォロメタ ンスルホネート)、 1 , 3 _プロパンジオールビス(ジフルォロメタンスルホネート)、 1, 3 —プロパンジオールジ(2—フルォロェタンスルホネート)、 1, 3 _プロパンジオール ビス(1, 1—ジフルォロェタンスルホネート)、 1, 3 _プロパンジオールビス(1 , 2—ジ フルォロェタンスルホネート)、 1, 3_プロパンジオールビス(2, 2—ジフルォロェタン スルホネート)、 1, 3 _プロパンジオールビス(1 , 1, 2 _トリフルォロェタンスルホネー ト)、 1, 3_プロパンジオールビス(1 , 2, 2_トリフルォロェタンスルホネート)、 1 , 3 —プロパンジオールビス(2, 2, 2_トリフルォロェタンスルホネート)、 1 , 3 _プロパン ジオールビス(1, 1 , 2, 2—テトラフルォロェタンスルホネート)、 1 , 3_プロパンジォ ールビス(1, 2, 2, 2—テトラフルォロェタンスルホネート)、等の 1 , 3—プロパンジォ ールジスルホネート類; 1, 2—ブタンジオールジメタンスルホネート、 1, 2—ブタンジ オールジェタンスルホネート、 1, 2—ブタンジオールビス(トリフルォロメタンスルホネ 一ト)、 1, 2—ブタンジオールビス(ペンタフルォロェタンスルホネート)、 1 , 2—ブタン ジオールビス(ヘプタフルォロプロパンスルホネート)、 1 , 2—ブタンジオールビス(パ 一フルォロブタンスルホネート)、 1 , 2—ブタンジオールジ(フルォロメタンスルホネー ト)、 1, 2—ブタンジオールビス(ジフルォロメタンスルホネート)、 1, 2—ブタンジォー ルジ(2—フルォロェタンスルホネート)、 1, 2—ブタンジオールビス(2, 2—ジフルォ ロェタンスルホネート)、 1, 2—ブタンジオールビス(2, 2, 2—トリフルォロエタンスル ホネート)、等の 1 , 2—ブタンジオールジスルホネート類;
1 , 3 _ブタンジオールジメタンスルホネート、 1 , 3 _ブタンジォールジェタンスルホ ネート、 1, 3 _ブタンジオールビス(トリフルォロメタンスルホネート)、 1, 3 _ブタンジ オールビス(ペンタフルォロェタンスルホネート)、 1, 3 _ブタンジオールビス(ヘプタ フルォロプロパンスルホネート)、 1, 3 _ブタンジオールビス(パーフルォロブタンスル ホネート)、 1, 3 _ブタンジオールジ(フルォロメタンスルホネート)、 1, 3 _ブタンジォ ールビス(ジフルォロメタンスルホネート)、 1 , 3 _ブタンジオールジ(2—フルォロエタ ンスルホネート)、 1 , 3 _ブタンジオールビス(2, 2—ジフルォロェタンスルホネート) 、 1 , 3 ブタンジオールビス(2, 2, 2 トリフルォロェタンスルホネート)、等の 1 , 3 - ブタンジオールジスルホネート類;
[0054] 1 , 4 ブタンジオールジメタンスルホネート、 1 , 4 ブタンジォールジェタンスルホ ネート、 1, 4_ブタンジオールジプロパンスルホネート、 1 , 4_ブタンジオールジブタ ンスルホネート、 1 , 4_ブタンジオールビス(トリフルォロメタンスルホネート)、 1, 4- ブタンジオールビス(ペンタフルォロェタンスルホネート)、 1, 4_ブタンジオールビス (ヘプタフルォロプロパンスルホネート)、 1 , 4_ブタンジオールビス(パーフルォロブ タンスルホネート)、 1 , 4_ブタンジオールジ(フルォロメタンスルホネート)、 1, 4—ブ タンジオールビス(ジフルォロメタンスルホネート)、 1, 4_ブタンジオールジ(2 フル ォロェタンスルホネート)、 1, 4 _ブタンジオールビス(1 , 1—ジフルォロェタンスルホ ネート)、 1, 4_ブタンジオールビス(1 , 2—ジフルォロェタンスルホネート)、 1, 4- ブタンジオールビス(2, 2—ジフルォロェタンスルホネート)、 1, 4_ブタンジオール ビス(1, 1, 2—トリフルォロェタンスルホネート)、 1, 4—ブタンジオールビス(1 , 2, 2 トリフルォロェタンスルホネート)、 1, 4 ブタンジオールビス(2, 2, 2 トリフルォ ロェタンスルホネート)、 1, 4 ブタンジオールビス(1 , 1 , 2, 2—テトラフルォロエタ ンスルホネート)、 1 , 4—ブタンジオールビス(1, 2, 2, 2—テトラフルォロエタンスル ホネート)、等の 1 , 4 ブタンジオールジスルホネート類;
等が挙げられる。
[0055] これらのうち、
エタンジオールジメタンスルホネート、エタンジォ一ルジェタンスルホネート、エタンジ オールビス(トリフルォロメタンスルホネート)、エタンジオールビス(ペンタフルォロェ タンスルホネート)、エタンジオールジ(フルォロメタンスルホネート)、エタンジオール ビス(ジフルォロメタンスルホネート)、エタンジオールジ(2—フルォロエタンスルホネ 一ト)、エタンジオールビス(2, 2—ジフルォロェタンスルホネート)、エタンジオールビ ス(2, 2, 2 _トリフルォロェタンスルホネート)等のエタンジオールジスルホネート類; 1 , 2 _プロパンジオールジメタンスルホネート、 1 , 2 _プロパンジォールジェタンス ノレホネート、 1, 2 _プロパンジオールビス(トリフルォロメタンスルホネート)、 1, 2—プ 口パンジオールビス(ペンタフルォロェタンスルホネート)、 1 , 2_プロパンジオールジ (フルォロメタンスルホネート)、 1, 2—プロパンジオールビス(ジフルォロメタンスルホ ネート)、 1, 2—プロパンジオールジ(2—フルォロェタンスルホネート)、 1 , 2—プロ パンジオールビス(2, 2—ジフルォロェタンスルホネート)、 1, 2—プロパンジオール ビス(2, 2, 2 _トリフルォロェタンスルホネート)等の 1 , 2 _プロパンジオールジスル ホネート類;
[0056] 1 , 3 _プロパンジオールジメタンスルホネート、 1 , 3 _プロパンジォールジェタンス ノレホネート、 1, 3 _プロパンジオールビス(トリフルォロメタンスルホネート)、 1, 3—プ 口パンジオールビス(ペンタフルォロェタンスルホネート)、 1 , 3_プロパンジオールジ (フルォロメタンスルホネート)、 1, 3 _プロパンジオールビス(ジフルォロメタンスルホ ネート)、 1, 3_プロパンジオールジ(2—フルォロェタンスルホネート)、 1, 3 _プロ パンジオールビス(2, 2—ジフルォロェタンスルホネート)、 1, 3_プロパンジオール ビス(2, 2, 2 _トリフルォロェタンスルホネート)等の 1 , 3 _プロパンジオールジスル ホネート類;
[0057] 1 , 2—ブタンジオールジメタンスルホネート、 1 , 2—ブタンジォールジェタンスルホ ネート、 1, 2—ブタンジオールビス(トリフルォロメタンスルホネート)、 1, 2—ブタンジ オールビス(ペンタフルォロェタンスルホネート)、 1, 2—ブタンジオールジ(フルォロ メタンスルホネート)、 1 , 2—ブタンジオールビス(ジフルォロメタンスルホネート)、 1 , 2—ブタンジオールジ(2—フルォロェタンスルホネート)、 1, 2—ブタンジオールビス (2, 2—ジフルォロェタンスルホネート)、 1 , 2—ブタンジオールビス(2, 2, 2—トリフ ノレォロェタンスルホネート)等の 1 , 2—ブタンジオールジスルホネート類;
[0058] 1 , 3—ブタンジオールジメタンスルホネート、 1 , 3—ブタンジォールジェタンスルホ ネート、 1, 3 _ブタンジオールビス(トリフルォロメタンスルホネート)、 1, 3 _ブタンジ オールビス(ペンタフルォロェタンスルホネート)、 1, 3 _ブタンジオールジ(フルォロ メタンスルホネート)、 1 , 3 _ブタンジオールビス(ジフルォロメタンスルホネート)、 1 , 3 _ブタンジオールジ(2—フルォロェタンスルホネート)、 1, 3_ブタンジオールビス (2, 2—ジフルォロェタンスルホネート)、 1 , 3 _ブタンジオールビス(2, 2, 2_トリフ ノレォロェタンスルホネート)等の 1, 3-ブタンジオールジスルホネート類;
[0059] 1 , 4_ブタンジオールジメタンスルホネート、 1 , 4 _ブタンジォールジェタンスルホ ネート、 1, 4 ブタンジオールビス(トリフルォロメタンスルホネート)、 1, 4 ブタンジ オールビス(ペンタフルォロェタンスルホネート)、 1, 4 ブタンジオールジ(フルォロ メタンスルホネート)、 1 , 4 ブタンジオールビス(ジフルォロメタンスルホネート)、 1 , 4_ブタンジオールジ(2 フルォロェタンスルホネート)、 1, 4_ブタンジオールビス (2, 2—ジフルォロェタンスルホネート)、 1 , 4_ブタンジオールビス(2, 2, 2_トリフ ノレォロエタンスルホネート)等の 1, 4—ブタンジオールジスルホネート類; 等が保存特性向上の点から好ましレ、。
[0060] なかでも、
エタンジオールビス(トリフルォロメタンスルホネート)、エタンジオールビス(ペンタフ ノレォロェタンスルホネート)、エタンジオールジ(フルォロメタンスルホネート)、ェタン ジオールジ(2—フルォロェタンスルホネート)、エタンジオールビス(2, 2, 2_トリフ ノレォロェタンスルホネート)等のエタンジオールジスルホネート類;
1 , 2—プロパンジオールビス(トリフルォロメタンスルホネート)、 1, 2—プロパンジォ ールビス(ペンタフルォロェタンスルホネート)、 1, 2—プロパンジオールジ(フルォロ メタンスルホネート)、 1 , 2—プロパンジオールジ(2—フルォロェタンスルホネート)、
1. 2—プロパンジオールビス(2, 2, 2—トリフルォロェタンスルホネート)等の 1, 2— プロパンジオールジスルホネート類;
[0061] 1 , 3—プロパンジオールビス(トリフルォロメタンスルホネート)、 1 , 3—プロパンジォ ールビス(ペンタフルォロェタンスルホネート)、 1, 3—プロパンジオールジ(フルォロ メタンスルホネート)、 1 , 3 プロパンジオールジ(2 フルォロェタンスルホネート)、
1. 3—プロパンジオールビス(2, 2, 2—トリフルォロェタンスルホネート)等の 1, 3- プロパンジオールジスルホネート類;
1 , 2 _ブタンジオールビス(トリフルォロメタンスルホネート)、 1 , 2_ブタンジォーノレ ビス(ペンタフルォロェタンスルホネート)、 1, 2 _ブタンジオールジ(フルォロメタンス ノレホネート)、 1, 2 _ブタンジオールジ(2—フルォロェタンスルホネート)、 1, 2—ブ タンジオールビス(2, 2, 2_トリフルォロェタンスルホネート)等の 1, 2_ブタンジォ ールジスルホネート類;
[0062] 1 , 3 _ブタンジオールビス(トリフルォロメタンスルホネート)、 1 , 3 _ブタンジオール ビス(ペンタフルォロェタンスルホネート)、 1, 3—ブタンジオールジ(フルォロメタンス ノレホネート)、 1, 3—ブタンジオールジ(2—フルォロェタンスルホネート)、 1, 3—ブ タンジオールビス(2, 2, 2—トリフルォロェタンスルホネート)等の 1, 3—ブタンジォ ールジスルホネート類;
1 , 4_ブタンジオールビス(トリフルォロメタンスルホネート)、 1 , 4_ブタンジォーノレ ビス(ペンタフルォロェタンスルホネート)、 1, 4 _ブタンジオールジ(フルォロメタンス ノレホネート)、 1, 4_ブタンジオールジ(2—フルォロェタンスルホネート)、 1, 4—ブ タンジオールビス(2, 2, 2_トリフルォロェタンスルホネート)等の 1, 4_ブタンジォ ールジスルホネート類;
等が特に好ましい。
[二トリル化合物]
二トリルイ匕合物としては、分子内に二トリル基を有する化合物であれば特にその種 類は限定されない。また、二トリル基を 1分子中に複数個有する化合物であってもよ レ、。
二トリルイ匕合物の具体例としては、
ァセトニトリノレ、プロピオ二トリノレ、ブチロニトリル、イソブチロニトリル、バレロ二トリル、 イソバレロ二トリル、 2—メチルブチロニトリル、トリメチルァセトニトリル、へキサン二トリ ノレ、シクロペンタンカルボ二トリル、 シクロへキサンカルボ二トリル、アタリロニトリノレ、メ タクリロ二トリル、クロトノニトリノレ、 3-メチルクロトノニトリル、 2-メチル - 2-ブテン二トリル 、 2-ペンテン二トリル、 2-メチルー 2—ペンテン二トリル、 3-メチルー 2—ペンテンニト リル、 2—へキセン二トリル、フルォロアセトニトリル、ジフルォロアセトニトリル、トリフノレ ォロアセトニトリル、 2 _フルォロプロピオ二トリル、 3 _フルォロプロピオ二トリル、 2,2- ジフルォロプロピオ二トリル、 2, 3-ジフルォロプロピオ二トリル、 3, 3-ジフルォロプロピ 才二トリノレ、 2, 2,3_トリフノレ才口プロヒ。才ニトリノレ、 3, 3,3_トリフノレ才口プロヒ。才ニトリノレ、 ペンタフルォロプロピオ二トリル等のモノ二トリル化合物;
マロノ二トリル、スクシノニトリル、 2 _メチノレスクシノニトリノレ、テトラメチルスクシノニトリ ノレ、グルタロニトリル、 2—メチルダルタロニトリル、アジポニトリル、フマロニトリル、 2-メ チレングルタロニトリル等のジニトリル化合物; テトラシァノエチレン等のテトラニトリル化合物等が挙げられる。
[0064] これらの中でも、
ァセトニトリル、プロピオ二トリル、ブチロニトリル、バレロ二トリル、クロトノニトリノレ、 3-メ チノレクロトノニトリノレ、 マロノ二トリル、スクシノニトリル、グノレタロニトリル、アジポニトリノレ 、フマロニトリルが保存特性向上の点から好ましぐ
マロノ二トリル、スクシノニトリル、グノレタロニトリル、アジポニトリル、フマロニトリル等の ジニトリルイ匕合物がより好ましい。
[0065] [一般式(1)で表される化合物]
上記一般式(1)中、炭素数 1〜: 12のアルキル基としては、例えば、メチル基、ェチ ル基、 n_プロピル基、 i_プロピル基、 n_ブチル基、 i_ブチル基、 see—ブチル基 、 tert_ブチル基、ペンチル基、シクロペンチル基、シクロへキシル基等の直鎖状、 分岐鎖状又は環状アルキル基が挙げられる。!^〜 の炭素数は、下限としては、通 常 1以上、ガス発生抑制のの点から、好ましくは 2以上、上限としては、通常 12以下、 電解液への溶解性および電池特性の点から、好ましくは 8以下、さらに好ましくは 4以 下である。
さらに、上記アルキル基はフッ素原子で置換されていてもよぐフッ素原子で置換さ れている基としては、例えばトリフルォロメチル基、トリフルォロェチル基、ペンタフノレ ォロェチル基等の上記アルキル基の部分フッ化アルキル基およびパーフルォロアル キル基が挙げられる。
また、上記一般式中、 nは 0〜6の整数を示す。
[0066] 一般式(1)で表される化合物の具体例としては、
トリメチルホスホノフオルメート、メチルジェチルホスホノフオルメート、メチルジプロピ ノレホスホノフオルメート、メチルジプチルホスホノフオルメート、トリェチルホスホノフォ ノレメート、ェチルジメチルホスホノフオルメート、ェチルジプロピルホスホノフオルメート 、ェチルジプチルホスホノフオルメート、トリプロピルホスホノフオルメート、プロピルジメ チルホスホノフオルメート、プロピルジェチルホスホノフオルメート、プロピルジプチル ホスホノフオルメート、トリブチルホスホノフオルメート、ブチルジメチルホスホノフオルメ ート、ブチルジェチルホスホノフオルメート、ブチルジプロピルホスホノフオルメート、メ チルビス(2, 2, 2—トリフルォロェチル)ホスホノフオルメート、ェチルビス(2, 2, 2— トリフルォロェチル)ホスホノフオルメート、プロピルビス(2, 2, 2—トリフルォロェチル )ホスホノフオルメート、ブチルビス(2, 2, 2—トリフルォロェチノレ)ホスホノフオルメート 等の n=0の化合物;
[0067] トリメチルホスホノアセテート、メチルジェチルホスホノアセテート、メチルジプロピル ホスホノアセテート、メチルジプチルホスホノアセテート、トリェチルホスホノアセテート 、ェチルジメチルホスホノアセテート、ェチルジプロピルホスホノアセテート、ェチルジ プチルホスホノアセテート、トリプロピルホスホノアセテート、プロピルジメチルホスホノ アセテート、プロピルジェチルホスホノアセテート、プロピルジプチルホスホノアセテー ト、トリブチルホスホノアセテート、ブチルジメチルホスホノアセテート、ブチルジェチル ホスホノアセテート、ブチルジプロピルホスホノアセテート、メチルビス(2, 2, 2—トリフ ルォロェチル)ホスホノアセテート、ェチルビス(2, 2, 2 _トリフルォロェチル)ホスホ ノアセテート、プロピルビス(2, 2, 2—トリフルォロェチル)ホスホノアセテート、ブチル ビス(2, 2, 2—トリフルォロェチル)ホスホノアセテート等の n= lの化合物;
[0068] トリメチルー 3 ホスホノプロピオネート、メチルジェチルー 3 ホスホノプロピオネー ト、メチルジプロピル 3—ホスホノプロピオネート、メチルジプチルー 3—ホスホノプ 口ピオネート、トリェチルー 3—ホスホノプロピオネート、ェチルジメチルー 3—ホスホノ プロピオネート、ェチルジプロピル 3—ホスホノプロピオネート、ェチルジプチルー 3 ホスホノプロピオネート、トリプロピル 3—ホスホノプロピオネート、プロピルジメチ ノレ 3—ホスホノプロピオネート、プロピルジェチルー 3—ホスホノプロピオネート、プ 口ピルジプチル 3—ホスホノプロピオネート、トリブチル 3—ホスホノプロピオネー ト、ブチルジメチル一 3_ホスホノプロピオネート、ブチルジェチル一 3 _ホスホノプロ ピオネート、ブチルジプロピル一 3_ホスホノプロピオネート、メチルビス(2, 2, 2—ト リフルォロェチル) _ 3_ホスホノプロピオネート、ェチルビス(2, 2, 2_トリフノレオ口 ェチル)_ 3_ホスホノプロピオネート、プロピルビス(2, 2, 2_トリフルォロェチル) —3—ホスホノプロピオネート、ブチルビス(2, 2, 2—トリフルォロェチル)一3—ホス ホノプロピオネート等の n= 2の化合物;
[0069] トリメチル _4_ホスホノブチレート、メチルジェチル _4_ホスホノブチレート、メチ ノレジプロピル 4 ホスホノブチレート、メチルジプチルー 4 ホスホノブチレート、トリ ェチルー 4 ホスホノブチレート、ェチルジメチルー 4 ホスホノブチレート、ェチルジ プロピル 4 ホスホノブチレート、ェチルジプチルー 4 ホスホノブチレート、トリプロ ピル _4_ホスホノブチレート、プロピルジメチル一 4_ホスホノブチレート、プロピル ジェチル _4_ホスホノブチレート、プロピルジプチル _4_ホスホノブチレート、トリ ブチル _4_ホスホノブチレート、ブチルジメチル _4_ホスホノブチレート、ブチルジ ェチル _ 4 _ホスホノブチレート、ブチルジプロピル _ 4 _ホスホノブチレート等の n = 3の化合物等が挙げられる。
[0070] これらの中で、高温保存後の電池特性向上の点から n=0, 1 , 2の化合物が保存 特性向上の点から好ましぐ n= l , 2の化合物が特に好ましい。
これらの環状スルホン酸エステル化合物、ジスルホン酸エステル化合物、二トリル化 合物及び一般式(1)で表される化合物からなる群より選ばれた少なくとも 1種の化合 物は、 1種を単独で用いてもよぐ 2種類以上の化合物を任意の組み合わせ及び比 率で併用してもよい。
[0071] 非水系電解液中のこれらの化合物の含有割合は、本願発明の効果を発現するた めには、特に制限はないが、非水系電解液全体に対して、合計で、通常 0. 001重 量%以上、好ましくは 0. 01重量%以上、より好ましくは 0. 1重量%以上である。また 、上限は合計で、通常 5重量%以下であり、 4重量%以下が好ましぐより好ましくは 3 重量%以下である。これらの化合物の濃度が低すぎると改善効果が得られ難い場合 があり、一方、濃度が高すぎると充放電効率の低下を招く場合がある。
本発明に係る非水系電解液が、高温保存特性を改善する理由は明らかではなぐ また、本発明は下記作用原理に限定されるものではないが、次のように推察される。 環状スルホン酸エステルィヒ合物、ジスルホン酸エステル化合物、二トリル化合物及 び一般式(1)で表される化合物は、正極表面への吸着または保護皮膜形成により、 高温保存時の正極側の劣化を抑制することができるが、負極側で還元分解されやす い傾向があり、負極側での副反応が多くなつたり、負極側の抵抗を増大させて、電池 特性が低下する傾向があった。 2以上のフッ素原子を有するフッ素化環状カーボネ ート化合物を含有する場合、 2以上のフッ素原子を有するフッ素化環状カーボネート 化合物が、これらの化合物が反応するより早い段階で、負極表面に皮膜を形成し、こ れらの化合物の過剰な反応を抑制できると考えられる。
[0072] 本発明の一つは、電解質及びこれを溶解する非水溶媒を含む非水系電解液にお いて、該非水系電解液が、充電終止電圧が 4. 3V以上の高電圧電池に使用される 電解液であって、 2以上のフッ素原子を有するフッ素化環状カーボネートを含有する ことを特徴とする。
(充電終止電圧が 4. 3V以上の高電圧電池)
本発明に係る非水系電解液は、充電終止電圧が 4. 3V以上の高電圧電池に使用 されることを特徴とする。
充電終止電圧が 4. 3V以上の高電圧電池の電圧の下限としては、通常 4. 3V以上 、好ましくは 4. 35V以上である。上限としては、特に制限されないが 6V以下、好まし くは 5V以下、特に好ましくは 4. 8V以下である。この下限値を上回る場合、エネルギ 一密度の向上効果とサイクル特性が良好であるため好ましい。
[0073] 電池を高電圧とするためには、活物質の種類や正負極のバランスを適宜選択して 電池を構成することで達成できる。
その構成についての詳細については後述する。
本発明の電池は、充電終止電圧を 4. 3V以上としていることから、 4. 3V以上の電 圧を少なくとも一度経験していることとなる。通常、 4. 3V以上の電圧を少なくとも一度 経験した電池は、正極と電解液との副反応に起因すると思われる電池特性の劣化が 顕著になる問題もあった。
一方で、本願発明の電池は、高電圧下において、正極及び負極と電解液の分解が 起こりづらいため、電池は高い電池特性を維持したまま充放電を繰り返すことができ る。
[0074] 本発明に係る非水系電解液は、それぞれを組み合わせて用いてもよい。
例えば、電解質及びこれを溶解する非水溶媒を含む非水系電解液において、該非 水系電解液が、不飽和結合を有する環状カーボネート類をおよび Z又は総炭素数 力 ^以上 18以下の芳香族化合物および/又は非水溶媒がジェチルカーボネートを 含有し、および/又は環状スルホン酸エステル化合物、ジスルホン酸エステル化合 物、二トリル化合物、一般式(1)で表される化合物からなる群より選ばれた少なくとも 1 種以上の化合物を含有し、更に、 2以上のフッ素原子を有するフッ素化環状カーボネ ートを含有する非水系電解液、または、それらの非水系電解液が充電終止電圧が 4 . 3V以上の高電圧電池に使用される非水系電解液であってもよい。
(他の化合物)
本発明に係る非水系電解液は、本発明の効果を損ねない範囲で、種々の他の化 合物を助剤として含有してレ、てもよレ、。
他の助剤としては、
フルォロエチレンカーボネート、エリスリタンカーボネート、スピロ一ビス一ジメチレン カーボネート、メトキシェチル一メチルカーボネート等のカーボネート化合物; 無水コハク酸、無水ダルタル酸、無水マレイン酸、無水ィタコン酸、無水シトラコン 酸、無水グルタコン酸、無水ジグリコール酸、シクロへキサンジカルボン酸無水物、シ クロペンタンテトラカルボン酸二無水物、フエニルコハク酸無水物等のカルボン酸無 水物;
2, 4, 8, 10—テトラオキサスピロ [5· 5]ゥンデカン、 1 , 9ージビニノレー 2, 4, 8, 10 ーテトラオキサスピロ [5· 5]ゥンデカン等のスピロ化合物;
エチレンサルファイト、プロピレンサルファイト、メチルメタンスルホネート、ェチルメタ ンスルホネート、メチルーメトキシメタンスルホネート、メチルー 2—メトキシエタンスル ホネート、スルホラン、スルホレン、ジメチルスルホン、ジフエニルスルホン、 N, N—ジ メチルメタンスルホンアミド、 N, N—ジェチルメタンスルホンアミド等の含硫黄化合物
1 _メチル _ 2_ピロリジノン、 1 _メチル _ 2—ピペリドン、 3 _メチル _ 2—ォキサゾ リジノン、 3—ジメチル一 2_イミダゾリジノン、 N—メチルスクシイミド等の含窒素化合 物;
ヘプタン、オクタン、ノナン、デカン、シクロヘプタン、メチルシクロへキサン、ェチルシ クロへキサン、プロピルシクロへキサン、 n—ブチルシクロへキサン、 t—ブチルシクロ へキサン、ジシクロへキシル等の炭化水素化合物、
フルォロベンゼン、ジフルォロベンゼン、へキサフルォロベンゼンのフッ化ベンゼン等 が挙げられる。
これらは 2種類以上併用して用いてもよい。
[0076] 非水系電解液中におけるこれらの助剤の割合は、本願発明の効果を発現するため には、特に制限はないが、通常 0. 01重量%以上、好ましくは 0. 1重量%以上、特に 好ましくは 0. 2重量%以上であり、上限は、通常 5重量%以下、好ましくは 3重量% 以下、特に好ましくは 1重量%以下である。これらの助剤を添加することにより、高温 保存後の容量維持特性やサイクル特性を向上させることができる。この下限より低濃 度では助剤の効果がほとんど発現しない場合がある。また、逆に濃度が高すぎると高 負荷放電特性などの電池の特性が低下する場合がある。
[0077] (電解液の調製)
本発明に係る非水系電解液は、非水溶媒に、電解質、 2以上のフッ素原子を有す るフッ素化環状カーボネートィヒ合物よりなる群から選ばれる少なくとも一種以上の化 合物及び必要に応じて他の化合物を溶解することにより調製することができる。非水 系電解液の調製に際しては、各原料は、電解液とした場合の水分を低減させるため 予め脱水しておくのが好ましい。通常 50ppm以下、好ましくは 30ppm以下、特に好 ましくは lOppm以下まで脱水するのがよい。また、電解液調製後に、脱水、脱酸処 理等を実施してもよい。
本発明の非水系電解液は、非水電解液電池の中でも二次電池用、即ち非水系電 解液二次電池、例えばリチウム二次電池用の電解液として用いるのに好適である。 以下、本発明の電解液を用いた非水系電解液二次電池について説明する。
[0078] <非水系電解液二次電池 >
本発明の非水系電解液二次電池は、リチウムイオンを吸蔵'放出可能な負極及び 正極、並びに非水系電解液を含む非水系電解液電池であって、該非水系電解液が 上記した電解液であることを特徴とするものである。
(電池構成)
本発明に係る非水系電解液二次電池は、上記本発明の電解液を用いて作製され る以外は従来公知の非水系電解液二次電池と同様、リチウムイオンを吸蔵 ·放出可 能な負極及び正極、並びに非水電解液を含む非水系電解液電池であり、通常、正 極と負極とを本発明に係る非水系電解液が含浸されている多孔膜を介してケースに 収納することで得られる。従って、本発明に係る二次電池の形状は特に制限されるも のではなぐ円筒型、角型、ラミネート型、コイン型、大型等のいずれであってもよい。
[0079] (負極)
負極活物質としては、リチウムを吸蔵 ·放出可能な炭素質材料や金属化合物、リチ ゥム金属及びリチウム合金などを用いることができる。これらの負極活物質は、単独で 用いても、 2種類以上を混合して用いてもよい。なかでも好ましいものは炭素質材料、 リチウムを吸蔵および放出可能な金属化合物である。
[0080] 炭素質材料のなかでは、特に、黒鉛や黒鉛の表面を黒鉛に比べて非晶質の炭素 で被覆したものが好ましい。
黒鉛は、学振法による X線回折で求めた格子面(002面)の d値 (層間距離)が 0. 3 35〜0. 338nm、特に 0. 335〜0. 337nmであるもの力 S好ましレヽ。また、学振法によ る X線回折で求めた結晶子サイズ (Lc)は、通常 30nm以上、好ましくは 50nm以上、 特に好ましくは lOOnm以上である。灰分は、通常 1重量%以下、好ましくは 0. 5重量 %以下、特に好ましくは 0. 1重量%以下である。
[0081] 黒鉛の表面を非晶質の炭素で被覆したものとして好ましいのは、 X線回折における 格子面(002面)の d値が 0. 335〜0. 338nmである黒鉛を核材とし、その表面に該 核材よりも X線回折における格子面 (002面)の d値が大きい炭素質材料が付着して おり、かつ核材と核材よりも X線回折における格子面(002面)の d値が大きい炭素質 材料との割合が重量比で 99/:!〜 80/20であるものである。これを用いると、高い 容量で、かつ電解液と反応しにくい負極を製造することができる。
[0082] 炭素質材料の粒径は、レーザー回折 ·散乱法によるメジアン径で、通常 1 μ m以上 、好ましくは 3 z m以上、より好ましくは 5 x m以上、最も好ましくは 7 μ m以上であり、 通常 100 μ m以下、好ましくは 50 μ m以下、より好ましくは 40 μ m以下、最も好ましく は 30 x m以下である。
炭素質材料の BET法による比表面積は、通常 0. 3m2/g以上、好ましくは 0. 5m2 /g以上、より好ましくは 0. 7m2Zg以上、最も好ましくは 0. 8m2Zg以上であり、通常 25. Om2Zg以下、好ましくは 20. Om2/g以下、より好ましくは 15. Om2Zg以下、最 も好ましくは 10. Om2/g以下である。
[0083] また、炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析し 、 1570〜: 1620cm— 1の範囲にあるピーク Pのピーク強度を I、 1300〜: 1400cm— 1
A A
範囲にあるピーク Pのピーク強度を Iとした場合、 Iと Iの比で表される R値(=1 /1
B B B A B A
)力 0. 01〜0. 7の範囲であるもの力 S好ましレ、0また、 1570〜1620cm— 1の範囲に あるピークの半値幅力 通常 26cm 1以下、特に 25cm 1以下であるものが好ましい。
[0084] リチウムを吸蔵及び放出可能な金属化合物としては、 Ag、 Zn、 Al、 Ga、 In、 Si、 G e、 Sn、 Pb、 P、 Sb、 Bi、 Cu、 Ni、 Sr、 Ba等の金属を含有する化合物が挙げられ、こ れらの金属は単体、酸化物、リチウムとの合金などとして用いられる。本発明におい ては、 Si、 Sn、 Ge及び A1から選ばれる元素を含有するものが好ましぐ Si、 Sn及び A1から選ばれる金属の酸化物又はリチウム合金がより好ましい。 また、これらは粉末 のものでも薄膜状のものでもよぐ結晶質のものでもァモルファスのものでもよい。
[0085] リチウムを吸蔵 ·放出可能な金属化合物あるいはこの酸化物やリチウムとの合金は 、一般に黒鉛に代表される炭素質材料に比較し、単位重量あたりの容量が大きいの で、より高エネルギー密度が求められるリチウム二次電池には好適である。
リチウムを吸蔵 ·放出可能な金属化合物あるいはこの酸化物やリチウムとの合金の 平均粒系は、本願発明の効果を発現するためには、特に制限はないが、通常 50 μ m以下、好ましくは 20 μ m以下、特に好ましくは 10 μ m以下、通常 0. 1 μ m以上、好 ましくは 1 m以上、特に好ましくは 2 μ ΐη以上である。この上限を上回る場合、電極 の膨張が大きくなり、サイクル特性が低下してしまう可能性がある。また、この下限を 下回る場合、集電が取りにくくなり、容量が十分に発現しない可能性がある。
[0086] (正極)
正極活物質としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマ ンガン酸化物等のリチウム遷移金属複合酸化物材料などのリチウムを吸蔵 ·放出可 能な材料が挙げられる。これらの化合物は、 Li CoO、 Li NiO、 Li MnO、 Li Co
X 2 X 2 X 2 X 1-
M〇、Li Ni M O、Li Mn M O等であり、ここで Mは通常、 Fe、 Co、 Ni、 Mn y y 2 X 1-y y 2 X 1-y y 2
、 Mg、 Cu、 Zn、 Al、 Sn、 B、 Ga、 Cr、 V、 Sr、 Ti力、ら選ば'れる少なくとも 1種であり、 0 . 4≤x≤l . 2、 0≤y≤0. 6であるものや、 Li Mn Ni Co O (但し、 0. 4≤x≤l . 2、 a + b + c= l)が挙げられる。
[0087] 特に Li Co M O 、 Li Ni M O 、 Li Mn M O等で表される、コバルト、ニッケ
X l-y y 2 X 1-y y 2 X 1-y y 2
ノレ、マンガンの一部を他の金属で置き換えたものや、 Li Mn Ni Co O (但し、 0· 4
X a b c 2
≤x≤l . 2、 a + b + c= l、 I a-b | < 0. 1)で表されるものは、その構造を安定化さ せることができるので好ましレ、。
正極活物質は、単独で用いても、複数を併用しても良い。
[0088] また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異な る組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミ 二ゥム、酸化ケィ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシ ゥム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナ トリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫 酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる
[0089] 表面付着物質の量としては、本願発明の効果を発現するためには、特に制限はな いが、正極活物質に対して質量で、下限として好ましくは 0. lppm以上、より好ましく は lppm以上、更に好ましくは lOppm以上、上限として好ましくは 20%以下、より好 ましくは 10%以下、更に好ましくは 5%以下で用いられる。表面付着物質により、正 極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向 上させること力 Sできる力 その付着量が少なすぎる場合その効果は十分に発現せず、 多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合があ る。
[0090] (電極)
活物質を結着する結着剤としては、電極製造時に使用する溶媒や電解液に対して 安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリ デン、ポリテトラフルォロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等 のポリオレフイン、スチレン 'ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽 和結合を有するポリマー及びその共重合体、エチレン 'アクリル酸共重合体、ェチレ ン 'メタクリル酸共重合体等のアクリル酸系ポリマー及びその共重合体などが挙げら れる。
[0091] 電極中には、機械的強度や電気伝導度を高めるために増粘剤、導電材、充填剤な どを含有させてもよレ、。
増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチ ノレセノレロース、ェチノレセノレロース、ポリビニノレアノレコーノレ、酸化スターチ、リン酸ィ匕ス ターチ、ガゼイン等が挙げられる。
[0092] 導電材としては、銅又はニッケル等の金属材料、グラフアイト又はカーボンブラック 等の炭素材料などが挙げられる。
電極の製造は、常法によればよい。例えば、負極又は正極活物質に、結着剤、増 粘剤、導電材、溶媒等を加えてスラリー化し、これを集電体に塗布、乾燥した後に、 プレスすることによって形成することができる。
[0093] また、活物質に結着剤や導電材などをカ卩えたものをそのままロール成形してシート 電極としたり、圧縮成型によりペレット電極としたり、蒸着'スパッタ 'メツキ等の手法で 集電体上に電極材料の薄膜を形成することもできる。
負極活物質に黒鉛を用いた場合、負極活物質層の乾燥、プレス後の密度は、通常 1. 45g/cm3以上であり、好ましくは 1. 55g/cm3以上、より好ましくは 1. 60g/cm 3以上、特に好ましくは 1. 65g/cm3以上、である。
[0094] また、正極活物質層の乾燥、プレス後の密度は、通常 2. Og/cm3以上であり、好 ましくは 2· 5g/cm3以上、より好ましくは 3· Og/cm3以上である。
集電体としては各種のものが用いることができる力 通常は金属や合金が用いられ る。負極の集電体としては、銅、ニッケル、ステンレス等が挙げられ、好ましいのは銅 である。また、正極の集電体としては、アルミニウム、チタン、タンタル等の金属又はそ の合金が挙げられ、好ましいのはアルミニウム又はその合金である。
[0095] (セパレータ、外装体)
正極と負極の間には、短絡を防止するために多孔膜 (セパレータ)を介在させる。こ の場合、電解液は多孔膜に含浸させて用いる。多孔膜の材質や形状は、電解液に 安定であり、かつ保液性に優れていれば、特に制限はなぐポリエチレン、ポリプロピ レン等のポリオレフインを原料とする多孔性シート又は不織布等が好ましい。 本発明に係る電池に使用する電池の外装体の材質も任意であり、ニッケルメツキを 施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン、ラミネートフィノレ ム等が用いられる。
上記した本発明の非水系電解液二次電池の作動電圧は通常 2V〜6Vの範囲であ る。
実施例
[0096] 以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明 は、その要旨を超えない限りこれらの実施例に限定されるものではない。
尚、下記実施例および比較例で得られた電池の各評価方法を以下に示す。
[容量評価]
非水系電解液二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態 で、 25°Cにおいて、 0. 2Cに相当する定電流で 4. 2Vまで充電した後、 0. 2Cの定 電流で 3Vまで放電した。これを 3サイクル行って電池を安定させ、 4サイクル目は、 0 . 5Cの定電流で 4. 2Vまで充電後、 4. 2Vの定電圧で電流値が 0. 05Cになるまで 充電を実施し、 0. 2Cの定電流で 3Vまで放電して、初期放電容量を求めた。
ここで、 1Cとは電池の基準容量を 1時間で放電する電流値を表し、 0. 2Cとはその 1/5の電流値を表す。
[0097] [サイクル特性の評価]
容量評価試験の終了した電池を、 45°Cにおいて、 0. 5Cの定電流で 4. 2Vまで充 電後、 4. 2Vの定電圧で電流値が 0. 05Cになるまで充電し、 1Cの定電流で 3Vまで 放電をするサイクル試験を実施した。 1サイクノレ目の放電容量を 100とした場合の 30 0サイクル後の放電容量(Q/o)を求めた。
[0098] [高電圧サイクル特性の評価]
容量評価試験の終了した電池を、 45°Cにおいて、 0. 5Cの定電流で 4. 35Vまで 充電後、 4. 35Vの定電圧で電流値が 0. 05Cになるまで充電し、 1Cの定電流で 3V まで放電をするサイクル試験を実施した。 1サイクル目の放電容量を 100とした場合 の 50サイクル後の放電容量(%)を求めた。
[0099] [放電保存特性の評価] 容量評価試験の終了した電池を、 60°Cで保存し、電圧の変化を測定した。電圧が 3Vから 2. 5Vまでに変化するのに要する時間を、放電保存時間とした。放電保存時 間が長いほど、保存時の劣化(電池内部の副反応、主に負極側での副反応に起因 する劣化)が抑制され、電池が安定であることを示す。
[0100] [連続充電特性の評価]
容量評価試験の終了した電池を、エタノール浴中に浸して体積を測定した後、 60 °Cにおいて、 0. 5Cの定電流で定電流充電を行い、 4. 25Vに到達した後、定電圧 充電に切り替え、 1週間連続充電を行った。
電池を冷却させた後、エタノール浴中に浸して体積を測定し、連続充電の前後の 体積変化から発生したガス量を求めた。
発生ガス量の測定後、 25°Cにおいて 0. 2Cの定電流で 3Vまで放電させ、連続充 電試験後の残存容量を測定し、初期放電容量に対する連続充電試験後の放電容量 の割合を求め、これを連続充電後の残存容量(%)とした。
[0101] (実施例 1)
[負極の製造]
X線回折における格子面(002面)の d値が 0. 336nm、結晶子サイズ (Lc)が 652η m、灰分が 0. 07重量%、レーザー回折'散乱法によるメジアン径が 12 μ ΐη、 BET法 による比表面積が 7· 5m2/g、アルゴンイオンレーザー光を用いたラマンスぺクトノレ 分析から求めた R値(=1 /1 )が 0· 12、 1570〜1620cm— 1の範囲にあるピークの
B A
半値幅が 19. 9cm 1である天然黒鉛粉末 94重量部とポリフッ化ビニリデン 6重量部と を混合し、 N—メチル 2—ピロリドンをカ卩ぇスラリー状にした。このスラリーを厚さ 12 z mの銅箔の片面に均一に塗布、乾燥した後、負極活物質層の密度が 1. 65g/c m3になるようにプレスして負極とした。
[0102] [正極の製造]
LiCoO 90重量部、カーボンブラック 4重量部及びポリフッ化ビニリデン(呉羽化学
2
社製、商品名「KF— 1000」)6重量部を混合し、 N メチル—2 ピロリドンをカロえス ラリーし、これを厚さ 15 z mのアルミニウム箔の両面に均一に塗布、乾燥した後、正 極活物質層の密度が 3. Og/cm3になるようにプレスして正極とした。 [0103] [電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネートとェチルメチルカーボネートとの混 合物(容量比 3 : 7) 97重量部に、ビニレンカーボネート 2重量部及びシス— 4, 5 ジ フルオロー 1, 3—ジォキソラン— 2_オン 1重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して電解液とした。
[0104] [リチウム二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極、 セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム (厚さ 40 μ m)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極負極 の端子を突設させながら揷入した後、上記電解液を袋内に注入し、真空封止を行い 、シート状電池を作製し、サイクル特性および放電保存特性の評価を行った。評価結 果を表 1に示す。
[0105] (実施例 2)
エチレンカーボネートとェチルメチルカーボネートとの混合物(容量比 3: 7) 97. 5 重量部に、ビニレンカーボネート 2重量部及びシス 4, 5 ジフノレオロー 1, 3 ジォ キソラン 2—オン 0. 5重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/ リットルの割合となるように溶解して調製した電解液を使用した以外、実施例 1と同様 にしてシート状リチウム二次電池を作製し、サイクル特性および放電保存特性の評価 を行った。評価結果を表 1に示す。
[0106] (実施例 3)
エチレンカーボネートとェチルメチルカーボネートとの混合物(容量比 3: 7) 97. 5 重量部に、ビニレンカーボネート 1. 5重量部、ビュルエチレンカーボネート 0. 5重量 部及びシス一4, 5—ジフルオロー 1 , 3—ジォキソラン一 2_オン 0. 5重量部を混合 し、次いで十分に乾燥した LiPFを 1. 0モル Zリットルの割合となるように溶解して調 製した電解液を使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作 製し、サイクル特性の評価を行った。評価結果を表 1に示す。
[0107] (実施例 4)
実施例 1の電解液において、シス一4, 5—ジフルオロー 1 , 3—ジォキソラン一 2_ オンに代えて、トランス一 4, 5 ジフルォロ一 1, 3 ジォキソラン一 2 オンを使用し た以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、サイクル特性の評 価を行った。評価結果を表 1に示す。
[0108] (実施例 5)
エチレンカーボネートとェチルメチルカーボネートとジメチルカーボネートとの混合 物(容量比 2 : 4 : 4) 97重量部に、ビニレンカーボネート 2重量部及びシス— 4, 5—ジ フルオロー 1, 3—ジォキソラン— 2_オン 1重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して調製した電解液を使用した 以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、サイクル特性の評 価を行った。評価結果を表 1に示す。
[0109] (比較例 1)
エチレンカーボネートとェチルメチルカーボネートとの混合物(容量比 3: 7) 98重量 部に、ビニレンカーボネート 2重量部を混合し、次いで十分に乾燥した LiPFを 1. 0 モル/リットルの割合となるように溶解して調製した電解液を使用した以外、実施例 1 と同様にしてシート状リチウム二次電池を作製し、サイクル特性および放電保存特性 の評価を行った。評価結果を表 1に示す。
[0110] (比較例 2)
エチレンカーボネートとェチルメチルカーボネートとの混合物(容量比 3: 7) 98重量 部に、シス 4, 5 ジフルオロー 1, 3 ジォキソラン 2 オン 2重量部を混合し、 次いで十分に乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して調製 した電解液を使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製 し、サイクル特性および放電保存特性の評価を行った。評価結果を表 1に示す。
[0111] (比較例 3)
エチレンカーボネートとェチルメチルカーボネートとの混合物(容量比 3: 7)に十分 に乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して調製した電解液を 使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、サイクル特 性および放電保存特性の評価を行った。評価結果を表 1に示す。
[0112] (比較例 4) エチレンカーボネートとェチルメチルカーボネートとの混合物(容量比 3: 7) 97重量 部に、ビニレンカーボネート 2重量部及び 4 フルオロー 1, 3—ジォキソランー2—ォ ン 1量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットルの割合となるよ うに溶解して調製した電解液を使用した以外、実施例 1と同様にしてシート状リチウム 二次電池を作製し、サイクル特性の評価を行った。評価結果を表 1に示す。
[表 1] 表 1:サイクル特性および放電保存特性
Figure imgf000041_0001
[0114] 表 1から明ら力、なように、本発明に係る電池は、サイクル特性、保存特性に優れてい ること力 Sわ力る。
(実施例 6)
エチレンカーボネートとェチルメチルカーボネートとジメチルカーボネートとの混合 物(容量比 2 : 4 : 4) 96. 5重量部に、ビニレンカーボネート 2重量部、シス— 4, 5—ジ フルオロー 1, 3—ジォキソラン _ 2_オン 0. 5重量部及び、シクロへキシルベンゼン 1重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットルの割合となる ように溶解して調製した電解液を使用した以外、実施例 1と同様にしてシート状リチウ ムニ次電池を作製し、連続充電特性の評価を行った。評価結果を表 2に示す。
[0115] (実施例 7)
実施例 6の電解液において、シクロへキシルベンゼン代えて、 2, 4—ジフルォロア 二オールを使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製し 、連続充電特性の評価を行った。評価結果を表 2に示す。
[0116] (比較例 5)
エチレンカーボネートとェチルメチルカーボネートとジメチルカーボネートとの混合 物(容量比 2 : 4 : 4) 97重量部に、ビニレンカーボネート 2重量部及び、シクロへキシ ルベンゼン 1重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットルの
6
割合となるように溶解して調製した電解液を使用した以外、実施例 1と同様にしてシ ート状リチウム二次電池を作製し、連続充電特性の評価を行った。評価結果を表 1に 示す。
[0117] (比較例 6)
比較例 5の電解液において、シクロへキシルベンゼン代えて、 2, 4—ジフルォロア 二オールを使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製し 、連続充電特性の評価を行った。評価結果を表 2に示す。
[0118] [表 2] 表 2 :連続充電特性
Figure imgf000042_0001
[0119] 表 2から明ら力、なように、本発明に係る電池は、電解液中に総炭素数が 7以上 18以 下の芳香族化合物を含有するにもかかわらず、高温保存後 (連続充電試験後)ガス 発生の増大及び放電特性の著しい低下を抑制することができる。
[0120] (実施例 8)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6) 99. 5重量部に、シス一 4, 5—ジフルオロー 1 , 3—ジォキソラン 2—オン 0· 5重量部を混合し、次いで十分に乾燥した LiPFを 1 · 0モル/リットル の割合となるように溶解して調製した電解液を使用した以外、実施例 1と同様にして シート状リチウム二次電池を作製し、高電圧サイクル特性及び連続充電特性の評価 を行った。評価結果を表 3に示す。
[0121] (比較例 7)
エチレンカーボネートとェチルメチルカーボネート(容量比 3 : 7)に、十分に乾燥し た LiPFを 1. 0モル Zリットルの割合となるように溶解して調製した電解液を使用した 以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、高電圧サイクル特 性及び連続充電特性の評価を行った。評価結果を表 3に示す。
[0122] (比較例 8)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6)に、十分に乾燥した LiPFを 1. 0モル Zリットルの割合となるよう に溶解して調製した電解液を使用した以外、実施例 1と同様にしてシート状リチウム 二次電池を作製し、高電圧サイクル特性及び連続充電特性の評価を行った。評価 結果を表 3に示す。
[0123] (実施例 9)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6) 99重量部に、シス—4, 5 ジフルオロー 1, 3 ジォキソランー2 オン 0. 5重量部及び 1, 3—プロパンスルトン 0. 5重量部を混合し、次いで十分に 乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して調製した電解液を 使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、高電圧サ イタル特性及び連続充電特性の評価を行った。評価結果を表 3に示す。
[0124] (実施例 10)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6) 99重量部に、シス一 4, 5—ジフルオロー 1, 3—ジォキソラン一 2 —オン 0. 5重量部及び 1, 4_ブタンジオールビス(2, 2, 2_トリフルォロエタンスル ホネート) 0. 5重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットノレ の割合となるように溶解して調製した電解液を使用した以外、実施例 1と同様にして シート状リチウム二次電池を作製し、高電圧サイクル特性及び連続充電特性の評価 を行った。評価結果を表 3に示す。
[0125] (実施例 11)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6) 99重量部に、シス一 4, 5—ジフルオロー 1, 3—ジォキソラン一 2 —オン 0. 5重量部及びスクシノニトリル 0. 5重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して調製した電解液を使用した
6
以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、高電圧サイクル特 性及び連続充電特性の評価を行った。評価結果を表 3に示す。
[0126] (実施例 12)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6) 99重量部に、シス一 4, 5—ジフルオロー 1, 3—ジォキソラン一 2 —オン 0. 5重量部及びトリェチルホスホノアセテート 0. 5重量部を混合し、次いで十 分に乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して調製した電解
6
液を使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、高電 圧サイクル特性及び連続充電特性の評価を行った。評価結果を表 3に示す。
[0127] (実施例 13)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6) 98. 5重量部に、シス 4, 5 ジフルオロー 1 , 3 ジォキソラン 2 オン 0. 5重量部、ビニレンカーボネート 0. 5重量部及びトリェチルホスホノアセ テート 0. 5重量部を混合し、次いで十分に乾燥した LiPFを 1. 0モル/リットルの割
6
合となるように溶解して調製した電解液を使用した以外、実施例 1と同様にしてシート 状リチウム二次電池を作製し、高電圧サイクル特性及び連続充電特性の評価を行つ た。評価結果を表 3に示す。
[0128] (実施例 14)
エチレンカーボネートとェチルメチルカーボネートの混合物(容量比 3: 7) 99重量 部に、シス一 4, 5—ジフルオロー 1, 3—ジォキソラン _ 2 _オン 0. 5重量部及びトリ ェチルホスホノアセテート 0. 5重量部を混合し、次いで十分に乾燥した LiPFを 1. 0
6 モル/リットルの割合となるように溶解して調製した電解液を使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、高電圧サイクル特性及び連続充 電特性の評価を行つた。評価結果を表 3に示す。
[0129] (比較例 9)
エチレンカーボネートとェチルメチルカーボネートとジェチルカーボネートとの混合 物(容量比 3 : 1 : 6) 99. 5重量部に、スクシノニトリル 0. 5重量部を混合し、次いで十 分に乾燥した LiPFを 1. 0モル/リットルの割合となるように溶解して調製した電解
6
液を使用した以外、実施例 1と同様にしてシート状リチウム二次電池を作製し、高電 圧サイクル特性及び連続充電特性の評価を行った。評価結果を表 3に示す。
[0130] [表 3] 表 3 :高電圧サイクル特性及び速親充電特性
Figure imgf000045_0001
表 3から明ら力なように、本発明に係る電池は、サイクル特性に優れ、高温保存後( 連続充電試験後)ガス発生を抑制し、放電特性を向上することができる。
[0131] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2006年 6月 2日出願の日本特許出願(特願 2006— 155251号)に基 づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0132] 高容量で、保存特性及びサイクル特性に優れた電池を提供可能な非水系電解液 および、それを用いて作製された非水系電解液電池を提供することができる。

Claims

請求の範囲
[1] 電解質及びこれを溶解する非水溶媒を含む非水系電解液にぉレ、て、該非水系電 解液が、不飽和結合を有する環状カーボネート類を含有し、更に、 2以上のフッ素原 子を有するフッ素化環状カーボネートを含有することを特徴とする非水系電解液。
[2] 電解質及びこれを溶解する非水溶媒を含む非水系電解液にぉレ、て、該非水系電 解液が、総炭素数が 7以上 18以下の芳香族化合物を含有し、更に、 2以上のフッ素 原子を有するフッ素化環状カーボネートを含有することを特徴とする非水系電解液。
[3] 電解質及びこれを溶解する非水溶媒を含む非水系電解液にぉレ、て、該非水溶媒 がジェチルカーボネートを含有し、更に、 2以上のフッ素原子を有するフッ素化環状 カーボネートを含有することを特徴とする非水系電解液。
[4] 電解質及びこれを溶解する非水溶媒を含む非水系電解液にぉレ、て、該非水系電 解液が、環状スルホン酸エステル化合物、ジスルホン酸エステルィヒ合物、二トリル化 合物、及び下記一般式(1)で表される化合物からなる群より選ばれた少なくとも 1種 以上の化合物を含有し、更に、 2以上のフッ素原子を有するフッ素化環状カーボネー トを含有することを特徴とする非水系電解液。
Figure imgf000047_0001
(一般式(1)中、!^〜 は、それぞれ独立して、フッ素原子で置換されていてもよい、 炭素数 1〜 12のアルキル基を示し、 nは 0〜6の整数を示す。)
不飽和結合を有する環状カーボネート類が、ビニレンカーボネートィヒ合物、ビニル エチレンカーボネート化合物およびメチレンエチレンカーボネート化合物からなる群 より選ばれる少なくとも一種の化合物であることを特徴とする請求項 1記載の非水系 電解液。
[6] 不飽和結合を有する環状カーボネート類が、ビニレンカーボネート及びビニルェチ レンカーボネートのうち少なくとも 1つであることを特徴とする請求項 1または 5記載の 非水系電解液。
[7] 非水系電解液中における不飽和結合を有する環状カーボネートの割合が、 0. 00 1重量%以上、 8重量%以下であることを特徴とする請求項 1、 5または 6記載の非水 系電解液。
[8] 芳香族化合物の総炭素数が、 10以上 18以下であることを特徴とする請求項 2記載 の非水系電解液。
[9] 総炭素数が 7以上 18以下の芳香族化合物が、ビフヱニル、アルキルビフヱニル、タ 一フエニル、ターフェニルの部分水素化体、シクロへキシルベンゼン、 t_ブチルベン ゼン、 t—アミルベンゼン、ジフヱニルエーテル、及びジベンゾフランからなる群より選 ばれる少なくとも 1種の化合物であることを特徴とする請求項 2または 8記載の非水系 電解液。
[10] 非水系電解液中における総炭素数が 7以上 18以下の芳香族化合物の割合が、 0.
001重量%以上、 5重量%以下であることを特徴とする請求項 2、 8または 9記載の非 水系電解液。
[11] 全非水溶媒中に占めるジェチルカーボネートの割合力 10容量%以上、 90容量 %以下であることを特徴とする請求項 3記載の非水系電解液。
[12] 環状スルホン酸エステル化合物が、 1 , 3 プロパンスルトン、 1, 4 ブタンスルトン 、 1 , 3—プロペンスルトン、及び 1 , 4ーブテンスルトン力 なる群より選ばれる少なくと も 1種の化合物であることを特徴とする請求項 4記載の非水系電解液。
[13] ジスルホン酸エステル化合物が、エタンジオールジスルホネート類、 1, 2_プロパ ンジオールジスルホネート類、 1 , 3 _プロパンジオールジスルホネート類、 1 , 2—ブ タンジオールジスルホネート類、 1, 3 _ブタンジオールジスルホネート類、及び 1, 4 —ブタンジオールジスルホネート類からなる群より選ばれる少なくとも 1種の化合物で あることを特徴とする請求項 4記載の非水系電解液。
[14] 二トリル化合物が、ァセトニトリル、プロピオ二トリル、ブチロニトリル、バレロ二トリル、 クロトノニトリノレ、 3-メチルクロトノニトリル、マロノ二トリル、スクシノニトリル、グルタロニト リル、アジポニトリル、及びフマロニトリルからなる群より選ばれる少なくとも 1種の化合 物であることを特徴とする請求項 4記載の非水系電解液。
[15] 一般式(1)中、!^〜 の炭素数が、 2以上、 8以下であることを特徴とする請求項 4 記載の非水系電解液。
[16] 一般式(1)中、 nが 0, 1または 2であることを特徴とする請求項 4または 15記載の非 水系電解液。
[17] 非水系電解液中の、環状スルホン酸エステル化合物、ジスルホン酸エステル化合 物、二トリル化合物、及び下記一般式(1)で表される化合物からなる群より選ばれた 少なくとも 1種以上の化合物の含有割合が、合計で、 0. 001重量%以上、 5重量% 以下であることを特徴とする請求項 4または請求項 12〜: 16の何れか一項に記載の 非水系電解液。
[18] 2以上のフッ素原子を有するフッ素化環状カーボネートが、 2以上のフッ素原子を有 するフッ素化工チレンカーボネートであることを特徴とする請求項 1〜: 17の何れか一 項に記載の非水系電解液。
[19] 2以上のフッ素原子を有するフッ素化環状カーボネートが、シス 4, 5 ジフルォ ロー 1 , 3—ジォキソランー2—オン、トランス 4, 5—ジフルオロー 1 , 3—ジォキソラ ンー2 オン、及び 4, 4ージフノレオロー 1, 3 ジォキソランー2 オンからなる群より 選ばれる少なくとも 1種の化合物であることを特徴とする請求項 1〜: 18の何れか一項 に記載の非水系電解液。
[20] 非水系電解液に占める、 2以上のフッ素原子を有するフッ素化環状カーボネートの 割合が、 0. 001〜: 10重量%であることを特徴とする請求項 1〜: 19の何れか一項に 記載の非水系電解液。
[21] 非水系電解液に占める、 2以上のフッ素原子を有するフッ素化環状カーボネートの 割合が、 0. 01〜4重量%であることを特徴とする請求項 1〜20の何れか一項に記載 の非水系電解液。
[22] 電解質及びこれを溶解する非水溶媒を含む非水系電解液にぉレ、て、該非水系電 解液が、充電終止電圧が 4. 3V以上の高電圧電池に使用される電解液であって、 2 以上のフッ素原子を有するフッ素化環状カーボネートを含有することを特徴とする非 水系電解液。
[23] 非水系電解液が、不飽和結合を有する環状カーボネート類を含有することを特徴と する請求項 22記載の非水系電解液。
[24] 非水系電解液が、総炭素数が 7以上 18以下の芳香族化合物を含有することを特 徴とする請求項 22記載の非水系電解液。
[25] 非水系電解液が、ジェチルカーボネートを含有することを特徴とする請求項 22記 載の非水系電解液。
[26] 非水系電解液が、環状スルホン酸エステル化合物、ジスルホン酸エステルィヒ合物、 二トリル化合物、及び下記一般式(1)で表される化合物からなる群より選ばれた少な くとも 1種以上の化合物を含有することを特徴とする請求項 22記載の非水系電解液
[化 2]
Figure imgf000050_0001
(一般式(1)中、!^〜 は、それぞれ独立して、フッ素原子で置換されていてもよい、 炭素数 1〜 12のアルキル基を示し、 nは 0〜6の整数を示す。)
[27] リチウムイオンを吸蔵'放出可能な負極及び正極、並びに非水系電解液を含む非 水系電解液電池であって、該非水系電解液が請求項 1〜 26の何れか一項に記載の 非水系電解液であることを特徴とする非水系電解液電池。
[28] 負極が、炭素質材料、及びリチウムを吸蔵および放出可能な金属化合物のうち少 なくとも 1つを含むことを特徴とする請求項 27に記載の非水系電解液二次電池。
[29] 正極が、リチウム遷移金属複合酸化物材料を含むことを特徴とする請求項 27に記 載の非水系電解液二次電池。
PCT/JP2007/061114 2006-06-02 2007-05-31 非水系電解液及び非水系電解液電池 WO2007142121A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07744502.1A EP2031689B1 (en) 2006-06-02 2007-05-31 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
KR1020137034535A KR20140020334A (ko) 2006-06-02 2007-05-31 비수계 전해액 및 비수계 전해액 전지
KR1020087029113A KR101508788B1 (ko) 2006-06-02 2007-05-31 비수계 전해액 및 비수계 전해액 전지
KR1020147031671A KR20150001818A (ko) 2006-06-02 2007-05-31 비수계 전해액 및 비수계 전해액 전지
KR1020147014631A KR20140083054A (ko) 2006-06-02 2007-05-31 비수계 전해액 및 비수계 전해액 전지
KR1020147031670A KR20150001817A (ko) 2006-06-02 2007-05-31 비수계 전해액 및 비수계 전해액 전지
US12/303,167 US20090253045A1 (en) 2006-06-02 2007-05-31 Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
US13/353,803 US9231276B2 (en) 2006-06-02 2012-01-19 Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-155251 2006-06-02
JP2006155251 2006-06-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/303,167 A-371-Of-International US20090253045A1 (en) 2006-06-02 2007-05-31 Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
US13/353,803 Division US9231276B2 (en) 2006-06-02 2012-01-19 Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries

Publications (1)

Publication Number Publication Date
WO2007142121A1 true WO2007142121A1 (ja) 2007-12-13

Family

ID=38801378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061114 WO2007142121A1 (ja) 2006-06-02 2007-05-31 非水系電解液及び非水系電解液電池

Country Status (6)

Country Link
US (2) US20090253045A1 (ja)
EP (4) EP2360771B1 (ja)
JP (2) JP5737307B2 (ja)
KR (5) KR20140020334A (ja)
CN (3) CN101454938A (ja)
WO (1) WO2007142121A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131419A2 (en) 2008-04-25 2009-10-29 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
EP2128923A1 (en) * 2007-03-19 2009-12-02 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
FR2933240A1 (fr) * 2008-06-25 2010-01-01 Commissariat Energie Atomique Electrolyte non-aqueux pour accumulateur au lithium a tension elevee
JP2010165653A (ja) * 2008-02-29 2010-07-29 Equos Research Co Ltd リチウムイオン電池用電解液
US20110052980A1 (en) * 2008-05-07 2011-03-03 Hideo Sakata Nonaqueous secondary battery and electronic device
JP2011192632A (ja) * 2010-03-16 2011-09-29 Samsung Sdi Co Ltd リチウム2次電池用電解液及びリチウム2次電池
US8263267B2 (en) 2008-07-07 2012-09-11 Samsung Sdi Co., Ltd. Rechargeable battery and associated methods
CN102683749A (zh) * 2012-04-24 2012-09-19 合肥国轩高科动力能源有限公司 一种高电压锂离子电池的非水电解液
US8389162B2 (en) 2009-04-01 2013-03-05 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery including additives, and rechargeable lithium battery including the same
JP2013118068A (ja) * 2011-12-02 2013-06-13 Hitachi Maxell Ltd リチウム二次電池
CN103280599A (zh) * 2013-06-04 2013-09-04 成都银鑫新能源有限公司 锂离子电池电解液及其制备方法与应用
JP2014127256A (ja) * 2012-12-25 2014-07-07 Hitachi Maxell Ltd 非水電解質二次電池
US8802300B2 (en) 2006-11-17 2014-08-12 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8815454B2 (en) 2007-12-14 2014-08-26 Samsung Sdi Co., Ltd. Lithium secondary battery
WO2014141932A1 (ja) * 2013-03-12 2014-09-18 日立マクセル株式会社 リチウム二次電池
JP2015050168A (ja) * 2013-09-04 2015-03-16 日立マクセル株式会社 リチウム二次電池
US9093702B2 (en) 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454938A (zh) 2006-06-02 2009-06-10 三菱化学株式会社 非水电解液以及非水电解质电池
CN107658494A (zh) * 2006-12-06 2018-02-02 三菱化学株式会社 非水系电解液和非水系电解液二次电池
US20090068567A1 (en) * 2007-09-12 2009-03-12 Sony Corporation Anode for secondary battery, method of manufacturing it, and secondary battery
KR100980207B1 (ko) * 2007-10-17 2010-09-03 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬이차전지
JP2010225522A (ja) 2009-03-25 2010-10-07 Sony Corp 電解質および二次電池
KR101178554B1 (ko) 2009-07-09 2012-08-30 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
JP5446612B2 (ja) * 2009-08-28 2014-03-19 Tdk株式会社 リチウムイオン二次電池
JP5807636B2 (ja) 2010-06-04 2015-11-10 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
US9190695B2 (en) * 2010-08-05 2015-11-17 Wako Pure Chemical Industries, Ltd. Nonaqueous electrolyte solution, method for producing same, and nonaqueous electrolyte battery using the electrolyte solution
US8772412B2 (en) 2010-12-29 2014-07-08 Industrial Technology Research Institute Meta-stable state nitrogen-containing polymer
US9136559B2 (en) 2010-12-29 2015-09-15 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
CN102231441A (zh) * 2011-05-17 2011-11-02 华南师范大学 用于锂离子电池的含硫成膜功能电解液及制备方法与应用
KR101978726B1 (ko) 2011-06-03 2019-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치 및 그 제작 방법
CN103582968B (zh) 2011-06-03 2016-05-11 株式会社半导体能源研究所 电极的制造方法
US20120315551A1 (en) * 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for Battery Electrolytes and Methods for Use
JP6025284B2 (ja) 2011-08-19 2016-11-16 株式会社半導体エネルギー研究所 蓄電装置用の電極及び蓄電装置
WO2013027561A1 (en) 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
KR20130024769A (ko) 2011-08-30 2013-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치
JP6029898B2 (ja) 2011-09-09 2016-11-24 株式会社半導体エネルギー研究所 リチウム二次電池用正極の作製方法
KR20230047202A (ko) 2011-09-30 2023-04-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극, 리튬 이차 전지, 전기 자동차, 하이브리드 자동차, 이동체, 시스템, 및 전기 기기
TW201330350A (zh) * 2011-11-01 2013-07-16 Hitachi Maxell Energy Ltd 鋰蓄電池
US20130149596A1 (en) * 2011-12-12 2013-06-13 E.I Du Pont De Nemours And Company Electrolyte solvent containing ionic liquids
JP6016597B2 (ja) 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 リチウムイオン二次電池用正極の製造方法
WO2013094465A1 (ja) * 2011-12-19 2013-06-27 日立マクセル株式会社 リチウム二次電池
JP2013131395A (ja) * 2011-12-21 2013-07-04 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN102738511B (zh) * 2012-01-09 2016-06-22 宁德新能源科技有限公司 锂离子电池及其电解液
CN104067433B (zh) * 2012-01-18 2016-09-14 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质电池
US9680272B2 (en) 2012-02-17 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming negative electrode and method for manufacturing lithium secondary battery
CN102593513A (zh) * 2012-02-17 2012-07-18 深圳新宙邦科技股份有限公司 锂离子二次电池及其电解液
CN102593508B (zh) * 2012-02-22 2016-10-12 深圳新宙邦科技股份有限公司 锂离子电池
JP6065379B2 (ja) 2012-02-28 2017-01-25 ソニー株式会社 リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6065627B2 (ja) * 2012-02-28 2017-01-25 ソニー株式会社 リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6070236B2 (ja) * 2012-02-29 2017-02-01 ソニー株式会社 リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6077347B2 (ja) 2012-04-10 2017-02-08 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
JP2013222582A (ja) * 2012-04-16 2013-10-28 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US9225003B2 (en) 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
CN103515666B (zh) * 2012-06-22 2017-03-01 日立麦克赛尔株式会社 锂二次电池
JP6207923B2 (ja) 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
JP6159228B2 (ja) 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
CN104813531B (zh) * 2013-01-09 2018-01-02 松下知识产权经营株式会社 二次电池用非水电解液及锂二次电池
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
CN104995784A (zh) 2013-02-27 2015-10-21 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质电池
US9490472B2 (en) 2013-03-28 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
US20150044560A1 (en) 2013-08-09 2015-02-12 Semiconductor Energy Laboratory Co., Ltd. Electrode for lithium-ion secondary battery and manufacturing method thereof, and lithium-ion secondary battery
WO2015088052A1 (ko) * 2013-12-09 2015-06-18 에스케이이노베이션 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015088053A1 (ko) * 2013-12-09 2015-06-18 에스케이이노베이션 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US10355312B2 (en) 2014-03-27 2019-07-16 Daikin Industries, Ltd. Electrolyte and electrochemical device
JP6745587B2 (ja) 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 電極の製造方法
FR3040550B1 (fr) * 2015-08-25 2017-08-11 Commissariat Energie Atomique Batterie au lithium-ion gelifiee
CN106410273B (zh) * 2016-06-23 2019-04-26 宁德新能源科技有限公司 一种电解液以及含有该电解液的锂离子电池
CN106025356B (zh) * 2016-06-23 2019-05-24 宁德新能源科技有限公司 一种电解液以及含有该电解液的锂离子电池
WO2018044884A1 (en) 2016-08-30 2018-03-08 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
JP6825311B2 (ja) * 2016-11-07 2021-02-03 株式会社豊田自動織機 リチウムイオン二次電池
EP3404761B1 (en) 2017-05-16 2020-02-26 Ricoh Company, Ltd. Non-aqueous electrolyte electricity-storage element
JPWO2019044238A1 (ja) 2017-08-30 2020-09-24 パナソニックIpマネジメント株式会社 非水電解質二次電池
EP4053959A1 (en) * 2017-11-21 2022-09-07 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US11322778B2 (en) 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
CN112002942B (zh) 2018-09-21 2022-08-02 宁德新能源科技有限公司 一种电解液及包含该电解液的电化学装置
CN109301326B (zh) 2018-09-21 2020-11-27 宁德新能源科技有限公司 一种电解液及电化学装置
CN111740159B (zh) 2018-09-21 2023-01-20 宁德新能源科技有限公司 电解液和包含该电解液的电化学装置
CN109786834B (zh) 2019-01-25 2021-01-12 宁德新能源科技有限公司 电解液及电化学装置
CN112886054A (zh) * 2019-11-29 2021-06-01 深圳新宙邦科技股份有限公司 一种富锂锰基锂离子电池
CN113130988A (zh) * 2019-12-30 2021-07-16 深圳市研一新材料有限责任公司 一种电解液及应用的电化学装置
CN111900474A (zh) * 2020-07-20 2020-11-06 深圳市研一新材料有限责任公司 用于天然石墨负极锂离子电池的电解液
CN114628774A (zh) * 2020-12-14 2022-06-14 深圳新宙邦科技股份有限公司 一种锂离子电池
CN114628773A (zh) * 2020-12-14 2022-06-14 深圳新宙邦科技股份有限公司 一种锂离子电池
CN114230549A (zh) * 2021-11-24 2022-03-25 青岛科技大学 一种氟代碳酸亚乙烯酯的合成方法
CN114824471A (zh) * 2022-03-24 2022-07-29 合肥国轩高科动力能源有限公司 一种兼顾高低温性能的磷酸铁锂锂离子电池的电解液

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714607A (ja) 1993-04-28 1995-01-17 Sony Corp 非水電解液二次電池
JPH09106835A (ja) 1995-08-23 1997-04-22 Moli Energy 1990 Ltd 非水系の再充電可能電池における過充電保護のための重合性の芳香族添加剤
JPH09171840A (ja) 1995-11-17 1997-06-30 Moli Energy 1990 Ltd 非水系リチウム電池における過充電保護用芳香族モノマー系気体発生剤
JPH10189039A (ja) * 1996-12-25 1998-07-21 Mitsui Chem Inc 非水電解液及び非水電解液二次電池
JPH11185806A (ja) 1997-12-17 1999-07-09 Sanyo Electric Co Ltd リチウムイオン電池
JP2001043895A (ja) * 1999-05-24 2001-02-16 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002313415A (ja) * 2001-04-11 2002-10-25 Gs-Melcotec Co Ltd 非水電解液二次電池
JP2003031259A (ja) * 2001-07-12 2003-01-31 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004134261A (ja) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004179146A (ja) * 2002-07-15 2004-06-24 Ube Ind Ltd 非水電解液およびそれを用いたリチウム電池
JP2004319317A (ja) 2003-04-17 2004-11-11 Hitachi Maxell Ltd リチウム二次電池
JP2005032701A (ja) * 2003-02-27 2005-02-03 Mitsubishi Chemicals Corp 非水系電解液およびリチウム二次電池
WO2006030681A1 (ja) * 2004-09-17 2006-03-23 Sanyo Electric Co., Ltd. 非水電解液二次電池及び非水電解液
JP2006155251A (ja) 2004-11-30 2006-06-15 Oki Electric Ind Co Ltd ウイルス検出装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2122092C (en) * 1993-04-28 2006-06-06 Atsuo Omaru Secondary battery having non-aqueous electrolyte
JPH085806A (ja) 1994-06-17 1996-01-12 Mitsui Toatsu Chem Inc 反射体およびそれを用いた液晶表示用バックライトランプリフレクター
JP4557381B2 (ja) * 2000-06-27 2010-10-06 三井化学株式会社 非水電解液およびそれを用いた二次電池
JP4236390B2 (ja) * 2001-04-19 2009-03-11 三洋電機株式会社 リチウム二次電池
JP3512021B2 (ja) * 2001-05-15 2004-03-29 株式会社日立製作所 リチウム二次電池
JP4503209B2 (ja) * 2002-01-17 2010-07-14 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
CN100385727C (zh) * 2002-03-08 2008-04-30 三菱化学株式会社 非水电解液及采用它的锂二次电池
JP4283565B2 (ja) 2002-03-08 2009-06-24 三菱化学株式会社 非水系電解液及びそれを用いたリチウム二次電池
CN100585935C (zh) * 2002-07-15 2010-01-27 宇部兴产株式会社 非水电解液和锂电池
JP4033074B2 (ja) * 2002-08-29 2008-01-16 日本電気株式会社 二次電池用電解液およびそれを用いた二次電池
JP4698126B2 (ja) 2003-02-10 2011-06-08 日本電気株式会社 非水電解液二次電池
EP2259375B1 (en) * 2003-02-27 2012-05-16 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and lithium secondary battery
JP4433833B2 (ja) 2003-05-13 2010-03-17 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP4604460B2 (ja) 2003-05-16 2011-01-05 パナソニック株式会社 非水電解質二次電池および電池充放電システム
EP1508934B1 (en) * 2003-08-20 2007-02-28 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising the same
JP2005078820A (ja) 2003-08-28 2005-03-24 Japan Storage Battery Co Ltd 非水電解質二次電池
CN100395905C (zh) * 2003-09-16 2008-06-18 日本电气株式会社 非水性电解液二次电池
JP4697382B2 (ja) 2003-11-11 2011-06-08 日本電気株式会社 非水電解質二次電池
JP4707323B2 (ja) 2004-01-23 2011-06-22 株式会社東芝 非水電解質二次電池
JP4433163B2 (ja) 2004-02-13 2010-03-17 日本電気株式会社 リチウム二次電池用電解液およびそれを用いたリチウム二次電池
KR101158143B1 (ko) * 2004-05-28 2012-06-19 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 리튬 2차 전지
JP2006019274A (ja) * 2004-06-30 2006-01-19 Samsung Sdi Co Ltd リチウム二次電池
JP5103903B2 (ja) * 2004-09-22 2012-12-19 ソニー株式会社 二次電池用電解液および二次電池
JP4051686B2 (ja) * 2004-09-30 2008-02-27 ソニー株式会社 負極活物質およびそれを用いた電池
KR100823816B1 (ko) 2004-11-19 2008-04-21 마쯔시다덴기산교 가부시키가이샤 비수전해질 이차전지
JP4229062B2 (ja) * 2004-12-22 2009-02-25 ソニー株式会社 リチウムイオン二次電池
US20060216612A1 (en) * 2005-01-11 2006-09-28 Krishnakumar Jambunathan Electrolytes, cells and methods of forming passivation layers
KR101229133B1 (ko) 2005-01-20 2013-02-01 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 리튬 2차 전지
JP5067522B2 (ja) * 2005-04-08 2012-11-07 ソニー株式会社 二次電池用電解液および二次電池
KR100989309B1 (ko) * 2005-06-23 2010-10-22 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
JP5192237B2 (ja) * 2005-10-12 2013-05-08 三井化学株式会社 リチウム二次電池用非水電解液、それを用いたリチウム二次電池
CN102097654B (zh) * 2006-04-27 2014-10-01 三菱化学株式会社 非水电解液及非水电解质二次电池
CN101454938A (zh) 2006-06-02 2009-06-10 三菱化学株式会社 非水电解液以及非水电解质电池
JP5211446B2 (ja) 2006-06-07 2013-06-12 ソニー株式会社 非水電解質電池用電解質およびこれを用いた電池
CN102780038A (zh) * 2007-03-19 2012-11-14 三菱化学株式会社 非水系电解液电池

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714607A (ja) 1993-04-28 1995-01-17 Sony Corp 非水電解液二次電池
JPH09106835A (ja) 1995-08-23 1997-04-22 Moli Energy 1990 Ltd 非水系の再充電可能電池における過充電保護のための重合性の芳香族添加剤
JPH09171840A (ja) 1995-11-17 1997-06-30 Moli Energy 1990 Ltd 非水系リチウム電池における過充電保護用芳香族モノマー系気体発生剤
JPH10189039A (ja) * 1996-12-25 1998-07-21 Mitsui Chem Inc 非水電解液及び非水電解液二次電池
JPH11185806A (ja) 1997-12-17 1999-07-09 Sanyo Electric Co Ltd リチウムイオン電池
JP2001043895A (ja) * 1999-05-24 2001-02-16 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002313415A (ja) * 2001-04-11 2002-10-25 Gs-Melcotec Co Ltd 非水電解液二次電池
JP2003031259A (ja) * 2001-07-12 2003-01-31 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004179146A (ja) * 2002-07-15 2004-06-24 Ube Ind Ltd 非水電解液およびそれを用いたリチウム電池
JP2004134261A (ja) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2005032701A (ja) * 2003-02-27 2005-02-03 Mitsubishi Chemicals Corp 非水系電解液およびリチウム二次電池
JP2004319317A (ja) 2003-04-17 2004-11-11 Hitachi Maxell Ltd リチウム二次電池
WO2006030681A1 (ja) * 2004-09-17 2006-03-23 Sanyo Electric Co., Ltd. 非水電解液二次電池及び非水電解液
JP2006155251A (ja) 2004-11-30 2006-06-15 Oki Electric Ind Co Ltd ウイルス検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2031689A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802300B2 (en) 2006-11-17 2014-08-12 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8574757B2 (en) 2007-03-19 2013-11-05 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte battery
EP2128923A1 (en) * 2007-03-19 2009-12-02 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
EP2128923B1 (en) * 2007-03-19 2013-01-16 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery
US8685562B2 (en) 2007-03-19 2014-04-01 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte battery
US8962192B2 (en) 2007-03-19 2015-02-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte battery
US8815454B2 (en) 2007-12-14 2014-08-26 Samsung Sdi Co., Ltd. Lithium secondary battery
JP2010165653A (ja) * 2008-02-29 2010-07-29 Equos Research Co Ltd リチウムイオン電池用電解液
EP2274790A4 (en) * 2008-04-25 2013-01-23 Lg Chemical Ltd NONAQUEOUS ELECTROLYTIC SOLUTION FOR LITHIUM SECONDARY BATTERY AND BATTERY CONTAINING SAID SOLUTION
US8697293B2 (en) 2008-04-25 2014-04-15 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
WO2009131419A2 (en) 2008-04-25 2009-10-29 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
EP2274790A2 (en) * 2008-04-25 2011-01-19 LG Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery having the same
US20110052980A1 (en) * 2008-05-07 2011-03-03 Hideo Sakata Nonaqueous secondary battery and electronic device
US8795884B2 (en) * 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device
FR2933240A1 (fr) * 2008-06-25 2010-01-01 Commissariat Energie Atomique Electrolyte non-aqueux pour accumulateur au lithium a tension elevee
US8679686B2 (en) 2008-06-25 2014-03-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Non-aqueous electrolyte for a high-voltage lithium battery
WO2010007223A1 (fr) * 2008-06-25 2010-01-21 Commissariat A L'energie Atomique Electrolyte non-aqueux pour accumulateur au lithium a tension elevee
US8263267B2 (en) 2008-07-07 2012-09-11 Samsung Sdi Co., Ltd. Rechargeable battery and associated methods
US8389162B2 (en) 2009-04-01 2013-03-05 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery including additives, and rechargeable lithium battery including the same
US9093702B2 (en) 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery
JP2011192632A (ja) * 2010-03-16 2011-09-29 Samsung Sdi Co Ltd リチウム2次電池用電解液及びリチウム2次電池
US9196928B2 (en) 2010-03-16 2015-11-24 Samsung Sdi Co., Ltd. Electrolyte solution for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2013118068A (ja) * 2011-12-02 2013-06-13 Hitachi Maxell Ltd リチウム二次電池
CN102683749A (zh) * 2012-04-24 2012-09-19 合肥国轩高科动力能源有限公司 一种高电压锂离子电池的非水电解液
JP2014127256A (ja) * 2012-12-25 2014-07-07 Hitachi Maxell Ltd 非水電解質二次電池
WO2014141932A1 (ja) * 2013-03-12 2014-09-18 日立マクセル株式会社 リチウム二次電池
JP2014199796A (ja) * 2013-03-12 2014-10-23 日立マクセル株式会社 リチウム二次電池
CN105009349A (zh) * 2013-03-12 2015-10-28 日立麦克赛尔株式会社 锂二次电池
CN103280599A (zh) * 2013-06-04 2013-09-04 成都银鑫新能源有限公司 锂离子电池电解液及其制备方法与应用
JP2015050168A (ja) * 2013-09-04 2015-03-16 日立マクセル株式会社 リチウム二次電池

Also Published As

Publication number Publication date
US9231276B2 (en) 2016-01-05
US20120115042A1 (en) 2012-05-10
JP2015079767A (ja) 2015-04-23
KR20150001818A (ko) 2015-01-06
CN102244294A (zh) 2011-11-16
EP2790258A1 (en) 2014-10-15
EP2461415A1 (en) 2012-06-06
EP2031689A4 (en) 2010-04-28
US20090253045A1 (en) 2009-10-08
JP5896010B2 (ja) 2016-03-30
CN102244294B (zh) 2015-11-18
EP2031689B1 (en) 2013-10-09
EP2461415B1 (en) 2015-08-26
KR101508788B1 (ko) 2015-04-06
KR20150001817A (ko) 2015-01-06
JP5737307B2 (ja) 2015-06-17
JP2013080727A (ja) 2013-05-02
CN101454938A (zh) 2009-06-10
KR20090015090A (ko) 2009-02-11
EP2360771B1 (en) 2015-04-29
EP2031689A1 (en) 2009-03-04
EP2360771A1 (en) 2011-08-24
KR20140020334A (ko) 2014-02-18
CN103647108A (zh) 2014-03-19
KR20140083054A (ko) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5896010B2 (ja) 非水系電解液及び非水系電解液電池
JP5369391B2 (ja) 非水系電解液、非水系電解液電池及び非水系電解液二次電池
JP5223395B2 (ja) 非水系電解液電池用非水系電解液および非水系電解液電池
JP5338151B2 (ja) 非水系電解液及び非水系電解液電池
JP5217200B2 (ja) 非水系電解液および非水系電解液電池
JP5565212B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6107814B2 (ja) 非水系電解液及び非水系電解液電池
JP5978796B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6064357B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5348024B2 (ja) 非水系電解液及び非水系電解液電池
JP2008262902A (ja) 非水系電解液および非水系電解液電池
JP5568853B2 (ja) 非水系電解液及び非水系電解液電池
JP5251174B2 (ja) 非水系電解液および非水系電解液電池
JP5098240B2 (ja) 非水系電解液及び非水系電解液電池
JP5651931B2 (ja) 電池用非水系電解液および非水系電解液電池
JP2012038716A (ja) 非水系電解液及び非水系電解液電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019964.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007744502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12303167

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020137034535

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020147031671

Country of ref document: KR