WO2007010996A1 - イソシアナートの製造方法、それにより得られたイソシアナート、およびその用途 - Google Patents

イソシアナートの製造方法、それにより得られたイソシアナート、およびその用途 Download PDF

Info

Publication number
WO2007010996A1
WO2007010996A1 PCT/JP2006/314417 JP2006314417W WO2007010996A1 WO 2007010996 A1 WO2007010996 A1 WO 2007010996A1 JP 2006314417 W JP2006314417 W JP 2006314417W WO 2007010996 A1 WO2007010996 A1 WO 2007010996A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
isocyanate
chain aliphatic
hydrochloride
cycloaliphatic
Prior art date
Application number
PCT/JP2006/314417
Other languages
English (en)
French (fr)
Inventor
Chitoshi Shimakawa
Hiroyuki Morijiri
Hidetoshi Hayashi
Norihiko Fukatsu
Seiichi Kobayashi
Homare Yumoto
Junichi Ishiyama
Shinya Tsuchiyama
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2007526055A priority Critical patent/JP4861322B2/ja
Priority to EP06781372A priority patent/EP1908749A4/en
Priority to US11/988,490 priority patent/US8183407B2/en
Priority to CN2006800221703A priority patent/CN101203488B/zh
Publication of WO2007010996A1 publication Critical patent/WO2007010996A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring

Definitions

  • the present invention relates to a process for producing a chain aliphatic or cycloaliphatic isocyanate having a step (salt formation step) of reacting a chain aliphatic or cycloaliphatic amine with hydrogen chloride.
  • the present invention further relates to a chain aliphatic or cycloaliphatic isocyanate obtained by the above production method and its use.
  • Isocyanate-toy compounds are useful as raw materials for polyurethane-based materials, polyurea-based materials, polyisocyanurate-based materials and the like used in the fields of chemical industry, resin industry, paint industry and the like.
  • plastic lenses using polyurethane-based materials containing sulfur atoms and the like are lighter and less susceptible to cracking than in-vehicle lenses, and in recent years have been rapidly used for optical element applications such as eyeglass lenses and camera lenses. It has become popular!
  • a typical example of a method for producing an isocyanate is a phosgene method in which a raw material amine is reacted with phosgene.
  • a phosgene method a direct method in which phosgene is directly reacted with a raw material amine and a hydrochloride method in which a raw material amine is converted into a hydrochloride and then reacted with phosgene are widely known.
  • the direct method is a much simpler method than the hydrochloride method.
  • the force intermediate rubamoyl chloride or isocyanate reacts with the raw material amine to produce urea as a by-product.
  • the by-produced urea further reacts with phosgene to produce isocyanate, so that products can be obtained in relatively high yields. Don't be.
  • chain aliphatic or cycloaliphatic amines and phosgene are In the case of reaction by contact method, it is known that by-produced urea reacts with phosgene, so that a chlorine derivative is by-produced (see, for example, Patent Document 1).
  • Chlorine derivatives are usually from 3 to 10%, and in some cases as much as 20%, which may reduce the yield and may adversely affect the physical properties of the urethane and other resins used.
  • the direct method is not adopted. That is, in the production of chain aliphatic or cycloaliphatic isocyanates, the hydrochloride method of producing isocyanate by reacting with phosgene after converting the raw material amine into hydrochloride in order to suppress urea by-product. (For example, refer to Patent Documents 2 to 5).
  • Patent Documents 3 to 5 describe a method for producing an isocyanate by reacting phosgene with a raw material amine in an organic solvent, etc. ing.
  • Patent Document 1 British Patent No. 1086782
  • Patent Document 2 JP-A-50-108239
  • Patent Document 3 Japanese Laid-Open Patent Publication No. 310310567
  • Patent Document 4 British Patent No. 1146664
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-286241
  • the hydrochloride method has disadvantages such as an increase in the viscosity of the resulting hydrochloride slurry, a decrease in productivity, and the like.
  • the hydrochloride method in the hydrochloride method,
  • a method of salt formation (production of hydrochloride) is performed by blowing a hydrogen chloride gas into an organic solvent in which a raw material amine is dissolved.
  • the viscosity of the hydrochloride slurry increases to, for example, 5000 to 10,000 mPa's as the reaction proceeds.
  • the fluidity of the hydrochloride slurry is reduced, and it may be difficult to transfer the hydrochloride using a pump or the like. The decrease in productivity due to the difficulty of transfer is particularly serious in the case of continuous salt formation.
  • the present inventors have determined that the pressure during the production of chain aliphatic amine hydrochloride or cycloaliphatic amine amine is 0. OlMPa. It has been found that the viscosity of the hydrochloride slurry can be lowered by setting the conditions higher as described above, and the present invention has been achieved. If fluidity is improved by reducing the viscosity of the hydrochloride slurry, good Hydrochloric acid salts with favorable liquid transfer properties can be obtained, which are particularly useful for improving the productivity of hydrochlorides (particularly, for improving productivity when a salt-forming reaction is continuously performed).
  • the present invention provides (1) a chain aliphatic amine or a cycloaliphatic amine and a salt-hydrogen hydrogen to react to obtain a chain aliphatic amine hydrochloride or a cyclic aliphatic amine amine hydrochloride.
  • (2) to (11) are each one of preferred embodiments of the present invention.
  • the chain aliphatic isocyanate or the cycloaliphatic amine is a bifunctional or higher chain aliphatic amine or a cyclic aliphatic amine, or the chain aliphatic isocyanate according to (1) or A process for producing cycloaliphatic isocyanates.
  • the step is a step of reacting a bifunctional or higher chain aliphatic amine or a cyclic aliphatic amine with a salty hydrogen in an organic solvent in a tank reactor.
  • (1) A process for producing a chain aliphatic isocyanate or cycloaliphatic isocyanate described in 1.
  • the step is a step of reacting a bifunctional or higher chain aliphatic amine or a cyclic aliphatic amine with hydrogen chloride blown into the organic solvent in an organic solvent.
  • the bifunctional or higher chain aliphatic amine or cycloaliphatic amine is a compound having a primary amino group, (2) the force (4), or any one of A process for producing a chain aliphatic isocyanate or a cycloaliphatic isocyanate.
  • 1S xylylene diisocyanate, bis (isocyanatomethyl) norbornene, hexamethylenedienisocyanate, and bis (isocyanatomethyl) cyclohexane force are also one or more compounds selected (2) The method for producing a chain aliphatic isocyanate or a cycloaliphatic isocyanate according to claim 1.
  • the present invention is (12) produced by the method according to any one of (1) to (11).
  • the present invention relates to (13) a polyurethane resin manufactured using the chain aliphatic isocyanate or cycloaliphatic isocyanate described in (12).
  • the present invention relates to (14) a lens containing the polyurethane resin described in (13).
  • the present invention also provides (15) a chain aliphatic amine amine hydrochloride in which a chain aliphatic amine or a cyclic aliphatic amine is reacted with hydrogen chloride under a pressure higher than atmospheric pressure by 0. OlMPa or more.
  • the present invention also relates to a method for producing cycloaliphatic amine hydrochloride.
  • (16) to (18) are each preferably one of the preferred embodiments of the "method for producing a chain aliphatic amine hydrochloride or a cyclic aliphatic amine hydrochloride" of the present invention.
  • the chain aliphatic amine or the cyclic aliphatic amine is a bifunctional or higher chain aliphatic amine or a cyclic aliphatic amine, or the chain aliphatic amine hydrochloride or the aliphatic aliphatic amine according to (15) A process for producing cycloaliphatic amine hydrochloride.
  • a chain-like aliphatic amine or a cyclic aliphatic amine having two or more functions is reacted with hydrogen chloride blown into the organic solvent in an organic solvent, A method for producing an aliphatic amine hydrochloride or a cycloaliphatic amine hydrochloride.
  • the chain aliphatic amide hydrochloride or cycloaliphatic amine hydrochloride is produced by setting the pressure during the production of the cyclic aliphatic amine hydrochloride to 0. OlMPa or more higher than the atmospheric pressure. This makes it possible to reduce the viscosity of the dihydrochloride or cycloaliphatic amine hydrochloride slurry. This improves the fluidity and transferability of the hydrochloride slurry and enables the production of hydrochloride with good transferability, which is particularly suitable for continuous salt formation reactions. improves.
  • the "method for producing a chain aliphatic isocyanate or cycloaliphatic isocyanate” of the present invention comprises reacting a chain aliphatic amine or a cycloaliphatic amine with hydrogen chloride to produce a chain aliphatic. And a step of obtaining a slurry containing ammine hydrochloride or cycloaliphatic amine hydrochloride (hereinafter also referred to as “salt-forming reaction step”).
  • the amine salt is converted into the phosgene salt through a step of reacting the amine salt obtained in the above step with phosgene (hereinafter also referred to as “phosgene salt process”). To produce an isocyanate.
  • the salt formation reaction is carried out under a pressure of the reactor that is higher than atmospheric pressure by not less than 0.0 OlMPa, preferably not less than 0.02 MPa, more preferably not less than 0.03 MPa.
  • the viscosity of the slurry is a value measured at 120 ° C using an LV T viscometer manufactured by BROOKFIELD.
  • the fluidity and liquid transferability are improved due to the decrease in the viscosity of the hydrochloride slurry, which is particularly suitable for continuous salt formation reaction. This makes it possible to produce hydrochlorides with excellent liquid transfer properties. Therefore, the productivity of hydrochloride can be improved.
  • the viscosity of the hydrochloride slurry can be in the above range, so that the unreacted raw material amine is reduced by improving the stirring efficiency of the hydrochloride slurry, and the unreacted It may be possible to reduce the chlorine derivative generated from the raw material amine. As a result, the conversion rate of the raw material amine during the salt-forming reaction may be improved, and effects such as an improvement in the yield of isocyanate may be obtained. Furthermore, according to the production method of the present invention, it may be possible to suppress the increase in the particle diameter of the hydrochloride particles contained in the hydrochloride slurry and to refine the hydrochloride particles.
  • the chain aliphatic amine or the cyclic aliphatic amine is preferably a bifunctional or higher chain aliphatic amine or a bifunctional or higher cyclic aliphatic amine. If the chain aliphatic amine or the cycloaliphatic amine is a bifunctional or higher chain aliphatic amine or a bifunctional or higher cyclic aliphatic amine, a bifunctional or higher chain aliphatic amine amine hydrochloride is formed by a salt formation reaction. A salt or a bifunctional or higher cyclic aliphatic amine hydrochloride can be obtained.
  • bifunctional or higher chain aliphatic isocyanates or bifunctional or higher cyclic aliphatic isocyanates can be obtained by phosgene conversion of these hydrochlorides.
  • a bifunctional or higher chain aliphatic isocyanate or a bifunctional or higher cyclic aliphatic isocyanate is reacted with a compound having two or more active hydrogen-containing groups to obtain a polymer compound such as polyurethane. Therefore, it has a high practical value.
  • the salt formation reaction step is preferably performed in an organic solvent from the viewpoint of the stability of the reaction, the solubility of each component contributing to the reaction, and the like.
  • the reactor used in the salt formation reaction step is a tank reactor,
  • the tank reactor is preferably equipped with a stirrer that stirs the inside.
  • a tank reactor is a reactor equipped with a reaction vessel in which at least a part of substances (reactants, products, solvents, etc.) involved in the reaction are present in the liquid phase.
  • the diameter of the stirring blade (
  • the tank reactor used in the present invention preferably has a ratio (DZL) of the tank diameter (D) to the tank length (L) of 0.1 to 5.0. If DZL is 0.1 or more, hydrogen chloride gas can be removed satisfactorily, so that the phenomenon that the resulting hydrochloride is whip-like and poor in fluidity can be effectively suppressed. If DZL is 5.0 or less, uniform stirring is easy, and problems such as an increase in unreacted amine can be effectively suppressed. From the viewpoint of balance of such effects, a reactor having a DZL ratio of 0.5 or more and 1.5 or less is more desirable.
  • an organic solvent preferably an organic aromatic solvent
  • the solvent in which the amine is dissolved is added dropwise simultaneously with the salty hydrogen gas.
  • a method of charging the solvent solution to a predetermined temperature and absorbing salt / hydrogen gas in advance, and then adding salt / hydrogen gas simultaneously with dropwise addition of the amine solution can be carried out by various methods such as a method of charging a salt hydrogen gas after raising the temperature to a predetermined temperature.
  • it is preferable to carry out by any of the above-exemplified methods it is not excluded to carry out by any other method.
  • the hydrochloride slurry obtained by the salt formation reaction has a viscosity of 2000 mPa's or less, or a raw material amine conversion rate of 99 mol% or more, preferably the salt formation reaction of the present invention is carried out.
  • the pressure inside the aircraft shall be 0. OlMPa or higher than atmospheric pressure. It is more preferable that the pressure is 0.02 MPa or more than the atmospheric pressure. A pressure higher than the atmospheric pressure by 0.03 MPa or more is more preferable.
  • the upper limit of the pressure during the salt formation reaction is 1. OMPa or less than the atmospheric pressure, the solubility of hydrogen chloride gas in the hydrochloride slurry increases, and the reaction rate during the salt formation reaction increases. This is preferable because of the effect of improving the degree. Further, since the fluidity is improved, the transferability of the hydrochloride slurry is also improved, which is preferable. If the pressurizing condition is 0.5 MPa or less than the atmospheric pressure, it is more preferable if the pressurizing condition is 0.3 MPa or less than the preferable atmospheric pressure. If the pressure in the salt-forming reactor is extremely high, the release of the salty hydrogen gas may worsen, and the hydrochloride slurry may become whip-like and the fluidity may be adversely affected.
  • the lower limit value and the upper limit value of the pressure during the salt-forming reaction can be arbitrarily combined.
  • the salt formation reaction be performed at a pressure higher than the atmospheric pressure by 0.1 OlMPa or higher and 1. OMPa or lower than the atmospheric pressure by 0.01 MPa or higher. It is more preferable to carry out the salt formation reaction under a high pressure in the range of 0.5 MPa or less.
  • the conversion rate of the raw material amine may be 99 mol% or more. It is preferable that the conversion rate of the raw material amine is 99 mol% or more because the yield of isocyanate is high and the influence of by-products can be suppressed.
  • the conversion rate of the raw material amine is measured as follows.
  • the amine remaining in the slurry after completion of the salt-forming reaction is neutralized and titrated to obtain the number of moles of residual amine. From this and the number of moles of amine charged, the amine conversion is calculated by the following formula.
  • Amine conversion rate ((number of moles of amine charged ⁇ number of moles of remaining amine) Z number of moles of amine charged) X100
  • the total amine concentration in the present invention is preferably 5% by weight or more and 40% by weight or less in consideration of industrial production efficiency.
  • the total amine concentration is a value calculated by dividing the amount of charged amine in the salt-forming reactor by the total weight of the raw materials charged in the salt-forming reactor.
  • the production efficiency is high, so it is preferable. If it is 40% by weight or less, the fluidity of the hydrochloride slurry deteriorates, the stirring efficiency decreases due to an increase in slurry viscosity, and the unreacted amine increases. In addition, problems such as poor transferability and an increase in chlorinated products during the reaction with phosgene can be effectively suppressed.
  • the total amine concentration is preferably 5% by weight or more. 35% by weight or less, more preferably 5% by weight or more and 30% by weight or less.
  • the temperature during the salt-forming reaction in the present invention is such that the unreacted amine is reduced, the by-product of the chlorine derivative derived from the unreacted amine is reduced, the resulting hydrochloride particle size is reduced, and the following phosgene is used.
  • the heat balance at the time of transition to the reaction with it is preferably 20 ° C or higher and 180 ° C or lower.
  • the temperature during the salt-forming reaction is preferably ⁇ 20 ° C. or higher and 180 ° C. or lower, more preferably 60 ° C. or higher and 175 ° C. or lower, more preferably 100 ° C. or higher and 170 ° C. or lower. .
  • the reaction between the hydrochloride obtained by the salt formation reaction and phosgene can be performed at normal pressure or under pressure. Force to perform phosgene at normal pressure. Suppression of side reaction by by-product hydrogen chloride gas. Point power is preferred.
  • the reaction temperature with phosgene is 120 ° C or higher and 180 ° C or lower, preferably 130 ° C or higher and 175 ° C or lower, more preferably, from the viewpoint of reaction rate and suppression of tar formation of the generated isocyanate. The range of 150 ° C or higher and 170 ° C or lower is preferable.
  • the equivalent ratio of ammine and salt-hydrogen gas during the salt-forming reaction is not less than 1.0, not more than 2.5, preferably 1 with respect to ammine 1.0. It should be 1 or more and 2.0 or less. 1. If it is 0 or more, the conversion rate of the raw material amine can be kept high, and if it is 2.5 or less, it is industrially more advantageous in terms of economy.
  • the bifunctional or higher chain aliphatic amine or cyclic aliphatic amine preferably used in the present invention is not particularly limited, but representative examples thereof include hexamethylenediamine, 2,2 dimethylpentanedi. Amines, 2, 2, 4 Trimethylhexanediamine, Butenediamine, 1,3 Butadiene 1,4 Diamine, 2,4,4 Trimethylhexamethylenediamine, 1,6,11-Undecatriamine, 1 , 3, 6 Hexamethylenetriamine, 1,8 Diisocyanato 1 4-isocyanatomethyloctane, bis (aminoethyl) carbonate, bis (aminoethyl) ether, lysine diaminomethyl ester, lysine triamine, xylylenediamine , Screw (a Minoetil) benzene, bis (aminopropyl) benzene, a, a ', a'-tetramethyl xylylened
  • Sulfur chain aliphatic amines may be mentioned.
  • isocyanate obtained by reacting the amine hydrochloride obtained by the above-mentioned salt formation reaction with phosgene but typical examples include hexamethylene diisocyanate and 2, 2 dimethylpentane diisocyanate.
  • Cycloaliphatic polyisocyanates such as bis (isocyanatomethyl) norbornene
  • particularly preferred compounds for various optical element applications include xylylene diisocyanate, bis (isocyanatomethyl) norbornene, hexamethylene diisocyanate, bis. (Isocyanatomethyl) cyclohexane.
  • the solvent used in the present invention is not particularly limited, but it is desirable to use a high-boiling organic aromatic compound having high hydrochloric acid solubility during salt formation reaction and high phosgene solubility and low hydrochloric acid solubility during phosgenation.
  • Typical organic aromatic compounds include 1,2 jetylbenzene, 1,3 jetylbenzene, 1,4 jetylbenzene, isopylpyrubenzene, 1,2,4 trimethylbenzene, amylbenzene, diamylbenzene, and tria.
  • particularly preferred solvents for carrying out the present invention are aromatic halogen compounds.
  • the production method of the present invention can improve the production efficiency in the production of isocyanates widely used in various industrial fields including the optical material field. , Industrially high value.
  • the isocyanato compound obtained by the production method of the present invention is excellent in economic efficiency, and easily reduces chlorine derivatives generated from unreacted raw material amine and unreacted raw material amine. Therefore, by using an isocyanato-toy compound, it is possible to obtain an optical product excellent in quality with high economic efficiency.
  • the isocyanate compound obtained by the production method of the present invention is useful as a raw material for various resins such as polyurethane resin (including polythiourethane resin), polyurea resin, and polyisocyanurate resin. It is.
  • polyurethane resin including polythiourethane resin
  • polyurea resin including polyurea resin
  • polyisocyanurate resin since it is highly necessary to eliminate chlorine derivatives, the isocyanato toy compound obtained by the production method of the present invention is particularly useful as a raw material for polyurethane resin. It is. That is, the isocyanate obtained according to the present invention is excellent in economy, and it is easy to reduce unreacted raw material amines and chlorine derivatives generated from the unreacted raw material amines. It is possible to obtain a product such as a resin such as a polyurethane resin and a lens with high economic efficiency.
  • Isocyanate toy compound strength Method and conditions for producing polyurethane resin (type of isocyanate compound, type of compound to be reacted with isocyanate resin, type of catalyst, type of other additives, etc. Conventionally known methods and conditions can be appropriately used as long as they do not impair the purpose of the present invention, and there are no particular restrictions on the amount ratio, reaction temperature, time, etc., for example, JP-A-2003-043201 Can preferably be used.
  • the molded article made of polyurethane resin obtained as described above often has excellent impact resistance, colorability, and high transparency, it is particularly useful as a material for plastic lenses. Is preferred. Plastic lenses using polyurethane-based materials are particularly useful as optical elements such as eyeglass lenses and camera lenses.
  • the reaction liquid after completion of the reaction with phosgene was analyzed by gas chromatography to obtain the number of moles of chlorinated compounds.
  • the production rate was calculated by dividing this by the number of moles of the prepared hydrochloride.
  • the finally obtained isocyanate was analyzed by gas chromatography to obtain isocyanate purity.
  • the reaction filtrate residue obtained by filtration after the reaction with phosgene was subjected to neutralization titration to obtain the number of moles of residual hydrochloride. From this and the number of moles of the prepared hydrochloride, the conversion rate was calculated by the following formula.
  • Hydrochloride conversion rate ((moles of prepared hydrochloride remaining mols of remaining hydrochloride) Z mols of prepared hydrochloride) X100
  • the slurry after completion of the salt formation reaction was weighed into a container and heated to a measurement temperature of 120 ° C. When the temperature reached 120 ° C, the viscosity was measured with a NO. 2 rotor of a BROOKFIELD LVT viscometer, and the indicated value was multiplied by a coefficient to calculate the viscosity.
  • An autoclave (reactor) equipped with a pressure controller and equipped with a reflux condenser, a stirring blade, a thermometer, a hydrogen chloride gas blowing pipe, a phosgene blowing pipe, a raw material tank, and a raw material charging pump was used.
  • the inner diameter (D2) of the Z reaction vessel is 0.7
  • the vessel diameter (D) the Z vessel length (L) is 0.59
  • the inner volume of the reaction vessel was 2L.
  • This reactor was charged with 846 g of ortho-dichlorobenzene benzene as a reaction solvent, 136.2 g (l.
  • the conversion rate of the raw material amine was determined by neutralization titration, and the conversion rate was 99.80 mol%.
  • the viscosity of the obtained hydrochloride slurry was measured at 120 ° C. using a BROOK FIELD LVT viscometer, and as a result, it was 20 ImPa ⁇ s and had sufficient fluidity.
  • SALD-2100 laser diffraction particle size analyzer manufactured by Shimadzu Corporation
  • the number average particle size of the hydrochloride particles was 25 m. Met.
  • the obtained hydrochloride slurry was liquid and excellent in fluidity, and it was confirmed that when the hydrochloride was transferred to the next step, the hydrochloride did not remain in the reactor and the transferability was good. .
  • Example 2 The same reactor as in Example 1 was used. The reactor was charged with 846 g of ortho-dichlorobenzene as a reaction solvent, and 136.2 g (l. 0 mol) of m-xylylenediamine and 621 g of ortho-dichlorobenzene were added to the raw material tank (total amine concentration 8.5 wt% ). Next, after raising the temperature in the reactor to 120 ° C, the internal pressure was adjusted to 0.05 MPa higher than atmospheric pressure.
  • the viscosity of the obtained hydrochloride slurry was 215 mPa's as a result of measurement at 120 ° C. using an LVT viscometer manufactured by BROOKFIELD and had sufficient fluidity. Further, when the particle diameter of the hydrochloride was measured with a laser diffraction particle size distribution analyzer SA LD-2100 manufactured by Shimadzu Corporation in a acetonitrile solvent, the number average particle diameter of the hydrochloride particles was 29 m.
  • SA LD-2100 laser diffraction particle size distribution analyzer
  • Example 2 The same reactor as in Example 1 was used.
  • the reaction solvent ortho-dichroic benzene 846 g was charged, and 136.2 g (l. 0 mol) of m-xylylenediamine and 621 g of orthodichlorobenzene were charged into the raw material tank (total amine concentration 8.5 wt%).
  • the temperature in the reactor was raised to 120 ° C, and the internal pressure was adjusted to 0. IMPa high pressure from atmospheric pressure.
  • charging of salty hydrogen gas from the salty hydrogen gas blowing pipe was started at a rate of 43.8 gZhr.
  • m-xylylenediamine diluted with a solvent from the raw material tank was supplied to the raw material charging pump.
  • the charging was started at a rate of 379 gZhr, and the entire amount was charged over 2 hours. Further, aging was performed for 1 hour while charging the salty hydrogen gas with 20 gZhr. After completion of the reaction, the conversion rate of the raw material amine was determined by a neutralization titration method. The conversion rate was 99.81 mol%.
  • the viscosity of the hydrochloride slurry was 221 mPa ⁇ s as a result of measurement at 120 ° C. using an LVT viscometer manufactured by BROOKFIELD and had sufficient fluidity.
  • Example 2 The same reactor as in Example 1 was used. The reactor was charged with 958 g of ortho-dichlorobenzene as a reaction solvent, and 154.2 g (l.0 mol) of bis (aminomethyl) norbornene and 702 g of ortho-dichlorobenzene were added to the raw material tank (total amine concentration 8.5% by weight). ). Next, after raising the temperature in the reactor to 120 ° C, the inside of the autoclave was adjusted to 0. OlMPa pressure higher than atmospheric pressure.
  • Example 2 The same reactor as in Example 1 was used. The reactor was charged with 958 g of ortho-dichlorobenzene as a reaction solvent, and 154.2 g (l.0 mol) of bis (aminomethyl) norbornene and 702 g of ortho-dichlorobenzene were added to the raw material tank (total amine concentration 8.5% by weight). ). Next, after raising the temperature in the reactor to 120 ° C, the internal pressure was adjusted to 0.03 MPa higher than atmospheric pressure. Then, the charging of the salty hydrogen gas from the salty hydrogen gas blowing pipe was started at a rate of 43.8 gZhr. The charging was started at a speed of 428. lgZhr, and the entire amount was charged over 2 hours.
  • Example 2 The same reactor as in Example 1 was used.
  • the reaction vessel was charged with 566. 8 g of orthodic benzene as a reaction solvent, and 142.2 g (l. 0 mol) of bis (aminomethyl) cyclohexane and 476. (all Amin concentration 8.5 wt 0/0).
  • the temperature in the reactor was raised to 120 ° C, and the internal pressure was adjusted to 0. OlMPa higher than atmospheric pressure.
  • charging of the salty hydrogen gas from the salty hydrogen gas blowing pipe was started at a rate of 43.8 gZhr, and at the same time, the amine diluted with the solvent from the raw material tank was fed by the raw material charging pump.
  • the charging was started at the speed of 2, and the entire amount was charged over 2 hours. Further, aging was performed for 1 hour while charging hydrogen chloride gas at 20 gZhr. After completion of the reaction, the conversion rate of the raw material amine was determined by a neutralization titration method. The conversion rate was 99.88 mol%.
  • the viscosity of the hydrochloride was 213 mPa ⁇ s as a result of measurement at 120 ° C. using an LVT viscometer manufactured by BROOKFIELD and had sufficient fluidity.
  • the number average particle diameter of the hydrochloride particles was 32 m.
  • SALD-2100 laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation in a acetonitrile solvent
  • the number average particle diameter of the hydrochloride particles was 32 m.
  • the obtained hydrochloride slurry is liquid and excellent in fluidity, and when the hydrochloride is transferred to the next step, the hydrochloride remains in the reactor. It was confirmed that the transferability was good.
  • Example 2 The same reactor as in Example 1 was used. The reactor was charged with 614.6 g of the reaction solvent ortho-dichlorobenzene, and the raw material tank was charged with 154.2 g (l. 0 mol) of bis (aminomethyl) norbornene and 516.2 g of ortho-dichlorobenzene (total amine concentration 12.0 wt. %). Next, after raising the temperature in the reactor to 120 ° C, the internal pressure was adjusted to 0. OlMPa higher than atmospheric pressure. Then, charging of the salt and hydrogen gas from the salt and hydrogen gas blowing pipe was started at a rate of 43.8 gZhr. At the same time, bis (aminomethyl) norbornene diluted with a solvent from the material tank was charged to the material.
  • the charging was started at a rate of 335. 2gZhr with the pump, and the entire amount was charged over 2 hours. Further, aging was carried out for 1 hour while charging salty hydrogen gas at 20 gZhr. After completion of the reaction, the conversion rate of the raw material amine was determined by neutralization titration, and the conversion rate was 99.86 mol%.
  • the viscosity of the hydrochloride was measured at 120 ° C. using an LVT viscometer manufactured by BROOKFIELD. As a result, it was l lOmPa's and had sufficient fluidity.
  • the particle size of the hydrochloride was measured with a laser diffraction particle size distribution analyzer SALD-2100 manufactured by Shimadzu Corporation in a acetonitrile solvent.
  • the number average particle size of the hydrochloride particles was 35 m.
  • the obtained hydrochloride slurry is liquid and excellent in fluidity.
  • a salt-forming reactor (tank reactor) equipped with a stirrer, reflux condenser, thermometer, hydrogen chloride gas blowing pipe, raw material tank, raw material charging pump, liquid feed pump, and pressure controller was used.
  • the diameter of the stirring blade of the salt-forming reactor (D1)
  • the value of the inner diameter (D2) of the Z reaction vessel is 0.53
  • the vessel diameter (D) 7 the tank length (L) is 0.73
  • the capacity of the reaction vessel was 4 m 3 .
  • 2000 kg of dichlorobenzene benzene, a reaction solvent was placed in the salt-forming reactor.
  • the temperature in the salt formation reactor was raised to 120 ° C, and the internal pressure was adjusted to 0. IMPa high pressure from atmospheric pressure.
  • salt and hydrogen gas was introduced into the salt-forming reactor at a rate of 172 kgZhr from the salt and hydrogen gas blowing tube, and m-xylylenediamine 193 kgZhr (l. 42 kgol Zhr) from the raw material tank.
  • 2078 kgZhr of orthodichlorobenzene was continuously charged (total amine concentration 8.5 wt%).
  • the hydrochloride slurry retained in the salt-forming reactor for 1 hour was continuously fed to a relay tank equipped with a stirrer and aged for 6 hours. After aging, the conversion rate of the raw material amine was determined by neutralization titration, and the conversion rate was 99.83 mol%.
  • the viscosity of the hydrochloride slurry was 900 mPa's as a result of measuring at 120 ° C. using a BROOKFI ELD LVT viscometer, and had sufficient fluidity.
  • the particle size of the hydrochloride was measured with a laser diffraction particle size distribution analyzer SALD-2100 manufactured by Shimadzu Corporation in a acetonitrile solvent, the number average particle size of the hydrochloride particles was 33 m.
  • SALD-2100 laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation in a acetonitrile solvent
  • the obtained hydrochloride slurry was liquid and excellent in fluidity, and when transferring the hydrochloride to the next step, the hydrochloride did not remain in the reactor and the transferability was good.
  • the hydrochloric acid slurry transferred from the relay tank was heated to 160 ° C in the reactor (phosgenator), and then phosgene was blown from the phosgene blowing pipe at 112913 ⁇ 47111: (11.4 kgol 7111 :), and the temperature was adjusted. The reaction was continued for 6 hours. After the reaction was completed, unreacted phosgene and salt-hydrogen gas were removed from the system by purging nitrogen. Then, the reaction solution was filtered to remove 3.6 kg (dry weight) of unreacted hydrochloride. The obtained filtrate was desolvated.
  • Example 8 The same salt-forming reactor (tank reactor) as in Example 8 was used. After depositing 2000 kg of dichlorobenzene benzene as a reaction solvent in the salt formation reactor, the temperature in the salt formation reactor was raised to 120 ° C, and the internal pressure was adjusted to 0.05 MPa higher than atmospheric pressure. Charge of salty hydrogen gas from the hydrogen chloride gas blowing pipe at a rate of 172 kgZhr was started, and m-xylylenediamine 193 kgZhr (l. (Total amine concentration 8.5 wt%). The hydrochloric acid slurry retained in the salt-forming reactor for 1 hour was continuously fed to a relay tank equipped with a stirrer and aged for 6 hours.
  • the conversion rate of the raw material amine was determined by the neutralization titration method.
  • the conversion rate was 99.47 mol%.
  • the viscosity of the hydrochloride was 1400 mPa's as measured with a BROOKFIELD LVT viscometer at 120 ° C, and had sufficient fluidity. Further, when the particle diameter of hydrochloride was measured with a laser diffraction particle size distribution analyzer SAL D-2100 manufactured by Shimadzu Corporation in a acetonitrile solvent, the number average particle diameter of the hydrochloride particles was 38 m.
  • the obtained hydrochloride slurry was liquid and excellent in fluidity, and when transferring the hydrochloride to the next step, the hydrochloride did not remain in the reactor and the transferability was good.
  • the hydrochloric acid slurry transferred from the relay tank was heated to 160 ° C in the reactor (phosgenator), and then phosgene was blown from the phosgene blowing pipe at 112913 ⁇ 47111: (11.4 kgol 7111 :), and the temperature was adjusted. The reaction was continued for 6 hours. After the reaction was completed, unreacted phosgene and salt-hydrogen gas were removed from the system by purging nitrogen. Then, the reaction solution was filtered to remove 5.2 kg (dry weight) of unreacted hydrochloride.
  • Refrigeration cooling pipe, stirring blade, thermometer, hydrogen chloride gas blowing pipe, phosgene blowing pipe, raw An autoclave (reactor) equipped with a material tank and a raw material charging pump was used.
  • the inner diameter (D2) of the Z reaction vessel is 0.7
  • the vessel diameter (D) Z vessel length (L) is 0.59
  • the inner volume of the reaction vessel was 2L.
  • the reaction machine was charged with O Rusojikuro port benzene 846g as a reaction solvent, a raw material tank m- xylylene ⁇ Min 136. 2 g (l.
  • the conversion rate was 97.81 mol%.
  • the viscosity of the hydrochloride was 3320 mPa's as measured using a BROOKFIELD LVT viscometer at 120 ° C, showing a whip-like appearance. It was confirmed that when the obtained hydrochloride slurry was transferred to the next step with a viscous body and poor fluidity, a large amount of hydrochloride remained in the reactor and the transferability was poor.
  • SALD-2100 laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation in a acetonitrile solvent, the number average particle size of the hydrochloride particles was 100 m. .
  • the conversion rate of the raw material amine was determined by a neutralization titration method. The conversion rate was 98.10 mol%.
  • the viscosity of the hydrochloride was 5180 mPa's as a result of measurement using a BROOKFIELD LVT viscometer at 120 ° C, showing a whip-like appearance. It was confirmed that when the obtained hydrochloride slurry was transferred to the next step with a viscous body and poor fluidity, a large amount of hydrochloride remained in the reactor and the transferability was poor.
  • the number average particle size of the hydrochloride particles measured with the SALD-2100 laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation in the acetonitrile solvent is 150 ⁇ m.
  • the conversion rate of the raw material amine was determined by the neutralization titration method.
  • the conversion was 97. 85 mol%.
  • the viscosity of the hydrochloride was 4100 mPa's as measured using a BROOKFIELD LVT-type viscometer at 120 ° C, showing a state on the whip. It was confirmed that when the obtained hydrochloride slurry was transferred to the next step with a viscous body and poor fluidity, a large amount of hydrochloride remained in the reactor and the transferability was poor.
  • the same reactor as in Comparative Example 1 was used.
  • the reactor was charged with 958 g of ortho-dichlorobenzene as a reaction solvent, and 154.2 g (l.0 mol) of bis (aminomethyl) norbornene and 702 g of ortho-dichlorobenzene were added to the raw material tank (total amine concentration 8.5% by weight). ).
  • the internal pressure was adjusted to O.OOlMPa higher than atmospheric pressure.
  • charging of the salty hydrogen gas from the salty hydrogen gas blowing pipe was started at a rate of 43.8 gZhr, and at the same time, the amine diluted with the solvent from the raw material tank was charged by the raw material charging pump.
  • the charging was started at the speed of and the entire amount was charged over 2 hours. Further, aging was performed for 1 hour while charging the salty hydrogen gas at 20 gZhr. After completion of the reaction, the conversion rate of the raw material amine was determined by a neutralization titration method. The conversion rate was 98.90 mol%.
  • the viscosity of the hydrochloride was measured at 120 ° C using a BROOK FIELD LVT viscometer. As a result, it showed a whip-like state at 3180 mPa's. It was confirmed that when the obtained hydrochloride slurry was transferred to the next step with a viscous body and poor fluidity, a large amount of hydrochloride remained in the reactor and the transferability was poor.
  • the particle size of the hydrochloride was changed to a laser manufactured by Shimadzu Corporation in the acetonitrile solvent.
  • the number average particle diameter of the hydrochloride particles was 80 ⁇ m as measured by a single diffraction particle size analyzer SALD-2100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 光学材料分野で好適に使用される、ポリウレタン系材料、ポリイソシアヌレート系材料等の原料として広く用いられるイソシアナートの製造方法において、塩酸塩の生産性を向上させることが可能な工程を有する方法を提供する。本発明の鎖状脂肪族イソシアナートまたは環状脂肪族イソシアナートの製造方法は、鎖状脂肪族アミンまたは環状脂肪族アミンと塩化水素とを反応させて、鎖状脂肪族アミン塩酸塩または環状脂肪族アミン塩酸塩を得る工程を有する鎖状脂肪族または環状脂肪族イソシアナートの製造方法であって、前記工程が大気圧より0.01MPa以上高い圧力下で行われる。

Description

明 細 書
イソシアナートの製造方法、それにより得られたイソシアナート、およびそ の用途
技術分野
[0001] 本発明は鎖状脂肪族または環状脂肪族ァミンを塩化水素と反応させる工程 (造塩 工程)を有する、鎖状脂肪族または環状脂肪族イソシアナートの製造方法に関する。 本発明は、さらに、前記の製造方法により得られた鎖状脂肪族または環状脂肪族ィ ソシアナートおよびその用途に関する。
背景技術
[0002] イソシアナ一トイ匕合物は、化学工業、榭脂工業、塗料工業等の分野において用い られるポリウレタン系材料、ポリ尿素系材料、ポリイソシァヌレート系材料等の原料とし て有用である。
[0003] 特に、硫黄原子等を含有するポリウレタン系材料を用いたプラスチックレンズは、無 機レンズに比べ軽量で割れ難ぐ染色が可能なため近年、眼鏡レンズ、カメラレンズ 等の光学素子用途に急速に普及してきて!、る。
[0004] 上記のプラスチックレンズ用の樹脂の原料をはじめとする各種用途において重要な イソシアナ一ト類の製造方法については、さらなる製造法の合理ィ匕が求められており 、既に各種の提案がなされている。
[0005] イソシアナートの製造方法としては、原料アミンをホスゲンと反応させるホスゲン法が 代表的である。ホスゲン法としては、原料ァミンにホスゲンを直接反応させる直接法と 、原料アミンを塩酸塩にした後にホスゲンと反応させる塩酸塩法とが広く知られて ヽる
[0006] 直接法は塩酸塩法よりもはるかに簡便な方法である力 中間体である力ルバモイル クロリド又はイソシアナ一トと、原料ァミンとが反応してウレァを副生することが多い。芳 香族イソシアナートを製造する場合には、副生したゥレアが更にホスゲンと反応してィ ソシアナートを生成するので、比較的高収率で製品が得られ、ゥレアの副生は通常 問題とはならない。しかしながら、鎖状脂肪族または環状脂肪族ァミンとホスゲンを直 接法で反応させる場合、副生したゥレアがホスゲンと反応するため、塩素誘導体を副 生する事が知られている (例えば、特許文献 1参照)。塩素誘導体は、通常で、 3〜1 0%、多い時には 20%近くも副生する事があり、収率低下を来たすと共に、使用した ウレタン等の樹脂の物性にも悪影響を与えるおそれがあるため、通常直接法は採用 されない。すなわち、鎖状脂肪族又は環状脂肪族イソシアナートを製造する場合、ゥ レアの副生を抑制する為に、原料アミンを塩酸塩とした後、ホスゲンと反応させてイソ シアナートを製造する塩酸塩法が用いられている(例えば、特許文献 2〜5参照)。
[0007] これらの特許文献のうちでも特許文献 3〜5には、原料アミンを有機溶媒中等であら 力じめ塩酸塩とした後、ホスゲンと反応させてイソシアナートを製造する方法が記載さ れている。
特許文献 1:英国特許第 1086782号公報
特許文献 2 :特開昭 50— 108239号公報
特許文献 3:特開平 1卜 310567号公報
特許文献 4:英国特許第 1146664号公報
特許文献 5:特開 2003- 286241号公報
発明の開示
[0008] し力しながら、塩酸塩法では、得られる塩酸塩スラリーの粘度の上昇力 生産性の 低下等の不利益をもたらし、その解決が望まれていた。例えば、塩酸塩法では、通常
、原料アミンを溶解した有機溶媒中に塩ィ匕水素ガスを吹き込んで、造塩 (塩酸塩の製 造)する方法が一般的である。このとき、原料アミン濃度を工業的に有利な、例えば、 5重量%以上の条件で塩化水素ガスと反応させると、反応の進行に従い、塩酸塩ス ラリーの粘度が例えば 5000〜10000mPa' sに上昇し、塩酸塩スラリーの流動性低 下が生じ、ポンプ等による塩酸塩の移液が困難となる場合がある。移液が困難である ことによる生産性の低下は、連続的に造塩を行う際に、特に重大である。
[0009] 本発明者らは、上述の課題を解決するために鋭意検討した結果、鎖状脂肪族アミ ン塩酸塩または環状脂肪族ァミン塩酸塩製造時の圧力を、大気圧よりも 0. OlMPa 以上高い条件とする事で、塩酸塩スラリーの粘度を低下させることが可能であることを 見出し、本発明に至った。塩酸塩スラリーの粘度低下により流動性が向上すれば、良 好な移液性を備えた塩酸塩が得られ、塩酸塩の生産性の向上 (特に、連続的に造塩 反応を行う際の生産性の向上)に、特に有益である。
[0010] また、鎖状脂肪族ァミン塩酸塩または環状脂肪族ァミン塩酸塩の製造時の圧力を 上記の条件とする事で、塩酸塩スラリー中の塩酸塩粒子の粒径増大を抑制すること ができ、塩酸塩スラリーの粘度の上昇を抑制することができるばかりか、ホスゲンィ匕の 際の塩酸塩転ィ匕率の向上を通じて、イソシアナートの収率を向上させる場合があるこ とをも見出した。
[0011] 即ち、本発明は、(1)鎖状脂肪族ァミンまたは環状脂肪族ァミンと塩ィ匕水素とを反 応させて、鎖状脂肪族ァミン塩酸塩または環状脂肪族ァミン塩酸塩を得る工程を有 する鎖状脂肪族または環状脂肪族イソシアナートの製造方法であって、前記工程が 大気圧より 0. OlMPa以上高い圧力下で行われる、鎖状脂肪族イソシアナートまた は環状脂肪族イソシアナートの製造方法に関する。
[0012] 以下、(2)から(11)は、それぞれ本発明の好ましい実施形態の 1つである。
[0013] (2)前記鎖状脂肪族ァミンまたは環状脂肪族ァミンが 2官能以上の鎖状脂肪族アミ ンまたは環状脂肪族ァミンである、 (1)に記載の鎖状脂肪族イソシアナ一トまたは環 状脂肪族イソシアナートの製造方法。
[0014] (3)前記工程が、槽型反応機内の有機溶媒中で、 2官能以上の鎖状脂肪族ァミン または環状脂肪族ァミンと塩ィ匕水素とを反応させる工程である、 (1)に記載の鎖状脂 肪族イソシアナートまたは環状脂肪族イソシアナートの製造方法。
[0015] (4)前記工程が、有機溶媒中で、 2官能以上の鎖状脂肪族ァミンまたは環状脂肪 族ァミンと、該有機溶媒中に吹き込まれた塩化水素とを反応させる工程である、 (1) に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナートの製造方法。
[0016] (5) BROOKFIELD製 LVT型粘度計を用いて 120°Cで測定した、前記工程により 得られる鎖状脂肪族ァミン塩酸塩または環状脂肪族ァミン塩酸塩を含むスラリーの 粘度が 2000mPa' s以下である、(1)から (4)のいずれか 1項に記載の鎖状脂肪族ィ ソシアナートまたは環状脂肪族イソシアナートの製造方法。
[0017] (6)前記工程が、大気圧より 0. OlMPa以上、 1. OMPa以下の範囲で高い圧力下 で行われる、(1)から (4)のいずれか 1項に記載の鎖状脂肪族イソシアナ一トまたは 環状脂肪族イソシアナートの製造方法。
[0018] (7)前記工程における反応温度力 20°C以上、 180°C以下である、(1)から (4) のいずれか 1項に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナ一ト の製造方法。
[0019] (8)前記工程において、少なくとも 1種類の有機芳香族系溶媒を用いる、(1)から( 4)の 、ずれか 1項に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナ ートの製造方法。
[0020] (9)前記 2官能以上の鎖状脂肪族ァミン又は環状脂肪族ァミンが、 1級のアミノ基を 有する化合物である、 (2)力 (4)の 、ずれか 1項に記載の鎖状脂肪族イソシアナ一 トまたは環状脂肪族イソシアナートの製造方法。
[0021] (10)前記 2官能以上の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナ一ト
1S キシリレンジイソシアナート、ビス(イソシアナトメチル)ノルボルネン、へキサメチレ ンジイソシアナート、およびビス (イソシアナトメチル)シクロへキサン力も選ばれる 1つ 以上の化合物である(2)力も (4)の 、ずれか 1項に記載の鎖状脂肪族イソシアナート または環状脂肪族イソシアナートの製造方法。
[0022] (11)前記工程において、反応系内の全ァミン濃度が 5重量%以上 40重量%以下 である、(1)から (4)のいずれか 1項に記載の、鎖状脂肪族イソシアナ一トまたは環状 脂肪族イソシアナートの製造方法。
[0023] 本発明は、(12)前記(1)から(11)のいずれか 1項に記載の方法により製造された
、鎖状脂肪族イソシアナートまたは環状脂肪族イソシアナートに関する。
[0024] 本発明は、(13)前記(12)に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族 イソシアナートを用いて製造されたポリウレタン榭脂に関する。
[0025] 本発明は、(14)前記(13)に記載のポリウレタン榭脂を含有するレンズに関する。
[0026] また、本発明は、(15)大気圧より 0. OlMPa以上高い圧力下で、鎖状脂肪族アミ ンまたは環状脂肪族ァミンと塩化水素とを反応させる、鎖状脂肪族ァミン塩酸塩また は環状脂肪族ァミン塩酸塩の製造方法に関する。
[0027] 以下、(16)から(18)は、それぞれ本発明の「鎖状脂肪族ァミン塩酸塩または環状 脂肪族ァミン塩酸塩の製造方法」における好ま 、実施形態の 1つである。 [0028] (16)前記鎖状脂肪族ァミンまたは環状脂肪族ァミンが 2官能以上の鎖状脂肪族ァ ミンまたは環状脂肪族ァミンである、 (15)に記載の鎖状脂肪族ァミン塩酸塩または 環状脂肪族ァミン塩酸塩の製造方法。
[0029] (17)槽型反応機内の有機溶媒中で、 2官能以上の鎖状脂肪族ァミンまたは環状 脂肪族ァミンを塩化水素と反応させる、 (15)に記載の鎖状脂肪族ァミン塩酸塩また は環状脂肪族ァミン塩酸塩の製造方法。
[0030] (18)有機溶媒中で、 2官能以上の鎖状脂肪族ァミンまたは環状脂肪族ァミンと、該 有機溶媒中に吹き込まれた塩化水素とを反応させる、 (15)に記載の鎖状脂肪族アミ ン塩酸塩または環状脂肪族ァミン塩酸塩の製造方法。
[0031] 本発明によれば、鎖状脂肪族ァミン塩酸塩または環状脂肪族ァミン塩酸塩製造時 の圧力を大気圧よりも 0. OlMPa以上高い条件とする事で、得られる鎖状脂肪族アミ ン塩酸塩または環状脂肪族ァミン塩酸塩スラリーの粘度を低下させることが可能にな る。これにより、塩酸塩スラリーの流動性及び移液性が向上し、連続造塩反応に特に 好適な、良好な移液性を備えた塩酸塩の製造が可能となるため、塩酸塩の生産性が 向上する。
発明を実施するための最良の形態
[0032] 以下、本発明を詳細に説明する。
[0033] 本発明の「鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナートの製造方法 」は、鎖状脂肪族ァミンまたは環状脂肪族ァミンと塩化水素とを反応させて、鎖状脂 肪族ァミン塩酸塩または環状脂肪族ァミン塩酸塩を含むスラリーを得る工程 (以下、「 造塩反応工程」ともいう。)を有する。さらに、前記イソシアナートを製造するには、前 記工程により得られたァミン塩酸塩にホスゲンを反応させる工程 (以下、「ホスゲンィ匕 工程」ともいう。)を経ることにより、ァミン塩酸塩をホスゲンィ匕してイソシアナ一トを製 造する。
[0034] 造塩反応工程
本発明において、造塩反応は、反応機の圧力を大気圧より 0. OlMPa以上高い圧 力下、好ましくは 0. 02MPa以上、より好ましくは 0. 03MPa以上高い圧力下で行う。 これにより、造塩反応で得られる塩酸塩スラリーの粘度を低下させること、好ましくは 2 OOOmPa' s以下とすることができる。なお、スラリーの粘度は、 BROOKFIELD製 LV T型粘度計を用 、て 120°Cで測定した値である。
[0035] このような圧力下で造塩反応を行う本発明の製造方法によれば、塩酸塩スラリーの 粘度低下により流動性及び移液性が向上し、連続造塩反応に特に好適な、良好な 移液性を備えた塩酸塩の製造が可能となる。したがって、塩酸塩の生産性を向上さ せることができる。
[0036] さらに、本発明の製造方法によれば、塩酸塩スラリーの粘度を上記の範囲とするこ とができるため、塩酸塩スラリーの攪拌効率の向上による未反応原料ァミンの減少、 および未反応原料ァミンから生ずる塩素誘導体の減少が可能となる場合がある。そ の結果、造塩反応時における原料ァミンの転化率が向上し、イソシアナートの収率の 向上等の効果が得られる場合がある。またさらに、本発明の製造方法によれば、塩酸 塩スラリーに含まれる塩酸塩粒子の粒径の増大を抑制し、塩酸塩粒子の微細化が可 能となる場合がある。これにより、塩酸塩スラリーの粘度の上昇を抑制することができ るばかりか、ホスゲンィ匕の際の塩酸塩転ィ匕率の向上を通じて、イソシアナートの収率 の向上が可能となる場合がある。
[0037] 本発明にお 、ては、前記鎖状脂肪族ァミンまたは環状脂肪族ァミンが 2官能以上 の鎖状脂肪族ァミンまたは 2官能以上の環状脂肪族ァミンであることが好ま 、。前 記鎖状脂肪族ァミンまたは環状脂肪族ァミンが 2官能以上の鎖状脂肪族ァミンまた は 2官能以上の環状脂肪族ァミンであると、造塩反応により 2官能以上の鎖状脂肪族 ァミン塩酸塩または 2官能以上の環状脂肪族ァミン塩酸塩を得ることができる。さらに 、これらの塩酸塩をホスゲンィ匕することにより、 2官能以上の鎖状脂肪族イソシアナ一 トまたは 2官能以上の環状脂肪族イソシアナートを得ることが可能である。 2官能以上 の鎖状脂肪族イソシアナ一トまたは 2官能以上の環状脂肪族イソシアナ一トは、活性 水素含有基を 2個以上持つ化合物と反応させることで、ポリウレタン等の高分子化合 物を得ることができるので、実用上高い価値を有する。
[0038] また、本発明においては、前記造塩反応工程は、反応の安定性、反応に寄与する 各成分の溶解度等の観点から、有機溶媒中で行われることが好ましい。
[0039] 本発明においては、前記造塩反応工程で用いる反応機としては、槽型反応機、特 に内部を攪拌する攪拌機を備えた槽型反応機であることが好ま ヽ。本発明にお ヽ て槽型反応機とは、反応に関与する物質 (反応物、生成物、溶媒等)の少なくとも一 部が、液相でその内部に存在する反応容器を備える反応機であって、攪拌翼の径(
D1)と、反応容器の内径 (D2)とが、 Dl/D2≤0. 85の関係を満たす反応機である 。さらに、本発明において用いられる槽型反応機は、槽径 (D)と槽長 (L)の比 (DZL )が 0.1以上、 5.0以下の比率であるものが望ましい。 DZLが 0.1以上であれば、塩 化水素ガスを良好に除去することができるので、得られる塩酸塩がホイップ状を呈し 流動性が悪ィ匕するという現象を有効に抑制することができる。 DZLが 5.0以下であ れば、均一な攪拌が容易であり、未反応アミン増加等の問題を有効に抑制することが できる。このような効果のバランスの観点から、上記 DZL比が 0.5以上、 1. 5以下で ある反応機がさらに望ましい。
[0040] 造塩反応は、槽型反応機内に有機溶媒、好ましくは有機芳香族系溶媒を敷液し、 所定の温度に昇温後、アミンを溶解した溶媒を滴下と同時に塩ィ匕水素ガスを装入す る方法、敷液した溶媒を所定の温度に昇温し、予め塩ィ匕水素ガスを吸収させた後、 ァミン溶解液を滴下と同時に塩ィ匕水素ガスを装入する方法、或いは、アミンを溶解し た溶媒を、所定の温度に昇温後、塩ィヒ水素ガスを装入する方法などの各種の方法 で行うことができる。上記例示のいずれかの方法で行うことが好ましいが、これら以外 の方法で行うことを排除するものではない。いずれの方法においても、反応効率の観 点から、塩ィ匕水素ガスの挿入にあたっては、塩ィ匕水素ガスを有機溶媒中に吹き込む ことが好ましい。
[0041] 造塩反応で得られる塩酸塩スラリーを、粘度 2000mPa's以下、あるいは原料アミ ン転ィ匕率 99mol%以上もの好ま ヽレベルとする観点から、本発明の造塩反応を行 ぅ槽型反応機内の圧力は、大気圧よりも 0. OlMPa以上高圧とする。大気圧よりも 0. 02MPa以上高圧であればより好ましい。大気圧よりも 0. 03MPa以上高圧であれば 、更に好ましい。
[0042] 一方、大気圧下で造塩反応を行った場合、塩酸塩スラリー中の塩酸塩粒子の粒径 が大きくなつたり、塩酸塩スラリーの粘度が上昇するため、移液性の低下や流動性低 下による反応機内の攪拌効率低下を招く。そのため、未反応ァミンの増加や、ホスゲ ンとの反応時において生成する塩素化物の増加を招く場合がある。
[0043] 本発明においては、造塩反応時の圧力の上限値を、大気圧よりも 1. OMPa以下と すると、塩酸塩スラリー中の塩化水素ガスの溶解度が上がり、造塩反応時の反応速 度が向上する効果があるので好ましい。更に、流動性が向上するため、塩酸塩スラリ 一の移液性も良好となるので好ましい。大気圧よりも 0. 5MPa以下の加圧条件であ ればより好ましぐ大気圧よりも 0. 3MPa以下の加圧条件であれば更に好ましい。造 塩反応機内圧力が極端に高いと、塩ィ匕水素ガスの抜けが悪くなり、塩酸塩スラリーが ホイップ状を呈し流動性が逆に悪ィ匕するという問題を生ずる場合がある。
[0044] なお、造塩反応時の圧力の下限値と上限値は任意の組み合わせとすることができ る。本発明においては、上記効果の観点から、大気圧より 0. OlMPa以上、 1. OMP a以下の範囲で高い圧力下において造塩反応を行うことが好ましぐ大気圧より 0. 01 MPa以上、 0. 5MPa以下の範囲で高い圧力下において造塩反応を行うことがより好 ましい。
[0045] 本発明の製造方法によれば、原料ァミンの転ィ匕率を、 99mol%以上とすることがで きる場合がある。原料ァミンの転ィ匕率が 99mol%以上であると、イソシアナートの収率 が高ぐまた、副生成物の影響を抑制できるので好ましい。
[0046] 原料ァミンの転化率は、以下の様にして測定される。造塩反応終了後のスラリー中 に残存するァミンを中和滴定して、残存ァミンのモル数を得る。これと、仕込んだアミ ンのモル数とから、下記式によりァミン転化率を算出する。
式:アミン転ィ匕率 = ( (仕込んだァミンのモル数—残存ァミンのモル数) Z仕込んだ ァミンのモル数) X100
[0047] 本発明における全ァミン濃度は、工業的生産効率を考慮すると、 5重量%以上 40 重量%以下が望ましい。全ァミン濃度は、造塩反応機における仕込アミン量を、造塩 反応機における仕込原料の総重量で割って算出した値である。
[0048] 5重量%以上であれば、生産効率が高 、ので好ましぐ 40重量%以下であれば、 塩酸塩スラリーの流動性の悪化、スラリー粘度上昇による攪拌効率低下、未反応アミ ン増加、移液性低下、ホスゲンとの反応時における塩素化物の増加等の問題を有効 に抑制することができる。同様の理由により、全ァミン濃度は好ましくは 5重量%以上 、 35重量%以下、より好ましくは 5重量%以上 30重量%以下が好ましい。
[0049] 本発明における造塩反応時の温度は、未反応ァミンの低減及び、未反応ァミンに 由来する塩素誘導体の副生防止、生成する塩酸塩粒子径の微細化、又、次のホス ゲンとの反応へ移行する際の熱バランス等を考慮すると、 20°C以上、 180°C以下 が好ましい。
[0050] 20°C以上であれば、塩酸塩粒子が凝縮し難ぐ造塩時に塊状の塩酸塩が生成 する現象を有効に抑制することができる。 180°C以下であれば、生成する塩酸塩の 性状がホイップ状を呈し、流動性が損なわれ、塩酸塩の移液が困難となる現象を有 効に抑制することができる。造塩反応時の温度は— 20°C以上、 180°C以下が好まし ぐより好ましくは 60°C以上、 175°C以下であり、更に好ましくは 100°C以上、 170°C 以下が好ましい。
[0051] ホスゲン化工程
造塩反応により得られた塩酸塩とホスゲンとの反応は、常圧及び加圧下のいずれ で行う事も可能である力 常圧でホスゲンィ匕を行う方力 副生塩化水素ガスによる副 反応抑制の点力 好ましい。又、ホスゲンとの反応温度は、反応速度及び、生成する イソシアナートのタール化抑制の面から、 120°C以上、 180°C以下、好ましくは 130 °C以上、 175°C以下、更に好ましくは 150°C以上、 170°C以下の範囲が好適である。
[0052] 本発明における、造塩反応時のァミンと塩ィ匕水素ガスの当量比は、ァミン 1. 0に対 し塩ィ匕水素ガス力 1. 0以上、 2. 5以下、好ましくは 1. 1以上、 2. 0以下であること が望ましい。 1. 0以上であると原料ァミンの転ィ匕率を高く保つことができ、 2. 5以下で あると経済性の面から工業的により有利である。
[0053] 本発明において好ましく用いられる 2官能以上の鎖状脂肪族ァミン又は環状脂肪 族ァミンに特に制限はないが、代表的なものとしては、へキサメチレンジァミン、 2, 2 ジメチルペンタンジァミン、 2, 2, 4 トリメチルへキサンジァミン、ブテンジァミン、 1 , 3 ブタジエン一 1, 4 ジァミン、 2, 4, 4 トリメチルへキサメチレンジァミン、 1, 6 , 11—ゥンデカトリァミン、 1, 3, 6 へキサメチレントリァミン、 1, 8 ジイソシアナト一 4—イソシアナトメチルオクタン、ビス(アミノエチル)カーボネート、ビス(アミノエチル) エーテル、リジンジァミノメチルエステル、リジントリアミン、キシリレンジァミン、ビス(ァ ミノェチル)ベンゼン、ビス(ァミノプロピル)ベンゼン、 ひ, a , a ', a '—テトラメチル キシリレンジァミン、ビス(アミノブチル)ベンゼン、ビス(アミノメチル)ナフタリン、ビス( アミノメチル)ジフエ-ルエーテル、ビス(アミノエチル)フタレート、メシチリレントリアミ ン、 2, 6 ジ (アミノメチル)フラン、等の鎖状脂肪族ァミン、
ビス(アミノメチル)シクロへキサン、ジシクロへキシルメタンジァミン、シクロへキサン ジァミン、メチルシクロへキサンジァミン、ジシクロへキシルジメチルメタンジァミン、 2, 2 -ジメチルジシクロへキシルメタンジァミン、 2, 5 ビス(アミノメチル)ビシクロ一〔2, 2, 1〕一ヘプタン、 2, 6 ビス(アミノメチル)ビシクロ一〔2, 2, 1〕一ヘプタン、 3, 8— ビス(アミノメチル)トリシクロデカン、 3, 9—ビス(アミノメチル)トリシクロデカン、 4, 8 - ビス(アミノメチル)トリシクロデカン、 4, 9—ビス(アミノメチル)トリシクロデカン、ビス ( アミノメチル)ノルボルネン等の環状脂肪族ァミン、
ビス(アミノメチル)スルフイド、ビス(アミノエチル)スルフイド、ビス(ァミノプロピル)ス ルフイド、ビス(ァミノへキシル)スルフイド、ビス(アミノメチル)スルホン、ビス(アミノメチ ル)ジスルフイド、ビス(アミノエチル)ジスルフイド、ビス(ァミノプロピル)ジスルフイド、 ビス(アミノメチルチオ)メタン、ビス(アミノエチルチオ)メタン、ビス(アミノエチルチオ) ェタン、ビス(アミノメチルチオ)ェタン、 1, 5 ジアミノー 2 アミノメチルー 3—チアべ ンタン等の含硫鎖状脂肪族ァミンが挙げられる。
上述の造塩反応で得られたァミン塩酸塩をホスゲンと反応させて得られるイソシァ ナートには特に制限はないが、代表的なものとして、へキサメチレンジイソシアナート 、 2, 2 ジメチルペンタンジイソシアナート、 2, 2, 4 トリメチルへキサンジイソシアナ ート、ブテンジイソシアナート、 1, 3 ブタジエン 1, 4ージイソシアナート、 2, 4, 4 —トリメチルへキサメチレンジイソシアナート、 1, 6, 11—ゥンデカトリイソシアナート、 1, 3, 6 へキサメチレントリイソシアナート、 1, 8 ジイソシァナトー 4 イソシアナト メチルオクタン、ビス(イソシアナトェチル)カーボネート、ビス(イソシアナトェチル)ェ 一テル、リジンジイソシアナトメチルエステル、リジントリイソシアナート、キシリレンジィ ソシアナート、ビス(イソシアナトェチル)ベンゼン、ビス(イソシアナトプロピル)ベンゼ ン、 a , a , a ', α '―テトラメチルキシリレンジイソシアナート、ビス(イソシアナトブチ ルエーテル、ビス(イソシアナトェチル)フタレート、メシチリレントリイソシアナート、 2, 6—ジ (イソシアナトメチル)フラン、等の鎖状脂肪族ポリイソシアナート、 シクロへキサンジイソシアナート、メチルシクロへキサンジイソシアナート、ジシクロへ キシルジメチルメタンジイソシアナート、 2, 2—ジメチルジシクロへキシルメタンジイソ シアナート、 2, 5 ビス(イソシアナトメチル)ビシクロ一〔2, 2, 1〕一ヘプタン、 2, 6- ビス(イソシアナトメチル)ビシクロ一〔2, 2, 1〕一ヘプタン、 3, 8 ビス(イソシアナトメ チル)トリシクロデカン、 3, 9—ビス(イソシアナトメチル)トリシクロデカン、 4, 8—ビス(
、ビス (イソシアナトメチル)ノルボルネン等の環状脂肪族ポリイソシアナート、
ビス(イソシアナトメチル)スルフイド、ビス(イソシアナトェチル)スルフイド、ビス(イソ シアナトプロピル)スルフイド、ビス(イソシアナトへキシル)スルフイド、ビス(イソシアナ トメチル)スルホン、ビス(イソシアナトメチル)ジスルフイド、ビス(イソシアナトェチル) メタン、ビス(イソシアナトェチルチオ)メタン、ビス(イソシアナトェチルチオ)ェタン、ビ ス(イソシアナトメチルチオ)ェタン、 1, 5 ジイソシァナトー 2—イソシアナトメチル一 3 チアペンタン等の含硫鎖状脂肪族イソシアナ一トなどが挙げられる。
[0055] 本発明の製造方法により得られる上記例示化合物の中で、各種の光学素子用途 において特に好ましい化合物としては、キシリレンジイソシアナート、ビス (イソシアナト メチル)ノルボルネン、へキサメチレンジイソシアナート、ビス(イソシアナトメチル)シク 口へキサンが挙げられる。
[0056] 本発明に用いられる溶媒には特に制限は無いが、造塩反応時には塩酸溶解度が 大きぐホスゲン化時にはホスゲン溶解度が大きぐかつ塩酸溶解度が小さい高沸点 有機芳香族化合物を用いることが望ましい。代表的な有機芳香族化合物としては、 1 , 2 ジェチルベンゼン、 1, 3 ジェチルベンゼン、 1, 4ージェチルベンゼン、イソプ 口ピルベンゼン、 1, 2, 4 トリメチルベンゼン、ァミルベンゼン、ジァミルベンゼン、ト リアミルベンゼン、ドデシルベンゼン、 p シメン、タメン、フタル酸ジメチル、フタル酸 ジェチル、フタル酸ジブチル、フタル酸ジ 2—ェチルへキシル、安息香酸メチル、 安息香酸ェチル、安息香酸プチル、安息香酸プロピル、安息香酸イソァミル、安息 香酸ベンジル、サリチル酸メチル、メチルフエ-ルエーテル、ェチルフエ-ルエーテ ル、ジイソアミルエーテル、 n—へキシルエーテル、オルソジクロ口ベンゼン、 p—クロ 口トルエン、ブロムベンゼン、 1, 2, 4—トリクロ口ベンゼン等が挙げられる力 これらに 制限されない。例示溶媒中で、本発明を実施するのに特に好ましい溶媒としては、芳 香族ハロゲンィ匕合物である。
[0057] 本発明の製造方法は、光学材料分野をはじめとする各種の工業分野にて、広く使 用されるイソシアナートの製造において、その製造効率を向上させることが可能であ り、技術的、工業的に高い価値を有する。
[0058] 本発明の製造方法により得られたイソシアナ一トイ匕合物は、経済性に優れるうえに 、未反応原料アミン、未反応原料ァミンから生ずる塩素誘導体の低減が容易である。 そのため、イソシアナ一トイ匕合物を用いることにより、品質に優れた榭脂ゃ光学製品 を、高い経済性で得ることができる。
[0059] 本発明の製造方法により得られたイソシアナ一トイ匕合物は、ポリウレタン榭脂 (ポリ チォウレタン榭脂を含む)、ポリ尿素樹脂、ポリイソシァヌレート榭脂等の各種樹脂の 原料として有用である。中でも、ポリウレタン榭脂を製造する際には、塩素誘導体を排 除する必要性が高いことから、本発明の製造方法により得られたイソシアナ一トイ匕合 物は、ポリウレタン榭脂の原料として特に有用である。すなわち、本発明により得られ たイソシアナ一トは、経済性に優れるうえに、未反応原料アミン、未反応原料アミンか ら生ずる塩素誘導体の低減が容易であり、これを用いることで、品質に優れたポリウ レタン樹脂等の榭脂、レンズ等の製品を、高い経済性で得ることができる。
[0060] イソシアナ一トイ匕合物力 ポリウレタン榭脂を製造する方法、条件 (イソシアナート化 合物の種類、イソシアナート榭脂と反応させる化合物の種類、触媒の種類、その他の 添加物の種類、それらの量比、反応温度、時間等)には特に制限はなぐ本発明の 目的を損なわない範囲で従来公知の方法、条件を適宜使用することができるが、例 えば、特開 2003— 043201号公報に記載のものを好ましく使用することができる。
[0061] 上記のようにして得られたポリウレタン榭脂からなる成形体は、優れた耐衝撃性、染 色性、高度な透明性を有する場合が多いので、プラスチックレンズの材料として特に 好適である。ポリウレタン系材料を用いたプラスチックレンズは、眼鏡レンズ、カメラレ ンズ等の光学素子として特に有用である。
[0062] [実施例]
以下、本発明を、実施例を用いて、より具体的に説明する。但し、本発明の範囲は 、 V、かなる意味にお 、ても実施例により制限されな!、。
なお、以下の実施例、比較例中においては、以下の方法で測定を行った。
[0063] (ァミン転化率)
造塩反応終了後のスラリー中に残存するァミンを中和滴定して、残存ァミンのモル 数を得た。これと、仕込んだァミンのモル数とから、下記式により転ィ匕率を算出した。 式:アミン転ィ匕率 = ( (仕込んだァミンのモル数—残存ァミンのモル数) Z仕込んだ ァミンのモル数) X100
[0064] (塩素化物生成率)
ホスゲンとの反応終了後の反応液をガスクロマトグラフィーにて分析して、塩素化物 のモル数を得た。これを仕込んだ塩酸塩のモル数で割り、生成率を算出した。
[0065] (イソシアナ一ト純度)
最終的に得られたイソシアナートをガスクロマトグラフィーにて分析して、イソシアナ ート純度を得た。
[0066] (塩酸塩転化率)
ホスゲンとの反応後に濾過を行って得られた反応濾過液残渣を中和滴定し、残存 塩酸塩のモル数を得た。これと、仕込んだ塩酸塩のモル数とから、下記式により転化 率を算出した。
式:塩酸塩転化率 = ( (仕込んだ塩酸塩のモル数 残存塩酸塩のモル数) Z仕込 んだ塩酸塩のモル数) X100
[0067] (塩酸塩粘度測定方法)
造塩反応終了後のスラリーを容器に計り取り、測定温度 120°Cに昇温した。 120°C に到達したら、 BROOKFIELD製 LVT型粘度計の NO. 2ローターにて粘度を測定 し、指示値に係数を掛けて粘度を算出した。
[0068] (粒径測定方法) 造塩反応終了後のスラリーを少量抜き取り、ァセトニトリル溶媒中で (株)島津製作 所製レーザー回析式粒度分布測定装置 SALD— 2100にて測定した。測定された 粒子径は、全粒子径の数平均値である。
[実施例 1]
還流冷却管、攪拌翼、温度計、塩化水素ガス吹き込み管、ホスゲン吹き込み管、原 料槽、原料装入ポンプを備えた、圧力調節器付きのオートクレープ (反応機)を用い た。反応機において、攪拌翼の径 (D1) Z反応容器の内径 (D2)の値は 0. 7であり、 槽径 (D) Z槽長 (L)値は 0.59であり、反応容器の内容積は 2Lであった。この反応機 内に、反応溶媒としてオルソジクロ口ベンゼン 846gを仕込み、原料槽に m—キシリレ ンジァミン 136. 2g (l. 0モル)、及びオルソジクロ口ベンゼン 621gを仕込んだ(全ァ ミン濃度 8.5重量%)。次に、反応機内の温度を 120°Cに昇温後、内圧を大気圧より も 0. OlMPa高圧に調節した。そして、塩化水素ガス吹き込み管より塩化水素ガスを 43. 8gZhrの速度で反応機内に装入を開始し、同時に、原料槽から溶媒で希釈し た m—キシリレンジアミンを、原料装入ポンプにて 379gZhrの速度で装入を開始し、 2時間掛けて全量を装入した。更に塩ィ匕水素ガスを 20gZhrで装入しながら、 1時間 熟成を行った。反応終了後、原料ァミンの転ィ匕率を中和滴定法により求めたところ、 転化率は 99. 80mol%であった。また、得られた塩酸塩スラリーの粘度は、 BROOK FIELD製 LVT型粘度計を用 、て 120°Cで測定した結果、 20 ImPa · sであり充分な 流動性を有していた。又、塩酸塩粒子の粒径をァセトニトリル溶媒中で (株)島津製 作所製レーザー回析式粒度分布測定装置 SALD— 2100を用いて測定したところ、 塩酸塩粒子の数平均粒子径は 25 mであった。得られた塩酸塩スラリーは液状で 流動性に優れ、塩酸塩を次工程に移液する場合には、塩酸塩が反応機内に残る事 は無ぐ移液性は良好であることが確認された。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージすることにより、未反応ホスゲン及び塩ィ匕 水素ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 0. 8g (乾燥重量)を 取り除いた。得られた濾液を脱溶媒して、 m—クロルメチルベンジルイソシアナ一ト( 以下 CBiと略す)を 0. 1重量%含有する、純度 98. 10%の m—キシレンジイソシアナ ート 188. 58g (純度換算収率 98. 30mol%)を得た。このときの塩酸塩の転化率は 9 9. 62%であった。結果を表 1に示す。
[0070] [実施例 2]
実施例 1と同じ反応機を用いた。この反応機内に、反応溶媒としてオルソジクロ口べ ンゼン 846gを仕込み、原料槽に m—キシリレンジァミン 136. 2g (l. 0モル)及びォ ルソジクロ口ベンゼン 621gを仕込んだ (全ァミン濃度 8.5重量%)。次に、反応機内の 温度を 120°Cに昇温後、内圧を大気圧よりも 0. 05MPa高圧に調節した。そして、塩 化水素ガス吹き込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で反応機内に装入を 開始し、同時に、原料槽より溶媒で希釈した m—キシリレンジアミンを、原料装入ボン プにて 379gZhrの速度で装入を開始し、 2時間掛けて全量を装入した。更に塩ィ匕 水素ガスを 20gZhrで装入しながら、 1時間熟成を行った。反応終了後、原料アミン の転ィ匕率を中和滴定法により求めたところ、転化率は 99. 75mol%であった。また、 得られた塩酸塩スラリーの粘度は BROOKFIELD製 LVT型粘度計を用いて 120°C で測定した結果、 215mPa' sであり、充分な流動性を有していた。又、塩酸塩の粒径 をァセトニトリル溶媒中で (株)島津製作所製レーザー回析式粒度分布測定装置 SA LD— 2100で測定したところ、塩酸塩粒子の数平均粒子径は 29 mであった。得ら れた塩酸塩スラリーは液状で流動性に優れ、塩酸塩を次工程に移液する場合には、 塩酸塩が反応機内に残る事は無ぐ移液性は良好であることが確認された。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージすることにより、未反応ホスゲン及び塩ィ匕 水素ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 0. 6g (乾燥重量)を 取り除いた。得られた濾液を脱溶媒して、 CBiを 0. 3重量%含有する、純度 97. 40 %の m—キシレンジイソシアナ一ト 190. 3g (純度換算収率 98. 50%)を得た。このと きの塩酸塩の転ィ匕率は 99. 70mol%であった。結果を表 1に示す。
[0071] [実施例 3]
実施例 1と同じ反応機を用 Vヽた。この反応機内に反応溶媒オルソジクロ口ベンゼン 846gを仕込み、原料槽に m—キシリレンジァミン 136. 2g (l. 0モル)及びオルソジ クロ口ベンゼン 621gを仕込んだ (全ァミン濃度 8.5重量%)。次に、反応機内の温度 を 120°Cに昇温後、内圧を大気圧よりも 0. IMPa高圧に調節した。そして、塩ィ匕水 素ガス吹き込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で装入を開始し、同時に、 原料槽より溶媒で希釈した m—キシリレンジアミンを、原料装入ポンプにて 379gZhr の速度で装入を開始し、 2時間掛けて全量を装入した。更に塩ィ匕水素ガスを 20gZh rで装入しながら、 1時間熟成を行った。反応終了後、原料ァミンの転化率を中和滴 定法により求めたところ、転化率は 99. 81mol%であった。また、塩酸塩スラリーの粘 度は、 BROOKFIELD製 LVT型粘度計を用いて 120°Cで測定した結果、 221mPa •sであり、充分な流動性を有していた。又、塩酸塩の粒径をァセトニトリル溶媒中で( 株)島津製作所製レーザー回析式粒度分布測定装置 SALD— 2100で測定したとこ ろ、塩酸塩粒子の数平均粒子径は 31 μ mであった。得られた塩酸塩スラリーは液状 で流動性に優れ、塩酸塩を次工程に移液する場合には、塩酸塩が反応機内に残る 事は無ぐ移液性は良好であることが確認された。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr(l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージすることにより、未反応ホスゲン及び塩ィ匕 水素ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 0. 4g (乾燥重量)を 取り除いた。得られた濾液を脱溶媒して、 CBiを 0. 2重量%含有する、純度 98. 42 %の m—キシレンジイソシアナ一ト 188. 9g (純度換算収率 98. 80mol%)を得た。こ のときの塩酸塩の転ィ匕率は 99. 80mol%であった。結果を表 1に示す。
[実施例 4]
実施例 1と同じ反応機を用いた。反応機内に、反応溶媒としてオルソジクロ口べンゼ ン 958gを仕込み、原料槽にビス(アミノメチル)ノルボルネン 154. 2g (l . 0モル)及 びオルソジクロ口ベンゼン 702gを仕込んだ (全ァミン濃度 8.5重量%)。次に、反応機 内の温度を 120°Cに昇温後、オートクレーブ内を大気圧よりも 0. OlMPa高圧に調 節した。そして、塩ィ匕水素ガス吹き込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で 反応機内に装入を開始し、同時に、原料槽より溶媒で希釈したビス (アミノメチル)ノ ルボルネンを、原料装入ポンプにて 428. lgZhrの速度で装入を開始し、 2時間掛 けて全量を装入した。更に塩ィ匕水素ガスを 20gZhrで装入しながら、 1時間熟成を行 つた。反応終了後、原料ァミンの転ィ匕率を中和滴定法により求めたところ、転化率は 99. 88mol%であった。また、得られた塩酸塩スラリーの粘度は、 BROOKFIELD 製 LVT型粘度計を用いて 120°Cで測定した結果、 241mPa. sであり、充分な流動 性を有していた。又、塩酸塩の粒径をァセトニトリル溶媒中で (株)島津製作所製レー ザ一回析式粒度分布測定装置 SALD— 2100で測定したところ、塩酸塩粒子の数 平均粒子径は 29 mであった。得られた塩酸塩スラリーは液状で流動性に優れ、塩 酸塩を次工程に移液する場合には、塩酸塩が反応機内に残る事は無ぐ移液性は 良好であることが確認された。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージすることにより未反応ホスゲン及び塩ィ匕水 素ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 0. 5g (乾燥重量)を取 り除いた。得られた濾液を脱溶媒して、クロルメチル—イソシアナトメチルノルボルネ ン(以下 CNiと略す)を 0. 2重量%含有する、純度 98. 5%のビス (イソシアナトメチル )ノルボルネン 206. 9g (純度換算収率 98. 81mol%)を得た。このときの塩酸塩の 転化率は 99. 79mol%であった。結果を表 1に示す。
[実施例 5]
実施例 1と同じ反応機を用いた。反応機内に、反応溶媒としてオルソジクロ口べンゼ ン 958gを仕込み、原料槽にビス(アミノメチル)ノルボルネン 154. 2g (l . 0モル)及 びオルソジクロ口ベンゼン 702gを仕込んだ (全ァミン濃度 8.5重量%)。次に、反応機 内の温度を 120°Cに昇温後、内圧を大気圧よりも 0. 03MPa高圧に調節した。そして 、塩ィ匕水素ガス吹き込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で装入を開始し、 同時に原料槽より溶媒で希釈したビス (アミノメチル)ノルボルネンを、原料装入ボン プにて 428. lgZhrの速度で装入を開始し、 2時間掛けて全量を装入した。更に塩 化水素ガスを 20gZhrで装入しながら、 1時間熟成を行った。反応終了後、原料アミ ンの転ィ匕率を中和滴定法により求めたところ、転化率は 99. 91mol%であった。塩 酸塩の粘度は、 BROOKFIELD製 LVT型粘度計を用いて 120°Cで測定した結果、 196mPa' sであり、充分な流動性を有していた。又、塩酸塩の粒径をァセトニトリル 溶媒中で (株)島津製作所製レーザー回析式粒度分布測定装置 SALD— 2100で 測定したところ、塩酸塩粒子の数平均粒子径は 33 mであった。得られた塩酸塩ス ラリーは液状で流動性に優れ、塩酸塩を次工程に移液する場合には、塩酸塩が反 応機内に残る事は無ぐ移液性は良好であることが確認された。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージすることにより、未反応ホスゲン及び塩ィ匕 水素ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 0. 5g (乾燥重量)を 取り除いた。得られた濾液を脱溶媒して、 CNiを 0. 1重量%含有する、純度 98. 3% のビス (イソシアナトメチル)ノルボルネン 206. 3g (純度換算収率 98. 32mol%)を得 た。このときの塩酸塩の転ィ匕率は 99. 78mol%であった。結果を表 1に示す。
[実施例 6]
実施例 1と同じ反応機を用いた。反応機内に、反応溶媒としてオルソジクロ口べンゼ ン 566. 8gを仕込み、原料槽にビス(アミノメチル)シクロへキサン 142. 2g (l. 0モル )及びオルソジクロ口クロ口ベンゼン 476. Ogを仕込んだ(全ァミン濃度 8.5重量0 /0)。 次に、反応機内の温度を 120°Cに昇温後、内圧を大気圧よりも 0. OlMPa高圧に調 節した。そして、塩ィ匕水素ガス吹き込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で 装入を開始し、同時に、原料槽より溶媒で希釈したアミンを、原料装入ポンプにて 30 9. lgZhrの速度で装入を開始し、 2時間掛けて全量を装入した。更に塩化水素ガ スを 20gZhrで装入しながら、 1時間熟成を行った。反応終了後、原料ァミンの転ィ匕 率を中和滴定法により求めたところ、転化率は 99. 88mol%であった。塩酸塩の粘 度は、 BROOKFIELD製 LVT型粘度計を用いて 120°Cで測定した結果、 213mPa •sであり、充分な流動性を有していた。又、塩酸塩の粒径をァセトニトリル溶媒中で( 株)島津製作所製レーザー回析式粒度分布測定装置 SALD— 2100で測定したとこ ろ、塩酸塩粒子の数平均粒子径は 32 mであった。得られた塩酸塩スラリーは液状 で流動性に優れ、塩酸塩を次工程に移液する場合には、塩酸塩が反応機内に残る 事は無ぐ移液性は良好であることが確認された。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr ( l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 した。反応終了後、系内に窒素をパージすることにより未反応ホスゲン及び塩ィ匕水素 ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 0. 4g (乾燥重量)を取り 除いた。得られた濾液を脱溶媒して、クロルメチル—イソシアナトメチルシクロへキサ ン(以下 CHiと略す)を 0. 2重量%含有する、純度 98. 70%のビス (イソシアナトメチ ル)シクロへキサン 194. Og (純度換算収率 98. 60mol%)を得た。このときの塩酸塩 の転ィ匕率は 99. 81%であった。結果を表 1に示す。
[実施例 7]
実施例 1と同じ反応機を用いた。反応機内に、反応溶媒オルソジクロ口ベンゼン 61 4. 6gを仕込み、原料槽にビス(アミノメチル)ノルボルネン 154. 2g (l. 0モル)及び オルソジクロ口ベンゼン 516. 2gを仕込んだ (全ァミン濃度 12.0重量%)。次に、反応 機内の温度を 120°Cに昇温後、内圧を大気圧よりも 0. OlMPa高圧に調節した。そ して、塩ィ匕水素ガス吹き込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で装入を開始 し、同時に、原料槽より溶媒で希釈したビス (アミノメチル)ノルボルネンを、原料装入 ポンプにて 335. 2gZhrの速度で装入を開始し、 2時間掛けて全量を装入した。更 に塩ィ匕水素ガスを 20gZhrで装入しながら、 1時間熟成を行った。反応終了後、原料 ァミンの転ィ匕率を中和滴定法により求めたところ、転化率は 99. 86mol%であった。 塩酸塩の粘度は、 BROOKFIELD製 LVT型粘度計を用いて 120°Cで測定した結 果、 l l lOmPa' sで、充分な流動性を有していた。又、塩酸塩の粒径をァセトニトリル 溶媒中で (株)島津製作所製レーザー回析式粒度分布測定装置 SALD— 2100で 測定したところ、塩酸塩粒子の数平均粒子径は 35 mであった。得られた塩酸塩ス ラリーは液状で流動性に優れ、塩酸塩を次工程に移液する場合には、塩酸塩が反 応機内に残る事は無ぐ移液性は良好であることが確認された。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr ( l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージして、未反応ホスゲン及び塩化水素ガス を除去した。そして、反応液を濾過して、未反応塩酸塩を 0. 7g (乾燥重量)を取り除 いた。得られた濾液を脱溶媒して、 CNiを 0. 1重量%含有する、純度 98. 4%のビス (イソシアナトメチル)ノルボルネン 205. 4g (純度換算収率 98. OOmol%)を得た。こ のときの塩酸塩の転ィ匕率は 99. 69mol%であった。結果を表 1に示す。
[実施例 8]
攪拌機、還流冷却管、温度計、塩化水素ガス吹き込み管、原料槽、原料装入ボン プ、送液ポンプ、および圧力調節器を備えた造塩反応機 (槽型反応機)を用いた。造 塩反応機の攪拌翼の径 (D1) Z反応容器の内径 (D2)の値は 0. 53であり、槽径 (D ) 7槽長 (L)値は 0.73であり、反応容器の容量は 4m3であった。造塩反応機内に反 応溶媒であるオルソジクロ口ベンゼンを 2000kg敷液した。次に、造塩反応機内の温 度を 120°Cに昇温し、内圧を大気圧よりも 0. IMPa高圧に調節した。そして、塩ィ匕水 素ガス吹き込み管より塩ィ匕水素ガスを 172kgZhrの速度で造塩反応機内に装入を 開始し、原料槽より、 m—キシリレンジァミン 193kgZhr (l. 42キロモル Zhr)及びォ ルソジクロ口ベンゼン 2078kgZhrを連続的に装入した (全ァミン濃度 8.5wt%)。造 塩反応機内に 1時間滞留させた塩酸塩スラリーを、攪拌機を備えた中継槽に連続的 に送液し、 6時間熟成を行った。熟成後、原料ァミンの転化率を中和滴定法により求 めたところ、転化率は 99. 83mol%であった。塩酸塩スラリーの粘度は、 BROOKFI ELD製 LVT型粘度計を用いて 120°Cで測定した結果、 900mPa' sであり、充分な 流動性を有していた。又、塩酸塩の粒径をァセトニトリル溶媒中で (株)島津製作所 製レーザー回析式粒度分布測定装置 SALD— 2100で測定したところ、塩酸塩粒子 の数平均粒子径は 33 mであった。得られた塩酸塩スラリーは液状で流動性に優 れ、塩酸塩を次工程に移液する際、塩酸塩が反応機内に残る事は無ぐ移液性は良 好だった。
次に、中継槽より移液した塩酸塩スラリーを反応器 (ホスゲン化機)内において 160 °Cに昇温後、ホスゲン吹き込み管より,ホスゲンを11291¾7111:(11.4キロモル7111:) で吹き込み、温度を保ちながら 6時間反応させた。反応終了後、系内に窒素をパー ジすること〖こより、未反応ホスゲン及び塩ィ匕水素ガスを除去した。そして、反応液を濾 過して、未反応塩酸塩を 3.6kg (乾燥重量)を取り除いた。得られた濾液を脱溶媒し て、 CBiを 0. 4重量0 /0含有する、純度 98. 3%の m—キシレンジイソシアナ一ト 1603 kg (純度換算収率 98. 50mol%)を得た。このときの塩酸塩の転化率は 99. 80mol %であった。結果を表 1に示す。
[0077] [実施例 9]
実施例 8と同じ造塩反応機 (槽型反応機)を用いた。造塩反応機内に、反応溶媒で あるオルソジクロ口ベンゼンを 2000kg敷液した後、造塩反応機内の温度を 120°Cに 昇温し、内圧を大気圧よりも 0. 05MPa高圧に調節した。塩化水素ガス吹き込み管よ り塩ィ匕水素ガスを 172kgZhrの速度で装入を開始し、原料槽より、 m—キシリレンジ ァミン 193kgZhr (l . 42キロモル/ hr)及び、オルソジクロ口ベンゼン 2078kg/hr を連続的に装入した (全ァミン濃度 8.5wt%)。造塩反応機内に 1時間滞留させた塩 酸塩スラリーを、攪拌機を備えた中継槽に連続的に送液し、 6時間熟成を行った。熟 成後、原料ァミンの転ィ匕率を中和滴定法により求めたところ、転化率は 99. 47mol% であった。塩酸塩の粘度は、 BROOKFIELD製 LVT型粘度計を用いて 120°Cで測 定した結果、 1400mPa' sであり、充分な流動性を有していた。又、塩酸塩の粒径を ァセトニトリル溶媒中で (株)島津製作所製レーザー回析式粒度分布測定装置 SAL D— 2100で測定したところ、塩酸塩粒子の数平均粒子径は 38 mであった。得られ た塩酸塩スラリーは液状で流動性に優れ、塩酸塩を次工程に移液する際、塩酸塩が 反応機内に残る事は無ぐ移液性は良好だった。
次に、中継槽より移液した塩酸塩スラリーを反応器 (ホスゲン化機)内において 160 °Cに昇温後、ホスゲン吹き込み管より,ホスゲンを11291¾7111:(11.4キロモル7111:) で吹き込み、温度を保ちながら 6時間反応させた。反応終了後、系内に窒素をパー ジすること〖こより、未反応ホスゲン及び塩ィ匕水素ガスを除去した。そして、反応液を濾 過して、未反応塩酸塩 5.2kg (乾燥重量)を取り除いた。得られた濾液を脱溶媒して、 CBiを 0. 5重量0 /0含有する、純度 97. 9%の m—キシレンジイソシアナ一ト 1607kg ( 純度換算収率 98. 30mol%)を得た。このときの塩酸塩の転化率は 99. 70mol%で あった。結果を表 1に示す。
[0078] [比較例 1]
還流冷却管、攪拌翼、温度計、塩化水素ガス吹き込み管、ホスゲン吹き込み管、原 料槽、原料装入ポンプを備えたオートクレープ (反応機)を用いた。反応機において、 攪拌翼の径 (D1) Z反応容器の内径 (D2)の値は 0. 7であり、槽径 (D) Z槽長 (L) 値は 0.59であり、反応容器の内容積は 2Lであった。反応機内に、反応溶媒としてォ ルソジクロ口ベンゼン 846gを仕込み、原料槽に m—キシリレンジァミン 136. 2g (l . 0 モル)及びオルソジクロ口ベンゼン 621gを仕込んだ(全ァミン濃度 8.5重量0 /0)。次に 、大気圧下において、反応機内の温度を 120°Cに昇温した。その後、塩化水素ガス 吹き込み管より塩化水素ガスを 43. 8gZhrの速度で装入を開始し、同時に、原料槽 より溶媒で希釈したアミンを、原料装入ポンプにて 379gZhrの速度で装入を開始し 、 2時間掛けて全量を装入した。更に塩ィ匕水素ガスを 20gZhrで装入しながら、 1時 間熟成を行った。反応終了後、原料ァミンの転ィ匕率を中和滴定法により求めたところ 、転化率は 97. 81mol%であった。塩酸塩の粘度は、 BROOKFIELD製 LVT型粘 度計を用いて 120°Cで測定した結果、 3320mPa' sであり、ホイップ状の様子を呈し ていた。得られた塩酸塩スラリーは粘調体で流動性に乏しぐ塩酸塩を次工程に移 液する場合には、塩酸塩が反応機内に多量に残り、移液性は悪いことが確認された 。又、塩酸塩の粒径をァセトニトリル溶媒中で (株)島津製作所製レーザー回析式粒 度分布測定装置 SALD— 2100で測定したところ、塩酸塩粒子の数平均粒子径は 1 00 mであった。次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲ ン吹き込み管より,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちな 力 8時間反応させた。反応終了後、系内に窒素をパージすることにより、未反応ホ スゲン及び塩ィ匕水素ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 8. 2 g (乾燥重量)を濾過により取り除いた。得られた濾液を脱溶媒して、 CBiを 1. 1重量 %含有する、純度 96. 20%のメタキシレンジイソシアナート 183. 3g (純度換算収率 93. 71mol%)を得た。このときの塩酸塩の転化率は 96. 10mol%であった。結果を 表 1に示す。
[比較例 2]
比較例 1と同じ反応機を用いた。反応機内に、反応溶媒としてオルソジクロ口べンゼ ン 958gを仕込み、原料槽にビス(アミノメチル)ノルボルネン 154. 2g (l . 0モル)及 びオルソジクロ口ベンゼン 702gを仕込んだ (全ァミン濃度 8.5重量%)。次に、大気圧 下において、反応機内の温度を 100°Cに昇温した。その後、塩化水素ガス吹き込み 管より塩ィ匕水素ガスを 43. 8gZhrの速度で装入を開始し、同時に、原料槽より溶媒 で希釈したアミンを、原料装入ポンプにて 428. lgZhrの速度で装入を開始し、 2時 間掛けて全量を装入した。更に塩ィ匕水素ガスを 20gZhrで装入しながら、 1時間熟 成を行った。反応終了後、原料ァミンの転ィ匕率を中和滴定法により求めたところ、転 化率は 98. 10mol%であった。塩酸塩の粘度は、 BROOKFIELD製 LVT型粘度 計を用いて 120°Cで測定した結果、 5180mPa' sであり、ホイップ状の様子を呈して いた。得られた塩酸塩スラリーは粘調体で流動性に乏しぐ塩酸塩を次工程に移液 する場合には、塩酸塩が反応機内に多量に残り、移液性は悪いことが確認された。 又、塩酸塩の粒径をァセトニトリル溶媒中で (株)島津製作所製レーザー回析式粒度 分布測定装置 SALD— 2100で測定した塩酸塩粒子の数平均粒子径は 150 μ mで めつに。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 した。反応終了後、系内に窒素をパージして、未反応ホスゲン及び、塩化水素ガスを 除去した。そして、反応液を濾過して、未反応塩酸塩 7. 9g (乾燥重量)を取り除いた 。得られた濾液を脱溶媒して、 CNiを 0. 9重量%含有する、純度 96. 00%のビス (ィ ソシアナトメチル)ノルボルネン 200. 9g (純度換算収率 93. 51mol%)を得た。この ときの塩酸塩の転化率は 96. 52%であった。結果を表 1に示す。
[比較例 3]
比較例 1と同じ反応機を用いた。反応機内に、反応溶媒としてオルソジクロ口べンゼ ン 883gを仕込み、原料槽にビス(アミノメチル)シクロへキサン 142. 2g (l. 0モル)及 びオルソジクロ口ベンゼン 647. 8gを仕込んだ(全ァミン濃度 8.5重量%)。次に、大 気圧下において、反応機内の温度を 100°Cに昇温した。その後、塩ィ匕水素ガス吹き 込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で装入を開始し、同時に、原料槽より 溶媒で希釈したアミンを、原料装入ポンプにて 395gZhrの速度で装入を開始し、 2 時間掛けて全量を装入した。更に塩ィ匕水素ガスを 20gZhrで装入しながら、 1時間 熟成を行った。反応終了後、原料ァミンの転ィ匕率を中和滴定法により求めたところ、 転化率は 97. 85mol%であった。塩酸塩の粘度は、 BROOKFIELD製 LVT型粘 度計を用いて 120°Cで測定した結果、 4100mPa' sであり、ホイップ上の様子を呈し ていた。得られた塩酸塩スラリーは粘調体で流動性に乏しぐ塩酸塩を次工程に移 液する場合には、塩酸塩が反応機内に多量に残り、移液性は悪いことが確認された 。又、塩酸塩の粒径をァセトニトリル溶媒中で (株)島津製作所製レーザー回析式粒 度分布測定装置 SALD— 2100で測定したところ、塩酸塩粒子の数平均粒子径は 1 20 μ mであった。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージして未反応ホスゲン及び塩ィ匕水素ガスを 除去した。そして、反応液を濾過して、未反応塩酸塩 8. 8g (乾燥重量)を濾過により 取り除いた。得られた濾液を脱溶媒して、 CHiを 1. 0重量%含有する、純度 97. 20 %のビス(イソシアナトメチル)シクロへキサン 188. 0g (純度換算収率 94. 09mol%) を得た。このときの塩酸塩の転ィ匕率は 95. 91%であった。結果を表 1に示す。
[比較例 4]
比較例 1と同じ反応機を用いた。反応機内に、反応溶媒としてオルソジクロ口べンゼ ン 958gを仕込み、原料槽にビス(アミノメチル)ノルボルネン 154. 2g (l . 0モル)及 びオルソジクロ口ベンゼン 702gを仕込んだ (全ァミン濃度 8.5重量%)。次に、反応機 内の温度を 100°Cに昇温後、内圧を大気圧よりも O.OOlMPa高圧に調節した。そし て、塩ィ匕水素ガス吹き込み管より塩ィ匕水素ガスを 43. 8gZhrの速度で装入を開始し 、同時に、原料槽より溶媒で希釈したアミンを、原料装入ポンプにて 428. lgZhrの 速度で装入を開始し、 2時間掛けて全量を装入した。更に塩ィ匕水素ガスを 20gZhr で装入しながら、 1時間熟成を行った。反応終了後、原料ァミンの転化率を中和滴定 法により求めたところ、転化率は 98. 90mol%であった。塩酸塩の粘度は、 BROOK FIELD製 LVT型粘度計を用いて 120°Cで測定した結果、 3180mPa' sで、ホイップ 状の様子を呈していた。得られた塩酸塩スラリーは粘調体で流動性に乏しぐ塩酸塩 を次工程に移液する場合には、塩酸塩が反応機内に多量に残り、移液性は悪いこと が確認された。又、塩酸塩の粒径をァセトニトリル溶媒中で (株)島津製作所製レーザ 一回析式粒度分布測定装置 SALD— 2100で測定したところ、塩酸塩粒子の数平 均粒子径は 80 μ mであった。
次に、反応機内において塩酸塩スラリーを 160°Cに昇温後、ホスゲン吹き込み管よ り,ホスゲンを 100gZhr (l . 0モル Zhr)で吹き込み、温度を保ちながら 8時間反応 させた。反応終了後、系内に窒素をパージすることにより、未反応ホスゲン及び塩ィ匕 水素ガスを除去した。そして、反応液を濾過して、未反応塩酸塩 5. 9g (乾燥重量)を 取り除いた。得られた濾液を脱溶媒して、 CNiを 0. 9重量%含有する、純度 96. 50 %のビス(イソシアナトメチル)ノルボルネン 202. Og (純度換算収率 94. 51mol%)を 得た。このときの塩酸塩の転ィ匕率は 97. 40%であった。結果を表 1に示す。
(表 1)
Figure imgf000027_0001

Claims

請求の範囲
[1] 鎖状脂肪族ァミンまたは環状脂肪族ァミンと塩化水素とを反応させて、鎖状脂肪族 ァミン塩酸塩または環状脂肪族ァミン塩酸塩を得る工程を有する鎖状脂肪族イソシ アナートまたは環状脂肪族イソシアナートの製造方法であって、
前記工程が大気圧より 0. OlMPa以上高い圧力下で行われる、鎖状脂肪族イソシ アナートまたは環状脂肪族イソシアナートの製造方法。
[2] 前記鎖状脂肪族ァミンまたは環状脂肪族ァミンが 2官能以上の鎖状脂肪族ァミンま たは環状脂肪族ァミンである、請求項 1に記載の鎖状脂肪族イソシアナ一トまたは環 状脂肪族イソシアナートの製造方法。
[3] 前記工程が、槽型反応機内の有機溶媒中で、 2官能以上の鎖状脂肪族ァミンまた は環状脂肪族ァミンと塩ィ匕水素とを反応させる工程である、請求項 1に記載の鎖状脂 肪族イソシアナートまたは環状脂肪族イソシアナートの製造方法。
[4] 前記工程が、有機溶媒中で、 2官能以上の鎖状脂肪族ァミンまたは環状脂肪族ァ ミンと、該有機溶媒中に吹き込まれた塩化水素とを反応させる工程である、請求項 1 に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナートの製造方法。
[5] BROOKFIELD製 LVT型粘度計を用いて 120°Cで測定した、前記工程により得 られる鎖状脂肪族ァミン塩酸塩または環状脂肪族ァミン塩酸塩を含むスラリーの粘 度が 2000mPa' s以下である、請求項 1から 4のいずれか 1項に記載の鎖状脂肪族ィ ソシアナートまたは環状脂肪族イソシアナートの製造方法。
[6] 前記工程が、大気圧より 0. OlMPa以上、 1. OMPa以下の範囲で高い圧力下で 行われる、請求項 1から 4のいずれか 1項に記載の鎖状脂肪族イソシアナ一トまたは 環状脂肪族イソシアナートの製造方法。
[7] 前記工程における反応温度が、— 20°C以上、 180°C以下である、請求項 1から 4の いずれか 1項に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナートの 製造方法。
[8] 前記工程において、少なくとも 1種類の有機芳香族系溶媒を用いる、請求項 1から 4 のいずれか 1項に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナ一ト の製造方法。
[9] 前記 2官能以上の鎖状脂肪族ァミン又は環状脂肪族ァミンが、 1級のアミノ基を有 する化合物である、請求項 2から 4の 、ずれか 1項に記載の鎖状脂肪族イソシアナ一 トまたは環状脂肪族イソシアナートの製造方法。
[10] 前記 2官能以上の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナ一トが、 キシリレンジイソシアナート、ビス(イソシアナトメチル)ノルボルネン、へキサメチレンジ イソシアナート、およびビス (イソシアナトメチル)シクロへキサン力も選ばれる 1つ以上 の化合物である請求項 2から 4のいずれか 1項に記載の鎖状脂肪族イソシアナートま たは環状脂肪族イソシアナートの製造方法。
[11] 前記工程において、反応系内の全ァミン濃度が 5重量%以上 40重量%以下である 、請求項 1に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナ一トの製 造方法。
[12] 請求項 1から 11のいずれ力 1項に記載の方法で製造された、鎖状脂肪族イソシァ ナートまたは環状脂肪族イソシアナート。
[13] 請求項 12に記載の鎖状脂肪族イソシアナ一トまたは環状脂肪族イソシアナートを 用いて製造されたポリウレタン榭脂。
[14] 請求項 13に記載のポリウレタン榭脂を含有するレンズ。
[15] 大気圧より 0. OlMPa以上高い圧力下で、鎖状脂肪族ァミンまたは環状脂肪族アミ ンと塩化水素とを反応させる、鎖状脂肪族ァミン塩酸塩または環状脂肪族ァミン塩酸 塩の製造方法。
[16] 前記鎖状脂肪族ァミンまたは環状脂肪族ァミンが 2官能以上の鎖状脂肪族ァミンま たは環状脂肪族ァミンである、請求項 15に記載の鎖状脂肪族ァミン塩酸塩または環 状脂肪族ァミン塩酸塩の製造方法。
[17] 槽型反応機内の有機溶媒中で、 2官能以上の鎖状脂肪族ァミンまたは環状脂肪族 アミンを塩化水素と反応させる、請求項 15に記載の鎖状脂肪族ァミン塩酸塩または 環状脂肪族ァミン塩酸塩の製造方法。
[18] 有機溶媒中で、 2官能以上の鎖状脂肪族ァミンまたは環状脂肪族ァミンと、該有機 溶媒中に吹き込まれた塩化水素とを反応させる、請求項 15に記載の鎖状脂肪族アミ ン塩酸塩または環状脂肪族ァミン塩酸塩の製造方法。
PCT/JP2006/314417 2005-07-22 2006-07-20 イソシアナートの製造方法、それにより得られたイソシアナート、およびその用途 WO2007010996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007526055A JP4861322B2 (ja) 2005-07-22 2006-07-20 イソシアナートの製造方法、およびアミン塩酸塩の製造方法
EP06781372A EP1908749A4 (en) 2005-07-22 2006-07-20 PROCESS FOR PREPARING ISOCYANATE, ISOCYANATE MADE ACCORDING TO IT AND USE OF ISOCYANATE
US11/988,490 US8183407B2 (en) 2005-07-22 2006-07-20 Process for production of isocyanate, isocyanate produced by the process, and use of the isocyanate
CN2006800221703A CN101203488B (zh) 2005-07-22 2006-07-20 异氰酸酯的制造方法、由该方法得到的异氰酸酯及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-213148 2005-07-22
JP2005213148 2005-07-22

Publications (1)

Publication Number Publication Date
WO2007010996A1 true WO2007010996A1 (ja) 2007-01-25

Family

ID=37668868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314417 WO2007010996A1 (ja) 2005-07-22 2006-07-20 イソシアナートの製造方法、それにより得られたイソシアナート、およびその用途

Country Status (6)

Country Link
US (1) US8183407B2 (ja)
EP (1) EP1908749A4 (ja)
JP (1) JP4861322B2 (ja)
KR (2) KR100948718B1 (ja)
CN (1) CN101203488B (ja)
WO (1) WO2007010996A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143207A1 (ja) * 2007-05-21 2008-11-27 Showa Denko K.K. エーテル結合を有するエチレン性不飽和基含有イソシアネート化合物の製造方法
JP2017517487A (ja) * 2014-04-11 2017-06-29 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 気相中においてキシリレンジイソシアネートを製造するための方法
KR20180104330A (ko) 2016-04-11 2018-09-20 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 수지 및 중합성 조성물
WO2018168419A1 (ja) * 2017-03-17 2018-09-20 三菱瓦斯化学株式会社 光学材料用組成物
CN108586705A (zh) * 2017-05-17 2018-09-28 Skc株式会社 具有改善的稳定性和反应性的苯二亚甲基二异氰酸酯组合物和使用该组合物的光学镜片
JP2018177811A (ja) * 2017-04-10 2018-11-15 三井化学株式会社 キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、二液型樹脂原料および樹脂
JP2019199444A (ja) * 2018-05-17 2019-11-21 三井化学株式会社 ペンタンジイソシアネートの製造方法
JP2020503325A (ja) * 2016-12-29 2020-01-30 ハンワ ケミカル コーポレイション 脂肪族イソシアネートの製造方法
JP2021063029A (ja) * 2019-10-11 2021-04-22 三菱瓦斯化学株式会社 イソシアネート組成物、重合性組成物、化合物、重合物、レンズ、コーティング剤、および、イソシアネート化合物の製造方法
JP2021526153A (ja) * 2018-06-18 2021-09-30 ハンワ ソリューションズ コーポレイションHanwha Solutions Corporation 脂肪族イソシアネートの製造方法
US11254783B2 (en) 2017-04-10 2022-02-22 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin
WO2022270550A1 (ja) 2021-06-22 2022-12-29 三井化学株式会社 ポリイソシアネート組成物、重合性組成物、樹脂、成形体、光学素子およびレンズ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266824B2 (en) 2014-01-13 2016-02-23 Warsaw Orthopedic, Inc. Methods and compositions for making an amino acid triisocyanate
WO2017148795A1 (de) 2016-02-29 2017-09-08 Covestro Deutschland Ag Isophthalsäuredichlorid zur erhöhung der lagerstabilität von xylylendiisocyanat
CN107337615B (zh) * 2016-08-09 2019-04-23 万华化学集团股份有限公司 一种异氰酸酯的制备方法
JP6940694B2 (ja) * 2017-09-11 2021-09-29 ハンワ ソリューションズ コーポレイションHanwha Solutions Corporation 脂肪族イソシアネートの製造方法
KR102148975B1 (ko) * 2018-06-07 2020-08-28 우리화인켐 주식회사 메타크실릴렌디이소시아네이트 및 광학 렌즈의 제조방법
CN108658809A (zh) * 2018-07-13 2018-10-16 江苏快达农化股份有限公司 一种制备高含量间苯二甲亚基异氰酸酯的方法
KR102340535B1 (ko) 2019-03-21 2021-12-27 김근식 비염소화 유도체를 포함하는 이소시아네이트 화합물의 제조 방법 및 이들의 조성물
EP3750868A1 (de) 2019-06-11 2020-12-16 Covestro Deutschland AG Verfahren zur herstellung einer amin-hydrochlorid-suspension
CN114341102A (zh) * 2019-08-29 2022-04-12 住友化学株式会社 异氰酸酯化合物的制造方法
KR20210118280A (ko) 2020-03-19 2021-09-30 케이에스랩(주) 비염소화 유도체를 포함하는 이소시아네이트 화합물의 제조 방법 및 이들의 조성물
KR20220038207A (ko) 2020-09-18 2022-03-28 케이에스랩(주) 지방족계 이소시아네이트 화합물의 제조 방법 및 이들의 조성물
KR20230106608A (ko) 2020-09-18 2023-07-13 케이에스랩(주) 비염소화 유도체를 포함하는 이소시아네이트 화합물의 제조방법 및 이들의 조성물
KR102578617B1 (ko) * 2020-12-03 2023-09-13 에스케이씨 주식회사 자일릴렌디이소시아네이트 조성물 및 이를 포함하는 중합성 조성물
CN118510753A (zh) * 2022-01-26 2024-08-16 韩华思路信(株) 间歇式反应器和制备脂族异氰酸酯的方法
CN115536552A (zh) * 2022-10-11 2022-12-30 宁夏瑞泰科技股份有限公司 一种水相成盐工艺合成1,5-萘二异氰酸酯的方法
CN115894296A (zh) * 2022-11-17 2023-04-04 万华化学集团股份有限公司 一种异氰酸酯组合物、改性异氰酸酯、聚氨酯树脂和光学材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233137A (ja) * 1993-12-27 1995-09-05 Mitsui Toatsu Chem Inc 脂肪族ポリイソシアナートの製造方法
JPH07309827A (ja) * 1994-03-22 1995-11-28 Mitsui Toatsu Chem Inc 脂肪族ポリイソシアナートの製造方法
JP2003286241A (ja) * 2002-03-28 2003-10-10 Mitsui Takeda Chemicals Inc ビシクロ[2.2.1]ヘプト−2−エン−5−メチルイソシアナートの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642449A (en) * 1953-06-16 Preparation of polyisocyanates
GB1086782A (en) 1965-02-19 1967-10-11 Upjohn Co Process for manufacturing polyisocyanates
NL129422C (ja) 1965-06-03
DE2404774A1 (de) 1974-02-01 1975-08-21 Basf Ag Verfahren zur herstellung von organischen isocyanaten
US4922005A (en) * 1985-11-13 1990-05-01 Mitsui Toatsu Chemicals, Incorporated Preparation process of hexamethylene
JP2790513B2 (ja) * 1989-02-23 1998-08-27 三井化学株式会社 キシリレンジイソシアネートの製造方法
JP2986888B2 (ja) * 1989-10-23 1999-12-06 三井化学株式会社 脂肪族イソシアネートの製造方法
JP3803620B2 (ja) 1991-03-25 2006-08-02 三井化学株式会社 光学用ウレタン樹脂よりなるプラスチックレンズ
US5523467A (en) * 1994-03-22 1996-06-04 Mitsui Toatsu Chemicals, Inc. Process for the preparation of aliphatic polyisocyanates
US5693738A (en) * 1994-04-08 1997-12-02 Mitsui Toatsu Chemicals, Inc. Composition for urethane-base plastic lens, urethane-base plastic lens obtained from the composition, and process for the production of the plastic lens
JP3422642B2 (ja) 1996-12-24 2003-06-30 日清紡績株式会社 エステル基を有する樹脂の微生物による劣化に対する耐性を向上する薬剤及び同方法
JP4307588B2 (ja) 1998-04-28 2009-08-05 三井化学株式会社 脂肪族イソシアネート化合物の製造法
JP2004244377A (ja) * 2003-02-14 2004-09-02 Nissan Chem Ind Ltd アリールピペラジン誘導体の製造法
JP4898222B2 (ja) * 2003-06-09 2012-03-14 Hoya株式会社 ポリオール化合物、透明成形体、及び透明成形体の製造方法
CN1261638C (zh) * 2003-11-05 2006-06-28 北京航空航天大学 聚芳酰胺纤维表面改性方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233137A (ja) * 1993-12-27 1995-09-05 Mitsui Toatsu Chem Inc 脂肪族ポリイソシアナートの製造方法
JPH07309827A (ja) * 1994-03-22 1995-11-28 Mitsui Toatsu Chem Inc 脂肪族ポリイソシアナートの製造方法
JP2003286241A (ja) * 2002-03-28 2003-10-10 Mitsui Takeda Chemicals Inc ビシクロ[2.2.1]ヘプト−2−エン−5−メチルイソシアナートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1908749A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274454B2 (ja) * 2007-05-21 2013-08-28 昭和電工株式会社 エーテル結合を有するエチレン性不飽和基含有イソシアネート化合物の製造方法
WO2008143207A1 (ja) * 2007-05-21 2008-11-27 Showa Denko K.K. エーテル結合を有するエチレン性不飽和基含有イソシアネート化合物の製造方法
JP2017517487A (ja) * 2014-04-11 2017-06-29 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 気相中においてキシリレンジイソシアネートを製造するための方法
KR20180104330A (ko) 2016-04-11 2018-09-20 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 수지 및 중합성 조성물
KR20200037445A (ko) 2016-04-11 2020-04-08 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 수지 및 중합성 조성물
JP2020503325A (ja) * 2016-12-29 2020-01-30 ハンワ ケミカル コーポレイション 脂肪族イソシアネートの製造方法
JPWO2018168419A1 (ja) * 2017-03-17 2020-01-16 三菱瓦斯化学株式会社 光学材料用組成物
WO2018168419A1 (ja) * 2017-03-17 2018-09-20 三菱瓦斯化学株式会社 光学材料用組成物
JP7031654B2 (ja) 2017-03-17 2022-03-08 三菱瓦斯化学株式会社 光学材料用組成物
US11186673B2 (en) 2017-03-17 2021-11-30 Mitsubishi Gas Chemical Company, Inc. Composition for use as optical material
US10640605B2 (en) 2017-04-10 2020-05-05 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin
JP7103879B2 (ja) 2017-04-10 2022-07-20 三井化学株式会社 キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、二液型樹脂原料および樹脂
KR20190129819A (ko) 2017-04-10 2019-11-20 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 자일릴렌 다이아이소사이아네이트 변성체 조성물, 이액형 수지 원료 및 수지
KR20220025083A (ko) 2017-04-10 2022-03-03 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 자일릴렌 다이아이소사이아네이트 변성체 조성물, 이액형 수지 원료 및 수지
KR20180127517A (ko) 2017-04-10 2018-11-28 미쓰이 가가쿠 가부시키가이샤 자일릴렌 다이아이소사이아네이트 조성물, 자일릴렌 다이아이소사이아네이트 변성체 조성물, 이액형 수지 원료 및 수지
US11254783B2 (en) 2017-04-10 2022-02-22 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin
JP2018177811A (ja) * 2017-04-10 2018-11-15 三井化学株式会社 キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、二液型樹脂原料および樹脂
EP3825301A1 (en) 2017-04-10 2021-05-26 Mitsui Chemicals, Inc. Xylylenediisocyanate composition, xylylenediisocyanate-modified composition, two-component resin material, and resin
US10723696B2 (en) 2017-05-17 2020-07-28 Skc Co., Ltd. Xylylene diisocyanate composition with improved stability and reactivity and optical lens using the same
JP2018193370A (ja) * 2017-05-17 2018-12-06 エスケーシー カンパニー,リミテッド 向上した安定性および反応性を有するキシリレンジイソシアネート組成物およびそれを用いた光学レンズ
CN108586705A (zh) * 2017-05-17 2018-09-28 Skc株式会社 具有改善的稳定性和反应性的苯二亚甲基二异氰酸酯组合物和使用该组合物的光学镜片
JP2019199444A (ja) * 2018-05-17 2019-11-21 三井化学株式会社 ペンタンジイソシアネートの製造方法
JP7111505B2 (ja) 2018-05-17 2022-08-02 三井化学株式会社 ペンタンジイソシアネートの製造方法
JP2021526153A (ja) * 2018-06-18 2021-09-30 ハンワ ソリューションズ コーポレイションHanwha Solutions Corporation 脂肪族イソシアネートの製造方法
JP7144540B2 (ja) 2018-06-18 2022-09-29 ハンワ ソリューションズ コーポレイション 脂肪族イソシアネートの製造方法
JP2021063029A (ja) * 2019-10-11 2021-04-22 三菱瓦斯化学株式会社 イソシアネート組成物、重合性組成物、化合物、重合物、レンズ、コーティング剤、および、イソシアネート化合物の製造方法
JP7331611B2 (ja) 2019-10-11 2023-08-23 三菱瓦斯化学株式会社 イソシアネート組成物、重合性組成物、化合物、重合物、レンズ、コーティング剤、および、イソシアネート化合物の製造方法
WO2022270550A1 (ja) 2021-06-22 2022-12-29 三井化学株式会社 ポリイソシアネート組成物、重合性組成物、樹脂、成形体、光学素子およびレンズ

Also Published As

Publication number Publication date
KR20080015515A (ko) 2008-02-19
CN101203488A (zh) 2008-06-18
JP4861322B2 (ja) 2012-01-25
KR20090045430A (ko) 2009-05-07
EP1908749A1 (en) 2008-04-09
US20090124785A1 (en) 2009-05-14
EP1908749A4 (en) 2010-05-26
CN101203488B (zh) 2011-12-14
KR100948718B1 (ko) 2010-03-22
KR100953019B1 (ko) 2010-04-14
US8183407B2 (en) 2012-05-22
JPWO2007010996A1 (ja) 2009-02-05

Similar Documents

Publication Publication Date Title
WO2007010996A1 (ja) イソシアナートの製造方法、それにより得られたイソシアナート、およびその用途
KR101627387B1 (ko) 이소시아네이트의 제조 방법
US10703852B2 (en) Isocyanate composition for optical lenses and process for preparing the same
KR20180104330A (ko) 자일릴렌 다이아이소사이아네이트 조성물, 수지 및 중합성 조성물
EP3808732A1 (en) Method for preparing aliphatic isocyanates
WO2014027428A1 (ja) ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途
US20200190022A1 (en) Method for preparing aliphatic isocyanate
KR20120088649A (ko) 디페닐메탄 계열의 담색 이소시아네이트의 제조 방법
US9045395B2 (en) Process for the production of aliphatic isocyanates
JP5322183B2 (ja) イソシアナート化合物の製造方法
CN110903216A (zh) 一种固体光气法制备二苯基乙烷二异氰酸酯及其应用
US20060116529A1 (en) Method for the production of isocyanates
EP1721893B1 (en) Method for producing isocyanate compound
JP2764081B2 (ja) 脂環式―脂肪族ジイソシアナートの製造方法
HU227245B1 (en) Process for the preparation of polyirocyanates of the diphenylmethane series
TW393456B (en) Process for preparing isocyanates
JPH07233137A (ja) 脂肪族ポリイソシアナートの製造方法
JPH11310567A (ja) 脂肪族イソシアネート化合物の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022170.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526055

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006781372

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10059/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087000819

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11988490

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097008378

Country of ref document: KR