WO2014027428A1 - ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途 - Google Patents

ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途 Download PDF

Info

Publication number
WO2014027428A1
WO2014027428A1 PCT/JP2013/001208 JP2013001208W WO2014027428A1 WO 2014027428 A1 WO2014027428 A1 WO 2014027428A1 JP 2013001208 W JP2013001208 W JP 2013001208W WO 2014027428 A1 WO2014027428 A1 WO 2014027428A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polythiol compound
polythiol
formula
compound represented
Prior art date
Application number
PCT/JP2013/001208
Other languages
English (en)
French (fr)
Inventor
川口 勝
雄 西村
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201380026147.1A priority Critical patent/CN104321306B/zh
Priority to US14/405,248 priority patent/US9181180B2/en
Priority to IN9746DEN2014 priority patent/IN2014DN09746A/en
Priority to EP13879441.7A priority patent/EP2845848B1/en
Priority to KR1020167004566A priority patent/KR101879962B1/ko
Priority to BR112015000373A priority patent/BR112015000373A2/pt
Priority to JP2013511438A priority patent/JP5319037B1/ja
Priority to KR1020147032266A priority patent/KR101661835B1/ko
Publication of WO2014027428A1 publication Critical patent/WO2014027428A1/ja
Priority to US14/871,479 priority patent/US9605105B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • C07C319/08Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by replacement of hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C335/00Thioureas, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C335/30Isothioureas
    • C07C335/32Isothioureas having sulfur atoms of isothiourea groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a method for producing a polythiol compound, a polymerizable composition for optical materials, and use thereof.
  • Plastic lenses are lighter and harder to break than inorganic lenses, and can be dyed, so in recent years, they have rapidly spread to optical elements such as eyeglass lenses and camera lenses.
  • Resin for plastic lenses has been required to have higher performance, and higher refractive index, higher Abbe number, lower specific gravity, higher heat resistance, etc. have been demanded.
  • Various resin materials for lenses have been developed and used so far.
  • an optical material made of a polythiourethane resin has a high refractive index and a high Abbe number, and is excellent in impact resistance, dyeability, workability and the like.
  • the polythiourethane resin is obtained by reacting polythiol with a polyiso (thio) cyanate compound or the like.
  • the polythiourethane resin When used in a plastic lens, the polythiourethane resin is required to be transparent with little color and excellent resin hue. When the quality of polythiol is bad, the quality of the resin obtained may also be bad.
  • Patent documents relating to the method for producing polythiol include the following.
  • Patent Document 1 or 2 2-mercaptoethanol is reacted with epichlorohydrin, the resulting compound is reacted with thiourea to obtain an isothiuronium salt, and then the isothiuronium salt is hydrolyzed to obtain a specific polythiol compound. A method is described.
  • Patent Document 3 describes a method for setting the amount of a specific impurity contained in 2-mercaptoethanol within a predetermined range in a method for producing a polythiol compound.
  • Patent Document 4 describes a method for setting the calcium content contained in thiourea within a predetermined range in the method for producing a polythiol compound.
  • Patent Document 5 describes a method for setting a calcium content contained in thiourea and a specific impurity content contained in 2-mercaptoethanol within a predetermined range in a method for producing a polythiol compound.
  • the non-defective product ratio (the number of non-defective products / the total number of products produced) containing plastic lenses satisfying the above-described quality among the plastic lenses obtained from the polythiol compound may be lowered.
  • plastic lenses made of thiourethane resin are manufactured in units of one lens. Specifically, first, a thiourethane-based polymerizable composition is injected into a glass mold, polymerized and cured under heating, and then released from the glass mold to produce one lens. That is, in order to obtain one thiourethane plastic lens, many processes and operations are required. Further, when the thiourethane plastic lens does not pass the desired quality, it is difficult to reuse it as a thiourethane resin unlike a product made of a thermoplastic resin or the like. Therefore, establishing a production method of polythiol compounds that can stably obtain plastic lens products having the desired quality is extremely important from the viewpoint of industrial production efficiency and economic efficiency of plastic lenses. It is a thing.
  • washing in this invention means the process of stirring and mixing the organic layer containing a product with water, an acid, or aqueous alkali solution, leaving still, liquid-separating, and obtaining the organic layer containing a reaction product.
  • Water washing means washing with water
  • acid washing means washing with an acidic aqueous solution
  • alkali (ammonia water) washing means washing with an alkaline aqueous solution (ammonia water).
  • a plastic lens made of a polythiourethane resin having excellent quality such as hue, transparency and striae can be obtained. And according to the present invention, even in the case of repeatedly producing a polythiol compound in production on an actual industrial scale, the quality of the polythiol compound does not vary between production lots, and a plastic lens having a desired quality can be stably produced.
  • the manufacturing method excellent in the manufacturing stability of the polythiol compound which can be obtained can be provided. And the polythiol compound suitable as a raw material of a plastic lens can be supplied stably. Furthermore, by using the polythiol compound obtained by such a method, the yield of products obtained and the yield rate can be improved.
  • polythiol compound mainly composed of one or more selected from the group consisting of undecane and 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane (hereinafter simply referred to as polythiol compound) ) Will be described based on the following embodiments.
  • the manufacturing method of the polythiol compound of this embodiment can include the following process. Step A: 2-Mercaptoethanol is reacted with an epihalohydrin compound represented by the following general formula (1) to obtain a compound represented by the following formula (3).
  • Step B The compound represented by the formula (3) obtained in the step A is reacted with sodium sulfide to obtain a polyalcohol compound represented by the following formula (4).
  • Step C The polyalcohol compound represented by the formula (4) obtained in Step B and thiourea are reacted in the presence of hydrogen chloride to obtain an isothiuronium salt.
  • Step D While maintaining the reaction solution containing the isothiuronium salt obtained in Step C at a temperature of 20 to 60 ° C., aqueous ammonia is added to the reaction solution within 80 minutes to hydrolyze the isothiuronium salt, and polythiol compound Get.
  • Step E To the solution containing the polythiol compound obtained in Step D is added 30-36% hydrochloric acid and washed at a temperature of 30-55 ° C.
  • the plastic lens made of the polythiourethane resin manufactured using the polythiol compound obtained by performing Step D and Step E within the scope of the present invention has a hue. Excellent quality such as transparency and striae.
  • the quality of the polythiol compound does not vary between production lots, and the polythiol compound has a desired quality. Can be obtained stably, and the production stability is excellent.
  • the production method of this embodiment is particularly useful as an industrial production method for polythiol compounds. Hereinafter, it demonstrates in order of each process.
  • a diol compound represented by the following formula (3) can be obtained by first reacting 2-mercaptoethanol with an epihalohydrin compound represented by the following general formula (1).
  • X is a halogen atom which is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom.
  • the reaction can be performed in the range of 2 to 30 ° C., preferably 5 to 20 ° C., more preferably 5 to 15 ° C.
  • the reaction can be performed in 2 to 10 hours.
  • the reaction can be specifically performed as follows. First, epihalohydrin is dropped into 2-mercaptoethanol and, if necessary, an aqueous solution or a lower alcohol such as methanol or ethanol and an aqueous solution of the above base or a lower alcohol solution such as methanol or ethanol.
  • the reaction temperature and reaction time are preferably adjusted so as to be in the above-mentioned ranges.
  • the amount of 2-mercaptoethanol used is 0.5 mol or more, 3 mol or less, preferably 0.7 mol or more, 2 mol or less, more preferably 0.8 mol, per mol of epihalohydrin. It is 9 mol or more and 1.1 mol or less.
  • a catalytic amount of the base is used, and the amount of the base used is preferably 0.001 mol or more and 0.1 mol or less with respect to epihalohydrin in the case of a monovalent base.
  • the amount of the base used is preferably 0.001 mol or more and 0.1 mol or less with respect to epihalohydrin in the case of a monovalent base.
  • an amount half the amount of the monovalent base used is preferable.
  • the base can be used as an aqueous solution, an alcohol solution or the like, and when used as a solution, the concentration of the base can be appropriately selected.
  • a diol compound represented by the formula (3) is obtained by dropping epihalohydrin into the solution.
  • the reaction can be performed in the range of 10 to 50 ° C., preferably 20 to 40 ° C.
  • the reaction can be performed in 1 to 10 hours.
  • the reaction can be specifically performed as follows. A sodium sulfide aqueous solution is dropped into the reaction solution containing the diol compound after the reaction or solid sodium sulfide is charged. The reaction temperature and reaction time are preferably adjusted so as to be in the above-mentioned ranges. Sodium sulfide is used in an amount of 0.4 mol to 0.6 mol, preferably 0.45 mol to 0.57 mol, more preferably 0.48 mol to 0.55 mol, relative to 1 mol of the diol compound. Can do.
  • the tetraol compound has a thiourea content of 3 mol or more, preferably 3 mol or more and 6 mol or less, more preferably 4.6 mol or more and 5.0 mol or less with respect to 1 mol of the tetraol compound.
  • Add and react. The reaction is carried out in the presence of 3 mol or more, preferably 3 mol or more and 12 mol or less of hydrogen chloride with respect to 1 mol of the tetraol compound in the range of room temperature to reflux temperature, preferably 90 to 120 ° C. It takes about 10 hours.
  • an isothiuronium salt is formed.
  • hydrogen chloride By using hydrogen chloride, a sufficient reaction rate can be obtained, and the coloring of the product can be controlled.
  • As hydrogen chloride an aqueous hydrochloric acid solution or hydrogen chloride gas can be used.
  • Step D Ammonia water is added to the reaction solution containing the isothiuronium salt obtained in step C, and the isothiuronium salt is hydrolyzed to obtain a polythiol compound.
  • the polythiol compound is 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane represented by the following formula (6), represented by the following formula (7).
  • a polythiol compound containing as a main component one or more selected from the group consisting of 3,6,9-trithiaundecane is obtained.
  • the reaction solution containing an isothiuronium salt is maintained in a temperature range of 20 to 60 ° C., preferably 25 to 55 ° C., more preferably 25 to 50 ° C., and the reaction solution is kept for 80 minutes or less, preferably 70 Add aqueous ammonia in less than or equal to minutes, more preferably 20-60 minutes, even more preferably 20-30 minutes.
  • the time for adding the ammonia water is preferably shorter, but is set within the above time in consideration of the capacity of the facility such as the cooling capacity.
  • an organic solvent before adding aqueous ammonia.
  • the addition amount of the organic solvent is appropriately selected depending on the type of the solvent and the like, but is 0.1 to 3.0 times, preferably 0.2 to 2.0 times the thuronium salt reaction solution. Can be added in amounts.
  • the organic solvent include toluene, xylene, chlorobenzene, dichlorobenzene and the like. From the viewpoint of the above effects, toluene is preferable.
  • Ammonia water is added in an amount of 1 mol or more, preferably 1 mol or more and 3 mol or less, more preferably 1.1 mol or less as ammonia (NH 3 ) with respect to 1 mol of the hydrogen chloride used within the addition time.
  • Aqueous ammonia can be added so as to have a molarity of 2 to 2 mol.
  • the concentration of ammonia water can be 10-25%.
  • ammonia gas can be used in place of ammonia water. When all or part of the ammonia water is added in place of the ammonia gas, it can be performed under the same conditions (amount used, addition time, addition temperature) as the ammonia water.
  • ammonia (NH 3 ) is added at an addition rate of 1.25 mol% / min or more, preferably 1.25 mol% / min or more and 3.75 mol% / min or less with respect to 1 mol of hydrogen chloride. More preferably, it is added so as to be 1.38 mol% / min or more and 2.5 mol% / min or less. In this step, it is not necessary to continuously add at the above rate, and the average addition rate of the above addition time only needs to be included in this range. Then, after adding aqueous ammonia, the hydrolysis reaction is continued for about 1 to 8 hours in the room temperature to reflux temperature range, preferably 30 to 80 ° C.
  • the polythiol compound obtained in step D is purified. Specifically, it is possible to perform acid washing and then water washing multiple times. It is also possible to carry out water washing before acid washing and alkali washing after acid washing. Alkaline washing can reduce the number of water washings. Impurities and the like can be efficiently removed by the cleaning process. By such purification by washing, the hue of the plastic lens obtained from the polythiol compound can be improved, and high-quality plastic lenses with reduced white turbidity and striae can be produced with good yield, and the yield rate is also improved. .
  • Examples of preferred embodiments include a method of performing water washing, acid washing, water washing, alkali washing, water washing, hydrolysis, water washing, alkali washing, water washing, or acid washing, water washing, etc. after hydrolysis. Can give. Each wash may be repeated multiple times.
  • Acid washing can be performed by adding hydrochloric acid to the resulting solution containing the polythiol compound.
  • the concentration of hydrochloric acid can be 30-36%. If the concentration of hydrochloric acid is lower than 30%, the plastic lens may become cloudy due to impurities or the like.
  • the acid washing temperature can be 30 to 55 ° C, preferably 30 to 45 ° C, more preferably 30 to 40 ° C, and still more preferably 31 to 40 ° C.
  • deaerated water having an oxygen concentration of 5 mg / L or less can be used.
  • the method for producing deaerated water include a method of expelling dissolved oxygen by blowing nitrogen, a method of expelling dissolved oxygen by heat treatment, a method of expelling dissolved oxygen by vacuum degassing, and the like.
  • the hue and turbidity which become a problem in optical materials like a plastic lens can be suppressed effectively.
  • Alkali washing can be performed by adding an alkaline aqueous solution and stirring in the range of 20 to 50 ° C. for 10 minutes to 3 hours.
  • Aqueous ammonia is preferred as the alkaline aqueous solution.
  • the concentration of aqueous ammonia can be 0.1 to 10%, preferably 0.1 to 1%, more preferably 0.1 to 0.5%.
  • step E a solvent removal step, a low boiling point compound removal step, a filtration step, and a distillation step are performed as necessary to obtain 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9 as a polythiol compound.
  • a polythiol compound containing as a main component one or more selected from the group consisting of trithiaundecane can be obtained.
  • the solvent removal step is a step of removing the organic solvent under normal pressure or reduced pressure, and the degree of pressure reduction and temperature are appropriately selected depending on the solvent used, etc., but under reduced pressure, 100 ° C. or lower, preferably 85 ° C. or lower. Is preferred.
  • the low-boiling compound removal step is a step of removing the low-boiling compound contained under normal pressure or reduced pressure after the solvent removal step, and the degree of vacuum and temperature are appropriately selected depending on the solvent used, etc. It is preferable to carry out at a temperature of not higher than ° C, preferably not higher than 85 ° C. In that case, you may carry out, ventilating inert gas, such as nitrogen gas.
  • the filtration step is a step of removing solids such as salt by filtration, and the filtration method and the like are appropriately selected, and vacuum filtration, pressure filtration, etc. using a membrane filter or a cartridge filter can be used.
  • the filter has a pore diameter of 5 ⁇ m or less, preferably 2 ⁇ m or less.
  • the distillation step is a step of purifying the polythiol compound by distillation, and the degree of vacuum and temperature are appropriately selected depending on the solvent used and the like, but it is preferably performed at 250 ° C. or lower, preferably 200 ° C. or lower under reduced pressure.
  • the manufacturing method of this embodiment can be implemented also in the air, it is preferable from the surface of hue to perform the whole in nitrogen atmosphere.
  • the polymerizable composition for an optical material in the present embodiment includes a polythiol compound for an optical material obtained by the above-described method and a polyiso (thio) cyanate compound.
  • the polyiso (thio) cyanate compound is not particularly limited as long as it is a compound having at least two iso (thio) cyanate groups in one molecule. Specifically, for example, hexamethylene diisocyanate, 1, 5-pentane diisocyanate, 2,2-dimethylpentane diisocyanate, 2,2,4-trimethylhexane diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2, 4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanato-4-isocyanatomethyloctane, bis (isocyanate) Natoethyl) carbonate, bis (isocyanatoethyl) ether, lysine dii Cyanatophenyl methyl ester, aliphatic polyiso
  • An isocyanate compound Sulfur-containing aliphatic polyisothiocyanate compounds such as thiobis (3-isothiocyanatopropane), thiobis (2-isothiocyanatoethane), dithiobis (2-isothiocyanatoethane); Sulfur-containing aroma such as 1-isothiocyanato-4-[(2-isothiocyanato) sulfonyl] benzene, thiobis (4-isothiocyanatobenzene), sulfonyl (4-isothiocyanatobenzene), dithiobis (4-isothiocyanatobenzene) Group polyisothiocyanate compounds; Sulfur-containing alicyclic polyisothiocyanate compounds such as 2,5-diisothiocyanatothiophene, 2,5-diisothiocyanato-1,4-dithiane; 1-isocyanato-6-isothiocyanato
  • the polyiso (thio) cyanate compound is preferably hexamethylene diisocyanate, 1,5-pentane diisocyanate, isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, 2,5-bis (isocyanato).
  • halogen-substituted products such as chlorine-substituted products and bromine-substituted products, alkyl-substituted products, alkoxy-substituted products, nitro-substituted products and prepolymer-modified products with polyhydric alcohols, carbodiimide-modified products, urea-modified products, and burette-modified products.
  • Bodies, dimerization or trimerization reaction products, and the like can also be used. These compounds may be used alone or in admixture of two or more.
  • polythiol compound for optical materials obtained by the above-described method
  • other polythiol compounds for optical materials can also be used as the polythiol compound used for the polymerizable composition for optical materials.
  • Other polythiol compounds for optical materials are preferably methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercapto).
  • polythiol compound and the iso (thio) cyanate compound forming the urethane resin are added for the purpose of improving various physical properties, operability, polymerization reactivity, etc. of the polythiourethane resin of the present invention. Also good.
  • active hydrogen compounds typified by amines, carbonate compounds, ester compounds, metals, metal oxides, organometallic compounds, inorganic substances, and the like may be added.
  • a thiocarbamic acid S-alkyl ester or a known reaction catalyst used in the production of a polythiourethane resin may be appropriately added.
  • a reaction catalyst a thiocarbamic acid S-alkyl ester or a known reaction catalyst used in the production of a polythiourethane resin can be appropriately added.
  • reaction catalysts include dialkyltin halides such as dibutyltin dichloride and dimethyltin dichloride, dialkyltin dicarboxylates such as dimethyltin diacetate, dibutyltin dioctanoate and dibutyltin dilaurate, dibutyltin dibutoxide, and dioctyltin dichloride.
  • Dialkyltin dialkoxides such as butoxide, dialkyltin dithioalkoxides such as dibutyltin di (thiobutoxide), dialkyltin oxides such as di (2-ethylhexyl) tin oxide, dioctyltin oxide, bis (butoxydibutyltin) oxide, Examples include dialkyltin sulfides such as dibutyltin sulfide. Dialkyltin halides such as dibutyltin dichloride and dimethyltin dichloride are preferred examples.
  • a resin modifier such as an olefin compound including a hydroxy compound, an epoxy compound, an episulfide compound, an organic acid and its anhydride, a (meth) acrylate compound, and the like may be added for the purpose of modifying the resin.
  • the resin modifier is a compound that adjusts or improves the physical properties such as refractive index, Abbe number, heat resistance, specific gravity and mechanical strength such as impact resistance of a material made of thiourethane resin.
  • the polymerizable composition for an optical material of the present embodiment can contain a bluing agent as necessary.
  • the bluing agent has an absorption band in the wavelength range from orange to yellow in the visible light region, and has a function of adjusting the hue of the optical material made of resin. More specifically, the bluing agent contains a substance exhibiting a blue to purple color.
  • the bluing agent used in the polymerizable composition for an optical material of the present embodiment is not particularly limited, and specific examples include dyes, fluorescent whitening agents, fluorescent pigments, inorganic pigments, From among those that can be used as a bluing agent, it is appropriately selected according to the physical properties and resin hue required for optical parts. These bluing agents may be used alone or in combination of two or more.
  • dyes are preferred from the viewpoint of solubility in the polymerizable composition and the transparency of the resulting optical material.
  • a dye having a maximum absorption wavelength of 520 nm to 600 nm is preferable, and a dye having a maximum absorption wavelength of 540 nm to 580 nm is more preferable.
  • anthraquinone dyes are preferable.
  • the method for adding the bluing agent is not particularly limited, and it is desirable to add it to the monomer system in advance.
  • a method for this a method of dissolving in a monomer, or a method of preparing a master solution containing a high concentration of bluing agent and diluting the master solution with a monomer or other additive to be added.
  • Various methods can be adopted.
  • the polymerizable composition for an optical material of the present embodiment is a mixture of a polythiol compound obtained by the above-described production method, a polyiso (thio) cyanate compound, and, if necessary, other components, Obtained as a mixture. If necessary, this mixed solution is defoamed by an appropriate method and then poured into a mold, and is usually gradually heated from a low temperature to a high temperature for polymerization.
  • a molded article made of a polythiourethane resin obtained by curing the polymerizable composition of the present embodiment has a high refractive index and low dispersion, is excellent in heat resistance and durability, is lightweight and is resistant to damage. It has excellent impact properties and has a good hue, and is suitable as an optical material and a transparent material for eyeglass lenses and camera lenses.
  • the plastic lens obtained by using the polythiourethane resin of the present embodiment is antireflective, imparts high hardness, improves abrasion resistance, improves chemical resistance, imparts cloud resistance, or imparts fashionability as necessary.
  • physical and chemical treatments such as surface polishing, antistatic treatment, hard coat treatment, non-reflective coating treatment, dyeing treatment, and light control treatment may be performed.
  • ⁇ APHA A method for displaying hues. Using standard solutions prepared by dissolving platinum and cobalt reagents, a standard solution diluted with the same color as the sample color is obtained by comparison, and the “frequency” is measured. Value.
  • -Moisture content Dissolved in toluene and measured moisture with a Karl Fischer moisture meter. Viscosity: measured in accordance with JIS K 7117 Refractive index: Measured at 20 ° C. with a digital refractometer of Kyoto Electronics Industry RA-600. Ammonium content: dissolved in chloroform, extracted with water, and measured by ion chromatography.
  • Acid content dissolved in a solvent, titrated with a methanol solution of KOH, and calculated as HCl content.
  • -Resin devitrification A 9 mm flat plate was prepared under the plastic lens preparation conditions of the example, and measured with a devitrification measuring device (manufactured by HAYASHI: LUMINA ACE LA-150SE). Resin YI: Yellow index in hue evaluation, measured with a color difference meter. A 9 mm flat plate was prepared under the plastic lens preparation conditions of the example, and the YI value was measured using a color difference meter (CR-400) manufactured by Minolta.
  • -Striae A lens was prepared under the plastic lens preparation conditions of the example, and observed visually under a high-pressure mercury lamp.
  • deaerated water having a dissolved oxygen concentration of 2 ppm was obtained by blowing nitrogen into the water to drive out dissolved oxygen.
  • Example C-1 Synthesis of polythiol compound mainly composed of bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol
  • the reactor was charged with 51.2 parts by weight of 2-mercaptoethanol, 26.5 parts by weight of degassed water (dissolved oxygen concentration 2 ppm), and 0.16 parts by weight of a 49% by weight aqueous sodium hydroxide solution.
  • 61.99 parts by weight of epichlorohydrin was added dropwise at 9 to 11 ° C. over 6.5 hours, followed by stirring for 60 minutes. From the NMR data, formation of 1-chloro-3- (2-hydroxyethylthio) -2-propanol was confirmed.
  • Compound A 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane
  • Compound B 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane
  • compound C 5,7-dimercaptomethyl-1,11-dimercapto 115.9 parts by weight of a polythiol compound mainly composed of -3,6,9-trithiaundecane
  • Table 1 shows the physical properties of the resulting polythiol compound.
  • Measurement of viscosity of polymerizable composition 50.7 parts by weight of m-xylylene diisocyanate, 0.015 parts by weight of dibutyltin dichloride as a curing catalyst, 0.10 parts by weight of Zelec UN (product name Stepan product; acidic phosphate ester), Biosorb 583 (Kyodo Pharmaceutical Co., Ltd.) (Manufactured; UV absorber) 0.05 parts by weight were mixed and dissolved at 20 ° C.
  • This mold was put into an oven, gradually heated from 10 ° C. to 120 ° C., and polymerized in 20 hours. After completion of the polymerization, the mold was removed from the oven and released to obtain a resin. The obtained resin was further annealed at 130 ° C. for 4 hours. Table 2 shows the physical properties of the lens obtained.
  • Example C-2 to C-10 Except for the production conditions described in Table 1, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-di-acid as in Example C-1.
  • Table 1 shows the physical properties of the resulting polythiol compound. Further, in the same manner as in Example C-1, the viscosity of the polymerizable composition after 7 hours was measured to produce a plastic lens. The results are shown in Table 2.
  • Example D-1 Synthesis of polythiol compound mainly composed of bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol
  • the reactor was charged with 51.2 parts by weight of 2-mercaptoethanol, 26.5 parts by weight of degassed water (dissolved oxygen concentration 2 ppm), and 0.16 parts by weight of a 49% by weight aqueous sodium hydroxide solution.
  • 61.99 parts by weight of epichlorohydrin was added dropwise at 9 to 13 ° C. over 6.5 hours, followed by stirring for 40 minutes. From the NMR data, formation of 1-chloro-3- (2-hydroxyethylthio) -2-propanol was confirmed.
  • Table 1 shows the physical properties of the resulting polythiol compound.
  • the viscosity of the polymerizable composition after 7 hours was measured in the same manner as in Example C-1. The results are shown in Table 2. These polythiol compounds were identified by NMR, and the same results as in Example C-1 were obtained.
  • This mold was put into an oven, gradually heated from 10 ° C. to 120 ° C., and polymerized in 20 hours. After completion of the polymerization, the mold was removed from the oven and released to obtain a resin. The obtained resin was further annealed at 130 ° C. for 4 hours. Table 2 shows the physical properties of the lens obtained.
  • Example D-2 to D-10 Except for the production conditions described in Table 1, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-di-acid as in Example D-1.
  • Table 1 shows the physical properties of the resulting polythiol compound. Further, in the same manner as in Example D-1, the viscosity of the polymerizable composition after 7 hours was measured to produce a plastic lens. The results are shown in Table 2.
  • Examples F-1 to F-10, Comparative Examples C-1 to C-6 Except for the production conditions described in Table 3, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-di-acid as in Example C-1.
  • the viscosity of the polymerizable composition after 7 hours was measured to produce a plastic lens. The results are shown in Table 3.
  • the polymerizable compositions containing the polythiol compounds of Comparative Examples C-1 to C-4 have a viscosity of 1000 mPa ⁇ s or more after 7 hours, which clearly affects the production stability of the plastic lens. became.
  • the temperature is preferably 55 ° C. or lower under Condition III (hydrochloric acid washing). If it is in this temperature range, the polythiol compound excellent in quality can be manufactured stably.
  • condition I reaction of 2-mercaptoethanol and epichlorohydrin
  • the operating temperature is preferably selected to be 2 ° C. or higher under the condition I (reaction of 2-mercaptoethanol with epichlorohydrin).
  • the quality of the polythiol compound does not vary between production lots, and a plastic lens having a desired quality can be stably produced. It became clear that it was obtained.
  • the present invention includes the following aspects.
  • [A1] a step of reacting a polyalcohol compound and thiourea in the presence of hydrogen chloride to obtain an isothiuronium salt; Maintaining the reaction solution containing the obtained isothiuronium salt at a temperature of 20 to 60 ° C., adding ammonia water within 80 minutes to the reaction solution to hydrolyze the isothiuronium salt to obtain a polythiol compound; The manufacturing method of the polythiol compound containing this.
  • the step of obtaining a polyalcohol compound includes: 2-mercaptoethanol and the following formula (1) (In the formula, X represents a halogen atom.) And an epihalohydrin compound represented by the following formula (3): Obtaining a compound represented by: The compound represented by the formula (3) is reacted with 2-mercaptoethanol at a temperature of 10 to 50 ° C.
  • the polythiol compound is 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,
  • the main component is one or more selected from the group consisting of 9-trithiaundecane and 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane
  • the manufacturing method of the polythiol compound of description [A8] An industrial production method of a polythiol compound using the production method according to any one of [a1] to [a7].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明に係るポリチオール化合物の製造方法は、下記式(4)で表されるポリアルコール化合物とチオ尿素とを、塩化水素存在下に反応させてイソチウロニウム塩を得る工程と、得られたイソチウロニウム塩を含む反応液を20~60℃の温度に維持しながら、該反応液に80分以内にアンモニア水を加え、該イソチウロニウム塩を加水分解し、下記式(6)~(8)で表される化合物からなる群より選択される一種または二種以上を主成分とするポリチオール化合物を得る工程と、得られたポリチオール化合物を含む溶液に、30~36%濃度の塩酸を加え、30~55℃の温度で洗浄し、ポリチオール化合物を精製する工程と、を含む。

Description

ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途
 本発明は、ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途に関する。
 プラスチックレンズは、無機レンズに比べ軽量で割れ難く、染色が可能なため、近年、眼鏡レンズ、カメラレンズ等の光学素子に急速に普及してきている。
 プラスチックレンズ用樹脂には、さらなる高性能化が要求されてきており、高屈折率化、高アッベ数化、低比重化、高耐熱性化等が求められてきた。これまでにも様々なレンズ用樹脂素材が開発され使用されている。
 その中でも、ポリチオウレタン系樹脂からなる光学材料は、高屈折率、高アッベ数であり、耐衝撃性、染色性、加工性等に優れる。ポリチオウレタン系樹脂は、ポリチオールとポリイソ(チオ)シアナート化合物等とを反応させて得られる。
 プラスチックレンズに用いられる場合、ポリチオウレタン系樹脂には、着色が少なく樹脂色相に優れ、透明であることが求められている。ポリチオールの品質が悪い場合、得られる樹脂の品質も悪くなる場合があった。
 ポリチオールの製造方法に関する特許文献としては以下のものを挙げることができる。
 特許文献1または2には、2-メルカプトエタノールとエピクロルヒドリンとを反応させ、得られた化合物をチオ尿素と反応させてイソチウロニウム塩を得て、次いでイソチウロニウム塩を加水分解し、特定のポリチオール化合物を得る方法が記載されている。
 特許文献3には、ポリチオール化合物の製造方法において、2-メルカプトエタノールに含まれる特定の不純物の量を、所定の範囲とする方法が記載されている。
 特許文献4には、ポリチオール化合物の製造方法において、チオ尿素に含まれるカルシウム含有量を、所定の範囲とする方法が記載されている。
 特許文献5には、ポリチオール化合物の製造方法において、チオ尿素に含まれるカルシウム含有量と、2-メルカプトエタノールに含まれる特定の不純物の量とを、所定の範囲とする方法が記載されている。
特開平2-270859号公報 特開平7-252207号公報 国際公開第2007/129449号パンフレット 国際公開第2007/129450号パンフレット 韓国特許2010-0078120号公報
 しかしながら、これらの文献記載の方法において得られるポリチオール化合物を用いて、ポリチオウレタン系樹脂からなるプラスチックレンズを製造した場合、色相、透明性、脈理等の品質に改善の余地があった。
 小規模な生産で得られたポリチオール化合物を用いてプラスチックレンズを製造した場合には、品質に問題が生じないことがあっても、実際の工業規模での生産において、継続して繰り返しポリチオール化合物を製造した場合、製造ロット間で、ポリチオール化合物の品質がばらつくことがあった。そして、そのようなポリチオール化合物を用いて製造した場合、色相、透明性、光学的均質性等の品質に問題があるプラスチックレンズが得られることがあった。すなわち、ポリチオール化合物から得られるプラスチックレンズのうち上記品質を満たすプラスチックレンズが含まれる良品率(良品の製品数/全生産製品数)も低下する場合があった。
 しかしながら、その原因が不明であり、不良品であるポリチオール化合物が多発する場合もあった。しかも、モノマーとしてのポリチオール化合物の品質評価を、ポリチオール化合物の化学分析値から行うことは困難であり、ポリチオール化合物から実際に得られるプラスチックレンズでの評価から判断せざるを得なかった。工業的生産において、所望の品質を有するプラスチックレンズを得ることができないポリチオール化合物は、モノマーとして用いることはできない。そのため、所望の品質を有するプラスチックレンズ製品を安定して得ることができるポリチオール化合物の製造方法を確立することは、ポリチオール化合物の工業的な生産効率の面から、また経済性の面から極めて重要なことである。
 なぜなら、チオウレタン樹脂からなるプラスチックレンズは、レンズ1枚単位で製造される。具体的には、まず、ガラス型モールドにチオウレタン系重合性組成物を注入し、加熱下に重合し硬化させた後、ガラス型モールドより離型させることでレンズ1枚が製造される。つまり、チオウレタン系プラスチックレンズ1枚を得るために、多くの工程や操作等が必要である。また、チオウレタン系プラスチックレンズが所望の品質に合格しない場合、熱可塑性樹脂等からなる製品とは異なりチオウレタン樹脂として再使用することは困難である。そのため、所望の品質を有するプラスチックレンズ製品を安定して得ることができるポリチオール化合物の製造方法を確立することは、プラスチックレンズの工業的な生産効率の面から、また経済性の面からも極めて重要なことである。
 そのため、工業的規模で、継続して繰り返しポリチオール化合物を生産する場合において、製造ロット間でポリチオール化合物の品質がばらつかず、所望の品質を有するプラスチックレンズの原料となるポリチオール化合物を安定して得ることができる製造安定性に優れたポリチオール化合物の製造方法を確立する必要がある。
 本発明は以下に示すことができる。
[1] 2-メルカプトエタノールと、下記一般式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、Xはハロゲン原子を表す。)
で表されるエピハロヒドリン化合物と、を反応させて、下記式(3)
Figure JPOXMLDOC01-appb-C000002
で表される化合物を得る工程と、
 式(3)で表される化合物を硫化ナトリウムと反応させて、下記式(4)
Figure JPOXMLDOC01-appb-C000003
で表されるポリアルコール化合物を得る工程と、
 得られた式(4)で表されるポリアルコール化合物とチオ尿素とを、塩化水素存在下に反応させてイソチウロニウム塩を得る工程と、
 得られたイソチウロニウム塩を含む反応液を20~60℃の温度に維持しながら、該反応液に80分以内にアンモニア水を加え、該イソチウロニウム塩を加水分解し、下記式(6)~(8)
Figure JPOXMLDOC01-appb-C000004
で表される化合物からなる群より選択される一種または二種以上を主成分とするポリチオール化合物を得る工程と、
 得られたポリチオール化合物を含む溶液に、30~36%濃度の塩酸を加え、30~55℃の温度で洗浄し、ポリチオール化合物を精製する工程と、
を含む、ポリチオール化合物の製造方法。
[2] 式(3)で表される前記化合物を得る工程において、
 2-メルカプトエタノールと、一般式(1)で表されるエピハロヒドリン化合物と、を2~30℃の温度下で反応させる、[1]に記載のポリチオール化合物の製造方法。
[3] [1]または[2]に記載の製造方法を用いる、ポリチオール化合物の工業的製造方法。
[4] [1]乃至[3]のいずれかに記載の製造方法で得られたポリチオール化合物を含有する光学材料用重合性組成物。
[5] [4]に記載の光学材料用重合性組成物を硬化させて得られる成形体。
[6] [5]に記載の成形体からなるプラスチックレンズ。
 なお、本発明における洗浄とは、生成物を含む有機層を水、酸又はアルカリ水溶液で撹拌、混合し、静置後、分液し、反応生成物を含む有機層を得る工程を意味する。水洗浄とは水による洗浄、酸洗浄とは酸性水溶液による洗浄、アルカリ(アンモニア水)洗浄とは、アルカリ水溶液(アンモニア水)による洗浄を意味する。
 本発明のポリチオール化合物の製造方法から得られるポリチオール化合物を用いることにより、色相、透明性、脈理等の品質に優れたポリチオウレタン系樹脂からなるプラスチックレンズを得ることができる。そして、本発明によれば、実際の工業規模での生産において、繰り返しポリチオール化合物を製造した場合でも、製造ロット間でポリチオール化合物の品質がばらつかず、所望の品質を有するプラスチックレンズを安定して得ることができる、ポリチオール化合物の製造安定性に優れた製造方法を提供することができる。そして、プラスチックレンズの原料として好適なポリチオール化合物を安定的に供給することができる。さらに、このような方法で得られたポリチオール化合物を用いることにより、得られる製品の歩留まり、良品率を改善することができる。
 本発明の「4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンからなる群より選択される一種または二種以上を主成分とするポリチオール化合物(以下単にポリチオール化合物)の製造方法」を、以下の実施の形態に基づいて説明する。
 本実施形態のポリチオール化合物の製造方法は、下記の工程を含むことができる。
 工程A:2-メルカプトエタノールと、下記一般式(1)で表されるエピハロヒドリン化合物と、を反応させて、下記式(3)で表される化合物を得る。
Figure JPOXMLDOC01-appb-C000005
(式中、Xはハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000006
 工程B:工程Aで得られた式(3)で表される化合物を硫化ナトリウムと反応させて、下記式(4)で表されるポリアルコール化合物を得る。
Figure JPOXMLDOC01-appb-C000007
 工程C:工程Bで得られた式(4)で表されるポリアルコール化合物とチオ尿素とを、塩化水素存在下に反応させてイソチウロニウム塩を得る。
 工程D:工程Cで得られたイソチウロニウム塩を含む反応液を20~60℃の温度に維持しながら、該反応液に80分以内にアンモニア水を加え、該イソチウロニウム塩を加水分解し、ポリチオール化合物を得る。
 工程E:工程Dで得られたポリチオール化合物を含む溶液に、30~36%濃度の塩酸を加え、30~55℃の温度で洗浄する。
 本実施形態の製造方法によれば、特に工程Dと工程Eを本発明の範囲内で行うことにより、得られたポリチオール化合物を用いて製造されたポリチオウレタン系樹脂からなるプラスチックレンズは、色相、透明性、脈理等の品質に優れる。また、本実施形態の製造方法によれば、実際の工業規模での生産において、繰り返しポリチオール化合物を製造した場合でも、製造ロット間でポリチオール化合物の品質がばらつかず、所望の品質を有するポリチオール化合物を安定して得ることができ、製造安定性に優れる。本実施形態の製造方法は、ポリチオール化合物の工業的製造方法として特に有用である。
 以下、各工程順に説明する。
(工程A)
 本実施形態においては、まず2-メルカプトエタノールと、下記一般式(1)で表されるエピハロヒドリン化合物と、を反応させて、下記式(3)で表されるジオール化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 上記一般式(1)中、Xは、フッ素原子、塩素原子、臭素原子またはヨウ素原子であるハロゲン原子であり、好ましくは塩素原子である。
 本実施形態において、当該反応は2~30℃、好ましくは5~20℃、より好ましくは5~15℃の範囲で行うことができる。当該反応は、2~10時間で行うことができる。上記条件で行うことにより、得られるプラスチックレンズの品質、製品の歩留まりに優れ、良品率が改善される。
 当該反応は、具体的に以下のように行うことができる。
 まず、2-メルカプトエタノールと必要に応じて水溶液またはメタノール、エタノール等の低級アルコールと上記塩基の水溶液またはメタノール、エタノール等の低級アルコール溶液中にエピハロヒドリンを滴下する。反応温度および反応時間は、上述の範囲となるように調整することが好ましい。エピハロヒドリンを滴下する溶液中において、2-メルカプトエタノールの使用量は、エピハロヒドリン1モルに対して0.5モル以上、3モル以下、好ましくは0.7モル以上、2モル以下、より好ましくは0.9モル以上、1.1モル以下である。また、触媒量の上記塩基を使用し、上記塩基の使用量は好ましくは、1価塩基の場合エピハロヒドリンに対して、0.001モル以上、0.1モル以下である。2価塩基の場合は1価塩基の使用量の半分の量が好ましい。塩基は水溶液、アルコール溶液等として用いることができ、溶液として用いる場合、塩基の濃度は適宜選択することができる。上記溶液にエピハロヒドリンを滴下することにより、式(3)で表されるジオール化合物が得られる。
(工程B)
 次いで、工程Aで得られた前記式(3)で表されるジオール化合物を硫化ナトリウムと反応させて、下記式(4)で表されるテトラオール化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000010
 本実施形態において、当該反応は10~50℃、好ましくは20~40℃の範囲で行うことができる。当該反応は、1~10時間で行うことができる。上記条件で行うことにより、得られるプラスチックレンズの品質、製品の歩留まりに優れ、良品率が改善される。
 当該反応は、具体的に以下のように行うことができる。
 上記反応後のジオール化合物を含む反応液に、硫化ナトリウム水溶液を滴下または、固体の硫化ナトリウムを装入する。反応温度および反応時間は、上述の範囲となるように調整することが好ましい。硫化ナトリウムはジオール化合物1モルに対して0.4モル~0.6モル、好ましくは、0.45モル~0.57モル、さらに好ましくは0.48モル~0.55モルの量で用いることができる。
(工程C)
 次いで、工程Bで得られた式(4)で表されるテトラオール化合物とチオ尿素とを、塩化水素存在下に反応させてイソチウロニウム塩を得る。
 具体的には、テトラオール化合物に、該テトラオール化合物1モルに対して3モル以上、好ましくは3モル以上、6モル以下、より好ましくは4.6モル以上、5.0モル以下のチオ尿素を加え、反応させる。反応は、テトラオール化合物1モルに対して3モル以上、好ましくは3モル以上、12モル以下の塩化水素存在下において、室温から還流温度の範囲、好ましくは90~120℃の温度で、1~10時間程度で行う。テトラオール化合物とチオ尿素との反応により、イソチウロニウム塩が形成される。塩化水素を用いることにより、十分な反応速度が得られ、しかも製品の着色を制御することができる。塩化水素としては、塩酸水溶液、塩化水素ガスを用いることができる。
(工程D)
 工程Cで得られたイソチウロニウム塩を含む反応液にアンモニア水を加え、該イソチウロニウム塩を加水分解し、ポリチオール化合物を得る。
 本実施形態においては、ポリチオール化合物として、下記式(6)で表される4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、下記式(7)で表される4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および下記式(8)で表される5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンからなる群より選択される一種または二種以上を主成分とするポリチオール化合物が得られる。
Figure JPOXMLDOC01-appb-C000011
 具体的には、イソチウロニウム塩を含む反応液を20~60℃、好ましくは25~55℃、より好ましくは25~50℃の温度範囲に維持しながら、該反応液に80分以下、好ましくは70分以下、より好ましくは20~60分間、さらにより好ましくは20~30分間でアンモニア水を加える。アンモニア水を加える時間は、短い方が好ましいが冷却能力等設備の能力等を考慮し、上記時間内に設定される。
 このような条件で加水分解反応を行うことにより、工業的規模での継続的な生産においても、色相、透明性、脈理等の品質に優れたポリチオウレタン系樹脂からなるプラスチックレンズを安定した品質で得ることができ、製品の歩留まりを改善することができる。
 アンモニア水を加える前に、有機溶媒を加えることが好ましい。有機溶媒を加えることにより、副生成物の生成を抑制することができる。有機溶媒の添加量は、溶媒の種別等により適宜選択されるが、チウロニウム塩反応液に対して、0.1倍量~3.0倍量、好ましくは0.2倍量~2.0倍量となる量で加えることができる。有機溶媒としては、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン等を挙げることができる。上記効果の観点から、トルエンが好ましい。
 アンモニア水は、上記添加時間内に、前記した塩化水素の使用量1モルに対して、アンモニア(NH)として、1モル以上、好ましくは1モル以上、3モル以下、さらに好ましくは1.1モル以上、2モル以下となるように、アンモニア水を加えることができる。アンモニア水の濃度は、10~25%とすることができる。またアンモニア水に代えて、アンモニアガスを用いることもできる。
 アンモニア水の全部もしくは一部をアンモニアガスに代えて添加する場合、アンモニア水と同様の条件(使用量、添加時間、添加温度)にて行うことができる。
 本実施形態においては、塩化水素1モルに対し、アンモニア(NH)を、添加速度1.25モル%/分以上、好ましくは1.25モル%/分以上、3.75モル%/分以下、より好ましくは1.38モル%/分以上、2.5モル%/分以下となるように加える。本工程においては、継続的に上記速度で添加する必要はなく、上記添加時間の平均添加速度が、この範囲に含まれていればよい。
 そして、アンモニア水を加えた後、室温から還流温度範囲、好ましくは30~80℃において、1~8時間程度の間で加水分解反応を継続して行う。
(工程E)
 本実施形態においては、工程Dで得られたポリチオール化合物を精製する。
 具体的には、酸洗浄、次いで複数回の水洗浄を行うことができる。酸洗浄前に水洗浄を、酸洗浄後にアルカリ洗浄を行うこともできる。アルカリ洗浄により、水洗回数を減少させることができる。洗浄工程により不純物等を効率良く除去することができる。かかる洗浄による精製により、ポリチオール化合物より得られるプラスチックレンズの色相が改善され、さらに白濁、脈理の発生が低減された高品質のプラスチックレンズを歩留まり良く生産することができ、良品率も改善される。好ましい形態の例としては、加水分解後に、水洗-酸洗浄-水洗-アルカリ洗浄-水洗を行う方法、また、酸洗浄-水洗-アルカリ洗浄-水洗を行う方法、または酸洗浄-水洗を行う方法などをあげることができる。各洗浄は複数回繰り返してもよい。
 酸洗浄は、得られたポリチオール化合物を含む溶液に、塩酸を加えて行うことができる。塩酸の濃度は30~36%とすることができる。塩酸の濃度が30%より低いと、不純物等によりプラスチックレンズに白濁が生じることがある。また、酸洗浄の温度は30~55℃、好ましくは30~45℃、より好ましくは30~40℃、さらにより好ましくは31~40℃とすることができる。
 塩酸の濃度および温度条件を満たすことにより、色相に優れ、濁りが低減されたプラスチックレンズを歩留まり良く得ることができ、良品率も改善される。
 水洗浄は、酸素濃度が5mg/L以下である脱気水を用いることができる。
 脱気水の製造方法としては窒素を吹き込んで溶存酸素を追い出す方法、加熱処理により溶存酸素を追い出す方法、真空脱気により溶存酸素を追い出す方法等が挙げられるが、酸素濃度を5mg/L以下にできるならば特に限定はされない。
 これにより、プラスチックレンズのような光学材料において問題となる色相や濁りを、効果的に抑制することができる。
 また、アルカリ洗浄は、アルカリ性水溶液を加え、20~50℃の範囲で10分~3時間撹拌することにより行うことができる。アルカリ性水溶液としてはアンモニア水が好ましい。また、アンモニア水の濃度は0.1~10%、好ましくは0.1~1%、より好ましくは0.1~0.5%とすることができる。
 なお、酸洗浄、アルカリ洗浄においても、酸素濃度が5mg/L以下である水を用いることにより、プラスチックレンズのような光学材料において問題となる色相や濁りを、効果的に抑制することができる。
 工程Eの後、溶媒除去工程、必要に応じて低沸点化合物の除去工程、濾過工程、蒸留工程を行い、ポリチオール化合物として4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンからなる群より選択される一種または二種以上を主成分とするポリチオール化合物を得ることができる。
 溶媒除去工程は、常圧又は減圧下、有機溶媒を除去する工程であり、減圧度、温度は用いる溶媒等によって適宜選択されるが、減圧下、100℃以下、好ましくは85℃以下で行なうことが好ましい。
 低沸点化合物の除去工程は、溶媒除去工程後、常圧又は減圧下、含有する低沸点化合物を除去する工程であり、減圧度、温度は用いる溶媒等によって適宜選択されるが、減圧下、100℃以下、好ましくは85℃以下で行なうことが好ましい。その際、窒素ガス等の不活性ガスを通気しながら行っても良い。
 濾過工程は、塩等の固形物を濾過により除去する工程で、濾過の方法等は適宜選択されるが、メンブランフィルターやカートリッジフィルターを用いた減圧濾過や加圧濾過等を用いることができる。フィルターの孔径は5μm以下、好ましくは2μm以下のもので行なう事が好ましい。
 蒸留工程は、蒸留によりポリチオール化合物を精製する工程で、減圧度、温度は用いる溶媒等によって適宜選択されるが、減圧下、250℃以下、好ましくは200℃以下で行なうことが好ましい。
 なお、本実施形態の製造方法は空気中でも実施できるが、全体を窒素雰囲気下で行うのが色相の面から好ましい。
<光学材料用重合性組成物>
 本実施形態における光学材料用重合性組成物は、上述の方法で得られた光学材料用ポリチオール化合物と、ポリイソ(チオ)シアナート化合物とを含む。
 ポリイソ(チオ)シアナート化合物は、一分子中に少なくとも2個以上のイソ(チオ)シアナート基を有する化合物であれば、特に限定されないが、具体的には、例えば、ヘキサメチレンジイソシアナート、1,5-ペンタンジイソシアナート、2,2-ジメチルペンタンジイソシアナート、2,2,4-トリメチルヘキサンジイソシアナート、ブテンジイソシアナート、1,3-ブタジエン-1,4-ジイソシアナート、2,4,4-トリメチルヘキサメチレンジイソシアナート、1,6,11-ウンデカントリイソシアナート、1,3,6-ヘキサメチレントリイソシアナート、1,8-ジイソシアナト-4-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、リジンジイソシアナトメチルエステル、リジントリイソシアナート等の脂肪族ポリイソシアナート化合物;
イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン、ビス(4-イソシアナトシクロへキシル)メタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン等の脂環族ポリイソシアネート化合物;
1,2-ジイソシアナトベンゼン、1,3-ジイソシアナトベンゼン、1,4-ジイソシアナトベンゼン、トリレンジイソシアナート、2,4-ジイソシアナトトルエン、2,6-ジイソシアナトトルエン、エチルフェニレンジイソシアナート、イソプロピルフェニレンジイソシアナート、ジメチルフェニレンジイソシアナート、ジエチルフェニレンジイソシアナート、ジイソプロピルフェニレンジイソシアナート、トリメチルベンゼントリイソシアナート、ベンゼントリイソシアナート、ビフェニルジイソシアナート、トルイジンジイソシアナート、4,4'-メチレンビス(フェニルイソシアナート)、4,4'-メチレンビス(2-メチルフェニルイソシアナート)、ビベンジル-4,4'-ジイソシアナート、ビス(イソシアナトフェニル)エチレン、ビス(イソシアナトメチル)ベンゼン、m-キシリレンジイソシアナート、ビス(イソシアナトエチル)ベンゼン、ビス(イソシアナトプロピル)ベンゼン、α,α,α',α'-テトラメチルキシリレンジイソシアナート、ビス(イソシアナトブチル)ベンゼン、ビス(イソシアナトメチル)ナフタリン、ビス(イソシアナトメチルフェニル)エーテル、ビス(イソシアナトエチル)フタレート、2,5-ジ(イソシアナトメチル)フラン等の芳香環化合物を有するポリイソシアナート化合物;
ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトプロピル)スルフィド、ビス(イソシアナトヘキシル)スルフィド、ビス(イソシアナトメチル)スルホン、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトプロピル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトメチルチオ)エタン、ビス(イソシアナトエチルチオ)エタン、1,5-ジイソシアナト-2-イソシアナトメチル-3-チアペンタン、1,2,3-トリス(イソシアナトメチルチオ)プロパン、1,2,3-トリス(イソシアナトエチルチオ)プロパン、3,5-ジチア-1,2,6,7-ヘプタンテトライソシアナート、2,6-ジイソシアナトメチル-3,5-ジチア-1,7-ヘプタンジイソシアナート、2,5-ジイソシアナートメチルチオフェン、4-イソシアナトエチルチオ-2,6-ジチア-1,8-オクタンジイソシアナート等の含硫脂肪族ポリイソシアナート化合物;
2-イソシアナトフェニル-4-イソシアナトフェニルスルフィド、ビス(4-イソシアナトフェニル)スルフィド、ビス(4-イソシアナトメチルフェニル)スルフィドなどの芳香族スルフィド系ポリイソシアナート化合物;
ビス(4-イソシアナトフェニル)ジスルフィド、ビス(2-メチル-5-イソシアナトフェニル)ジスルフィド、ビス(3-メチル-5-イソシアナトフェニル)ジスルフィド、ビス(3-メチル-6-イソシアナトフェニル)ジスルフィド、ビス(4-メチル-5-イソシアナトフェニル)ジスルフィド、ビス(4-メトキシ-3-イソシアナトフェニル)ジスルフィド等の芳香族ジスルフィド系ポリイソシアナート化合物;
2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ジイソシアナトメチルテトラヒドロチオフェン、3,4-ジイソシナトメチルテトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ジイソシアナトメチル-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン、4,5-ジイソシアナトメチル-2-メチル-1,3-ジチオラン等の含硫脂環族ポリイソシアナート化合物;
1,2-ジイソチオシアナトエタン、1,6-ジイソチオシアナトヘキサン等の脂肪族ポリイソチオシアナート化合物;
シクロヘキサンジイソチオシアナート等の脂環族ポリイソチオシアナート化合物;
1,2-ジイソチオシアナトベンゼン、1,3-ジイソチオシアナトベンゼン、1,4-ジイソチオシアナトベンゼン、2,4-ジイソチオシアナトトルエン、2,5-ジイソチオシアナト-m-キシレン、4,4'-メチレンビス(フェニルイソチオシアナート)、4,4'-メチレンビス(2-メチルフェニルイソチオシアナート)、4,4'-メチレンビス(3-メチルフェニルイソチオシアナート)、4,4'-ジイソチオシアナトベンゾフェノン、4,4'-ジイソチオシアナト-3,3'-ジメチルベンゾフェノン、ビス(4-イソチオシアナトフェニル)エーテル等の芳香族ポリイソチオシアナート化合物;
さらには、1,3-ベンゼンジカルボニルジイソチオシアナート、1,4-ベンゼンジカルボニルジイソチオシアナート、(2,2-ピリジン)-4,4-ジカルボニルジイソチオシアナート等のカルボニルポリイソチオシアナート化合物;
チオビス(3-イソチオシアナトプロパン)、チオビス(2-イソチオシアナトエタン)、ジチオビス(2-イソチオシアナトエタン)等の含硫脂肪族ポリイソチオシアナート化合物;
1-イソチオシアナト-4-[(2-イソチオシアナト)スルホニル]ベンゼン、チオビス(4-イソチオシアナトベンゼン)、スルホニル(4-イソチオシアナトベンゼン)、ジチオビス(4-イソチオシアナトベンゼン)等の含硫芳香族ポリイソチオシアナート化合物;
2,5-ジイソチオシアナトチオフェン、2,5-ジイソチオシアナト-1,4-ジチアン等の含硫脂環族ポリイソチオシアナート化合物;
1-イソシアナト-6-イソチオシアナトヘキサン、1-イソシアナト-4-イソチオシアナトシクロヘキサン、1-イソシアナト-4-イソチオシアナトベンゼン、4-メチル-3-イソシアナト-1-イソチオシアナトベンゼン、2-イソシアナト-4,6-ジイソチオシアナト-1,3,5-トリアジン、4-イソシアナトフェニル-4-イソチオシアナトフェニルスルフィド、2-イソシアナトエチル-2-イソチオシアナトエチルジスルフィド等のイソシアナト基とイソチオシアナト基を有する化合物等が挙げられる。
 ポリイソ(チオ)シアナート化合物は、好ましいものとして、ヘキサメチレンジイソシアナート、1,5-ペンタンジイソシアナート、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタン、ビス(4-イソシアナトシクロへキシル)メタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン等の脂肪族系ポリイソシアネート化合物;ビス(イソシアナトメチル)ベンゼン、m-キシリレンジイソシアナート、1,3-ジイソシアナトベンゼン、トリレンジイソシアナート、2,4-ジイソシアナトトルエン、2,6-ジイソシアナトトルエン、4,4'-メチレンビス(フェニルイソシアナート)等の芳香環化合物を有するポリイソシアナート化合物を挙げることができる。
 さらに、これらの塩素置換体、臭素置換体等のハロゲン置換体、アルキル置換体、アルコキシ置換体、ニトロ置換体や多価アルコールとのプレポリマー型変性体、カルボジイミド変性体、ウレア変性体、ビュレット変性体、ダイマー化あるいはトリマー化反応生成物等も使用できる。これらの化合物は単独または2種以上を混合して使用してもよい。
 光学材料用重合性組成物に用いられるポリチオール化合物としては、上述の方法で得られた光学材料用ポリチオール化合物に加えて、他の光学材料用ポリチオール化合物を用いることもできる。
 他の光学材料用ポリチオール化合物は、好ましいものとして、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,5-ジメルカプトメチル-1,4-ジチアン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2、5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン等の脂肪族ポリチオール化合物を挙げることができる。
 ポリチオール化合物とポリイソ(チオ)シアナート化合物の使用割合は、特に限定されないが、通常、モル比がSH基/NCO基=0.5~3.0の範囲内、好ましくは0.6~2.0、さらに好ましくは0.8~1.3の範囲内である。使用割合が上記範囲内であると、プラスチックレンズ等の光学材料および透明材料として求められる屈折率、耐熱性等の種々の性能をバランスよく満たすことが可能となる。
 本発明のポリチオウレタン系樹脂の諸物性、操作性、および重合反応性等を改良する目的で、ウレタン樹脂を形成するポリチオール化合物とイソ(チオ)シアナート化合物に加えて、その他の物質を加えてもよい。例えば、ウレタン形成原料に加えて、アミン等に代表される活性水素化合物、カーボネート化合物、エステル化合物、金属、金属酸化物、有機金属化合物、無機物等の1種または2種以上を加えてもよい。
 また、目的に応じて、公知の成形法と同様に、鎖延長剤、架橋剤、光安定剤、紫外線吸収剤、酸化防止剤、油溶染料、充填剤、離型剤などの種々の物質を添加してもよい。所望の反応速度に調整するために、チオカルバミン酸S-アルキルエステルあるいは、ポリチオウレタン系樹脂の製造において用いられる公知の反応触媒を適宜に添加してもよい。
 反応触媒としては、チオカルバミン酸S-アルキルエステルあるいは、ポリチオウレタン系樹脂の製造において用いられる公知の反応触媒を適宜に添加することができる。
 反応触媒の例としては、ジブチルスズジクロライド、ジメチルスズジクロライド等のジアルキルスズハロゲン化物類、ジメチルスズジアセテート、ジブチルスズジオクタノエート、ジブチルスズジラウレート等のジアルキルスズジカルボキシレート類、ジブチルスズジブトキシド、ジオクチルスズジブトキシド等のジアルキルスズジアルコキシド類、ジブチルスズジ(チオブトキシド)等のジアルキルスズジチオアルコキシド類、ジ(2-エチルヘキシル)スズオキサイド、ジオクチルスズオキサイド、ビス(ブトキシジブチルスズ)オキサイド等のジアルキルスズ酸化物類、ジブチルスズスルフィド等のジアルキルスズ硫化物類が挙げられる。ジブチルスズジクロライド、ジメチルスズジクロライド等のジアルキルスズハロゲン化物類は好適な例として挙げられる。
 更に、樹脂の改質を目的として、ヒドロキシ化合物、エポキシ化合物、エピスルフィド化合物、有機酸及びその無水物、(メタ)アクリレート化合物等を含むオレフィン化合物等の樹脂改質剤を加えてもよい。ここで、樹脂改質剤とは、チオウレタン系樹脂からなる材料の屈折率、アッベ数、耐熱性、比重等の物性や耐衝撃性等の機械強度等を調製あるいは向上させる化合物である。
 また、本実施形態の光学材料用重合性組成物は、必要に応じて、ブルーイング剤を含むことができる。ブルーイング剤は、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂からなる光学材料の色相を調整する機能を有する。ブルーイング剤は、さらに具体的には、青色から紫色を示す物質を含む。
 本実施形態の光学材料用重合性組成物に用いられるブルーイング剤は、特に限定されるものではなく、具体的には、染料、蛍光増白剤、蛍光顔料、無機顔料等が挙げられるが、ブルーイング剤として使用できるものの中から光学部品に要求される物性や樹脂色相などに合わせて適宜選択される。これらのブルーイング剤は、それぞれ単独で用いても、2種類以上組み合わせて使用してもよい。
 これらのブルーイング剤のうち、重合性組成物への溶解性の観点および得られる光学材料の透明性の観点からは、染料が好ましい。
 吸収波長の観点からは、好ましくは、極大吸収波長が520nm以上600nm以下の染料であり、さらに好ましくは極大吸収波長が540nm以上580nm以下の染料が挙げられる。
 また、化合物の構造の観点からは、アントラキノン系染料が好ましい。
 ブルーイング剤の添加方法については、特に限定されるものではなく、あらかじめモノマー系に添加しておくことが望ましい。その方法として、モノマーに溶解させておく方法、あるいは、高濃度のブルーイング剤を含有したマスター溶液を調製しておき、そのマスター溶液を使用するモノマーや他の添加剤で希釈して添加する方法など、様々な方法が採用できる。
 本実施形態の光学材料用重合性組成物は、具体的には、上述の製造方法により得られたポリチオール化合物と、ポリイソ(チオ)シアナート化合物と、さらに必要に応じて他の成分を混合し、混合液として得られる。この混合液を必要に応じ、適当な方法で脱泡を行った後、モールド中に注入し、通常、低温から高温へ徐々に加熱し重合させる。
 このようにして、本実施形態の重合性組成物を硬化させて得られるポリチオウレタン系樹脂からなる成形体は、高屈折率で低分散であり、耐熱性、耐久性に優れ、軽量で耐衝撃性に優れた特徴を有しており、さらには色相が良好で、眼鏡レンズ、カメラレンズ等の光学材料および透明材料素材として好適である。
 また、本実施形態のポリチオウレタン系樹脂を用いて得られるプラスチックレンズは、必要に応じ反射防止、高硬度付与、耐磨耗性向上、耐薬品性向上、防雲性付与、あるいはファッション性付与等の改良を行うため、表面研磨、帯電防止処理、ハードコート処理、無反射コート処理、染色処理、調光処理等の物理的、化学的処理を施してもよい。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 なお、以下の実施例においては、以下の測定法により物性を測定した。
・APHA:色相の表示方法であり、白金とコバルトの試薬を溶解して調製した標準液を用い、試料の色と同等の濃さの標準液稀釈液を比較により求め、その「度数」を測定値とした。
・水分量:トルエンに溶解させ、カールフィッシャー水分計にて水分測定を実施した。
・粘度:JIS K 7117に準拠し測定した。
・屈折率:京都電子工業社RA-600のデジタル屈折計にて、20℃で測定した。
・アンモニウム分:クロロホルムに溶解させ、水で抽出し、イオンクロマトグラフィーで測定した。
・酸分:溶媒に溶解させ、KOHのメタノール溶液により滴定し、HCl分として算出した。
・樹脂失透度:実施例のプラスチックレンズ作成条件で9mm平板を作成し、失透度測定装置(HAYASHI社製:LUMINAR ACE LA-150SE)により測定した。
・樹脂YI:色相評価におけるイエローインデックスのことであり、色彩色差計にて測定する。実施例のプラスチックレンズ作成条件で9mm平板を作成し、ミノルタ社製色彩色差計(CR-400)を用いて、YI値を測定した。
・脈理:実施例のプラスチックレンズ作成条件でレンズを作成し、高圧水銀灯下目視で観察し、縞状のものが観察されないものを○、観察されたものを×とした。
 また、水に窒素を吹き込んで溶存酸素を追い出すことにより、溶存酸素濃度2ppmの脱気水を得た。
[実施例C-1]
(ビス(メルカプトメチル)-3,6,9-トリチア-1,11-ウンデカンジチオールを主成分とするポリチオール化合物の合成)
 反応器内に、2-メルカプトエタノール51.2重量部、脱気水(溶存酸素濃度2ppm)26.5重量部、49重量%の水酸化ナトリウム水溶液0.16重量部を装入した。エピクロルヒドリン61.99重量部を9~11℃にて6.5時間かけて滴下装入し、引き続き60分撹拌を行った。NMRデータから、1-クロロ-3-(2-ヒドロキシエチルチオ)-2-プロパノールの生成を確認した。
 次いで、17.3%の硫化ソーダ水溶液150.0重量部を7~37℃にて5.5時間かけて滴下装入し、120分撹拌を行った。NMRデータから、式(4)のテトラオール化合物の生成を確認した。そして、35.5%の塩酸279.0重量部を装入し、次に、純度99.90%のチオ尿素125.8重量部を装入し、110℃還流下にて3時間撹拌して、チウロニウム塩化反応を行った。45℃に冷却した後、トルエン214.0重量部を加え、26℃まで冷却し、25重量%のアンモニア水溶液206.2重量部を26~50℃で30分掛けて装入し、50~65℃で1時間撹拌により加水分解反応を行い、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを主成分とするポリチオールのトルエン溶液を得た。該トルエン溶液を、36%塩酸59.4重量部添加し、34-39℃で30分酸洗浄を2回実施した。脱気水(溶存酸素濃度2ppm)118.7重量部を添加し35-45℃で30分洗浄を5回実施した。加熱減圧下でトルエン及び微量の水分を除去後、1.2μmのPTFEタイプメンブランフィルターで減圧濾過して4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン(以下、化合物A)、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン(以下、化合物B)、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン(以下、化合物C)を主成分とするポリチオール化合物115.9重量部を得た(化合物A/B/C=85/5/10(モル比)の異性体混合物)。得られたポリチオール化合物の物性を表-1に示す。
(重合性組成物の粘度測定)
 m-キシリレンジイソシアナート50.7重量部、硬化触媒としてジブチル錫ジクロライド0.015重量部、ゼレックUN(商品名Stepan社製品;酸性リン酸エステル)0.10重量部、バイオソーブ583(共同薬品社製;紫外線吸収剤)0.05重量部を、20℃にて混合溶解させた。得られた4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物49.3重量部を装入混合し、混合均一液とした。混合均一溶液作成時を0Hrとし、7時間後の粘度をB型粘度計で測定した。重合性組成物の7時間後の粘度を重合速度の指標とした。粘度の値が250mPa・s以下を○、1000mPa・s以上を×とし評価した。結果を表-2に示す。
 これら異性体からなるポリチオールは、逆相クロマトグラフィーによってそれぞれを単離し、同定を行った。まず、化合物Aの元素分析、IR及びMS、NMRの結果を示す。
Figure JPOXMLDOC01-appb-T000001
<IRνmax(KBr)cm-1>2543 (SH)
<MS>m/z=366(M+
Figure JPOXMLDOC01-appb-T000002
 次に化合物CのNMRの結果を示す。元素分析、IR及びMSは化合物Aと同じであった。
Figure JPOXMLDOC01-appb-T000003
 最後に化合物BのNMRの結果を示す。元素分析、IR及びMSは化合物Aと同じであった。
Figure JPOXMLDOC01-appb-T000004
(プラスチックレンズの製造)
 m-キシリレンジイソシアナート50.7重量部、硬化触媒としてジブチル錫ジクロライド0.01重量部、ゼレックUN(商品名Stepan社製品;酸性リン酸エステル)0.10重量部、バイオソーブ583(共同薬品社製;紫外線吸収剤)0.05重量部を、20℃にて混合溶解させた。得られた4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物49.3重量部を装入混合し、混合均一液とした。この均一液を600Paにて1時間脱泡を行った後、1μmテフロン(登録商標)フィルターにて濾過を行った後、ガラスモールドとテープからなるモールド型へ注入した。このモールド型をオーブンへ投入し、10℃~120℃まで徐々に昇温し、20時間で重合した。重合終了後、オーブンからモールド型を取り出し、離型して樹脂を得た。得られた樹脂を更に130℃で4時間アニールを行った。得られたレンズの物性を表-2に示す。
[実施例C-2~C-10]
 表-1に記載の製造条件とした以外は、実施例C-1と同様に4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物を製造した。得られたポリチオール化合物の物性を表-1に示す。さらに、実施例C-1と同様に、重合性組成物の7時間後の粘度を測定し、プラスチックレンズを製造した。結果を表-2に示す。
[実施例D-1]
(ビス(メルカプトメチル)-3,6,9-トリチア-1,11-ウンデカンジチオールを主成分とするポリチオール化合物の合成)
 反応器内に、2-メルカプトエタノール51.2重量部、脱気水(溶存酸素濃度2ppm)26.5重量部、49重量%の水酸化ナトリウム水溶液0.16重量部を装入した。エピクロルヒドリン61.99重量部を9~13℃にて6.5時間かけて滴下装入し、引き続き40分撹拌を行った。NMRデータから、1-クロロ-3-(2-ヒドロキシエチルチオ)-2-プロパノールの生成を確認した。
 次いで、17.3%の硫化ソーダ水溶液150.0重量部を5~42℃にて4.5時間かけて滴下装入し、引き続き40分撹拌を行った。NMRデータから、式(4)のテトラオール化合物の生成を確認した。次に、純度99.90%のチオ尿素117.4重量部を装入し、純度90.7%の塩酸ガス84.3重量部を吹き込み、110℃還流下にて3時間撹拌して、チウロニウム塩化反応を行った。45℃に冷却した後、トルエン214.0重量部を加え、26℃まで冷却し、25重量%のアンモニア水溶液158.4重量部を26~46℃で25分掛けて装入し、54~62℃で1時間熟成により加水分解反応を行い、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオールのトルエン溶液を得た。該トルエン溶液に36%塩酸59.4重量部添加し、33~40℃で30分酸洗浄を2回実施した。脱気水(溶存酸素濃度2ppm)118.7重量部を添加し35~45℃で30分洗浄を5回実施した。加熱減圧下でトルエン及び微量の水分を除去後、1.2μmのPTFEタイプメンブランフィルターで減圧濾過して4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物115.0重量部を得た。得られたポリチオール化合物の物性を表-1に示す。重合性組成物の7時間後の粘度測定は実施例C-1と同様に行った。結果を表-2に示す。
 これらのポリチオール化合物の同定はNMRで行ない、実施例C-1と同様の結果が得られた。
(プラスチックレンズの製造)
 m-キシリレンジイソシアナート50.7重量部、硬化触媒としてジブチル錫ジクロライド0.01重量部、ゼレックUN(商品名Stepan社製品;酸性リン酸エステル)0.10重量部、バイオソーブ583(共同薬品社製;紫外線吸収剤)0.05重量部を、20℃にて混合溶解させた。得られた4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物49.3重量部を装入混合し、混合均一液とした。この均一液を600Paにて1時間脱泡を行った後、1μmテフロン(登録商標)フィルターにて濾過を行った後、ガラスモールドとテープからなるモールド型へ注入した。このモールド型をオーブンへ投入し、10℃~120℃まで徐々に昇温し、20時間で重合した。重合終了後、オーブンからモールド型を取り出し、離型して樹脂を得た。得られた樹脂を更に130℃で4時間アニールを行った。得られたレンズの物性を表-2に示す。
[実施例D-2~D-10]
 表-1に記載の製造条件とした以外は、実施例D-1と同様に4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物を製造した。得られたポリチオール化合物の物性を表-1に示す。さらに、実施例D-1と同様に、重合性組成物の7時間後の粘度を測定し、プラスチックレンズを製造した。結果を表-2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実施例F-1~F-10、比較例C-1~C-6]
 表-3に記載の製造条件とした以外は、実施例C-1と同様に4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを主成分とするポリチオール化合物を製造し、重合性組成物の7時間後の粘度を測定し、プラスチックレンズを製造した。結果を表-3に示す。
Figure JPOXMLDOC01-appb-T000007
 以上のように、実施例においては高品質のプラスチックレンズが得られた。一方、比較例においては、色相、失透度および脈理の少なくとも一つに問題があり、十分な品質を有するプラスチックレンズが得られなかった。また、比較例C-1~C-4のポリチオール化合物を含む重合性組成物は、7時間後に粘度が1000mPa・s以上になるため、プラスチックレンズの製造安定性にも影響を及ぼすことが明らかとなった。
 製造工程における中間体を含む生成物の熱安定性などの観点から、条件III(塩酸洗浄)では55℃以下とすることが好ましい。この温度範囲内であれば品質に優れたポリチオール化合物を安定的に製造することができる。この観点から、条件I(2-メルカプトエタノールとエピクロヒドリンとの反応)では30℃以下とすることがより好ましい。
 なお、実際の製造時においては、容積効率(操作中に析出などの不具合)、攪拌性、前工程の操作温度に比べ低すぎる場合は冷却操作が必要になるなどの点を考慮する必要がある。これらの点から、条件I(2-メルカプトエタノールとエピクロヒドリンとの反応)において操作温度は2℃以上が好ましく選択される。
 以上の結果から、条件IIにおいて、反応液を20~60℃の温度に維持しながら、80分以内にアンモニア水を加えてイソチウロニウム塩を加水分解するとともに、条件IIIにおいて、ポリチオール化合物を含む溶液に、30~36%濃度の塩酸を加え、30~55℃の温度で洗浄し、ポリチオール化合物を精製して得られたポリチオール化合物を用いることにより、色相、透明性、脈理等の品質に優れたポリチオウレタン系樹脂からなるプラスチックレンズを製造できることが明らかとなった。そして、本発明によれば、実際の工業規模での生産において、繰り返しポリチオール化合物を製造した場合でも、製造ロット間でポリチオール化合物の品質がばらつかず、所望の品質を有するプラスチックレンズを安定して得られることが明らかとなった。
 この出願は、2012年8月14日に出願された日本出願特願2012-179896を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、以下の態様を含む。
[a1] ポリアルコール化合物とチオ尿素とを、塩化水素存在下に反応させてイソチウロニウム塩を得る工程と、
 得られたイソチウロニウム塩を含む反応液を20~60℃の温度に維持しながら、該反応液に80分以内にアンモニア水を加え、該イソチウロニウム塩を加水分解し、ポリチオール化合物を得る工程と、
を含む、ポリチオール化合物の製造方法。
[a2] ポリチオール化合物を得る前記工程の後に、
 得られたポリチオール化合物を含む溶液に、25~36%濃度の塩酸を加え、20~50℃の温度で洗浄し、ポリチオール化合物を精製する工程をさらに含む、[a1]に記載のポリチオール化合物の製造方法。
[a3] イソチウロニウム塩を生成する前記工程の前に、
 2-メルカプトエタノールと、下記式(1)
Figure JPOXMLDOC01-appb-C000012
(式中、Xはハロゲン原子を表す。)
で表されるエピハロヒドリン化合物と、を2~50℃の温度下で反応させて、下記式(2)
Figure JPOXMLDOC01-appb-C000013
で表されるポリアルコール化合物を得る工程を含む、[a1]または[a2]に記載のポリチオール化合物の製造方法。
[a4] ポリアルコール化合物を得る前記工程は、
 2-メルカプトエタノールと、下記式(1)
Figure JPOXMLDOC01-appb-C000014
(式中、Xはハロゲン原子を表す。)
で表されるエピハロヒドリン化合物と、を2~20℃の温度下で反応させて、下記式(3)
Figure JPOXMLDOC01-appb-C000015
で表される化合物を得る工程と、
 式(3)で表される前記化合物と2-メルカプトエタノールとを10~50℃の温度下で反応させて、下記式(2)
Figure JPOXMLDOC01-appb-C000016
で表されるポリアルコール化合物を得る工程と、を含む、[a3]に記載のポリチオール化合物の製造方法。
[a5] 前記ポリチオール化合物が、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンである、[a3]または[a4]に記載のポリチオール化合物の製造方法。
[a6] イソチウロニウム塩を生成する前記工程の前に、
 2-メルカプトエタノールと、下記式(1)
Figure JPOXMLDOC01-appb-C000017
(式中、Xはハロゲン原子を表す。)
で表されるエピハロヒドリン化合物と、を2~20℃の温度下で反応させて、下記式(3)
Figure JPOXMLDOC01-appb-C000018
で表される化合物を得る工程と、
 式(3)で表される化合物を硫化ナトリウムと反応させて、下記式(4)
Figure JPOXMLDOC01-appb-C000019
で表されるポリアルコール化合物を得る工程を含む、[a1]または[a2]に記載のポリチオール化合物の製造方法。
[a7] 前記ポリチオール化合物が、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンからなる群より選択される一種または二種以上を主成分とする、[a6]に記載のポリチオール化合物の製造方法。
[a8] [a1]乃至[a7]のいずれかに記載の製造方法を用いる、ポリチオール化合物の工業的製造方法。
[a9] [a1]乃至[a8]のいずれかに記載の製造方法で得られたポリチオール化合物を含有する光学材料用重合性組成物。
[a10] [a9]に記載の光学材料用重合性組成物を硬化させて得られる成形体。
[a11] [a10]に記載の成形体からなるプラスチックレンズ。

Claims (6)

  1.  2-メルカプトエタノールと、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000020
    (式中、Xはハロゲン原子を表す。)
    で表されるエピハロヒドリン化合物と、を反応させて、下記式(3)
    Figure JPOXMLDOC01-appb-C000021
    で表される化合物を得る工程と、
     式(3)で表される化合物を硫化ナトリウムと反応させて、下記式(4)
    Figure JPOXMLDOC01-appb-C000022
    で表されるポリアルコール化合物を得る工程と、
     得られた式(4)で表されるポリアルコール化合物とチオ尿素とを、塩化水素存在下に反応させてイソチウロニウム塩を得る工程と、
     得られたイソチウロニウム塩を含む反応液を20~60℃の温度に維持しながら、該反応液に80分以内にアンモニア水を加え、該イソチウロニウム塩を加水分解し、下記式(6)~(8)
    Figure JPOXMLDOC01-appb-C000023
    で表される化合物からなる群より選択される一種または二種以上を主成分とするポリチオール化合物を得る工程と、
     得られたポリチオール化合物を含む溶液に、30~36%濃度の塩酸を加え、30~55℃の温度で洗浄し、ポリチオール化合物を精製する工程と、
    を含む、ポリチオール化合物の製造方法。
  2.  式(3)で表される前記化合物を得る工程において、
     2-メルカプトエタノールと、一般式(1)で表されるエピハロヒドリン化合物と、を2~30℃の温度下で反応させる、請求項1に記載のポリチオール化合物の製造方法。
  3.  請求項1または2に記載の製造方法を用いる、ポリチオール化合物の工業的製造方法。
  4.  請求項1乃至3のいずれかに記載の製造方法で得られたポリチオール化合物を含有する光学材料用重合性組成物。
  5.  請求項4に記載の光学材料用重合性組成物を硬化させて得られる成形体。
  6.  請求項5に記載の成形体からなるプラスチックレンズ。
PCT/JP2013/001208 2012-08-14 2013-02-28 ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途 WO2014027428A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201380026147.1A CN104321306B (zh) 2012-08-14 2013-02-28 多硫醇化合物的制造方法、光学材料用聚合性组合物及其用途
US14/405,248 US9181180B2 (en) 2012-08-14 2013-02-28 Method for producing polythiol compound, polymerizable composition for optical material, and uses thereof
IN9746DEN2014 IN2014DN09746A (ja) 2012-08-14 2013-02-28
EP13879441.7A EP2845848B1 (en) 2012-08-14 2013-02-28 Production method for polythiol compound, polymerizable composition for optical material and use therefor
KR1020167004566A KR101879962B1 (ko) 2012-08-14 2013-02-28 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도
BR112015000373A BR112015000373A2 (pt) 2012-08-14 2013-02-28 metódo para produzir composto de politiol, composição polimerizável para material ótico e usos dos mesmos
JP2013511438A JP5319037B1 (ja) 2012-08-14 2013-02-28 ポリチオール化合物の製造方法
KR1020147032266A KR101661835B1 (ko) 2012-08-14 2013-02-28 폴리티올 화합물의 제조방법, 광학 재료용 중합성 조성물 및 그 용도
US14/871,479 US9605105B2 (en) 2012-08-14 2015-09-30 Method for producing polythiol compound, polymerizable composition for optical material, and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012179896 2012-08-14
JP2012-179896 2012-08-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/405,248 A-371-Of-International US9181180B2 (en) 2012-08-14 2013-02-28 Method for producing polythiol compound, polymerizable composition for optical material, and uses thereof
US14/871,479 Continuation US9605105B2 (en) 2012-08-14 2015-09-30 Method for producing polythiol compound, polymerizable composition for optical material, and uses thereof

Publications (1)

Publication Number Publication Date
WO2014027428A1 true WO2014027428A1 (ja) 2014-02-20

Family

ID=50685489

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/001207 WO2014027427A1 (ja) 2012-08-14 2013-02-28 ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途
PCT/JP2013/001208 WO2014027428A1 (ja) 2012-08-14 2013-02-28 ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001207 WO2014027427A1 (ja) 2012-08-14 2013-02-28 ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途

Country Status (7)

Country Link
US (4) US9181180B2 (ja)
EP (4) EP3026041B1 (ja)
KR (4) KR101879962B1 (ja)
CN (4) CN104321306B (ja)
BR (2) BR112014030076A2 (ja)
IN (2) IN2014DN09746A (ja)
WO (2) WO2014027427A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014136663A1 (ja) * 2013-03-04 2017-02-09 三菱瓦斯化学株式会社 光学材料用組成物及びそれを用いた光学材料
WO2017175407A1 (ja) * 2016-04-06 2017-10-12 ホヤ レンズ タイランド リミテッド 光学部材の製造方法
WO2018003059A1 (ja) * 2016-06-30 2018-01-04 ホヤ レンズ タイランド リミテッド ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
JP2018024588A (ja) * 2016-08-08 2018-02-15 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
JP2018058922A (ja) * 2016-09-30 2018-04-12 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 光学材料の製造方法
JP2018058772A (ja) * 2016-09-30 2018-04-12 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 光学材料用ポリチオール化合物の製造方法
JP2018127613A (ja) * 2017-02-03 2018-08-16 エスケーシー カンパニー,リミテッド プラスチックレンズ用重合性組成物、およびそれらを使用するプラスチックレンズの調製方法
WO2018173820A1 (ja) * 2017-03-24 2018-09-27 三井化学株式会社 ポリチオール化合物の製造方法、重合性組成物およびその用途
JP2018172380A (ja) * 2017-03-31 2018-11-08 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 金属硫化物を用いた光学レンズ用ポリチオール化合物の製造方法、及び光学レンズの製造方法
WO2019189787A1 (ja) * 2018-03-30 2019-10-03 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ
JP2020508347A (ja) * 2017-02-15 2020-03-19 ケーエス ラボラトリーズ カンパニー リミテッドKs Laboratories Co., Ltd. ポリオールまたはポリチオール化合物、その製造方法、前記化合物により製造される透明なポリウレタン系樹脂及び光学体
WO2021010392A1 (ja) 2019-07-17 2021-01-21 三井化学株式会社 ポリチオール組成物及びその応用
WO2022050662A1 (ko) * 2020-09-01 2022-03-10 에스케이씨 주식회사 폴리티올 조성물, 광학 조성물 및 광학 제품
WO2023008528A1 (ja) 2021-07-30 2023-02-02 三井化学株式会社 ポリチオール組成物及びその応用
WO2024080383A1 (ja) * 2022-10-14 2024-04-18 三井化学株式会社 ポリチオール組成物、重合性組成物、樹脂、成形体、光学材料及びレンズ

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373226B1 (ja) 2012-08-14 2013-12-18 三井化学株式会社 ポリチオール組成物、光学材料用重合性組成物およびその用途
EP2801586B1 (de) 2013-05-07 2016-04-13 Bruno Bock Chemische Fabrik GmbH & Co. KG Gießharz auf Polythiourethanbasis mit hoher Bruchfestigkeit und niedrigem spezifischen Gewicht
KR102279400B1 (ko) 2013-11-01 2021-07-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리티올 화합물 및 그 제조방법
TWI699389B (zh) 2014-07-18 2020-07-21 日商三菱瓦斯化學股份有限公司 聚硫醇組成物及其製造方法
CN104402783B (zh) * 2014-12-15 2015-08-12 黄河三角洲京博化工研究院有限公司 一种巯基化合物的制备方法
CN105693575B (zh) * 2016-04-08 2018-06-29 佛山汉维科技有限公司 一种分离纯化多元硫醇的方法与设备
CN105949096B (zh) * 2016-05-19 2018-03-02 湖北鼎龙控股股份有限公司 光学眼镜片材料、精制多元硫醇以及多元硫醇粗品的后处理方法
CN108884204A (zh) * 2016-06-30 2018-11-23 豪雅镜片泰国有限公司 固化物的制造方法、固化物及眼镜镜片基材
JP6929930B2 (ja) * 2016-07-14 2021-09-01 エスケーシー カンパニー,リミテッド 光学材料のための芳香族ポリチオール化合物
JP6632493B2 (ja) * 2016-08-05 2020-01-22 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
KR101885879B1 (ko) * 2016-08-30 2018-08-07 에스케이씨 주식회사 광학 재료용 폴리티올 조성물 및 이의 제조방법
KR101971110B1 (ko) * 2016-08-30 2019-04-22 에스케이씨 주식회사 광학 재료용 폴리티올 화합물
US10365958B2 (en) * 2016-09-13 2019-07-30 Hewlett Packard Enterprise Development Lp Storage drive management to fail a storage drive based on adjustable failure criteria
CN106831511B (zh) * 2017-01-24 2018-05-25 郯城博化化工科技有限公司 一种多元硫醇化合物的制备方法
CN107235876B (zh) * 2017-06-30 2019-01-18 山东益丰生化环保股份有限公司 一种多巯基化合物粗产物的后处理方法
KR101996981B1 (ko) * 2017-10-18 2019-07-05 에스케이씨 주식회사 플라스틱 렌즈용 중합성 조성물
CN107721892B (zh) * 2017-10-31 2020-10-23 淮阴师范学院 一种硫代多元硫醇、制备方法及在透明聚氨酯材料中的应用
JP6797856B2 (ja) * 2018-03-29 2020-12-09 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
JP6797855B2 (ja) * 2018-03-29 2020-12-09 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
KR102034214B1 (ko) * 2018-04-25 2019-10-18 에스케이씨 주식회사 보관안정성이 개선된 폴리티올의 제조방법
KR102036246B1 (ko) * 2018-07-04 2019-10-24 에스케이씨 주식회사 고품질 폴리티올의 제조방법
CN110305049B (zh) * 2019-07-08 2021-05-28 山东益丰生化环保股份有限公司 一种生产低色度聚硫醇化合物的方法
CN110835409B (zh) * 2019-12-03 2020-08-28 山东益丰生化环保股份有限公司 一种利用微通道反应器连续反应生产聚硫醇的方法
KR20210075617A (ko) * 2019-12-13 2021-06-23 에스케이씨 주식회사 폴리티올 조성물의 제조 방법
US11578038B2 (en) * 2019-12-13 2023-02-14 Skc Co., Ltd. Method for preparing polythiol composition
JP7437932B2 (ja) 2019-12-27 2024-02-26 三井化学株式会社 廃水処理方法
CN113557256B (zh) 2020-01-27 2023-07-25 三井化学株式会社 光学材料用聚合性组合物、光学材料用聚合性预聚物组合物、固化物及光学材料的制造方法
CN113557254B (zh) 2020-01-27 2023-01-17 三井化学株式会社 光学材料用聚合性组合物、光学材料用聚合性预聚物组合物、固化物及光学材料的制造方法
CN113508148B (zh) * 2020-02-05 2022-08-12 三井化学株式会社 多胺化合物的制造方法及其应用
EP4101876A4 (en) 2020-03-10 2024-04-03 Mitsui Chemicals Inc POLYMERIZABLE COMPOSITION FOR OPTICAL MATERIAL, POLYMERIZABLE PREPOLYMER COMPOSITION FOR OPTICAL MATERIAL, CURED ARTICLE AND METHOD FOR PRODUCING OPTICAL MATERIAL
KR102122703B1 (ko) 2020-04-09 2020-06-26 주식회사 대원에프엔씨 폴리티올 화합물의 제조 방법과 이를 포함한 광학 재료용 중합성 조성물 및 광학 렌즈
KR102564990B1 (ko) * 2020-12-01 2023-08-07 에스케이씨 주식회사 폴리티올 조성물 및 이를 포함하는 중합성 조성물
KR20220033890A (ko) * 2020-09-10 2022-03-17 에스케이씨 주식회사 폴리티올 조성물 및 이를 포함하는 광학용 중합성 조성물
CN112358613B (zh) * 2020-10-27 2022-09-13 益丰新材料股份有限公司 一种光学树脂用聚硫醇及其制备方法和应用
CN114765982A (zh) 2020-11-13 2022-07-19 三井化学株式会社 多硫醇组合物、聚合性组合物、树脂、成型体、光学材料及透镜
JP7361951B2 (ja) 2020-12-25 2023-10-16 三井化学株式会社 ポリチオール組成物、重合性組成物、樹脂、成形体、光学材料及びレンズ
JPWO2023120606A1 (ja) 2021-12-24 2023-06-29
WO2024058014A1 (ja) 2022-09-14 2024-03-21 三井化学株式会社 ポリチオール組成物、重合性組成物、樹脂、成形体、光学材料及びレンズ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270859A (ja) 1988-12-22 1990-11-05 Mitsui Toatsu Chem Inc メルカプト化合物及びその製造方法
JPH07252207A (ja) 1994-01-26 1995-10-03 Mitsui Toatsu Chem Inc 新規なポリチオール及びそれを用いた含硫ウレタン系プラスチックレンズ
JP2001039944A (ja) * 1999-07-27 2001-02-13 Mitsui Chemicals Inc 有機メルカプト化合物の製造方法
WO2007129450A1 (ja) 2006-04-19 2007-11-15 Mitsui Chemicals, Inc. 光学材料用(ポリ)チオール化合物の製造方法およびそれを含む重合性組成物
WO2007129449A1 (ja) 2006-04-20 2007-11-15 Mitsui Chemicals, Inc. 光学材料用ポリチオール化合物の製造方法およびそれを含む重合性組成物
KR20100078120A (ko) 2008-12-30 2010-07-08 주식회사 포스코 이송 벨트 가이드 장치
KR20120058635A (ko) * 2010-08-13 2012-06-08 주식회사 케이오씨솔루션 광학렌즈용 폴리티올 화합물의 제조법 및 이를 포함하는 수지 조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191055A (en) 1988-12-22 1993-03-02 Mitsui Toatsu Chemicals, Inc. Mercapto compound, a high refractive index resin and lens and a process for preparing them
US5087758A (en) * 1988-12-22 1992-02-11 Mitsui Toatsu Chemicals, Inc. Mercapto compound, a high refractive index resin and lens and a process for preparing them
CN1171924C (zh) * 2002-11-05 2004-10-20 浙江大学 一种制备聚硫代氨基甲酸酯光学塑料的方法
CN101180553B (zh) * 2006-01-31 2011-12-14 什里兰工业研究学院 二甘醇双烯丙基碳酸酯cr-39的改进透镜及其制备方法
CN101614831B (zh) * 2009-08-11 2010-10-27 杭州新顺化工有限公司 高折射率树脂镜片及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270859A (ja) 1988-12-22 1990-11-05 Mitsui Toatsu Chem Inc メルカプト化合物及びその製造方法
JPH07252207A (ja) 1994-01-26 1995-10-03 Mitsui Toatsu Chem Inc 新規なポリチオール及びそれを用いた含硫ウレタン系プラスチックレンズ
JP2001039944A (ja) * 1999-07-27 2001-02-13 Mitsui Chemicals Inc 有機メルカプト化合物の製造方法
WO2007129450A1 (ja) 2006-04-19 2007-11-15 Mitsui Chemicals, Inc. 光学材料用(ポリ)チオール化合物の製造方法およびそれを含む重合性組成物
WO2007129449A1 (ja) 2006-04-20 2007-11-15 Mitsui Chemicals, Inc. 光学材料用ポリチオール化合物の製造方法およびそれを含む重合性組成物
KR20100078120A (ko) 2008-12-30 2010-07-08 주식회사 포스코 이송 벨트 가이드 장치
KR20120058635A (ko) * 2010-08-13 2012-06-08 주식회사 케이오씨솔루션 광학렌즈용 폴리티올 화합물의 제조법 및 이를 포함하는 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2845848A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014136663A1 (ja) * 2013-03-04 2017-02-09 三菱瓦斯化学株式会社 光学材料用組成物及びそれを用いた光学材料
WO2017175407A1 (ja) * 2016-04-06 2017-10-12 ホヤ レンズ タイランド リミテッド 光学部材の製造方法
WO2018003059A1 (ja) * 2016-06-30 2018-01-04 ホヤ レンズ タイランド リミテッド ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
US10975026B2 (en) 2016-06-30 2021-04-13 Hoya Lens Thailand Ltd. Method for producing polythiol compound, method for producing curable composition, and method for producing cured product
JPWO2018003059A1 (ja) * 2016-06-30 2019-01-17 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
JP2018024588A (ja) * 2016-08-08 2018-02-15 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd ポリチオール化合物の製造方法、硬化性組成物の製造方法、および硬化物の製造方法
US10611726B2 (en) 2016-08-08 2020-04-07 Hoya Lens Thailand Ltd. Method for producing polythiol compound, method for producing curable composition, and method for producing cured product
JP2018058922A (ja) * 2016-09-30 2018-04-12 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 光学材料の製造方法
JP2018058772A (ja) * 2016-09-30 2018-04-12 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 光学材料用ポリチオール化合物の製造方法
JP2018127613A (ja) * 2017-02-03 2018-08-16 エスケーシー カンパニー,リミテッド プラスチックレンズ用重合性組成物、およびそれらを使用するプラスチックレンズの調製方法
JP2020508347A (ja) * 2017-02-15 2020-03-19 ケーエス ラボラトリーズ カンパニー リミテッドKs Laboratories Co., Ltd. ポリオールまたはポリチオール化合物、その製造方法、前記化合物により製造される透明なポリウレタン系樹脂及び光学体
JP7220160B2 (ja) 2017-02-15 2023-02-09 ケーエス ラボラトリーズ カンパニー リミテッド ポリオールまたはポリチオール化合物、その製造方法、前記化合物により製造される透明なポリウレタン系樹脂及び光学体
JPWO2018173820A1 (ja) * 2017-03-24 2019-11-07 三井化学株式会社 ポリチオール化合物の製造方法、重合性組成物およびその用途
WO2018173820A1 (ja) * 2017-03-24 2018-09-27 三井化学株式会社 ポリチオール化合物の製造方法、重合性組成物およびその用途
JP2018172380A (ja) * 2017-03-31 2018-11-08 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 金属硫化物を用いた光学レンズ用ポリチオール化合物の製造方法、及び光学レンズの製造方法
JP7168656B2 (ja) 2018-03-30 2022-11-09 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、組成物、光学材料用重合性組成物、成形体、光学材料及びレンズ
WO2019189787A1 (ja) * 2018-03-30 2019-10-03 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ
JPWO2019189787A1 (ja) * 2018-03-30 2021-02-12 三井化学株式会社 有機メルカプト化合物又はその中間体の製造方法、(ポリ)チオール成分、光学材料用重合性組成物、成形体、光学材料及びレンズ
US11897835B2 (en) 2018-03-30 2024-02-13 Mitsui Chemicals, Inc. Method for producing organic mercapto compound or intermediate thereof, (poly)thiol component, polymerizable composition for optical material, molded product, optical material, and lens
WO2021010392A1 (ja) 2019-07-17 2021-01-21 三井化学株式会社 ポリチオール組成物及びその応用
KR20220004757A (ko) 2019-07-17 2022-01-11 미쯔이가가꾸가부시끼가이샤 폴리티올 조성물 및 그의 응용
CN113924326B (zh) * 2019-07-17 2023-10-24 三井化学株式会社 多硫醇组合物及其应用
CN113924326A (zh) * 2019-07-17 2022-01-11 三井化学株式会社 多硫醇组合物及其应用
WO2022050662A1 (ko) * 2020-09-01 2022-03-10 에스케이씨 주식회사 폴리티올 조성물, 광학 조성물 및 광학 제품
WO2023008528A1 (ja) 2021-07-30 2023-02-02 三井化学株式会社 ポリチオール組成物及びその応用
WO2024080383A1 (ja) * 2022-10-14 2024-04-18 三井化学株式会社 ポリチオール組成物、重合性組成物、樹脂、成形体、光学材料及びレンズ

Also Published As

Publication number Publication date
BR112014030076A2 (pt) 2017-06-27
IN2014DN09746A (ja) 2015-07-31
US9181179B2 (en) 2015-11-10
EP3026041B1 (en) 2017-04-19
US20160017085A1 (en) 2016-01-21
US9605105B2 (en) 2017-03-28
EP2845848B1 (en) 2016-02-24
KR20160028486A (ko) 2016-03-11
BR112015000373A2 (pt) 2017-06-27
CN106432664B (zh) 2019-05-28
KR101879962B1 (ko) 2018-07-18
WO2014027427A1 (ja) 2014-02-20
IN2014DN09747A (ja) 2015-07-31
EP2845848A1 (en) 2015-03-11
US20150133692A1 (en) 2015-05-14
CN104321307A (zh) 2015-01-28
CN104321306B (zh) 2016-10-19
EP2845847A4 (en) 2015-04-29
EP2845847A1 (en) 2015-03-11
EP2845847B1 (en) 2016-08-31
KR20140142375A (ko) 2014-12-11
EP3026041A1 (en) 2016-06-01
US20160024242A1 (en) 2016-01-28
KR20160028487A (ko) 2016-03-11
CN105906773A (zh) 2016-08-31
CN104321306A (zh) 2015-01-28
EP2845848A4 (en) 2015-05-20
US9181180B2 (en) 2015-11-10
EP3093282B1 (en) 2017-05-10
KR20140141723A (ko) 2014-12-10
EP3093282A1 (en) 2016-11-16
CN106432664A (zh) 2017-02-22
US9637584B2 (en) 2017-05-02
CN104321307B (zh) 2016-08-17
US20150126781A1 (en) 2015-05-07
CN105906773B (zh) 2018-05-29
KR101661835B1 (ko) 2016-09-30

Similar Documents

Publication Publication Date Title
US9605105B2 (en) Method for producing polythiol compound, polymerizable composition for optical material, and uses thereof
JP5613847B2 (ja) ポリチオール組成物、光学材料用重合性組成物およびその用途
JP5319037B1 (ja) ポリチオール化合物の製造方法
JP5319036B1 (ja) ポリチオール化合物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013511438

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147032266

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405248

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013879441

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015000373

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015000373

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150108