WO2006067976A1 - 有機化合物、電荷輸送材料および有機電界発光素子 - Google Patents

有機化合物、電荷輸送材料および有機電界発光素子 Download PDF

Info

Publication number
WO2006067976A1
WO2006067976A1 PCT/JP2005/022635 JP2005022635W WO2006067976A1 WO 2006067976 A1 WO2006067976 A1 WO 2006067976A1 JP 2005022635 W JP2005022635 W JP 2005022635W WO 2006067976 A1 WO2006067976 A1 WO 2006067976A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic compound
chemical
formula
ring
Prior art date
Application number
PCT/JP2005/022635
Other languages
English (en)
French (fr)
Inventor
Masayoshi Yabe
Hideki Sato
Original Assignee
Pioneer Corporation
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation, Mitsubishi Chemical Corporation filed Critical Pioneer Corporation
Priority to US11/722,760 priority Critical patent/US8324403B2/en
Priority to EP05814748.9A priority patent/EP1829871B1/en
Priority to KR1020077014364A priority patent/KR101420608B1/ko
Priority to CN200580044718XA priority patent/CN101087776B/zh
Publication of WO2006067976A1 publication Critical patent/WO2006067976A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • C07D215/30Metal salts; Chelates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Definitions

  • the present invention relates to a novel organic compound and a charge transport material, and an organic electroluminescent device using the organic compound. Specifically, the organic compound is stable even when it is repeatedly subjected to electrical acid reduction.
  • the present invention relates to a compound, a charge transport material, and an organic electroluminescence device having a high luminous efficiency and a long lifetime using the organic compound.
  • An electroluminescent device using an organic thin film has been developed.
  • An electroluminescent device using an organic thin film that is, an organic electroluminescent device, usually has an anode, a cathode, and an organic layer including at least a luminescent layer provided between these electrodes on a substrate.
  • a hole injection layer anode buffer layer
  • a hole transport layer a hole blocking layer
  • an electron transport layer an electron injection layer, and the like
  • an organic electroluminescent element is constituted by laminating these layers between an anode and a cathode.
  • organic electroluminescent devices have used fluorescent light emission.
  • fluorescent light emission In an attempt to increase the light emission efficiency of the device, it has been studied to use phosphorescent light emission instead of fluorescent light.
  • phosphorescent light emission Even when phosphorescent light emission is used, sufficient light emission efficiency is still obtained! //.
  • the organic electroluminescence device using the above biphenyl derivative has a tendency that the recombination position of charges tends to be biased toward the cathode side, and high luminous efficiency that is difficult to balance is obtained. There wasn't.
  • JP-A-6-1972 describes the use of the following compounds in an organic electroluminescence device.
  • the above compound emits light only under a high voltage, and the light emission luminance and light emission efficiency are insufficient.
  • JP-A 2000-186066 and JP-A 2000-169448 disclose the following compounds as hole transport materials and Z or light-emitting layer materials for use in fluorescent light-emitting devices or for electrophotographic photoreceptors. Pyridine compounds are described.
  • Japanese Patent Laid-Open No. 2003-22893 describes the following compounds as materials for organic electroluminescent elements.
  • the compounds described in these patent documents have a structure in which a nitrogen atom on a pyridine ring, a triazine ring, a pyrimidine ring or a pyrazine ring and a nitrogen atom on a force rubazole ring can be conjugated.
  • the phenomenon of charge polarization becomes prominent, and the triplet excitation level is relatively low.
  • it is inferior to durability as a material for organic electroluminescent elements. Therefore, it is insufficient in performance to be applied to a blue light emitting device or a phosphorescent light emitting device.
  • the 2, 4, 6-position of the pyridine ring and the 2, 4, 6-position of the pyrimidine ring are all structures having substituents at the 2, 3, 5, 6-position of the pyrazine ring. ⁇ Inferior in electrochemical durability.
  • International Publication No. WO03Z080760 describes the following compounds as materials for organic electroluminescent elements.
  • the aromatic ring can be conjugated with a pyridine ring or a pyrimidine ring. Therefore, the aromatic ring strength also decreases the resistance to electrical reduction of the pyridine ring or the pyrimidine ring due to the electron donating effect on the pyridine ring or the pyrimidine ring.
  • this compound is expected to have improved resistance to electrical oxidation, since it has only one carbazolyl group, it is an organic electroluminescent device having poor hole transportability.
  • the material for the light emitting layer is not suitable as a host material having a poor balance between hole transport properties and electron transport properties. Moreover, it is inferior to heat resistance.
  • the present invention relates to an organic compound and a charge transport material having both excellent hole transportability and electron transportability, excellent electrical redox durability, and high!
  • An object of the present invention is to provide a long-life organic electroluminescent device using a compound, having high luminous efficiency and high driving stability.
  • organic compound of the first aspect of the present invention is represented by the following formula (I).
  • the charge transport material of the second aspect of the present invention contains the organic compound of the first aspect.
  • the organic electroluminescent device of the third aspect of the present invention is an organic electroluminescent device having an anode, a cathode, and an organic light emitting layer provided between the two electrodes on a substrate. contains.
  • Cz 1 and Cz 2 each represent a force rubazolyl group.
  • Z represents a direct bond or an arbitrary linking group capable of conjugating nitrogen atoms of the force rubazole ring each of Cz 1 and Cz 2 has.
  • Cz 2 and Z may each have a substituent.
  • Q represents a direct bond connected to G in the following formula (II).
  • ring B 1 is a 6-membered aromatic heterocyclic ring having n N atoms as hetero atoms, and n is an integer of 1 to 3.
  • G binds to the C atom in the ortho and para positions of the N atom of ring B 1 .
  • G When G is connected to Q, it represents a direct bond or any linking group connected to Q.
  • n is an integer of 3-5.
  • a plurality of G present in one molecule may be the same or different.
  • Ring B 1 may have a substituent other than G.
  • the organic compound of the first aspect has both excellent hole transport properties and electron transport properties, and has excellent electrical acid-oxidation reduction durability and high triplet excitation level. For this reason, this organic compound
  • the organic electroluminescence device of the second aspect using a material can emit light with high brightness and high efficiency. This element is excellent in stability, particularly drive stability, and has a long life.
  • the organic electroluminescent device of the third aspect is a light source that has features as a flat panel display (for example, a wall-mounted television for OA computers), an in-vehicle display device, a mobile phone display and a surface light emitter (for example, it can be applied to light sources for copying machines, back light sources for liquid crystal displays and instruments, display panels, and indicator lights.
  • a flat panel display for example, a wall-mounted television for OA computers
  • an in-vehicle display device for example, a mobile phone display and a surface light emitter
  • a surface light emitter for example, it can be applied to light sources for copying machines, back light sources for liquid crystal displays and instruments, display panels, and indicator lights.
  • the organic compound of the first aspect has excellent redox stability, it is useful not only for organic electroluminescent devices but also for electrophotographic photoreceptors.
  • the organic compound of the first aspect is for various light emitting materials, solar cell materials, battery materials (electrolytes, electrodes, separation membranes, stabilizers, etc.), medical applications, paint materials, It is also useful for coating materials, organic semiconductor materials, toiletry materials, antistatic materials, and thermoelectric element materials.
  • the charge transport material of the second aspect is applicable to a hole injection material, a hole transport material, a light emitting material, a host material, an electron injection material, an electron transport material, and the like.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • the organic compound of the present invention is represented by the above formula (I).
  • the organic compound of the present invention has a part mainly responsible for hole transport and a part mainly responsible for electron transport. Both minutes are present without significantly interfering with each other.
  • the part mainly responsible for hole transport is the part of Cz 1 —Z—Cz 2 in the formula (I), and the part mainly responsible for electron transport is the part of the Q—G ring B 1 .
  • the portion mainly responsible for hole transport exhibits excellent durability against electrical oxidation.
  • the portion mainly responsible for electron transport exhibits excellent durability against electrical reduction.
  • Cz 1 —Z—Cz 2 which is a part mainly responsible for hole transport is characterized in that the N atom of Cz 1 and the N atom of Cz 2 are conjugated via Z. Conjugation of N atom of Cz 1 and N atom of Cz 2 improves the dielectric constant of the molecule, or the ion depotential decreases with charge delocalization, As a result, the orbital overlap at the point becomes larger, and the hole transportability is improved.
  • Z is preferably a carbazolyl group that can be linked to a carbazolyl group, preferably 2 or more and 4 or less, more preferably 2 or 4, most preferably 2, Only Cz 1 and Cz 2 are connected to Z.
  • the N atom of Cz 1 and Cz 2 and the N atom of ring B 1 are not conjugated. That is, it is preferable that Cz 1 and Cz 2 , ring B 1 , N atom of force Cz 1 and Cz 2 and N atom of ring B 1 are connected by a linking group that does not conjugate.
  • N atom of Cz 1 and Cz 2 and the N atom of ring B 1 are not force-conjugated is the opposite meaning of the above-mentioned conjugation possible. Is synonymous with this.
  • Cz 1 and Cz 2 in formula (I) each represent a force rubazolyl group.
  • Cz 1 and Cz 2 N-strength rubazolyl group, 1-strength rubazolyl group, 2-strength rubazolyl group, 3-strength rubazolyl group, 4-strength rubazolyl group, and Cz 1 Cz 2 may be the same or different.
  • Cz 1 and Cz 2 are each independently N-force rubazolyl group or N-force rubazolyl group. Is most preferred.
  • both Cz 1 and Cz 2 are N-carbazolyl groups.
  • Cz 1 and Cz 2 each independently have an optional substituent! /, Or may be! /.
  • substituent means that it may have one or more substituents.
  • substituents an alkyl group, an aromatic hydrocarbon group, an acyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkoxycarbo group, an arylcarbonyl group, a halogen atom, an arylamino group are preferable.
  • Group, an alkylamino group, and an aromatic heterocyclic group more preferably an alkyl group, an aromatic hydrocarbon group, and an aromatic heterocyclic group.
  • this substituent is particularly preferably an aromatic hydrocarbon group, specifically, a benzene ring, 1 derived from 6-membered monocycle or 2-5 condensed ring such as naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, taricene ring, triphenylene-ring, fluoranthene ring, etc. Or a monovalent group formed by linking a plurality of them (for example, biphenyl group, terphenyl group, etc.).
  • the substituents of Cz 1 and Cz 2 each preferably have a total molecular weight of 500 or less, more preferably 250 or less. Most preferably Cz 1 and Cz 2 are unsubstituted.
  • Z in the formula (I) represents a direct bond or an arbitrary linking group capable of conjugating nitrogen atoms of the carbazole rings each of Cz 1 and Cz 2 have.
  • an aromatic hydrocarbon group is preferred. Specifically, a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, A divalent linking group derived from a 6-membered monocyclic ring or a 2-5 condensed ring, such as a benzpyrene ring, a taricene ring, a triphenylene ring, a fluoranthene ring, or a combination of two or more of them.
  • Preferred examples include a valent linking group (for example, a biphenylene group, a terfenylene group, etc.).
  • Z is preferably a direct bond or a divalent linking group formed by linking 1 to 8 benzene rings such as a phenylene group, a biphenylene group, or a terylene diene group.
  • Z may have an optional substituent, and the substituent is preferably an alkyl group, an aromatic hydrocarbon group, an acyl group, an alkoxy group.
  • the substituent is preferably an alkyl group, an aromatic hydrocarbon group, an acyl group, an alkoxy group.
  • a hydrogen group and an aromatic heterocyclic group particularly preferably an aromatic hydrocarbon group, specifically, a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, and a pyrene ring.
  • Z preferably has a molecular weight of 1000 or less, more preferably 500 or less.
  • Z is particularly preferably a direct bond or one (Ph)-. Where Ph is a substituent
  • V-1, 2, 4-15, 17-21, 27, 28, 31-33 force is preferable, V-1, 1, 6, 9, 11-15, 31, 32 forces are more preferred, V—1, 7, 9, 13-15 forces S most preferred.
  • Q represents a direct bond connected to at least one G in the following formula (II).
  • the moiety represented by the formula (II) has a molecular weight of preferably 70 or more, more preferably 75 or more, preferably 1000 or less, more preferably 500 or less. If the lower limit is not reached, the aromaticity may be impaired. If the upper limit is exceeded, the vaporization temperature rises, making it difficult to form a film by the vapor deposition method, or the solubility decreases, which hinders the film formation by the wet method. It is not preferable because there is a risk of escaping.
  • ring B 1 may be a 6-membered aromatic heterocycle having n N atoms as heteroatoms. n represents an integer of 1 to 3. When the organic compound of the present invention has a plurality of rings B 1 in one molecule, these may be the same or different.
  • the formula (II) is particularly preferably represented by the following formulas (II 1) to (II 4).
  • the groups represented by the formula (11), particularly the formulas (II-1) to (11-4), are the parts mainly responsible for electron transport in the organic compound of the present invention, and are excellent in electric reduction. Characterized by durability.
  • the groups represented by any one of formulas (II 1) to (114) preferably have a non-conjugated relationship with each other in the molecule. May be included.
  • the desired electron transportability can be fully demonstrated with one, so the balance between hole transportability and electron transportability, heat resistance and vaporization required during deposition film formation, required during wet film formation In view of the solubility, stability in air (difficult to oxidize), and ease of high purity of the compound, one is preferable.
  • the 3,5-position of the pyridine ring may have a substituent.
  • This substituent is preferably an aryl group such as a phenyl group, a heteroaryl group such as a pyridyl group, or an alkyl group such as a methyl group.
  • the 3,5-positions are most preferably unsubstituted.
  • the pyrazine ring represented by the formula (II 2) can have durability against electroreduction by substitution at the 2, 3, 5, 6-positions.
  • the pyrimidine ring represented by the formula (II 3) can have durability against electrical reduction by substitution at the 2, 4, 6-positions.
  • the 5-position of the pyrimidine ring may have a substituent.
  • the substituent is preferably an aromatic hydrocarbon group such as a phenyl group, an aromatic heterocyclic group such as a pyridyl group, or an alkyl group such as a methyl group.
  • the 5-position is unsubstituted.
  • the triazine ring represented by the formula (II-4) can have durability against electric reduction by substitution at the 2, 4, 6-positions.
  • Ring B 1 is particularly preferably a pyridine ring represented by the above general formula (II-1), that is, n is 1, from the viewpoint of a high triplet excited level and excellent electrochemical stability. .
  • G represents a force representing a direct bond or an arbitrary linking group connected to Q, or! Represents an aromatic hydrocarbon group. G binds to the C atom in the ortho and para positions of the N atom in ring B 1 .
  • m is an integer of 3-5. A plurality of G present in one molecule may be the same or different.
  • G in the case of a direct bond or an arbitrary linking group leading to Q is a direct bond or a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring , Talycene ring, Triphenylene ring, Fluoranthene ring, etc.
  • Ph represents a phenyl group which may have a substituent.
  • P represents an integer of 1 to 8, preferably an integer of 1 to 2.
  • the molecular weight of G when it is connected to Q is preferably 1000 or less, and more preferably 500 or less. If this upper limit is exceeded, the aromaticity may be impaired, and if the upper limit is exceeded, the vaporization temperature rises, making it difficult to form a film by the vapor deposition method, or the solubility decreases and the wet method is used. It is not preferable because the film may be disturbed.
  • G When G is not connected to Q, it represents an aromatic hydrocarbon group.
  • G in the case of not being connected to Q may be an aromatic hydrocarbon group.
  • the molecular weight of G when not connected to Q is preferably 2000 or less, more preferably 1000 or less. If this upper limit is exceeded, the aromaticity may be impaired, and if the upper limit is exceeded, the vaporization temperature rises, making it difficult to form a film by the vapor deposition method, or the solubility is lowered, which hinders the film formation by the wet method. May occur, which is not preferable.
  • G may have an optional substituent.
  • the substituent is preferably an alkyl group, an aromatic hydrocarbon group, an acyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkoxycarbon group, an aryloxycarbon group, a halogen atom,
  • An arylamino group, an alkylamino group, and an aromatic heterocyclic group more preferably an alkyl group, an aromatic hydrocarbon group, and an aromatic heterocyclic group, and particularly preferably an unsubstituted or aromatic hydrocarbon group, specifically Benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, pyrene, benzpyrene, taricene,
  • the molecular weight of the organic compound of the present invention is usually 4000 or less, preferably 3000 or less, more preferably 2000 or less, and usually 200 or more, preferably 300 or more, more preferably 400 or more.
  • the molecular weight of the organic compound of the present invention exceeds this upper limit, the sublimation property is significantly reduced, which may cause problems when using an evaporation method when producing an electroluminescent device, or may be purified by the high molecular weight of impurities. If the lower limit is not reached, the glass transition temperature, the melting point, the vaporization temperature, and the like are lowered, which may significantly impair the heat resistance.
  • the organic compound of the present invention usually has a glass transition temperature of 50 ° C. or higher.
  • the glass transition temperature may be 90 ° C. or higher from the viewpoint of heat resistance. It is more preferable that the temperature is 110 ° C or higher.
  • the upper limit of the glass transition temperature is usually around 400 ° C.
  • the organic compound of the present invention usually has a vaporization temperature of 800 ° C. or lower under normal pressure, but when used in an organic electroluminescent device, the vaporization temperature is 700 from the viewpoint of the stability of the vapor deposition process. It is preferable that the temperature is not higher than ° C. It is further preferable that the temperature is not higher than 600 ° C. The lower limit of vaporization temperature is usually about 300 ° C.
  • the organic compound of the present invention usually has a melting point of 100 ° C. or higher, but when used in an organic electroluminescent device, the melting point is preferably 150 ° C. or higher from the viewpoint of heat resistance. More preferably, it is C or more.
  • the upper limit of the melting point is usually about 500 ° C.
  • the organic compound of the present invention represented by the above formula (I) has a structure represented by the following formula (III), particularly from the viewpoint of a high triplet excited level and excellent electrochemical stability. preferable.
  • G, Q and Z are respectively synonymous with those in the formula (I).
  • Ring C 1 represents a pyridine ring, and may have a substituent at the 3-position and Z-position or 5-position.
  • Cz may have a substituent! /, But may represent a force rubazolyl group.
  • a to c each represent the number of Cz, and each independently represents 0 or an integer of 2 to 5. When a to c are 0, there is no Q and Z leading to Cz where a to c are 0. If there are multiple Cz's in a molecule, these may be the same or different.
  • G, Q and Z are combined, and p is preferably 2 or more, more preferably 4 or less.
  • Cz include those described in Cz 1 and Cz 2 above.
  • a to c are each independently preferably 0, 2 or 4, more preferably 0 or 2, more preferably 2, i.e. only Cz 1 and Cz 2. preferable.
  • X a and X e are each independently a monovalent group selected from the above V— 1 to 34, and X b is a monovalent group selected from the following W— 1-37: And ring C 1 has the same meaning as in formula (III).
  • Ph in W-27 and W-28 represents a phenol group.
  • W-34 W-35 W- 36 W-3 ⁇ 47 the general formula (IV- 1) me Te, electrical point Ya high redox resistance, a triplet excited Engineering Nenoregi one force et al, X a, X c f or each independently, V- 1, 2, 4 to 15, 17 to 21, preferably from 27, 28, 31 to 33 force, V- 1, 6 ⁇ 9, 11 ⁇ : 15, 31, 32 force S is more preferable, and V-1, 7-9 and 13-15 are most preferable.
  • X b is preferably W-1 to 3, 6, 8, 10, 11, 20, 29, 31, 32, 34 to 37, more preferably from the viewpoint of electrical redox resistance.
  • ⁇ ⁇ , X e, X f are each independently a monovalent group selected from the V- 1 to 34, the ring C 1 has the same meaning as in formula (III).
  • Ring D 1 is a phenylene linking group that connects rings C 1 and X e .
  • X d , X e , and X f are each independently, preferably V— 1 to 6, 8 from the viewpoint of electrical redox resistance. , 9, 12, 13, 16-22, 24, 27, 28, more preferably V—1, 2, 3, 5, 6, 12, and most preferably V—1, 2, 5 is there.
  • the coupling position of the ring C 1 is defined as the 1-position ring D 1
  • the binding position of X e may be either of 2 ⁇ 6- position ring D 1
  • the electrical redox resistance From the viewpoint, it is preferably the 3rd to 5th position, more preferably the 4th position.
  • X g , X h and X 1 are each independently a monovalent group selected from the above V—1 to 34, and ring C 1 has the same meaning as in formula (III).
  • X s , X h , and X 1 are preferably each independently, preferably V-1, 2, 4-15, 17-21 , 27, 28, 31 to 33, more preferably V—1, 6 to 9, 11 to 15, 31, 32, and most preferably V—1, 7 to 9, 13 to 15.
  • N—Cz is an N force rubazolyl group.
  • the organic compound of the present invention can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
  • the aldehyde ( Ra- CHO) used in the above synthesis method can be easily obtained by the following methods i) to xiii) if necessary. Synthesized Is possible.
  • halogenated compounds R a — X
  • hydrocarbon compounds having active hydrogen atoms Rail
  • alkyl lithium such as butyl lithium, sodium hydride, triethylamine, tert-butoxy potassium
  • sodium hydroxide After treatment with a strong base (preferably alkyllithium such as butyllithium), followed by treatment with N, N dimethylformamide (Organic & Biomolecular Chemistry (2003) l, 7, 1157-1170; Tetrahedron Lett.42 (2001 ) 37, 6589-6592)
  • Ar-CH group (Ar is an aromatic ring group) via Ar—CH Br, Ar—CH OCH COO
  • ketones (R e — CO— CH— R b ) used in the above synthesis method are usually available
  • R c -CO R groups where R is a hydrogen atom, a chlorine atom, an alkyl group, an aromatic ring group, an amino group
  • a benzoin-type intermediate is synthesized from an ⁇ -diketone (Journal luer Praklische Chemie (Leipzig) (1962) 16, 1-7) and from an aryl ester (Tetrahedron Lett. (1980) 21, 222-2228). Ammonia or ammonium acetate Org.Chem. (1937) 2,32 8-; Bull.Soc.Chim.Fr. (1968) 4970-; Helvetica ChimicaActa (1985) 68 (3), 592-599 ; CR Seances Acad.Sci.'Ser C. (1966) 263,1156-)
  • (2-c) a method obtained by reacting ammonia or ammonium acetate with a-haloketone (Japanese Patent Laid-Open No. 03-048666)
  • Heterocyclic Chemistry Fundamentals (2002, Kunieda et al., Chemical Dojinsha), rHeterocyclic Chemistry (4th edition, 2000, JAJoule and K. Millsill Blackwell Science), “New edition heterocycles” “Basics and Applications of Compounds” (2004, Hiroshi Yamanaka et al., Kodansha), “Bolhardt Shoichi Ippai Organic Chemistry” (2004, KPCVollhardt, Kagaku Dojinsha), etc. You can also use the method.
  • Ar ′ represents an arylene group, heteroarylene group, or unsaturated hydrocarbon group which may have an arbitrary substituent (halogen atom, aryl group, heteroaryl group, etc.), and is the same. May be different)
  • X represents any of fluorine, chlorine, bromine and iodine
  • Ar represents an arylene group or heteroarylene group which may have an arbitrary substituent (such as a halogen atom, aryl group, heteroaryl group, etc.) Or represents an unsaturated hydrocarbon group, which may be the same or different)
  • halogenated aromatic boron compounds such as fluorophenylboronic acid, difluorophenylboronic acid, fluorobiphenyl boronic acid ester, pentafluorophenyl boronic acid (halogen described later) Dibromofluorbenzene, jodobenzene, tribromobenzene, trichlorotriazine, jodbiphenyl, and other aromatic 2 or 3 substituted norogenated compounds.
  • DOO tetrakis (bird whistle - Rufosufin) palladium catalyst 0.1 to 10 mole 0/0 extent
  • the base the halogen atom of the halide, such as sodium carbonate
  • toluene ethanol, toluene-water, tetrahydrofuran, dioxane, dimethoxy Fluorine atoms by heating and refluxing in an inert gas atmosphere for 5 to 24 hours in a shetan, N, N dimethylformamide, or a mixed solvent system thereof (the boronic acid concentration is about 1 to 1000 mmol%).
  • the boronic acid concentration is about 1 to 1000 mmol%).
  • a substituted or unsubstituted force rubazole (about 1.1 to 10 equivalents relative to the fluorine atom on the basic skeleton having the fluorine atom as a substituent) in a dry gas atmosphere and Z or Strong bases such as sodium hydride, tert-butoxypotassium, and n-butyllithium in a temperature range of 78 to + 60 ° C in a solvent such as tetrahydrofuran, dioxane, ether, N, N dimethylformamide under an inert gas atmosphere ( The azolyte compound (described later, about 0.9 to 2 equivalents to hydrogen on N) and stirred for 0.1 to 60 hours, and the basic skeleton having a fluorine atom as a substituent obtained earlier
  • the organic compound of the present invention can be obtained by mixing a solution such as tetrahydrofuran, dioxane, ether, N, N dimethylformamide and the like and stirring under heating to reflux for 1 to
  • Any zero-valent palladium complex or palladium chloride complex such as PdCl (dppf)
  • Catalyst (usually 0.01 to about 1 equivalent to 1 equivalent of bromine atom or Z and chlorine atom on the basic skeleton having a bromine atom or Z and chlorine atom as a substituent), and tert if necessary -In the presence of strong bases such as butoxy potassium, tert-butoxy sodium, potassium carbonate, triethylamine (usually 1.1 to 10 equivalents to 1 equivalent of halogenated hydrogen which can be produced in the reaction) as necessary
  • a copper catalyst such as copper iodide (usually 1 to 10 equivalents to 1 equivalent of halogenohydrogen that can be produced in the reaction), tetrahydrofuran, dioxane, dimethoxyethane, N, N-dimethylformamide, dimethyl sulfoxide, Solvents such as xylene, toluene, triethylamine, etc. (usually 0.1 to about L00 mmol% at the concentration of the basic skeleton having the bromine atom or Z and
  • solvent that can be used for the reaction examples include aromatic solvents such as toluene, xylene, and nitrobenzene, and ether solvents such as tetrahydrofuran, etrenglycol dimethyl ether, and tetraglyme.
  • Compound purification methods include “Separation and purification technology, ND book” (1993, edited by Japan Chemical Society), “Advanced separation of trace components and difficult-to-purify substances by chemical conversion method” ( 1988, published by IPC Co., Ltd.) or the method described in the section “Separation and purification” in “Experimental Chemistry Course (4th edition) 1” (1990, edited by the Chemical Society of Japan) In the beginning, well-known techniques can be used.
  • extraction including suspension washing, boiling washing, ultrasonic washing, acid-base washing), adsorption, occlusion, melting, crystallization (including solvent-based recrystallization and reprecipitation), distillation (ordinary) (Pressure distillation, vacuum distillation), evaporation, sublimation (atmospheric pressure sublimation, vacuum sublimation), ion exchange, dialysis, filtration, ultrafiltration, reverse osmosis, pressure osmosis, zone lysis, electrophoresis, centrifugation, flotation separation, sedimentation Separation, magnetic separation, various chromatographies (shape classification: column, paper, thin layer, chirality. Mobile phase classification: gas, liquid, micelle, supercritical fluid. Separation mechanism: adsorption, distribution, ion exchange, molecular sieve, chelate , Gel filtration, exclusion, end-of-life, etc.).
  • the organic compound of the present invention can be used as a charge transport material.
  • the charge transport material of the present invention may contain the organic compound of the present invention, but it is usually preferred that the charge transport material also has the power of the organic compound of the present invention.
  • the organic electroluminescent element of the present invention is an organic electroluminescent element having an organic light emitting layer provided between an anode, a cathode, and both electrodes on a substrate, and a layer containing the organic compound of the present invention.
  • the organic compound of the present invention is preferably contained in the organic light emitting layer, and particularly preferably in the organic light emitting layer, the organic compound of the present invention is used as a host material, and an organometallic complex is formed on the host material. Doped.
  • organic compound of the present invention When used as a host material for the organic light emitting layer of the organic electroluminescent device, one kind may be used alone, or two or more kinds may be used in combination.
  • 1 to 4 are sectional views schematically showing structural examples of the organic electroluminescent device of the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer (anode buffer layer), and 4 is a hole transport Layer, 5 is organic An optical layer (hereinafter sometimes referred to as a light emitting layer), 6 represents a hole blocking layer, 7 represents an electron transport layer, and 8 represents a cathode.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer (anode buffer layer)
  • 4 is a hole transport Layer
  • 5 is organic An optical layer (hereinafter sometimes referred to as a light emitting layer)
  • 6 represents a hole blocking layer
  • 7 represents an electron transport layer
  • 8 represents a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent element, and quartz or glass plates, metal plates or metal foils, plastic films or sheets, etc. are used. In particular, glass plates and transparent synthetic resin plates or films such as polyester, polymetatalylate, polycarbonate and polysulfone are preferred.
  • a synthetic resin substrate it is necessary to pay attention to gas noria. If the substrate is too small in gas nature, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of securing a gas noria property by providing a dense silicon oxide film or the like on at least one surface of a synthetic resin substrate is also a preferable method.
  • An anode 2 is provided on the substrate 1.
  • the anode 2 plays the role of hole injection into the hole transport layer 4.
  • Anode 2 is usually made of metal such as aluminum, gold, silver, nickel, iron ⁇ radium, platinum, metal oxide such as indium and Z or tin, metal halide such as copper iodide, It is composed of carbon black or a conductive polymer such as poly ( 3 -methylthiophene), polypyrrole, polyarine.
  • the anode 2 is usually formed by sputtering or vacuum deposition.
  • anode 2 when the anode 2 is formed of metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., an appropriate binder is used. It can also be formed by dispersing in a fat solution and coating on the substrate 1. Further, when the anode 2 is formed with a conductive polymer, a polymerized thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the conductive polymer can be formed on the substrate 1 by coating. (Appl. Phys. Lett., 60, 2711, 1992).
  • Anode 2 usually has a single-layer structure, but if desired, it should have a laminated structure with multiple material forces.
  • the thickness of the anode 2 varies depending on the required transparency. Yes, if transparency is required
  • the transmittance of visible light is usually 60% or more, preferably 80% or more.
  • the thickness of the anode is usually 5 nm or more, preferably lOnm or more, and usually lOOOnm or less, preferably about 500 nm or less.
  • the thickness of the anode 2 is arbitrary, and if desired, it may be formed of metal to serve as the substrate 1.
  • a hole transport layer 4 is provided on the anode 2.
  • the conditions required for the material of the hole transport layer are that the hole injection efficiency from the anode 2 is high and the material can efficiently transport the injected holes. To that end, it is highly transparent to visible light with a small ionic potential, and has a large hole mobility and excellent stability, and trapping impurities are generated during manufacturing and use. It is required to be difficult to do. Further, it is required that the light emission from the light emitting layer 5 is not quenched in order to be in contact with the light emitting layer 5 or the efficiency is not lowered by forming an exciplex with the light emitting layer 5. In addition to the above general requirements, when considering applications for in-vehicle display, the element is further required to have heat resistance. Therefore, a material having a glass transition temperature of 85 ° C or higher is desirable.
  • a hole transporting material as in the hole transporting material used for the host material of the light-emitting layer 5, 4, 4, bis [N— (1-naphthyl) -N ferroamino ] Aromatic diamines containing two or more tertiary amines represented by biphenyl, wherein two or more condensed aromatic rings are substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234681), 4, 4, 4 "Atris amine compounds having a starburst structure such as tris (1-naphthylphenolamino) triphenylamine (J.
  • the material for the hole transport layer 4 contains polyvinylcarbazole, polyvinyltriphenylamine (Japanese Patent Laid-Open No. 7-53953), and tetraphenylpentidine.
  • Polyarylene ether sulfone Polym. Adv. Tech., 7 ⁇ , p. 33, 199
  • the hole transport layer 4 is formed by a wet film formation method such as a normal coating method such as a spray method, a printing method, a spin coating method, a dip coating method, or a die coating method, or various printing methods such as an ink jet method or a screen printing method. Alternatively, it can be formed by a dry film forming method such as a vacuum evaporation method.
  • a wet film formation method such as a normal coating method such as a spray method, a printing method, a spin coating method, a dip coating method, or a die coating method, or various printing methods such as an ink jet method or a screen printing method.
  • a dry film forming method such as a vacuum evaporation method.
  • a coating solution is prepared by dissolving in an appropriate solvent, applied onto the anode 2 by a method such as spin coating, and dried to form the hole transport layer 4.
  • Noinda rosin include polycarbonate, polyarylate, and polyester.
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably lOnm or more, and usually 30 Onm or less, preferably lOOnm or less. In order to form such a thin film uniformly, a vacuum deposition method is generally used.
  • a light emitting layer 5 is provided on the hole transport layer 4.
  • the light-emitting layer 5 is formed between the electrodes to which an electric field is applied, between holes injected from the anode 2 and moving through the hole transport layer 4 and electrons injected from the cathode and transferred through the hole blocking layer 6. It is formed by a luminescent material that emits strong light when excited by a bond.
  • the light emitting layer 5 contains a dopant material and a host material which are light emitting substances.
  • a material contained in the light emitting layer such as a dopant material or a host material is referred to as a light emitting layer material.
  • the light-emitting layer material used for the light-emitting layer 5 has a stable thin-film shape, exhibits high V in the solid state, exhibits a light emission (fluorescence or phosphorescence) quantum yield, and efficiently uses holes and Z or electrons. transport It is necessary for the compound to be able to. Furthermore, it is required to be a compound that is electrochemically and chemically stable, and does not easily generate trapping impurities during production or use.
  • the first oxidation potential of the hole blocking material is higher than the first oxidation potential obtained through cyclic voltammetry measurement.
  • the oxidation or reduction potential of the light emitting layer material is the oxidation or reduction potential of the host material.
  • Materials that satisfy the above conditions and form a light emitting layer that emits fluorescence include metal complexes such as aluminum complexes of 8 hydroxyquinoline (JP 59-194393 A), 10-hydroxybenzo [h] Metal complexes of quinoline (JP-A-6-322362), bisstyryl benzene derivatives (JP-A-1-245087, JP-A-2-222484), bisstyryl arylene derivatives (JP-A-2-247278), (2 hydroxyphenol) -L) benzothiazole metal complexes (Japanese Patent Laid-Open No. 8-315983), silole derivatives, and the like.
  • These light emitting layer materials are usually laminated on the hole transport layer by a vacuum deposition method.
  • an aromatic amine compound having a light-emitting property can also be used as the light-emitting layer material.
  • a fluorescent dye for lasers such as coumarin with an aluminum complex of 8-hydroxyquinoline as a host material
  • This doping method can also be applied to the light emitting layer 5, and various fluorescent dyes can be used as a doping material in addition to coumarin.
  • fluorescent dyes that emit blue light include perylene, pyrene, anthracene, coumarin, and derivatives thereof.
  • the green fluorescent dye include quinacridone derivatives and coumarin derivatives.
  • yellow fluorescent dyes include rubrene and perimidone derivatives.
  • red fluorescent dyes DCM compounds Benzopyran derivatives, rhodamine derivatives, benzothixanthene derivatives, azabenzothixanthene and the like.
  • the amount of the fluorescent dye is doped into the host material is preferably 10-3% by weight or more, 0.1 wt% or more is more preferable. Also, 10% by weight or less is preferable, and 3% by weight or less is more preferable. Below this lower limit, it may not be possible to contribute to improving the luminous efficiency of the device. When the upper limit is exceeded, concentration quenching may occur, leading to a decrease in luminous efficiency.
  • the organic compound of the present invention has both a portion mainly responsible for hole transport as described above and a portion mainly responsible for electron transport, and therefore has excellent hole transportability and electron transportability.
  • the organic compound is suitable as a host material for the organic light emitting layer of the organic electroluminescent device because it has excellent electrical redox durability and high triplet excitation level. Therefore, the organic light-emitting layer of the organic electroluminescent device of the present invention comprises the organic compound of the present invention as a host material, and the host material is doped with an organometallic complex suitable as a light-emitting substance for the reasons described later. I prefer that.
  • the dopant material used for the light emitting layer is preferably a periodic table 7!
  • examples include organometallic complexes containing metals selected from Group 11.
  • the T1 (excited triplet level) of the metal complex is preferably higher than T1 of the organic compound of the present invention used as a host material from the viewpoint of luminous efficiency. Further, since the dopant material emits light, chemical stabilization such as redox is required.
  • the metal is preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. It is done.
  • Preferred examples of these organometallic complexes include compounds represented by the following general formula (V) or general formula (VI).
  • M represents a metal
  • k represents the valence of the metal
  • L and L ′ represent a bidentate ligand
  • j represents 0, 1 or 2.
  • M 7 represents a metal
  • T represents carbon or nitrogen.
  • R W and R 15 are not present.
  • R 15 is a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkyl group, a cyan group, an amino group, an acyl group.
  • R 12 and R 13 are a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, an alkoxy group, an alkylamino group, an aralkylamino group.
  • the bidentate ligands L and L 'in the general formula (V) each represent a ligand having the following partial structure.
  • Ring El and Ring El ′ each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group, and may have a substituent.
  • Ring E2 and ring E2 ′ represent nitrogen-containing aromatic heterocyclic groups
  • R 21 , R 22 and R 23 are each a halogen atom; an alkyl group; an alkyl group; an alkoxycarbo group; a methoxy group; an alkoxy group; an aryloxy group; a dialkylamino group; a diarylamino group; a carbazolyl group; Represents a haloalkyl group or a cyano group.
  • the compound represented by the general formula (V) is more preferably a compound represented by the following general formula (Va), (Vb) (Vc).
  • M 4 represents a metal
  • k represents a valence of the metal
  • Ring E1 represents an aromatic hydrocarbon group which may have a substituent
  • ring E2 has a substituent and may represent a nitrogen-containing aromatic heterocyclic group.
  • M 5 represents a metal
  • k represents the valence of the metal.
  • Ring E1 represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group
  • Ring E2 has a substituent, but may represent a nitrogen-containing aromatic heterocyclic group .
  • M 6 represents a metal
  • k represents a valence of the metal
  • j represents 0, 1 or 2.
  • Ring E1 and Ring E1 ′ each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group
  • Ring E2 and Ring E2 ′ each independently have a substituent. Represents a nitrogen-containing aromatic heterocyclic group which may be substituted.
  • the ring El and the ring El 'of the compound represented by the general formula (Va), (Vb), (Vc) are preferably a vinyl group, a biphenyl group, a naphthyl group, an anthryl group, Examples include a chayl group, a furyl group, a benzochenyl group, a benzofuryl group, a pyridyl group, a quinolyl group, an isoquinolyl group, and a carbazolyl group.
  • a pyridyl group, a pyrimidyl group, a bilazyl group, and tria are preferable.
  • examples thereof include a dil group, a benzothiazole group, a benzoxazole group, a benzimidazole group, a quinolyl group, an isoquinolyl group, a quinoxalyl group, and a phanthridyl group.
  • the compounds represented by the general formulas (Va), (Vb) and (Vc) may have a halogen atom such as a fluorine atom as a substituent; carbon such as a methyl group or an ethyl group; An alkyl group having 1 to 6 carbon atoms; an alkyl group having 2 to 6 carbon atoms such as a bur group; an alkoxycarbonyl group having 2 to 6 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group; a carbon such as a methoxy group and an ethoxy group; Alkoxy groups having 1 to 6 primes; aryloxy groups such as phenoxy groups and benzyloxy groups; dialkylamino groups such as dimethylamino groups and jetylamino groups; diarylamino groups such as diphenylamino groups; carbazolyl groups; acyl groups such as acetyl groups; A haloalkyl group such as a fluorine
  • the substituents of ring El, ring El ', ring E2 and ring E2' are more preferably an alkyl group, alkoxy group, aromatic hydrocarbon group, cyano group, halogen atom, haloalkyl group, diarylamino group, Or a carbazolyl group is mentioned.
  • M 4 ! And M 5 are preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold.
  • M 7 in the formula (VI) is preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold, and particularly preferably a divalent metal such as platinum or palladium. .
  • organometallic complex represented by the general formulas (V), (Va), (Vb) and (Vc) are shown below, but are not limited to the following compounds.
  • a 2-arylpyridine-based coordination is particularly used as the ligands L and Z or L '.
  • a compound having a ligand (2-arylpyridine, one having an arbitrary substituent bonded thereto, or one having an arbitrary group condensed thereto) is preferred.
  • organometallic complex represented by the general formula (VI) are shown below, but are not limited to the following compounds (in the following, Me is a methyl group, Et is an ethyl group). Show.)
  • the following compounds may be used as the phosphorescent organometallic complex containing a metal selected from Groups 7 to 11 of the periodic table.
  • the molecular weight of such a phosphorescent dopant material is usually 4000 or less, preferably 3000 or less. Below, more preferably 2000 or less, and usually 200 or more, preferably 300 or more, more preferably 400 or more. If the molecular weight exceeds this upper limit, the sublimation property is significantly reduced, which may cause problems when using an evaporation method when producing an electroluminescent device, or decrease the solubility in an organic solvent, or the synthesis process.
  • the heat resistance may be significantly impaired.
  • the acid / potential of the hole blocking material in the hole blocking layer has the highest acid / potential of the plurality of types of dopant materials. Prefers to be larger than the others.
  • the host material used in the light emitting layer exhibiting phosphorescence using such an organometallic complex as a dopant material two or more kinds of organic compounds of the present invention may be used alone. May be used in combination.
  • the above-described materials including aromatic amine compounds
  • the above-described materials as a host material used for a light-emitting layer exhibiting fluorescence emission
  • 4,4′-N, N′-dicarbazole vinyl Force rubazole derivatives such as ferrule (WO 00Z70655 publication), tris (8-hydroxyquinoline) aluminum (USP 6,303, 238 publication), 2, 2 ', 2 "-(1, 3, 5— 1 type such as benzenetolyl) tris [1-phenol-1H-benzimidazole] (Appl.
  • the light emitting layer contains a host material other than the organic compound of the present invention, the content thereof may be 50% by weight or less based on the organic compound of the present invention. Is preferred.
  • the amount of the organometallic complex contained as a dopant material in the light emitting layer is preferably 0.1% by weight or more, and more preferably 30% by weight or less. If the lower limit is not reached, it may not be possible to contribute to the improvement of the luminous efficiency of the device. If the upper limit is exceeded, concentration quenching occurs due to the formation of dimers between organometallic complexes, etc., leading to a decrease in luminous efficiency. there is a possibility.
  • the amount of the dopant material in the light-emitting layer exhibiting phosphorescence is preferably slightly larger than the amount of the fluorescent dye contained in the light-emitting layer in a conventional device using fluorescence (singlet). Tend. Further, a fluorescent dye is contained in the light emitting layer together with the phosphorescent dopant material. In this case, the amount of the fluorescent dye is preferably 0.05% by weight or more, more preferably 0.1% by weight or more. Also, 10% by weight or less is preferable, and 3% by weight or less is more preferable.
  • the thickness of the light-emitting layer 5 is usually 3 nm or more, preferably 5 nm or more, and is usually 200 nm or less, preferably lOO nm or less.
  • the light emitting layer 5 can also be formed in the same manner as the hole transport layer 4.
  • the organic compound of the present invention a dopant material, and if necessary, an electron trap or a light quenching quenching agent.
  • a coating solution in which an additive such as is added is prepared, applied onto the hole transport layer 4 by a method such as spin coating, and dried to form the light emitting layer 5.
  • the Norder resin include polycarbonate, polyarylate, and polyester. If the binder resin is added in a large amount, the hole Z electron mobility is lowered. Therefore, the content in the light emitting layer is preferably less than 50% by weight.
  • the organic compound of the present invention is put in a crucible installed in a vacuum vessel, the dopant material is put in another crucible, and the inside of the vacuum vessel is about 10-4 Pa with an appropriate vacuum pump. After being evacuated, each crucible is heated and evaporated simultaneously to form a layer on the substrate placed facing the crucible. As another method, the above-mentioned materials previously mixed at a predetermined ratio may be evaporated using the same crucible.
  • each of the above dopant materials is doped in the light emitting layer 5, it is uniformly doped in the film thickness direction of the light emitting layer, but there may be a concentration distribution in the film thickness direction.
  • it may be doped only in the vicinity of the interface with the hole transport layer 4, or conversely, it may be doped in the vicinity of the interface of the hole blocking layer 6.
  • the light-emitting layer 5 can also be formed by the same method as the hole transport layer 4, but a vacuum deposition method is usually used.
  • the light emitting layer 5 may contain components other than those described above as long as the performance of the present invention is not impaired. [0202] Hole blocking layer
  • the hole blocking layer 6 is laminated on the light emitting layer 5 so as to be in contact with the cathode side interface of the light emitting layer 5.
  • the hole blocking layer 6 can block the holes moving from the hole transport layer 4 from reaching the cathode 8, and efficiently emit electrons injected from the cathode 8. It is preferably formed from a compound that can be transported in the direction of 5. Therefore, the physical properties required for the material constituting the hole blocking layer 6 are required to have high electron mobility and low hole mobility.
  • the hole blocking layer 6 has a function of confining holes and electrons in the light emitting layer 5 and improving luminous efficiency.
  • the ionic potential of the hole blocking layer 6 provided in the organic electroluminescent device of the present invention is the ionic potential of the luminescent layer 5 (the luminescent layer 5 contains a host material and a dopant material).
  • the value is 0. leV or more than the ionic potential of the host material.
  • the ionic potential is defined as the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of a material to the vacuum level.
  • the ionization potential can be defined directly by photoelectron spectroscopy or can be determined by correcting the electrochemically measured oxidation potential relative to the reference electrode. In the case of the latter method, for example, when a saturated sweet potato electrode (SCE) is used as a reference electrode, it is defined by the following equation ("Molecular Semiconductors,, Springer-Verlag, 1985, p. 98).
  • Ionization potential oxidation potential (vs. SCE) + 4.3 eV
  • the electron affinity (EA) of the hole blocking layer 6 provided in the organic electroluminescence device of the present invention is equal to the electron affinity of the light emitting layer 5 (when the light emitting layer 5 contains a host material and a dopant material). Is preferably equal to or higher than the electron affinity of the host material.
  • the electron affinity is also defined by the energy at which the electrons in the vacuum level fall to the LUMO (lowest empty molecular orbital) level of the material and stabilize, with the vacuum level as the reference, like the ion potential.
  • the electron affinity can be obtained in the same way from the force obtained by subtracting the ionic potential force optical band gap described above from the electrochemical reduction potential.
  • Electron affinity reduction potential (vs. SCE) + 4.3 eV
  • the hole blocking layer 6 provided in the organic electroluminescent element of the present invention has an oxidation potential and a return potential. Using the original potential,
  • the electron affinity of the hole blocking layer 6 is preferably equal to or less than that of the electron transport layer 7. Therefore, (reduction potential of electron transport material) ⁇ (reduction potential of hole blocking material) ⁇ (reduction potential of light emitting layer material)
  • the light-emitting layer 5 contains a host material and a dopant material, use the host material with the lowest reduction potential for comparison.
  • a mixed ligand complex represented by the following general formula (VII) is preferably used.
  • R 1Q1 to R 1Q ° each independently represents a hydrogen atom or an arbitrary substituent.
  • M 8 represents a metal atom selected from aluminum, gallium, and indium.
  • L 5 is represented by any one of the following general formulas (Vila), (VIIb), and (VIIc).
  • Ar 51 to Ar 55 are each an aromatic hydrocarbon Motoma other be substituted independently good have been! / ⁇ substituents! Represents an aromatic heterocyclic group, and Z 3 represents silicon or germanium.
  • R1Q1 to R1Q6 each independently represents a hydrogen atom or an arbitrary substituent, preferably a hydrogen atom; a halogen atom such as chlorine or bromine; a methyl group; An alkyl group having 1 to 6 carbon atoms such as an ethyl group; an aralkyl group such as a benzyl group; an alkyl group having 2 to 6 carbon atoms such as a vinyl group; a cyan group; an amino group; an acyl group; a methoxy group, an ethoxy group, etc.
  • Examples of the substituent that the aromatic hydrocarbon group and aromatic heterocyclic group may have include: a halogen atom such as a fluorine atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; a vinyl group and the like C 2-6 alkenyl group; methoxycarbol group, ethoxycarbol group, etc., C2-C6 alkoxycarboro group; methoxy group, ethoxy group, etc.
  • a halogen atom such as a fluorine atom
  • an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group
  • a vinyl group and the like C 2-6 alkenyl group methoxycarbol group, ethoxycarbol group, etc., C2-C6 alkoxycarboro group
  • Alkoxy groups aryloxy groups such as phenoxy groups and benzyloxy groups; dimethylamino And dialkylamino groups such as cetylamino groups; acyl groups such as acetyl groups; haloalkyl groups such as trifluoromethyl groups;
  • R 1Q1 to R 1Q6 are more preferably each independently a hydrogen atom, an alkyl group, a halogen atom, or a cyan group.
  • R 1M is particularly preferably a cyan group.
  • Ar 51 to Ar 55 are specifically each independently a phenyl group or biphenyl which may have a substituent.
  • An aromatic hydrocarbon group such as a naphthyl group or an aromatic heterocyclic group such as a chenyl group or a pyridyl group.
  • the hole blocking material has at least one 1, 2, 4 triazole ring residue represented by the following structural formula Use compounds.
  • Examples of the hole blocking material further include a compound having at least one phenant ring phosphorus ring represented by the following structural formula.
  • the hole blocking material it is also preferable to use a compound having a pyridine ring having a substituent at the 2, 4, 6-position in one molecule.
  • a compound having a pyridine ring having a substituent at the 2, 4, 6-position in one molecule include the following.
  • the thickness of the hole blocking layer 6 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 10 nm or less, preferably 50 nm or less.
  • the hole blocking layer can also be formed in the same manner as the 6 hole transporting layer 4, but usually in a vacuum. A vapor deposition method is used.
  • the organic compound used in the present invention is excellent as a host material for the light emitting layer of the organic electroluminescent device. As shown in the examples described later, in the present invention, a hole blocking layer is used. Even if it is not provided, sufficiently good characteristics can be obtained.
  • the cathode 8 serves to inject electrons into the light emitting layer 5 through the hole blocking layer 6.
  • the material used for the cathode 8 can use the material used for the anode 2.
  • tin, magnesium, indium, calcium which are preferred for metals having a low work function
  • a suitable metal such as cesium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium silver alloy, magnesium indium alloy, and aluminum lithium alloy.
  • the film thickness of the cathode 8 is usually the same as that of the anode 2.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • LiF, MgF, Li 2 O, etc. at the interface between the cathode 8 and the light emitting layer 5 or the electron transport layer 7 described later LiF, MgF, Li 2 O, etc. at the interface between the cathode 8 and the light emitting layer 5 or the electron transport layer 7 described later
  • Inserting 22 ultra-thin insulating film (0.1-5 nm) is also an effective method for improving the efficiency of the device (Appl. Phys. Lett., 70, 152, 1997; 10-74586, IEEE Trans. Electron. Devices, 44 ⁇ , 1245, 1997).
  • an electron transport layer 7 is provided between the hole blocking layer 6 and the cathode 8 as shown in FIGS.
  • the electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 8 between the electrodes to which an electric field is applied in the direction of the hole blocking layer 6.
  • Materials satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP 59-194393 A), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyryl biphenol. -Derivative, silole derivative, 3- or 5-hydroxyflavone metal complex, benzoxazole metal complex, benzothiol Azole metal complex, tris-benzimidazolylbenzene (US Pat. No.
  • quinoxaline compound JP-A-6-207169
  • phenantorin derivative JP-A-5-331459
  • 2- Examples include t-butynole 9,10-N, N, -disyananoanthraquinone diamine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, and n-type selenium-zinc.
  • the above electron transport material is doped with an alkali metal (Japanese Patent Laid-Open No. 10-2701).
  • the electron affinity of the hole blocking layer 6 is preferably equal to or less than the electron affinity of the electron transport layer 7.
  • the reduction potential of the light-emitting layer material in the light-emitting layer 5, the hole-blocking material in the hole-blocking layer 6, and the electron transport material used in the electron-transporting layer satisfies the following relationship to adjust the light-emitting region.
  • the viewpoint power of adjusting and lowering the driving voltage is also preferable.
  • the one having the lowest reduction potential is used for comparison.
  • the light emitting layer 5 contains a host material and a dopant material, the host material having the lowest reduction potential is used for comparison.
  • the hole blocking material described above may be used for the electron transport layer 7.
  • the above-described hole blocking material may be used alone to form the electron transport layer 7, or a plurality of them may be used in combination.
  • the thickness of the electron transport layer 6 is usually 5 nm or more, preferably 10 nm or more, and usually 20 nm.
  • Onm or less preferably lOOnm or less.
  • the electron transport layer 7 is formed by laminating on the hole blocking layer 6 by a coating method or a vacuum deposition method in the same manner as the hole transport layer 4, but a vacuum deposition method is usually used. .
  • the hole blocking layer 6 may be omitted, and the electron transport layer 7 may be provided between the light emitting layer 5 and the cathode 8.
  • the hole injection layer 3 is also inserted.
  • the driving voltage of the initial element is lowered, and at the same time, an increase in voltage when the element is continuously driven at a constant current is suppressed.
  • the conditions required for the material used for the hole injection layer 3 include that the contact with the anode 2 is good, a uniform thin film can be formed, and that the material is thermally stable.
  • the melting point at which the temperature is high is preferably 300 ° C or higher, and the glass transition temperature is preferably 100 ° C or higher. Furthermore, it is mentioned that the ion mobility is low and the hole injection from the anode 2 is easy, and the hole mobility is high.
  • porphyrin derivatives such as phthalocyanine compounds (JP-A 63-295695), hydrazone compounds, alkoxy-substituted materials have been used as materials for the hole injection layer 3 so far.
  • Aromatic diamine derivatives p- (9-anthryl) - ⁇ , ⁇ '-di-p-tolyl-line, poly-ethylene biylene, poly- ⁇ -phenol-bi-ylene, poly-allin (Appl.Phys Ettett., 64 ⁇ , 1245, 1994), polythiophene (Optical Materials, 9 ⁇ , 125, 1998), star bust aromatic triamine (Japanese Patent Laid-Open No.
  • a layer containing a hole-injecting / transporting low-molecular organic compound and an electron-accepting compound (described in JP-A-11-251067, JP-A-2000-159221, etc.), A layer formed by doping an electron-accepting compound with a non-conjugated polymer compound containing a mino group, if necessary (Japanese Patent Laid-Open Nos. 11-135262, 11-283750, and 2) No. 000-36390, JP-A 2000-150168, JP-A 2001-223084, and W097Z33193), or a layer containing a conductive polymer such as polythiophene (JP-A 10-92584), etc. This is not limited to these forces.
  • any compound of low molecular weight and high molecular weight can be used. Is possible.
  • porphine compounds and phthalocyanine compounds. These compounds may have a central metal or may be non-metallic. Preferable examples of these compounds include the following compounds.
  • Titanium phthalocyanine oxide Titanium phthalocyanine oxide
  • the hole injection layer 3 can also be formed into a thin film in the same manner as the hole transport layer 4, but in the case of an inorganic substance, sputtering, electron beam evaporation, or plasma CVD is further used.
  • the lower limit is usually 3 nm, preferably about lOnm, and the upper limit is usually 100 nm. It is preferably about 50nm.
  • a polymer compound is used as the material for the hole injection layer 3, for example, the polymer compound or the electron-accepting compound, and if necessary, a binder that does not become a hole trapping agent.
  • a coating solution that are dissolved by adding additives such as coating improvers such as spray method, printing method, spin coating method, dip coating method, die coating method, etc.
  • the hole injection layer 3 can be formed into a thin film by coating on the anode 2 by an ordinary coating method or an ink jet method and drying.
  • the binder resin include polycarbonate, polyarylate, and polyester. If the binder resin has a large content in the layer, the hole mobility may be lowered. Therefore, a smaller content is preferably 50% by weight or less in the hole injection layer 3 as desired.
  • a thin film is formed in advance on a medium such as a film, a support substrate, and a roll by the above-described thin film forming method, and the thin film on the medium is thermally transferred or pressure-transferred onto the anode 2. It can also be formed.
  • the lower limit of the thickness of the hole injection layer 3 formed using the polymer compound is usually 5 nm, preferably about lOnm, and the upper limit is usually about 1000 nm, preferably about 500 ⁇ m. is there.
  • the organic electroluminescent element of the present invention has a structure opposite to that shown in FIG. 1, that is, a cathode 8, a hole blocking layer 6, a light emitting layer 5, a hole transport layer 4, and an anode 2 are laminated on the substrate 1 in this order.
  • the organic electroluminescent element of the present invention can be provided between two substrates, at least one of which is highly transparent.
  • the layers can be stacked in the reverse order of the above-described layer structures shown in FIG. 2, FIG. 3, or FIG.
  • any layer other than those described above may be included without departing from the spirit of the present invention, and the layer having the functions of the above-described multiple layers is also included. By providing, it is possible to cover the deformation as appropriate, such as simplifying the layer structure.
  • the top emission structure and the cathode / anode should be transparent using transparent electrodes.
  • the layer structure shown in Fig. 1 may be stacked in multiple layers (stacking multiple light emitting units). It is also possible to have a structure. In this case, instead of the interfacial layer between the steps (between the light emitting units) (two layers when the anode is ITO and the cathode is A1), V ⁇ etc. is used as the charge generation layer (CG
  • the barrier between the steps is reduced, which is more preferable from the viewpoint of the luminous efficiency 'drive voltage.
  • the present invention eliminates the difference between organic electroluminescent elements, single elements, elements having a structure arranged in an array, anode and cathode power structures arranged in a matrix! Is also suitable Can be used.
  • Synthesis examples of the organic compound of the present invention and organic compounds that can be used as the charge transport material of the present invention are shown in the following synthesis examples.
  • the glass transition temperature was determined by DSC measurement
  • the vaporization temperature was determined by TG-DTA measurement
  • the melting point was determined by DSC measurement or TG-DTA measurement.
  • the target compound 1 (6.34 g), 1 phenacylpyridyl-um bromide (10. 83 g), ammonium acetate (50. Og), acetic acid (220 ml), N, N dimethylformamide (220 ml) ) was stirred for 6 hours under reflux with heating, water (440 ml) was added, and the deposited precipitate was filtered and washed with methanol. This was purified by suspension washing with methanol and reprecipitation from chloroform-form methanol to obtain the desired product 2 (2.71 g).
  • target product 4 (8.62 g), 1 phenacylpyrididium bromide (12. 52 g), ammonium acetate (57.8 g), acetic acid (257 ml), N, N dimethylformamide (257 ml)
  • the mixture was stirred for 5.5 hours under reflux with heating, then poured into water (600 ml) under ice cooling, and the deposited precipitate was filtered and washed with a mixed solvent of ethanol and water. This was purified by suspension washing in ethanol with heating under reflux to obtain the desired product 5 (8.22 g).
  • the glass transition temperature was 149 ° C
  • the vaporization temperature was 501 ° C
  • the melting point was not detected.
  • the glass transition temperature was 160 ° C, the vaporization temperature was 535 ° C, and the melting point was not detected.
  • target product 10 (11. 66g), 1-phenacylpyridi-um bromide (16. 94g), ammonium acetate (78. 26g), acetic acid (350ml), N, N-dimethylformamide (350ml) ) was stirred for 6.5 hours under reflux with heating, and then poured into water (700 ml) under ice cooling, and the deposited precipitate was filtered and washed with ethanol. This was purified by recrystallization in the ethanol-chloroform mixed solvent, and the target product 11 (11.14 g) was obtained.
  • the target compound 11 (5. 79 g), 2,5-difluorophenylboronic acid (3.08 g), dimethoxyethane (150 ml), and water (23 ml) were mixed with tetrakis (triphenylphosphine).
  • Palladium (0.69 g) and potassium carbonate (6.22 g) were added in order, and heated at reflux for 3.5 hours. Stir for a while. After adding brine to the resulting solution, extract with dichloromethane, add anhydrous magnesium sulfate and activated clay to the organic layer, stir, filter and concentrate the solid content obtained by silica gel column chromatography. The product was purified to obtain the target product 12 (6. Olg).
  • the glass transition temperature was 148 ° C
  • the crystallization temperature was 223 ° C
  • the vaporization temperature was 507 ° C
  • the melting point was 300 ° C.
  • the target compound 14 (14.4 g), 1 phenacyl pyridinium bromide (21.6 g), ammonium acetate (96.6 g), acetic acid (400 ml), and N, N dimethylformamide (400 ml) was stirred under reflux with heating for 5.5 hours, and then poured into ice water (800 ml), and the deposited precipitate was filtered and washed with ethanol. This was purified by recrystallization with toluene-ethanol power to obtain the target product 15 (8.92 g).
  • the obtained solid was purified by recrystallization from N, N-dimethylformamide and ethanol, GPC purification, and further by sublimation purification (vacuum degree 1 X 10 _3 Pa, maximum heating temperature 360 ° C),
  • the target product 17 (EM-5) (1.23 g) was obtained.
  • Target 2 0
  • the target compound 18 (16.6 g), 1 phenacylpyrididium bromide (19. lg), ammonium acetate (88 g), acetic acid (392 ml), and N, N dimethylformamide (392 ml)
  • the mixture was stirred for 5.7 hours under reflux with heating, and then poured into ice water (500 ml), and the deposited precipitate was filtered and washed with methanol. This was purified by recrystallization in the ethanol / toluene mixed solvent to obtain the target product 19 (11.2 g).
  • target 22 (2. 33 g), 2,5-difluorophenol boronic acid (2.21 g), Tetrakis (triphenylphosphine) palladium (0.46 g) and potassium carbonate (4.15 g) were sequentially added to a mixture of dimethoxyethane (100 ml) and water (15 ml), and heated for 8.5 hours under reflux. Stir. Brine (100 ml) was added to the resulting solution, followed by extraction with methylene chloride (100 ml), and anhydrous magnesium sulfate and activated clay were added to the organic layer, followed by filtration and concentration of the filtrate. The fraction was purified by recrystallization from toluene ethanol power to obtain the target compound 23 (2.54 g).
  • the glass transition temperature of this product was 184 ° C, the crystallization temperature and melting point were not observed, and the vaporization temperature was 565 ° C.
  • An organic electroluminescent device having the structure shown in FIG. 3 was produced by the following method.
  • a 150-nm-thick indium stannate oxide (ITO) transparent conductive film (sputtered film; sheet resistance 15 ⁇ ) is deposited on glass substrate 1 using ordinary photolithography and hydrochloric acid etching.
  • Anode 2 was formed by patterning into stripes having a width of 2 mm.
  • the patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally UV ozone cleaning.
  • PB-1 weight average molecular weight: 29400, number average molecular weight: 12600
  • A-2 electron accepting compound having the structural formula shown below.
  • a uniform thin film having a film thickness of 30 was formed by the above spin coating.
  • the substrate on which the hole injection layer 3 was formed was placed in a vacuum evaporation apparatus. After rough pumping of the device by an oil rotary pump, it was evacuated with a cryopump until the degree of vacuum in the apparatus is equal to or less than 6.2x 10- 5 Pa (about 4.7X 10- 7 To rr). Deposition was carried out by heating the arylamine compound (H-1) shown below placed in a ceramic crucible placed in the above apparatus with a tantalum wire heater around the crucible. The temperature of the crucible at this time was controlled in the range of 318 334 ° C. Vacuum 7.0 during deposition X 10- 5 Pa (about 5.3 X 10 "7 Torr), the deposition rate was obtained a hole transport layer 4 having a thickness 40nm with 0.21 ⁇ m / sec.
  • H-1 arylamine compound shown below
  • the power rubazole derivative (CPP) shown below as the main component (host material) of the light-emitting layer 5 and the organic iridium complex (D-1) as the secondary component (dopant) were placed in separate ceramic crucibles, and two elements Film formation was performed by the co-evaporation method.
  • the crucible temperature of compound (CBP) is 295 to 299 ° C
  • the deposition rate is O.llnmZ seconds
  • the crucible temperature of compound (D-1) is controlled to 252 to 255 ° C
  • the film thickness is 30 nm.
  • the light emitting layer 5 containing about 6 wt% of the compound (D-1) was laminated on the hole transport layer 4.
  • the degree of vacuum during deposition was 6.7 X 10- 5 Pa (about 5.0 X 10- 7 Torr).
  • pyridine derivative (HB-1) as a hole blocking layer 6 was laminated at a crucible temperature of 211 to 215 ° C and a film thickness of 5 at a deposition rate of 0.09 / sec.
  • the degree of vacuum during deposition was 6 .2 X 10- 5 Pa (about 4.7 X 10- 7 T.rr).
  • the following aluminum 8-hydroxyquinoline complex (ET-1) was deposited as the electron transport layer 7 in the same manner.
  • the temperature of the crucible 8 hydro Kishikinorin complex of aluminum in this procedure was controlled within the range of 234 ⁇ 245 ° C, vacuum degree during vapor deposition is 6. 0 X 10- 5 Pa (about 4.5 X 10- 7 Torr), deposition
  • the speed was 0.22 nm / sec and the film thickness was 30 nm.
  • the substrate temperature at the time of vacuum deposition of the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole blocking layer 6 and the electron transport layer 7 was kept at room temperature.
  • the element on which the electron transport layer 6 was vapor-deposited was once taken out from the vacuum vapor deposition apparatus into the atmosphere, and a 2 mm wide stripe shadow mask was used as the cathode vapor deposition mask.
  • the device is placed in close contact with the element so as to be orthogonal to the ITO stripe, and is placed in a separate vacuum evaporation system, and the degree of vacuum in the device is 2.0 X 10 " 6 Torr (approximately 2.7 X 10" 4 Pa, similar to the organic layer. ) Exhaust until below.
  • the cathode 8 As the cathode 8, first, lithium fluoride (LiF) with a molybdenum boat, deposition rate of 0.03 nm / sec, at a vacuum degree 2.8 X 10- 6 Torr (about 3.7 X 10- 4 Pa), the film thickness of 0.5nm The film was formed on the electron transport layer 7. Next, aluminum similarly heated Ri by the molybdenum boat, deposition rate 0.46 nm / sec, thickness 80nm in vacuum of 9.6 X 10- 6 Torr (about 1.3 X 10 "3 Pa) The aluminum layer was formed to complete the cathode 8. The substrate temperature during vapor deposition of the above two-layer cathode 8 was kept at room temperature.
  • LiF lithium fluoride
  • Luminous efficiency 20.7 [lm / w] @ 100cd / m 2
  • the luminance retention ratio was divided by the luminance (L) of the drive at the start of the luminance (L) of the drive start power 50 seconds after when driven at 250 mA / cm 2, the driving stability of It is an indicator.
  • the maximum wavelength of the emission spectrum of the device was 512 nm, and it was identified to be from the organic iridium complex (D-1).
  • a device having the structure shown in FIG. 4 was prepared in the same manner as in the standard device 1 except that the pyridine derivative (HB-1) for the hole blocking layer was not laminated.
  • the light emission characteristics of this device are shown in Table 1.
  • the light emission characteristic values in Table 1 are relative values with the value of standard element 1 being 1.00.
  • the standard element 1 of Reference Example 1 was used except that the following target 3 (EM-1) synthesized in Synthesis Example 1 was used in place of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • EM-1 target 3 synthesized in Synthesis Example 1
  • CBP force rubazole derivative
  • Table 1 shows the light emission characteristics and lifetime characteristics of this device.
  • the iridium complex (D-1) was identified as a powerful one.
  • This device has higher luminous efficiency than standard device 1 and a longer lifetime than standard device 2.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that EM-1 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • CBP force rubazole derivative
  • Table 1 shows the light emission characteristics and lifetime characteristics of this device.
  • This device has higher luminous efficiency than the standard device 1.
  • the elements of Examples 1 and 2 using the organic compound of the present invention have no hole blocking layer.
  • the device is stable with a low driving voltage with high luminous efficiency regardless of the presence or absence of the hole blocking layer.
  • the standard device 1 of Reference Example 1 was used except that the following target 7 (EM-2) synthesized in Synthesis Example 2 was used instead of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • EM-2 target 7
  • CBP force rubazole derivative
  • Table 1 shows the light emission characteristics and lifetime characteristics of this device.
  • the iridium complex (D-1) was identified as a powerful one.
  • This device was remarkably excellent in life characteristics.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that the above EM-2 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light emitting layer 5.
  • CBP force rubazole derivative
  • Table 1 shows the light emission characteristics and lifetime characteristics of this device.
  • the standard device 1 of Reference Example 1 was used except that the following target 9 (EM-3) synthesized in Synthesis Example 3 was used in place of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • EM-3 synthesized in Synthesis Example 3
  • CBP force rubazole derivative
  • This device had higher luminous efficiency and lower driving voltage than the standard device 1.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that EM-3 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • CBP force rubazole derivative
  • this device does not have a hole blocking layer as compared with the standard device 1, it has a high driving efficiency and a low driving voltage.
  • the standard device 1 of Reference Example 1 was used except that the following target compound 13 (EM-4) synthesized in Synthesis Example 4 was used instead of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • EM-4 target compound 13
  • CBP force rubazole derivative
  • This device had higher luminous efficiency and lower driving voltage than the standard device 1.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that the above EM-4 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light emitting layer 5.
  • CBP force rubazole derivative
  • this device does not have a hole blocking layer as compared with the standard device 1, it has a high driving efficiency and a low driving voltage.
  • the standard device 1 of Reference Example 1 was used except that the following target 17 (EM-5) synthesized in Synthesis Example 5 was used instead of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • EM-5 synthesized in Synthesis Example 5
  • CBP force rubazole derivative
  • a device was fabricated in the same manner.
  • This device has higher luminous efficiency than the standard device 1.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that the above EM-5 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light emitting layer 5.
  • CBP force rubazole derivative
  • the standard device 1 of Reference Example 1 was used except that the following target compound 24 (EM-6) synthesized in Synthesis Example 7 was used instead of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • EM-6 target compound 24
  • CBP force rubazole derivative
  • This device had higher luminous efficiency and lower driving voltage than the standard device 1.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that the above EM-6 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light emitting layer 5.
  • CBP force rubazole derivative
  • This device had higher luminous efficiency and lower voltage than the standard device, although it did not have a hole blocking layer.
  • the standard device 1 of Reference Example 1 was used except that the following target compound 21 (EM-7) synthesized in Synthesis Example 6 was used instead of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • EM-7 target compound 21 synthesized in Synthesis Example 6
  • CBP force rubazole derivative
  • the iridium complex (D-1) was identified as powerful.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that the above EM-7 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light emitting layer 5.
  • CBP force rubazole derivative
  • the iridium complex (D-1) was identified as a powerful one.
  • a device was fabricated in the same manner as the standard device 1 of Reference Example 1 except that EM-11 shown below was used instead of force rubazole derivative (CBP) as the main component (host material) of the light-emitting layer 5.
  • CBP force rubazole derivative
  • Table 1 shows the light emission characteristics and lifetime characteristics of this device.
  • a device was fabricated in the same manner as the standard device 2 of Reference Example 2 except that the above EM-11 was used in place of the force rubazole derivative (CBP) as the main component (host material) of the light emitting layer 5.
  • CBP force rubazole derivative
  • Table 1 shows the light emission characteristics and lifetime characteristics of this device.

Abstract

 優れた正孔輸送性と電子輸送性を併せ持ち、優れた電気的酸化還元耐久性と高い三重項励起準位を有する下記式(I)で表される有機化合物と、この有機化合物を用いた電荷輸送材料及び有機電界発光素子が提供される。  Cz1およびCz2は、カルバゾリル基、Zは、直接結合或いはCz1およびCz2がそれぞれ有するカルバゾール環の窒素原子同士を共役可能とする任意の連結基、Qは、下記式(II)のGにつながる直接結合を表す。  環B1はヘテロ原子としてN原子をn個有する6員環の芳香族複素環。nは1~3の整数。Gは、Qにつながる場合は、Qにつながる直接結合または任意の連結基。Gは、環B1のN原子のオルト位およびパラ位にあるC原子に結合する。Gは、Qにつながらない場合は、芳香族炭化水素基。mは3~5の整数。

Description

明 細 書
有機化合物、電荷輸送材料および有機電界発光素子
発明の分野
[0001] 本発明は新規な有機化合物および電荷輸送材料と、この有機化合物を用いた有 機電界発光素子に関するものであり、詳しくは電気的な酸ィ匕ゃ還元を繰返し受けて も安定な有機化合物および電荷輸送材料と、この有機化合物を用いた高発光効率 かつ長寿命の有機電界発光素子に関するものである。
発明の背景
[0002] 有機薄膜を用いた電界発光素子の開発が行われて 、る。有機薄膜を用いた電界 発光素子、すなわち有機電界発光素子は、通常、基板上に、陽極、陰極、およびこ れら両極間に設けられた少なくとも発光層を含む有機層を有する。有機層としては、 発光層以外にも、正孔注入層(陽極バッファ層)、正孔輸送層、正孔阻止層、電子輸 送層、電子注入層等が設けられる。通常、これらの層を陽極と陰極との間に積層する ことにより有機電界発光素子が構成されている。
[0003] 従来、有機電界発光素子は、蛍光発光を利用してきたが、素子の発光効率を上げ る試みで、蛍光ではなく燐光発光を用いることが検討されている。し力しながら、燐光 発光を用いた場合でも、未だ十分な発光効率が得られて!/、な 、のが現状である。
[0004] Appl.Phys丄 ett.,75卷, 4頁, 1999年ではホスト材料として以下に示すビフエ-ル誘 導体が記載されている。
[化 1]
Figure imgf000003_0001
し力しながら、上記ビフヱニル誘導体を用いた有機電界発光素子は、電荷の再結 合位置が陰極側に偏る傾向があり、バランスが取り辛ぐ高い発光効率が得られてい なかった。
[0005] 特開平 6— 1972号公報には、有機電界発光素子に、以下に示す化合物を用いる ことが記載されている。
[化 2]
Figure imgf000004_0001
し力しながら、上記化合物は、高電圧下でしか発光が観測されず、発光輝度、発光 効率が不十分であると考えられる。
[0006] 特開 2000— 186066号公報および特開 2000— 169448号公報には、蛍光発光 素子用途或いは電子写真感光体用の正孔輸送材料および Zまたは発光層材料とし て、下記化合物に代表されるピリジン系化合物が記載されている。
Figure imgf000005_0001
特開 2003— 22893号公報には、有機電界発光素子用材料として、以下に示す化 合物が記載されている。
Figure imgf000006_0001
国際公開第 WO03Z078541号公報には、有機電界発光素子用材料として、以 下に示す化合物が記載されて 、る。
[化 5]
Figure imgf000006_0002
し力しながら、これらの特許文献に記載の化合物は、ピリジン環、トリアジン環、ピリミ ジン環またはピラジン環上の窒素原子と、力ルバゾール環上の窒素原子とが共役可 能な構造を有するため、分子内における電荷の分極現象が顕著となり、三重項励起 準位が比較的低い。また、有機電界発光素子用材料としての耐久性に劣る。従って 、青色発光素子や燐光発光素子に適用するには性能的に不充分である。また、ピリ ジン環の 2, 4, 6—位やピリミジン環の 2, 4, 6—位ゃピラジン環の 2, 3, 5, 6—位に 全て置換基を有して ヽる構造でな ヽ場合、電気化学的耐久性に劣る。 国際公開第 WO03Z080760号公報には、有機電界発光素子の材料として、以 下に示す化合物が記載されて 、る。
[化 6]
Figure imgf000007_0001
[0011] しかしながら、これらは、一つの芳香環(ここではベンゼン環)上に 2つの(電子供与 性基である)カルバゾリル基が置換され、かつこれらが該芳香環を介して互いに共役 し得ない位置 (m—位)にあるため、分子が電気的に酸ィ匕または還元を受けた際、正 または負電荷が局在化しやすい。こうした部分構造を有する化合物は、電気的酸ィ匕 および還元に対する耐久性が乏しい。また、電気的還元に対する耐性を向上させる 目的でピリジン環やピリミジン環を導入してはいるものの、カルバゾリル基が 2つ置換 された芳香環 (ここではベンゼン環)はピリジン環やピリミジン環の窒素原子に対して p —位にあり、かつ該芳香環とピリジン環やピリミジン環が共役可能である。そのため、 該芳香環力もピリジン環やピリミジン環への電子供与効果によって、該ピリジン環や 該ピリミジン環の電気的還元に対する耐性が低下する。
[0012] 国際公開第 WO03Z080760号公報には、以下の化合物が記載されている。
Figure imgf000008_0001
[0013] この化合物は、電気的な酸ィ匕に対する耐性は改善されていることが予想されるもの の、カルバゾリル基が一つだけであるため、正孔輸送性に乏しぐ有機電界発光素子 の発光層の材料としては、正孔輸送性と電子輸送性のバランスが悪ぐホスト材料と して好適ではない。また、耐熱性にも劣る。
発明の概要
[0014] 本発明は、優れた正孔輸送性と電子輸送性を併せ持ち、優れた電気的酸化還元 耐久性と高!ヽ三重項励起準位を有する有機化合物および電荷輸送材料と、この有 機化合物を用いた、高い発光効率と高い駆動安定性を有し、かつ長寿命の有機電 界発光素子を提供することを課題とする。
[0015] 本発明の第 1アスペクトの有機化合物は、下記式 (I)で表される。
本発明の第 2アスペクトの電荷輸送材料は、この第 1アスペクトの有機化合物を含 有する。
本発明の第 3アスペクトの有機電界発光素子は、基板上に、陽極、陰極、およびこ れら両極間に設けられた有機発光層を有する有機電界発光素子において、この第 1 アスペクトの有機化合物を含有する。
[0016] [化 8]
Figure imgf000009_0001
Cz1および Cz2は、それぞれ力ルバゾリル基を表す。
Zは、直接結合或いは Cz1および Cz2がそれぞれ有する力ルバゾール環の窒素原 子同士を共役可能とする任意の連結基を表す。
Cz2および Zは、それぞれ置換基を有していてもよい。
Qは、下記式 (II)の Gにつながる直接結合を表す。
[化 9]
Figure imgf000009_0002
式中、環 B1は、ヘテロ原子として N原子を n個有する 6員環の芳香族複素環である nは、 1〜3の整数である。
Gは、環 B1の N原子のオルト位およびパラ位にある C原子に結合する。
Gは、 Qにつながる場合は、 Qにつながる直接結合または任意の連結基を表す。
Gは、 Qにつながらない場合は、芳香族炭化水素基を表す。
mは、 3〜5の整数である。
一分子中に存在する複数個の Gは、同一であっても異なって 、てもよ 、。
環 B1は、 G以外にも置換基を有していてもよい。
第 1アスペクトの有機化合物は、優れた正孔輸送性と電子輸送性を併せ持ち、優れ た電気的酸ィ匕還元耐久性と高い三重項励起準位を有する。このため、この有機化合 物を用いた第 2アスペクトの有機電界発光素子は、高輝度 ·高効率で発光させること ができる。この素子は安定性、特に駆動安定性に優れ、長寿命化である。
[0018] 第 3アスペクトの有機電界発光素子は、フラットパネル'ディスプレイ(例えば OAコン ピュータ用ゃ壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特 徴を生カゝした光源 (例えば、複写機の光源、液晶ディスプレイや計器類のバックライト 光源)、表示板、標識灯へ応用可能である。
[0019] 第 1アスペクトの有機化合物は、優れた酸化還元安定性を有することから、有機電 界発光素子に限らず、電子写真感光体に利用することも有用である。
第 1アスペクトの有機化合物は、電荷輸送材料用としてだけでなぐ各種発光材料 用、太陽電池材料用、バッテリー材料 (電解液、電極、分離膜、安定剤など)用、医療 用、塗料材料用、コーティング材料用、有機半導体材料用、トイレタリー材料用、帯 電防止材料用、熱電素子材料用などにおいても有用である。
[0020] 第 2アスペクトの電荷輸送材料は、正孔注入材料、正孔輸送材料、発光材料、ホス ト材料、電子注入材料、電子輸送材料などに適用可能である。
図面の簡単な説明
[0021] [図 1]本発明の有機電界発光素子の一例を示した模式的断面図である。
[図 2]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 3]本発明の有機電界発光素子の別の例を示した模式的断面図である。
[図 4]本発明の有機電界発光素子の別の例を示した模式的断面図である。
発明の好ましレ、形態の詳細な説明
[0022] 以下に本発明の有機化合物、電荷輸送材料および有機電界発光素子の実施の形 態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の 一例 (代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されな い。
[0023] 〔有機化合物〕
本発明の有機化合物は、上記式 (I)で表される。
[0024] [1]構造上の特徴
本発明の有機化合物は、正孔輸送を主として担う部分と電子輸送を主として担う部 分の両方が互いに大きく干渉しあうことなく存在する。
[0025] 正孔輸送を主として担う部分は式 (I)中の Cz1— Z— Cz2の部分であり、電子輸送を 主として担う部分は Q— G 環 B1の部分である。正孔輸送を主として担う部分は、 電気的酸化に対する優れた耐久性を示す。また、電子輸送を主として担う部分は、 電気的還元に対する優れた耐久性を示す。
[0026] 正孔輸送を主として担う部分である Cz1— Z— Cz2は、 Zを介して、 Cz1の N原子と Cz 2の N原子が共役することを特徴とする。 Cz1の N原子と Cz2の N原子が共役すること により、分子の誘電率が向上し、あるいは電荷非局在化に伴って、イオンィ匕ポテンシ ャルが低下したり、分子内及び分子間での軌道の重なりが大きくなるなどするため、 正孔輸送性が高まる。
[0027] Cz1の N原子と Cz2の N原子が共役しな 、と、電気的酸化を受けたとき、 Z上 (例え ば芳香族炭化水素基上)に過剰の正電荷が集中したり、或いは、力ルバゾール環の N, 1, 3, 6, 8—位の少なくとも一力所への正電荷の局在化が強まり、電気的酸ィ匕に 対する耐久性が著しく低下してしまうため、好ましくない。
[0028] 他方、 Cz1の N原子と Cz2の N原子が共役すると、 Cz1と Cz2のそれぞれにおいて、 正電荷が比較的均等に分布しうるため、電気的酸ィ匕に対する耐久性に優れるため、 好ましい。
[0029] なお、本発明の有機化合物において、窒素原子同士が共役可能であるとは、窒素 原子同士が、
[化 10] C = C ' C = N ' N ^=
c ^≡c——
(cis-, trans-の 、ずれでも可)またはこれらを組み合わせてなる部分構造で連結され ていることと同義 (ただし、 G 1ないし G 3は各々独立に、水素原子または任意の置換基 を表すか、あるいは、芳香族炭化水素環や芳香族複素環の一部を構成する。)であ る。 [0030] Zには、 Cz1および Cz2以外にも、カルバゾリル基が連結できる力 Zに連結するカル バゾリル基として好ましくは 2以上 4以下、更に好ましくは 2または 4、最も好ましくは 2、 すなわち Cz1と Cz2のみが Zに連結することである。
[0031] なお、本発明の有機化合物は、 Cz1および Cz2の N原子と環 B1の N原子とが、共役 しないことが好ましい。すなわち、 Cz1および Cz2と環 B1と力 Cz1および Cz2の N原子 と環 B1の N原子とを、共役させない連結基で連結されていることが好ましい。これは、 電子過剰型部位である Cz1および Cz2の N原子と電子欠損型部位である環 B1の N原 子とが、共役可能な構造である場合、該電子過剰型部位と該電子欠損型部位との相 互作用が極めて大きくなり、それぞれの部位力 Sもつ酸ィ匕耐性や還元耐性を損ない、 分子内の電荷の分極ィ匕を生じることで、三重項励起準位の著しい低下を招く恐れが あるためである。
ここで、 Cz1および Cz2の N原子と環 B1の N原子と力 共役しないとは、上記共役可 能であることの反対の意味であり、上記の部分構造で連結されて 、な 、ことと同義で ある。
[0032] [2]式 (I)中の構成要素
く Cz1および Cz2
式(I)における Cz1および Cz2はそれぞれ、力ルバゾリル基を表す。 Cz1および Cz2と しては、各々独立に、 N—力ルバゾリル基、 1一力ルバゾリル基、 2—力ルバゾリル基、 3—力ルバゾリル基、 4一力ルバゾリル基が挙げられ、 Cz1と Cz2とは、同一であっても 異なっていてもよい。
高い三重項励起準位、優れた電気化学的安定性の観点から、 Cz1および Cz2は、 各々独立に、 N—力ルバゾリル基または 2—力ルバゾリル基が好ましぐ N—力ルバゾ リル基が最も好ましい。
特に好ましくは、 Cz1および Cz2がいずれも N—カルバゾリル基である。
[0033] 式 (I)における Cz1および Cz2が N—力ルバゾリル基である場合の式 (I)を、下記式( 1—1)に示す。
Figure imgf000013_0001
[0034] Cz1および Cz2は、各々独立に、任意の置換基を有して!/、てもよ!/、。
置換基を有して 、てもよ 、とは、置換基を 1以上有して 、てもよ 、ことを意味する。 該置換基として好ましくは、アルキル基、芳香族炭化水素基、ァシル基、アルコキシ 基、ァリールォキシ基、アルキルチオ基、ァリールチオ基、アルコキシカルボ-ル基、 ァリールォキシカルボ-ル基、ハロゲン原子、ァリールアミノ基、アルキルアミノ基、芳 香族複素環基であり、より好ましくはアルキル基、芳香族炭化水素基、芳香族複素環 基である。高い三重項励起準位の観点、電荷分布の偏りに伴う電気的耐性の低下を 避ける観点から、この置換基は、特に好ましくは、芳香族炭化水素基であり、具体的 には、ベンゼン環、ナフタレン環、アントラセン環、フエナントレン環、ペリレン環、テト ラセン環、ピレン環、ベンズピレン環、タリセン環、トリフエ-レン環、フルオランテン環 などの、 6員環の単環または 2〜5縮合環由来の 1価の基、或いは、それらが複数個 連結されて形成された 1価の基 (例えば、ビフヱ-ル基、ターフェニル基など)である。
[0035] Cz1および Cz2それぞれの置換基は、合計で分子量 500以下が好ましぐ 250以下 が更に好ましい。最も好ましくは Cz1および Cz2は無置換である。
[0036] 〈Z〉
式 (I)における Zは、直接結合或いは、 Cz1および Cz2がそれぞれ有するカルバゾー ル環の窒素原子同志を共役可能とする任意の連結基を表す。
[0037] 任意の連結基としては、芳香族炭化水素基が好ましぐ具体的には、ベンゼン環、 ナフタレン環、アントラセン環、フエナントレン環、ペリレン環、テトラセン環、ピレン環、 ベンズピレン環、タリセン環、トリフエ-レン環、フルオランテン環などの、 6員環の単 環または 2〜5縮合環由来の 2価の連結基、或いは、それらが複数個連結されて形 成された 2価の連結基 (例えば、ビフエ-レン基、ターフェ二レン基など)が好ましく挙 げられる。 Zとして、好ましくは、直接結合または、フエ-レン基、ビフエ-レン基、ター フエ二レン基などのベンゼン環を 1〜8個連結してなる 2価の連結基である。
[0038] Zが任意の連結基である場合、 Zは任意の置換基を有して 、てもよく、該置換基とし ては好ましくは、アルキル基、芳香族炭化水素基、ァシル基、アルコキシ基、ァリール ォキシ基、アルキルチオ基、ァリールチオ基、アルコキシカルボ-ル基、ァリールォキ シカルボニル基、ハロゲン原子、ァリールアミノ基、アルキルアミノ基、芳香族複素環 基であり、より好ましくはアルキル基、芳香族炭化水素基、芳香族複素環基であり、特 に好ましくは、芳香族炭化水素基であり、具体的には、ベンゼン環、ナフタレン環、ァ ントラセン環、フエナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、 タリセン環、トリフエ-レン環、フノレオランテン環などの、 6員環の単環または 2〜5縮合 環由来の 1価の基、或いは、それらが複数個連結されて形成された 1価の基 (例えば 、ビフエ-ル基、ターフェ-ル基など)である。
[0039] Zは、分子量が 1000以下であることが好ましぐ 500以下であることが更に好ましい
[0040] Zは、特に、直接結合または一(Ph) —であることが好ましい。ここで、 Phは置換基
P
を有していてもよいフエ-レン基を表す。また、 pは 1〜8の整数を表し、好ましくは 1〜
2の整数である。
[0041] 〈式 (I)の例示〉
以下に、式 (I)で表される部分構造のうち、式 (II)の部分を除いた部分の例示を挙 げる力 本発明は何ら以下のものに限定されるものではない。
[0042] [化 12]
Figure imgf000015_0001
[0043] [化 13]
Figure imgf000016_0001
Figure imgf000016_0002
SC9ZZ0/S00Zdf/X3d 9.6.90/900Z OAV [0044] [化 14]
Figure imgf000017_0001
[0045] [化 15]
Figure imgf000018_0001
SC9ZZ0/S00Zdf/X3d 91· 9.6.90/900Z OAV [0046] [化 16]
Figure imgf000019_0001
V-33 V^4
[0047] 上記例示のうち、中でも、 V— 1, 2, 4〜15, 17〜21, 27, 28, 31〜33力 り好ま しく、 V— 1, 6〜9, 11〜15, 31, 32力更に好ましく、 V— 1, 7, 9, 13〜15力 S最も 好ましい。
[0048] 〈Q〉
Qは、下記式 (II)の少なくとも 1つの Gにつながる直接結合を表す。
Figure imgf000019_0002
[0049] 式 (II)で表される部分は、分子量が好ましくは 70以上、更に好ましくは 75以上であ り、好ましくは 1000以下、更に好ましくは 500以下である。この下限を下回ると芳香 族性が損なわれる恐れがあり好ましくなぐ上限を上回ると気化温度が上昇して蒸着 法による製膜が困難になったり、溶解性が低下して湿式法による製膜に支障が出る 恐れがあり好ましくない。
[0050] 式 (Π)中、環 B1は、ヘテロ原子として N原子を n個有する 6員環の芳香族複素環で あればよい。 nは、 1〜3の整数を表す。本発明の有機化合物が、一分子中に複数の 環 B1を有する場合は、これらは同一であっても異なって 、てもよ 、。
[0051] 式 (II)は、特に下記式 (II 1)〜(II 4)で表されるものが好ま 、。
Figure imgf000020_0001
[0052] 式 (11)、特に式 (II— 1)〜(11— 4)で表される基は、本発明の有機化合物において、 電子輸送を主として担う部分であり、電気的還元に対する優れた耐久性を特徴とす る。
[0053] 一分子中において、式(II 1)〜(11 4)の何れかで表される基は、分子内で互い に非共役の関係であることが好ましぐ 1〜8個の範囲で含まれていてもよい。通常、 1つあれば目的である電子輸送性を十分に発揮可能であるため、正孔輸送性と電子 輸送性のバランス、蒸着製膜時に要求される耐熱性と気化性、湿式製膜時に要求さ れる溶解性、空気中での安定性 (酸ィヒされにくさ)或いは化合物の高純度の容易性 の点も鑑み、好ましくは 1個である。
[0054] 以下に各式で表される基について個々に説明する。
[0055] •(Π— 1)で表される基 式(II 1)で表されるピリジン環は、 2, 4, 6—位が置換されていることによって電気 的還元に対する耐久性を持ち得る。
なお、該ピリジン環の 3, 5—位は、置換基を有していてもよい。この置換基としては 、フエニル基などのァリール基、ピリジル基などのへテロアリール基、メチル基などの アルキル基などが好ましい。し力しながら、優れた電気化学的安定性の観点から、最 も好ましくは、 3, 5—位は無置換である。
[0056] ,(11 2)で表される基
式(II 2)で表されるピラジン環は、 2, 3, 5, 6—位が置換されていることによって、 電気的還元に対する耐久性を持ち得る。
[0057] ,(11 3)で表される基
式(II 3)で表されるピリミジン環は、 2, 4, 6—位が置換されていることによって、電 気的還元に対する耐久性を持ち得る。
なお、該ピリミジン環の 5—位は、置換基を有していてもよい。この置換基としては、 フエニル基などの芳香族炭化水素基、ピリジル基などの芳香族複素環基、メチル基 などのアルキル基が好ましい。しかしながら、優れた電気化学的安定性の観点から、 最も好ましくは、 5—位は無置換である。
[0058] ,(11 4)で表される基
式(II—4)で表されるトリアジン環は、 2, 4, 6—位が置換されていることによって、電 気的還元に対する耐久性を持ち得る。
環 B1としては、高い三重項励起準位、優れた電気化学的安定性の観点から、上記 一般式 (II— 1)で表されるピリジン環、すなわち、 nが 1である場合が特に好ましい。
[0059] 式 (II)にお 、て、 Gは、 Qにつながる直接結合または任意の連結基を表す力、或!ヽ は芳香族炭化水素基を表す。また、 Gは、環 B1の N原子のオルト位およびパラ位に ある C原子に結合する。 mは、 3〜5の整数である。一分子中に複数個存在する Gは 、それぞれ同一であっても異なっていてもよい。
[0060] G力 Qに繋がる直接結合または任意の連結基である場合の Gは、直接結合または 、ベンゼン環、ナフタレン環、アントラセン環、フエナントレン環、ペリレン環、テトラセ ン環、ピレン環、ベンズピレン環、タリセン環、トリフエ-レン環、フルオランテン環など の、 6員環の単環または 2〜5縮合環由来の 2価の連結基、或いは、それらが複数個 連結されて形成された 2価の連結基(例えば、ビフエ-レン基、ターフェ-レン基など )であることが好ましい。より好ましくは、直接結合、または、一(Ph) —である。ここで
P
Phは置換基を有していてもよいフエ-レン基を表す。また、 pは 1〜8の整数を表し、 好ましくは 1〜 2の整数である。
[0061] Qに繋がる場合の Gの分子量としては、 1000以下力 子ましく、 500以下が更に好ま しい。この上限を上回ると芳香族性が損なわれる恐れがあり好ましくなぐ上限を上回 ると気化温度が上昇して蒸着法による製膜が困難になったり、溶解性が低下して湿 式法による製膜に支障が出る恐れがあり好ましくない。
[0062] Gは、 Qに繋がらない場合は、芳香族炭化水素基を表す。 Qに繋がらない場合の G は、芳香族炭化水素基であればよいが、例えばベンゼン環、ナフタレン環、アントラ セン環、フエナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、タリ セン環、トリフエ-レン環、フノレオランテン環などの、 6員環の単環または 2〜5縮合環 由来の 1価の基、或いは、それらが複数個連結されて形成された 1価の基 (例えば、 ビフエ-ル基、ターフェニル基など)が好ましく挙げられる力 より好ましくは、フエニル 基、ビフエ-ル基、ターフェ-ル基などのベンゼン環を 1〜8個連結してなる 1価の基 である。
[0063] Qに繋がらない場合の Gの分子量としては、 2000以下力好ましく、 1000以下が更 に好ましい。この上限を上回ると芳香族性が損なわれる恐れがあり好ましくなぐ上限 を上回ると気化温度が上昇して蒸着法による製膜が困難になったり、溶解性が低下 して湿式法による製膜に支障が出る恐れがあり好ましくない。
[0064] なお、 Gは任意の置換基を有して 、てもよ 、。該置換基として好ましくは、アルキル 基、芳香族炭化水素基、ァシル基、アルコキシ基、ァリールォキシ基、アルキルチオ 基、ァリールチオ基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、ハロゲ ン原子、ァリールアミノ基、アルキルアミノ基、芳香族複素環基であり、より好ましくは アルキル基、芳香族炭化水素基、芳香族複素環基であり、特に好ましくは、無置換、 または芳香族炭化水素基、具体的には、ベンゼン環、ナフタレン環、アントラセン環、 フエナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、タリセン環、ト リフエ二レン環、フノレオランテン環などの、 6員環の単環または 2〜5縮合環由来の 1 価の基、或いは、それらが複数個連結されて形成された 1価の基 (例えば、ビフエ- ル基、ターフェ-ル基など)である。
[0065] [3]分子量
本発明の有機化合物の分子量は、通常 4000以下、好ましくは 3000以下、より好ま しくは 2000以下であり、また通常 200以上、好ましくは 300以上、より好ましくは 400 以上である。
本発明の有機化合物の分子量がこの上限値を超えると、昇華性が著しく低下して 電界発光素子を制作する際に蒸着法を用いる場合において支障を来したり、不純物 の高分子量ィ匕によって精製が困難となる場合があり、またこの下限値を下回ると、ガ ラス転移温度および、融点、気化温度などが低下するため、耐熱性が著しく損なわれ るおそれがある。
[0066] [4]物性
本発明の有機化合物は、通常 50°C以上のガラス転移温度を有するが、有機電界 発光素子に使用する際には、その耐熱性の観点から、ガラス転移温度は 90°C以上 であることが好ましぐ 110°C以上であることが更に好ましい。ガラス転移温度の上限 は通常 400°C程度である。
本発明の有機化合物は、常圧下で通常 800°C以下の気化温度を有するが、有機 電界発光素子に使用する際には、その蒸着製膜工程の安定性の観点から、気化温 度は 700°C以下であることが好ましぐ 600°C以下であることが更に好ましい。気化温 度の下限は通常 300°C程度である。
本発明の有機化合物は、通常 100°C以上の融点を有するが、有機電界発光素子 に使用する際には、その耐熱性の観点から、融点は 150°C以上であることが好ましく 、 200°C以上であることが更に好ましい。融点の上限は通常 500°C程度である。
[0067] [5]好ましい構造
前記式 (I)で表される本発明の有機化合物は、下記式 (III)で表される構造であるこ とが、高い三重項励起準位、優れた電気化学的安定性の観点から、特に好ましい。
[0068] [化 19]
Figure imgf000024_0001
式中、 G, Qおよび Zは、各々式 (I)におけると同義である。
環 C1はピリジン環を表し、 3位および Zまたは 5位に置換基を有して 、てもよ 、。
Czは、置換基を有して!/、てもよ 、力ルバゾリル基を表す。
a〜cはそれぞれ Czの数を表し、各々独立に、 0または 2〜5の整数である。 a〜cが 0である場合には、 a〜cが 0である Czにつながる Qおよび Zは存在しない。一分子中 に複数の Czが存在する場合、これらは同一であっても異なって 、てもよ 、。
[0069] 上記式(III)にお!/、て、 G, Qおよび Zは、力ルバゾール環力 ピリジン環への電子供 与効果が顕著であると、本発明の有機化合物の電気的還元耐久性を低下させる恐 れがあるため、一(Ph) —で表されることが好ましい。一(Ph) —は前記と同義である
P P
。 G, Qおよび Zをあわせて、 pが 2以上であることが好ましぐ 4以下であることが更に 好ましい。
Czは、具体的には上記 Cz1および Cz2で説明したものが挙げられる。
a〜cは、各々独立に、 0, 2または 4であることが好ましぐ 0または 2であることが更 に好ましく、 2であること、すなわち、 Cz1および Cz2のみであることがより好ましい。
[0070] ピリジン環 C1の 4一位への電子供与基 (例えばカルバゾリル基)の導入は、ピリジン 環 C1の電気的還元に対する耐性を低下させる恐れが無視できないため、 bは小さい 方が好ましい。ピリジン環 C1の 2, 6—位への電子供与基 (例えばカルバゾリル基)の 導入は、上記ピリジン環 C1の 4一位に置換への電子供与基 (例えばカルバゾリル基) を導入した場合ほど重大ではな ヽものの、ピリジン環 C1の電気的還元に対する耐性 を低下させる恐れがあるため、 a, cも小さい方が好ましい。故に、(a, b, c) = (2, 0, 0)または(a, b, c) = (0, 2, 0)であるのが特に好ましい。
他方、正または負電荷を帯びたとき、分子の対称性が高い方が、電荷の局在化に よる劣化促進現象を抑制できるため、 a = cであるのが好ましい。故に、 (a, b, c) = ( 2, 0, 2)または(a, b, c) = (2, 2, 2)が特に好ましい。 [0071] 中でも、好ましい構造として、具体的には、下記一般式 (IV— 1)、(IV— 2)、(IV— 3
)で表される有機化合物が挙げられる。
[0072] [化 20]
Figure imgf000025_0001
式中、 Xa, Xeは各々独立に、前記 V— 1〜34から選択される 1価の基であり、 Xbは、 下記 W— 1〜37から選択される 1価の基であり、環 C1は式 (III)におけると同義である 。以下、 W— 27および W— 28における Phはフエ-ル基を表す。
[化 21]
Figure imgf000026_0001
Figure imgf000026_0002
[0074] [化 22]
Figure imgf000027_0001
W-19 W-20 W-21
Figure imgf000027_0002
W-24 W-25 W-26 W-27 W-28 W-29
Figure imgf000027_0003
W-34 W-35 W-36 W-¾7 上記一般式 (IV— 1)におレ、て、電気的な酸化還元耐性の点ゃ高 、三重項励起工 ネノレギ一の 力ら、 Xa, Xcfま各々独立に、 V— 1, 2, 4〜15, 17〜21, 27, 28, 31 〜33力より好ましく、 V— 1, 6〜9, 11〜: 15, 31, 32力 S更に好ましく、 V— 1, 7〜9, 13〜 15が最も好ましい。また、 Xbは、電気的な酸化還元耐性の点から、好ましくは、 W— 1〜3, 6, 8, 10, 11, 20, 29, 31, 32, 34〜37であり、より好ましくは W— 1〜 3, 6, 8, 11, 31, 32, 34〜36であり、最も好ましくは W— 2, 6, 34, 36である [0076] [化 23]
Figure imgf000028_0001
式中、 Χα, Xe, Xfは各々独立に、前記 V— 1〜34から選択される 1価の基であり、環 C1は式 (III)におけると同義である。環 D1は、環 C1と Xeとをつなぐフエ-レン連結基で ある。
[0077] 上記一般式 (IV— 2)にお 、て、電気的な酸化還元耐性の点から、 Xd, Xe, Xfは各 々独立に、好ましくは、 V— 1〜6, 8, 9, 12, 13, 16〜22, 24, 27, 28であり、より 好ましくは V— 1, 2, 3, 5, 6, 12であり、最も好ましくは、 V— 1, 2, 5である。環 C1と の結合位置を環 D1の 1—位と定義した場合、 Xeとの結合位置は、環 D1の 2〜6—位 の何れでもよいが、電気的な酸化還元耐性の点から、好ましくは 3〜5位であり、より 好ましくは 4一位である。
[0078] [化 24]
Figure imgf000028_0002
式中、 Xg, Xh, X1は各々独立に、前記 V— 1〜34から選択される 1価の基であり、環 C1は式 (III)におけると同義である。
上記一般式 (IV— 3)において、電気的な酸化還元耐性の点から、 Xs, Xh, X1は各 々独立に、好ましくは、 V— 1, 2, 4〜15, 17〜21, 27, 28, 31〜33であり、より好 ましくは V— 1, 6〜9, 11〜15, 31, 32であり、最も好ましくは、 V— 1, 7〜9, 13〜 15である。
[6]具体例
以下に、本発明の有機化合物として好ましい具体的な例を示すが、本発明はこれ らに限定されるものではない。なお、以下の例示構造式中、 N— Czは、 N 力ルバ ゾリル基
[化 25]
Figure imgf000029_0001
を示す。
[化 26]
Figure imgf000030_0001
Figure imgf000030_0002
Figure imgf000030_0003
[0082] [化 27]
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
[0083] [化 28]
Figure imgf000032_0001
Figure imgf000032_0002
[0084] [化 29]
Figure imgf000034_0001
Figure imgf000034_0002
[0085] [化 30]
Figure imgf000036_0001
Figure imgf000036_0002
[0086] [化 31]
Figure imgf000037_0001
Figure imgf000037_0002
Figure imgf000037_0003
[0087] [化 32]
Figure imgf000038_0001
Figure imgf000038_0002
[0088] [化 33]
Figure imgf000039_0001
[0089] [化 34]
Figure imgf000040_0001
Figure imgf000040_0002
[0090] [化 35]
Figure imgf000041_0001
Figure imgf000041_0002
[0091] [7]合成法
本発明の有機化合物は、目的とする化合物の構造に応じて原料を選択し、公知の 手法を用いて合成することができる。
[0092] (1) ピリジン環の導入方法としては、次の(1—A)ないし(1— C)に記載の方法を採 用することができる。
(1— A)原料として —(CHO)を用いた場合 (ここで は、任意の置換基または 連結基を表す)、次の (A1)〜 (A5)の方法などを採用することができる。
[0093] (Al)Angew.Chem.Int.Ed.Engl.(1962)l,626や Synthesis(1976),l- 24や J.Heterocycli c Chem.(1977)14, 147や Collect.Czech.Chem.Commun.57(1992)2,385- 392や CS— 2 62585号公報などで開示されている、 1当量のアルデヒドと 0. 5〜2当量のァセチリド とを、硫酸などの強酸存在下で酢酸、アルコール、ニトロベンゼン、トルエン、クロ口べ ンゼン、ジクロロベンゼン、シクロへキサンなどの単独または混合溶媒中、室温で 1〜 10時間撹拌して、或いは水酸ィ匕ナトリウムなどの強塩基存在下、アルコールおよび Zまたは水溶媒中、加熱条件下で 1〜10時間撹拌して、中間体(― CH = CR— CO 一)を得、これを酢酸溶媒中、加熱条件下、酸素存在下、ァシルピリジニゥム塩と酢 酸アンモ-ゥムを作用させて合成する方法(下記式中、 Xは Br, Iなどのハロゲン原子 を表す。)
[化 36]
Figure imgf000042_0001
[0094] (A2) Liebigs Ann.Chem.(1974),1415— 1422や J.Org.Chem.38,(2002)6,830— 832や 特開 2000— 186066号公報などで開示されている、ボロントリフルオリドゃ過塩素酸 などの酸化剤存在下、加熱条件でトルエン溶媒中、アルデヒドとァセチリドとを反応さ せ、ピリリウム塩を生成し、それを水やアルコール溶媒中でアンモニアと反応させる方 法 [化 37]
Ra-CHO
Figure imgf000043_0001
[0095] (A3)J.Am.Chem.Soc.(1952)74,200などに開示されている、酢酸、アルコール、 -ト 口ベンゼン、トノレェン、クロ口ベンゼン、ジクロロベンゼン、シクロへキサンなどの単独 または混合溶媒中、加熱条件下、酢酸アンモ-ゥムとアルデヒドとァセチリドから一段 階で合成する方法
[化 38]
Figure imgf000043_0002
[0096] (A4) Chem.Commun.(Cambridge)(2000)22,2199- 2200などに開示されて!、る、水酸 化ナトリウムなどの強塩基存在下、無溶媒でアルデヒドと 2当量のァセチリドを室温で 、乳鉢を用いてすり混ぜて中間体 (ジケトン)を生成した後、酢酸、アルコール、ニトロ ベンゼン、トノレェン、クロ口ベンゼン、ジクロロベンゼン、シクロへキサンなどの単独ま たは混合溶媒中、加熱条件下で酢酸アンモニゥムを作用させて合成する方法、 [化 39]
Figure imgf000043_0003
[0097] (A5)J.Org.Chem.(1988),53,5960などに開示されている、アルデヒドとェチリデンビ -ルァミンから一段階で合成する方法
[化 40]
Figure imgf000043_0004
[0098] (1 -B) 2, 4, 6—位の少なくとも一力所に塩素や臭素やヨウ素などのハロゲン原子 が置換されたピリジン環を原料に用いる場合、前記ハロゲン元素を任意の置換基に 変換が可能である。
例えば、 Org丄 ett.3(2001)26,4263-4265などに開示されている、パラジウム触媒存 在下、加熱条件でジンクブロマイドやボロン酸を作用させることによって合成する方 法が挙げられる(以下において、 dbaはジベンジリデンアセトンである。 ) o
Figure imgf000044_0001
[0099] (1— C)その他、各種置換基の導入、連結基 G或いは Zの形成において、必要に応 じ、任意に公知の手法を適用することができる。例えば、下記 (C1)〜(C3)などを採 用することができる。
[0100] (C1)アルデヒドとしてパラホルムアルデヒド、ァセチリドとして芳香族ァシル化合物 を用い、 2, 6—位に芳香環基を有するピリジンを合成し、これを N—プロモスクシンィ ミドなどのハロゲン化剤を用いてピリジン環の 4一位をハロゲン化してハロゲン体を得 、そのハロゲン原子を B (OH) 基や ZnCl基や MgBr基に変換したものと、前
2
記ハロゲン体とをカップリング反応させて合成する方法
[0101] (C2)前記ハロゲン体を、 n—ブチルリチウムなどでリチォ化後、 N, N ジメチルホ ルムアミドで処理することで、 2, 6—位に芳香環基を有し、 4一位に CHO基を有す るピリジンを合成した後、ァセチリドと反応させて第二のピリジン環を合成する方法
[0102] (C3)前記( 1 B)の出発原料として挙げた 2, 6 ジクロロー 4 ョードピリジンを塩 基存在下、銅粉末などの銅触媒を用いて、 150〜250°Cで加熱撹拌することにより、 2, 6, 2' , 6,一テトラクロ口一 [4, 4,]ビビリジルを合成し、これを前記 B)と同様に処 理することで合成する方法
[0103] なお、上記合成方法で用いられるアルデヒド (Ra—CHO)は、通常入手可能な試薬 を適宜利用可能である力 必要があれば、次の i)〜xiii)の方法等により、容易に合成 することが可能である。
[0104] 0 例えばハロゲンィ匕物 (Ra— X)や活性水素原子を有する炭化水素化合物 (Rail)をブチルリチウムなどのアルキルリチウム、水素化ナトリウム、トリェチルァミン、 ter t ブトキシカリウム、水酸ィ匕ナトリウムなどの強塩基 (好ましくはブチルリチウムなどの アルキルリチウム)を作用させた後、 N, N ジメチルホルムアミドで処理する方法(Or ganic&Biomolecular Chemistry(2003)l,7, 1157— 1170;Tetrahedron Lett.42(2001)37, 6589-6592)
[0105] ii) CO R基 (Rは水素原子、塩素原子、アルキル基、芳香環基、アミノ基)をリチ
2
ゥムアルミニウムハイドライド、水素化硼素ナトリウム等で還元して、アルコール化後、 ピリジ-ゥムクロ口クロメート、二酸化マンガン、アイォドキシベンゾイツクアシッド、パー ォキソジスルフェート、 2, 3 ジクロロ一 5, 6 ジシァノー 1, 4 ベンゾキノン等で酸 化して CHO化する方法 (J.Med.Chem.(1990)33,2408- 2412;Angew.Chem.,Int.Ed.4 0(2001)23,4395-4397;J.Am.Chem.Soc.(2002)124,10,2245-58;J.Am.Chem.Soc.(1993 )115,9,3752-3759;J.Chem.Res.,Synop.(2001)7,274-276;Synthesis(2001)15,2273-22 76;Bull.Korean Chem.Soc.20(1999)l l,1373-1374;Arzneim.-Forsch.47(1997)l,13-l 8;J.Org.Chem.63(1998)16,5658-5661;J.Chem.Soc.Sec.C;Organic(1968)6,630-632) [0106] iii) CO R基 (Rは水素原子、塩素原子、アルキル基、芳香環基、アミノ基)をリチ
2
ゥムトリス(ジアルキルァミノ)アルミニウムハイドライド、ソディウムトリス(ジアルキルアミ ノ)アルミニウムハイドライドなどで還元し、一段階で—CHO化する方法(Bull.Korean Chem.Soc., 13(1992)6,670-676;Bull.Korean Chem.Soc, 12(1991)1, 7-8;Org.Prep.P roced.Int.24(1992)3,335-337)
[0107] iv) CO R基 (Rは水素原子、塩素原子、アルキル基、芳香環基、アミノ基)を水
2
素とパラジウム触媒の存在下、一段階で CHO化する方法(Chem.Ber.(1959)92,25 32-2542;WO 00/12457;Bull.Chem.Soc.Jpn.(2001)74,1803-1815)
[0108] v) CN基をリチウムトリス(ジアルキルァミノ)アルミニウムハイドライドなどで還元し 、一段階で CHO化する方法(Bull.Korean Chem.Soc, 13(1992)6,670-676)
[0109] vi) Ar CH (Arは芳香環 パこ o— Iodylbenzoic acid'Dess— Martin period— ina
3
ne.Acetoxyiodosylbenzoic acidなどを作用させて、直接、 Ar CHO化する方法(J. A m.Chem.Soc.(2002)124,10,2245-58)
[0110] vii) Ar-CH基 (Arは芳香環基)を Ar—CH Br、 Ar—CH OCH COOを経由
3 2 2 3
して Ar—CH OHに変換後、ピリジ -ゥムクロ口クロメート、二酸化マンガン、アイォド
2
キシベンゾイツクアシッド等で酸化して CHO化する方法 (J.Org.Chem.(1993)58,35 82-3585)
[0111] viii) 1ーェチルー 1ーァリールァリルアルコールに Vilsmeier試薬を作用させて、ァ リールカルボキシアルデヒドを合成する方法(Indian Journal of Chemistry(1988)27 B.213-216)
[0112] ix) 1, 4ーシクロへキサジェン類に Vilsmeier試薬を作用させて、ァリールカルボキ シアルデヒドを合成する方法(Synthesis(1987),197-199;Synthesis(1985),779-781) [0113] X) Ar— CH基 (Arは芳香環基)を臭素、 N ブロモ琥珀酸イミドなどを用いて臭
3
素 1匕し "^Ar—し H Brとした後、 2— Nitropropane carboaniongr薬、 Hexamethylenetet
2
ramine等を作用させて Ar— CHO化する方法(Collect.Czech.Chem.Commun.(1996)
61,1464-1472;Chem.Eur.J.(1996)2,12,1585-1595;J.Chem.Research(S),(1999)210-21
1)
[0114] xi) ポリメチュウム塩(ヘプタメチュウム塩など)からァリールアルデヒド(1, 3, 5 ト リホルミルベンゼンなど)を得る方法(Collect.Czech.Chem.Commun.(1965)30,53-60)
[0115] xii)トリホルミルメタンの self- condensationにより、 1, 3, 5 トリホルミルベンゼンを得 る方法(Collect.Czech.Chem.Commun.(1962)27,2464- 2467)
[0116] xiii)Ar-CHBr基 (Arは芳香環基)をジアルキルアミンを用いて Ar— CHO化する
2
方法(Bulletin de La Societe Chmique De France(1966)9,2966- 2971)
[0117] また、上記合成方法で用いられるケトン (Re— CO— CH— Rb)は、通常入手可能
2
な試薬を適宜利用可能である力 必要があれば、次の方法等により、容易に合成す ることがでさる。
[0118] Rc-CO R基 (Rは水素原子、塩素原子、アルキル基、芳香環基、アミノ基)を各種
2
アルキル化剤(アルキルリチウム、ジメチル硫酸、ジメチルスルホキシドなど)で処理す ることにより、 Rc— CO— CH Rbィ匕する方法 (J.Am.Chem.Soc.(1959),81,935- 939;J.A
2
m.Chem.Soc.(1961)83,4668-;Tetrahedron Lett.(1967)1073— ;J.Chem.Soc.(1960)360 -; J.Chem.Soc.,Perkin Trans.1(1977)680;JP5- 5062039)
[0119] 塩ィ匕アルミニウムなどのルイス酸触媒存在下、酸クロライドなどのァシル化剤を作用 させて合成する方法 (極めて一般的な、フリーデルクラフツ反応)
[0120] 他の合成方法としては、「ヘテロ環の化学 医薬品の基礎」(2002年、國枝ら、化学 同仁社)、「Heterocyclic Chemistry」(第 4版、 2000年、 J.A.Joule and K.Millsゝ Blac kwell Science社)、「新編へテロ環化合物 基礎編、応用編」(2004年、山中宏ほカゝ、 講談社)、「ボルハルト'ショァ一現代有機化学 下」(2004年、 K.P.C.Vollhardt、化学 同人社)などに記載または引用されて 、る合成方法を利用することもできる。
[0121] (2) ピラジン環の導入方法としては、例えば、次の(2— a)〜(2— g)の方法などを 採用することができる。
[0122] (2-a)同一もしくは異なる芳香族アルデヒドから(Khim.- Farm.Zh.25(1991)4,28- 31 ; Helvetica Chimica Acta(1985)68(3),592- 599;J.Chem.Res.Synop.(2002)6,262- 263; Ser C.(19966)263, 1156-;J.Am.Chem.Soc.(2002)124,12084-12085;Advanced Synth esis & Catalysis(2002)344,96-103;PCT lnt.Appl.,2002002753, 10 Jan.2002;J.Org .Chem.(2001)66,8010-8014;J.Chem.Soc.,Perkin Trans.1, (2001)7,633- 635;Tetrahed ron Lett.(2000)41,10159-10162;J.Org.Chem.(1983)48,459-464;Journal flier Prakl ische Chemie(Leipzig)(l 962) 16,1-7)、或 、は ージヒドロ体から(Tetrahedron:Asym metry(1998)9,4117-4122)、或いはァリールリチウムから(J. Org.Chem.(1982)47,4347 -4348;Tetrahedron Lett.(1989)30,989- 992)、或いは α ジケトン体から(Journal lu er Praklische Chemie(Leipzig)(1962)16,l— 7)、ァリールエステルから(Tetrahedron Lett.(1980)21,2227- 2228)、ベンゾイン型中間体を合成し、これをアンモニアや酢酸 アンモ-ゥムなどを酸素存在下で作用させることで得る方法 Org.Chem.(1937)2,32 8-;Bull.Soc.Chim.Fr.(1968)4970-;Helvetica ChimicaActa(1985)68(3),592- 599;C.R. Seances Acad.Sci.'Ser C. (1966)263,1156-)
[化 42]
Ammonia and/or
Ammonium Salt
Figure imgf000047_0001
[0123] (2-b) aージケトンと α—ジァミンで環化させ (J.Org.Chem.57(1992)24,6653- 6657 ; Helvetica Chimica Acta(1976)59, 1169— ;Helvetica Chimica Acta(1973)56,610— ) 、酸化処理で合成する方法(Helvetica Chimica Acta(1976)59,1169- )
[化 43]
Α12 2, N 、A1;
Figure imgf000048_0001
A12 " 、N' "A13
(2-c) aーハロケトンにアンモニアや酢酸アンモ-ゥムなどを作用させることで得る 方法 (特開平 03-048666)
[化 44]
Figure imgf000048_0002
[0124] (2-d)同一もしくは異なる芳香族アミドにアンモニアや酢酸アンモ-ゥムなどを作 用させることで得る方法(Helvetica Chimica Acta(1985)68,592-599;特開平 06-0652 12)
[化 45] 八11丫。
Figure imgf000048_0003
[0125] (2-e)アミノ酸からアミノ酸無水物(Bull.So Chem.Fr.(1942)9,487-;J.Am.Pharm.A ssoc.,Sci.Ed.(1957)46,391-)を経て、或いはその他の経路からピラジンのジハライド(J .Heterocyclic Chem.(l 986)23 , 871-875 ;Chemical&Pharmaceutical Bull.(1979)27,29 80-2987;J.Am.Chem.Soc.(1956)78,4071-4077;)を得、これとァリールボロン酸(Suzuk i Coupling法)やカルバゾール、インドール、ピロール、ピラゾールなどのァゾール類 (Suzuki Coupling法 (Tetrahdron 48(1992)37,8117-8126)もしくは Ullman法)ゃテトラ ァリール錫(Heterocycles(1986)24,785- 792)とのカップリング反応によって目的物を 得る方法
[化 46]
X' = CI, Br or I
Figure imgf000049_0001
[0126] (2— f)ピロールから合成する方法 (Justus Liebigs Ann.Chem.(1952)578,226-)
[化 47]
Figure imgf000049_0002
[0127] (2— g)他の合成方法
「ヘテロ環の化学 医薬品の基礎」(2002年、國枝ら、化学同仁社)、 rHeterocyclic Chemistry」(第 4版、 2000年、 J.A.Joule and K.Millsゝ Blackwell Science社)、「新 編へテロ環化合物 基礎編、応用編」(2004年、山中宏ほか、講談社)、「ボルハルト · ショァ一現代有機化学 下」(2004年、 K.P.C.Vollhardt,化学同人社)などに記載ま たは引用されている合成方法を利用することもできる。
[0128] (3) ピリミジン環の導入方法としては、 Journal of.Organometallic Chemistry,663(l -2),46- 57,2002或いは Journal of Organic Chemistry,66(21),7125- 7128,2001で用 いられているパラジウム触媒を用いた方法をはじめ、「ヘテロ環の化学—医薬品の基 礎」(2002年、國枝ら、化学同仁社)、 rHeterocyclic Chemistry」(第 4版、 2000年、 J. A.Joule and K.Mills, Blackwell Science社)、「新編へテロ環化合物 基礎編、応用 編」(2004年、山中宏ほ力、講談社)、「ボルハルト'ショァ一現代有機化学 下」(2004 年、 K.P.C.Vollhardt、化学同人社)などに記載または引用されている合成方法を利 用することができる。
[0129] (4) トリァジン環の導入方法としては、次の (4 a)〜 (4 c)の方法などを採用する ことができる。
[0130] (4— a)ァリールシアンィ匕物力 合成する方法
[化 48]
Figure imgf000050_0001
(図中、 Ar'は、任意の置換基 (ハロゲン原子、ァリール基、ヘテロァリール基など)を 有していてもよいァリーレン基、ヘテロァリーレン基、若しくは不飽和炭化水素基を表 し、同一であっても異なっていてもよい)
上 ti合成方法は、具体的には、 Faming Zhuanli Shenqing uongkai Shuomingshu ,1382687,04 Dec.2002、 Journal of Organic Chemistry,68(12),4855- 4861 ;2003、 G reen Chemistry,4(4),339—343;2002、 Chinese Journal of Chemistry,20(ll), 1334-1 339;2002、 Synthetic Communications,30(6),1017— 1022;2000、 Chemistry Letters, (7 ),545- 546;1999、 Mendeleev Communicationsズ 5), 166- 167;1994、 Journal of Heter ocyclic Chemistry,25(3),767— 770;1988、 Journal of Organic し hemistry,52(16),367 4-3680; 1987などに記載または引用されて 、る方法を利用できる。
[0131] (4-b)トリハロゲンィ匕トリアジン力も合成する方法
Figure imgf000050_0002
(式中、 Xは、フッ素、塩素、臭素、ヨウ素のいずれかを表し、 Arは、任意の置換基( ハロゲン原子、ァリール基、ヘテロァリール基など)を有していてもよいァリーレン基、 ヘテロァリーレン基、若しくは不飽和炭化水素基を表し、同一であっても異なってい てもよい)
上記合成方法は、具体的には、 Xが塩素、臭素或いはヨウ素の場合には、 Journal of Organic し hemistry,68(9), 3367— ύ379;2003、 Journal of Organic し hemistry,り /( 24),8424-8429;2002, Inorganic Chemistry,41(9),2543- 2547;2002、 Synthetic Metal s,122(3),485— 493;2001、 Organic Letters,3(15),2419— 2421;2001、 U.S., 5726310,10 Mar 1998、 Tetrahedron Letters,38(46),8017- 8020;1997、 Eur.Pat.AppL, 779280,18 Jun 1997、 Mendeleev Communicationsズ 5), 166- 167;1994、 U.S.,4826978,02 May 1989などに記載または引用されている合成方法を利用することができる。 また、 Xがフッ素の場合、 Chemistry of Materials, 16(1), 185- 194;2004などに記載 または引用されて ヽる合成方法を利用することができる。
[0132] (4 c)その他の合成方法
Journal of Organic し hemistry,68(12), 4855— 4861 ;2003、 European Journal of O rganic Chemistry,(l 0) , 1948-1953 ;2003 , Tetrahedron,56(37),7153— 7161 ;2000、 Jour nal of the Indian Chemical Society,73(6),283— 284;1996、 Eur. Pat. AppL, 649841,2 6 Apr 1995、 Archiv der Pharmazie(Weinheim , Germany) ,327(6), 389-391;1994, Iz vestiya Natsional' noi Akademii Nauk Respubliki Kaza hstan , S eriya Khimichesk ayaズ 2), 13- 20;1993、 Eur.Pat.AppL, 497734,05 Aug 1992、 Heterocycles,34(2),341- 347;1992、 Sibirskii Khimicheskii Zhurnal,(4),96- 98;1991、 Bulletin of the Chemic al Society of Japan, 62(10), 3171- 3176 989、 Journal of the Chemical Society, P erkin Transactions 2: Physical Organic Chemistry(1972— 1999),(2),117— 122;1988、 Zeitscnnft flier し hemie,26(8),295— 297;1986、 Khimiya Geterotsiklicheskikh Soedi nenii,(l),107- 113;1986、 Synthesis,(l),95-98;1985、 Journal of Heterocyclic Chemi stry,18(6),1197— 1201;1981、 Tetrahedron Letters,(43),4193— 4196;1979、 Ber., 96,12 13-1217;1963などに記載または引用されている合成方法を利用することができる。
[0133] また、他にも、「ヘテロ環の化学—医薬品の基礎」(2002年、國枝ら、化学同仁社)、 「Heterocyclic Chemistry」(第 4版、 2000年、 J.A.Joule and K.Millsゝ Blackwell Scie nce社)、「新編へテロ環化合物 基礎編、応用編」(2004年、山中宏ほか、講談社)、 「ボルハルト'ショァ一現代有機化学 下」(2004年、 K.P.C.Vollhardt,化学同人社)な どに記載または引用されて ヽる合成方法を利用することもできる。
[0134] (5) N—力ルバゾリル基の導入方法としては、合成の最終工程で力ルバゾリル基を 導入する方法として、例えば、次の(5— a)〜(5— c)の方法を採用することができる。
[0135] (5— a)フルオロフェ-ルボロン酸、ジフルオロフェ-ルボロン酸、フルォロビフエ- ルボロン酸エステル、ペンタフルォロフエ-ルボロン酸などのハロゲン化芳香族ボロ ン化合物の小過剰(後述されるハロゲン化物のハロゲン原子に対して 0. 7〜1. 5倍 当量程度)とジブロモフルォロベンゼン、ジョードベンゼン、トリブロモベンゼン、トリク 口ロトリアジン、ジョードビフエ-ルなどの芳香族 2または 3置換ノヽロゲン化物とをテトラ キス(トリフエ-ルフォスフィン)パラジウムなどのパラジウム触媒(0. 1〜10モル0 /0程 度)、炭酸セシウム、リン酸カリウム、炭酸ナトリウムなどの塩基 (前記ハロゲン化物の ハロゲン原子に対して 2〜10倍当量程度)存在下、トルエン エタノール、トルエン —水、テトラヒドロフラン、ジォキサン、ジメトキシェタン、 N, N ジメチルホルムアミド など、或いはそれらの混合溶媒系中(前記ボロン酸濃度で 1〜1000ミリモル%程度) 、不活性ガス雰囲気下で 5〜24時間程度、加熱還流させることにより、フッ素原子を 置換基に有する基本骨格を形成する。
[0136] 次に、置換または無置換の力ルバゾール (前記フッ素原子を置換基に有する基本 骨格上のフッ素原子に対して 1. 1〜10当量程度)を、乾燥ガス雰囲気下および Zま たは不活性ガス雰囲気下、テトラヒドロフラン、ジォキサン、エーテル、 N, N ジメチ ルホルムアミドなどの溶媒中、 78〜 + 60°Cの温度範囲で水素化ナトリウム、 tert— ブトキシカリウム、 n ブチルリチウムなどの強塩基 (後述するァゾールイ匕合物の N上 水素に対して 0. 9〜2当量程度)と 0. 1〜60時間撹拌して反応させたものと、先に得 られるフッ素原子を置換基に有する基本骨格のテトラヒドロフラン、ジォキサン、エー テル、 N, N ジメチルホルムアミドなどの溶液とを混合し、加熱還流下、 1〜60時間 撹拌することにより、本発明の有機化合物を得ることができる。
[0137] (5— b)ブロモフエ-ルボロン酸、ジブロモフエ-ルボロン酸、ジクロロフエ-ルポ口 ン酸などのハロゲン化芳香族ボロン酸の小過剰(後述されるハロゲン化物のハロゲン 原子に対して 1. 1〜1. 5倍当量程度)とジョードベンゼン、ブロモジョードベンゼン、 トリョードベンゼン、トリクロロトリアジン、ジョードビフエ-ルなどの 2または 3置換ノヽロ ゲンィ匕物とをテトラキス(トリフエニルフォスフィン)パラジウムなどのパラジウム触媒 (前 記ハロゲンィ匕物のハロゲン原子に対して 0. 01〜1当量程度)、炭酸セシウム、リン酸 カリウム、炭酸ナトリウムなどの塩基 (前記ハロゲンィ匕物のハロゲン原子に対して 2〜1 0当量程度)存在下、トルエン、エタノール、水、テトラヒドロフラン、ジォキサン、ジメト キシェタン、 N, N—ジメチルホルムアミドなど、或いはそれらの混合溶媒系中(前記 ハロゲンィ匕物濃度で 1〜: LOOOミリモル%程度)、不活性ガス雰囲気下で 5〜24時間 程度、加熱還流させることにより、臭素原子または Zおよび塩素原子を置換基に有 する基本骨格を形成することができる。
[0138] 更に、必要に応じて、得られた臭素基を有する基本骨格から、ヨウ化カリウム (前記 基本骨格上の臭素原子に対して 1. 5〜10当量)、ヨウ化銅(1〜10当量)存在下、 N , N—ジメチルホルムアミドなどの溶媒 (前記ハロゲンィ匕物濃度で 0. 1〜10モル%程 度)中、 100〜300°Cで 0. 5〜60時間撹拌することにより、臭素基がヨウ素基に変換 された基本骨格を得ることができる。
[0139] 次に、臭素原子または Zおよび塩素原子を置換基に有する基本骨格と、カルバゾ ール (前記臭素原子または Zおよび塩素原子を置換基に有する基本骨格上の臭素 原子または Zおよび塩素原子に対して 1. 0〜: LOO当量程度)とを、
(0 銅粉末、銅線、ハロゲン化銅 (CuXr(Xr=Cl, Br、 I) )、酸化銅 (CuO)などの銅 触媒 (前記臭素原子または Zおよび塩素原子を置換基に有する基本骨格上の臭素 原子または Zおよび塩素原子に対して 1〜5当量程度)存在下、不活性ガス気流下、 無溶媒またはテトラグライム、ポリエチレングリコールなどの溶媒 (前記基本骨格 1モ ルに対して 0. 1〜2リットル程度)中、 20〜300°Cの温度範囲で、 1〜60時間撹拌混 合するか、
(ii) Pd (dba) (Pd =パラジウム、(¾& =ジベンジリデンアセトン)、 Pd (dba) 、酢
2 3 2 酸パラジウムなどの 2価のパラジウム触媒と、 BINAP ( = 2,2' -ビス(ジフエ-ルフォス フイノ- 1,1,-ビナフチル)、トリ(tert—ブチル)フォスフィン、トリフエ-ルフォスフィン、 1, 2—ビス(ジフエ-ルフォスフイノ)ェタン、 1, 3—ビス(ジフエ-ルフォスフイノ)プロ パン、 1, 3—ビス(ジフエ-ルフォスフイノ)ブタン、 dppf ( = 1,1,-ビス(ジフエ-ルフォ スフイノ)フエ口セン)などのリガンド類の組合せ、或いは Pd (PPh) (Ph=フエ-ル)な
4
どの 0価のパラジウム錯体、或いは PdCl (dppf) などのパラジウム塩化物錯体など
2 2
の触媒 (通常、前記臭素原子または Zおよび塩素原子を置換基に有する基本骨格 上の臭素原子または Zおよび塩素原子 1当量に対して 0. 01〜: L当量程度)と、必要 に応じて tert-ブトキシカリウム、 tert-ブトキシナトリウム、炭酸カリウム、トリェチルァミン などの強塩基類 (通常、反応で生成し得るハロゲンィ匕水素 1当量に対して、 1. 1〜1 0当量)存在下、必要に応じてヨウ化銅などの銅触媒 (通常、反応で生成し得るハロ ゲンィ匕水素 1当量に対して、 1〜10当量)共存下、テトラヒドロフラン、ジォキサン、ジ メトキシェタン、 N, N—ジメチルホルムアミド、ジメチルスルホキシド、キシレン、トルェ ン、トリェチルァミンなどの溶媒 (通常、前記臭素原子または Zおよび塩素原子を置 換基に有する基本骨格の濃度で 0. 1〜: L00ミリモル%程度)中、 30〜200°Cで 1〜 60時間かけて撹拌する
などにより、本発明の有機化合物を得ることが出来る。
[0140] (5— c)その他にも、カップリングには、グリニャ反応、亜鉛を用いた方法、スズを用 いた方法など、公知の手法を適用可能であり、使用される触媒としては、ノ ラジウム、 ニッケル、銅などの遷移金属触媒が挙げられ、通常、触媒は力ルバゾール環を有す る中間体に対して 0. 1〜200モル%程度使用される。また、塩基性物質としては、炭 酸カリウム、炭酸カルシウム、リン酸カリウム、炭酸セシウム、 tert—ブトキシナトリウム などが挙げられ、通常、塩基性物質は力ルバゾール環を有する中間体に対して 50〜 1000モル%程度使用される。反応温度としては、通常、 0°C以上、好ましくは 50°C 以上、 300°C以下、好ましくは、 200°C以下である。反応に使用できる溶媒としては、 トルエン、キシレン、ニトロベンゼン等の芳香族系溶媒、テトラヒドロフラン、エトレング リコールジメチルエーテル、テトラグライム等のエーテル系溶媒が挙げられる。
[0141] (6) 2〜8—力ルバゾリル基の導入方法としては、連結基 Zが連結される位置に、塩 素、臭素、ヨウ素などのハロゲン原子を有するカルバゾールとァリールボレートとの力 ップリング反応、若しくは、ハロゲン化ァリールと力ルバゾリルボレートとのカップリング 反応を利用可能であり、具体的には、公知のカップリング手法(Palladium in Heter ocyclic Chemistry: A guide for the Synthetic CnemistJ (; ^二 fe 2002、 Jie Jack Li and Gordon W.Gribble, Pergamon社)、「遷移金属が拓く有機合成 その多彩 な反応形式と最新の成果」(1997年、辻ニ郎、化学同仁社)、「ボルハルト'ショァ一現 代有機化学 下」(2004年、 K.P.C.Vollhardt,化学同人社))などに記載または引用さ れて 、る環同士の結合 (カップリング)反応)を用いることができる。
[0142] (7) また、上述した合成手法例に限らず、前記式 (I)の Cz基と、前記式 (II— 1)に記 載のピリジン環、式 (II 2)に記載のピラジン環、式 (II 3)に記載のピリミジン環、式 (Π-4)に記載のトリァジン環の何れかとを繋ぐ連結基 (即ち、 -G-Q- (環 A1)— Z 一)の形成には、必要に応じて、公知のカップリング手法(Palladium in Heterocycli c Chemistry: A guide for the Synthetic Cnemist」 二; ¾X、 2002、 Jie Jack Li and Gordon W.Gribble、 Pergamon社)、「遷移金属が拓く有機合成 その多彩な反 応形式と最新の成果」(1997年、辻ニ郎、化学同仁社)、「ボルハルト'ショァ一現代 有機化学 下」(2004年、 K.P.C.Vollhardt,化学同人社))などに記載または引用され て 、る環同士の結合 (カップリング)反応)を用いることができる。
[0143] (8) 化合物の精製方法としては、「分離精製技術ノ、ンドブック」(1993年、(財)日本 化学会編)、「化学変換法による微量成分および難精製物質の高度分離」(1988年 、(株)アイ ピー シー発行)、或いは「実験化学講座 (第 4版) 1」(1990年、(財)日 本化学会編)の「分離と精製」の項に記載の方法をはじめとし、公知の技術を利用可 能である。具体的には、抽出 (懸濁洗浄、煮沸洗浄、超音波洗浄、酸塩基洗浄を含 む)、吸着、吸蔵、融解、晶析 (溶媒力もの再結晶、再沈殿を含む)、蒸留 (常圧蒸留 、減圧蒸留)、蒸発、昇華 (常圧昇華、減圧昇華)、イオン交換、透析、濾過、限外濾 過、逆浸透、圧浸透、帯域溶解、電気泳動、遠心分離、浮上分離、沈降分離、磁気 分離、各種クロマトグラフィー (形状分類:カラム、ペーパー、薄層、キヤビラリ一。移動 相分類:ガス、液体、ミセル、超臨界流体。分離機構:吸着、分配、イオン交換、分子 ふるい、キレート、ゲル濾過、排除、了フィユティー。 )などが挙げられる。
[0144] (9) 生成物の確認や純度の分析方法としては、ガスクロマトグラフ(GC)、高速液体 クロマトグラフ (HPLC)、高速アミノ酸分析計 (AAA)、キヤピラリー電気泳動測定 (C E)、サイズ排除クロマトグラフ(SEC)、ゲル浸透クロマトグラフ(GPC)、交差分別クロ マトグラフ(CFC)質量分析(MS、 LCZMS, GC/MS, MSZMS)、核磁気共鳴 装置 (NMR ('HNMR, 13CNMR) )、フーリエ変換赤外分光高度計 (FT—IR)、紫 外可視近赤外分光高度計 (UV. VIS, NIR)、電子スピン共鳴装置 (ESR)、透過型 電子顕微鏡 (TEM-EDX)電子線マイクロアナライザー (EPMA)、金属元素分析 ( イオンクロマトグラフ、誘導結合プラズマ—発光分光 (ICP—AES)原子吸光分析 (A AS)蛍光 X線分析装置 (XRF))、非金属元素分析、微量成分分析 (ICP— MS, GF -AAS, GD— MS)等を必要に応じ、適用可能である。
[0145] 〔電荷輸送材料〕
本発明の有機化合物は電荷輸送材料として使用することができる。本発明の電荷 輸送材料は本発明の有機化合物を含有すればよいが、通常、本発明の有機化合物 力もなる電荷輸送材料であることが好まし 、。
[0146] 〔有機電界発光素子〕
次に、上述のような本発明の有機化合物を用いる本発明の有機電界発光素子に ついて説明する。
[0147] 本発明の有機電界発光素子は、基板上に、陽極、陰極、およびこれら両極間に設 けられた有機発光層を有する有機電界発光素子において、本発明の有機化合物を 含有する層を有するものであって、好ましくは本発明の有機化合物を有機発光層に 含有し、特に好ましくは有機発光層において、本発明の有機化合物をホスト材料とし 、このホスト材料に対して、有機金属錯体がドープされてなるものである。
[0148] 本発明の有機化合物を、このように有機電界発光素子の有機発光層のホスト材料 として用いる場合、 1種を単独で用いても良ぐ 2種以上を組み合わせて用いても良 い。
[0149] 以下に、本発明の有機電界発光素子の構造の一例について、図面を参照しながら 説明するが、本発明の有機電界発光素子の構造は以下の図示のものに限定される ものではない。
図 1〜4は本発明の有機電界発光素子の構造例を模式的に示す断面図であり、 1 は基板、 2は陽極、 3は正孔注入層(陽極バッファ層)、 4は正孔輸送層、 5は有機発 光層(以下、発光層という場合もある。)、 6は正孔阻止層、 7は電子輸送層、 8は陰極 を各々表す。
[0150] 基板
基板 1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板 や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエス テル、ポリメタタリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板ま たはフィルムが好ま ヽ。合成樹脂基板を使用する場合にはガスノリア性に留意する 必要がある。基板のガスノ リア性が小さすぎると、基板を通過した外気により有機電 界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少な くとも片面に緻密なシリコン酸ィ匕膜等を設けてガスノリア性を確保する方法も好まし い方法の一つである。
[0151] 陽極
基板 1上には陽極 2が設けられる。陽極 2は正孔輸送層 4への正孔注入の役割を果 たすものである。陽極 2は、通常、アルミニウム、金、銀、ニッケル、ノ《ラジウム、白金 等の金属、インジウムおよび Zまたはスズの酸ィ匕物などの金属酸ィ匕物、ヨウ化銅など のハロゲン化金属、カーボンブラック、或いは、ポリ(3ーメチルチオフェン)、ポリピロ ール、ポリア-リン等の導電性高分子などにより構成される。陽極 2は通常、スパッタリ ング法、真空蒸着法などにより形成されることが多い。また、銀などの金属微粒子、ョ ゥ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分 子微粉末などで陽極 2を形成する場合には、適当なノ インダー榭脂溶液中に分散さ せて、基板 1上に塗布することにより形成することもできる。更に、導電性高分子で陽 極 2を形成する場合には、電解重合により基板 1上に直接重合薄膜を形成したり、基 板 1上に導電性高分子を塗布して形成することもできる (Appl. Phys. Lett. , 60卷 , 2711頁, 1992年)。
[0152] 陽極 2は通常は単層構造であるが、所望により複数の材料力もなる積層構造とする こと
も可能である。
[0153] 陽極 2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可 視光の透過率を、通常 60%以上、好ましくは 80%以上とすることが望ましい。この場 合、陽極の厚みは通常 5nm以上、好ましくは lOnm以上であり、また通常 lOOOnm 以下、好ましくは 500nm以下程度である。不透明でよい場合は陽極 2の厚みは任意 であり、所望により金属で形成して基板 1を兼ねてもよい。
[0154] 正孔輸送層
図 1に示す構成の素子において、陽極 2の上には正孔輸送層 4が設けられる。正孔 輸送層の材料に要求される条件としては、陽極 2からの正孔注入効率が高ぐかつ、 注入された正孔を効率よく輸送することができる材料であることが必要である。そのた めには、イオンィ匕ポテンシャルが小さぐ可視光の光に対して透明性が高ぐし力も正 孔移動度が大きぐ更に安定性に優れ、トラップとなる不純物が製造時や使用時に発 生しにくいことが要求される。また、発光層 5に接するために発光層 5からの発光を消 光したり、発光層 5との間でェキサイプレックスを形成して効率を低下させな 、ことが 求められる。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子には 更に耐熱性が要求される。従って、ガラス転移温度として 85°C以上の値を有する材 料が望ましい。
[0155] このような正孔輸送材料としては、発光層 5のホスト材料に用いられる正孔輸送性 材料と同様に、 4, 4,—ビス [N— (1—ナフチル)—N フエ-ルァミノ]ビフエ-ルで 代表される 2個以上の 3級ァミンを含み 2個以上の縮合芳香族環が窒素原子に置換 した芳香族ジァミン (特開平 5— 234681号公報)、 4, 4,, 4"ートリス(1—ナフチル フエ-ルァミノ)トリフエ-ルァミン等のスターバースト構造を有する芳香族アミンィ匕合 物 (J. Lumin. , 72— 74卷、 985頁、 1997年)、トリフエ-ルァミンの四量体力も 成る芳香族アミンィ匕合物(Chem. Commun. , 2175頁、 1996年)、 2, 2,, 7, 7, —テトラキス一(ジフエ-ルァミノ) 9, 9'—スピロビフルオレン等のスピロ化合物(Sy nth. Metals, 91卷、 209頁、 1997年)、 4, 4'— N, Ν'—ジカルバゾールビフエ -ルなどの力ルバゾール誘導体等が挙げられる。これらの化合物は、 1種を単独で用 V、てもよ 、し、必要に応じて複数種混合して用いてもょ 、。
[0156] 上記の化合物以外に、正孔輸送層 4の材料として、ポリビニルカルバゾール、ポリビ -ルトリフエ-ルァミン(特開平 7— 53953号公報)、テトラフエ-ルペンジジンを含有 するポリアリーレンエーテルサルホン(Polym. Adv. Tech. , 7卷、 33頁、 199
6年)等の高分子材料が挙げられる。
[0157] 正孔輸送層 4は、スプレー法、印刷法、スピンコート法、ディップコート法、ダイコート 法などの通常の塗布法や、インクジェット法、スクリーン印刷法など各種印刷法等の 湿式成膜法や、真空蒸着法などの乾式成膜法で形成することができる。
[0158] 塗布法の場合は、正孔輸送材料の 1種または 2種以上に、必要により正孔のトラッ プにならな!ヽバインダー榭脂ゃ塗布性改良剤などの添加剤を添加し、適当な溶剤に 溶解して塗布溶液を調製し、スピンコート法などの方法により陽極 2上に塗布し、乾 燥して正孔輸送層 4を形成する。ノインダー榭脂としては、ポリカーボネート、ポリアリ レート、ポリエステル等が挙げられる。バインダー榭脂は添加量が多いと正孔移動度 を低下させるので、少ない方が望ましぐ通常、正孔輸送層中の含有量で 50重量% 以下が好ましい。
[0159] 真空蒸着法の場合には、正孔輸送材料を真空容器内に設置されたルツボに入れ 、真空容器内を適当な真空ポンプで 10— 4Pa程度にまで排気した後、ルツボを加熱し て、正孔輸送材料を蒸発させ、ルツボと向かい合って置かれた、陽極 2が形成された 基板 1上に正孔輸送層 4を形成させる。
[0160] 正孔輸送層 4の膜厚は、通常 5nm以上、好ましくは lOnm以上であり、また通常 30 Onm以下、好ましくは lOOnm以下である。この様に薄い膜を一様に形成するために は、一般に真空蒸着法がよく用いられる。
[0161] 有機発光層
図 1に示す素子において、正孔輸送層 4の上には発光層 5が設けられる。発光層 5 は、電界を与えられた電極間において、陽極 2から注入されて正孔輸送層 4を移動す る正孔と、陰極から注入されて正孔阻止層 6を移動する電子との再結合により励起さ れて強い発光を示す発光物質により形成される。通常、発光層 5には、発光物質であ るドーパント材料とホスト材料が含まれる。なお、本明細書では、ドーパント材料ゃホ スト材料等、発光層に含まれる材料を発光層材料という。
[0162] 発光層 5に用いられる発光層材料としては、安定な薄膜形状を有し、固体状態で高 V、発光 (蛍光または燐光)量子収率を示し、正孔および Zまたは電子を効率よく輸送 することができる化合物であることが必要である。更に電気化学的かつ化学的に安定 であり、トラップとなる不純物が製造時や使用時に発生しにくい化合物であることが要 求される。
[0163] 更に、本発明においては、後述の正孔阻止層の説明の項にも記載するように、正 孔阻止材料の、サイクリックボルタンメトリー測定にぉ ヽて得られる第一酸化電位より も第一酸ィ匕電位が小さい発光物質、とりわけ
(正孔阻止材料の酸ィ匕電位) (発光層材料の酸化電位)≥0. IV
(正孔阻止材料の還元電位)≥ (発光物質の還元電位)
を満たす発光層材料を用いることが好ましい。ただし、上記式では、発光層 5がホスト 材料とドーパント材料を含んで 、る場合には、発光層材料の酸化あるいは還元電位 は、ホスト材料の酸化あるいは還元電位である。
[0164] このような条件を満たし、蛍光を発する発光層を形成する材料としては、 8 ヒドロキ シキノリンのアルミニウム錯体などの金属錯体 (特開昭 59— 194393号公報)、 10— ヒドロキシベンゾ [h]キノリンの金属錯体 (特開平 6— 322362号公報)、ビススチリル ベンゼン誘導体 (特開平 1— 245087号公報、同 2— 222484号公報)、ビススチリル ァリーレン誘導体 (特開平 2— 247278号公報)、(2 ヒドロキシフヱ-ル)ベンゾチア ゾールの金属錯体 (特開平 8— 315983号公報)、シロール誘導体、等が挙げられる 。これらの発光層材料は、通常は真空蒸着法により正孔輸送層上に積層される。ま た、前述の正孔輸送層材料のうち、発光性を有する芳香族ァミン系化合物も発光層 材料として用いることができる。
[0165] 素子の発光効率を向上させるとともに発光色を変える目的で、例えば、 8 ヒドロキ シキノリンのアルミニウム錯体をホスト材料として、クマリン等のレーザー用蛍光色素を ドープすること (J. Appl. Phys. , 65卷, 3610頁, 1989年)等が行われている。この ドーピング手法は、発光層 5にも適用でき、ドープ用材料としては、クマリン以外にも 各種の蛍光色素が使用できる。青色発光を与える蛍光色素としては、ペリレン、ピレ ン、アントラセン、クマリンおよびそれらの誘導体等が挙げられる。緑色蛍光色素とし ては、キナクリドン誘導体、クマリン誘導体等が挙げられる。黄色蛍光色素としては、 ルブレン、ペリミドン誘導体等が挙げられる。赤色蛍光色素としては、 DCM系化合物 、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチォキサンテン誘導体、ァザべンゾ チォキサンテン等が挙げられる。
[0166] 上記のドープ用蛍光色素以外にも、ホスト材料に応じて、レーザー研究, 8卷, 694 頁, 803頁, 958頁(1980年);同 9卷, 85頁(1981年)、【こ歹 U挙されて ヽる 光色 素などが発光層用のドープ材料として使用することができる。
[0167] ホスト材料に対して上記蛍光色素がドープされる量は、 10— 3重量%以上が好ましく 、 0. 1重量%以上がより好ましい。また 10重量%以下が好ましぐ 3重量%以下がよ り好ましい。この下限値を下回ると素子の発光効率向上に寄与できない場合があり、 上限値を越えると濃度消光が起き、発光効率の低下に至る可能性がある。
[0168] ただし、本発明の有機化合物は、前述の如ぐ正孔輸送を主として担う部分と電子 輸送を主として担う部分の両方を有し、このため、優れた正孔輸送性と電子輸送性を 併せ持ち、また、優れた電気的酸化還元耐久性と高い三重項励起準位を有するもの であることから、この有機化合物は、有機電界発光素子の有機発光層のホスト材料と して好適である。従って、本発明の有機電界発光素子の有機発光層は、本発明の有 機化合物をホスト材料とし、このホスト材料に後述の理由カゝら発光物質として好適な 有機金属錯体がドープされて 、ることが好ま 、。
[0169] 本発明において、発光層に使用されるドーパント材料として、好ましくは、周期表 7 な!ヽし 11族から選ばれる金属を含む有機金属錯体が挙げられる。該金属錯体の T1 (励起三重項準位)はホスト材料として使用する本発明の有機化合物の T1より高いこ とが発光効率の観点力も好まし 、。更にドーパント材料にぉ 、て発光が起こることか ら、酸化還元などの化学的安定成も要求される。
[0170] 周期表 7ないし 11族から選ばれる金属を含む燐光性有機金属錯体における、該金 属として好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリ ジゥム、白金、および金が挙げられる。これらの有機金属錯体として、好ましくは下記 一般式 (V)または一般式 (VI)で表される化合物が挙げられる。
MLk-jL'j (V)
式中、 Mは金属、 kは該金属の価数を表す。 Lおよび L'は二座配位子を表す。 jは 0または 1または 2を表す。 [0171] [化 50]
Figure imgf000062_0001
式中、 M7は金属、 Tは炭素または窒素を表す。 Τが窒素の場合は RW、 R15は無ぐ Tが炭素の場合は R"、 R15は水素原子、ハロゲン原子、アルキル基、ァラルキル基、 ァルケ-ル基、シァノ基、アミノ基、ァシル基、アルコキシカルボ-ル基、カルボキシ ル基、アルコキシ基、アルキルアミノ基、ァラルキルアミノ基、ハロアルキル基、水酸基 、ァリールォキシ基、置換基を有していてもよい芳香族炭化水素基または芳香族複 素環基を表す。
R12、 R13は水素原子、ハロゲン原子、アルキル基、ァラルキル基、アルケニル基、シ ァノ基、アミノ基、ァシル基、アルコキシカルボ-ル基、カルボキシル基、アルコキシ 基、アルキルアミノ基、ァラルキルアミノ基、ハロアルキル基、水酸基、ァリールォキシ 基、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、互 V、に連結して環を形成しても良!、。
[0172] 一般式 (V)中の二座配位子 Lおよび L'はそれぞれ以下の部分構造を有する配位 子を示す。
[化 51]
Figure imgf000063_0001
環 Elおよび環 El 'は各々独立に、芳香族炭化水素基または芳香族複素環基を表 し、置換基を有していてもよい。環 E2および環 E2'は含窒素芳香族複素環基を表し
、置換基を有していてもよい。 R21、 R22および R23はそれぞれハロゲン原子;アルキル 基;ァルケ-ル基;アルコキシカルボ-ル基;メトキシ基;アルコキシ基;ァリールォキ シ基;ジアルキルアミノ基;ジァリールァミノ基;カルバゾリル基;ァシル基;ハロアルキ ル基またはシァノ基を表す。
[0173] 一般式 (V)で表される化合物として、更に好ましくは下記一般式 (Va)、 (Vb) (Vc) で表される化合物が挙げられる。
[0174] [化 52]
Figure imgf000063_0002
式中、 M4は金属、 kは該金属の価数を表す。環 E1は置換基を有していてもよい芳 香族炭化水素基を表し、環 E2は置換基を有して 、てもよ 、含窒素芳香族複素環基 を表す。
[0175] [化 53]
Figure imgf000064_0001
式中、 M5は金属、 kは該金属の価数を表す。環 E1は置換基を有していてもよい芳 香族炭化水素基または芳香族複素環基を表し、環 E2は置換基を有して 、てもよ ヽ 含窒素芳香族複素環基を表す。
[0176] [化 54]
Figure imgf000064_0002
式中、 M6は金属、 kは該金属の価数を表し、 jは 0または 1または 2を表す。環 E1お よび環 E1 'は各々独立に、置換基を有していてもよい芳香族炭化水素基または芳香 族複素環基を表し、環 E2および環 E2'は各々独立に、置換基を有していてもよい含 窒素芳香族複素環基を表す。
[0177] 一般式 (Va)、 (Vb)、(Vc)で表される化合物の環 Elおよび環 El 'として、好ましく は、フヱ -ル基、ビフヱ-ル基、ナフチル基、アントリル基、チェ-ル基、フリル基、ベ ンゾチェニル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、またはカル バゾリル基が挙げられる。
[0178] 環 E2および環 E2'として、好ましくは、ピリジル基、ピリミジル基、ビラジル基、トリア ジル基、ベンゾチアゾール基、ベンゾォキサゾール基、ベンゾイミダゾール基、キノリ ル基、イソキノリル基、キノキサリル基、またはフ ナントリジル基が挙げられる。
[0179] 一般式 (Va)、 (Vb)および (Vc)で表される化合物が有して 、てもよ 、置換基として は、フッ素原子等のハロゲン原子;メチル基、ェチル基等の炭素数 1〜6のアルキル 基;ビュル基等の炭素数 2〜6のァルケ-ル基;メトキシカルボニル基、エトキシカル ボニル基等の炭素数 2〜6のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭 素数 1〜6のアルコキシ基;フエノキシ基、ベンジルォキシ基などのァリールォキシ基; ジメチルァミノ基、ジェチルァミノ基等のジアルキルアミノ基;ジフエ-ルァミノ基等の ジァリールアミノ基;カルバゾリル基;ァセチル基等のァシル基;トリフルォロメチル基 等のハロアルキル基;シァノ基等が挙げられ、これらは互いに連結して環を形成して も良い。
[0180] なお、環 E1が有する置換基と環 E2が有する置換基が結合、または環 E1 'が有す る置換基と環 E2'が有する置換基が結合して、一つの縮合環を形成してもよぐこの ような縮合環としては 7, 8—べンゾキノリン基等が挙げられる。
[0181] 環 El、環 El '、環 E2および環 E2'の置換基として、より好ましくはアルキル基、ァ ルコキシ基、芳香族炭化水素基、シァノ基、ハロゲン原子、ハロアルキル基、ジァリー ルァミノ基、またはカルバゾリル基が挙げられる。
[0182] 式 (Va)、 (Vb)における M4な!、し M5として好ましくは、ルテニウム、ロジウム、パラジ ゥム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられる。式 (VI)にお ける M7として好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、 イリジウム、白金または金が挙げられ、特に好ましくは、白金、パラジウム等の 2価の 金属が挙げられる。
[0183] 前記一般式 (V)、 (Va)、 (Vb)および (Vc)で示される有機金属錯体の具体例を以 下に示すが、下記の化合物に限定されるわけではない。
[0184] [化 55]
Figure imgf000066_0001
Figure imgf000066_0002
[0185] [化 56]
Figure imgf000067_0001
[0186] 前記一般式 (V)、 (Va)、 (Vb)および (Vc)で表される有機金属錯体の中でも、特 に配位子 Lおよび Zまたは L'として 2—ァリールピリジン系配位子(2—ァリールピリジ ン、これに任意の置換基が結合したもの、またはこれに任意の基が縮合してなるもの )を有する化合物が好まし 、。
[0187] 前記一般式 (VI)で表わされる有機金属錯体の具体例を以下に示すが、下記の化 合物に限定されるわけではない(以下において、 Meはメチル基、 Etはェチル基を示 す。)。
[化 57]
Figure imgf000068_0001
Figure imgf000068_0002
[0188] この他に、周期表 7ないし 11族から選ばれる金属を含む燐光性有機金属錯体とし て、下記の化合物を用いても良い。
[0189] [化 58]
Figure imgf000068_0003
[0190] このような燐光性ドーパント材料の分子量は、通常 4000以下、好ましくは 3000以 下、より好ましくは 2000以下であり、また通常 200以上、好ましくは 300以上、より好 ましくは 400以上である。分子量がこの上限値を超えると、昇華性が著しく低下して 電界発光素子を制作する際に蒸着法を用いる場合において支障を来したり、或いは 有機溶媒などへの溶解性の低下や、合成工程で生じる不純物成分の増加に伴って 、材料の高純度化 (即ち劣化原因物質の除去)が困難になる場合があり、また分子量 が上記下限値を下回ると、ガラス転移温度および、融点、気化温度などが低下する ため、耐熱性が著しく損なわれるおそれがある。
[0191] これらのドーパント材料を 2種類以上使用する場合は、正孔阻止層中の正孔阻止 材料の酸ィ匕電位が、複数種のドーパント材料の中で一番大きな酸ィ匕電位を有するも のよりも大き 、ことが好ま 、。
[0192] このような有機金属錯体をドーパント材料として用いた、燐光発光を示す発光層に 使用されるホスト材料としては、本発明の有機化合物の 1種を単独で用いても良ぐ 2 種以上を混合して用いても良い。また、本発明の有機化合物と共に、蛍光発光を示 す発光層に使用されるホスト材料として前述した材料 (芳香族ァミン系化合物を含む )や、 4, 4' -N, N'—ジカルバゾールビフエ-ルなどの力ルバゾール誘導体(WO 00Z70655号公報)、トリス(8—ヒドロキシキノリン)アルミニウム(USP 6, 303, 23 8号公報)、 2, 2', 2" - (1, 3, 5—ベンゼントリル)トリス [1—フエ-ル— 1H—ベン ズイミダゾール] (Appl. Phys. Lett. , 78卷, 1622頁, 2001年)、ポリビュルカル バゾール (特開 2001— 257076号公報)等の 1種または 2種以上を併用しても良い。 発光層中に、本発明の有機化合物以外のホスト材料を含む場合、その含有量は、本 発明の有機化合物に対して 50重量%以下であることが好ましい。
[0193] 発光層中にドーパント材料として含有される有機金属錯体の量は、 0. 1重量%以 上が好ましぐまた 30重量%以下が好ましい。この下限値を下回ると素子の発光効 率向上に寄与できない場合があり、上限値を上回ると有機金属錯体同士が 2量体を 形成する等の理由で濃度消光が起き、発光効率の低下に至る可能性がある。
[0194] 燐光発光を示す発光層におけるドーパント材料の量は、従来の蛍光(1重項)を用 いた素子において、発光層に含有される蛍光性色素の量より、若干多い方が好まし い傾向がある。また、燐光性ドーパント材料と共に蛍光色素が発光層中に含有される 場合、該蛍光色素の量は、 0. 05重量%以上が好ましぐ 0. 1重量%以上がより好ま しい。また 10重量%以下が好ましぐ 3重量%以下がより好ましい。
[0195] 発光層 5の膜厚は、通常 3nm以上、好ましくは 5nm以上であり、また通常 200nm 以下、好ましくは lOOnm以下である。
[0196] 発光層 5も正孔輸送層 4と同様の方法で形成することができる。
[0197] ドーパント材料としての上述の蛍光色素および Zまたは燐光色素(燐光性ドーパン ト材料)を発光層のホスト材料としての本発明の有機化合物にドープする方法を以下 に説明する。
[0198] 塗布の場合は、本発明の有機化合物と、ドーパント材料、更に必要により、電子のト ラップや発光の消光剤とならな ヽバインダー榭脂や、レべリング剤等の塗布性改良剤 などの添加剤を添加し溶解した塗布溶液を調製し、スピンコート法などの方法により 正孔輸送層 4上に塗布し、乾燥して発光層 5を形成する。ノ インダー榭脂としては、 ポリカーボネート、ポリアリレート、ポリエステル等が挙げられる。バインダー榭脂は添 加量が多いと正孔 Z電子移動度を低下させるので、少ない方が望ましぐ発光層中 の含有量で 50重量%以下が好ま 、。
[0199] 真空蒸着法の場合には、本発明の有機化合物を真空容器内に設置されたルツボ に入れ、ドーパント材料を別のルツボに入れ、真空容器内を適当な真空ポンプで 10— 4Pa程度にまで排気した後、各々のルツボを同時に加熱して蒸発させ、ルツボと向か い合って置かれた基板上に層を形成する。また、他の方法として、上記の材料を予め 所定比で混合したものを同一のルツボを用いて蒸発させてもょ 、。
[0200] 上記各ドーパント材料が発光層 5中にドープされる場合、発光層の膜厚方向にお いて均一にドープされるが、膜厚方向において濃度分布があっても構わない。例え ば、正孔輸送層 4との界面近傍にのみドープしたり、逆に、正孔阻止層 6界面近傍に ドープしてもよ ヽ。
[0201] 発光層 5も正孔輸送層 4と同様の方法で形成することができるが、通常は真空蒸着 法が用いられる。
なお発光層 5は、本発明の性能を損なわない範囲で上記以外の成分を含んでいて ちょい。 [0202] 正孔阻止層
図 1に示す素子において、正孔阻止層 6は発光層 5の上に、発光層 5の陰極側の 界面に接するように積層される。
[0203] 正孔阻止層 6は、正孔輸送層 4から移動してくる正孔が陰極 8に到達するのを阻止 することができ、かつ、陰極 8から注入された電子を効率よく発光層 5の方向に輸送 することができる化合物より形成されることが好ましい。従って、正孔阻止層 6を構成 する材料に求められる物性としては、電子移動度が高く正孔移動度が低いことが必 要とされる。正孔阻止層 6は正孔と電子を発光層 5内に閉じこめて、発光効率を向上 させる機能を有する。
[0204] 本発明の有機電界発光素子に設けられる正孔阻止層 6のイオンィ匕ポテンシャルは 、発光層 5のイオンィ匕ポテンシャル (発光層 5がホスト材料とドーパント材料を含んで
V、る場合にはホスト材料のイオンィ匕ポテンシャル)より 0. leV以上大き 、ことが好まし
V、。イオンィ匕ポテンシャルは物質の HOMO (最高被占分子軌道)レベルにある電子 を真空準位に放出するのに必要なエネルギーで定義される。イオン化ポテンシャル は光電子分光法で直接定義されるか、電気化学的に測定した酸化電位を基準電極 に対して補正しても求められる。後者の方法の場合、例えば飽和甘コゥ電極 (SCE) を基準電極として用いたとき、下記式で定義される("Molecular Semiconductors ,,, Springer— Verlag, 1985年、 98頁)。
イオン化ポテンシャル =酸化電位 (vs. SCE) +4. 3eV
[0205] 更に、本発明の有機電界発光素子に設けられる正孔阻止層 6の電子親和力(EA) は、発光層 5の電子親和力(発光層 5がホスト材料とドーパント材料を含んでいる場合 にはホスト材料の電子親和力)と比較して同等以上であることが好ましい。電子親和 力もイオンィ匕ポテンシャルと同様に真空準位を基準として、真空準位にある電子が物 質の LUMO (最低空分子軌道)レベルに落ちて安定ィヒするエネルギーで定義される 。電子親和力は、上述のイオンィ匕ポテンシャル力 光学的バンドギャップを差し引い て求められる力 電気化学的な還元電位から下記の式で同様に求められる。
電子親和力 =還元電位 (vs. SCE) +4. 3eV
従って、本発明の有機電界発光素子に設けられる正孔阻止層 6は、酸化電位と還 元電位を用いて、
(正孔阻止材料の酸ィ匕電位) (発光層材料の酸化電位)≥0. IV
(正孔阻止材料の還元電位)≥ (発光層材料の還元電位)
と表現することちでさる。
[0206] 更に後述の電子輸送層 7を有する素子の場合には、正孔阻止層 6の電子親和力は 電子輸送層 7の電子親和力と比較して同等以下であることが好ましい。従って、 (電子輸送材料の還元電位)≥ (正孔阻止材料の還元電位)≥ (発光層材料の還元 電位)
であることが好ましい (ここで、電子輸送材料、正孔阻止材料或いは発光層材料が、 それぞれ複数用いられて ヽる場合には、最も小さ ヽ還元電位のものを比較に使用す る。また、発光層 5がホスト材料とドーパント材料を含んでいる場合には、ホスト材料の うち、最も小さい還元電位のものを比較に使用する。 ) o
[0207] このような条件を満たす正孔阻止材料として、好ましくは、下記一般式 (VII)で表さ れる混合配位子錯体が挙げられる。
[0208] [化 59]
Figure imgf000072_0001
式中、 R1Q1〜R1Q°は、各々独立に水素原子または任意の置換基を表す。 M8はアル ミニゥム、ガリウム、インジウムから選ばれる金属原子を表す。 L5は以下に示す一般式 (Vila) , (VIIb)、(VIIc)のいずれかで表される。
[化 60] -O-Ar51 ( a)
O
II 52 , 、
-O-C-Ar52 (VHb) Ar53
I
— O— Z3— Ar54 (Wc)
A 5 式中、 Ar51〜Ar55は、各々独立に置換基を有していても良い芳香族炭化水素基ま たは置換基を有して!/ヽても良!、芳香族複素環基を表し、 Z3はシリコンまたはゲルマ- ゥムを表す。
[0209] 前記一般式 (VII)にお 、て、 R1Q1〜R1Q6は各々独立に水素原子または任意の置換 基を表すが、好ましくは水素原子;塩素、臭素等のハロゲン原子;メチル基、ェチル 基等の炭素数 1〜6のアルキル基;ベンジル基等のァラルキル基;ビニル基等の炭素 数 2〜6のァルケ-ル基;シァノ基;アミノ基;ァシル基;メトキシ基、エトキシ基等の炭 素数 1〜6のアルコキシ基;メトキシカルボ-ル基、エトキシカルボ-ル基等の炭素数 2〜6のアルコキシカルボ-ル基;カルボキシル基;フエノキシ基、ベンジルォキシ基 などのァリールォキシ基;ジェチルァミノ基、ジイソプロピルアミノ基等のジアルキルァ ミノ基;ジベンジルァミノ基、ジフエネチルァミノ基などのジァラルキルアミノ基;トリフル ォロメチル基等の aーハロアルキル基;水酸基;置換基を有していても良いフエ-ル 基、ナフチル基等の芳香族炭化水素基;置換基を有していても良いチェニル基、ピリ ジル基等の芳香族複素環基を表す。
[0210] 前記芳香族炭化水素基および芳香族複素環基が有しうる置換基としては、フッ素 原子等のハロゲン原子;メチル基、ェチル基等の炭素数 1〜6のアルキル基;ビニル 基等の炭素数 2〜6のァルケ-ル基;メトキシカルボ-ル基、エトキシカルボ-ル基等 の炭素数 2〜6のアルコキシカルボ-ル基;メトキシ基、エトキシ基等の炭素数 1〜6の アルコキシ基;フエノキシ基、ベンジルォキシ基などのァリールォキシ基;ジメチルアミ ノ基、ジェチルァミノ基等のジアルキルアミノ基;ァセチル基等のァシル基;トリフルォ ロメチル基等のハロアルキル基;シァノ基等が挙げられる。
[0211] R1Q1〜R1Q6としてより好ましくは各々独立に水素原子、アルキル基、ハロゲン原子ま たはシァノ基が挙げられる。また R1Mとしては、シァノ基が特に好ましい。
[0212] 前記一般式 (Vila)、 (Vllb)、 (VIIc)中、 Ar51〜Ar55として、具体的には、各々独立 に、置換基を有していても良いフエニル基、ビフエ-ル基、ナフチル基等の芳香族炭 化水素基またはチェニル基、ピリジル基等の芳香族複素環基が挙げられる。
[0213] 前記一般式 (VII)で表される化合物の好ましい具体例を以下に示すが、これらに限 定するものではない。
[0214] [化 61]
Figure imgf000075_0001
[0215] [化 62]
Figure imgf000076_0001
[0216] なお、これらの化合物は正孔阻止層 6中に、 1種を単独で用いても良いし、必要に 応じて 2種以上を混合して用いても良 、。
[0217] 正孔阻止材料としては、前記一般式 (VII)で表される混合配位子錯体の他に、以下 の構造式で示される 1, 2, 4 トリァゾール環残基を少なくとも 1個有する化合物を用 いることちでさる。
[0218] [化 63]
Figure imgf000077_0001
[0219] 上記構造式で表される 1, 2, 4 トリァゾール環残基を少なくとも 1個有する化合物 の具体例を以下に示す力 これらに限定するものではない。
[0220] [化 64]
Figure imgf000078_0001
Figure imgf000078_0002
正孔阻止材料として、更に、以下の構造式で示されるフエナント口リン環を少なくとも 個有する化合物が挙げられる。
Figure imgf000079_0001
[0223] 上記構造式で表されるフ ナント口リン環を少なくとも 1個有する化合物の具体例を 以下に示すが、これらに限定するものではない。
[0224] [化 66]
Figure imgf000079_0002
[0225] 正孔阻止材料としてはまた、一分子内に、 2, 4, 6—位に置換基を有するピリジン 環を有する化合物を使用することが好ましい。具体例としては以下のものが挙げられ る。
[0226] [化 67]
Figure imgf000081_0001
Figure imgf000081_0002
[0227] 正孔阻止層 6の膜厚は、通常 0. 3nm以上、好ましくは 0. 5nm以上であり、また通 常 lOOnm以下、好ましくは 50nm以下である。
[0228] 正孔阻止層も 6正孔輸送層 4と同様の方法で形成することができるが、通常は真空 蒸着法が用いられる。
[0229] ただし、本発明において用いる有機化合物は、有機電界発光素子の発光層のホス ト材料として優れたものであり、後述の実施例に示すように、本発明においては、正 孔阻止層を設けなくても十分に良好な特性を得ることができる。
[0230] 陰極
陰極 8は、正孔阻止層 6を介して発光層 5に電子を注入する役割を果たす。陰極 8 として用いられる材料は、前記陽極 2に使用される材料を用いることが可能である力 効率よく電子注入を行なうには、仕事関数の低い金属が好ましぐスズ、マグネシウム 、インジウム、カルシウム、セシウム、アルミニウム、銀等の適当な金属またはそれらの 合金が用いられる。具体例としては、マグネシウム 銀合金、マグネシウム インジゥ ム合金、アルミニウム リチウム合金等の低仕事関数合金電極が挙げられる。
[0231] 陰極 8の膜厚は通常、陽極 2と同様である。
低仕事関数金属力 成る陰極 8を保護する目的で、この上に更に、仕事関数が高く 大気に対して安定な金属層を積層することは素子の安定性を増す。この目的のため に、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
[0232] 更に、陰極 8と発光層 5または後述の電子輸送層 7との界面に LiF、 MgF、 Li O等
2 2 の極薄絶縁膜 (0. l〜5nm)を挿入することも、素子の効率を向上させる有効な方法 である(Appl. Phys. Lett. , 70巻, 152頁, 1997年;特開平 10— 74586号公 報; IEEE Trans. Electron. Devices, 44卷, 1245頁, 1997年)。
[0233] 電子輸送層
素子の発光効率を更に向上させることを目的として、図 2および図 3に示すように、 正孔阻止層 6と陰極 8の間に電子輸送層 7が設けられることが好ましい。電子輸送層 7は、電界を与えられた電極間において陰極 8から注入された電子を効率よく正孔阻 止層 6の方向に輸送することができる化合物より形成される。
[0234] このような条件を満たす材料としては、 8 ヒドロキシキノリンのアルミニウム錯体な どの金属錯体(特開昭 59— 194393号公報)、 10 ヒドロキシベンゾ [h]キノリンの金 属錯体、ォキサジァゾール誘導体、ジスチリルビフエ-ル誘導体、シロール誘導体、 3—または 5—ヒドロキシフラボン金属錯体、ベンズォキサゾール金属錯体、ベンゾチ ァゾール金属錯体、トリスべンズイミダゾリルベンゼン(米国特許第 5, 645, 948号) 、キノキサリン化合物(特開平 6— 207169号公報)、フ ナント口リン誘導体 (特開平 5— 331459号公報)、 2—t—ブチノレー 9, 10—N, N,ージシァノアントラキノンジィ ミン、 n型水素化非晶質炭化シリコン、 n型硫化亜鉛、 n型セレンィ匕亜鉛などが挙げら れる。
[0235] また、上述のような電子輸送材料に、アルカリ金属をドープする(特開平 10— 2701
71号公報、特開 2002— 100478号公報、特開 2002— 100482号公報などに記載
)ことにより、電子輸送性が向上するため好ましい。
[0236] このような電子輸送層 7を形成する場合、正孔阻止層 6の電子親和力は電子輸送 層 7の電子親和力と比較して同等以下であることが好ま 、。
[0237] また、発光層 5中の発光層材料、正孔阻止層 6の正孔阻止材料および電子輸送層 に用いられる電子輸送材料の還元電位は、下記関係を満たすことが、発光領域を調 整し、駆動電圧を下げるという観点力も好ましい。
(電子輸送材料の還元電位)≥ (正孔阻止材料の還元電位)≥ (発光層材料の還元 電位)
ここで、電子輸送材料、正孔阻止材料或いは発光層材料が、それぞれ複数用いら れている場合には、最も小さい還元電位のものを比較に使用する。ただし、発光層 5 がホスト材料とドーパント材料を含んで 、る場合には、ホスト材料のうち最も還元電位 の小さいものを比較に使用する。
[0238] なお、前述の正孔阻止材料はこの電子輸送層 7に使用しても良い。その場合、前 述の正孔阻止材料を単独で使用して電子輸送層 7を形成しても良いし、複数併用し ても良い。
[0239] 電子輸送層 6の膜厚は、通常 5nm以上、好ましくは 10nm以上であり、また通常 20
Onm以下、好ましくは lOOnm以下である。
[0240] 電子輸送層 7は、正孔輸送層 4と同様にして塗布法或いは真空蒸着法により正孔 阻止層 6上に積層することにより形成されるが、通常は、真空蒸着法が用いられる。
[0241] なお、図 4に示すように、正孔阻止層 6を省略し、発光層 5と陰極 8との間に電子輸 送層 7を設けても良い。 [0242] 正孔注入層
正孔注入の効率を更に向上させ、かつ、有機層全体の陽極 2への付着力を改善さ せる目的で、図 3, 4に示すように、正孔輸送層 4と陽極 2との間に正孔注入層 3を挿 入することも行われている。正孔注入層 3を挿入することで、初期の素子の駆動電圧 が下がると同時に、素子を定電流で連続駆動した時の電圧上昇も抑制される効果が ある。
[0243] 正孔注入層 3に用いられる材料に要求される条件としては、陽極 2とのコンタクトが よく均一な薄膜が形成でき、熱的に安定であることが挙げられ、融点およびガラス転 移温度が高ぐ融点としては 300°C以上、ガラス転移温度としては 100°C以上である ことが好ましい。更に、イオンィ匕ポテンシャルが低く陽極 2からの正孔注入が容易なこ と、正孔移動度が大きいことが挙げられる。
[0244] この目的のために、正孔注入層 3の材料として、これまでにポルフィリン誘導体ゃフ タロシア-ンィ匕合物(特開昭 63- 295695号公報)、ヒドラゾンィ匕合物、アルコキシ置換 の芳香族ジァミン誘導体、 p- (9-アントリル)- Ν,Ν'-ジ- p-トリルァ-リン、ポリチェ-レン ビ-レンやポリ- ρ-フエ-レンビ-レン、ポリア-リン (Appl.Phys丄 ett.,64卷、 1245頁, 1 994年)、ポリチォフェン(OpticalMaterials,9卷、 125頁、 1998年)、スターバスト型芳香 族トリァミン (特開平 4-308688号公報)等の有機化合物や、スパッタ 'カーボン膜 (Syn th.Met.,91卷、 73頁、 1997年)や、バナジウム酸化物、ルテニウム酸化物、モリブデン 酸化物等の金属酸化物 O.Phys.D,29卷、 2750頁、 1996年)が報告されている。
[0245] また、正孔注入'輸送性の低分子有機化合物と電子受容性化合物を含有する層( 特開平 11— 251067号公報、特開 2000— 159221号公報等に記載)や、芳香族ァ ミノ基等を含有する非共役系高分子化合物に、必要に応じて電子受容性化合物をド ープしてなる層(特開平 11— 135262号公報、特開平 11— 283750号公報、特開 2 000— 36390号公報、特開 2000— 150168号公報、特開平 2001— 223084号公 報、および W097Z33193号公報など)、またはポリチォフェン等の導電性ポリマー を含む層(特開平 10— 92584号公報)なども挙げられる力 これらに限定されるもの ではない。
[0246] 上記正孔注入層 3の材料としては、低分子 '高分子いずれの化合物を用いることも 可能である。
[0247] 低分子化合物のうち、よく使用されるものとしては、ポルフィンィ匕合物またはフタロシ ァニン化合物が挙げられる。これらの化合物は中心金属を有していても良いし、無金 属のものでも良い。これらの化合物の好ましい例としては、以下の化合物が挙げられ る。
ポノレフィン、
5,10,15,20-テトラフエニル- 21H,23H-ポルフィン、
5,10,15,20-テトラフエ-ル- 21H,23H-ポルフィンコバルト(Π)、
5,10,15,20-テトラフエ-ル- 21H,23H-ポルフィン銅(11)、
5,10,15,20-テトラフエ-ル- 21H,23H-ポルフィン亜鉛(11)、
5,10,15,20-テトラフエ-ル- 21H,23H-ポルフィンバナジウム(IV)ォキシド、
5,10,15,20-テトラ (4-ピリジル) -21H,23H-ポルフィン、
29H,31H-フタロシアニン、
銅(II)フタロシアニン、
亜鉛(II)フタロシアニン、
チタンフタロシアニンォキシド、
マグネシウムフタロシアニン、
鉛フタロシアニン、
銅(II) 4,4'4",4" '-テトラァザ- 29H,31H-フタロシアニン
[0248] 正孔注入層 3も、正孔輸送層 4と同様にして薄膜形成可能であるが、無機物の場合 には、更に、スパッタ法ゃ電子ビーム蒸着法、プラズマ CVD法が用いられる。
[0249] 以上の様にして形成される正孔注入層 3の膜厚は、低分子化合物を用いて形成さ れる場合、下限は通常 3nm、好ましくは lOnm程度であり、上限は通常 100nm、好 ましくは 50nm程度である。
[0250] 正孔注入層 3の材料として、高分子化合物を用いる場合は、例えば、前記高分子 化合物や電子受容性化合物、更に必要により正孔のトラップとならない、バインダー 榭脂ゃレべリング剤等の塗布性改良剤などの添加剤を添加し溶解した塗布溶液を 調製し、スプレー法、印刷法、スピンコート法、ディップコート法、ダイコート法などの 通常のコーティング法や、インクジェット法等により陽極 2上に塗布し、乾燥することに より正孔注入層 3を薄膜形成することができる。バインダー榭脂としては、ポリカーボ ネート、ポリアリレート、ポリエステル等が挙げられる。バインダー榭脂は該層中の含 有量が多いと正孔移動度を低下させる虞があるので、少ない方が望ましぐ正孔注入 層 3中の含有量で 50重量%以下が好ましい。
[0251] また、フィルム、支持基板、ロール等の媒体に、前述の薄膜形成方法によって予め 薄膜を形成しておき、媒体上の薄膜を、陽極 2上に熱転写または圧力転写することに より、薄膜形成することもできる。
[0252] 以上のようにして、高分子化合物を用いて形成される正孔注入層 3の膜厚の下限 は通常 5nm、好ましくは lOnm程度であり、上限は通常 1000nm、好ましくは 500η m程度である。
[0253] 層構成
本発明の有機電界発光素子は、図 1とは逆の構造、即ち、基板 1上に陰極 8、正孔 阻止層 6、発光層 5、正孔輸送層 4、陽極 2の順に積層することも可能であり、既述し たように少なくとも一方が透明性の高い 2枚の基板の間に本発明の有機電界発光素 子を設けることも可能である。同様に、図 2、図 3または図 4に示した前記各層構成と は逆の順に積層することも可能である。また、図 1〜4のいずれの層構成においても、 本発明の趣旨を逸脱しない範囲で、上述以外の任意の層を有していてもよぐまた上 記複数の層の機能を併有する層を設けることにより、層構成を簡略ィ匕する等、適宜変 形をカ卩えることが可能である。
[0254] 或いはまた、トップェミッション構造や陰極 ·陽極共に透明電極を用いて透過型とす ること、更には、図 1に示す層構成を複数段重ねた構造 (発光ユニットを複数積層さ せた構造)とすることも可能である。その際には段間 (発光ユニット間)の界面層(陽極 が ITO、陰極が A1の場合はその 2層)の代わりに、例えば V Ο等を電荷発生層(CG
2 5
L)として用いると段間の障壁が少なくなり、発光効率'駆動電圧の観点からより好まし い。
[0255] 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からな る素子、陽極と陰極力 ¾—Υマトリックス状に配置された構造の 、ずれにお!、ても適 用することができる。
実施例
[0256] 次に、本発明を実施例によって更に具体的に説明する力 本発明はその要旨を超 えない限り、以下の実施例の記載に限定されるものではな 、。
[0257] [有機化合物の合成例]
本発明の有機化合物および本発明の電荷輸送材料として使用可能な有機化合物 の合成例を、以下の合成例に示す。なお、以下において、ガラス転移温度は DSC測 定、気化温度は TG— DTA測定、融点は DSC測定または TG— DTA測定によりそ れぞれ求めた。
[0258] 合成例 1 (目的物 1〜3の合成)
[化 68]
Figure imgf000087_0001
目的物 3 ( E M- 1 )
[0259] 乾燥空気中、 2, 5 ジフルォロベンズアルデヒド(10. 24g)、ァセトフェノン(8. 66 g)、酢酸(100ml)の混合溶液に、濃硫酸(11. 6ml)を加え、 35°Cで 7時間撹拌した 後、メタノール(5ml)、水(150ml)をカ卩え、析出した沈殿を濾過し、水で洗浄した。こ れを加熱環流条件下、メタノール中で懸濁洗浄し、目的物 1 (10. 94g)を得た。
[0260] 乾燥空気中、目的物 1 (6. 34g)、 1 フエナシルピリジ-ゥムブロマイド(10. 83g) 、酢酸アンモ -ゥム(50. Og)、酢酸(220ml)、 N, N ジメチルホルムアミド(220ml )を、加熱還流下、 6時間撹拌した後、水 (440ml)を加え、析出した沈殿を濾過し、メ タノール洗浄した。これをメタノールでの懸濁洗浄、クロ口ホルム メタノールからの再 沈殿により精製し、 目的物 2 (2. 71g)を得た。
[0261] 窒素気流中、水素化ナトリウム(55%, 0. 81g)の無水 N, N ジメチルホルムアミド
(50ml)懸濁液に力ルバゾール(3. 10g)を添カ卩し、 80°Cで 60分撹拌した後、 目的 物 2 (2. 44g)を添加し、加熱還流下で 3時間撹拌した。これを氷温まで冷却後、水 5 0mlをカ卩えてカゝら沈殿を濾別し、メタノール洗浄した。得られた固形分を、クロ口ホル ム抽出後、加熱環流条件下、エタノール中で懸濁洗浄し、さらにシリカゲルカラムクロ マトグラフィ一で精製し、 目的物 3 (EM— 1) (4. 25g)を得た。
[0262] DEI-MS πι/ζζθΒΤίΜ")から目的物 3であることを確認した。
このもののガラス転移温度は 116°C、気化温度は 456°C、融点は 262°Cであった。
[0263] 合成例 2 (目的物 4〜 7の合成)
[化 69]
Figure imgf000088_0001
目的物 4 目的物 5
Figure imgf000088_0002
目的物 6 目的物 7
( E M- 2 )
[0264] 乾燥空気中、 4 ブロモベンズアルデヒド(12. 90g)、ァセトフエノン(8. 37g)、酢 酸(100ml)の混合溶液に、濃硫酸(11. 4ml)を加え、 40°Cで 5時間撹拌した後、メ タノール(100ml)をカ卩え、析出した沈殿を濾過し、メタノールで洗浄した。これをメタ ノール中で懸濁洗浄し、 目的物 4 (8. 72g)を得た。
[0265] 乾燥空気中、 目的物 4 (8. 62g)、 1 フエナシルピリジ-ゥムブロマイド(12. 52g) 、酢酸アンモ-ゥム(57. 8g)、酢酸(257ml)、 N, N ジメチルホルムアミド(257ml )を、加熱還流下、 5. 5時間撹拌した後、氷冷下で水(600ml)中に投入し、析出し た沈殿を濾過、エタノール Z水の混合溶媒で洗浄した。これを加熱還流下、エタノー ル中での懸濁洗浄により精製し、 目的物 5 (8. 22g)を得た。
[0266] 窒素気流中、 目的物 5 (3. 09g)、 2, 5 ジフルオロフェ-ルボロン酸(1. 64g)、ジ メトキシェタン(80ml)、水(12ml)の混合物に、テトラキス(トリフエ-ルフォスフィン) ノ ラジウム (0. 37g)、炭酸カリウム(3. 32g)を順次投入し、加熱還流下、 5. 7時間 撹拌した。得られた溶液に食塩水(80ml)を加えてから、ジクロロメタン(100ml)で抽 出後、有機層を硫酸マグネシウム乾燥、濾過、濃縮して得られた固形分を、シリカゲ ルカラムクロマトグラフィーで精製し、 目的物 6 (3. 20g)を得た。
[0267] 窒素気流中、水素化ナトリウム(55%, 0. 66g)の無水 N, N ジメチルホルムアミド
(50ml)懸濁液に力ルバゾール(2. 51g)を添カ卩し、 70°Cで 105分撹拌した後、 目的 物 6 (2. 10g)を添カ卩し、加熱還流下で 4. 3時間撹拌した。これに水(50ml)、メタノ ール(50ml)を加えて力も沈殿を濾別し、エタノール洗浄した。得られた固形分を、ク ロロホルム抽出後、加熱環流条件下、トルエン エタノールークロロホルム混合溶媒 中で懸濁洗浄し、さらにクロ口ホルム一エタノールからの再結晶で精製し、 目的物 7 ( EM- 2) (1. 57g)を得た。
[0268] DEI-MS m/z:?^^")から目的物 7であることを確認した。
このもののガラス転移温度は 149°C、気化温度は 501°Cで、融点は検出されなかつ た。
[0269] 合成例 3 (目的物 8〜9の合成)
[化 70]
Figure imgf000090_0001
目的物 8 目的物 9
( E M— 3 )
[0270] 空気中、ベンズアルデヒド(2. 12g)、 2,, 5,一ジフルォロアセトフエノン(6. 25g)、 酢酸アンモ-ゥム(19. 7g)、酢酸(50ml)を 100°Cで 5時間撹拌した後、氷冷し、メタ ノール、水を加え、析出した沈殿を濾別し、メタノールによる懸濁洗浄で精製後、減 圧下で加熱乾燥し、 目的物 8 (1. 15g)を得た。
[0271] 窒素気流中、水素化ナトリウム(55%, 0. 79g)の無水 N, N—ジメチルホルムアミド
(54ml)懸濁液に力ルバゾール(3. 03g)を添カ卩し、 80°Cで 60分撹拌した後、 目的 物 8 (1. 15g)を添加し、加熱還流下で 4. 8時間撹拌した。これに氷冷下、水(50ml) 、メタノール(50ml)をカロえて、析出した沈殿を濾別し、メタノール洗浄した。得られた 固形分を、クロ口ホルム(300ml)で抽出して濃縮後、加熱環流条件下、エタノール— クロ口ホルム混合溶媒中での懸濁洗浄で精製後、減圧下で加熱乾燥し、 目的物 9 (E M- 3) (2. 29g)を得た。
[0272] DEI-MS m/z=967(M+)から目的物 9であることを確認した。
このもののガラス転移温度は 160°C、気化温度は 535°Cで、融点は検出されなかつ た。
[0273] 合成例 4 (目的物 10〜 13の合成)
[化 71]
Figure imgf000091_0001
Figure imgf000091_0002
目的物 1 2 目的物 1 3
(EM— 4 )
[0274] 空気中、ベンズアルデヒド(7. 43g)、 4,ーブロモアセトフエノン(13. 93g)、酢酸( 100ml)の混合溶液に、濃硫酸(11. 3ml)を加え、 35°Cで 5. 3時間撹拌した後、メ タノール(100ml)をカ卩え、析出した沈殿を濾過し、メタノールで洗浄した。これをエタ ノール中で懸濁洗浄し、 目的物 10 (11. 66g)を得た。
[0275] 空気中、 目的物 10 (11. 66g)、 1一フエナシルピリジ -ゥムブロマイド(16. 94g)、 酢酸アンモ-ゥム(78. 26g)、酢酸(350ml)、 N, N—ジメチルホルムアミド(350ml )を、加熱還流下、 6. 5時間撹拌した後、氷冷下で水(700ml)中に投入し、析出し た沈殿を濾過、エタノールで洗浄した。これをエタノールークロロホルム混合溶媒中 力もの再結晶により精製し、 目的物 11 (11. 14g)を得た。
[0276] 窒素気流中、 目的物 11 (5. 79g)、 2, 5—ジフルオロフェニルボロン酸(3. 08g)、 ジメトキシェタン(150ml)、水(23ml)の混合物に、テトラキス(トリフエ-ルフォスフィ ン)パラジウム (0. 69g)、炭酸カリウム(6. 22g)を順次投入し、加熱還流下、 3. 5時 間撹拌した。得られた溶液に食塩水を加えてから、ジクロロメタンで抽出後、有機層 に無水硫酸マグネシウム、活性白土を加えて、撹拌後、濾過、濃縮して得られた固形 分を、シリカゲルカラムクロマトグラフィーで精製し、 目的物 12 (6. Olg)を得た。
[0277] 窒素気流中、水素化ナトリウム(55%, 1. 31g)の無水 N, N—ジメチルホルムアミド
(100ml)懸濁液に力ルバゾール(5. 02g)を添カ卩し、 80でで35分撹拌した後、 目的 物 12 (4. 19g)を添カ卩し、加熱還流下で 3. 3時間撹拌した。これに水(50ml)、メタノ ール(70ml)を加えて力も沈殿を濾別し、メタノール洗浄した。得られた固形分に、ク ロロホルムを加え、可溶成分を溶解させたところに、活性白土を加えて、撹拌後、濾 過、濃縮して得られた固形分を、エタノールークロロホルム混合溶媒力 の再結晶、 アセトン一エタノール一水一メタノール混合溶媒からの再結晶により精製し、 目的物 1 3 (EM-4) (2. 91g)を得た。
[0278] DEI-MS m/z:?^^")から目的物 13であることを確認した。
このもののガラス転移温度は 148°C、結晶化温度は 223°C、気化温度は 507°C、 融点は 300°Cであった。
[0279] 合成例 5 (目的物 14〜17の合成)
[化 72]
Figure imgf000093_0001
Figure imgf000093_0002
目的物 1 6 目的物 1 7
( E M— 5 )
[0280] 乾燥空気中、 3 ブロモベンズアルデヒド(15. 5g)、ァセトフェノン(10. lg)、およ び酢酸(120ml)の混合溶液に、濃硫酸(13. 5ml)を加え、 40°Cで 5時間撹拌した 後、水(240ml)をカ卩え、析出した沈殿を濾過、メタノールで洗浄した。これをメタノー ル中で懸濁洗浄し、 目的物 14 (14. 4g)を得た。
[0281] 空気中、 目的物 14 (14. 4g)、 1 フエナシルピリジ-ゥムブロマイド(21. 6g)、酢 酸アンモ-ゥム(96. 6g)、酢酸(400ml)、および N, N ジメチルホルムアミド(400 ml)を、加熱還流下、 5. 5時間撹拌した後、氷水(800ml)中に投入し、析出した沈 殿を濾過、エタノールで洗浄した。これをトルエン一エタノール力 の再結晶により精 製し、 目的物 15 (8. 92g)を得た。
[0282] 窒素気流中、 目的物 15 (5. 80g)、 2, 5 ジフルオロフェ-ルボロン酸(3. 40g)、 ジメトキシェタン(150ml)、および水(22. 5ml)の混合物に、テトラキス(トリフエ-ル フォスフィン)パラジウム (0. 69g)、炭酸カリウム(6. 22g)を順次投入し、加熱還流下 、 5. 3時間撹拌した。氷冷下、得られた溶液に食塩水(100ml)をカ卩えてから、ジクロ ロメタン(150ml)で抽出後、有機層に硫酸マグネシウム、活性白土を加えて撹拌し てから、シリカゲルカラムを通して濾過、濃縮し、 目的物 16 (6. 37g)を得た。
[0283] 窒素気流中、水素化ナトリウム(55%, 2. 62g)の無水 N, N—ジメチルホルムアミド
(100ml)懸濁液に力ルバゾール(10. Og)を添カ卩し、 90°Cで 30分間撹拌した溶液 に、 目的物 16 (6. 37g)の無水 N, N—ジメチルホルムアミド(100ml)溶液を添カロし 、加熱還流下で 5時間撹拌した。これに氷冷下で水(100ml)、エタノール(30ml)を 加えて力 沈殿を濾別し、エタノール洗浄した。得られた固形分を、クロ口ホルム抽出 した。抽出液に活性白土を加えて撹拌してから、シリカゲルカラムを通して濾過、濾 液を濃縮した。得られた固形分を、 N, N—ジメチルホルムアミドとエタノール力ゝらの再 結晶、および GPC精製、更に、昇華精製 (真空度 1 X 10_3Pa、最高加熱温度 360 °C)で精製し、 目的物 17 (EM— 5) (1. 23g)を得た。
[0284] DEI-MS m/z:?^^")から目的物 17であることを確認した。
このもののガラス転移温度は 131°C、融点は 241°C、気化温度は 498°Cであった。
[0285] 合成例 6 (目的物 18〜21の合成)
[化 73]
Figure imgf000094_0001
目的物 2 0 目的物 2 1
(E M- 7 ) [0286] 空気中、 4 フエ-ルペンズアルデヒド(10. 93g)、 3,ーブロモアセトフエノン(12. 54g)、および酢酸(205ml)の混合溶液に、濃硫酸(9. 65ml)を加え、 40°Cで 5. 8 時間撹拌した後、メタノール(70ml)、水(120ml)を加え、析出した沈殿を濾過、メタ ノールおよびエタノールで洗浄した。これをエタノール トルエン混合溶媒中からの 再結晶で精製し、 目的物 18 (16. 6g)を得た。
[0287] 空気中、 目的物 18 (16. 6g)、 1 フエナシルピリジ-ゥムブロマイド(19. lg)、酢 酸アンモ-ゥム(88g)、酢酸(392ml)、および N, N ジメチルホルムアミド(392ml )を、加熱還流下、 5. 7時間撹拌した後、氷水(500ml)中に投入し、析出した沈殿を 濾過、メタノールで洗浄した。これをエタノール一トルエン混合溶媒中力 の再結晶 により精製し、 目的物 19 (11. 2g)を得た。
[0288] 窒素気流中、 目的物 19 (4. 62g)、 2, 5 ジフルオロフェ-ルボロン酸(2. 21g)、 ジメトキシェタン(100ml)、および水(15ml)の混合物に、テトラキス(トリフエ-ルフォ スフイン)パラジウム(0. 46g)、炭酸カリウム (4. 15g)を順次投入し、加熱還流下、 4 . 3時間撹拌した。得られた溶液にエタノール(100ml)、水(70ml)をカ卩えた後、上 澄み液を除去して得られた固形分を、エタノールークロロホルム混合溶媒中からの再 結晶により精製し、 目的物 20 (3. 42g)を得た。
[0289] 窒素気流中、水素化ナトリウム(55%, 1. 2g)の無水 N, N—ジメチルホルムアミド( 100ml)懸濁液に力ルバゾール (4. 59g)を添カ卩し、 80°Cで 60分撹拌した後、 目的 物 20 (3. 4g)を添加し、加熱還流下で 3. 5時間撹拌した。放冷後、水素化ナトリウム (55%, 0. 9g)を添加し、更に加熱還流下で 3. 5時間撹拌した。氷浴中、これに水( 100ml)、メタノール(100ml)をカ卩えて力 沈殿を濾別し、メタノール洗浄した。得ら れた固形分に、ジクロロメタン(120ml)をカ卩え、可溶成分を溶解させたところに、無水 硫酸マグネシウムおよび活性白土を加えて、撹拌後、濾過、濃縮して得られた固形 分を、シリカゲルカラムクロマトグラフィー、更に、昇華精製 (真空度 1 X 10_3Pa、最 高加熱温度 410°C)により精製し、 目的物 21 (EM— 7) (0. 89g)を得た。
[0290] DEI-MS m/z=789(M+)から目的物 21であることを確認した。
このもののガラス転移温度は 146°C、結晶化温度および融点は観測されず、気化 温度は 522°Cであった。 [0291] 合成例 7 (目的物 22〜24の合成)
[化 74]
Figure imgf000096_0001
目的物 2 3
Figure imgf000096_0002
目的物 2 4
( E M- 6 )
[0292] 空気中、 3,ーブロモアセトフエノン(39. 8g)、ベンズアルデヒド(10. 6g)、酢酸ァ ンモ-ゥム(98. 7g)、酢酸(170ml)、およびエタノール(170ml)を、加熱還流下、 4 . 5時間撹拌し、室温まで放冷した。析出した結晶を濾取した後、エタノールで洗浄 後、トルエン—エタノール混合溶媒力もの再結晶で精製し、 目的物 22 (4. 48g)を得 た。
[0293] 窒素気流中、 目的物 22 (2. 33g)、 2, 5—ジフルオロフェ-ルボロン酸(2. 21g)、 ジメトキシェタン(100ml)、および水(15ml)の混合物に、テトラキス(トリフエ-ルフォ スフイン)パラジウム(0. 46g)、炭酸カリウム (4. 15g)を順次投入し、加熱還流下、 8 . 5時間撹拌した。得られた溶液に食塩水(100ml)を加えた後、塩化メチレン(100 ml)で抽出し、有機層に無水硫酸マグネシウム、活性白土を加えてから、ろ過、濾液 を濃縮し、得られた固形分をトルエン エタノール力 の再結晶で精製し、 目的物 23 (2. 54g)を得た。
[0294] 窒素気流中、水素化ナトリウム(55%, 1. 25g)の無水 N, N ジメチルホルムアミド
(100ml)懸濁液に力ルバゾール (4. 78g)を添カ卩し、 80°Cで 40分撹拌した後、 目的 物 23 (2. 53g)を添加し、加熱還流下で 7時間撹拌した。放冷後、水素化ナトリウム( 55%, 0. 96g)を添カ卩し、更に加熱還流下で 5. 5時間撹拌した。氷浴中、これに氷 水(80ml)、メタノール(80ml)を加えてカゝら沈殿を濾別し、メタノール洗浄した。得ら れた固形分に、ジクロロメタン(120ml)をカ卩え、可溶成分を溶解させたところに、無水 硫酸マグネシウムおよび活性白土を加えて、撹拌後、濾過、濃縮して得られた固形 分を、クロ口ホルム一エタノール混合溶媒力もの再沈殿、シリカゲルカラムクロマトダラ フィ一、次いで、塩化メチレン メタノールからの再沈殿および昇華精製により精製し 、 目的物 24 (EM— 6) (0. 65g)を得た。
[0295] DEI-MS m/z=l 119(M")から目的物 24であることを確認した。
このもののガラス転移温度は 184°C、結晶化温度および融点は観測されず、気化 温度は 565°Cであった。
[0296] [有機電界発光素子の作製例]
以下に、本発明の有機電界発光素子の作製例を示す。
なお、以下において、作製した有機電界発光素子の一部については、下記の駆動 寿命試験を行った。
[0297] 〈駆動寿命試験〉
温度:室温
駆動方式:直流駆動 (DC駆動)
初期輝度: 2, 500cd/m2
定電流で連続発光させ、輝度が 2割減少 (LZL =0. 8)するまでの時間を比較し た。それぞれ後述の参考例 2で作製した標準素子 2の時間を 1. 00とした場合の相対 時間を求めた。
[0298] 参考例 1
標準素子 1の作製
図 3に示す構造を有する有機電界発光素子を以下の方法で作製した。 ガラス基板 1の上にインジウム'スズ酸ィ匕物 (ITO)透明導電膜を 150應堆積したも の (スパッター成膜品;シート抵抗 15 Ω )を通常のフォトリソグラフィ技術と塩酸エッチ ングを用いて 2mm幅のストライプにパターニングして陽極 2を形成した。パターン形成 した ITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコー ルによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗 浄を行った。
[0299] 正孔注入層 3の材料として、下記に示す構造式の芳香族アミノ基を有する非共役 系高分子化合物(PB— 1 (重量平均分子量: 29400,数平均分子量: 12600) )を下記 に示す構造式の電子受容性ィ匕合物 (A— 2)と共に以下の条件でスピンコートした。
[0300] [化 75]
Figure imgf000098_0001
[0301] [化 76]
Figure imgf000099_0001
(A— 2)
[0302] スピンコート条件
溶媒 安息香酸ェチル
塗布液濃度 2[wt%]
PB-l/A-2 10Z2(重量比)
スピナ回転数 1500[rpm]
スピナ回転時間 30 [秒]
乾燥条件 230[°C]X15 [分]
[0303] 上記のスピンコートにより膜厚 30 の均一な薄膜が形成された。
[0304] 次に、正孔注入層 3を成膜した基板を真空蒸着装置内に設置した。上記装置の粗 排気を油回転ポンプにより行った後、装置内の真空度が 6.2X 10— 5Pa (約 4.7X 10— 7To rr)以下になるまでクライオポンプを用いて排気した。上記装置内に配置されたセラミ ックるつぼに入れた、下記に示すァリールアミンィ匕合物 (H— 1)をるつぼの周囲のタ ンタル線ヒーターで加熱して蒸着を行った。この時のるつぼの温度は、 318 334°Cの 範囲で制御した。蒸着時の真空度 7.0 X 10— 5Pa (約 5.3 X 10"7Torr)、蒸着速度は 0.21η m/秒で膜厚 40nmの正孔輸送層 4を得た。
[化 77]
Figure imgf000100_0001
引続き、発光層 5の主成分 (ホスト材料)として下記に示す力ルバゾール誘導体 (CB P)を、副成分 (ドーパント)として有機イリジウム錯体 (D- 1)を別々のセラミックるつぼ に設置し、 2元同時蒸着法により成膜を行った。
[化 78]
Figure imgf000100_0002
[0306] 化合物(CBP)のるつぼ温度は 295〜299°C、蒸着速度は O.llnmZ秒に、化合物( D- 1)のるつぼ温度は 252〜255°Cにそれぞれ制御し、膜厚 30nmで化合物(D— 1) が約 6重量%含有された発光層 5を正孔輸送層 4の上に積層した。蒸着時の真空度 は 6.7 X 10— 5Pa (約 5.0 X 10— 7Torr)であった。
[0307] さらに、正孔阻止層 6として下記に示すピリジン誘導体 (HB— 1)をるつぼ温度を 21 1〜215°Cとして、蒸着速度 0.09應/秒で 5應の膜厚で積層した。蒸着時の真空度は 6 .2 X 10— 5Pa (約 4.7 X 10— 7T。rr)であった。
[0308] [化 79]
Figure imgf000101_0001
[0309] 次に、正孔阻止層 6の上に、電子輸送層 7として下記に示すアルミニウムの 8—ヒド 口キシキノリン錯体 (ET— 1)を同様にして蒸着した。この時のアルミニウムの 8—ヒドロ キシキノリン錯体のるつぼ温度は 234〜245°Cの範囲で制御し、蒸着時の真空度は 6. 0 X 10— 5Pa (約 4.5 X 10— 7Torr)、蒸着速度は 0.22nm/秒で膜厚は 30nmとした。
[0310] [化 80]
Figure imgf000101_0002
[0311] 上記の正孔注入層 3、正孔輸送層 4、発光層 5、正孔阻止層 6および電子輸送層 7 を真空蒸着する時の基板温度は室温に保持した。
[0312] ここで、電子輸送層 6までの蒸着を行った素子を一度前記真空蒸着装置内より大 気中に取り出して、陰極蒸着用のマスクとして 2mm幅のストライプ状シャドーマスクを、 陽極 2の ITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内 に設置して有機層と同様にして装置内の真空度が 2.0 X 10"6Torr (約 2.7 X 10"4Pa)以 下になるまで排気した。陰極 8として、先ず、フッ化リチウム (LiF)をモリブデンボートを 用いて、蒸着速度 0.03nm/秒、真空度 2.8 X 10— 6Torr (約 3.7 X 10— 4Pa)で、 0.5nmの膜 厚で電子輸送層 7の上に成膜した。次に、アルミニウムを同様にモリブデンボートによ り加熱して、蒸着速度 0.46nm/秒、真空度 9.6 X 10— 6Torr (約 1.3 X 10"3Pa)で膜厚 80nm のアルミニウム層を形成して陰極 8を完成させた。以上の 2層型陰極 8の蒸着時の基 板温度は室温に保持した。
[0313] 以上の様にして、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素子 が得られた。この素子の発光特性は以下の通りである。
輝度/電流密度: 24.7[cd/A]®2.5mA/cm2
電圧: 6.0[V]®2.5mA/cm2
発光効率: 20.7[lm/w]@100cd/m2
輝度保持率: 0.97®250mA/cm2
[0314] ここで、輝度保持率は 250mA/cm2で駆動したときの駆動開始力 50秒後の輝度 (L )を駆動開始時の輝度 (L )で割った値であり、駆動安定性の指標である。
0
素子の発光スペクトルの極大波長は 512nmであり、有機イリジウム錯体(D— 1)から のものと同定された。色度は CIE(x,y)=(0.30,0.59)であった。
[0315] 参考例 2
標準素子 2の作製
正孔阻止層のピリジン誘導体 (HB—1)を積層しなカゝつた他は標準素子 1と同様に して、図 4に示す構造の素子を作製した。この素子の発光特性を表 1に示す。なお、 表 1に於ける発光特性値は、それぞれ標準素子 1の値を 1.00として相対的に示した 値である。
素子の発光スペクトルの極大波長は 512nm、色度は CIE(x,y)=(0.29,0.60)であり、有 機イリジウム錯体 (D—1)力ゝらのものと同定された。正孔阻止層なしでも有機イリジゥ ム錯体力もの発光が得られたが、標準素子 1と比較して、発光効率が低く駆動電圧も 高力つた。
[0316] 実施例 1
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに合成 例 1で合成された以下の目的物 3 (EM— 1)を用いた他は参考例 1の標準素子 1と同 様にして素子を作製した。
この素子の発光特性および寿命特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.30,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して発光効率が高ぐまた、標準素子 2と比較して長 寿命であった。
[0317] [化 81]
Figure imgf000103_0001
[0318] 実施例 2
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M—1を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
この素子の発光特性および寿命特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.30,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して発光効率が高力つた。
[0319] また、標準素子 1および 2の特性と実施例 1および 2の素子の特性とを比較すると、 本発明の有機化合物を用いた実施例 1, 2の素子は、正孔阻止層が無くても発光効 率が大きく低下することはなぐ正孔阻止層の有無に拘わらず、発光効率が高ぐ駆 動電圧も低く安定した素子と言える。
[0320] 実施例 3
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに合成 例 2で合成された以下の目的物 7 (EM— 2)を用いた他は参考例 1の標準素子 1と同 様にして素子を作製した。
この素子の発光特性および寿命特性を表 1に示す。
素子の発光スペクトルの極大波長は 513nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は寿命特性に著しく優れるものであった。
[化 82]
Figure imgf000104_0001
[0322] 実施例 4
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M— 2を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
この素子の発光特性および寿命特性を表 1に示す。
素子の発光スペクトルの極大波長は 513nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D—1)力ものものと同定された。この素子は標準素子と比較して長 寿命であった。
[0323] 実施例 5
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに合成 例 3で合成された以下の目的物 9 (EM— 3)を用いた他は参考例 1の標準素子 1と同 様にして素子を作製した。
この素子の発光特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して発光効率が高ぐ駆動電圧も低かった。
[0324] [化 83]
Figure imgf000105_0001
[0325] 実施例 6
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M— 3を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
この素子の発光特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して正孔阻止層が無いにも拘わらず、発光効率が高 ぐ駆動電圧も低力つた。
[0326] 実施例 7
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに合成 例 4で合成された以下の目的物 13 (EM— 4)を用いた他は参考例 1の標準素子 1と 同様にして素子を作製した。
この素子の発光特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.30,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して発光効率が高ぐ駆動電圧も低かった。
[0327] [化 84]
Figure imgf000106_0001
[0328] 実施例 8
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M— 4を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
この素子の発光特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.30,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して正孔阻止層が無いにも拘わらず、発光効率が高 ぐ駆動電圧も低力つた。
[0329] 実施例 9
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに合成 例 5で合成された以下の目的物 17 (EM— 5)を用いた他は参考例 1の標準素子 1と 同様にして素子を作製した。
この素子の発光特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.30,0.62)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して発光効率が高力つた。
[0330] [化 85]
Figure imgf000107_0001
[0331] 実施例 10
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M— 5を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.30,0.62)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
[0332] 実施例 11
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに合成 例 7で合成された以下の目的物 24 (EM— 6)を用いた他は参考例 1の標準素子 1と 同様にして素子を作製した。
この素子の発光特性を表 1に示す。
素子の発光スペクトルの極大波長は 515nm、色度は CIE(x,y)=(0.30,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子 1と比較して発光効率が高ぐ駆動電圧も低かった。
[0333] [化 86]
Figure imgf000107_0002
[0334] 実施例 12
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M— 6を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
この素子の発光特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
この素子は、標準素子と比較して正孔阻止層が無いにも拘わらず、発光効率が高 ぐ電圧も低かった。
[0335] 実施例 13
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに合成 例 6で合成された以下の目的物 21 (EM— 7)を用いた他は参考例 1の標準素子 1と 同様にして素子を作製した。
素子の発光スペクトルの極大波長は 515nm、色度は CIE(x,y)=(0.30,0.61)であり、有 機
イリジウム錯体 (D— 1)力ものものと同定された。
[0336] [化 87]
Figure imgf000108_0001
実施例 14
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M— 7を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
[0338] 比較例 1
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに下記 に示す EM— 11を用いた他は参考例 1の標準素子 1と同様にして素子を作製した。 この素子の発光特性および寿命特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
[0339] [化 88]
Figure imgf000109_0001
[0340] 比較例 2
発光層 5の主成分 (ホスト材料)として力ルバゾール誘導体 (CBP)の代わりに上記 E M— 11を用いた他は参考例 2の標準素子 2と同様にして素子を作製した。
この素子の発光特性および寿命特性を表 1に示す。
素子の発光スペクトルの極大波長は 514nm、色度は CIE(x,y)=(0.31,0.61)であり、有 機イリジウム錯体 (D— 1)力ものものと同定された。
[0341] 比較例 1と比較例 2の結果から、 EM— 11では、正孔阻止層の有無に拘わらず、標 準素子 1や実施例 1, 2等と比較して発光効率が低ぐ寿命が著しく劣ることが分かる
[0342] [表 1]
Figure imgf000110_0001
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れる となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2004年 12月 24日付で出願された日本特許出願 (特願 2004— 373981)に基づいており、その全体が引用により援用される。

Claims

請求の範囲
[1] 下記式 (I)で表される有機化合物。
[化 89]
Figure imgf000112_0001
Cz1および Cz2は、それぞれ力ルバゾリル基を表す。
Zは、直接結合或いは Cz1および Cz2がそれぞれ有する力ルバゾール環の窒素原 子同士を共役可能とする任意の連結基を表す。
Cz2および Zは、それぞれ置換基を有していてもよい。
Qは、下記式 (II)の Gにつながる直接結合を表す。
[化 90]
Figure imgf000112_0002
式中、環 B1は、ヘテロ原子として N原子を n個有する 6員環の芳香族複素環である nは、 1〜3の整数である。
Gは、環 B1の N原子のオルト位およびパラ位にある C原子に結合する。
Gは、 Qにつながる場合は、 Qにつながる直接結合または任意の連結基を表す。
Gは、 Qにつながらない場合は、芳香族炭化水素基を表す。
mは、 3〜5の整数である。
一分子中に存在する複数個の Gは、同一であっても異なって 、てもよ 、。 環 B1は、 G以外にも置換基を有していてもよい。
[2] 前記式 (II)が、下記式 (II 1)〜(II 4)の何れかである、請求項 1に記載の有機化 合物。
[化 91]
Figure imgf000113_0001
式中、 Gは式 (II)におけると同義である。
前記式 (II)が、前記式 (II- 1)である、請求項 1に記載の有機化合物。 前記式 (I)が、下記式 (I 1)である、請求項 1に記載の有機化合物。
Figure imgf000113_0002
式中、 Z、 Qは各々式 (I)におけると同義である。
Qにつながる場合の Gおよび Z力 それぞれ直接結合または—(Ph) - (但し、 Ph
P
は置換基を有していてもよいフエ-レン基を表し、 pは 1〜8の整数を表す。)である、 請求項 1に記載の有機化合物。 [6] 前記式 (I)力 下記式 (III)である、請求項 1に記載の有機化合物。
[化 93]
Figure imgf000114_0001
式中、 G, Qおよび Zは、各々式 (I)におけると同義である。
環 C1はピリジン環を表し、 3位および Zまたは 5位に置換基を有して 、てもよ 、。
Czは、置換基を有して!/、てもよ 、力ルバゾリル基を表す。
a〜cはそれぞれ Czの数を表し、各々独立に、 0または 2〜5の整数である。 a〜cが 0である場合には、 a〜cが 0である Czにつながる Qおよび Zは存在しない。一分子中 に複数の Czが存在する場合、これらは同一であっても異なって 、てもよ 、。
[7] 前記式(ΠΙ)にお!/ヽて、 (a, b, c)力 S (2, 0, 0)、 (0, 2, 0)、 (2, 0, 2)又 ίま(2, 2, 2 )である、請求項 6に記載の有機化合物。
[8] 前記式 (III)において、 Gが、一(Ph) —(但し、 Phは置換基を有していてもよいフエ
P
二レン基を表し、 pは 1〜8の整数を表す。)である、請求項 6に記載の有機化合物。
[9] 請求項 1において、前記式 (I)で表される部分構造のうち、式 (II)の部分を除いた部 分が、下記 V— 1, V- 7, V- 9, V— 13, V— 14及び V— 15の中から選ばれること を特徴とする有機化合物。
[化 94]
Figure imgf000115_0001
Figure imgf000115_0002
請求項 1にお 、て、以下の構造式の!/、ずれかで表されることを特徴とする有機化合 物。以下の例示構造式中、 N— Czは、 N 力ルバゾリル基を示す。 [化 95]
Figure imgf000117_0001
Figure imgf000117_0002
Figure imgf000117_0003
[化 96]
Figure imgf000118_0001
Figure imgf000118_0002
Figure imgf000118_0003
[化 97]
Figure imgf000119_0001
Figure imgf000119_0002
[化 98]
Figure imgf000121_0001
Figure imgf000121_0002
Figure imgf000121_0003
[化 99]
Figure imgf000123_0001
Figure imgf000123_0002
Figure imgf000123_0003
[化 100]
Figure imgf000124_0001
Figure imgf000124_0002
Figure imgf000124_0003
[化 101]
Figure imgf000125_0001
Figure imgf000125_0002
[化 102]
Figure imgf000126_0001
[化 103]
Figure imgf000127_0001
Figure imgf000127_0002
[化 104]
Figure imgf000128_0001
Figure imgf000128_0002
[11] 請求項 1において、分子量が、 200〜4000であることを特徴とする有機化合物。
[12] 請求項 1にお 、て、ガラス転移温度が 90°C以上で、気化温度が 700°C以下、融点 力 S150°C以上であることを特徴とする有機化合物。
[13] 請求項 1において、有機化合物が下記構造式で表されることを特徴とする有機化 合物。
[化 105]
Figure imgf000129_0001
請求項 1において、有機化合物が下記構造式で表されることを特徴とする有機化 合物。
[化 106]
Figure imgf000129_0002
請求項 1において、有機化合物が下記構造式で表されることを特徴とする有機化 合物。
[化 107]
Figure imgf000130_0001
請求項 1において、有機化合物が下記構造式で表されることを特徴とする有機化 合物。
[化 108]
Figure imgf000130_0002
請求項 1において、有機化合物が下記構造式で表されることを特徴とする有機化 合物。
[化 109]
Figure imgf000130_0003
(EM- 5) 請求項 1において、有機化合物が下記構造式で表されることを特徴とする有機化 合物。
[化 110]
Figure imgf000131_0001
[20] 請求項 1に記載の有機化合物を含有する電荷輸送材料。
[21] 基板上に、陽極、陰極、およびこれら両極間に設けられた有機発光層を有する有 機電界発光素子において、請求項 1に記載の有機化合物を含有する層を有すること を特徴とする有機電界発光素子。
[22] 請求項 1に記載の有機化合物を含有する層が有機発光層である、請求項 8に記載 の有機電界発光素子。
PCT/JP2005/022635 2004-12-24 2005-12-09 有機化合物、電荷輸送材料および有機電界発光素子 WO2006067976A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/722,760 US8324403B2 (en) 2004-12-24 2005-12-09 Organic compound, charge-transporting material, and organic electroluminescent element
EP05814748.9A EP1829871B1 (en) 2004-12-24 2005-12-09 Organic compound, charge-transporting material, and organic electroluminescent element
KR1020077014364A KR101420608B1 (ko) 2004-12-24 2005-12-09 유기 화합물, 전하 수송 물질 및 유기 전계발광 소자
CN200580044718XA CN101087776B (zh) 2004-12-24 2005-12-09 有机化合物、电荷传输材料和有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-373981 2004-12-24
JP2004373981 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006067976A1 true WO2006067976A1 (ja) 2006-06-29

Family

ID=36601578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022635 WO2006067976A1 (ja) 2004-12-24 2005-12-09 有機化合物、電荷輸送材料および有機電界発光素子

Country Status (7)

Country Link
US (1) US8324403B2 (ja)
EP (1) EP1829871B1 (ja)
JP (1) JP5050344B2 (ja)
KR (2) KR20120082938A (ja)
CN (1) CN101087776B (ja)
TW (1) TWI380980B (ja)
WO (1) WO2006067976A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112984A (ja) * 2006-10-04 2008-05-15 Mitsubishi Chemicals Corp 低分子塗布型有機電界発光素子用の電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子
WO2008127057A1 (en) * 2007-04-13 2008-10-23 Cheil Industries Inc. Material for organic photoelectric device including electron transporting unit and hole transporting unit, and organic photoelectric device including the same
EP2103653A1 (en) * 2006-12-27 2009-09-23 Sumitomo Chemical Company, Limited Composition and light-emitting element comprising the composition
EP1820801A4 (en) * 2004-12-10 2009-12-23 Pioneer Corp ORGANIC COMPOUND, CHARGE TRANSPORT MATERIAL, AND ORGANIC ELECTROLUMINESCENT ELEMENT
US7807277B2 (en) * 2006-11-28 2010-10-05 Canon Kabushiki Kaisha Amine compound and organic light-emitting device
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
WO2011013681A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 電荷輸送材料及び有機電界発光素子
WO2011013859A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
DE102009053382A1 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
JP2012505168A (ja) * 2008-10-08 2012-03-01 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の物質
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
WO2012074210A2 (ko) * 2010-12-02 2012-06-07 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
JP2012514324A (ja) * 2008-12-30 2012-06-21 チェイル インダストリーズ インコーポレイテッド 新規な有機光電素子用化合物およびこれを含む有機光電素子
WO2012149999A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
JP2015509954A (ja) * 2012-07-13 2015-04-02 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機電子素子
JP2015160844A (ja) * 2014-02-28 2015-09-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. トリアジン(triazine)誘導体及びこれを用いた有機発光素子
WO2015156449A1 (ko) * 2014-04-09 2015-10-15 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
WO2016129687A1 (ja) * 2015-02-13 2016-08-18 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
WO2016158540A1 (ja) * 2015-03-27 2016-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物
WO2017043645A1 (ja) * 2015-09-10 2017-03-16 東ソー株式会社 環状アジン化合物、その製造方法、製造中間体、及び用途
KR20180022616A (ko) * 2016-08-24 2018-03-06 시노라 게엠베하 유기 분자, 특히 유기 광전자 디바이스에 사용하기 위한 유기 분자
JP2018095562A (ja) * 2016-12-08 2018-06-21 東ソー株式会社 易溶性アジン化合物とその製造方法、及びそれを用いた有機電界発光素子
DE102017102363A1 (de) 2017-02-07 2018-08-09 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3275968A4 (en) * 2015-03-27 2019-05-08 cynora GmbH ORTHO-SUBSTITUTED THERMO-ACTIVATED DELAYED FLUORESCENCE MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING SAME
US10784447B2 (en) 2015-04-24 2020-09-22 Samsung Sdi Co., Ltd. Organic compound, composition, and organic optoelectronic diode
US11177441B2 (en) 2014-01-24 2021-11-16 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
US20210399230A1 (en) * 2018-08-13 2021-12-23 Cynora Gmbh Organic molecules for optoelectronic devices
US11456426B2 (en) 2017-02-07 2022-09-27 Samsung Display Co., Ltd. Organic molecules for use in organic optoelectronic devices
US11706977B2 (en) 2018-01-11 2023-07-18 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104221A1 (en) 2005-03-28 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic device
WO2006126542A1 (ja) * 2005-05-24 2006-11-30 Pioneer Corporation 有機エレクトロルミネッセンス素子
JP5168840B2 (ja) * 2005-08-04 2013-03-27 三菱化学株式会社 電荷輸送材料、有機電界発光素子用組成物及び有機電界発光素子
JP5167607B2 (ja) * 2005-08-23 2013-03-21 三菱化学株式会社 電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
JP5017858B2 (ja) * 2005-12-27 2012-09-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
TW200804452A (en) * 2006-03-13 2008-01-16 Sumitomo Chemical Co Method for production of conjugated polymer
DE102006025777A1 (de) * 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
CN101506163B (zh) 2006-08-30 2012-05-02 株式会社半导体能源研究所 合成蒽衍生物的方法和蒽衍生物、发光元件、发光装置、电子装置
JP5179805B2 (ja) * 2006-08-30 2013-04-10 株式会社半導体エネルギー研究所 アントラセン誘導体、発光素子および発光装置
US7723722B2 (en) 2007-03-23 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Organic compound, anthracene derivative, and light-emitting element, light-emitting device, and electronic device using anthracene derivative
KR100957620B1 (ko) * 2007-11-01 2010-05-13 제일모직주식회사 유기광전소자용 재료, 및 이를 이용한 유기광전소자
JP5487595B2 (ja) * 2007-11-15 2014-05-07 三菱化学株式会社 有機電界発光素子用組成物および有機電界発光素子
JP5499487B2 (ja) * 2008-02-25 2014-05-21 三菱化学株式会社 キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP5421242B2 (ja) * 2008-03-24 2014-02-19 新日鉄住金化学株式会社 有機電界発光素子用化合物及びこれを用いた有機電界発光素子
JP5604804B2 (ja) * 2008-04-25 2014-10-15 住友化学株式会社 含窒素複素環式化合物を含む組成物
CN105037368B (zh) * 2008-06-05 2017-08-29 出光兴产株式会社 卤素化合物、多环系化合物及使用其的有机电致发光元件
US8049411B2 (en) 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
JP2010013421A (ja) * 2008-07-07 2010-01-21 Chemiprokasei Kaisha Ltd 新規なビス(ジカルバゾリルフェニル)誘導体、それを用いたホスト材料および有機エレクトロルミネッセンス素子
JP5371312B2 (ja) * 2008-07-28 2013-12-18 ケミプロ化成株式会社 新規なジカルバゾリルフェニル誘導体、それを用いたホスト材料および有機エレクトロルミネッセンス素子
KR101661328B1 (ko) 2008-09-19 2016-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 카르바졸 유도체 및 그 제조 방법
JP5674266B2 (ja) * 2008-10-27 2015-02-25 ケミプロ化成株式会社 新規なカルバゾール系誘導体、それよりなるホスト材料およびそれを含む有機エレクトロルミネッセンス素子
KR101288557B1 (ko) 2008-12-24 2013-07-22 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
JP5784608B2 (ja) 2009-09-16 2015-09-24 メルク パテント ゲーエムベーハー 電子素子製造のための調合物
WO2011046182A1 (ja) 2009-10-16 2011-04-21 出光興産株式会社 含フルオレン芳香族化合物、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US8828561B2 (en) 2009-11-03 2014-09-09 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
KR101506999B1 (ko) 2009-11-03 2015-03-31 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
DE102010002316B4 (de) * 2010-02-24 2011-12-08 Bruker Biospin Gmbh Analysesystem mit Kopplung von GPC und NMR-Spektroskopie, insbesondere für die Analyse von polymerhaltigen Messproben
KR20120057606A (ko) 2010-03-05 2012-06-05 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네선스 소자용 재료 및 그것을 사용한 유기 일렉트로루미네선스 소자
CN104592206B (zh) 2010-04-20 2019-12-31 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件
CN102869672B (zh) 2010-05-03 2016-05-11 默克专利有限公司 制剂和电子器件
WO2011137922A1 (de) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulierungen und elektronische vorrichtungen
CN102918037B (zh) 2010-06-02 2015-05-13 捷恩智株式会社 咔唑化合物、电子传输材料、有机电激发光元件、显示装置以及照明装置
JP5664128B2 (ja) * 2010-10-29 2015-02-04 三菱化学株式会社 ピリミジン化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、照明装置及び表示装置
JP5980796B2 (ja) 2010-11-24 2016-08-31 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
US20130264560A1 (en) * 2010-12-20 2013-10-10 E I Du Pont De Nemours And Company Triazine derivatives for electronic applications
US9705091B2 (en) 2010-12-20 2017-07-11 Idemitsu Kosan Co., Ltd. Aromatic heterocycle derivative and organic electroluminescent element using same
KR101802008B1 (ko) * 2010-12-21 2017-11-27 이 아이 듀폰 디 네모아 앤드 캄파니 피리미딘 화합물을 포함하는 전자 소자
JP5806336B2 (ja) * 2011-02-14 2015-11-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 電気活性組成物
KR102261235B1 (ko) 2011-11-22 2021-06-04 이데미쓰 고산 가부시키가이샤 방향족 복소 고리 유도체, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
WO2014042197A1 (ja) 2012-09-11 2014-03-20 Jnc株式会社 有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置
CN105473569B (zh) 2013-11-13 2021-01-01 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
CN104370887B (zh) * 2013-12-26 2016-08-24 北京阿格蕾雅科技发展有限公司 2,6-双[3-(n-咔唑基)苯基]吡啶类化合物的合成方法
US20170186967A1 (en) * 2014-06-11 2017-06-29 Hodogaya Chemical Co., Ltd. Pyrimidine derivative and an organic electroluminescent device
US20160013423A1 (en) * 2014-07-09 2016-01-14 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
KR101887213B1 (ko) * 2014-08-12 2018-08-09 삼성에스디아이 주식회사 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
JP6640735B2 (ja) 2014-11-28 2020-02-05 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子および電子機器
KR102249062B1 (ko) * 2014-11-28 2021-05-10 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
EP3065190A1 (en) 2015-03-02 2016-09-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Small molecule hole transporting material for optoelectronic and photoelectrochemical devices
CN117924246A (zh) * 2015-05-08 2024-04-26 默克专利有限公司 π共轭类化合物、有机电致发光元件材料、发光材料、发光性薄膜、有机电致发光元件、显示装置及照明装置
JP6056909B2 (ja) * 2015-06-11 2017-01-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
KR101962758B1 (ko) 2015-06-17 2019-03-27 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
KR20170101128A (ko) 2016-02-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR102270125B1 (ko) * 2017-04-13 2021-06-25 시노라 게엠베하 유기 분자, 특히 광전자 장치에 사용하기 위한 유기 분자
EP3418278B1 (en) * 2017-06-23 2020-10-21 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
KR102362796B1 (ko) 2017-07-04 2022-02-15 삼성디스플레이 주식회사 헤테로환 화합물 및 이를 포함하는 유기 전계 발광 소자
EP3684884B1 (en) * 2017-09-18 2021-06-23 cynora GmbH Organic molecules, in particular for use in optoelectronic devices
WO2019073075A1 (en) * 2017-10-13 2019-04-18 Cynora Gmbh ORGANIC MOLECULES FOR USE IN OPTOELECTRONIC DEVICES
EP3470411B1 (en) * 2017-10-16 2019-10-16 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
WO2019076965A1 (en) * 2017-10-19 2019-04-25 Cynora Gmbh ORGANIC MOLECULES FOR USE IN OPTOELECTRONIC DEVICES
EP3575377B1 (en) * 2018-05-31 2021-03-17 Cynora Gmbh Organic molecules for optoelectronic devices
CN108682702A (zh) * 2018-06-06 2018-10-19 北京大学 一种光电器件用复合空穴传输层材料及其制备方法
KR20200023984A (ko) * 2018-08-27 2020-03-06 삼성전자주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR102331904B1 (ko) * 2018-11-27 2021-11-26 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
US11746117B2 (en) 2018-11-27 2023-09-05 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same
EP4174054A1 (en) 2018-12-28 2023-05-03 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
EP3702349B1 (en) * 2019-02-26 2023-01-04 Samsung Electronics Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
CN110649165A (zh) * 2019-04-04 2020-01-03 原秀玲 一种以四苯基联苯二胺衍生物为空穴传输材料的钙钛矿电池
CN111285759B (zh) * 2020-02-19 2022-08-12 贵州省中国科学院天然产物化学重点实验室(贵州医科大学天然产物化学重点实验室) 一种查尔酮类衍生物的合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169448A (ja) * 1998-12-07 2000-06-20 Minolta Co Ltd 新規アミノ化合物とその製造方法、および用途
JP2000186066A (ja) * 1998-12-22 2000-07-04 Minolta Co Ltd 新規アミノ化合物とその製造方法、及び用途
WO2004066685A1 (ja) * 2003-01-24 2004-08-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
EP1489155A1 (en) * 2002-03-22 2004-12-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
WO2005057987A1 (ja) * 2003-12-15 2005-06-23 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
EP1551206A1 (en) * 2002-10-09 2005-07-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005079118A1 (ja) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005084083A1 (ja) * 2004-03-02 2005-09-09 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005085387A1 (ja) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69204359T2 (de) 1991-06-05 1996-04-18 Sumitomo Chemical Co Organische elektroluminescente Vorrichtungen.
JPH07110940B2 (ja) 1991-06-05 1995-11-29 住友化学工業株式会社 有機エレクトロルミネッセンス素子
TW532048B (en) 2000-03-27 2003-05-11 Idemitsu Kosan Co Organic electroluminescence element
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
KR100582797B1 (ko) * 2001-02-20 2006-05-23 아이시스 이노베이션 리미티드 금속 함유 덴드리머
JP2003022893A (ja) 2001-07-06 2003-01-24 Fuji Photo Film Co Ltd 発光素子
EP2770036B1 (en) 2002-03-15 2017-12-20 Idemitsu Kosan Co., Ltd Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
US20030205696A1 (en) 2002-04-25 2003-11-06 Canon Kabushiki Kaisha Carbazole-based materials for guest-host electroluminescent systems
JP4427947B2 (ja) 2002-11-18 2010-03-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
JP2004217557A (ja) 2003-01-14 2004-08-05 Mitsubishi Chemicals Corp カルバゾール系化合物、電荷輸送材料、有機電界発光素子材料、および有機電界発光素子
US7166689B2 (en) * 2003-02-13 2007-01-23 Ricoh Company, Ltd. Aryl amine polymer, thin film transistor using the aryl amine polymer, and method of manufacturing the thin film transistor
JP2004311404A (ja) 2003-03-26 2004-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
US20040247933A1 (en) 2003-06-03 2004-12-09 Canon Kabushiki Kaisha Bipolar asymmetric carbazole-based host materials for electrophosphorescent guest-host OLED systems
DE10328627A1 (de) 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz
JP4561221B2 (ja) * 2003-07-31 2010-10-13 三菱化学株式会社 化合物、電荷輸送材料および有機電界発光素子
KR100994083B1 (ko) * 2003-07-31 2010-11-12 미쓰비시 가가꾸 가부시키가이샤 화합물, 전하 수송 재료 및 유기 전계 발광 소자
KR101359288B1 (ko) * 2005-02-21 2014-02-10 미쓰비시 가가꾸 가부시키가이샤 유기 전계 발광 소자 및 그 제조
JP5261887B2 (ja) 2005-05-17 2013-08-14 三菱化学株式会社 モノアミン化合物、電荷輸送材料および有機電界発光素子
WO2006126542A1 (ja) * 2005-05-24 2006-11-30 Pioneer Corporation 有機エレクトロルミネッセンス素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169448A (ja) * 1998-12-07 2000-06-20 Minolta Co Ltd 新規アミノ化合物とその製造方法、および用途
JP2000186066A (ja) * 1998-12-22 2000-07-04 Minolta Co Ltd 新規アミノ化合物とその製造方法、及び用途
EP1489155A1 (en) * 2002-03-22 2004-12-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
EP1551206A1 (en) * 2002-10-09 2005-07-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2004066685A1 (ja) * 2003-01-24 2004-08-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005057987A1 (ja) * 2003-12-15 2005-06-23 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005079118A1 (ja) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005084083A1 (ja) * 2004-03-02 2005-09-09 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005085387A1 (ja) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1829871A1 *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1820801A4 (en) * 2004-12-10 2009-12-23 Pioneer Corp ORGANIC COMPOUND, CHARGE TRANSPORT MATERIAL, AND ORGANIC ELECTROLUMINESCENT ELEMENT
JP2008112984A (ja) * 2006-10-04 2008-05-15 Mitsubishi Chemicals Corp 低分子塗布型有機電界発光素子用の電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子
US7807277B2 (en) * 2006-11-28 2010-10-05 Canon Kabushiki Kaisha Amine compound and organic light-emitting device
EP2103653A1 (en) * 2006-12-27 2009-09-23 Sumitomo Chemical Company, Limited Composition and light-emitting element comprising the composition
EP2103653A4 (en) * 2006-12-27 2010-10-06 Sumitomo Chemical Co COMPOSITION AND LIGHT-EMITTING ELEMENT COMPRISING THE COMPOSITION
WO2008127057A1 (en) * 2007-04-13 2008-10-23 Cheil Industries Inc. Material for organic photoelectric device including electron transporting unit and hole transporting unit, and organic photoelectric device including the same
US8247805B2 (en) 2007-04-13 2012-08-21 Cheil Industries, Inc. Material for organic photoelectric device including electron transporting unit and hole transporting unit, and organic photoelectric device including the same
JP2012505168A (ja) * 2008-10-08 2012-03-01 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の物質
JP2012514324A (ja) * 2008-12-30 2012-06-21 チェイル インダストリーズ インコーポレイテッド 新規な有機光電素子用化合物およびこれを含む有機光電素子
JP2011049511A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 有機電界発光素子
WO2011013859A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
JP2011071474A (ja) * 2009-07-31 2011-04-07 Fujifilm Corp 電荷輸送材料及び有機電界発光素子
JP2011049512A (ja) * 2009-07-31 2011-03-10 Fujifilm Corp 有機電界発光素子
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
US8609257B2 (en) 2009-07-31 2013-12-17 Udc Ireland Limited Organic electroluminescence device
KR101192612B1 (ko) 2009-07-31 2012-10-18 후지필름 가부시키가이샤 유기 전계발광 디바이스
WO2011013681A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 電荷輸送材料及び有機電界発光素子
DE112010004381B4 (de) 2009-11-14 2023-09-07 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
US9334260B2 (en) 2009-11-14 2016-05-10 Merck Patent Gmbh Materials for electronic devices
DE102009053382A1 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
WO2011057706A2 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
JP2013510803A (ja) * 2009-11-14 2013-03-28 メルク パテント ゲーエムベーハー 電子素子のための材料
JP2016149558A (ja) * 2010-07-27 2016-08-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置、並びに照明装置
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
US9559309B2 (en) 2010-12-02 2017-01-31 Cheil Industries, Inc. Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
WO2012074210A2 (ko) * 2010-12-02 2012-06-07 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012074210A3 (ko) * 2010-12-02 2012-07-26 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012149999A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
JPWO2013115340A1 (ja) * 2012-02-03 2015-05-11 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
JP2015509954A (ja) * 2012-07-13 2015-04-02 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機電子素子
US9412954B2 (en) 2012-07-13 2016-08-09 Lg Chem, Ltd. Heterocyclic compound and organic electronic element containing same
US9391281B2 (en) 2012-07-13 2016-07-12 Lg Chem, Ltd. Heterocyclic compound and organic electronic element containing same
US9882146B2 (en) 2012-07-13 2018-01-30 Lg Chem, Ltd. Heterocyclic compound and organic electronic element containing same
US11177441B2 (en) 2014-01-24 2021-11-16 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
JP2015160844A (ja) * 2014-02-28 2015-09-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. トリアジン(triazine)誘導体及びこれを用いた有機発光素子
US10873033B2 (en) 2014-04-09 2020-12-22 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic diode, and display device
WO2015156449A1 (ko) * 2014-04-09 2015-10-15 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
JPWO2016129687A1 (ja) * 2015-02-13 2017-11-30 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
WO2016129687A1 (ja) * 2015-02-13 2016-08-18 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
WO2016158540A1 (ja) * 2015-03-27 2016-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物
JPWO2016158540A1 (ja) * 2015-03-27 2018-02-08 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物
US11758808B2 (en) 2015-03-27 2023-09-12 Samsung Display Co., Ltd. Ortho-substituted thermally activated delayed fluorescence material and organic light-emitting device comprising same
EP3275968A4 (en) * 2015-03-27 2019-05-08 cynora GmbH ORTHO-SUBSTITUTED THERMO-ACTIVATED DELAYED FLUORESCENCE MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING SAME
US10547009B2 (en) 2015-03-27 2020-01-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, electronic device and compound
US10784447B2 (en) 2015-04-24 2020-09-22 Samsung Sdi Co., Ltd. Organic compound, composition, and organic optoelectronic diode
JP2017128561A (ja) * 2015-09-10 2017-07-27 東ソー株式会社 環状アジン化合物、その製造方法、製造中間体、及び用途
WO2017043645A1 (ja) * 2015-09-10 2017-03-16 東ソー株式会社 環状アジン化合物、その製造方法、製造中間体、及び用途
KR20180022616A (ko) * 2016-08-24 2018-03-06 시노라 게엠베하 유기 분자, 특히 유기 광전자 디바이스에 사용하기 위한 유기 분자
KR102207689B1 (ko) 2016-08-24 2021-01-25 시노라 게엠베하 유기 분자, 특히 유기 광전자 디바이스에 사용하기 위한 유기 분자
JP2018095562A (ja) * 2016-12-08 2018-06-21 東ソー株式会社 易溶性アジン化合物とその製造方法、及びそれを用いた有機電界発光素子
DE102017102363B4 (de) * 2017-02-07 2020-11-05 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
US11456426B2 (en) 2017-02-07 2022-09-27 Samsung Display Co., Ltd. Organic molecules for use in organic optoelectronic devices
DE102017102363A1 (de) 2017-02-07 2018-08-09 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
US11706977B2 (en) 2018-01-11 2023-07-18 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
US20210399230A1 (en) * 2018-08-13 2021-12-23 Cynora Gmbh Organic molecules for optoelectronic devices

Also Published As

Publication number Publication date
KR101420608B1 (ko) 2014-07-18
KR20070090952A (ko) 2007-09-06
US20090191426A2 (en) 2009-07-30
TWI380980B (zh) 2013-01-01
US8324403B2 (en) 2012-12-04
CN101087776A (zh) 2007-12-12
KR20120082938A (ko) 2012-07-24
JP5050344B2 (ja) 2012-10-17
CN101087776B (zh) 2012-07-04
EP1829871A4 (en) 2009-12-16
JP2006199679A (ja) 2006-08-03
TW200631941A (en) 2006-09-16
EP1829871B1 (en) 2015-08-12
US20080145699A1 (en) 2008-06-19
EP1829871A1 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
WO2006067976A1 (ja) 有機化合物、電荷輸送材料および有機電界発光素子
JP5082230B2 (ja) 有機化合物、電荷輸送材料および有機電界発光素子
EP1820801B1 (en) Organic compound, charge-transporting material, and organic electroluminescent element
JP5040216B2 (ja) 有機化合物、電荷輸送材料、有機電界発光素子用材料、電荷輸送材料組成物及び有機電界発光素子
TWI409316B (zh) Organic compounds, charge transport materials and organic field light-emitting elements
JP5167607B2 (ja) 電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
JP4561221B2 (ja) 化合物、電荷輸送材料および有機電界発光素子
TWI388549B (zh) 有機化合物,電荷輸送材料,電荷輸送材料用組成物及有機電致發光元件
JP5098177B2 (ja) 有機化合物、電荷輸送材料及び有機電界発光素子
WO2006123667A1 (ja) モノアミン化合物、電荷輸送材料および有機電界発光素子
JP5168840B2 (ja) 電荷輸送材料、有機電界発光素子用組成物及び有機電界発光素子
WO2005022962A1 (ja) 化合物、電荷輸送材料および有機電界発光素子
JP6922734B2 (ja) イリジウム錯体化合物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
JP2007169268A (ja) 有機化合物、電荷輸送材料、電荷輸送材料組成物および有機電界発光素子
JP2008001621A (ja) トリチル化合物、トリチル化合物の製造方法、電荷輸送材料、発光材料及び有機電界発光素子
JP2008024698A (ja) 有機化合物、電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
JP5250967B2 (ja) 有機化合物、電荷輸送材料、電荷輸送材料用組成物および有機電界発光素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005814748

Country of ref document: EP

Ref document number: 1020077014364

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580044718.X

Country of ref document: CN

Ref document number: 11722760

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005814748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020127014632

Country of ref document: KR