WO2014042197A1 - 有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置 - Google Patents

有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置 Download PDF

Info

Publication number
WO2014042197A1
WO2014042197A1 PCT/JP2013/074561 JP2013074561W WO2014042197A1 WO 2014042197 A1 WO2014042197 A1 WO 2014042197A1 JP 2013074561 W JP2013074561 W JP 2013074561W WO 2014042197 A1 WO2014042197 A1 WO 2014042197A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
ring
formula
optionally substituted
organic electroluminescent
Prior art date
Application number
PCT/JP2013/074561
Other languages
English (en)
French (fr)
Inventor
洋平 小野
一志 枝連
利昭 生田
静萍 倪
松下 武司
琢次 畠山
中村 正治
士雄磨 橋本
Original Assignee
Jnc株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, 国立大学法人京都大学 filed Critical Jnc株式会社
Priority to CN201380047231.1A priority Critical patent/CN104641483B/zh
Priority to US14/386,153 priority patent/US20150097162A1/en
Priority to EP13836272.8A priority patent/EP2897184A4/en
Priority to JP2014535578A priority patent/JP5819534B2/ja
Priority to KR1020157008326A priority patent/KR102157994B1/ko
Publication of WO2014042197A1 publication Critical patent/WO2014042197A1/ja
Priority to US15/782,065 priority patent/US20180047913A1/en
Priority to US16/354,164 priority patent/US20190214575A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65842Cyclic amide derivatives of acids of phosphorus, in which one nitrogen atom belongs to the ring
    • C07F9/65846Cyclic amide derivatives of acids of phosphorus, in which one nitrogen atom belongs to the ring the phosphorus atom being part of a six-membered ring which may be condensed with another ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to an organic electroluminescent element, a display device and a lighting device using a polycyclic aromatic compound.
  • the organic electroluminescent element has a structure composed of a pair of electrodes composed of an anode and a cathode, and one or a plurality of layers including an organic compound disposed between the pair of electrodes.
  • the layer containing an organic compound include a light-emitting layer and a charge transport / injection layer that transports or injects charges such as holes and electrons.
  • Various organic materials suitable for these layers have been developed.
  • benzofluorene compounds and chrysene compounds have been developed as light emitting layer materials (International Publication No. 2004/061047 and International Publication No. 2008/147721).
  • hole transport materials for example, triphenylamine compounds and carbazole compounds have been developed (JP 2001-172232 A, JP 2006-199679 A, JP 2005-268199 A). JP 2007-088433 A, International Publication No. 2003/078541, International Publication No. 2003/080760).
  • anthracene compounds and compounds in which a central skeleton is bianthracene, binaphthalene, or a combination of naphthalene and anthracene have been developed (JP 2005-170911, JP 2003). No. -146951, JP 08-12600, JP 2003-123983, JP 11-297473).
  • PAHs polycyclic aromatic hydrocarbons
  • Non-Patent Document 1 a dibenzochrysene compound having a BN bonding site as reported in Non-Patent Document 1 is used for the device. It is not yet known how much performance it will have when applied.
  • the present inventors have found a novel polycyclic aromatic compound in which a nitrogen atom and another heteroatom or metal atom (X) are adjacent in a non-aromatic ring, and the production thereof succeeded in. Further, it has been found that an organic electroluminescent device with improved driving voltage and current efficiency can be obtained by arranging an organic electroluminescent device by arranging a layer containing this polycyclic aromatic compound between a pair of electrodes.
  • the present invention has been completed. That is, the present invention provides a material for an organic electroluminescence device containing the following polycyclic aromatic compound or salt thereof, and further including the following polycyclic aromatic compound or salt thereof.
  • a material for an organic electroluminescence device comprising a polycyclic aromatic compound having a partial structure represented by the following general formula (I) or a salt thereof.
  • a ring, B ring, C ring and D ring are each independently an aromatic ring which may be substituted or a heteroaromatic ring which may be substituted, and two adjacent rings are a linking group or A single bond may form a ring between them, and
  • the partial structure represented by the above formula (I) has at least one hydrogen, and at least one hydrogen in the partial structure may be substituted with deuterium.
  • the benzene ring and the five-membered ring in each of the above formulas may be independently substituted, and adjacent substituents in the same ring may be bonded to form a cyclohexane ring, a benzene ring or a pyridine ring
  • the benzene ring and the five-membered ring in each of the above formulas may be independently substituted, and adjacent substituents in the same ring may be bonded to form a cyclohexane ring, a benzene ring or a pyridine ring, Two adjacent benzene rings in each of the above formulas may form a ring between them by a linking group or a single bond, and
  • the partial structures represented by the above formulas have at least one hydrogen, and at least one hydrogen in the partial structure may be substituted with deuterium.
  • the benzene ring and the five-membered ring in each of the above formulas may be independently substituted, and adjacent substituents in the same ring may be bonded to form a cyclohexane ring, a benzene ring or a pyridine ring, Two adjacent benzene rings in each of the above formulas may form a ring between them by a linking group or a single bond, and
  • the partial structures represented by the above formulas have at least one hydrogen, and at least one hydrogen in the partial structure may be substituted with deuterium.
  • Two adjacent R's in the same ring may combine to form a cyclohexane ring, a benzene ring or a pyridine ring;
  • Two adjacent benzene rings in each of the above formulas are a single bond, CH 2 , CHR a , C (R a ) 2 , NR a , Si (R a ) 2 , BR a (where R a is as defined above). May be linked by a bond through Se, S, or O to form a ring between them, n is an integer from 0 to 4, m is an integer from 0 to 3, and At least one hydrogen in the compound represented by each of the above formulas or a salt thereof may be substituted with deuterium.
  • Two adjacent R's in the same ring may combine to form a cyclohexane ring, a benzene ring or a pyridine ring;
  • Two adjacent benzene rings in each of the above formulas are a single bond, CH 2 , CHR a , C (R a ) 2 , NR a , Si (R a ) 2 , BR a (where R a is as defined above). May be linked by a bond through Se, S, or O to form a ring between them, n is an integer from 0 to 4, h is an integer from 0 to 3, and At least one hydrogen in the compound represented by each of the above formulas or a salt thereof may be substituted with deuterium.
  • Two adjacent R's in the same ring may combine to form a cyclohexane ring, a benzene ring or a pyridine ring;
  • Two adjacent benzene rings in each of the above formulas are a single bond, CH 2 , CHR a , C (R a ) 2 , NR a , Si (R a ) 2 , BR a (where R a is as defined above). May be linked by a bond through Se, S, or O to form a ring between them, n is an integer from 0 to 4, h is an integer from 0 to 3, and At least one hydrogen in the compound represented by each of the above formulas or a salt thereof may be substituted with deuterium.
  • R is fluorine-substituted or unsubstituted C 1-20 alkyl, C 3-8 cycloalkyl, C 2-20 alkenyl, mono- or diaryl-substituted C 2-12 alkenyl, mono- or diheteroaryl- substituted C 2-12 alkenyl, Fluorine-substituted or unsubstituted C 1-20 alkoxy, C 1-20 alkylcarbonyl, cyano, nitro, diarylamino, optionally substituted aryl, optionally substituted heteroaryl, B (R a ) 2 , Or Si (R a ) 3, wherein each R a is independently an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted
  • Two adjacent R's in the same ring may combine to form a cyclohexane ring, a benzene ring or a pyridine ring; n is an integer from 0 to 4, m is an integer from 0 to 3, and At least one hydrogen in the compound represented by each of the above formulas or a salt thereof may be substituted with deuterium.
  • R is fluorine-substituted or unsubstituted C 1-20 alkyl, C 3-8 cycloalkyl, C 2-20 alkenyl, mono- or diaryl-substituted C 2-12 alkenyl, mono- or diheteroaryl- substituted C 2-12 alkenyl, Fluorine-substituted or unsubstituted C 1-20 alkoxy, C 1-20 alkylcarbonyl, cyano, nitro, diarylamino, optionally substituted aryl, optionally substituted heteroaryl, B (R a ) 2 , Or Si (R a ) 3, wherein each R a is independently an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl.
  • Two adjacent R's in the same ring may combine to form a cyclohexane ring, a benzene ring or a pyridine ring; n is an integer from 0 to 4, h is an integer from 0 to 3, and At least one hydrogen in the compound represented by the above formula or a salt thereof may be substituted with deuterium.
  • R is fluorine-substituted or unsubstituted C 1-20 alkyl, C 3-8 cycloalkyl, C 2-20 alkenyl, mono- or diaryl-substituted C 2-12 alkenyl, mono- or diheteroaryl- substituted C 2-12 alkenyl, Fluorine-substituted or unsubstituted C 1-20 alkoxy, C 1-20 alkylcarbonyl, cyano, nitro, diarylamino, optionally substituted aryl, optionally substituted heteroaryl, B (R a ) 2 , Or Si (R a ) 3, wherein each R a is independently an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl.
  • Two adjacent R's in the same ring may combine to form a cyclohexane ring, a benzene ring or a pyridine ring; n is an integer from 0 to 4, h is an integer from 0 to 3, and At least one hydrogen in the compound represented by the above formula or a salt thereof may be substituted with deuterium.
  • An organic electroluminescent element comprising a pair of electrodes composed of an anode and a cathode, and a light emitting layer disposed between the pair of electrodes and containing the light emitting layer material described in [17] above.
  • An organic electroluminescent device having a hole injection layer and / or a hole transport layer containing
  • a pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, and a hole blocking layer disposed between the cathode and the light emitting layer, according to the above [19]
  • An organic electroluminescence device comprising a hole blocking layer and / or an electron transport layer containing a material or a material for an electron transport layer.
  • the electron transport layer and / or the electron injection layer further disposed between the cathode and the light emitting layer, wherein at least one of the electron transport layer and the electron injection layer is a quinolinol-based metal complex,
  • At least one of the hole blocking layer and the electron transport layer contains at least one selected from the group consisting of a quinolinol-based metal complex, a pyridine derivative, a phenanthroline derivative, a borane derivative, and a benzimidazole derivative,
  • a quinolinol-based metal complex a quinolinol-based metal complex
  • a pyridine derivative a phenanthroline derivative
  • a borane derivative a benzimidazole derivative
  • the hole blocking layer, the electron transport layer, and / or the electron injection layer are further made of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, or an alkaline earth metal. At least selected from the group consisting of oxides, halides of alkaline earth metals, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals and organic complexes of rare earth metals.
  • the organic electroluminescent element according to the above [23] or [24], containing one.
  • a display device comprising the organic electroluminescent element as described in any one of [20] to [25].
  • An illumination device including the organic electroluminescent element according to any one of [20] to [25].
  • an excellent polycyclic aromatic compound as an organic electroluminescent element material can be provided, and driving voltage and current efficiency are improved by using this polycyclic aromatic compound.
  • An organic electroluminescent element can be provided.
  • Partial structure constituting polycyclic aromatic compound The polycyclic aromatic compound (and its salt) of the present invention has a partial structure represented by the following general formula (I) and is useful as a material for an organic electroluminescence device. is there. Each symbol in the formula is as described above.
  • partial structure represented by the formula (I) include a partial structure represented by the following general formula (II) or general formula (II ′). Each symbol in the formula is as described above.
  • More specific examples of the partial structure represented by the above formula (II) or formula (II ′) include, for example, the following general formulas (III-1) to (III-54) and (III-55): ) To a partial structure represented by formula (III-60).
  • the benzene ring and the five-membered ring in each formula may be independently substituted, and adjacent substituents in the same ring may be bonded to form a cyclohexane ring, a benzene ring or a pyridine ring.
  • two adjacent benzene rings in each formula may form a ring between them by a linking group or a single bond, each partial structure has at least one hydrogen, and in the partial structure At least one hydrogen may be replaced with deuterium.
  • the Z can see "and two Y a adjacent the bond between them together in the same ring, N, O, becomes S or Se" below the defined description of.
  • the polycyclic aromatic compound (and its salt) of the present invention is a compound containing the above-mentioned partial structure (for example, consisting of repetition of the partial structure). Examples thereof include compounds represented by the following general formulas (IV-1) to (IV-22).
  • each Y is independently CR (R will be described later) or N, and two Ys adjacent to each other in the same ring and a bond between them are combined.
  • NR R will be described later
  • a metal element of Group 3 to 11 of the periodic table that may be substituted, or a metal element or metalloid element of Groups 13 to 14 of the periodic table that may be substituted is shown.
  • R in the above formulas (IV-1) to (IV-22) is hydrogen, halogen, C 1-20 alkyl, hydroxy C 1-20 alkyl, trifluoromethyl C 2-12 perfluoroalkyl, C 3-8 cycloalkyl, C 2-20 alkenyl, C 2-20 alkynyl, mono- or diaryl-substituted alkenyl, mono- or diheteroaryl-substituted alkenyl, arylethynyl, heteroarylethynyl, Hydroxy, C 1-20 alkoxy, aryloxy, trifluoromethoxy, trifluoroethoxy, C 2-12 perfluoroalkoxy, C 1-20 alkylcarbonyl, C 1-20 alkylsulfonyl, cyano, nitro, amino, monoalkylamino , Monoarylamino, monoheteroarylamino , Diarylamino, carbazolyl,
  • alkyl, alkenyl, alkynyl and alkoxy are halogen, hydroxy, C 1-20 alkoxy, aryloxy, amino, carbazolyl, N (R a ) 2 (R a is as defined above), trifluoro Optionally substituted by 1 to 3 groups selected from methyl, C 2-12 perfluoroalkyl, C 3-8 cycloalkyl, aryl and heteroaryl, and the above aryl group, aryl moiety, heteroaryl Groups, heteroaryl moieties, carbazole groups are halogen, C 1-20 alkyl, hydroxy C 1-20 alkyl, trifluoromethyl, C 2-12 perfluoroalkyl, C 3-8 cycloalkyl, C 2-20 alkenyl, C 2-20 alkynyl, mono- or diaryl-substituted alkenyl, Roh or heteroaryl substituted alkenyl into di, aryl ethynyl, hetero aryl eth
  • Two adjacent R's may be a monocyclic group, a bicyclic group or a tricyclic group which may have a 5-membered or 6-membered heteroatom together with the carbon atom to which they are bonded.
  • a cyclic group may be formed, and examples thereof include a cyclohexane ring, a benzene ring or a pyridine ring.
  • three adjacent Rs may form a bicyclic group or a tricyclic group which may have a hetero atom together with the carbon atom to which they are bonded.
  • the two R's are a single bond, CH 2 , CHR a , CR a 2 , NR a , Si (R a ) 2 , BR a (R a is as defined above) and may be Se, S, or O to join two adjacent rings.
  • at least one hydrogen in the entire structure may be replaced with deuterium.
  • M is an integer of 0 to 3, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and still more preferably 0.
  • k is an integer of 0 to 2, preferably an integer of 0 to 1, and more preferably 0.
  • polycyclic aromatic compound (and its salt) of the present invention include, for example, the following general formulas (V-1) to (V-26) and (V-27) to ( And a compound represented by V-34).
  • R represents hydrogen, fluorine-substituted or unsubstituted C 1-20 alkyl, C 3- 8 cycloalkyl, C 2-20 alkenyl, mono or diaryl substituted C 2-12 alkenyl, mono or diheteroaryl substituted C 2-12 alkenyl, fluorine substituted or unsubstituted C 1-20 alkoxy, C 1-20 alkylcarbonyl , Cyano, nitro, diarylamino, optionally substituted aryl, optionally substituted heteroaryl, B (R a ) 2 , or Si (R a ) 3 (wherein R a is independently Or an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted heteroaryl.
  • pyrrole rings in formulas (V-27) to (V-34) pyrrole rings other than those in which N is involved in the condensation (eg pyrrole ring in formula (V-27))
  • hydrogen is basically bonded to N (> N—H), but a substituent R may be bonded (> N—R).
  • Detailed description with reference to the figures may refer to the description of "the two Y a adjacent in the same ring and coupling therebetween together, comprising N, O, an S or Se" later.
  • two adjacent Rs in the same ring may be bonded to form a cyclohexane ring, a benzene ring or a pyridine ring.
  • two adjacent benzene rings in each of the above formulas are a single bond, CH 2 , CHR a , C (R a ) 2 , NR a , Si (R a ) 2 , BR a (where R a is And may be linked by a bond via Se, S, or O to form a ring between them.
  • at least one hydrogen in the entire structure may be replaced with deuterium.
  • N is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and still more preferably 0.
  • m is an integer of 0 to 3, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and still more preferably 0.
  • k is an integer of 0 to 2, preferably an integer of 0 to 1, and more preferably 0.
  • h is an integer of 0 to 3, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and still more preferably 0.
  • polycyclic aromatic compound (and its salt) of the present invention include, for example, the following general formula (V-1 ′), formula (V-2 ′), or formula (V-3 ′): And a compound represented by the following formula (V-27 ′) or formula (V-32 ′).
  • V-1 formula
  • V-2 formula
  • V-3 formula
  • V-27 ′ formula
  • V-32 ′ a compound represented by the following formula (V-27 ′) or formula (V-32 ′).
  • These compounds are represented by the above formula (V-1), formula (V-2) or formula (V-3) and formula (V-27) or formula (V-32) as X as element B Corresponds to the selected one.
  • R, n, m and h in the formula are as defined above.
  • R is aryl.
  • R include, for example, phenyl , (2-, 3-, 4-) biphenylyl, terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl- 3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4- Yl, o-terphenyl-2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-
  • substitution position of R is the benzene ring bonded to N in formula (V-1 ′), formula (V-27 ′) and formula (V-32 ′) (the B ring of formula (I) and / or (Corresponding to the D ring), substitution at the para position is preferred based on the position of the carbon bonded to N, and the para position of one ring of the B ring or D ring is substituted, or the paras of both rings The position may be substituted, and it is preferred that the para positions of both rings are substituted.
  • the benzene ring bonded to B (corresponding to the A ring and / or the C ring of formula (I)) is the carbon bonded to B.
  • the substitution at the ortho position is preferred with respect to the position of, and the ortho position of one of the rings A or C may be substituted, or the ortho positions of both rings may be substituted.
  • compounds represented by formulas (51) to (86) described later are preferable, compounds represented by formulas (66) to (83) and (86) are more preferable, and formulas (66) to (86) 74) is more preferable.
  • the substituent R (aryl) may be further substituted.
  • the example substituted by the phenyl group, the diarylamino group, the carbazolyl group which may be substituted, etc. are mentioned.
  • Examples of the “aryl” in the diarylamino group include an aryl described below (eg, phenyl or naphthyl), and examples of the substituent on the carbazolyl group include an alkyl described below (eg, C 1-3 alkyl) and an aryl described below (eg, phenyl and biphenylyl). And naphthyl).
  • compounds represented by the following formulas (192), (196), (199), (205) and (209) are preferable.
  • the compound in which the substituent R is an N-containing structure includes, for example, diaryl.
  • examples thereof include an amino group and an optionally substituted carbazolyl group.
  • Examples of the “aryl” in the diarylamino group include an aryl described below (eg, phenyl or naphthyl), and examples of the substituent on the carbazolyl group include an alkyl described below (eg, C 1-3 alkyl) and an aryl described below (eg, phenyl and biphenylyl). And naphthyl).
  • substitution position of R is the benzene ring bonded to N in formula (V-1 ′), formula (V-27 ′) and formula (V-32 ′) (the B ring of formula (I) and / or (Corresponding to the D ring), substitution at the para position is preferred based on the position of the carbon bonded to N, and the para position of one ring of the B ring or D ring is substituted, or the paras of both rings The position may be substituted. Specifically, formulas (188) to (191), formulas (193) to (195), formula (197), formula (198), formulas (200) to (204), and formula (206) to The compound represented by (208) is preferred.
  • polycyclic aromatic compound (and its salt) of the present invention include, for example, compounds represented by the following general formulas (VI-1) to (VI-149) (these compounds are further These may be substituted, and these substituents may be bonded to each other to form a cyclohexane ring, a benzene ring or a pyridine ring).
  • X and Z are as defined above.
  • Examples of the metal element of Group 3 to 11 of the periodic table, the metal element or metalloid of Group 13 to 14 of the periodic table represented by X include the following.
  • the metal element of Group 3 to 11 of the periodic table, the metal element of Group 13 to 14 of the periodic table, or the metalloid element represented by X may each be substituted.
  • these metal elements or metalloid elements are “substituted” by 1 to 3 substituents R (R is as defined above), or 1 to 3 neutrals. It meant having a ligand R 1.
  • the neutral ligand R 1 include aromatic compounds having a nitrogen atom as a ring atom, such as pyridine, bipyridine, phenanthroline, terpyridine, imidazole, pyrimidine, pyrazine, quinoline, isoquinoline, and acridine, and derivatives thereof.
  • R and R 1 may be formed by a single compound (8-hydroxyquinoline) as follows Case (3).
  • the compound having a neutral ligand R 1 can be produced, for example, as follows. (In the following formula, (R) indicates that R 1 is R as defined above, and (R 1 ) indicates that R 1 is a neutral ligand.)
  • Case (1) represents a case where a neutral ligand (R 1 ) is bonded to X (metal element or metalloid element) of formula (I) to obtain (I ′) compound.
  • a compound having a neutral ligand can be easily produced by those skilled in the art with reference to the above Case (1) to Case (3).
  • X 1 and X 2 can be changed when the electronegativity is approximately the same or in a combination where X 1 ⁇ X 2 .
  • X 1 Ge—R
  • X 2 may be B
  • P, P O
  • P S
  • As S
  • Sb It can be changed to O
  • Solvents include anhydrous ether solvents such as anhydrous diethyl ether, anhydrous THF, and anhydrous dibutyl ether, aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene, and aromatics such as chlorobenzene and 1,2-dichlorobenzene.
  • Anhydrous ether solvents such as anhydrous diethyl ether, anhydrous THF, and anhydrous dibutyl ether
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene
  • aromatics such as chlorobenzene and 1,2-dichlorobenzene.
  • a halide solvent is used.
  • Lewis acids examples include AlCl 3 , AlBr 3 , BF 3 .OEt 2 , BCl 3 , BBr 3 , GaCl 3 , GaBr 3 , InCl 3 , InBr 3 , In (OTf) 3 , SnCl 4 , SnBr 4 f, AgT (OTf) 3 , ZnCl 2 , ZnBr 2 , Zn (OTf) 2 , MgCl 2 , MgBr 2 , Mg (OTf) 2, or the like is used.
  • Bases include diisopropylethylamine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, 2,4,6-collidine, 2,6-lutidine, triethylamine, triethylamine Isobutylamine or the like is used.
  • a compound having a sulfur atom bonded thereto can be similarly obtained when X 2 is other elements such as As and Sb.
  • Preferred X includes B, P, P ⁇ O, P ⁇ S, Si—R, Ge—R, Ga, Pt, Ru, Ir, Au, and the like.
  • the partial structure has at least one hydrogen means that the atoms forming ring A, ring B, ring C, and ring D are all other atoms when the above general formula (I) is used. Means that at least one atom is necessarily bonded to hydrogen and terminates, and includes a partial structure represented by the general formula (I) (for example, repetition of the partial structure). This means that the polycyclic aromatic compound or a salt thereof does not include, for example, heterofullerene or heterocarbon nanotube in which a part of the carbon skeleton of fullerene or carbon nanotube is substituted with boron or nitrogen.
  • adjacent R may be an adjacent group of the same ring, or may be the closest Rs of adjacent rings.
  • aromatic ring of “optionally substituted aromatic ring” examples include benzene ring, naphthalene ring, azulene ring, biphenylene ring, fluorene ring, anthracene ring, indacene ring, phenanthrene ring, phenalene ring, pyrene ring, chrysene ring , Triphenylene ring, fluoranthene ring, acephenanthrylene ring, acanthrylene ring, picene ring, naphthacene ring, perylene ring, acenaphthylene ring, acenaphthene ring, indane ring, indene ring, and tetrahydronaphthalene ring.
  • heteroaromatic ring of the “optionally substituted heteroaromatic ring” examples include a furan ring, a thiophene ring, a selenophene ring, a pyrrole ring, an imidazole ring, a thiazole ring, an isothiazole ring, an oxazole ring, an isoxazole ring, and a triazole.
  • the number of substituents of the optionally substituted aromatic ring or optionally substituted heteroaromatic ring is 1 to 4, preferably 1, 2 or 3.
  • substituents of the aromatic ring which may be substituted or the heteroaromatic ring which may be substituted include a group represented by R.
  • Examples of the “monocyclic group, bicyclic group or tricyclic group optionally having a 5-membered or 6-membered hetero atom” include benzene, naphthalene, azulene, biphenylene, fluorene, anthracene, indacene, Phenanthrene, phenalene, acenaphthylene, acenaphthene, indane, indene, tetrahydronaphthalene, cyclopentadiene, cyclohexadiene, furan, thiophene, selenophene, pyrrole, imidazole, thiazole, isothiazole, oxazole, isoxazole, triazole, borole, phosphorol, silole, azaborine Pyridine, pyrimidine, triazine, pyran, indole, isoindole, quinoline, isoquinoline, qui
  • Examples of the ⁇ bicyclic group or tricyclic group optionally having a hetero atom '' include naphthalene, azulene, biphenylene, fluorene, anthracene, indacene, phenanthrene, phenalene, acenaphthylene, acenaphthene, indane, indene, tetrahydronaphthalene, Indole, isoindole, quinoline, isoquinoline, quinoxaline, benzoxazole, benzothiazole, benzoisoxazole, benzoisothiazole, benzofuran, benzothiophene, benzopyran, benzimidazole, benzoborol, benzophosphole, benzosilol, benzoazaborine, indolizine, acridine, Phenazine, phenanthridine, phenanthroline, benzoselenophene, naphthofur
  • the number of carbon atoms is defined as “C 1-20 alkylcarbonyl”, but this number of carbon atoms modifies only the immediately following group or moiety. Therefore, in the above case, since C 1-20 modifies only alkyl, “C 1 alkylcarbonyl” corresponds to acetyl.
  • the alkyl group and the alkyl moiety may be linear or branched.
  • alkyl may be substituted, C 1-20 alkylsulfonyl, C 1-20 alkylsulfonylamino, each alkyl such as in C 1-20 alkylcarbonylamino and C 1-20 alkylcarbonyl It includes not only a group but also an alkyl group which is a substituent such as monoalkylamino, mono- or di-alkylsulfamoyl, mono- or di-alkylcarbamoyl.
  • the aryl moiety means an aryl group such as mono- or diaryl-substituted alkenyl, arylethynyl, aryloxy, monoarylamino, and optionally substituted aryl.
  • the heteroaryl moiety means a heteroaryl group such as monoheteroarylamino, mono- or heteroaryl-substituted alkenyl, heteroarylethynyl, and optionally substituted heteroaryl.
  • Halogen means fluorine, chlorine, bromine or iodine, with fluorine, chlorine or bromine being preferred.
  • the “C 1-20 alkyl” may be linear, branched or cyclic, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl. , Isopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, etc., C 1-20 alkyl, preferably C 1-10 alkyl, more preferably C 1-6 alkyl It is done.
  • C 3-8 cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, cyclooctyl.
  • C 2-20 alkenyl may be linear, branched or cyclic, and means at least one double bond, such as vinyl, allyl, 1-propenyl, 2-methyl. -2-propenyl, isopropenyl, 1-, 2- or 3-butenyl, 2-, 3- or 4-pentenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 5-hexenyl, 1- Examples thereof include cyclopentenyl, 1-cyclohexenyl and 3-methyl-3-butenyl, preferably C 2-12 alkenyl, more preferably C 2-6 alkenyl.
  • C 2-20 alkynyl may be linear, branched or cyclic, and has at least one triple bond, such as ethynyl, 1- or 2-propynyl, 1-, 2- or 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 1-hexynyl, 1-heptynyl, 1-octynyl, 1-nonenyl, 1-decynyl, 1-undecynyl, 1-dodecynyl C 2-10 alkynyl is preferable, and C 2-6 alkynyl is more preferable.
  • “Hydroxy C 1-20 alkyl” may be linear or branched. For example, hydroxymethyl, hydroxyethyl, hydroxy n-propyl, hydroxyisopropyl, hydroxy n-butyl, hydroxyisobutyl, hydroxy t -Butyl, hydroxy n-pentyl, hydroxyisopentyl, hydroxyhexyl, hydroxyheptyl, hydroxyoctyl, hydroxynonyl, hydroxydecyl, hydroxyundecyl, hydroxydodecyl, hydroxytetradecyl, hydroxyhexadecyl, hydroxyoctadecyl, hydroxyeicosyl, etc. Examples thereof include hydroxy C 1-20 alkyl, preferably hydroxy C 1-10 alkyl, more preferably hydroxy C 1-6 alkyl.
  • C 1-20 alkoxy may be linear or branched, and includes, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy, isopentyloxy, hexyl.
  • C 1-20 alkoxy such as oxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, octadecyloxy, eicosyloxy, preferably C 1-10 alkoxy, and more
  • C 1-6 alkoxy is used.
  • CF 3 CH 2 O— is preferable.
  • C 2-12 perfluoroalkyl may be either linear or branched, for example, perfluoroethyl, perfluoro n-propyl, perfluoroisopropyl, perfluoro n-butyl, perfluoroisobutyl.
  • C 2-12 perfluoro such as perfluoro t-butyl, perfluoro n-pentyl, perfluoroisopentyl, perfluorohexyl, perfluoroheptyl, perfluorooctyl, perfluorononyl, perfluorodecyl, perfluoroundecyl
  • alkyl preferably C 2-10 perfluoroalkyl, more preferably C 2-6 perfluoroalkyl.
  • C 2-12 perfluoroalkoxy may be linear or branched, and examples thereof include perfluoroethoxy, perfluoro n-propyloxy, perfluoroisopropyloxy, perfluoro n-butoxy, perfluoro Fluoroisobutoxy, perfluoro t-butoxy, perfluoro n-pentyloxy, perfluoroisopentyloxy, perfluorohexyloxy, perfluoroheptyloxy, perfluorooctyloxy, perfluorononyloxy, perfluorodecyloxy, perfluoro Examples thereof include C 2-12 perfluoroalkoxy such as undecyloxy , preferably C 2-10 perfluoroalkoxy, more preferably C 2-6 perfluoroalkoxy.
  • “Monoalkyl” in monoalkylamino, mono or dialkylcarbamoyl or mono or dialkylsulfamoyl has one of the hydrogen atoms bonded to the nitrogen atom of amino, carbamoyl or sulfamoyl substituted with C 1-20 alkyl
  • dialkyl means that two of the hydrogen atoms bonded to the nitrogen atom of amino, carbamoyl or sulfamoyl are substituted with the same or different C 1-20 alkyl, or preferably 3 to 8 members, preferably It is substituted with a 5- or 6-membered nitrogen-containing cyclic group.
  • Nitrogen-containing cyclic groups include morpholino, 1-pyrrolidinyl, piperidino and 4-methyl-1-piperazinyl.
  • Examples of monoalkylamino include C 1-20 such as methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, isobutylamino, t-butylamino, n-pentylamino, isopentylamino, hexylamino and the like.
  • Examples include amino monosubstituted by alkyl, preferably C 1-10 alkyl, more preferably C 1-6 alkyl.
  • Examples of the monoalkylcarbamoyl include C 1-20 such as methylcarbamoyl, ethylcarbamoyl, n-propylcarbamoyl, isopropylcarbamoyl, n-butylcarbamoyl, isobutylcarbamoyl, t-butylcarbamoyl, n-pentylcarbamoyl, isopentylcarbamoyl, hexylcarbamoyl and the like. Mention may be made of carbamoyl monosubstituted by alkyl, preferably C 1-10 alkyl, more preferably C 1-6 alkyl.
  • dialkylcarbamoyl examples include dimethylcarbamoyl, diethylcarbamoyl, di-n-propylcarbamoyl, diisopropylcarbamoyl, din-butylcarbamoyl, diisobutylcarbamoyl, dit-butylcarbamoyl, din-pentylcarbamoyl, diisopentylcarbamoyl, dihexylcarbamoyl, etc.
  • Examples thereof include carbamoyl disubstituted with C 1-20 alkyl, preferably C 1-10 alkyl, more preferably C 1-6 alkyl.
  • monoalkylsulfamoyl examples include methylsulfamoyl, ethylsulfamoyl, n-propylsulfamoyl, isopropylsulfamoyl, n-butylsulfamoyl, isobutylsulfamoyl, t-butylsulfamoyl, n -Sulfamoyl monosubstituted by C 1-20 alkyl, preferably C 1-10 alkyl, more preferably C 1-6 alkyl, such as pentyl sulfamoyl, isopentyl sulfamoyl, hexyl sulfamoyl and the like.
  • Dialkylsulfamoyl includes dimethylsulfamoyl, diethylsulfamoyl, di-n-propylsulfamoyl, diisopropylsulfamoyl, di-n-butylsulfamoyl, diisobutylsulfamoyl, di-t-butylsulfamoyl Sulfamoyl disubstituted with C 1-20 alkyl, preferably C 1-10 alkyl, more preferably C 1-6 alkyl, such as di-n-pentylsulfamoyl, diisopentylsulfamoyl, dihexylsulfamoyl, etc. Is mentioned.
  • Aryl means a monocyclic or polycyclic group consisting of a 5- or 6-membered aromatic hydrocarbon ring. Specific examples include phenyl, (1-, 2-) naphthyl, fluorenyl, anthryl, (2-, 3-, 4-) biphenylyl, tetrahydronaphthyl, 2,3-dihydro-1,4-dioxanaphthalenyl, terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4 ' -Yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2- Yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl-2-yl, o-terphenyl-3-yl,
  • Heteroaryl means a monocyclic or polycyclic group of 5 or 6 membered aromatic rings containing 1 to 3 heteroatoms selected from N, O, S, Se and Si In the case of a polycyclic system, at least one ring may be an aromatic ring.
  • Monoarylamino includes monoarylamino, where aryl is as defined above.
  • Diarylamino includes diarylamino where aryl is as defined above.
  • Monoheteroarylamino includes monoheteroarylamino wherein heteroaryl is as defined above.
  • the “C 1-20 alkylsulfonyl” may be linear, branched or cyclic, and examples thereof include methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, t-butylsulfonyl, n-pentylsulfonyl, isopentylsulfonyl, hexylsulfonyl, heptylsulfonyl, octylsulfonyl, nonylsulfonyl, decylsulfonyl, undecylsulfonyl, dodecylsulfonyl, tetradecylsulfonyl, hexadecylsulfonyl, oc
  • C 1-20 alkylcarbonylamino may be any of linear, branched or cyclic, for example, methylcarbonylamino, ethylcarbonylamino, n-propylcarbonylamino, isopropylcarbonylamino, n-butyl.
  • Carbonylamino isobutylcarbonylamino, t-butylcarbonylamino, n-pentylcarbonylamino, isopentylcarbonylamino, hexylcarbonylamino, heptylcarbonylamino, octylcarbonylamino, nonylcarbonylamino, decylcarbonylamino, undecylcarbonylamino, dodecyl carbonylamino, tetradecyl carbonylamino, hexadecyl carbonylamino, octadecyl carbonylamino, C 1-20 aralkyl, such as eicosyl carbonylamino Le carbonylamino, preferably C 1-10 alkylcarbonylamino, or more preferably C 1-6 alkylcarbonylamino.
  • C 1-20 alkoxycarbonylamino (for example, C 1-12 alkoxycarbonylamino, C 1-6 alkoxycarbonylamino) includes methoxycarbonylamino, ethoxycarbonylamino, propoxycarbonylamino, isopropoxycarbonylamino, butoxycarbonylamino, iso Examples include butoxycarbonylamino, t-butoxycarbonylamino, pentyloxycarbonylamino, isopentyloxycarbonylamino and hexyloxycarbonylamino.
  • C 1-20 alkylsulfonylamino (eg, C 1-10 alkylsulfonylamino, C 1-6 alkylsulfonylamino) includes methylsulfonylamino, ethylsulfonylamino, n-propylsulfonylamino, isopropylsulfonylamino, n-butylsulfonyl Amino, isobutylsulfonylamino, t-butylsulfonylamino, n-pentylsulfonylamino, isopentylsulfonylamino, hexylsulfonylamino, octylsulfonylamino, nonylsulfonylamino, decylsulfonylamino, undecylsulfonylamino, dodecylsulfon
  • C 1-20 alkoxycarbonyl (eg C 1-10 alkoxycarbonyl, C 1-6 alkoxycarbonyl) includes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, Examples include pentyloxycarbonyl, isopentyloxycarbonyl and hexyloxycarbonyl.
  • C 1-20 alkylcarbonyl (eg C 1-10 alkylcarbonyl, C 1-6 alkylcarbonyl) includes acetyl, propionyl, butyryl, pentylcarbonyl, hexylcarbonyl, heptylcarbonyl, octylcarbonyl, nonylcarbonyl, decylcarbonyl. It is done.
  • Monoaryl substituted alkenyl (eg monoaryl substituted C 2-12 alkenyl, monoaryl substituted C 2-6 alkenyl) includes monoaryl substituted alkenyl wherein aryl is as defined above, eg styryl.
  • Diaryl-substituted alkenyl includes diaryl-substituted alkenyl wherein aryl is as defined above, eg diphenylvinyl.
  • Monoheteroaryl-substituted alkenyl eg mono-heteroaryl-substituted C 2-12 alkenyl, mono-heteroaryl-substituted C 2-6 alkenyl
  • heteroaryl eg thienyl Vinyl
  • Diheteroaryl substituted alkenyl (eg diheteroaryl substituted C 2-12 alkenyl, diheteroaryl substituted C 2-6 alkenyl) includes diheteroaryl substituted alkenyl wherein heteroaryl is as defined above, eg diheteroaryl substituted alkenyl Examples include thienyl vinyl.
  • Arylethynyl includes arylethynyl, where aryl is as defined above.
  • Heteroarylethynyl includes heteroarylethynyl where heteroaryl is as defined above.
  • Aryloxy includes aryloxy in which aryl is as defined above.
  • R a represents an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl.
  • alkyl of the optionally substituted alkyl include the above C 1-20 alkyl
  • aryl of the optionally substituted aryl includes the above aryl.
  • heteroaryl of the optionally substituted heteroaryl include the above heteroaryl.
  • polycyclic aromatic compound of the present invention include compounds represented by the following formulas (1) to (709).
  • the compound of the present invention is a polycyclic aromatic compound (and a salt thereof) and has a partial structure represented by the above general formula (I), more specifically, the above general formula (II) or general formula (II). And a partial structure represented by the general formula (III-1) to the formula (III-54) and the general formula (III-55) to the formula (III-60). It is a polycyclic aromatic compound.
  • the overall structure is, for example, a polycyclic aromatic compound represented by the above general formula (IV-1) to formula (IV-22), and more specifically, the above general formula (V-1) to formula ( V-26) and the polycyclic aromatic compounds represented by the general formulas (V-27) to (V-34), the general formula (V-1 ′), the formula (V-2 ′) and the formula (V V-3 ′) and a polycyclic aromatic compound represented by the above general formula (V-27 ′) or formula (V-32 ′), the above general formula (VI-1) A polycyclic aromatic compound represented by the formula (VI-149), and a polycyclic aromatic compound represented by the above formulas (1) to (709).
  • an alkyl lithium such as n-BuLi
  • a Grignard reagent such as n-BuMgBr
  • an alkali metal hydride such as NaH or KH
  • an alkali such as NaO t Bu or KO t Bu
  • a base such as an alkali metal carbonate such as metal alkoxide, Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , Cs 2 CO 3, etc.
  • the compound (a3) is obtained by reacting with Pd (dba) 2 and P t Bu 3 while stirring in a solvent at a temperature of about ⁇ 78 ° C. to about room temperature for 30 minutes to 24 hours.
  • a solvent an anhydrous ether solvent such as anhydrous diethyl ether, anhydrous THF, or anhydrous dibutyl ether or an aromatic hydrocarbon solvent such as benzene, toluene, xylene, mesitylene or the like is used.
  • Step 2 the compound (a3) is deprotonated with a deprotonating agent such as n-BuLi, and then a compound containing X (a halide of X, an alkoxy derivative, an aryloxy derivative, an acyloxy derivative, a haloamino derivative) ) Is introduced, and a Friedel-Crafts-type reaction is carried out in the presence of a Lewis acid such as AlCl 3 and a base such as diisopropylethylamine to obtain the compound (a4).
  • a deprotonating agent such as n-BuLi
  • the compound containing X is a halide such as PF 3 , PCl 3 , PBr 3 , PI 3 , P (OMe) 3 , P (OEt) 3 , P (OnPr) 3 , Alkoxy derivatives such as P (O-iPr) 3 , P (O-nBu) 3 , P (O-iBu) 3 , P (O-secBu) 3 , P (Ot-Bu) 3 , P (OPh) 3 , aryloxy derivatives such as P (O-naphthyl) 3 , P (OAc) 3 , P (O-trifluoroacetyl) 3 , P (O-propionyl) 3 , P (O-butyryl) 3 , P (O -Benzoyl) 3 and other acyloxy derivatives, PCl (NMe 2 ) 2 , PCl (NEt 2 ) 2 , PCl (NPr 2 )
  • Solvents include anhydrous ether solvents such as anhydrous diethyl ether, anhydrous THF, and anhydrous dibutyl ether, aromatic hydrocarbon solvents such as benzene, toluene, xylene, and mesitylene, and aromatic substances such as chlorobenzene and 1,2-dichlorobenzene.
  • anhydrous ether solvents such as anhydrous diethyl ether, anhydrous THF, and anhydrous dibutyl ether
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, and mesitylene
  • aromatic substances such as chlorobenzene and 1,2-dichlorobenzene.
  • Group halide solvents are used.
  • deprotonating agents examples include n-BuLi, alkyllithium such as MeLi, t-BuLi, and PhLi, Grignard reagents such as MeMgBr, EtMgBr, and n-BuMgBr, or alkali metal hydrides such as NaH and KH. Used.
  • Lewis acids examples include AlCl 3 , AlBr 3 , BF 3 .OEt 2 , BCl 3 , BBr 3 , GaCl 3 , GaBr 3 , InCl 3 , InBr 3 , In (OTf) 3 , SnCl 4 , SnBr 4 f, AgT (OTf) 3 , ZnCl 2 , ZnBr 2 , Zn (OTf) 2 , MgCl 2 , MgBr 2 , Mg (OTf) 2, or the like is used.
  • Bases include diisopropylethylamine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, 2,4,6-collidine, 2,6-lutidine, triethylamine, triethylamine Isobutylamine or the like is used.
  • Step 2 ′ reaction compound (a3 ′) is used instead of compound (a3), and compound (a4 ′) is obtained by performing Friedel-Crafts type reaction and Scholl type reaction under the same conditions as in Step 2 reaction. be able to.
  • the compound (a4 ′) can be obtained by performing the Friedel-Crafts type reaction under the same conditions as in the step 2 reaction using the compound (a3 ′′) instead of the compound (a3).
  • Step 1 'of the following scheme 1-3 can also be used. That is, it is a step of producing a diarylamine (a3) by reacting an aromatic halide (a1 ') with an aromatic amine (a2) using a palladium catalyst in the presence of a base.
  • palladium catalyst used in Step 1 ′ are [1,1-bis (diphenylphosphino) ferrocene] palladium (II) dichloride: Pd (dppf) Cl 2 , tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba) 3 ⁇ CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , PdCl 2 ⁇ P
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N -Dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1'-bis (di-t-butylphosphino) ) Ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,
  • base used in Step 1 ′ are sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphoric acid. Tripotassium, potassium fluoride, etc.
  • solvent used in Step 1 ′ are benzene, 1,2,4-trimethylbenzene, toluene, xylene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4- Dioxane, methanol, ethanol, isopropyl alcohol and the like.
  • solvents can be appropriately selected according to the structure of the aromatic halide to be reacted.
  • a solvent may be used independently and may be used as a mixed solvent.
  • the target compound can be obtained in the same manner as in Scheme 1 except that the compound to be reacted is changed.
  • the target compound can be obtained in the same manner as in Scheme 1 except that the compound to be reacted is changed.
  • the target compound can be obtained in the same manner as in Scheme 1 except that the compound to be reacted is changed.
  • the target compound can be obtained in the same manner as in Scheme 1 except that the compound to be reacted is changed.
  • the target compound can be obtained in the same manner as in Scheme 1 except that the compound to be reacted is changed.
  • the target compound can be obtained in the same manner as in Scheme 1 except that the compound to be reacted is changed.
  • the target compound can be obtained in the same manner as in Scheme 1 except that the compound to be reacted is changed.
  • FIG. 1 is a schematic cross-sectional view showing an organic electroluminescent element according to this embodiment.
  • An organic electroluminescent device 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103.
  • the cathode 108 provided on the electron injection layer 107.
  • the organic electroluminescent element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer.
  • a structure including the hole injection layer 103 provided above and the anode 102 provided on the hole injection layer 103 may be employed.
  • each said layer may consist of a single layer, respectively, and may consist of multiple layers.
  • the substrate 101 serves as a support for the organic electroluminescent device 100, and usually quartz, glass, metal, plastic, or the like is used.
  • the substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to the purpose.
  • a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like are preferable.
  • soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength.
  • the upper limit value of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • the glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass.
  • soda lime glass with a barrier coat such as SiO 2 is also commercially available, so it can be used. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to improve the gas barrier property, and a synthetic resin plate, film or sheet having a low gas barrier property is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
  • the anode 102 serves to inject holes into the light emitting layer 105.
  • the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these layers. .
  • Examples of the material for forming the anode 102 include inorganic compounds and organic compounds.
  • Examples of inorganic compounds include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) Products (IZO), metal halides (copper iodide, etc.), copper sulfide, carbon black, ITO glass, Nesa glass, and the like.
  • Examples of the organic compound include polythiophene such as poly (3-methylthiophene), conductive polymer such as polypyrrole and polyaniline, and the like. In addition, it can select suitably from the substances currently used as an anode of an organic electroluminescent element, and can use it.
  • the resistance of the transparent electrode is not limited as long as it can supply a sufficient current for light emission of the light emitting element, but is preferably low resistance from the viewpoint of power consumption of the light emitting element.
  • an ITO substrate of 300 ⁇ / ⁇ or less functions as an element electrode, but at present, since it is possible to supply a substrate of about 10 ⁇ / ⁇ , for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is particularly desirable to use a low resistance product of / ⁇ .
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 50 to 200 nm.
  • the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104.
  • the hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one kind or two or more kinds of hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done.
  • an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
  • a hole injection / transport material As a hole injection / transport material, it is necessary to efficiently inject and transport holes from the positive electrode between electrodes to which an electric field is applied. The hole injection efficiency is high, and the injected holes are transported efficiently. It is desirable to do. For this purpose, it is preferable to use a substance that has a low ionization potential, a high hole mobility, excellent stability, and is less likely to generate trapping impurities during production and use.
  • a polycyclic aromatic compound having a partial structure represented by the general formula (I) or a salt thereof may be used as a material (hole layer material) for forming the hole injection layer 103 or the hole transport layer 104. It can.
  • the content of the polycyclic aromatic compound having a partial structure represented by the above general formula (I) or a salt thereof in the hole injection layer 103 or the hole transport layer 104 varies depending on the type of the compound, and is adjusted to the characteristics. You can decide.
  • the standard for the content of the polycyclic aromatic compound having a partial structure represented by the general formula (I) or a salt thereof is preferably 1 to 100% by weight of the whole hole layer material, more preferably It is 10 to 100% by weight, more preferably 50 to 100% by weight, and particularly preferably 80 to 100% by weight.
  • the polycyclic aromatic compound having a partial structure represented by the general formula (I) or a salt thereof is not used alone (100% by weight), other materials described in detail below may be mixed.
  • hole injection layer 103 and the hole transport layer 104 include photoconductive materials, compounds conventionally used as charge transport materials for holes, p-type semiconductors, and organic electroluminescent devices. Any one of known materials used for the hole injection layer and the hole transport layer can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary class).
  • polycarbonate having the above monomers in the side chain And styrene derivatives, polyvinyl carbazole, and polysilane are preferable, but the compound is not particularly limited as long as it is a compound that can form a thin film necessary for manufacturing a light-emitting element, inject holes from the anode, and further transport holes. Absent.
  • organic semiconductors are strongly influenced by the doping.
  • Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donor materials.
  • TCNQ tetracyanoquinone dimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
  • the light emitting layer 105 emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
  • the material for forming the light-emitting layer 105 may be a compound that emits light by being excited by recombination of holes and electrons (a light-emitting compound), can form a stable thin film shape, and is in a solid state It is preferable that the compound exhibits a high emission (fluorescence and / or phosphorescence) efficiency.
  • the light emitting material of the light emitting element according to the present embodiment may be either fluorescent or phosphorescent.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting material (host material, dopant material). Each of the host material and the dopant material may be one kind or a plurality of combinations.
  • the dopant material may be included in the host material as a whole, or may be included partially. As a doping method, it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited.
  • the amount of host material used depends on the type of host material and can be determined according to the characteristics of the host material.
  • the amount of the host material used is preferably 50 to 99.999% by weight of the entire light emitting material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight. .
  • the amount of dopant material used varies depending on the type of dopant material, and can be determined according to the characteristics of the dopant material (for example, if the amount used is too large, there is a risk of concentration quenching).
  • the standard of the amount of dopant used is preferably 0.001 to 50% by weight of the entire light emitting material, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight.
  • the polycyclic aromatic compound having a partial structure represented by the general formula (I) or a salt thereof can also be used as a host material or a dopant material.
  • the content of the polycyclic aromatic compound having a partial structure represented by the above general formula (I) or a salt thereof in each material varies depending on the type thereof, and may be determined according to the characteristics thereof.
  • the standard of the content of the polycyclic aromatic compound having a partial structure represented by the above general formula (I) or a salt thereof is preferably 1 to 100% by weight of the entire host material (or dopant material), and more The amount is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, and particularly preferably 80 to 100% by weight.
  • the polycyclic aromatic compound having a partial structure represented by the general formula (I) or a salt thereof is not used alone (100 wt%), other host materials (or dopant materials) described in detail below Can be mixed.
  • the host material is not particularly limited, but has previously been known as a phosphor, fused ring derivatives such as anthracene and pyrene, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bis Bisstyryl derivatives such as styryl anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, thiadiazolopyridine derivatives, pyrrolopyrrole derivatives, fluorene derivatives, For benzofluorene derivatives and polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives are preferably used.
  • metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum
  • the host material can be appropriately selected from the compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
  • the dopant material is not particularly limited, and a known compound can be used, and can be selected from various materials according to a desired emission color.
  • condensed ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopylene, dibenzopyrene, rubrene and chrysene, benzoxazole derivatives, benzthiazole derivatives, benzimidazole derivatives, benztriazole derivatives, oxazoles Derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, distyrylbenzene derivative
  • blue to blue-green dopant materials include naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene, chrysene and other aromatic hydrocarbon compounds and derivatives thereof, furan, pyrrole, thiophene, Aromatic complex such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene Ring compounds and their derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazo
  • examples of the green to yellow dopant material include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and naphthacene derivatives such as rubrene.
  • a compound in which a substituent capable of increasing the wavelength such as aryl, heteroaryl, arylvinyl, amino and cyano is introduced into the compound exemplified as a blue-green dopant material is also a suitable example.
  • orange to red dopant materials include naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, violanthrone derivatives, phenazine derivatives, phenoxazo Derivatives, thi
  • the dopant can be appropriately selected from the compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
  • perylene derivatives perylene derivatives, borane derivatives, amine-containing styryl derivatives, aromatic amine derivatives, coumarin derivatives, pyran derivatives, iridium complexes, or platinum complexes are particularly preferable.
  • perylene derivatives examples include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene 3- (9′-anthryl) -8,11-di (t-butyl) perylene, 3,3′-bis (8,11-di (t-butyl) perylenyl), and the like.
  • JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A No. 2000-34234, JP-A No. 2001-267075, JP-A No. 2001-217077 and the like may be used.
  • borane derivatives examples include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9′-anthryl) dimesitylborylnaphthalene, 4- (10 ′ -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene. Further, borane derivatives described in International Publication No. 2000/40586 and the like may be used.
  • amine-containing styryl derivatives include N, N, N ′, N′-tetra (4-biphenylyl) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (1-naphthyl).
  • aromatic amine derivative examples include N, N, N, N-tetraphenylanthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, and 9,10-bis (4- Di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4-di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p-tolylamino-1) -Naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (6-diphenylamino-2-naphthyl) anthracene, [4- (4-diphenyl Amino-phenyl) naphthalen-1-yl]
  • Examples of coumarin derivatives include coumarin-6 and coumarin-334. Moreover, you may use the coumarin derivative described in Unexamined-Japanese-Patent No. 2004-43646, Unexamined-Japanese-Patent No. 2001-76876, and Unexamined-Japanese-Patent No. 6-298758.
  • Examples of the pyran derivative include the following DCM and DCJTB. Also, JP 2005-126399, JP 2005-097283, JP 2002-234892, JP 2001-220577, JP 2001-081090, and JP 2001-052869. Alternatively, pyran derivatives described in the above may be used.
  • iridium complex examples include Ir (ppy) 3 described below. Further, the iridium complexes described in JP-A-2006-089398, JP-A-2006-080419, JP-A-2005-298483, JP-A-2005-097263, JP-A-2004-111379, etc. It may be used.
  • platinum complex examples include the following PtOEP. Further, the platinum complexes described in JP-A-2006-190718, JP-A-2006-128634, JP-A-2006-093542, JP-A-2004-335122, JP-A-2004-331508, etc. It may be used.
  • the electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
  • the electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
  • the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials or a mixture of the electron transport / injection material and the polymer binder.
  • the electron injection / transport layer is a layer that is responsible for injecting electrons from the cathode and further transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is preferable to use a substance that has a high electron affinity, a high electron mobility, excellent stability, and is unlikely to generate trapping impurities during production and use. However, considering the transport balance between holes and electrons, if the role of effectively preventing the holes from the anode from flowing to the cathode side without recombination is mainly played, the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron injection / transport layer in this embodiment may include a function of a layer that can efficiently block the movement of holes.
  • a polycyclic aromatic compound having a partial structure represented by the general formula (I) or a salt thereof can be used as the material (electron layer material) for forming the electron transport layer 106 or the electron injection layer 107.
  • the content of the polycyclic aromatic compound having a partial structure represented by the above general formula (I) or the salt thereof in the electron transport layer 106 or the electron injection layer 107 differs depending on the type of the compound, and is determined according to the characteristics thereof. That's fine.
  • the standard of the content of the polycyclic aromatic compound having a partial structure represented by the above general formula (I) or a salt thereof is preferably 1 to 100 of the entire electron transport layer material (or electron injection layer material).
  • % By weight, more preferably 10 to 100% by weight, still more preferably 50 to 100% by weight, and particularly preferably 80 to 100% by weight.
  • polycyclic aromatic compound having a partial structure represented by the general formula (I) or a salt thereof is not used alone (100% by weight), other materials described in detail below may be mixed.
  • Other materials for forming the electron transport layer or electron injection layer include compounds conventionally used as electron transport compounds in photoconductive materials, and known materials used for electron injection layers and electron transport layers of organic electroluminescent devices. Any of these compounds can be selected and used.
  • Materials used for the electron transport layer or the electron injection layer include compounds composed of aromatic rings or heteroaromatic rings composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon, and phosphorus, and pyrrole derivatives. And at least one selected from the condensed ring derivatives thereof and metal complexes having electron-accepting nitrogen.
  • condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinones And quinone derivatives such as diphenoquinone, phosphorus oxide derivatives, carbazole derivatives, and indole derivatives.
  • metal complexes having electron-accepting nitrogen include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes.
  • anthracene derivatives such as 9,10-bis (2-naphthyl) anthracene, styryl aromatic ring derivatives such as 4,4′-bis (diphenylethenyl) biphenyl, 4,4′-bis (N-carbazolyl) biphenyl
  • a carbazole derivative such as 1,3,5-tris (N-carbazolyl) benzene is preferably used from the viewpoint of durability.
  • electron transfer compounds include pyridine derivatives, naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazoles.
  • metal complexes having electron-accepting nitrogen can also be used, such as hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. can give.
  • the above-mentioned materials can be used alone, but they may be mixed with different materials.
  • quinolinol metal complexes bipyridine derivatives, phenanthroline derivatives, borane derivatives or benzimidazole derivatives are preferable.
  • the quinolinol-based metal complex is a compound represented by the following general formula (E-1).
  • R 1 to R 6 are hydrogen or a substituent
  • M is Li, Al, Ga, Be or Zn
  • n is an integer of 1 to 3.
  • quinolinol metal complexes include 8-quinolinol lithium, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3 , 4-dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis (2-methyl-8- Quinolinolato) (4- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-phenylphenolate)
  • the bipyridine derivative is a compound represented by the following general formula (E-2).
  • G represents a simple bond or an n-valent linking group, and n is an integer of 2 to 8. Carbon atoms that are not used for the bond of pyridine-pyridine or pyridine-G may be substituted.
  • G in the general formula (E-2) examples include the following structural formulas.
  • each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • pyridine derivative examples include 2,5-bis (2,2′-bipyridin-6-yl) -1,1-dimethyl-3,4-diphenylsilole, 2,5-bis (2,2′- Bipyridin-6-yl) -1,1-dimethyl-3,4-dimesitylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4 Diphenylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4-dimesitylsilole, 9,10-di (2,2′-bipyridine-6) -Yl) anthracene, 9,10-di (2,2′-bipyridin-5-yl) anthracene, 9,10-di (2,3′-bipyridin-6-yl) anthracene, 9,10-di (2,3′
  • the phenanthroline derivative is a compound represented by the following general formula (E-3-1) or (E-3-2).
  • R 1 to R 8 are hydrogen or a substituent, adjacent groups may be bonded to each other to form a condensed ring, G represents a simple bond or an n-valent linking group, and n represents 2 It is an integer of ⁇ 8.
  • Examples of G in the general formula (E-3-2) include the same ones as described in the bipyridine derivative column.
  • phenanthroline derivatives include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-phenanthroline- 2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9′-difluor -Bis (1,10-phenanthroline-5-yl), bathocuproin, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
  • a phenanthroline derivative is used for the electron transport layer and the electron injection layer.
  • the substituent itself has a three-dimensional structure, or a phenanthroline skeleton or Those having a three-dimensional structure by steric repulsion with an adjacent substituent or those having a plurality of phenanthroline skeletons linked to each other are preferred.
  • a compound containing a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, or a substituted or unsubstituted aromatic heterocycle in the linking unit is more preferable.
  • the borane derivative is a compound represented by the following general formula (E-4), and is disclosed in detail in JP-A-2007-27587.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X is an optionally substituted arylene
  • Y is a substituted And optionally substituted aryl having 16 or less carbon atoms, substituted boryl, or optionally substituted carbazolyl
  • each n is independently an integer of 0 to 3.
  • the compound represented by -1-4) is preferred. Specific examples include 9- [4- (4-Dimesitylborylnaphthalen-1-yl) phenyl] carbazole, 9- [4- (4-Dimesitylborylnaphthalen-1-yl) naphthalen-1-yl. Carbazole and the like.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • R 21 and R 22 are each independently hydrogen, alkyl, or substituted.
  • X 1 is an optionally substituted arylene having 20 or less carbon atoms
  • n is each Each independently represents an integer of 0 to 3, and each m independently represents an integer of 0 to 4;
  • R 31 to R 34 are each independently methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X 1 is an optionally substituted arylene having 20 or less carbon atoms
  • N is an integer of 0 to 3 independently.
  • R 31 to R 34 are each independently any of methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently any of hydrogen, methyl, isopropyl or phenyl It is.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X 1 is an optionally substituted arylene having 10 or less carbon atoms
  • Y 1 is an optionally substituted aryl having 14 or less carbon atoms
  • n is each independently an integer of 0 to 3.
  • R 31 to R 34 are each independently methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
  • the benzimidazole derivative is a compound represented by the following general formula (E-5).
  • Ar 1 to Ar 3 are each independently hydrogen or aryl having 6 to 30 carbon atoms which may be substituted.
  • a benzimidazole derivative which is anthryl optionally substituted with Ar 1 is preferable.
  • aryl having 6 to 30 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthylene-1-yl, acenaphthylene-3-yl, acenaphthylene-4-yl, acenaphthylene-5-yl, and fluorene-1- Yl, fluoren-2-yl, fluoren-3-yl, fluoren-4-yl, fluoren-9-yl, phenalen-1-yl, phenalen-2-yl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, fluoranthen-1-yl, fluoranthen-2-yl, fluoranthen-3-yl, fluoranthen-7-yl, fluoranthen-8-yl, Triphenylene-1-yl, 2-
  • benzimidazole derivative examples include 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (naphthalene-2) -Yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1- Phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4- (10 -(Naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-di (n)-
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing the material forming the electron transport layer or the electron injection layer various substances can be used as long as they have a certain reducing ability.
  • Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. 9eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and alkaline earth metals such as those having a work function of 2.9 eV or less are particularly preferable.
  • a more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended.
  • a reducing substance having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable.
  • a combination containing Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • the cathode 108 serves to inject electrons into the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106.
  • the material for forming the cathode 108 is not particularly limited as long as it is a substance that can efficiently inject electrons into the organic layer, but the same material as that for forming the anode 102 can be used.
  • metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium -Indium alloys, aluminum-lithium alloys such as lithium fluoride / aluminum, etc.) are preferred.
  • Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride Lamination of hydrocarbon polymer compounds and the like is a preferred example.
  • the method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam, sputtering, ion plating, and coating.
  • the materials used for the hole injection layer, hole transport layer, light emitting layer, electron transport layer and electron injection layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate, Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane resin It can also be used by dispersing it in solvent-soluble resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, silicone resins, etc. is there.
  • solvent-soluble resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins,
  • Each layer constituting the organic electroluminescent element is formed by a method such as vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coating method or cast method, coating method, etc. It can be formed by using a thin film.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like.
  • the vapor deposition conditions vary depending on the type of material, the target crystal structure and association structure of the film, and the like.
  • Deposition conditions generally include boat heating temperature of 50 to 400 ° C., vacuum degree of 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 150 to + 300 ° C., film thickness of 2 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • an organic electric field composed of an anode / hole injection layer / hole transport layer / a light emitting layer composed of a host material and a dopant material / electron transport layer / electron injection layer / cathode.
  • a method for manufacturing a light-emitting element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a host material and a dopant material are co-evaporated to form a thin film to form a light emitting layer.
  • An electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by vapor deposition. By forming it as a cathode, a desired organic electroluminescent element can be obtained.
  • the order of preparation may be reversed, and the cathode, electron injection layer, electron transport layer, light emitting layer, hole transport layer, hole injection layer, and anode may be fabricated in this order. Is possible.
  • the anode When a DC voltage is applied to the organic electroluminescent device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, the organic electroluminescent device is transparent or translucent. Luminescence can be observed from the electrode side (anode or cathode, and both). The organic electroluminescence device emits light when a pulse current or an alternating current is applied. The alternating current waveform to be applied may be arbitrary.
  • the present invention can also be applied to a display device provided with an organic electroluminescent element or a lighting device provided with an organic electroluminescent element.
  • a display device or an illuminating device including an organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment and a known driving device, such as direct current driving, pulse driving, or alternating current. It can be driven by appropriately using a known driving method such as driving.
  • Examples of the display device include a panel display such as a color flat panel display, and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). Gazette, JP-A-2004-281086, etc.).
  • Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
  • a matrix is a pixel in which pixels for display are arranged two-dimensionally, such as a grid or mosaic, and displays characters and images as a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix.
  • the line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
  • a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light.
  • a predetermined region is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned.
  • the illuminating device examples include an illuminating device such as indoor lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, JP 2004-119211 A).
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • a backlight for liquid crystal display devices especially personal computers for which thinning is an issue, considering that conventional methods are made of fluorescent lamps and light guide plates, it is difficult to reduce the thickness.
  • the backlight using the light emitting element according to the embodiment is thin and lightweight.
  • Synthesis example (1) Synthesis of 4b-aza-12b-thiophosphadibenzo [g, p] chrysene
  • Synthesis example (2) Synthesis of 4b-aza-12b-phenyl-12b-siladibenzo [g, p] chrysene
  • N-bromosuccinimide (19.9 g) was added to a solution of 4b-aza-12b-boradibenzo [g, p] chrysene (18.0 g) in THF (180 ml) and stirred at room temperature for 1 hour. did. After completion of the reaction, an aqueous sodium sulfite solution was added, THF was distilled off under reduced pressure, and toluene was added to separate the layers.
  • Synthesis example (8) Synthesis of 6,9-dichloro-14b 1 -aza-14b-borabenzo [p] indeno [1,2,3,4-defg] chrysene
  • Synthesis example (11) Synthesis of 8b, 19b-diaza-11b, 22b-dithiophosphahexabenzo [a, c, fg, j, l, op] tetracene
  • N, N′-bis (biphenyl-2-yl) -2,6-diaminobiphenyl (0.977 g, 2.00 mmol) and toluene (20 mL) in hexane and butyllithium solution at ⁇ 78 ° C. under argon atmosphere (2.45 mL, 1.63 M, 4.0 mmol) was added and stirred. After 1 hour, phosphorus trichloride (0.549 g, 4.0 mmol) was added and stirred for 1 hour, then the temperature was raised to 0 ° C. and the mixture was further stirred for 1 hour.
  • Synthesis example (12) Synthesis of 8b, 19b-diaza-11b, 22b-diborahexabenzo [a, c, fg, j, l, op] tetracene
  • N, N′-bis (biphenyl-2-yl) -2,6-diaminobiphenyl (0.977 g, 2.00 mmol) and toluene (20 mL) in hexane and butyllithium solution at ⁇ 78 ° C. under argon atmosphere (2.45 mL, 1.63 M, 4.0 mmol) was added and stirred. After 1 hour, the temperature was raised to 0 ° C. and the mixture was further stirred for 1 hour.
  • N-[(2-thienyl) phenyl] -N- (biphenyl-2-yl) amine (0.655 g, 2.00 mmol) and toluene (10 mL) in hexane of butyllithium at ⁇ 78 ° C. under argon atmosphere.
  • the solution (1.25 mL, 1.60 M, 2.00 mmol) was added and stirred. After 1 hour, the temperature was raised to 0 ° C. and the mixture was further stirred for 1 hour. Then, a heptane solution of boron trichloride (2.00 mL, 1.00 M, 2.00 mmol) was added at ⁇ 78 ° C., and the mixture was stirred at room temperature for 12 hours.
  • N-([1,1′-biphenyl] -2-yl) -2-phenylthiophen-3-amine (0.655 g, 2.00 mmol) and toluene (10 mL) at ⁇ 78 ° C. under argon atmosphere.
  • a solution of butyl lithium in hexane (1.25 mL, 1.60 M, 2.00 mmol) was added and stirred. After 1 hour, the temperature was raised to 0 ° C. and the mixture was further stirred for 1 hour. Then, a heptane solution of boron trichloride (2.00 mL, 1.00 M, 2.00 mmol) was added at ⁇ 78 ° C., and the mixture was stirred at room temperature for 12 hours.
  • N-([1,1′-biphenyl] -2-yl) -3-phenylpyridin-2-amine (0.645 g, 2.00 mmol) and toluene (10 mL) at ⁇ 78 ° C. under argon atmosphere.
  • a solution of butyl lithium in hexane (1.25 mL, 1.60 M, 2.00 mmol) was added and stirred. After 1 hour, the temperature was raised to 0 ° C. and the mixture was further stirred for 1 hour. Then, a heptane solution of boron trichloride (2.00 mL, 1.00 M, 2.00 mmol) was added at ⁇ 78 ° C., and the mixture was stirred at room temperature for 12 hours.
  • Synthesis example (25) Synthesis of 8b, 11b, 14b-triaza-22b, 25b, 28b-triboraoctabenzo [a, c, fg, jk, n, p, st, wx] hexacene
  • N 2 -([1,1′-biphenyl] -2-yl) -N 6- (6-([1,1′-biphenyl] -2-ylamino)-[1,1′-biphenyl] -2- Yl)-[1,1′-biphenyl] -2,6-diamine (1.31 g, 2.00 mmol) and toluene (20 mL) at ⁇ 78 ° C. in an argon atmosphere at ⁇ 78 ° C. 68 mL, 1.63 M, 6.00 mmol) was added and stirred. After 1 hour, the temperature was raised to 0 ° C. and the mixture was further stirred for 1 hour.
  • 2-bromo-1,1 ′ 4 ′, 1 ′′ -terphenyl (35.0 g), sodium-t-butoxide (10.9 g), Pd (dba) 2 (0.65 g), 4- ( A flask containing di-t-butylphosphino) -N, N-dimethylaniline (0.60 g), xylene (100 ml) and lithium amide (1.3 g) was stirred at 90 ° C. for 2 hours under a nitrogen atmosphere. After cooling the reaction solution to room temperature, water and ethyl acetate were added for liquid separation, and then the solvent was distilled off under reduced pressure and then purified by activated alumina column chromatography (developing solution: toluene).
  • Synthesis example (31) Synthesis of 2,7-dibromo-11,14-diphenyl-4b-aza-12b-boradibenzo [g, p] chrysene
  • N-bromosuccinimide (NBS) was added to a THF (50 ml) solution of 2,7,11,14-tetraphenyl-4b-aza-12b-boradibenzo [g, p] chrysene (4.8 g) in a nitrogen atmosphere. (3.7 g) was added and stirred at room temperature for 1 hour. After completion of the reaction, an aqueous sodium nitrite solution was added and the deposited precipitate was collected by suction filtration.
  • Synthesis example (32) Synthesis of 10,15-diphenyl-4b-aza-12b-boradibenzo [g, p] chrysene
  • the obtained oily substance was purified with a silica gel short column (developing solution: toluene), the solvent was distilled off under reduced pressure, and heptane was added to the obtained oily substance for reprecipitation, and [1,1 ′: 3 ′, 1 ” -Terphenyl] -2-amine (33.0 g) was obtained.
  • the obtained oily substance was purified by silica gel column chromatography (developing solution: toluene / heptane mixed solution), and di ([1,1 ′: 2 ′, 1 ′′ -terphenyl] -2-yl) amine (32.
  • silica gel column chromatography developing solution: toluene / heptane mixed solution
  • di ([1,1 ′: 2 ′, 1 ′′ -terphenyl] -2-yl) amine 32.
  • the target product was eluted by gradually increasing the ratio of toluene.
  • Di ([1,1 ′: 2 ′, 1 ′′ -terphenyl] -2-yl) amine (20.1 g) was obtained.
  • N-bromosuccinimide (13.6 g) was added to a THF (150 ml) solution of 4b-aza-12b-oxaphospha-dibenzo [g, p] chrysene (3.5 g) in a nitrogen atmosphere and refluxed. Stir at temperature for 2 hours. After completion of the reaction, an aqueous sodium nitrite solution and toluene were added for liquid separation, and the solvent was distilled off under reduced pressure. The resulting oily substance was reprecipitated by adding ethanol to obtain 2,7-dibromo-4b-aza-12b-oxaphospha-dibenzo [g, p] chrysene (4.5 g).
  • the obtained solid was washed with warm water and purified by silica gel column chromatography (developing solution: toluene / ethyl acetate mixed solution). At this time, the target product was eluted by gradually increasing the ratio of ethyl acetate in the developing solution. Moreover, when charging a sample on silica gel, a solution dissolved in heated chlorobenzene was used. Further, recrystallization from ethyl acetate gave a compound (1.3 g) represented by the formula (366).
  • the residue was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate mixed solution). At this time, the target product was eluted by gradually increasing the ratio of ethyl acetate in the developing solution. After the solvent was distilled off under reduced pressure, the residue was washed with ethyl acetate and reprecipitated with a mixed solvent of chlorobenzene / ethyl acetate to obtain a compound (0.9 g) represented by the formula (424).
  • [1,1 ′: 4 ′, 1 ′′ -terphenyl] -2-amine (11.0 g), 2-bromobiphenyl (10.5 g), sodium-t-butoxide (5.2 g), Pd
  • a flask containing (dba) 2 (0.06 g), 4- (di-t-butylphosphino) -N, N-dimethylaniline (0.06 g) and toluene was placed in a nitrogen atmosphere and stirred at reflux temperature for 3 hours.
  • 6-iodo-14b 1 -aza-14b-borabenzo [p] indeno [1,2,3,4-defg] chrysene (0.4 g), carbazole (0.2 g), sodium-t-butoxide ( 0.1 g), Pd (dba) 2 (0.03 g), 1M tri-t-butylphosphine toluene solution (0.13 ml) and 1,2,4-trimethylbenzene “Me 3 Ph” (10 ml)
  • the flask was placed in a nitrogen atmosphere and stirred at reflux temperature for 3 hours. After cooling the reaction solution to room temperature, water was added and the precipitated solid was collected by suction filtration.
  • EDTA ⁇ 4Na aqueous solution a solution prepared by dissolving ethylenediaminetetraacetic acid / tetrasodium salt dihydrate in an appropriate amount of water (hereinafter abbreviated as EDTA ⁇ 4Na aqueous solution) and toluene were added to separate the layers. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (developing solution: heptane) to obtain 5,5′-dimethyl-2,2′-bithiophene (20.3 g).
  • N-bromosuccinimide “NBS” (6.9 g) was slowly added thereto, and the temperature was raised to room temperature. After completion of the reaction, water was added for liquid separation, and the organic layer was washed with an aqueous sodium carbonate solution.
  • N- (diphenylmethylene) -5,5'-dimethyl- [2,2'-bithiophene] -3-amine (11.4 g) was dissolved in THF (165 ml). 6M hydrochloric acid (98 ml) was added thereto, and the mixture was stirred at room temperature for 10 minutes. The solvent was distilled off under reduced pressure, and the precipitated solid was collected by suction filtration and washed with heptane to obtain 5,5′-dimethyl- [2,2′-bithiophene] -3-amine hydrochloride (10.0 g). Got.
  • 2- (1-phenyl-1H-indolo-2-yl) aniline (25.0 g), 2-bromobiphenyl (20.5 g), sodium-t-butoxide (13.0 g), Pd (dba) 2 (0.13 g), 4- (di-t-butylphosphino) -N, N-dimethylaniline (0.12 g) and xylene (120 ml) were placed in a nitrogen atmosphere and stirred at 90 ° C. for 1 hour. . After cooling the reaction solution to room temperature, water and chlorobenzene were added for analysis, and purified with an activated alumina short column (developing solution: chlorobenzene).
  • polycyclic aromatic compounds of the present invention can be synthesized by a method according to the synthesis example described above by appropriately changing the raw material compound.
  • the electroluminescent devices according to Examples 1 to 4 and Comparative Example 1 were manufactured, and the driving start voltage (V) and the current efficiency (cd / A) at the time of constant current driving at a current density at which a luminance of 1000 cd / m 2 was obtained, respectively. ) was measured.
  • V driving start voltage
  • cd / A current efficiency
  • Table 1 below shows the material structure of each layer in the organic electroluminescent elements according to Examples 1 to 4 and Comparative Example 1.
  • HI refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
  • NPD means N 4 , N 4 ′ -di (naphthalen-1-yl) -N 4 , N 4 ′ -diphenyl- [1,1′-biphenyl] -4,4′-diamine
  • CBP is 4,4′-di (9H-carbazolyl-9-yl) -1,1′-biphenyl
  • Ir (PPy) 3 is tris (2-phenylpyridine) iridium (III)
  • BCP Is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • ET1 is 2,5-bis- (2 ′, 2 ′′ -bipyridin
  • Example 1 ⁇ Element Using Compound (1) as Host Material for Light-Emitting Layer> A glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • the transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and the compound of the present invention (1 ) Molybdenum vapor deposition boat, Ir (PPy) 3 molybdenum vapor deposition boat, BCP molybdenum vapor deposition boat, ET1 molybdenum vapor deposition boat, LiF A vapor deposition boat and a tungsten vapor deposition boat containing aluminum were mounted.
  • a commercially available vapor deposition apparatus manufactured by Showa Vacuum Co., Ltd.
  • a molybdenum vapor deposition boat containing HI a molybdenum vapor deposition boat containing NPD
  • the compound of the present invention (1 ) Molybdenum vapor deposition boat, Ir (PPy) 3 moly
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 10 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (1) and the vapor deposition boat containing Ir (PPy) 3 were simultaneously heated to vapor-deposit so as to have a film thickness of 35 nm, thereby forming a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of compound (1) to Ir (PPy) 3 was approximately 95: 5.
  • a vapor deposition boat containing BCP was heated and vapor-deposited to a thickness of 5 nm to form a hole blocking layer.
  • the evaporation boat containing ET1 was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 2 ⁇ Element Using Compound (66) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 1 except that the compound (1) as the host material of the light emitting layer was changed to the compound (66). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining the initial luminance of 1000 cd / m 2 was 5.7 V, and the current efficiency at that time was 36.4 cd / A.
  • Example 3 ⁇ Element Using Compound (197) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 1 except that the compound (1) which is the host material of the light emitting layer was changed to the compound (197). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.6 V, and the current efficiency at that time was 28.1 cd / A.
  • Example 4 ⁇ Element Using Compound (198) for Hole Transport Layer> An organic EL device was obtained by the same method as in Example 1 except that NPD as the hole transport material was changed to compound (198) and compound (1) as the host material of the light emitting layer was changed to CBP. When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.9 V, and the current efficiency at that time was 26.4 cd / A.
  • Example 1 An organic EL device was obtained by the method according to Example 1 except that the compound (1) as the host material of the light emitting layer was changed to CBP. When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining the initial luminance of 1000 cd / m 2 was 6.7 V, and the current efficiency at that time was 24.6 cd / A.
  • Example 5 the electroluminescent elements according to Example 5 and Comparative Example 2 were manufactured, and the driving start voltage (V) and the current efficiency (cd /) when driven at a constant current at a current density at which a luminance of 1000 cd / m 2 was obtained, respectively. A) was measured.
  • V driving start voltage
  • cd / current efficiency
  • Table 3 below shows the material structure of each layer in the organic electroluminescent elements according to the manufactured Example 5 and Comparative Example 2.
  • HT is N-([1,1′-biphenyl] -4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl. ) -9H-fluoren-2-amine (the same applies to the following tables).
  • the chemical structure is shown below.
  • Example 5 ⁇ Element Using Compound (251) as Host Material for Light-Emitting Layer> A glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, the compound of the present invention (251 ) Molybdenum vapor deposition boat, Ir (PPy) 3 molybdenum vapor deposition boat, BCP molybdenum vapor deposition boat, ET1 molybdenum vapor deposition boat, LiF A vapor deposition boat and a tungsten vapor deposition boat containing aluminum were mounted.
  • a commercially available vapor deposition apparatus manufactured by Showa Vacuum Co., Ltd.
  • a molybdenum vapor deposition boat containing HI a molybdenum vapor deposition boat containing HT
  • the compound of the present invention (251 ) Molybdenum vapor deposition boat, Ir (PPy) 3 mo
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 30 nm to form a hole injection layer, and then HT was contained.
  • the vapor deposition boat was heated and vapor-deposited to a film thickness of 20 nm to form a hole transport layer.
  • the vapor deposition boat containing the compound (251) and the vapor deposition boat containing Ir (PPy) 3 were simultaneously heated to vapor-deposit so as to have a film thickness of 35 nm, thereby forming a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of compound (251) to Ir (PPy) 3 was approximately 95: 5.
  • a vapor deposition boat containing BCP was heated and vapor-deposited to a thickness of 5 nm to form a hole blocking layer.
  • the evaporation boat containing ET1 was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 2 An organic EL device was obtained by the method according to Example 5 except that the compound (251) as the host material of the light emitting layer was changed to CBP. When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.9 V, and the current efficiency at that time was 31.8 cd / A.
  • Table 5 below shows the material structure of each layer in the organic electroluminescent elements according to the produced Examples 6 to 14 and Comparative Examples 3 to 4.
  • HB1 is 9- (4 ′-(dimesitylboryl)-[1,1′-binaphthalene] -4-yl) -9H-carbazole
  • ET2 is 5,5 ”-(2-phenylanthracene -9,10-diyl) di-2,2'-bipyridine (the same applies to the following tables)
  • the chemical structure is shown below.
  • Example 6 ⁇ Element Using Compound (1) as Host Material for Light-Emitting Layer, Part 2> A glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, the compound of the present invention (1 ) Molybdenum vapor deposition boat, Ir (PPy) 3 molybdenum vapor deposition boat, HB1 molybdenum vapor deposition boat, ET2 molybdenum vapor deposition boat, LiF A vapor deposition boat and a tungsten vapor deposition boat containing aluminum were mounted.
  • a commercially available vapor deposition apparatus manufactured by Showa Vacuum Co., Ltd.
  • a molybdenum vapor deposition boat containing HI a molybdenum vapor deposition boat containing HT
  • the compound of the present invention (1 ) Molybdenum vapor deposition boat, Ir (PPy) 3 moly
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 30 nm to form a hole injection layer, and then HT was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 10 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (1) and the vapor deposition boat containing Ir (PPy) 3 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 30 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (1) to Ir (PPy) 3 was approximately 95: 5.
  • the evaporation boat containing HB1 was heated and evaporated to a film thickness of 10 nm to form a hole blocking layer.
  • the evaporation boat containing ET2 was heated and evaporated to a thickness of 20 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 7 ⁇ Element Using Compound (501) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 6 except that the compound (1) as the host material of the light emitting layer was changed to the compound (501). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 6.2 V, and the current efficiency at that time was 29.0 cd / A.
  • Example 8 ⁇ Element Using Compound (551) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 6 except that the compound (1) which is the host material of the light emitting layer was changed to the compound (551). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 4.8 V, and the current efficiency at that time was 31.7 cd / A.
  • Example 9 ⁇ Element Using Compound (687) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 6 except that the compound (1) which is the host material of the light emitting layer was changed to the compound (687). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 4.0 V, and the current efficiency at that time was 28.3 cd / A.
  • Example 10 ⁇ Element Using Compound (301) for Hole-Blocking and Electron Transport Layer (Used in One Layer)> A glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, and the CBP of the present invention are placed.
  • Molybdenum vapor deposition boat, molybdenum vapor deposition boat with Ir (PPy) 3 molybdenum vapor deposition boat with compound (301), molybdenum vapor deposition boat with LiF, and tungsten with aluminum A vapor deposition boat was installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 30 nm to form a hole injection layer, and then HT was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 10 nm to form a hole transport layer. Next, the vapor deposition boat containing CBP and the vapor deposition boat containing Ir (PPy) 3 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 30 nm.
  • the deposition rate was adjusted so that the weight ratio of CBP to Ir (PPy) 3 was approximately 95: 5.
  • the evaporation boat containing the compound (301) was heated and evaporated to a thickness of 30 nm to form a hole blocking layer / electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 11 ⁇ Element Using Compound (391) for Hole Blocking and Electron Transport Layer (Used in One Layer)> An organic EL device was obtained by a method according to Example 10 except that the compound (301) which was the hole blocking layer and electron transport layer was replaced with the compound (391). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining the initial luminance of 1000 cd / m 2 was 6.0 V, and the current efficiency at that time was 28.0 cd / A.
  • Example 12 ⁇ Element Using Compound (392) for Hole-Blocking and Electron Transport Layer (Used in One Layer)> An organic EL device was obtained by a method according to Example 10 except that the compound (301), which was a hole blocking layer / electron transport layer, was replaced with the compound (392). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 6.2 V, and the current efficiency at that time was 26.2 cd / A.
  • Example 13 ⁇ Element Using Compound (391) for Hole Blocking Layer> A glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, and the CBP of the present invention are placed.
  • Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing Ir (PPy) 3 , molybdenum vapor deposition boat containing compound (391), molybdenum vapor deposition boat containing ET2, molybdenum product containing LiF A vapor deposition boat and a tungsten vapor deposition boat containing aluminum were mounted.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 30 nm to form a hole injection layer, and then HT was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 10 nm to form a hole transport layer. Next, the vapor deposition boat containing CBP and the vapor deposition boat containing Ir (PPy) 3 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 30 nm.
  • the deposition rate was adjusted so that the weight ratio of CBP to Ir (PPy) 3 was approximately 95: 5.
  • the evaporation boat containing the compound (391) was heated and evaporated to a thickness of 10 nm to form a hole blocking layer.
  • the evaporation boat containing ET2 was heated and evaporated to a thickness of 20 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 14 ⁇ Device Using Compound (392) for Hole Blocking Layer> An organic EL device was obtained by the method according to Example 13 except that the compound (391) as the hole blocking layer was changed to the compound (392). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 4.9 V, and the current efficiency at that time was 32.7 cd / A.
  • Table 8 below shows the material configuration of each layer in the organic electroluminescent elements according to Examples 15 to 29 and Comparative Example 5 that were produced.
  • HAT-CN is 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile
  • TBB is N 4 , N 4 , N 4 ′, N 4 ′ -tetra ([[ 1,1′-biphenyl] -4-yl)-[1,1′-biphenyl] -4,4′-diamine
  • TBi is 1,3,5-tris (1-phenyl-1H-benzo [d ] Imidazol-2-yl) benzene (the same applies to the following tables). The chemical structure is shown below.
  • Example 15 ⁇ Element Using Compound (1) as Host Material for Light-Emitting Layer, Part 3> A glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HAT-CN, a molybdenum vapor deposition boat containing TBB, and a compound of the present invention Molybdenum deposition boat containing (1), molybdenum deposition boat containing Ir (PPy) 3 , molybdenum deposition boat containing TPBi, molybdenum deposition boat containing LiF, and aluminum A tungsten evaporation boat was attached.
  • a commercially available vapor deposition apparatus manufactured by Showa Vacuum Co., Ltd.
  • Molybdenum deposition boat containing (1) molybdenum deposition boat containing Ir (PPy) 3
  • molybdenum deposition boat containing TPBi molybdenum deposition boat containing LiF
  • aluminum A tungsten evaporation boat was attached.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate. Depressurize the vacuum chamber to 5 ⁇ 10 ⁇ 4 Pa, first heat the evaporation boat containing HAT-CN to form a hole injection layer by vapor deposition to a film thickness of 10 nm, and then TBB The vapor deposition boat was heated and vapor deposited to a film thickness of 30 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (1) and the vapor deposition boat containing Ir (PPy) 3 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 30 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (1) to Ir (PPy) 3 was approximately 95: 5.
  • the evaporation boat containing TPBi was heated and evaporated to a thickness of 50 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 16 ⁇ Element Using Compound (66) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1) as the host material for the light emitting layer was changed to the compound (66). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 4.8 V, and the current efficiency at that time was 37.0 cd / A.
  • Example 17 ⁇ Element Using Compound (84) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1) as the host material for the light emitting layer was changed to the compound (84). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.6 V, and the current efficiency at that time was 35.9 cd / A.
  • Example 18 ⁇ Element Using Compound (86) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1) as the host material for the light emitting layer was changed to the compound (86). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.0 V, and the current efficiency at that time was 29.0 cd / A.
  • Example 19 ⁇ Element Using Compound (197) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1), which is the host material of the light emitting layer, was changed to the compound (197). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining the initial luminance of 1000 cd / m 2 was 4.9 V, and the current efficiency at that time was 32.4 cd / A.
  • Example 20> ⁇ Element Using Compound (51) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1), which is the host material of the light emitting layer, was changed to the compound (51). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.1 V, and the current efficiency at that time was 39.2 cd / A.
  • Example 21 ⁇ Element Using Compound (214) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1), which is the host material of the light emitting layer, was changed to the compound (214). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 4.2 V, and the current efficiency at that time was 35.2 cd / A.
  • Example 22> ⁇ Element Using Compound (26) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1) as the host material of the light emitting layer was changed to the compound (26). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 4.7 V, and the current efficiency at that time was 42.2 cd / A.
  • Example 23> ⁇ Device Using Compound (210) as Host Material for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 15 except that the compound (1), which is the host material of the light emitting layer, was changed to the compound (210).
  • a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained.
  • the driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.1 V, and the current efficiency at that time was 32.7 cd / A.
  • Example 24 ⁇ Element Using Compound (212) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1), which is the host material of the light emitting layer, was changed to the compound (212). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining the initial luminance of 1000 cd / m 2 was 5.3 V, and the current efficiency at that time was 27.0 cd / A.
  • Example 25 ⁇ Element Using Compound (215) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1) which is the host material of the light emitting layer was changed to the compound (215). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.5 V, and the current efficiency at that time was 27.7 cd / A.
  • Example 26 ⁇ Element Using Compound (48) as Host Material for Light-Emitting Layer> An organic EL device was obtained by the method according to Example 15 except that the compound (1) which is the host material of the light emitting layer was changed to the compound (48). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 5.5 V, and the current efficiency at that time was 29.2 cd / A.
  • Example 27 ⁇ Element Using Compound (209) for Hole Transport Layer>
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HAT-CN, and a molybdenum vapor deposition containing the compound (209) of the present invention.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HAT-CN is heated to deposit to a thickness of 10 nm to form a hole injection layer. 209) was heated and evaporated to a thickness of 30 nm to form a hole transport layer.
  • the vapor deposition boat containing CBP and the vapor deposition boat containing Ir (PPy) 3 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 30 nm.
  • the deposition rate was adjusted so that the weight ratio of CBP to Ir (PPy) 3 was approximately 95: 5.
  • the evaporation boat containing TPBi was heated and evaporated to a film thickness of 50 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 28 ⁇ Element Using Compound (366) for Electron Transport Layer>
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HAT-CN, a molybdenum vapor deposition boat containing TBB, and CBP were introduced.
  • Molybdenum deposition boat molybdenum deposition boat containing Ir (PPy) 3 , molybdenum deposition boat containing the compound of the present invention (366), molybdenum deposition boat containing LiF, and aluminum A tungsten evaporation boat was attached.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • Depressurize the vacuum chamber to 5 ⁇ 10 ⁇ 4 Pa first heat the evaporation boat containing HAT-CN to form a hole injection layer by vapor deposition to a film thickness of 10 nm, and then TBB The vapor deposition boat was heated and vapor deposited to a film thickness of 30 nm to form a hole transport layer.
  • the vapor deposition boat containing CBP and the vapor deposition boat containing Ir (PPy) 3 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 30 nm.
  • the deposition rate was adjusted so that the weight ratio of CBP to Ir (PPy) 3 was approximately 95: 5.
  • the evaporation boat containing the compound (366) was heated and evaporated to a film thickness of 50 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the deposition boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • Example 29 ⁇ Element Using Compound (424) for Electron Transport Layer> An organic EL device was obtained by the method according to Example 28 except that the compound (366) as the electron transport material was changed to the compound (424). When a DC voltage was applied to both electrodes, green light emission with a wavelength of about 515 nm was obtained. The driving voltage for obtaining an initial luminance of 1000 cd / m 2 was 6.4 V, and the current efficiency at that time was 27.5 cd / A.
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.5 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate was mounted on a substrate holder of a commercially available vapor deposition apparatus at the same time as a metal mask for obtaining a lower aluminum electrode having a width of 2 mm.
  • a tungsten vapor deposition boat on which aluminum was placed was set in a vapor deposition apparatus.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 3 Pa or less, and the evaporation boat was heated to form a translucent lower aluminum electrode so as to have a film thickness of 10 nm.
  • the deposition rate was 0.05 to 1 nm / second.
  • a metal mask for forming an organic layer designed to cover the lower aluminum electrode is mounted on the substrate holder, and set in the vapor deposition apparatus together with the molybdenum vapor deposition boat containing the compound represented by the formula (1).
  • the vacuum tank was depressurized to 5 ⁇ 10 ⁇ 3 Pa or less, and the evaporation boat was heated to deposit the compound represented by the formula (1).
  • the film thickness was 6 ⁇ m, and the deposition rate was 0.1 to 10 nm / second.
  • a metal mask for forming the upper aluminum electrode was mounted on the substrate holder, and set in a vapor deposition apparatus together with a tungsten vapor deposition boat on which aluminum was placed.
  • This metal mask is designed so that the overlapping area between the organic layers of the upper and lower aluminum electrodes is 4 mm 2 .
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 3 Pa or less, and the deposition boat was heated to form an upper aluminum electrode so as to have a film thickness of 50 nm.
  • the deposition rate was 0.05 to 1 nm / second.
  • the mobility was measured using the Time Of Flight method.
  • the measurement was performed using a commercially available measuring device, TOF-401 (manufactured by Sumitomo Heavy Industries Advanced Machinery Co., Ltd.).
  • a nitrogen gas laser was used as the excitation light source.
  • With a moderate voltage applied between the upper aluminum electrode and lower aluminum electrode light was irradiated from the translucent lower aluminum electrode side, and the transient photocurrent was observed to determine the mobility.
  • a method for deriving the mobility from the analysis of the transient photocurrent waveform is described in P69-70 of the document “Organic EL materials and displays” (published by CMC Co., Ltd.).
  • an organic electroluminescent element with improved driving voltage and current efficiency, a display device including the same, a lighting device including the same, and the like.

Abstract

 駆動電圧および電流効率を向上させた有機電界発光素子を提供する。窒素原子と他のヘテロ原子または金属原子(X)が非芳香環内で隣接する多環芳香族化合物を有機電界発光素子用材料として用いることで、上記特性を向上させた有機電界発光素子を提供する。

Description

[規則37.2に基づきISAが決定した発明の名称] 有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置
 本発明は、多環芳香族化合物を用いた有機電界発光素子、表示装置および照明装置に関する。
 従来、電界発光する発光素子を用いた表示装置は、小電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成る有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色をはじめとする発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
 有機電界発光素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。
 発光層用材料としては、例えば、ベンゾフルオレン系化合物やクリセン系化合物などが開発されている(国際公開第2004/061047号や国際公開第2008/147721号)。また、正孔輸送材料としては、例えば、トリフェニルアミン系化合物やカルバゾール系化合物などが開発されている(特開2001-172232号公報、特開2006-199679号公報、特開2005-268199号公報、特開2007-088433号公報、国際公開第2003/078541、国際公開第2003/080760)。また、電子輸送材料としては、例えば、アントラセン系化合物や中心骨格をビアントラセン、ビナフタレンまたはナフタレンとアントラセンとの結合体とした化合物などが開発されている(特開2005-170911号公報、特開2003-146951号公報、特開平08-12600号公報、特開2003-123983号公報、特開平11-297473号公報)。
 また、近年では有機エレクトロニクス、色素、センサー、液層ディスプレイに使用する材料として多環芳香族炭化水素(PAHs)が注目されており、B-N結合部位を有するジベンゾクリセン系化合物の合成例も報告されている(J. Am. Chem. Soc., 2011, 133, 18614-18617)。
国際公開第2004/061047号 国際公開第2008/147721号 特開2001-172232号公報 特開2006-199679号公報 特開2005-268199号公報 特開2007-088433号公報 国際公開第2003/078541 国際公開第2003/080760 特開2005-170911号公報 特開2003-146951号公報 特開平08-12600号公報 特開2003-123983号公報 特開平11-297473号公報
J. Am. Chem. Soc., 2011, 133, 18614-18617
 上述するように、有機電界発光素子に用いられる材料としては種々のものが開発されているものの、非特許文献1で報告されるようなB-N結合部位を有するジベンゾクリセン系化合物を該素子に適用した場合にどれほどの性能を有するのかについては未だ知られていない。
 本発明者らは、上記課題を解決するため鋭意検討した結果、窒素原子と他のヘテロ原子または金属原子(X)が非芳香環内で隣接する新規な多環芳香族化合物を見出し、その製造に成功した。また、この多環芳香族化合物を含有する層を一対の電極間に配置して有機電界発光素子を構成することにより、駆動電圧および電流効率を向上させた有機電界発光素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のような多環芳香族化合物またはその塩、さらには以下のような多環芳香族化合物またはその塩を含む有機電界発光素子用材料を提供する。
[1] 下記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩を含む、有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000017

(上記式(I)中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 A環、B環、C環およびD環は、それぞれ独立して、置換されていてもよい芳香族環または置換されていてもよいヘテロ芳香族環であり、隣接する2つの環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
 上記式(I)で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
[2] 下記一般式(II)で表される部分構造を有する多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000018

(上記式(II)中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 Yは、それぞれ独立して、CまたはNであり、同じ環で隣接する2つのYとそれらの間の結合とが一緒になって、N、O、SまたはSeになってもよく、環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、隣接する2つの環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
 上記式(II)で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
[3] 下記一般式(III-1)で表される部分構造を有する多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000019

(上記式(III-1)中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 上記式中のベンゼン環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
 上記式(III-1)で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
[4] 下記一般式(III-11)~(III-13)および一般式(III-33)~(III-36)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000020

(上記各式中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 Zは、N、O、SまたはSeであり、
 上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
 上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
[5] 下記一般式(III-33)および一般式(III-55)~(III-57)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000021

(上記各式中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
 上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
[6] 下記一般式(III-32)および一般式(III-5)~(III-7)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000022

(上記各式中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 Zは、N、O、SまたはSeであり、
 上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
 上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
[7] 下記一般式(III-32)および一般式(III-58)~(III-60)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000023

(上記各式中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
 上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
[8] 下記一般式(V-1)、一般式(V-3)、一般式(V-5)、一般式(V-15)、または一般式(V-16)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000024

(上記各式中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 Rは、水素、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
 同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記各式中の隣接する2つのベンゼン環は、単結合、CH、CHR、C(R、NR、Si(R、BR(ここでRは前記に定義されるとおりである)、Se、S、またはOを介した結合により結合されて、それらの間に環を形成していてもよく、
 nは0~4の整数であり、mは0~3の整数であり、そして、
 上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
[9] 下記一般式(V-27)~(V-30)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000025

(上記各式中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 Rは、水素、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
 同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記各式中の隣接する2つのベンゼン環は、単結合、CH、CHR、C(R、NR、Si(R、BR(ここでRは前記に定義されるとおりである)、Se、S、またはOを介した結合により結合されて、それらの間に環を形成していてもよく、
 nは0~4の整数であり、hは0~3の整数であり、そして、
 上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
[10] 下記一般式(V-31)~(V-34)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000026

(上記各式中、
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
 Rは、水素、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
 同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 上記各式中の隣接する2つのベンゼン環は、単結合、CH、CHR、C(R、NR、Si(R、BR(ここでRは前記に定義されるとおりである)、Se、S、またはOを介した結合により結合されて、それらの間に環を形成していてもよく、
 nは0~4の整数であり、hは0~3の整数であり、そして、
 上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
[11] 下記一般式(V-1’)~(V-3’)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000027

(上記各式中、
 Rは、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
 同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 nは0~4の整数であり、mは0~3の整数であり、そして、
 上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
[12] 下記一般式(V-27’)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000028

(上記式中、
 Rは、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
 同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 nは0~4の整数であり、hは0~3の整数であり、そして、
 上記式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
[13] 下記一般式(V-32’)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000029

(上記式中、
 Rは、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
 同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
 nは0~4の整数であり、hは0~3の整数であり、そして、
 上記式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
[14] 下記式(1)、式(66)、式(197)、式(198)、または式(251)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000030
[15] 下記式(301)、式(391)、式(392)、式(501)、式(551)、または式(687)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000031
[16] 下記式(26)、式(48)、式(51)、式(84)、式(86)、式(209)、式(210)、式(212)、式(214)、式(215)、式(366)または式(424)で表される多環芳香族化合物またはその塩を含む、上記[1]に記載の有機電界発光素子用材料。
Figure JPOXMLDOC01-appb-C000032
[17] 発光層用材料である、上記[1]~[16]のいずれかに記載する有機電界発光素子用材料。
[18] 正孔注入層用材料または正孔輸送層用材料である、上記[1]~[16]のいずれかに記載する有機電界発光素子用材料。
[19] 正孔阻止層用材料または電子輸送層用材料である、上記[1]~[16]のいずれかに記載する有機電界発光素子用材料。
[20] 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、上記[17]に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
[21] 陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陽極および前記発光層の間に配置され、上記[18]に記載する正孔層用材料を含有する正孔注入層および/または正孔輸送層とを有する、有機電界発光素子。
[22] 陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陰極および前記発光層の間に配置され、上記[19]に記載する正孔阻止層用材料または電子輸送層用材料を含有する正孔阻止層および/または電子輸送層とを有する、有機電界発光素子。
[23] さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、上記[20]または[21]に記載する有機電界発光素子。
[24] 前記正孔阻止層および電子輸送層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、上記[22]に記載する有機電界発光素子。
[25] 前記正孔阻止層、電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、上記[23]または[24]に記載の有機電界発光素子。
[26] 上記[20]~[25]のいずれかに記載する有機電界発光素子を備えた表示装置。
[27] 上記[20]~[25]のいずれかに記載する有機電界発光素子を備えた照明装置。
 本発明の好ましい態様によれば、例えば、有機電界発光素子材料として優れた多環芳香族化合物を提供することができ、この多環芳香族化合物を用いることで駆動電圧および電流効率を向上させた有機電界発光素子を提供することができる。
本実施形態に係る有機電界発光素子を示す概略断面図である。
1.多環芳香族化合物を構成する部分構造
 本発明の多環芳香族化合物(およびその塩)は、下記一般式(I)で表される部分構造を有し、有機電界発光素子用材料として有用である。なお、式中の各記号は上述するとおりである。
Figure JPOXMLDOC01-appb-C000033
 上記式(I)で表される部分構造をより具体的にしたものとして、下記一般式(II)または一般式(II’)で表される部分構造が挙げられる。なお、式中の各記号は上述するとおりである。
Figure JPOXMLDOC01-appb-C000034
 上記式(II)または式(II’)で表される部分構造をより具体的にしたものとして、例えば、下記一般式(III-1)~式(III-54)および一般式(III-55)~式(III-60)で表される部分構造が挙げられる。なお、各式中、Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、Zは、N、O、SまたはSeである。また、各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよい。また、各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、各部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。なお、Zについては、後述する「同じ環で隣接する2つのYとそれらの間の結合とが一緒になって、N、O、SまたはSeになる」の定義の説明を参照できる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
2.多環芳香族化合物の全体構造
 本発明の多環芳香族化合物(およびその塩)は、上述した部分構造を含む(例えば該部分構造の繰り返しからなる)化合物であり、具体的なものとしては、例えば、下記一般式(IV-1)~式(IV-22)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 上記式(IV-1)~式(IV-22)中、Yはそれぞれ独立してCR(Rは後述)またはNであり、同じ環で隣接する2つのYとそれらの間の結合とが一緒になって、NR(Rは後述)、O、SまたはSeになってもよい。
 Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素を示す。
 上記式(IV-1)~式(IV-22)中のR(上記CRやNR中のRも含む)は、水素、ハロゲン、C1-20アルキル、ヒドロキシC1-20アルキル、トリフルオロメチル、C2-12パーフルオロアルキル、C3-8シクロアルキル、C2-20アルケニル、C2-20アルキニル、モノもしくはジアリール置換アルケニル、モノもしくはジへテロアリール置換アルケニル、アリールエチニル、へテロアリールエチニル、ヒドロキシ、C1-20アルコキシ、アリールオキシ、トリフルオロメトキシ、トリフルオロエトキシ、C2-12パーフルオロアルコキシ、C1-20アルキルカルボニル、C1-20アルキルスルホニル、シアノ、ニトロ、アミノ、モノアルキルアミノ、モノアリールアミノ、モノヘテロアリールアミノ、ジアリールアミノ、カルバゾリル、C1-20アルコキシカルボニルアミノ、カルバモイル、モノもしくはジアルキルカルバモイル、スルファモイル、モノもしくはジアルキルスルファモイル、C1-20アルキルスルホニルアミノ、C1-20アルキルカルボニルアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、C1-20アルコキシカルボニル、カルボキシル、5-テトラゾリル、スルホ(-SOOH)、フルオロスルホニル、SR、N(R、B(R、Si(R、-C≡C-Si(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールを示し、2つのRはそれらが結合している原子と一緒になってヘテロ原子を有していてもよい二環式基または三環式基であってもよい。)を意味する。
 ただし、アルキル、アルケニル、アルキニルおよびアルコキシは、ハロゲン、ヒドロキシ、C1-20アルコキシ、アリールオキシ、アミノ、カルバゾリル、N(Ra(Rは前記に定義されるとおりである)、トリフルオロメチル、C2-12パーフルオロアルキル、C3-8シクロアルキル、アリールおよびヘテロアリールから選択される1~3個の基で置換されていてもよく、かつ、上記アリール基、アリール部分、ヘテロアリール基、ヘテロアリール部分、カルバゾール基は、ハロゲン、C1-20アルキル、ヒドロキシC1-20アルキル、トリフルオロメチル、C2-12パーフルオロアルキル、C3-8シクロアルキル、C2-20アルケニル、C2-20アルキニル、モノもしくはジアリール置換アルケニル、モノもしくはジへテロアリール置換アルケニル、アリールエチニル、へテロアリールエチニル、ヒドロキシ、C1-20アルコキシ、アリールオキシ、トリフルオロメトキシ、トリフルオロエトキシ、C2-12パーフルオロアルコキシ、シアノ、ニトロ、アミノ、カルバゾリル、モノアルキルアミノ、モノアリールアミノ、モノヘテロアリールアミノ、N(Ra(Rは前記に定義されるとおりである)、カルバモイル、モノもしくはジアルキルカルバモイル、スルファモイル、モノもしくはジアルキルスルファモイル、C1-20アルキルカルボニル、C1-20アルキルスルホニル、C1-20アルキルスルホニルアミノ、C1-20アルキルカルボニルアミノ、メチレンジオキシ、ヘテロアリールおよびアリール(当該アリールは、ハロゲン、C1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、C2-20アルキニル、ヒドロキシ、トリフルオロメチル、C2-12パーフルオロアルキル、ヒドロキシ、C1-20アルコキシ、アリールオキシ、トリフルオロメトキシ、トリフルオロエトキシ、C2-12パーフルオロアルコキシ、C1-20アルキルカルボニル、C1-20アルキルスルホニル、メチレンジオキシ、シアノ、ニトロ、アミノ、カルバゾリル、N(Ra(Rは前記に定義されるとおりである)から選択される1~5個の基で置換されていてもよい)から選択される1~5個の基で置換されていてもよい。
 また、隣接する2つのRは、これらが結合している炭素原子と一緒になって5員環または6員環のヘテロ原子を有していてもよい単環式基、二環式基または三環式基を形成してもよく、例えば、シクロヘキサン環、ベンゼン環またはピリジン環を形成する例が挙げられる。さらに、隣接する3つのRは、これらが結合している炭素原子と一緒になってヘテロ原子を有していてもよい二環式基または三環式基を形成してもよい。隣接する2つのRがそれぞれ隣接する環に置換したRである場合、2つのRは、単結合、CH、CHR、CR 、NR、Si(R、BR(Rは前記に定義されるとおりである)、Se、S、またはOとなって2つの隣接する環を結合してもよい。また、全体構造における少なくとも1つの水素が重水素で置換されていてもよい。
 mは0~3の整数であり、好ましくは0~2の整数、より好ましくは0~1の整数、さらに好ましくは0である。kは0~2の整数であり、好ましくは0~1の整数、より好ましくは0である。
 本発明の多環芳香族化合物(およびその塩)のより具体的な例としては、例えば、下記一般式(V-1)~式(V-26)および一般式(V-27)~式(V-34)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 上記式(V-1)~式(V-26)および式(V-27)~式(V-34)中、XはB、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素を示す。
 上記式(V-1)~式(V-26)および式(V-27)~式(V-34)中のRは、水素、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)を意味する。なお、式(V-27)~式(V-34)におけるピロール環のうち、Nが縮合に関与したもの(例えば式(V-27)のピロール環)以外のピロール環(例えば式(V-32)のピロール環)のNに対しては、基本的には水素が結合(>N-H)しているが、置換基Rが結合(>N-R)してもよい。図を用いた詳細な説明は、後述する「同じ環で隣接する2つのYとそれらの間の結合とが一緒になって、N、O、SまたはSeになる」の説明を参照できる。
 また、同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよい。さらに、上記各式中の隣接する2つのベンゼン環は、単結合、CH、CHR、C(R、NR、Si(R、BR(ここでRは前記に定義されるとおりである)、Se、S、またはOを介した結合により結合されて、それらの間に環を形成していてもよい。また、全体構造における少なくとも1つの水素が重水素で置換されていてもよい。
 nは0~4の整数であり、好ましくは0~2の整数、より好ましくは0~1の整数、さらに好ましくは0である。mは0~3の整数であり、好ましくは0~2の整数、より好ましくは0~1の整数、さらに好ましくは0である。kは0~2の整数であり、好ましくは0~1の整数、より好ましくは0である。hは0~3の整数であり、好ましくは0~2の整数、より好ましくは0~1の整数、さらに好ましくは0である。
 本発明の多環芳香族化合物(およびその塩)のより具体的な例としては、例えば、下記一般式(V-1’)、式(V-2’)または式(V-3’)で表される化合物および下記一般式(V-27’)または式(V-32’)で表される化合物が挙げられる。これらの化合物は、それぞれ上記一般式(V-1)、式(V-2)または式(V-3)および上記一般式(V-27)または式(V-32)におけるXとしてB元素が選択されたものに相当する。式中のR、n、mおよびhは前記に定義されるとおりである。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 中でも、上記一般式(V-1’)、一般式(V-27’)および式(V-32’)において置換基Rがアリールである化合物については、Rの具体例としては、例えば、フェニル、(2-,3-,4-)ビフェニリル、テルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、(1-,2-)ナフチル、(1-,2-)トリフェニレニル、または(1-,2-,3-.4-,9-)カルバゾリルなどが挙げられ、フェニル、ビフェニリル、またはテルフェニリルが好ましい。
 Rの置換位置は、上記一般式(V-1’)、一般式(V-27’)および式(V-32’)においてNに結合するベンゼン環(式(I)のB環および/またはD環に相当)については、Nに結合する炭素の位置を基準としてパラ位への置換が好ましく、B環またはD環の一方の環のパラ位が置換されているか、または両方の環のパラ位が置換されていてもよく、両方の環のパラ位が置換されていることが好ましい。また、上記一般式(V-1’)および式(V-32’)においてBに結合するベンゼン環(式(I)のA環および/またはC環に相当)については、Bに結合する炭素の位置を基準としてオルト位への置換が好ましく、A環またはC環の一方の環のオルト位が置換されているか、または両方の環のオルト位が置換されていてもよい。
 具体的には、後述する式(51)~(86)で表される化合物が好ましく、式(66)~(83)および(86)で表される化合物がより好ましく、式(66)~(74)で表される化合物がさらに好ましい。
 また、置換基R(アリール)はさらに置換されていてもよい。例えば、フェニル基やジアリールアミノ基や置換されていてもよいカルバゾリル基などで置換された例が挙げられる。ジアリールアミノ基の「アリール」としては後述するアリール(例えばフェニルやナフチル)が挙げられ、カルバゾリル基への置換基としては後述するアルキル(例えばC1-3アルキル)や後述するアリール(例えばフェニルやビフェニリルやナフチル)などが挙げられる。具体的には、後述する式(192)、(196)、(199)、(205)および(209)で表される化合物が好ましい。
 上記一般式(V-1’)、一般式(V-27’)および式(V-32’)において置換基RがN含有構造である化合物については、Rの具体例としては、例えば、ジアリールアミノ基や置換されていてもよいカルバゾリル基などが挙げられる。ジアリールアミノ基の「アリール」としては後述するアリール(例えばフェニルやナフチル)が挙げられ、カルバゾリル基への置換基としては後述するアルキル(例えばC1-3アルキル)や後述するアリール(例えばフェニルやビフェニリルやナフチル)などが挙げられる。
 Rの置換位置は、上記一般式(V-1’)、一般式(V-27’)および式(V-32’)においてNに結合するベンゼン環(式(I)のB環および/またはD環に相当)については、Nに結合する炭素の位置を基準としてパラ位への置換が好ましく、B環またはD環の一方の環のパラ位が置換されているか、または両方の環のパラ位が置換されていてもよい。
 具体的には、後述する式(188)~(191)、式(193)~(195)、式(197)、式(198)、式(200)~(204)、および式(206)~(208)で表される化合物が好ましい。
 本発明の多環芳香族化合物(およびその塩)のさらに具体的な例としては、例えば、下記一般式(VI-1)~式(VI-149)で表される化合物(これらの化合物はさらに置換されていてもよく、これらの置換基は互いに結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよい)が挙げられる。なお、各式中、X、Zは、前記に定義されるとおりである。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 Xで表される、周期表第3~11族の金属元素、周期表第13~14族の金属元素または半金属元素としては、以下のものが例示される。
第3族:Sc、Y、ランタノイド
第4族:Ti、Zr、Hf
第5族:V、Nb、Ta
第6族:Cr、Mo、W
第7族:Mn、Tc、Re
第8族:Fe、Ru、Os
第9族:Co、Rh、Ir
第10族:Ni、Pd、Pt
第11族:Cu、Ag、Au
第13族:Al、Ga、In、Tl
第14族:Si、Ge、Sn、Pb
 Xで表される、周期表第3~11族の金属元素、周期表第13~14族の金属元素または半金属元素は、各々置換されていてもよい。ここで、これら金属元素または半金属元素が「置換されている」とは、1~3個の置換基R(Rは、前記に定義されるとおりである)、あるいは1~3個の中性の配位子Rを有していることを意味する。中性の配位子Rとしては、ピリジン、ビピリジン、フェナントロリン、ターピリジン、イミダゾール、ピリミジン、ピラジン、キノリン、イソキノリン、アクリジンなどの窒素原子を環原子として有する芳香族化合物とそれらの誘導体が挙げられる。但し、XがRとRの両方を有する場合、下記Case(3)のようにRとRが1つの化合物(8-ヒドロキシキノリン)により形成されてもよい。
 中性の配位子Rを有する化合物は、例えば以下のようにして製造することができる。
(下記式中、(R)はRが上記に定義されるRであることを示し、(R)は、Rが中性の配位子であることを示す。)
Figure JPOXMLDOC01-appb-C000056
 Case(1)は、式(I)のX(金属元素または半金属元素)に中性の配位子(R)が結合して(I’)化合物を得る場合を表す。
 Case(2)は、X(金属元素または半金属元素)がRで置換されており、かつ、R=Clである(I”)に対しさらに中性の配位子(R)が結合して(I'”)化合物を得る場合を示す。
 Case(3)は、X(金属元素または半金属元素)がRで置換されており、かつ、R=Clである(I”)に対し8-ヒドロキシキノリンを作用させ、RであるClをフェノール性水酸基の酸素原子と置換し、同時に中性の配位子であるキノリンの環内N原子(R)が配位することで、(R)および(R)を有する(I””)化合物を得る方法を示す。
 中性の配位子を有する化合物は、上記のCase(1)~Case(3)を参考にして、当業者であれば容易に製造することができる。
 また、下記に示すように、XをXに変更することができる。
Figure JPOXMLDOC01-appb-C000057
 X、Xは、電気陰性度が同程度である場合、またはX<Xとなる組み合わせにおいて変更可能である。例えば、X=Ge-Rの場合、Xとしては、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、Mo、W、Ru、Os、Rh、Ir、Pd、Pt、Au、Pb(これら金属元素は置換されてもよい)に変更可能である。
 変更する方法としては、X1を有する(IA)の化合物に対し、Xのハロゲン化物、アルコキシ誘導体、アリールオキシ誘導体、アシルオキシ誘導体、ハロアミノ誘導体を1モル~過剰量、ルイス酸を0モル~過剰量、塩基を0モル~過剰量使用し、溶媒中または無溶媒条件下で室温~250℃程度の温度下に30分~24時間撹拌して反応させることで、Xを有する(IB)の化合物を得る。
 溶媒として、無水ジエチルエーテル、無水THF、無水ジブチルエーテルなどの無水エーテル系溶媒か、ベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素系溶媒か、クロロベンゼン、1,2-ジクロロベンゼンなどの芳香族ハロゲン化物系溶媒が用いられる。
 ルイス酸としては、AlCl、AlBr、BF・OEt、BCl、BBr、GaCl、GaBr、InCl、InBr、In(OTf)、SnCl、SnBr、AgOTf、Sc(OTf)、ZnCl、ZnBr、Zn(OTf)、MgCl、MgBr、Mg(OTf)などが用いられる。
 塩基としては、ジイソプロピルエチルアミン、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン、2,4,6-コリジン、2,6-ルチジン、トリエチルアミン、トリイソブチルアミンなどが用いられる。X=Pであり、ルイス酸と塩基を用いる反応を硫黄(S8)の存在下に行うことで、XがP=Sの化合物を直接得ることができる。XがAs、Sbなどの他の元素についても同様に硫黄原子が結合した化合物を得ることができる。
 上記は一般式(I)の部分構造を有する化合物について記載したが、上述してきた全ての部分構造および全体構造についても同様に中性の配位子を導入することができ、また、XからXへの変換が可能である。
 好ましいXとして、B、P、P=O、P=S、Si-R、Ge-R、Ga、Pt、Ru、Ir、Auなどが挙げられる。
 本明細書において「隣接する2つの環」や「隣接する2つのベンゼン環」とは、上記一般式(I)を用いて説明すると、環Aと環B、環Cと環D、環Aと環C、環Bと環Dのそれぞれを意味する。
 本明細書において「部分構造は少なくとも1つの水素を有する」とは、上記一般式(I)を用いて説明すると、環A、環B、環Cおよび環Dを形成する原子の全てが他の構造と連結し得るわけではなく、少なくとも1つの原子は必ず水素と結合して終端していることを意味し、上記一般式(I)で表される部分構造を含む(例えば該部分構造の繰り返しからなる)多環芳香族化合物またはその塩には、例えば、フラーレンやカーボンナノチューブの炭素骨格の一部をホウ素及び窒素などで置換したヘテロフラーレンやヘテロカーボンナノチューブなどは含まれないことを意味する。
 本明細書において、「同じ環で隣接する2つのYとそれらの間の結合とが一緒になって、N、O、SまたはSeになる」とは、Y=Yのように隣接するYが二重結合で結合する場合、「Y=Y」がN、O、SまたはSeになり得ることを意味し、Y-Yのように隣接するYが単結合で結合する場合、下記式(式中、Yは、前記に定義されるとおりである。)のような構造になり得ることを意味する。なお、Nから延びる結合手には基本的には水素が結合(>N-H)するが、5員環が置換されている場合には、Nに置換基が結合(>N-R)してもよい。
Figure JPOXMLDOC01-appb-C000058

 「同じ環で隣接する2つのYとそれらの間の結合とが一緒になって、NR、O、SまたはSeになる」も同様の意味である。
 本明細書において、「隣接するR」は、同じ環の隣接する基でもよく、隣接する環の最も近いR同士であってもよい。
 「置換されていてもよい芳香族環」の芳香族環としては、ベンゼン環、ナフタレン環、アズレン環、ビフェニレン環、フルオレン環、アントラセン環、インダセン環、フェナントレン環、フェナレン環、ピレン環、クリセン環、トリフェニレン環、フルオランテン環、アセフェナントリレン環、アセアントリレン環、ピセン環、ナフタセン環、ペリレン環、アセナフチレン環、アセナフテン環、インダン環、インデン環、テトラヒドロナフタレン環、が挙げられる。
「置換されていてもよいヘテロ芳香族環」のヘテロ芳香族環としては、フラン環、チオフェン環、セレノフェン環、ピロール環、イミダゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、トリアゾール環、ボロール環、ホスホール環、シロール環、アザボリン環、ピリジン環、ピリミジン環、トリアジン環、ピラン環、インドール環、イソインドール環、キノリン環、イソキノリン環、キノキサリン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾフラン環、ベンゾチオフェン環、ベンゾピラン環、ベンゾイミダゾール環、ベンゾボロール環、ベンゾホスホール環、ベンゾシロール環、ベンゾアザボリン環、カルバゾール環、インドリジン環、アクリジン環、フェナジン環、フェナントリジン環、フェナントロリン環、フェノキサジン環、フェノチアジン環、ベンゾセレノフェン環、ナフトフラン環、ナフトオキサゾール環、ナフトチアゾール環、ナフトイソオキサゾール環、ナフトイミダゾール環、ナフトボロール環、ナフトホスホール環、ナフトシロール環、ナフトアザボリン環、ナフトピラン環、ベンゾインドール環、ベンゾイソインドール環、ベンゾキノリン環、ベンゾイソキノリン環、ベンゾキノキサリン環、下記式で表される環(式中Rは前記に定義されるとおりである。)が挙げられる。
Figure JPOXMLDOC01-appb-C000059
 置換されていてもよい芳香族環または置換されていてもよいヘテロ芳香族環の置換基の数は、1~4個、好ましくは1個、2個または3個である。置換されていてもよい芳香族環または置換されていてもよいヘテロ芳香族環の置換基としては、Rで表される基が挙げられる。
 「5員環または6員環のヘテロ原子を有していてもよい単環式基、二環式基または三環式基」としては、ベンゼン、ナフタレン、アズレン、ビフェニレン、フルオレン、アントラセン、インダセン、フェナントレン、フェナレン、アセナフチレン、アセナフテン、インダン、インデン、テトラヒドロナフタレン、シクロペンタジエン、シクロヘキサジエン、フラン、チオフェン、セレノフェン、ピロール、イミダゾール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール、トリアゾール、ボロール、ホスホール、シロール、アザボリン、ピリジン、ピリミジン、トリアジン、ピラン、インドール、イソインドール、キノリン、イソキノリン、キノキサリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール、ベンゾフラン、ベンゾチオフェン、ベンゾピラン、ベンゾイミダゾール、ベンゾボロール、ベンゾホスホール、ベンゾシロール、ベンゾアザボリン、インドリジン、アクリジン、フェナジン、フェナントリジン、フェナントロリン、ベンゾセレノフェン、ナフトフラン、ナフトオキサゾール、ナフトチアゾール、ナフトイソオキサゾール、ナフトイミダゾール、ナフトボロール、ナフトホスホール、ナフトシロール、ナフトアザボリン、ナフトピラン、ベンゾインドール、ベンゾイソインドール、ベンゾキノリン、ベンゾイソキノリン、ベンゾキノキサリン、下記式で表される基(式中Rは前記に定義されるとおりである。)、あるいはXを有する5員環または6員環の基が挙げられる。
Figure JPOXMLDOC01-appb-C000060
 「ヘテロ原子を有していてもよい二環式基または三環式基」としては、ナフタレン、アズレン、ビフェニレン、フルオレン、アントラセン、インダセン、フェナントレン、フェナレン、アセナフチレン、アセナフテン、インダン、インデン、テトラヒドロナフタレン、インドール、イソインドール、キノリン、イソキノリン、キノキサリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール、ベンゾフラン、ベンゾチオフェン、ベンゾピラン、ベンゾイミダゾール、ベンゾボロール、ベンゾホスホール、ベンゾシロール、ベンゾアザボリン、インドリジン、アクリジン、フェナジン、フェナントリジン、フェナントロリン、ベンゾセレノフェン、ナフトフラン、ナフトオキサゾール、ナフトチアゾール、ナフトイソオキサゾール、ナフトイミダゾール、ナフトボロール、ナフトホスホール、ナフトシロール、ナフトアザボリン、ナフトピラン、ベンゾインドール、ベンゾイソインドール、ベンゾキノリン、ベンゾイソキノリン、ベンゾキノキサリン、下記式で表される基(式中Rは前記に定義されるとおりである。)が挙げられる。
Figure JPOXMLDOC01-appb-C000061
 本明細書では、「C1-20アルキルカルボニル」のように炭素原子数を規定しているが、この炭素原子数は直後に続く基または部分のみを修飾する。したがって、上記の場合、C1-20はアルキルのみを修飾するので、「Cアルキルカルボニル」とはアセチルに該当する。
 アルキル基およびアルキル部分は、直鎖状でも分枝鎖状でもよい。
 本明細書でアルキル部分とは、置換されていてもよいアルキル、C1-20アルキルスルホニル、C1-20アルキルスルホニルアミノ、C1-20アルキルカルボニルアミノおよびC1-20アルキルカルボニルなどにおける各アルキル基だけでなく、モノアルキルアミノ、モノ-もしくはジ-アルキルスルファモイル、モノ-もしくはジ-アルキルカルバモイルなどの置換基であるアルキル基を包含する。
 アリール部分とは、モノもしくはジアリール置換アルケニル、アリールエチニル、アリールオキシ、モノアリールアミノ、置換されていてもよいアリールなどのアリール基を意味する。
 ヘテロアリール部分とは、モノヘテロアリールアミノ、モノもしくはへテロアリール置換アルケニル、へテロアリールエチニル、置換されていてもよいヘテロアリールなどのヘテロアリール基を意味する。
 「ハロゲン」とは、フッ素、塩素、臭素、ヨウ素を意味するが、フッ素、塩素、臭素が好ましい。
 「C1-20アルキル」とは、直鎖状、分枝鎖状または環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、イソペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシルなどのC1-20アルキル、好ましくはC1-10アルキル、より好ましくはC1-6アルキルが挙げられる。
 「C3-8シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルおよびシクロヘプチル、シクロオクチルが挙げられる。
 「C2-20アルケニル」とは、直鎖状、分枝鎖状または環状のいずれでもよく、二重結合を少なくとも1個有するものを意味し、例えばビニル、アリル、1-プロペニル、2-メチル-2-プロペニル、イソプロペニル、1-、2-もしくは3-ブテニル、2-、3-もしくは4-ペンテニル、2-メチル-2-ブテニル、3-メチル-2-ブテニル、5-ヘキセニル、1-シクロペンテニル、1-シクロヘキセニル、3-メチル-3-ブテニルが挙げられ、好ましくはC2-12アルケニル、より好ましくはC2-6アルケニルが挙げられる。
 「C2-20アルキニル」とは、直鎖状、分枝鎖状または環状のいずれでもよく、三重結合を少なくとも1個有するものを意味し、例えばエチニル、1-もしくは2-プロピニル、1-、2-もしくは3-ブチニル、1-メチル-2-プロピニル、1-ペンチニル、1-ヘキシニル、1-へプチニル、1-オクチニル、1-ノネニル、1-デシニル、1-ウンデシニル、1-ドデシニルが挙げられ、好ましくはC2-10アルキニル、より好ましくはC2-6アルキニルが挙げられる。
 「ヒドロキシC1-20アルキル」とは、直鎖状、分枝鎖状のいずれでもよく、例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシn-プロピル、ヒドロキシイソプロピル、ヒドロキシn-ブチル、ヒドロキシイソブチル、ヒドロキシt-ブチル、ヒドロキシn-ペンチル、ヒドロキシイソペンチル、ヒドロキシヘキシル、ヒドロキシヘプチル、ヒドロキシオクチル、ヒドロキシノニル、ヒドロキシデシル、ヒドロキシウンデシル、ヒドロキシドデシル、ヒドロキシテトラデシル、ヒドロキシヘキサデシル、ヒドロキシオクタデシル、ヒドロキシエイコシルなどのヒドロキシC1-20アルキル、好ましくはヒドロキシC1-10アルキル、より好ましくはヒドロキシC1-6アルキルが挙げられる。
 「C1-20アルコキシ」とは、直鎖状、分枝鎖状のいずれでもよく、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、t-ブトキシ、ペンチルオキシ、イソペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、テトラデシルオキシ、ヘキサデシルオキシ、オクタデシルオキシ、エイコシルオキシなどのC1-20アルコキシ、好ましくはC1-10アルコキシ、より好ましくはC1-6アルコキシが挙げられる。
 トリフルオロエトキシとしては、CFCHO-が好ましい。
 「C2-12パーフルオロアルキル」とは、直鎖状、分枝鎖状のいずれでもよく、例えば、パーフルオロエチル、パーフルオロn-プロピル、パーフルオロイソプロピル、パーフルオロn-ブチル、パーフルオロイソブチル、パーフルオロt-ブチル、パーフルオロn-ペンチル、パーフルオロイソペンチル、パーフルオロヘキシル、パーフルオロヘプチル、パーフルオロオクチル、パーフルオロノニル、パーフルオロデシル、パーフルオロウンデシルなどのC2-12パーフルオロアルキル、好ましくはC2-10パーフルオロアルキル、より好ましくはC2-6パーフルオロアルキルが挙げられる。
 「C2-12パーフルオロアルコキシ」とは、直鎖状、分枝鎖状のいずれでもよく、例えば、パーフルオロエトキシ、パーフルオロn-プロピルオキシ、パーフルオロイソプロピルオキシ、パーフルオロn-ブトキシ、パーフルオロイソブトキシ、パーフルオロt-ブトキシ、パーフルオロn-ペンチルオキシ、パーフルオロイソペンチルオキシ、パーフルオロヘキシルオキシ、パーフルオロヘプチルオキシ、パーフルオロオクチルオキシ、パーフルオロノニルオキシ、パーフルオロデシルオキシ、パーフルオロウンデシルオキシなどのC2-12パーフルオロアルコキシ、好ましくはC2-10パーフルオロアルコキシ、より好ましくはC2-6パーフルオロアルコキシが挙げられる。
 モノアルキルアミノ、モノもしくはジアルキルカルバモイルまたはモノもしくはジアルキルスルファモイルにおける「モノアルキル」とは、アミノ、カルバモイルまたはスルファモイルの窒素原子に結合する水素原子の1個がC1-20アルキルで置換されていることを意味し、「ジアルキル」とは、アミノ、カルバモイルまたはスルファモイルの窒素原子に結合する水素原子の2個が同一または異なるC1-20アルキルで置換されているか、或いは3~8員、好ましくは5または6員の含窒素環式基で置換されていることを意味する。含窒素環式基としては、モルホリノ、1-ピロリジニル、ピペリジノおよび4-メチル-1-ピペラジニルが挙げられる。
 モノアルキルアミノとしては、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソブチルアミノ、t-ブチルアミノ、n-ペンチルアミノ、イソペンチルアミノ、ヘキシルアミノなどのC1-20アルキル、好ましくはC1-10アルキル、より好ましくはC1-6アルキルでモノ置換されたアミノが挙げられる。
 モノアルキルカルバモイルとしては、メチルカルバモイル、エチルカルバモイル、n-プロピルカルバモイル、イソプロピルカルバモイル、n-ブチルカルバモイル、イソブチルカルバモイル、t-ブチルカルバモイル、n-ペンチルカルバモイル、イソペンチルカルバモイル、ヘキシルカルバモイルなどのC1-20アルキル、好ましくはC1-10アルキル、より好ましくはC1-6アルキルでモノ置換されたカルバモイルが挙げられる。
 ジアルキルカルバモイルとしては、ジメチルカルバモイル、ジエチルカルバモイル、ジn-プロピルカルバモイル、ジイソプロピルカルバモイル、ジn-ブチルカルバモイル、ジイソブチルカルバモイル、ジt-ブチルカルバモイル、ジn-ペンチルカルバモイル、ジイソペンチルカルバモイル、ジヘキシルカルバモイルなどのC1-20アルキル、好ましくはC1-10アルキル、より好ましくはC1-6アルキルでジ置換されたカルバモイルが挙げられる。
 モノアルキルスルファモイルとしては、メチルスルファモイル、エチルスルファモイル、n-プロピルスルファモイル、イソプロピルスルファモイル、n-ブチルスルファモイル、イソブチルスルファモイル、t-ブチルスルファモイル、n-ペンチルスルファモイル、イソペンチルスルファモイル、ヘキシルスルファモイルなどのC1-20アルキル、好ましくはC1-10アルキル、より好ましくはC1-6アルキルでモノ置換されたスルファモイルが挙げられる。
 ジアルキルスルファモイルとしては、ジメチルスルファモイル、ジエチルスルファモイル、ジn-プロピルスルファモイル、ジイソプロピルスルファモイル、ジn-ブチルスルファモイル、ジイソブチルスルファモイル、ジt-ブチルスルファモイル、ジn-ペンチルスルファモイル、ジイソペンチルスルファモイル、ジヘキシルスルファモイルなどのC1-20アルキル、好ましくはC1-10アルキル、より好ましくはC1-6アルキルでジ置換されたスルファモイルが挙げられる。
 「アリール」とは、5または6員の芳香族炭化水素環からなる単環または多環系の基を意味し、具体例としては、フェニル、(1-,2-)ナフチル、フルオレニル、アントリル、(2-,3-,4-)ビフェニリル、テトラヒドロナフチル、2,3-ジヒドロ-1,4-ジオキサナフタレニル、テルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、インダニル、インデニル、インダセニル、ピレニル、ナフタセニル、ペリレニル、ピレニル、クリセニル、アセナフチル、アセナフテニルおよびフェナントリルが挙げられ、また、前記で定義したように、これらは1~5個の基で置換されていてもよい。
 「ヘテロアリール」とは、N、O、S、SeおよびSiから選択される1~3個のヘテロ原子を含む、5または6員の芳香族環からなる単環または多環系の基を意味し、多環系の場合には少なくとも1つの環が芳香族環であればよい。具体例としては、フリル、チエニル、セレノフェン、ピロリル、イミダゾリル、ピラゾリル、オキサゾリル、チアゾリル、イソオキサゾリル、イソチアゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニル、インドリル、キノリル、イソキノリル、カルバゾリル、クロマニル、シロール、ベンゾ[b]シロール、ベンゾ[b]フリル、ベンゾ[b]チエニル、ベンゾ[b]セレノフェン、ベンゾインドリル、ベンゾキノリル、ベンゾイソキノリル、ベンゾカルバゾリル、ベンゾクロマニル、ベンゾイミダゾリル、ベンゾピラゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、ベンゾイソオキサゾリル、ベンゾイソチアゾリル、ジベンゾ[b,d]フリル、ジベンゾ[b,d]チエニル、チエノ[3,4-b]チエニル、チエノ[3,2-b]チエニルおよびフロロ[3,2-b]フリルが挙げられ、また、前記で定義したように、これらは1~5個の基で置換されていてもよい。
 モノアリールアミノとしては、アリールが前記で定義されたものであるモノアリールアミノが挙げられる。
 ジアリールアミノとしては、アリールが前記で定義されたものであるジアリールアミノが挙げられる。
 モノヘテロアリールアミノとしては、ヘテロアリールが前記で定義されたものであるモノヘテロアリールアミノが挙げられる。
 「C1-20アルキルスルホニル」とは、直鎖状、分枝鎖状または環状のいずれでもよく、例えば、メチルスルホニル、エチルスルホニル、n-プロピルスルホニル、イソプロピルスルホニル、n-ブチルスルホニル、イソブチルスルホニル、t-ブチルスルホニル、n-ペンチルスルホニル、イソペンチルスルホニル、ヘキシルスルホニル、ヘプチルスルホニル、オクチルスルホニル、ノニルスルホニル、デシルスルホニル、ウンデシルスルホニル、ドデシルスルホニル、テトラデシルスルホニル、ヘキサデシルスルホニル、オクタデシルスルホニル、エイコシルスルホニルなどのC1-20アルキルスルホニル、好ましくはC1-10アルキルスルホニル、より好ましくはC1-6アルキルスルホニルが挙げられる。
 「C1-20アルキルカルボニルアミノ」とは、直鎖状、分枝鎖状または環状のいずれでもよく、例えば、メチルカルボニルアミノ、エチルカルボニルアミノ、n-プロピルカルボニルアミノ、イソプロピルカルボニルアミノ、n-ブチルカルボニルアミノ、イソブチルカルボニルアミノ、t-ブチルカルボニルアミノ、n-ペンチルカルボニルアミノ、イソペンチルカルボニルアミノ、ヘキシルカルボニルアミノ、ヘプチルカルボニルアミノ、オクチルカルボニルアミノ、ノニルカルボニルアミノ、デシルカルボニルアミノ、ウンデシルカルボニルアミノ、ドデシルカルボニルアミノ、テトラデシルカルボニルアミノ、ヘキサデシルカルボニルアミノ、オクタデシルカルボニルアミノ、エイコシルカルボニルアミノなどのC1-20アルキルカルボニルアミノ、好ましくはC1-10アルキルカルボニルアミノ、より好ましくはC1-6アルキルカルボニルアミノが挙げられる。
 C1-20アルコキシカルボニルアミノ(例えばC1-12アルコキシカルボニルアミノ、C1-6アルコキシカルボニルアミノ)としては、メトキシカルボニルアミノ、エトキシカルボニルアミノ、プロポキシカルボニルアミノ、イソプロポキシカルボニルアミノ、ブトキシカルボニルアミノ、イソブトキシカルボニルアミノ、t-ブトキシカルボニルアミノ、ペンチルオキシカルボニルアミノ、イソペンチルオキシカルボニルアミノおよびヘキシルオキシカルボニルアミノが挙げられる。
 C1-20アルキルスルホニルアミノ(例えばC1-10アルキルスルホニルアミノ、C1-6アルキルスルホニルアミノ)としては、メチルスルホニルアミノ、エチルスルホニルアミノ、n-プロピルスルホニルアミノ、イソプロピルスルホニルアミノ、n-ブチルスルホニルアミノ、イソブチルスルホニルアミノ、t-ブチルスルホニルアミノ、n-ペンチルスルホニルアミノ、イソペンチルスルホニルアミノ、ヘキシルスルホニルアミノ、オクチルスルホニルアミノ、ノニルスルホニルアミノ、デシルスルホニルアミノ、ウンデシルスルホニルアミノ、ドデシルスルホニルアミノ、テトラデシルスルホニルアミノ、ヘキサデシルスルホニルアミノ、オクタデシルスルホニルアミノ、エイコシルスルホニルアミノなどのC1-12アルキルスルホニルアミノ、好ましくはC1-10アルキルスルホニルアミノ、より好ましくはC1-6アルキルスルホニルアミノが挙げられる。
 C1-20アルコキシカルボニル(例えばC1-10アルコキシカルボニル、C1-6アルコキシカルボニル)としては、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、t-ブトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニルおよびヘキシルオキシカルボニルが挙げられる。
 C1-20アルキルカルボニル(例えばC1-10アルキルカルボニル、C1-6アルキルカルボニル)としては、アセチル、プロピオニル、ブチリル、ペンチルカルボニル、ヘキシルカルボニル、ヘプチルカルボニル、オクチルカルボニル、ノニルカルボニル、デシルカルボニルが挙げられる。
 モノアリール置換アルケニル(例えばモノアリール置換C2-12アルケニル、モノアリール置換C2-6アルケニル)としては、アリールが前記で定義されたものであるモノアリール置換アルケニル、例えばスチリルが挙げられる。
 ジアリール置換アルケニル(例えばジアリール置換C2-12アルケニル、ジアリール置換C2-6アルケニル)としては、アリールが前記で定義されたものであるジアリール置換アルケニル、例えばジフェニルビニルが挙げられる。
 モノへテロアリール置換アルケニル、(例えばモノへテロアリール置換C2-12アルケニル、モノへテロアリール置換C2-6アルケニル)としては、ヘテロアリールが前記で定義されたものであるモノヘテロアリール置換アルケニル、例えばチエニルビニルが挙げられる。
 ジへテロアリール置換アルケニル、(例えばジへテロアリール置換C2-12アルケニル、ジへテロアリール置換C2-6アルケニル)としては、ヘテロアリールが前記で定義されたものであるジヘテロアリール置換アルケニル、例えばジチエニルビニルが挙げられる。
 アリールエチニルとしては、アリールが前記で定義されたものであるアリールエチニルが挙げられる。
 ヘテロアリールエチニルとしては、ヘテロアリールが前記で定義されたものであるヘテロアリールエチニルが挙げられる。
 アリールオキシとしては、アリールが前記で定義されたものであるアリールオキシが挙げられる。
 Rは置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールを示す。置換されていてもよいアルキルの「アルキル」は、前記C1-20アルキルが挙げられ、置換されていてもよいアリールの「アリール」は、前記アリールが挙げられる。置換されていてもよいヘテロアリールの「ヘテロアリール」は、前記ヘテロアリールが挙げられる。
 本発明の多環芳香族化合物のさらに具体的な例としては、例えば、下記式(1)~(709)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
2.式(I)で表される多環芳香族化合物の製造方法
 次に、本発明の化合物の製造方法について説明する。本発明の化合物は多環芳香族化合物(およびその塩)であり、上記一般式(I)で表される部分構造を有し、より具体的には上記一般式(II)または一般式(II’)で表される部分構造、さらには上記一般式(III-1)~式(III-54)および上記一般式(III-55)~式(III-60)などで表される部分構造を有する多環芳香族化合物である。全体構造としては、例えば、上記一般式(IV-1)~式(IV-22)で表される多環芳香族化合物であり、より具体的には上記一般式(V-1)~式(V-26)および上記一般式(V-27)~式(V-34)で表される多環芳香族化合物、上記一般式(V-1’)、式(V-2’)および式(V-3’)で表される多環芳香族化合物および上記一般式(V-27’)または式(V-32’)で表される多環芳香族化合物、上記一般式(VI-1)~式(VI-149)で表される多環芳香族化合物、上記式(1)~(709)で表される多環芳香族化合物である。
 本発明の多環芳香族化合物を構成する基本的な構造、すなわち上記一般式(I)、式(II)、式(II’)または式(III)シリーズで表される部分構造は、以下のスキーム1に従い合成することができる。なお、スキーム1の中でY、Xは前記に定義されるとおりである。
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
 Step1の反応では、化合物(a1)1モルに対し、n-BuLiなどのアルキルリチウム、n-BuMgBrなどのグリニャール試薬、NaH、KHなどのアルカリ金属水素化物、NaOBu、KOBuなどのアルカリ金属アルコキシド、NaCO、NaHCO、KCO、CsCOなどのアルカリ金属炭酸塩等の塩基を1モル程度から過剰量、化合物(a2)を1モル~過剰量使用し、さらにPd(dba)、PBuを用いて、溶媒中-78℃~室温程度の温度下に30分~24時間撹拌して反応させることで、化合物(a3)を得る。溶媒としては、無水ジエチルエーテル、無水THF、無水ジブチルエーテルなどの無水エーテル系溶媒かベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素系溶媒が用いられる。
 次に、Step2の反応では、化合物(a3)をn-BuLiなどの脱プロトン化剤により脱プロトンした後、Xを含む化合物(Xのハロゲン化物、アルコキシ誘導体、アリールオキシ誘導体、アシルオキシ誘導体、ハロアミノ誘導体)を加えることでXを導入し、AlClなどのルイス酸とジイソプロピルエチルアミンなどの塩基の存在下でFriedel-Crafts型の反応を行うことで、化合物(a4)を得ることができる。
 Xを含む化合物は、例えばX=Pの場合にはPF、PCl、PBr、PIなどのハロゲン化物、P(OMe)、P(OEt)、P(O-nPr)、P(O-iPr)、P(O-nBu)、P(O-iBu)、P(O-secBu)、P(O-t-Bu)などのアルコキシ誘導体、P(OPh)、P(O-ナフチル)などのアリールオキシ誘導体、P(OAc)、P(O-トリフルオロアセチル)、P(O-プロピオニル)、P(O-ブチリル)、P(O-ベンゾイル)などのアシルオキシ誘導体、PCl(NMe、PCl(NEt、PCl(NPr、PCl(NBu2、PBr(NMe、PBr(NEt、PBr(NPr、PBr(NBuなどのハロアミノ誘導体が挙げられる。
 XがP以外(具体的にはXがB、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、周期表第3~11族の金属元素、周期表第13~14族の金属元素または半金属元素などの場合)も、同様にXのハロゲン化物、アルコキシ誘導体、アリールオキシ誘導体、アシルオキシ誘導体、ハロアミノ誘導体を使用することができる。
 Step2の反応は、式(a3)の化合物1モルに対し、n-BuLiなどの脱プロトン化剤を1モル~過剰量、Xを含む化合物を1モル~過剰量、ルイス酸を触媒量から過剰量、塩基を0モル~過剰量使用し、溶媒中-78℃~溶媒の沸点程度の温度下に30分~24時間撹拌して行われ、その結果、化合物(a4)が得られる。
 溶媒としては、無水ジエチルエーテル、無水THF、無水ジブチルエーテルなどの無水エーテル系溶媒か、ベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素系溶媒か、クロロベンゼン、1,2-ジクロロベンゼンなどの芳香族ハロゲン化物系溶媒が用いられる。
 脱プロトン化剤としては、n-BuLiの他に、MeLi、t-BuLi、PhLiなどのアルキルリチウム、MeMgBr、EtMgBr、n-BuMgBrなどのグリニャール試薬、またはNaH、KHなどのアルカリ金属水素化物などが用いられる。
 ルイス酸としては、AlCl、AlBr、BF・OEt、BCl、BBr、GaCl、GaBr、InCl、InBr、In(OTf)、SnCl、SnBr、AgOTf、Sc(OTf)、ZnCl、ZnBr、Zn(OTf)、MgCl、MgBr、Mg(OTf)などが用いられる。
 塩基としては、ジイソプロピルエチルアミン、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン、2,4,6-コリジン、2,6-ルチジン、トリエチルアミン、トリイソブチルアミンなどが用いられる。
 X=Pであり、ルイス酸と塩基を用いる反応を硫黄(S8)の存在下に行うことで、XがP=Sの化合物を直接得ることができる。XがAs、Sbなどの他の元素についても同様に硫黄原子が結合した化合物を得ることができる。
 Step2’の反応では、化合物(a3)に代えて化合物(a3’)を用い、Step2の反応と同様な条件下、Friedel-Crafts型反応とScholl型反応を行うことにより化合物(a4’)を得ることができる。
 Step2”の反応では、化合物(a3)に代えて化合物(a3”)を用い、Step2の反応と同様な条件下、Friedel-Crafts型反応を行うことにより化合物(a4’)を得ることができる。
 また、上記反応スキーム1-1のStep1の反応の代わりに、以下のスキーム1-3のStep1’の反応を用いることもできる。すなわち、芳香族ハロゲン化物(a1’)を塩基の存在下、パラジウム触媒を用いて芳香族アミン(a2)と反応させてジアリールアミン(a3)を製造する工程である。
Figure JPOXMLDOC01-appb-C000096
 Step1’で用いられるパラジウム触媒の具体例は、[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド:Pd(dppf)Cl、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、PdCl{P(t-Bu)-(p-NMe-Ph)}、ビス(トリ-o-トリルホスフィン)-パラジウム(II)ジクロリド(PdCl(o-tolyl)などである。
 また、反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例は、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン、ビス(ジフェニルホスフィノ)ビナフチル、4-ジメチルアミノフェニルジt-ブチルホスフィン、フェニルジt-ブチルホスフィンなどである。
 Step1’で用いられる塩基の具体例は、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、リン酸三カリウム、フッ化カリウムなどである。
 さらに、Step1’で用いられる溶媒の具体例は、ベンゼン、1,2,4-トリメチルベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、イソプロピルアルコールなどである。これらの溶媒は、反応させる芳香族ハライドの構造に応じて適宜選択できる。溶媒は単独で用いてもよく、混合溶媒として用いてもよい。
 また、例えば、上記一般式(IV-1)~式(IV-22)で表される多環芳香族化合物であり、より具体的には上記一般式(V-1)~式(V-26)および上記一般式(V-27)~式(V-34)で表される多環芳香族化合物、上記一般式(V-1’)、式(V-2’)および式(V-3’)で表される多環芳香族化合物および上記一般式(V-27’)または式(V-32’)で表される多環芳香族化合物、上記一般式(VI-1)~式(VI-149)で表される多環芳香族化合物、上記式(1)~(709)で表される多環芳香族化合物は、上述した部分構造の合成スキーム1や、それを応用したスキーム2~8により合成することができる。なお、スキーム2~8の中でY、Xは前記に定義されるとおりである。
 スキーム2では、反応させる化合物を変更する以外は、スキーム1と同様にして目的とする化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
 スキーム3では、反応させる化合物を変更する以外は、スキーム1と同様にして目的とする化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 スキーム4では、反応させる化合物を変更する以外は、スキーム1と同様にして目的とする化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
 スキーム5では、反応させる化合物を変更する以外は、スキーム1と同様にして目的とする化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
 スキーム6では、反応させる化合物を変更する以外は、スキーム1と同様にして目的とする化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
 スキーム7では、反応させる化合物を変更する以外は、スキーム1と同様にして目的とする化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
 スキーム8では、反応させる化合物を変更する以外は、スキーム1と同様にして目的とする化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
 また、XがP=Sの場合の化合物から、XがPやP=Oの場合の化合物への変換は、以下のスキーム9に従って行うことができる。本発明の他の化合物についても同様の変換を行うことができる。
Figure JPOXMLDOC01-appb-C000120
3.有機電界発光素子
 本発明に係る多環芳香族化合物は、例えば、有機電界発光素子の材料として用いることができる。以下に、本実施形態に係る有機電界発光素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機電界発光素子を示す概略断面図である。
<有機電界発光素子の構造>
 図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
 なお、有機電界発光素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と電子輸送層106および/または電子注入層107と陰極108とからなる構成として、正孔注入層103および正孔輸送層104は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
 有機電界発光素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。
<有機電界発光素子における基板>
 基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<有機電界発光素子における陽極>
 陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~200nmの間で用いられることが多い。
<有機電界発光素子における正孔注入層、正孔輸送層>
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
 正孔注入層103または正孔輸送層104を形成する材料(正孔層用材料)として、上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩を用いることができる。正孔注入層103または正孔輸送層104における上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩の含有量は、それらの種類によって異なり、それらの特性に合わせて決めればよい。上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩の含有量の目安は、好ましくは正孔層用材料の全体の1~100重量%であり、より好ましくは10~100重量%であり、さらに好ましくは50~100重量%であり、特に好ましくは80~100重量%である。上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩を単独(100重量%)で用いない場合には、以下に詳述する他の材料を混合すればよい。
 他の正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノ基を主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005-167175号公報)。
<有機電界発光素子における発光層>
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光および/または燐光)効率を示す化合物であるのが好ましい。本実施形態に係る発光素子の発光材料は蛍光性であっても燐光性であってもどちらでもかまわない。
 発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
 ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光材料全体の50~99.999重量%であり、より好ましくは80~99.95重量%であり、さらに好ましくは90~99.9重量%である。
 ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい(例えば、使用量が多すぎると、濃度消光現象のおそれがある)。ドーパントの使用量の目安は、好ましくは発光材料全体の0.001~50重量%であり、より好ましくは0.05~20重量%であり、さらに好ましくは0.1~10重量%である。
 上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩は、ホスト材料やドーパント材料としても用いることができる。各材料における上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩の含有量は、それらの種類によって異なり、それらの特性に合わせて決めればよい。上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩の含有量の目安は、好ましくはホスト材料(またはドーパント材料)の全体の1~100重量%であり、より好ましくは10~100重量%であり、さらに好ましくは50~100重量%であり、特に好ましくは80~100重量%である。上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩を単独(100重量%)で用いない場合には、以下に詳述する他のホスト材料(またはドーパント材料)を混合すればよい。
 ホスト材料としては、特に限定されるものではないが、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムをはじめとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、チアジアゾロピリジン誘導体、ピロロピロール誘導体、フルオレン誘導体、ベンゾフルオレン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体が好適に用いられる。
 その他、ホスト材料としては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
 また、ドーパント材料としては、特に限定されるものではなく、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレンおよびクリセンなどの縮合環誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、ベンズイミダゾール誘導体、ベンズトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1-245087号公報)、ビススチリルアリーレン誘導体(特開平2-247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ピペリジノクマリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンズチアゾリルクマリン誘導体、3-ベンズイミダゾリルクマリン誘導体、3-ベンズオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンズアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5-チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、デアザフラビン誘導体、フルオレン誘導体およびベンゾフルオレン誘導体などがあげられる。
 発色光ごとに例示すると、青~青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデン、クリセンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などがあげられる。
 また、緑~黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青~青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。
 さらに、橙~赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青~青緑色および緑~黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。さらに、トリス(2-フェニルピリジン)イリジウム(III)に代表されるイリジウムや白金を中心金属とした燐光性金属錯体も好適な例としてあげられる。
 その他、ドーパントとしては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
 上述するドーパント材料の中でも、特にペリレン誘導体、ボラン誘導体、アミン含有スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ピラン誘導体、イリジウム錯体または白金錯体が好ましい。
 ペリレン誘導体としては、例えば、3,10-ビス(2,6-ジメチルフェニル)ペリレン、3,10-ビス(2,4,6-トリメチルフェニル)ペリレン、3,10-ジフェニルペリレン、3,4-ジフェニルペリレン、2,5,8,11-テトラ-t-ブチルペリレン、3,4,9,10-テトラフェニルペリレン、3-(1’-ピレニル)-8,11-ジ(t-ブチル)ペリレン、3-(9’-アントリル)-8,11-ジ(t-ブチル)ペリレン、3,3’-ビス(8,11-ジ(t-ブチル)ペリレニル)などがあげられる。
 また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
 ボラン誘導体としては、例えば、1,8-ジフェニル-10-(ジメシチルボリル)アントラセン、9-フェニル-10-(ジメシチルボリル)アントラセン、4-(9’-アントリル)ジメシチルボリルナフタレン、4-(10’-フェニル-9’-アントリル)ジメシチルボリルナフタレン、9-(ジメシチルボリル)アントラセン、9-(4’-ビフェニリル)-10-(ジメシチルボリル)アントラセン、9-(4’-(N-カルバゾリル)フェニル)-10-(ジメシチルボリル)アントラセンなどがあげられる。
 また、国際公開第2000/40586号などに記載されたボラン誘導体を用いてもよい。
 アミン含有スチリル誘導体としては、例えば、N,N,N’,N’-テトラ(4-ビフェニリル)-4、4’-ジアミノスチルベン、N,N,N’,N’-テトラ(1-ナフチル)-4、4’-ジアミノスチルベン、N,N,N’,N’-テトラ(2-ナフチル)-4、4’-ジアミノスチルベン、N,N’-ジ(2-ナフチル)-N,N’-ジフェニル-4、4’-ジアミノスチルベン、N,N’-ジ(9-フェナントリル)-N,N’-ジフェニル-4、4’-ジアミノスチルベン、4,4’-ビス[4”-ビス(ジフェニルアミノ)スチリル]-ビフェニル、1,4-ビス[4’-ビス(ジフェニルアミノ)スチリル]-ベンゼン、2,7-ビス[4’-ビス(ジフェニルアミノ)スチリル]-9,9-ジメチルフルオレン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-ビフェニル、4,4’-ビス(9-フェニル-3-カルバゾビニレン)-ビフェニルなどがあげられる。また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたアミン含有スチリル誘導体を用いてもよい。
 芳香族アミン誘導体としては、例えば、N,N,N,N-テトラフェニルアントラセン-9,10-ジアミン、9,10-ビス(4-ジフェニルアミノ-フェニル)アントラセン、9,10-ビス(4-ジ(1-ナフチルアミノ)フェニル)アントラセン、9,10-ビス(4-ジ(2-ナフチルアミノ)フェニル)アントラセン、10-ジ-p-トリルアミノ-9-(4-ジ-p-トリルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(4-ジフェニルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(6-ジフェニルアミノ-2-ナフチル)アントラセン、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[6-(4-ジフェニルアミノ-フェニル)ナフタレン-2-イル]-ジフェニルアミン、4,4’-ビス[4-ジフェニルアミノナフタレン-1-イル]ビフェニル、4,4’-ビス[6-ジフェニルアミノナフタレン-2-イル]ビフェニル、4,4”-ビス[4-ジフェニルアミノナフタレン-1-イル]-p-テルフェニル、4,4”-ビス[6-ジフェニルアミノナフタレン-2-イル]-p-テルフェニルなどがあげられる。
 また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
 クマリン誘導体としては、クマリン-6、クマリン-334などがあげられる。
 また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
 ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
Figure JPOXMLDOC01-appb-C000121

 また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
 イリジウム錯体としては、下記のIr(ppy)などがあげられる。
Figure JPOXMLDOC01-appb-C000122

 また、特開2006-089398号公報、特開2006-080419号公報、特開2005-298483号公報、特開2005-097263号公報、および特開2004-111379号公報などに記載されたイリジウム錯体を用いてもよい。
 白金錯体としては、下記のPtOEPなどがあげられる。
Figure JPOXMLDOC01-appb-C000123

 また、特開2006-190718号公報、特開2006-128634号公報、特開2006-093542号公報、特開2004-335122号公報、および特開2004-331508号公報などに記載された白金錯体を用いてもよい。
<有機電界発光素子における電子注入層、電子輸送層>
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たすものである。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たすものである。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
 電子輸送層106または電子注入層107を形成する材料(電子層用材料)として、上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩を用いることができる。電子輸送層106または電子注入層107における上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩の含有量は、それらの種類によって異なり、それらの特性に合わせて決めればよい。上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩の含有量の目安は、好ましくは電子輸送層用材料(または電子注入層用材料)の全体の1~100重量%であり、より好ましくは10~100重量%であり、さらに好ましくは50~100重量%であり、特に好ましくは80~100重量%である。上記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩を単独(100重量%)で用いない場合には、以下に詳述する他の材料を混合すればよい。
 他の電子輸送層または電子注入層を形成する材料としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香環もしくは複素芳香環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。中でも、9,10-ビス(2-ナフチル)アントラセンなどのアントラセン誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルなどのスチリル系芳香環誘導体、4,4’-ビス(N-カルバゾリル)ビフェニル、1,3,5-トリス(N-カルバゾリル)ベンゼンなどのカルバゾール誘導体が、耐久性の観点から好ましく用いられる。
 また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンズイミダゾール誘導体(トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなど)、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
 上述した材料の中でも、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体、ボラン誘導体またはベンゾイミダゾール誘導体が好ましい。
 キノリノール系金属錯体は、下記一般式(E-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000124

 式中、R~Rは水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。
 ビピリジン誘導体は、下記一般式(E-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000125

 式中、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、ピリジン-ピリジンまたはピリジン-Gの結合に用いられない炭素原子は置換されていてもよい。
 一般式(E-2)のGとしては、例えば、以下の構造式のものがあげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000126
 ピリジン誘導体の具体例としては、2,5-ビス(2,2’-ビピリジン-6-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ビピリジン-6-イル)-1,1-ジメチル-3,4-ジメシチルシロール、2,5-ビス(2,2’-ビピリジン-5-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ビピリジン-5-イル)-1,1-ジメチル-3,4-ジメシチルシロール、9,10-ジ(2,2’-ビピリジン-6-イル)アントラセン、9,10-ジ(2,2’-ビピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-6-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,3’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ビピリジン-5-イル)-2-フェニルアントラセン、3,4-ジフェニル-2,5-ジ(2,2’-ビピリジン-6-イル)チオフェン、3,4-ジフェニル-2,5-ジ(2,3’-ビピリジン-5-イル)チオフェン、6’6”-ジ(2-ピリジル)2,2’:4’,4”:2”,2”’-クアテルピリジンなどがあげられる。
 フェナントロリン誘導体は、下記一般式(E-3-1)または(E-3-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000127

 式中、R~Rは水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、一般式(E-3-2)のGとしては、例えば、ビピリジン誘導体の欄で説明したものと同じものがあげられる。
 フェナントロリン誘導体の具体例としては、4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオル-ビス(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどがあげられる。
 特に、フェナントロリン誘導体を電子輸送層、電子注入層に用いた場合について説明する。長時間にわたって安定な発光を得るには、熱的安定性や薄膜形成性に優れた材料が望まれ、フェナントロリン誘導体の中でも、置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により三次元的立体構造を有するもの、あるいは複数のフェナントロリン骨格を連結したものが好ましい。さらに、複数のフェナントロリン骨格を連結する場合、連結ユニット中に共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環を含んでいる化合物がより好ましい。
 ボラン誘導体は、下記一般式(E-4)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000128

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換ボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0~3の整数である。
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-1)で表される化合物、さらに下記一般式(E-4-1-1)~(E-4-1-4)で表される化合物が好ましい。具体例としては、9-[4-(4-ジメシチルボリルナフタレン-1-イル)フェニル]カルバゾール、9-[4-(4-ジメシチルボリルナフタレン-1-イル)ナフタレン-1-イル]カルバゾールなどがあげられる。
Figure JPOXMLDOC01-appb-C000129

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。
Figure JPOXMLDOC01-appb-C000130

 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-2)で表される化合物、さらに下記一般式(E-4-2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000131

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。
Figure JPOXMLDOC01-appb-C000132

 式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-3)で表される化合物、さらに下記一般式(E-4-3-1)または(E-4-3-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000133

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数10以下のアリーレンであり、Yは、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0~3の整数である。
Figure JPOXMLDOC01-appb-C000134

 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
 ベンゾイミダゾール誘導体は、下記一般式(E-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000135

 式中、Ar~Arはそれぞれ独立に水素または置換されてもよい炭素数6~30のアリールである。特に、Arが置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
 炭素数6~30のアリールの具体例は、フェニル、1-ナフチル、2-ナフチル、アセナフチレン-1-イル、アセナフチレン-3-イル、アセナフチレン-4-イル、アセナフチレン-5-イル、フルオレン-1-イル、フルオレン-2-イル、フルオレン-3-イル、フルオレン-4-イル、フルオレン-9-イル、フェナレン-1-イル、フェナレン-2-イル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル,9-フェナントリル、1-アントリル、2-アントリル、9-アントリル、フルオランテン-1-イル、フルオランテン-2-イル、フルオランテン-3-イル、フルオランテン-7-イル、フルオランテン-8-イル、トリフェニレン-1-イル、トリフェニレン-2-イル、ピレン-1-イル、ピレン-2-イル、ピレン-4-イル、クリセン-1-イル、クリセン-2-イル、クリセン-3-イル、クリセン-4-イル、クリセン-5-イル、クリセン-6-イル、ナフタセン-1-イル、ナフタセン-2-イル、ナフタセン-5-イル、ペリレン-1-イル、ペリレン-2-イル、ペリレン-3-イル、ペンタセン-1-イル、ペンタセン-2-イル、ペンタセン-5-イル、ペンタセン-6-イルである。
 ベンゾイミダゾール誘導体の具体例は、1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールである。
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
<有機電界発光素子における陰極>
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たすものである。
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様のものを用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されるものではない。
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
<各層で用いてもよい結着剤>
 以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<有機電界発光素子の作製方法>
 有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度50~400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
 次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 このようにして得られた有機電界発光素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機電界発光素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
<有機電界発光素子の応用例>
 また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
 有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
 マトリクスとは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
 以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。まず、実施例で用いた多環芳香族化合物の合成例について、以下に説明する。
 合成例(1):
 4b-アザ-12b-チオホスファジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000136
 まず、2-アミノビフェニル(16.9g、0.10mol)、ビス(ジベンジリデンアセトン)パラジウム(0.575g、1.0mmol)、t-ブトキシナトリウム(14.4g、0.15mol)およびトルエン(100mL)に、アルゴン雰囲気下、0℃で2-ブロモビフェニル(23.1g、0.10mol)を添加し、室温で7時間攪拌した後、フロリジル濾過をして、溶媒を減圧下に留去して得られる褐色の油状物質に、ヘキサンを用いてトリチュレーションすることで、白色粉末としてビス(ビフェニル-2-イル)アミンを得た(32.1g、収率98%)。
 1H NMR (δppm in CDCl3); 5.79 (s, 1H), 6.92 (t, J = 7.2 Hz, 2H), 7.17-7.27 (m, 14H), 7.40 (d, 2H, J = 8.1 Hz)
 13C NMR (δppm in CDCl3) 117.0, 120.8, 127.2, 128.1, 128.7, 129.0, 130.6, 132.0, 138.9, 140.1.
Figure JPOXMLDOC01-appb-C000137
 次に、ビス(ビフェニル-2-イル)アミン(3.21g、10.0mmol)およびTHF(50mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(6.13mL、1.63M、10.0mmol)を添加し撹拌した。1時間後、三塩化リン(1.37g、10.0mmol)を加え、1時間撹拌した後、0℃に昇温しさらに1時間攪拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(80mL)を加えた後、三塩化アルミニウム(4.00g、30.0mmol)および硫黄(0.481g、15.0mmol)を添加し、120℃で18時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(3.36g、30.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白色粉末として式(551)で表される化合物を得た(0.725g、収率19%)。
 HRMS(EI) m/z; calcd. 381.0741[M]+; found 381.0746.
 1H NMR (δppm in CD2Cl2at -40 ℃); 6.65(d, 1H, J = 8.4 Hz), 7.01(t, 1H, J = 7.2 Hz), 7.09(t, 1H, J = 7.8 Hz), 7.19 (dd, 1H, J = 7.8, 13.8 Hz), 7.31 (td, 1H, J = 3.0, 7.8 Hz), 7.54 (t, 1H, J = 7.8 Hz), 7.62 (d, 1H, J = 7.2 Hz), 7.65-7.69 (m, 2H), 7.75 (td, 1H, J = 3.0, 7.8 Hz), 7.84-7.91 (m, 3H), 8.05 (d, 2H, J = 7.2 Hz), 8.09 (t, 1H, J = 7.2 Hz), 8.58 (dd, 1H, J = 7.8, 15.6 Hz)
 13C NMR (δppm in CD2Cl2at -40 ℃); 118.1, 120.8, 121.2, 122.3, 124.4, 126.5, 128.1, 128.5, 128.6, 128.7, 128.9, 129.3, 130.2 (2C), 131.6, 132.1, 132.8, 132.9, 134.4, 134.5, 135.2, 135.3, 136.2, 141.5
 合成例(2):
 4b-アザ-12b-フェニル-12b-シラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000138
 ビス(ビフェニル-2-イル)アミン(0.321g、1.00mmol)およびテトラヒドロフラン(5mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(0.62mL、1.60M、1.00mmol)を添加し撹拌した。1時間撹拌した後、-78℃でフェニルトリクロロシラン(0.212g、1.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼンを加えた後、三塩化アルミニウム(0.533g、4.00mmol)および2,2,6,6-テトラメチルピペリジン(0.233g、1.50mmol)を添加し、150℃で18時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.449g、4.00mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白色粉末として式(601)で表される化合物を得た(0.064g、収率15%)。
 また式(601)で表される化合物はヘキサンから再結晶することで無色針状結晶が得られ、X線結晶構造解析により構造を決定した。
 HRMS(FAB) m/z; calcd. 423.1443[M]+; found 423.1426.
 X-ray crystal structure
Figure JPOXMLDOC01-appb-C000139
 合成例(3):
 4b-アザ-12b-ゲルマ-12b-フェニルジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000140
 ビス(ビフェニル-2-イル)アミン(0.643g、2.00mmol)およびトルエン(80mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.25mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃でフェニルトリクロロゲルマニウム(0.512g、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼンを加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.466g、3.00mmol)を添加し、150℃で24時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(1.12g、10.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白色粉末として標題化合物を得た(0.389g、収率42%)。
 また標題化合物はヘキサンから再結晶することで無色柱状結晶が得られ、X線結晶構造解析により構造を決定した。
 HRMS(MALDI) m/z; calcd. 470.0964[M+H]+; found 470.0980.
 X-ray crystal structure
Figure JPOXMLDOC01-appb-C000141
 合成例(4):
 4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000142
 まず、[1,1’-ビフェニル]-2-アミン(28.5g)、2-ブロモ-1,1’-ビフェニル(38.6g)、ナトリウム-t-ブトキシド(24.0g)、Pd(dba)(0.29g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン(0.27g)およびトルエン(100ml)の入ったフラスコを窒素雰囲気下、70℃で1時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(展開液:トルエン)で精製し、ジ([1,1’-ビフェニル]-2-イル)アミン(54.0g)を得た。
Figure JPOXMLDOC01-appb-C000143
 次に、ジ([1,1’-ビフェニル]-2-イル)アミン(15.0g)およびトルエン(250ml)の入ったフラスコを-75℃まで冷却し、n-ブチルリチウムの1.6Mヘキサン溶液(29.3ml)を滴下した。滴下終了後、一旦0℃まで昇温し、0℃で1時間撹拌した。その後、再び-75℃まで冷却し、三塩化ホウ素の1.0Mヘプタン溶液(46.9ml)を滴下した。次いで、反応液を室温まで昇温した後、一旦溶媒を減圧留去した。ここにオルトジクロロベンゼン(300ml)、2,2,6,6-テトラメチルピぺリジン(13.8g)、三塩化アルミニウム(25.0g)を加え、150℃で18時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン「DABCO」(21.0g)を加え撹拌後、トルエン(500ml)およびセライトを加えて撹拌した後、約1時間静置した。次いで、析出した沈殿をセライトを敷いた桐山ロートを用いた吸引ろ過にて除去した後、溶媒を減圧留去した。更に活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル/トリエチルアミン=90/10/1(容量比))で精製後、酢酸エチル/ヘプタン混合溶媒にて再沈殿させ、式(1)で表される化合物(8.2g)を得た。
 合成例(5):
 2,7-ジブロモ-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000144
 窒素雰囲気下、4b-アザ-12b-ボラジベンゾ[g,p]クリセン(18.0g)のTHF(180ml)溶液に、N-ブロモスクシンイミド(NBS)(19.9g)を加え、室温で1時間撹拌した。反応終了後、亜硫酸ナトリウム水溶液を加え、THFを減圧留去した後、トルエンを加え分液した。次いで、活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル/トリエチルアミン=95/5/1(容量比))で精製し、標題化合物(24.7g)を得た。
 合成例(6):
 2,7-ジメチル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000145
 2,7-ジブロモ-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(0.243g、0.50mmol)およびトルエン(5.0mL)に、アルゴン雰囲気下-78℃で、ブチルリチウムのヘキサン溶液(0.63mL、1.60M、1.00mmol)を添加し、40℃で24時間撹拌した後、ヨウ化メチル(0.178g、1.00mmol)を添加し1時間撹拌した。溶媒を減圧下に留去して得られた粗生成物をGPCで単離することで白黄色粉末として標題化合物を得た(0.228g、収率20%)。
 HRMS(EI) m/z; calcd. 357.1689[M]+; found 357.1692.
 11B NMR (δppm in C6D6) 34.0.
 合成例(7):
 14b-アザ-14b-ボラベンゾ[p]インデノ[1,2,3,4-defg]クリセンの合成
Figure JPOXMLDOC01-appb-C000146
 ビス(ビフェニル-2-イル)アミン(0.643g、2.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.23mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.00mL、1.00M、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(20mL)を加えた後、三塩化アルミニウム(1.07g、8.00mmol)、エチルジイソプロピルアミン(0.258g、2.00mmol)を添加し、180℃で12時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.896g、8.00mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として式(665)で表される化合物を得た(0.255g、収率39%)。
 HRMS(EI) m/z; calcd. 327.1219[M]+; found 327.1215.
 1H NMR (δppm in CDCl3); 7.66-7.72 (m, 4H), 7.84 (td, 2H, J = 1.4, 8.2 Hz), 8.21 (d, 2H, J = 7.8 Hz), 8.43 (d, 2H, J = 7.8 Hz), 8.67 (d, 2H, J = 7.8 Hz), 9.18 (d, 2H, J = 7.8 Hz).
 合成例(8):
 6,9-ジクロロ-14b-アザ-14b-ボラベンゾ[p]インデノ[1,2,3,4-defg]クリセンの合成
Figure JPOXMLDOC01-appb-C000147
 3,6-ジクロロ-1,8-ジフェニルカルバゾール(0.971g、2.50mmol)およびトルエン(10mL)に、アルゴン雰囲気下-78℃で、ブチルリチウムのヘキサン溶液(1.56mL、1.60M、2.50mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.50mL、1.00M、2.50mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(50mL)を加えた後、三塩化アルミニウム(1.33g、10.0mmol)を添加し、160℃で14時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(1.12g、10.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで黄褐色粉末として標題化合物を得た(0.297g、収率30%)。
 HRMS(EI) m/z; calcd. 395.0440[M]+; found 395.0426.
 合成例(9):
 4b-アザ-12b-ホスファジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000148
 4b-アザ-12b-チオホスファジベンゾ[g,p]クリセン(0.114g、0.30mmol)およびトリエチルホスフィン(0.039g、0.33mmol)にアルゴン雰囲気下0℃で、クロロベンゼン(3.0mL)を加え120℃で18時間撹拌した。溶媒を減圧下留去しヘキサンを加えトリチュレーションすることで、白色粉末として式(501)で表される化合物を得た(0.073g、収率70%)。
 HRMS(EI) m/z; calcd. 349.1020[M]+; found 349.1013.
 31P NMR (δppm in C6D6) 12.7.
 合成例(10):
 4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000149
 4b-アザ-12b-ホスファジベンゾ[g,p]クリセン(0.070g、0.20mmol)およびジクロロメタン(2.0mL)に対し30%過酸化水素水(2.0mL)を添加し、室温で6時間攪拌した。抽出した有機層の溶媒を減圧下留去し、得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として式(301)で表される化合物を得た(0.066g、収率90%)。
 HRMS(ESI) m/z; calcd. 366.1042[M+H]+; found 366.1032.
 31P NMR (δppm in C6D6) 6.6.
 合成例(11):
 8b,19b-ジアザ-11b,22b-ジチオホスファヘキサベンゾ[a,c,fg,j,l,op]テトラセンの合成
Figure JPOXMLDOC01-appb-C000150
 N,N’-ビス(ビフェニル-2-イル)-2,6-ジアミノビフェニル(0.977g、2.00mmol)およびトルエン(20mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(2.45mL、1.63M、4.0mmol)を添加し撹拌した。1時間後、三塩化リン(0.549g、4.0mmol)を加え、1時間撹拌した後、0℃に昇温しさらに1時間攪拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(40mL)を加えた後、三塩化アルミニウム(2.13g、16.0mmol)、硫黄(0.192g、6.0mmol)及びエチルジイソプロピルアミン(1.55g、12.0mmol)を添加し、120℃で18時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(1.79g、16.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として標題化合物を得た(0.122g、収率10%)。
 HRMS(FAB) m/z; calcd. 609.0778[M+H]+; found 609.0762.
 合成例(12):
 8b,19b-ジアザ-11b,22b-ジボラヘキサベンゾ[a,c,fg,j,l,op]テトラセンの合成
Figure JPOXMLDOC01-appb-C000151
 N,N’-ビス(ビフェニル-2-イル)-2,6-ジアミノビフェニル(0.977g、2.00mmol)およびトルエン(20mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(2.45mL、1.63M、4.0mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(4.00mL、1.00M、4.0mmol)を加え、1時間撹拌した後、室温に昇温しさらに12時間攪拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(40mL)を加えた後、三塩化アルミニウム(2.13g、16.0mmol)および2,2,6,6-テトラメチルピペリジン(0.192g、6.0mmol)を添加し、150℃で24時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(1.79g、16.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として式(251)で表される化合物を得た(0.122g、収率40%)。
 Anal. calcd for C36H22N2B2C, 85.76; H, 4.40; N, 5.56. found C, 85.85; H, 4.24; N, 5.66.
 1H NMR (δppm in CS2/CD2Cl2=2/1, 600 MHz) 7.31-7.34 (m, 4H, NCCCHCH), 7.55 (t, J = 8.4 Hz, 1H, NCCHCHCHCN), 7.61 (td, J = 1.2, 7.2 Hz, 2H, BCCHCHCHCH), 7.78 (td, J = 1.2, 7.2 Hz, 2H, BCCHCHCHCH), 7.91 (t, J = 7.2 Hz, 1H, BCCHCHCHCB), 8.05 (d, J = 8.4 Hz, 2H, NCCHCHCHCN), 8.11-8.13 (m, 2H, NCCHCHCHCH), 8.32-8.35 (m, 2H, NCCCH), 8.40 (d, J = 7.2 Hz, 2H, BCCCH), 8.71 (d, J = 7.2 Hz, 2H, BCCHCHCHCH), 8.96 (d, J = 7.2 Hz, 2H, BCCHCHCHCB)
 13C NMR (δppm in CS2/CD2Cl2=2/1, 151 MHz) 114.3 (2C), 119.2, 121.8 (2C), 123.1 (2C), 123.4 (2C), 125.7, 125.8 (2C), 126.2, 126.7 (2C), 127.1 (2C), 128.1 (2C), 130.5 (br, 2C, CBCCCBC), 131.4 (2C), 133.0 (br, 2C, CBCCCBC), 135.8 (2C), 137.5 (4C), 137.6 (2C), 138.9, 139.0 (2C)
 11B NMR (δppm in CS2/CD2Cl2=2/1, 193 MHz) 36.5.
 合成例(13):
 4b,17b-ジアザ-9b,22b-ジボラテトラベンゾ[a,c,f,m]フェナントロ[9,10-k]テトラフェンの合成
Figure JPOXMLDOC01-appb-C000152
 N,N”-ビス(ビフェニル-2-イル)-2,2”-ジアミノテルフェニル(0.565g、1.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(0.62mL、1.63M、1.0mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(1.00mL、1.00M、1.0mmol)を加え、1時間撹拌した後、室温に昇温しさらに12時間攪拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(20mL)を加えた後、三塩化アルミニウム(2.13g、16.0mmol)および2,2,6,6-テトラメチルピペリジン(0.192g、6.0mmol)を添加し、150℃で24時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(1.79g、16.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として式(256)で表される化合物を得た(0.133g、収率23%)。
 HRMS(FAB) m/z; calcd. 580.2282[M]+; found 580.2296.
 11B NMR (δppm in CS2/C6D6=2/1, 126 MHz) 35.7.
 合成例(14):
 11b-アザ-3b-ボラベンゾ[11,12]クリセノ[6,5-b]チオフェンの合成
Figure JPOXMLDOC01-appb-C000153
 N-[(2-チエニル)フェニル]-N-(ビフェニル-2-イル)アミン(0.655g、2.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.25mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.00mL、1.00M、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(10mL)を加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.621g、4.00mmol)を添加し、150℃で24時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.897g、8.00mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として標題化合物を得た(0.054g、収率8%)。
 HRMS(EI) m/z; calcd. 335.0940[M]+; found 335.0926.
 1H NMR (δppm in C6D6, 392 MHz) 6.92-7.11 (m, 5H), 7.39 (td, J = 0.9, 7.6 Hz, 1H), 7.50 (td, J = 1.8, 7.2 Hz, 1H), 7.91-8.00 (m, 4H), 8.11-8.16 (m, 2H), 8.63 (dd, J = 0.9, 7.6 Hz, 1H).
 合成例(15):
 11b-アザ-3b-ボラベンゾ[11,12]クリセノ[5,6-b]チオフェンの合成
Figure JPOXMLDOC01-appb-C000154
 N-[(3-チエニル)フェニル]-N-(ビフェニル-2-イル)アミン(0.655g、2.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.25mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.00mL、1.00M、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(10mL)を加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.621g、4.00mmol)を添加し、150℃で24時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.897g、8.00mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として標題化合物を得た(0.020g、収率3%)。
 HRMS(EI) m/z; calcd. 335.0940[M]+; found 335.0943.
 1H NMR (δppm in C6D6, 392 MHz) 7.00-7.05 (m, 2H), 7.07-7.12 (m, 2H), 7.40-7.50 (m, 3H), 7.63 (d, J = 4.9 Hz, 1H), 7.94 (dd, J = 1.8, 8.1 Hz, 1H), 8.03 (dd, J = 1.3, 8.5 Hz, 1H), 8.08-8.15 (m, 3H), 8.95 (dd, J = 1.4, 7.6 Hz, 1H).
 合成例(16):
 1-メチル-11b-アザ-3b-ボラベンゾ[11,12]クリセノ[5,6-c]チオフェンの合成
Figure JPOXMLDOC01-appb-C000155
 N-[(3-(2-メチル)チエニル)フェニル]-N-(ビフェニル-2-イル)アミン(0.683g、2.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.25mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.00mL、1.00M、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(10mL)を加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.621g、4.00mmol)を添加し、150℃で18時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.897g、8.00mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで褐色粉末として標題化合物を得た(0.035g、収率5%)。
 HRMS(MALDI) m/z; calcd. 349.1091[M]+; found 349.1088.
 11B NMR (δppm in C6D6, 126 MHz) 32.5.
 合成例(17):
 3b-アザ-11b-ボラベンゾ[11,12]クリセノ[6,5-b]チオフェンの合成
Figure JPOXMLDOC01-appb-C000156
 N-([1,1’-ビフェニル]-2―イル)-2-フェニルチオフェン-3-アミン(0.655g、2.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.25mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.00mL、1.00M、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(10mL)を加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.621g、4.00mmol)を添加し、150℃で24時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.897g、8.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白黄色粉末として標題化合物を得た(0.030g、収率4%)。
 HRMS(EI) m/z; calcd. 335.0940[M]+; found 335.0929.
 11B NMR (δppm in C6D6, 126 MHz) 34.5.
 合成例(18):
 12b-アザ-4b-ボラジベンゾ[l,k]ピロロ[1,2-f]フェナントリジンの合成
Figure JPOXMLDOC01-appb-C000157
 N-(2-(1H-ピロール-1-イル)フェニル)-[1,1’-ビフェニル]-2―アミン(0.621g、2.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.25mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.00mL、1.00M、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(10mL)を加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.466g、3.00mmol)を添加し、150℃で24時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(1.12g、10.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで白色粉末として標題化合物を得た(0.023g、収率4%)。
 HRMS(EI) m/z; calcd. 318.1328[M]+; found 318.1324.
 1H NMR (δppm in C6D6, 392 MHz) 6.72-6.73 (m, 1H), 6.76-6.80 (m, 1H), 6.85-6.89 (m, 1H), 7.01-7.09 (m, 2H), 7.28 (dd, J = 1.3, 8.5 Hz, 1H), 7.35-7.39 (m, 1H), 7.46-7.51 (m, 2H), 7.55 (dd, J = 1.3, 3.6 Hz, 1H), 7.80 (dd, J = 1.3, 8.5 Hz, 1H), 7.86-7.89 (m, 1H), 8.09-8.13 (m, 2H), 8.71 (dd, J = 1.3, 7.6 Hz, 1H).
 合成例(19):
 4b-アザ-12b-ボラベンゾ[f]フェナントロ[9,10-h]キノリンの合成
Figure JPOXMLDOC01-appb-C000158
 N-([1,1’-ビフェニル]-2―イル)-3-フェニルピリジン-2-アミン(0.645g、2.00mmol)およびトルエン(10mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(1.25mL、1.60M、2.00mmol)を添加し撹拌した。1時間後0℃に昇温しさらに1時間撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(2.00mL、1.00M、2.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(10mL)を加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.621g、4.00mmol)を添加し、150℃で24時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.897g、8.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで式(6)で表される化合物を得ることができる。
 合成例(20):
 4b-アザ-12b-フェニル-12b-スタンナジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000159
 ビス(ビフェニル-2-イル)アミン(0.321g、1.00mmol)およびTHF(10mL)に、アルゴン雰囲気下、-78℃でブチルリチウムのヘキサン溶液(0.63mL、1.60M、1.00mmol)を添加し撹拌した。1時間後、-78℃でフェニルトリクロロスタナン(0.302g、1.00mmol)を加え1時間撹拌後、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼンを加えた後、三塩化アルミニウム(0.533g、4.00mmol)および2,2,6,6-テトラメチルピペリジン(0.232g、1.50mmol)を添加し、150℃で12時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.448g、4.00mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで標題化合物を得ることができる。
 合成例(21):
 6c-アザ-16b-ボラジベンゾ[c,p]ナフト[1,2-g]クリセンの合成
Figure JPOXMLDOC01-appb-C000160
 ビス(2-フェニルナフタレン-1-イル)アミン(5.91g、14.0mmol)およびトルエン(70mL)に、アルゴン雰囲気下、-78℃でブチルリチウムのヘキサン溶液(8.75mL、1.60M、14.0mmol)を添加し撹拌した。5分後0℃に昇温しさらに2時間半撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(14.0mL、1.00M、14.0mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼンを加えた後、三塩化アルミニウム(14.9g、112mmol)および2,2,6,6-テトラメチルピペリジン(9.53mL、56.0mmol)を添加し、150℃で12時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(12.6g、112mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をヘキサン洗浄により単離することで茶色粉末として式(4)で表される化合物を得た(4.27g、収率68%)。
 HRMS(EI) m/z; calcd. 429.1694[M]+; found 429.1698.
 1H NMR (δppm in CDCl3); 6.65-6.69 (m, 2H), 7.11 (t, 2H, J = 7.4 Hz), 7.16 (d, 2H, J = 8.9 Hz), 7.64-7.70 (m, 4H), 7.79 (d, 2H, J = 8.9 Hz), 7.86 (dd, 2H, J = 0.9, 7.6 Hz), 8.48 (d, 2H, J = 8.9 Hz), 8.60 (d, 2H, J = 8.1 Hz), 8.84 (d, 2H, J = 7.1 Hz).
 合成例(22):
 6c-アザ-14b-ボラトリベンゾ[c,g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000161
 N-([1,1’-ビフェニル]-2-イル)-2-フェニルナフタレン-1-アミン(0.559g、1.51mmol)およびトルエン(7.5mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(0.940mL、1.60M、1.50mmol)を添加し撹拌した。10分後0℃に昇温しさらに1時間半撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(1.50mL、1.00M、1.50mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼンを加えた後、三塩化アルミニウム(0.800g、6.00mmol)および2,2,6,6-テトラメチルピペリジン(0.510mL、3.00mmol)を添加し、150℃で12時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.675g、6.01mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をGPCで単離することで茶色粉末として式(2)で表される化合物を得た(0.132g、収率23%)。
 HRMS(EI) m/z; calcd. 379.1532[M]+; found 379.1521.
 1H NMR (δppm in CDCl3); 7.04-7.06 (m, 2H), 7.10-7.15 (m, 1H), 7.18-7.22 (m, 1H), 7.37-7.41 (m, 1H), 7.58-7.62 (m, 2H), 7.63-7.67 (m, 1H), 7.77-7.89 (m, 4H), 8.30 (d, 1H, J = 7.6 Hz), 8.44 (d, 1H, J = 8.5 Hz), 8.46 (d, 1H, J = 8.0 Hz), 8.51 (d, 1H, J = 8.0 Hz), 8.74-8.77 (m, 2H).
 合成例(23):
 4b-アザ-14b-ボラトリベンゾ[a,c,f]テトラフェンの合成
Figure JPOXMLDOC01-appb-C000162
 N-(2-(ナフタレン-2-イル)フェニル)-[1,1’-ビフェニル]-2-アミン(0.370g、0.996mmol)およびトルエン(5.0mL)に、アルゴン雰囲気下、-78℃でブチルリチウムのヘキサン溶液(0.625mL、1.60M、1.00mmol)を添加し撹拌した。15分後0℃に昇温しさらに1時間半撹拌した後、-78℃で三塩化ホウ素のヘプタン溶液(1.00mL、1.00M、1.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼンを加えた後、三塩化アルミニウム(1.07g、8.00mmol)および2,2,6,6-テトラメチルピペリジン(0.680mL、4.00mmol)を添加し、150℃で12時間攪拌した。1,4-ジアザビシクロ[2.2.2]オクタン(0.897g、8.00mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をGPCで単離することで茶色粉末として式(5)で表される化合物を得た(0.219g、収率55%)。
 HRMS(EI) m/z; calcd. 379.1532[M]+; found 379.1538.
 1H NMR (δppm in CDCl3); 7.26-7.38 (m, 4H), 7.49-7.53 (m, 1H), 7.54-7.60 (m, 1H), 7.61-7.65 (m, 1H), 7.75-7.79 (m, 1H), 7.97-8.07 (m, 4H), 8.32 (dd, 1H, J = 1.6, 7.8 Hz), 8.38-8.43 (m, 2H), 8.73 (s, 1H), 8.78 (dd, 1H, J = 1.4, 7.6 Hz), 9.10 (s, 1H).
 合成例(24):
 2,11-ジブロモ-6c-アザ-16b-ボラジベンゾ[c,p]ナフト[1,2-g]クリセンの合成
Figure JPOXMLDOC01-appb-C000163
 6c-アザ-16b-ボラジベンゾ[c,p]ナフト[1,2-g]クリセン(0.0427g、0.996mmol)および塩化メチレン(1.0mL)に、室温でN-ブロモスクシンイミド(0.0444g、0.249mmol)を添加し6時間撹拌した。溶媒を減圧下に留去して得られた粗生成物をGPCで単離することで茶色粉末として標題化合物を得た(0.0222g、収率38%)。
 HRMS(EI) m/z; calcd. 586.9887[M]+; found 586.9885.
 1H NMR (δppm in CDCl3); 6.79 (dt, 2H, J = 1.4, 7.7 Hz), 7.19-7.24 (m, 4H), 7.70 (t, 2H, J = 6.7 Hz), 7.90 (dt, 2H, J = 1.3, 7.4 Hz), 8.12 (d, 2H, J = 8.5 Hz), 8.55 (d, 2H, J = 8.1 Hz), 8.80 (s, 2H), 8.84 (d, 2H, J = 6.7 Hz).
 合成例(25):
 8b,11b,14b-トリアザ-22b,25b,28b-トリボラオクタベンゾ[a,c,fg,jk,n,p,st,wx]ヘキサセンの合成
Figure JPOXMLDOC01-appb-C000164
 N-([1,1’-ビフェニル]-2-イル)-N-(6-([1,1’-ビフェニル]-2-イルアミノ)-[1,1’-ビフェニル]-2-イル)-[1,1’-ビフェニル]-2,6-ジアミン(1.31g、2.00mmol)およびトルエン(20mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(3.68mL、1.63M、6.00mmol)を添加し撹拌した。1時間後、0℃に昇温しさらに1時間攪拌した後、-78℃で三塩化ホウ素のヘプタン溶液(6.00mL、1.00M、6.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(40mL)を加えた後、三塩化アルミニウム(4.01g、30.0mmol)、2,2,6,6-テトラメチルピペリジン(1.74g、11.3mmol)を添加し、150℃で12時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(3.36g、30.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで標題化合物を得ることができる。
 合成例(26):
 9b,22b-ジアザ-4b,17b-ジボラテトラベンゾ[a,c,f,m]フェナントロ[9,10-k]テトラフェンの合成
Figure JPOXMLDOC01-appb-C000165
 N2’,N5’-ジ([1,1’-ビフェニル]-2-イル)-[1,1’:4’,1”-テルフェニル]-2’,5’-ジアミン(1.13g、2.00mmol)およびトルエン(20mL)に、アルゴン雰囲気下、-78℃で、ブチルリチウムのヘキサン溶液(2.45mL、1.63M、4.00mmol)を添加し撹拌した。1時間後、0℃に昇温しさらに1時間攪拌した後、-78℃で三塩化ホウ素のヘプタン溶液(4.00mL、1.00M、4.00mmol)を加え、室温で12時間撹拌した。溶媒を減圧下留去し、1,2-ジクロロベンゼン(40mL)を加えた後、三塩化アルミニウム(2.67g、20.0mmol)、2,2,6,6-テトラメチルピペリジン(1.16g、7.50mmol)を添加し、150℃で12時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(2.24g、20.0mmol)を加えて濾過後、溶媒を減圧下に留去して得られた粗生成物をHPLCおよびGPCで単離することで式(257)で表される化合物を得ることができる。
 合成例(27):
 2,7-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000166
 2,7-ジブロモ-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(0.70g)、フェニルボロン酸(0.44g)、リン酸カリウム(1.5g)、Pd-132(ジョンソン・マッセイ)(0.02g)およびトルエン(15mL)の入ったフラスコを窒素雰囲気下、70℃で1時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=99/1(容量比))で精製した。溶媒を減圧留去した後、得られた固体をヘプタン、酢酸エチルの順に洗浄し、更にクロロベンゼン/ヘプタン混合溶液から再結晶させることで、式(66)で表される化合物(0.51g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.73(d,2H)、8.60(m,2H)、8.51(d,2H)、8.23(d,2H)、7.82(t,2H)、7.75(d,4H)、7.64(m,4H)、7.51(t,4H)、7.40(t,2H).
 合成例(28):
 N,N,N,N-テトラフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン-2,7-ジアミンの合成
Figure JPOXMLDOC01-appb-C000167
 2,7-ジブロモ-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(0.70g)、ジフェニルアミン(0.61g)、ナトリウム-t-ブトキシド(0.35g)、Pd(dba)(0.02g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン(0.02g)およびトルエン(15ml)の入ったフラスコを窒素雰囲気下、70℃で1時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(展開液:トルエン/ヘプタン/トリエチルアミン=10/10/1(容量比))で精製した。溶媒を減圧留去した後、得られた固体をヘプタンで洗浄し、式(198)で表される化合物(0.22g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.67(d,2H)、8.12(m,4H)、8.03(d,2H)、7.67(t,2H)、7.57(t,2H)、7.26(m,8H)、7.16(m,8H)、7.13(dd,2H)、7.02(t,4H).
 合成例(29):
 2,7-ジカルバゾリル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000168
 2,7-ジブロモ-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.00g)、カルバゾール(1.70g)、ナトリウム-t-ブトキシド(1.00g)、Pd(dba)(0.05g)、トリ-t-ブチルホスフィンの1Mトルエン溶液(0.25ml)および1,2,4-トリメチルベンゼン(20ml)の入ったフラスコを窒素雰囲気下、150℃で1時間攪拌した。反応液を室温まで冷却した後、析出した固体を吸引ろ過にて採取し、メタノール、水、メタノールの順で洗浄した。次いで、加熱したクロロベンゼンに溶解させ、活性アルミナショートカラムを通過させた。この際、展開液(トルエン/酢酸エチル/トリエチルアミン=95/5/1(容量比))を用いてカラム中から溶出させた。溶媒を減圧留去した後、得られた固体を酢酸エチルで洗浄し、式(197)で表される化合物(1.50g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.80(d,2H)、8.60(m,2H)、8.48(d,2H)、8.37(d,2H)、8.20(d,4H)、7.81(t,2H)、7.70(t,2H)、7.65(dd,2H)、7.40-7.60(m,8H)、7.33(t,4H).
 合成例(30):
 2,7,11,14-テトラフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000169
 まず、2-ブロモ-1,1’:4’,1”-テルフェニル(35.0g)、ナトリウム-t-ブトキシド(10.9g)、Pd(dba)(0.65g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン(0.60g)、キシレン(100ml)およびリチウムアミド(1.3g)の入ったフラスコを窒素雰囲気下、90℃で2時間攪拌した。反応液を室温まで冷却した後、水および酢酸エチルを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(展開液:トルエン)で精製した。溶媒を減圧留去した後、ヘプタンを加えることで沈殿を析出させ、得られた沈殿をヘプタンで洗浄し、ジ([1,1’:4’,1”-テルフェニル]-2-イル)アミン(22.2g)を得た。
Figure JPOXMLDOC01-appb-C000170
 次に、ジ([1,1’:4’,1”-テルフェニル]-2-イル)アミン(22.2g)およびトルエン(250ml)の入ったフラスコを-70℃まで冷却し、n-ブチルリチウムの2.6Mヘキサン溶液(18.0ml)を滴下した。滴下終了後、一旦0℃まで昇温し、0℃で5分間撹拌した。その後、再び-70℃まで冷却し、三塩化ホウ素の1.0Mヘプタン溶液(46.9ml)を滴下した。次いで、反応液を室温まで昇温した後、一旦溶媒を減圧留去した。ここにオルトジクロロベンゼン(300ml)、2,2,6,6-テトラメチルピぺリジン(13.9g)、三塩化アルミニウム(25.0g)を加え、160℃で12時間撹拌した。反応液を室温まで冷却し、トルエン(500ml)およびセライトを加えて撹拌した後、約1時間静置した。次いで、析出した沈殿をセライトを敷いた桐山ロートを用いた吸引ろ過にて除去した後、溶媒を減圧留去した。更に活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル/トリエチルアミン=90/10/1(容量比))で精製後、酢酸エチル/ヘプタン混合溶媒にて再沈殿させ、式(84)で表される化合物(16.2g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=9.00(m,2H)、8.50(d,2H)、8.41(d,2H)、8.15(d,2H)、8.04(d,2H)、7.77(d,4H)、7.50(t,4H)、7.40(m,6H).
 合成例(31):
 2,7-ジブロモ-11,14-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000171
 まず、窒素雰囲気下、2,7,11,14-テトラフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(4.8g)のTHF(50ml)溶液に、N-ブロモスクシンイミド(NBS)(3.7g)を加え、室温で1時間撹拌した。反応終了後、亜硝酸ナトリウム水溶液を加えて析出した沈殿を吸引ろ過にて採取した。更に得られた固体を活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=99/1(容量比))で精製し、2,7-ジブロモ-11,14-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(5.2g)を得た。
Figure JPOXMLDOC01-appb-C000172
 次に、2,7-ジブロモ-11,14-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.0g)、フェニルボロン酸(1.0g)、リン酸カリウム(1.3g)、ナトリウム-t-ブトキシド(0.6g)、Pd-132(ジョンソン・マッセイ)(0.04g)およびトルエン(40mL)の入ったフラスコを窒素雰囲気下、100℃で1時間攪拌した。反応液を室温まで冷却した後、水および酢酸エチルを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=99/1(容量比))で精製した。溶媒を減圧留去した後、ヘプタンを加え、再沈殿させることで、式(86)で表される化合物(1.8g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=9.03(s,2H)、8.64(s,2H)、8.59(d,2H)、8.26(d,2H)、8.06(d,2H)、7.79(m,8H)、7.67(d,2H)、7.52(m,8H)、7.40(m,4H).
 合成例(32):
 10,15-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000173
 まず、2-ブロモアニリン(25.0g)、[1,1’-ビフェニル]-3-イルボロン酸(28.8g)、炭酸カリウム(50.2g)、Pd(PPh(5.0g)、トルエン(200ml)、THF(70ml)および水(30ml)の入ったフラスコを還流温度で8時間撹拌した。反応液を室温まで冷却した後、水を加え分液し、溶媒を減圧留去した。得られた油状物質をシリカゲルショートカラム(展開液:トルエン)で精製し、溶媒を減圧留去して得られた油状物質にヘプタンを加え再沈殿させ、[1,1’:3’,1”-テルフェニル]-2-アミン(33.0g)を得た。
Figure JPOXMLDOC01-appb-C000174
 次に、1-ブロモ-2-ヨードベンゼン(35.0g)、[1,1’-ビフェニル]-3-イルボロン酸(24.5g)、炭酸ナトリウム(32.8g)、Pd(PPh(4.3g)、トルエン(200ml)、イソプロピルアルコール(50ml)および水(20ml)の入ったフラスコを還流温度で8時間撹拌した。反応液を室温まで冷却した後、水を加え分液し、溶媒を減圧留去した。得られた油状物質をシリカゲルショートカラム(展開液:トルエン)で精製した。溶媒を減圧留去して得られた油状物質を減圧蒸留にて更に精製し、2-ブロモ-1,1’:3’,1”-テルフェニル(34.4g)を得た。
Figure JPOXMLDOC01-appb-C000175
 更に、[1,1’:3’,1”-テルフェニル]-2-アミン(20.0g)、2-ブロモ-1,1’:3’,1”-テルフェニル(25.2g)、ナトリウム-t-ブトキシド(11.8g)、Pd(dba)(0.11g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン「A-taPhos」(0.11g)およびキシレン(150ml)の入ったフラスコを窒素雰囲気下、110℃で2時間攪拌した。反応液を室温まで冷却した後、水を加え分液し、溶媒を減圧留去した。得られた油状物質をシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=2/8(容量比))で精製し、ジ([1,1’:3’,1”-テルフェニル]-2-イル)アミン(32.6g)を得た。
Figure JPOXMLDOC01-appb-C000176
 上記のようにして得たジ([1,1’:3’,1”-テルフェニル]-2-イル)アミン(22.2g)およびトルエン(250ml)の入ったフラスコを-70℃まで冷却し、n-ブチルリチウムの2.6Mヘキサン溶液(18.0ml)を滴下した。滴下終了後、一旦0℃まで昇温し、0℃で5分間撹拌した。その後、再び-70℃まで冷却し、三臭化ホウ素(11.7g)をヘプタンに溶解させたものを滴下した。次いで、反応液を室温まで昇温した後、一旦溶媒を減圧留去した。ここにオルトジクロロベンゼン(300ml)、2,2,6,6-テトラメチルピぺリジン(13.9g)、三塩化アルミニウム(25.0g)を加え、160℃で12時間撹拌した。反応液を室温まで冷却し、トルエン(500ml)およびセライトを加えて撹拌した後、約1時間静置した。次いで、析出した沈殿をセライトを敷いた桐山ロートを用いた吸引ろ過にて除去した後、溶媒を減圧留去した。更に活性アルミナカラムクロマトグラフィー(展開液:トルエン/ヘプタン/トリエチルアミン=50/50/1(容量比))で精製後、酢酸エチル/エタノール混合溶媒にて再沈殿させ、式(210)で表される化合物(17.0g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.80(d,2H)、8.64(m,2H)、8.47(d,2H)、8.16(d,2H)、7.87(d,2H)、7.82(d,4H)、7.55(t,4H)、7.34-7.50(m,6H).
 合成例(33):
 2,7,10,15-テトラフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000177
 まず、窒素雰囲気下、10,15-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(4.8g)のTHF(40ml)溶液に、N-ブロモスクシンイミド(NBS)(3.7g)を加え、室温で1時間撹拌した。反応終了後、亜硝酸ナトリウム水溶液を加えて析出した沈殿を吸引ろ過にて採取した。更に得られた固体を活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=99/1(容量比))で精製した。溶媒を減圧留去して得られた固体を酢酸エチルで洗浄し、2,7-ジブロモ-10,15-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(5.9g)を得た。
Figure JPOXMLDOC01-appb-C000178
 次に、2,7-ジブロモ-10,15-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.0g)、フェニルボロン酸(1.0g)、リン酸カリウム(2.0g)、ナトリウム-t-ブトキシド(0.3g)、Pd-132(ジョンソン・マッセイ)(0.05g)およびトルエン(40mL)の入ったフラスコを窒素雰囲気下、100℃で1時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=99/1(容量比))で精製した。溶媒を減圧留去した後、トルエンから再結晶させることで、式(211)で表される化合物(1.8g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.82(d,2H)、8.69(m,2H)、8.65(m,2H)、8.25(d,2H)、7.88(dd,2H)、7.82(d,4H)、7.76(d,4H)、7.66(dd,2H)、7.49-7.59(m,8H)、7.46(t,2H)、7.40(t,2H).
 合成例(34):
 9,16-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン化合物の合成
Figure JPOXMLDOC01-appb-C000179
 まず、2-ブロモアニリン(21.7g)、[1,1’-ビフェニル]-2-イルボロン酸(25.0g)、炭酸カリウム(44.0g)、Pd(PPh(4.4g)、トルエン(175ml)、THF(60ml)および水(20ml)の入ったフラスコを還流温度で8時間撹拌した。反応液を室温まで冷却した後、水を加え分液し、溶媒を減圧留去した。得られた油状物質をシリカゲルショートカラム(展開液:トルエン/ヘプタン=1/1(容量比))で精製した。溶媒を減圧留去して得られた油状物質を減圧蒸留にて更に精製し、[1,1’:2’,1”-テルフェニル]-2-アミン(25.6g)を得た。
Figure JPOXMLDOC01-appb-C000180
 次に、1-ブロモ-2-ヨードベンゼン(35.0g)、[1,1’-ビフェニル]-2-イルボロン酸(24.5g)、炭酸ナトリウム(32.8g)、Pd(PPh(4.3g)、トルエン(200ml)、イソプロピルアルコール(50ml)および水(20ml)の入ったフラスコを還流温度で8時間撹拌した。反応液を室温まで冷却した後、水を加え分液し、溶媒を減圧留去した。得られた油状物質をシリカゲルショートカラム(展開液:トルエン/ヘプタン=1/1(容量比))で精製した。溶媒を減圧留去して得られた油状物質を減圧蒸留にて更に精製し、2-ブロモ-1,1’:2’,1”-テルフェニル(22.0g)を得た。
Figure JPOXMLDOC01-appb-C000181
 更に、[1,1’:2’,1”-テルフェニル]-2-アミン(17.5g)、2-ブロモ-1,1’:2’,1”-テルフェニル(22.0g)、ナトリウム-t-ブトキシド(10.3g)、Pd(dba)(0.10g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン(0.09g)およびキシレン(100ml)の入ったフラスコを窒素雰囲気下、110℃で2時間攪拌した。反応液を室温まで冷却した後、水を加え分液し、溶媒を減圧留去した。得られた油状物質をシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン混合溶液)で精製し、ジ([1,1’:2’,1”-テルフェニル]-2-イル)アミン(32.6g)を得た。この際、「有機化学実験のてびき(1)-物質取扱法と分離精製法-」株式会社化学同人出版、94頁に記載の方法を参考にして、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。ジ([1,1’:2’,1”-テルフェニル]-2-イル)アミン(20.1g)を得た。
Figure JPOXMLDOC01-appb-C000182
 上記のようにして得たジ([1,1’:2’,1”-テルフェニル]-2-イル)アミン(19.0g)およびトルエン(250ml)の入ったフラスコを-70℃まで冷却し、n-ブチルリチウムの2.6Mヘキサン溶液(15.4ml)を滴下した。滴下終了後、一旦0℃まで昇温し、0℃で5分間撹拌した。その後、この溶液を-70℃に冷却した三塩化ホウ素(29.7g)のトルエン溶液に滴下した。次いで、一旦溶媒を減圧留去し、オルトジクロロベンゼン(300ml)、2,2,6,6-テトラメチルピぺリジン(11.9g)、三塩化アルミニウム(21.4g)を加え、160℃で12時間撹拌した。反応液を室温まで冷却し、トルエン(500ml)およびセライトを加えて撹拌した後、約1時間静置した。次いで、析出した沈殿をセライトを敷いた桐山ロートを用いた吸引ろ過にて除去した後、溶媒を減圧留去した。更に活性アルミナカラムクロマトグラフィー(展開液:トルエン/ヘプタン/トリエチルアミン=90/10/1(容量比))で精製後、酢酸エチル/エタノール混合溶媒にて再沈殿させ、式(212)で表される化合物(2.3g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.74(d,2H)、8.70(m,1H)、8.06(d,2H)、7.26-7.70(m,16H)、7.21(t,2H)、6.77(t,2H).
 合成例(35):
 2-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン化合物の合成
Figure JPOXMLDOC01-appb-C000183
 まず、2,4-ジブロモアニリン(25.0g)、フェニルボロン酸(30.0g)、Pd(PPh(5.8g)、リン酸三カリウム(106.0g)、キシレン(300ml)、t-ブチルアルコール(50ml)および水(50ml)の入ったフラスコを120℃で30分撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した。有機層をシリカゲルショートカラムに通し、高極性の副生物を除去した後、溶媒を減圧留去した。更にシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=8/2(容量比))で精製した後、ヘプタンで再沈殿させ、[1,1’:3’,1”-テルフェニル]-4’-アミン(13.1g)を得た。
Figure JPOXMLDOC01-appb-C000184
 次に、[1,1’:3’,1”-テルフェニル]-4’-アミン(13.0g)、2-ブロモビフェニル(12.4g)、ナトリウム-t-ブトキシド(7.6g)、Pd(dba)(0.08g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン(0.07g)およびトルエン(100ml)の入ったフラスコを窒素雰囲気下、80℃で30分攪拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=2/8(容量比))で精製し、N-([1,1’-ビフェニル]-2-イル)-[1,1’:3’,1”-テルフェニル]-4’-アミン(20.0g)を得た。
Figure JPOXMLDOC01-appb-C000185
 上記のようにして得たN-([1,1’-ビフェニル]-2-イル)-[1,1’:3’,1”-テルフェニル]-4’-アミン(18.6g)およびトルエン(250ml)の入ったフラスコを-70℃まで冷却し、n-ブチルリチウムの1.6Mヘキサン溶液(29.3ml)を滴下した。滴下終了後、一旦0℃まで昇温することで得られた懸濁液を三塩化ホウ素の1.0Mヘプタン溶液(46.9ml)をトルエンで希釈した溶液に-60℃で滴下した。次いで、反応液を室温まで昇温した後、一旦溶媒を減圧留去した。ここにオルトジクロロベンゼン(300ml)、2,2,6,6-テトラメチルピぺリジン(13.9g)、三塩化アルミニウム(25.0g)を加え、170℃で20時間撹拌した。反応液を60℃まで冷却し、炭酸ナトリウム(10.0g)および酢酸ナトリウム(31.0g)を加えた氷水(懸濁溶液)に加えた。有機層を分液後、セライトを敷いた桐山ロートで吸引ろ過し、溶媒を減圧留去した。次いで、活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=100/1(容量比))で精製後、酢酸エチル/ヘプタン混合溶媒にて再沈殿させ、式(51)で表される化合物(14.0g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.71(m,2H)、8.58(m,1H)、8.50(d,1H)、8.43(d,1H)、8.38(d,1H)、8.19(d,1H)、8.16(d,1H)、7.80(m,2H)、7.74(d,2H)、7.63(m,3H)、7.50(t,2H)、7.33-7.43(m,3H).
 合成例(36):
 9-(4-(7-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン-2-イル)フェニル)-9H-カルバゾールの合成
Figure JPOXMLDOC01-appb-C000186
 まず、窒素雰囲気下、2-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(6.0g)のTHF(40ml)溶液に、N-ブロモスクシンイミド(NBS)(2.8g)を加え、室温で終夜撹拌した。反応終了後、亜硝酸ナトリウム水溶液およびトルエンを加え分液し、溶媒を減圧留去した。得られた固体をクロロベンゼンに溶解させ、活性アルミナショートカラム(展開液:トルエン/トリエチルアミン=100/1(容量比))に通した。溶媒を減圧留去し得られた固体をヘプタンで洗浄することで2-ブロモ-7-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(6.1g)を得た。
Figure JPOXMLDOC01-appb-C000187
 次に、2-ブロモ-7-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.0g)、(4-(9H-カルバゾール-9-イル)フェニル)ボロン酸(1.4g)、Pd-132(0.06g)、リン酸三カリウム(1.75g)、ナトリウム-t-ブトキシド(1.0g)およびトルエン(40ml)の入ったフラスコを80℃で1時間撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナショートカラム(展開液:オルトジクロロベンゼン)に通した。溶媒を減圧留去した後、加熱したクロロベンゼンに溶解させ、ヘプタンを加えることで再沈殿させ、式(205)で表される化合物(1.0g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.76(m,2H)、8.70(m,1H)、8.62(m,1H)、8.58(d,1H)、8.54(d,1H)、8.30(d,1H)、8.26(d,1H)、8.18(d,2H)、7.99(d,2H)、7.84(m,2H)、7.64-7.79(m,8H)、7.53(m,4H)、7.45(t,2H)、7.40(t,1H)、7.32(t,2H).
 合成例(37):
 N,N-ジフェニル-4-(7-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン-2-イル)アニリンの合成
Figure JPOXMLDOC01-appb-C000188
 2-ブロモ-7-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.0g)、N,N-ジフェニル-4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)アニリン(1.7g)、Pd-132(0.06g)、リン酸三カリウム(1.75g)、ナトリウム-t-ブトキシド(1.0g)、t-ブチルアルコール(0.4ml)およびトルエン(40ml)の入ったフラスコを90℃で1時間撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナショートカラム(展開液:トルエン/トリエチルアミン=100/1(容量比))に通した。溶媒を減圧留去した後、ヘプタンを加えることで再沈殿させ、式(209)で表される化合物(0.9g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.73(d,2H)、8.60(m,1H)、8.57(m,1H)、8.51(m,2H)、8.22(m,2H)、7.81(m,2H)、7.75(d,2H)7.63(m,6H)、7.52(t,2H)、7.40(t,1H)、7.29(m,4H)、7.20(d,2H)、7.18(m,4H)、7.05(t,2H).
 合成例(38):
 9-フェニル-3-(7-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン-2-イル)-2-イル)-9H-カルバゾールの合成
Figure JPOXMLDOC01-appb-C000189
 2-ブロモ-7-フェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.0g)、(9-フェニル-9H-カルバゾール-3-イル)ボロン酸(1.4g)、Pd-132(0.06g)、リン酸三カリウム(1.75g)、トルエン(40ml)およびt-ブチルアルコール(10ml)の入ったフラスコを120℃で2時間撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナショートカラム(展開液:トルエン/トリエチルアミン=100/1(容量比))に通した。溶媒を減圧留去した後、ヘプタンを加えることで再沈殿させ、式(214)で表される化合物(1.6g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.75(d,2H)、8.71(m,1H)、8.61(m,1H)、8.59(d,1H)、8.51(d,1H)、8.50(m,1H)、8.26(m,3H)、7.79-7.87(m,3H)、7.77(m,3H)、7.60-7.70(m,7H)、7.47-7.57(m,4H)、7.45(m,2H)、7.40(t,1H)、7.33(m,1H).
 合成例(39):
 2,7-ジフェニル-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000190
 まず、窒素雰囲気下、4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセン(3.5g)のTHF(150ml)溶液に、N-ブロモスクシンイミド(NBS)(13.6g)を加え、還流温度で2時間撹拌した。反応終了後、亜硝酸ナトリウム水溶液およびトルエンを加え分液し、溶媒を減圧留去した。得られた油状物質にエタノールを加えることで再沈殿させ、2,7-ジブロモ-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセン(4.5g)を得た。
Figure JPOXMLDOC01-appb-C000191
 次に、2,7-ジブロモ-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセン(1.5g)、フェニルボロン酸(0.9g)、リン酸カリウム(3.0g)、Pd-132(ジョンソン・マッセイ)(0.04g)およびキシレン(30mL)の入ったフラスコを窒素雰囲気下、70℃で1時間攪拌した。反応液を室温まで冷却した後、ヘプタンを加え生じた沈殿を吸引ろ過にて採取した。得られた固体を温水で洗浄後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶液)で精製した。この際、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。また、シリカゲル上に試料をチャージする際は加熱したクロロベンゼンに溶解させた溶液を使用した。更に酢酸エチルから再結晶し、式(366)で表される化合物(1.3g)を得た。
 合成例(40):
 2,7-ジ(ピリジン-3-イル)-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000192
 2,7-ジブロモ-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセン(2.0g)、3-(4,4,5,-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリジン(2.0g)、リン酸カリウム(4.0g)、Pd-132(ジョンソン・マッセイ)(0.05g)、キシレン(40mL)およびt-ブチルアルコール(4ml)の入ったフラスコを窒素雰囲気下、100℃で1時間攪拌した。反応液を室温まで冷却した後、酢酸エチルおよび水を加えた。更に希塩酸を加え水層を中和してから分液した。溶媒を減圧留去し、得られた固体をNH修飾シリカゲル(DM1020:富士シリシア製)カラムクロマトグラフィー(展開液:クロロベンゼン/酢酸エチル=9/1(容量比))にて精製し、溶媒を留去した濃縮液にヘプタンを加え再沈殿させ、式(391)で表される化合物(1.0g)を得た。
 合成例(41):
 2,7-ジ(ピリジン-4-イル)-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000193
 2,7-ジブロモ-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセン(1.5g)、4-(4,4,5,-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリジン(1.5g)、リン酸カリウム(4.0g)、Pd-132(ジョンソン・マッセイ)(0.05g)、キシレン(40mL)およびt-ブチルアルコール(4ml)の入ったフラスコを窒素雰囲気下、120℃で2時間攪拌した。反応液を室温まで冷却した後、ヘプタンを加え生じた沈殿を吸引ろ過にて採取した。得られた固体を温水で洗浄後、NH修飾シリカゲル(DM1020:富士シリシア製)ショートカラム(展開液:加熱したクロロベンゼン)にて精製した。溶媒を減圧留去した後、ヘプタンを加え再沈殿させ、式(392)で表される化合物(0.4g)を得た。
 合成例(42):
 2,7-ビス(3-(ピリジン-2-イル)フェニル)-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000194
 2,7-ジブロモ-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセン(2.0g)、2-(3-(4,4,5,-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン(2.7g)、リン酸カリウム(4.0g)、Pd-132(ジョンソン・マッセイ)(0.05g)、キシレン(40mL)およびt-ブチルアルコール(4ml)の入ったフラスコを窒素雰囲気下、120℃で3時間攪拌した。反応液を室温まで冷却した後、トルエンおよび希塩酸を加え分液した。溶媒を減圧留去した後、NH修飾シリカゲル(DM1020:富士シリシア製)ショートカラム(展開液:加熱したトルエン/酢酸エチル=9/1(容量比))にて精製した。更にトルエン/ヘプタン混合溶液で再沈殿させ、式(394)で表される化合物(1.6g)を得た。
 合成例(43):
 2,7-ジ(カルバゾール-9-イル)-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000195
 2,7-ジブロモ-4b-アザ-12b-オキサホスファ-ジベンゾ[g,p]クリセン(2.0g)、カルバゾール(1.6g)、ナトリウム-t-ブトキシド(0.64g)、Pd(dba)(0.07g)、トリ-t-ブチルホスフィン1Mトルエン溶液(0.34ml)および1,2,4-トリメチルベンゼン「MePh」(40mL)の入ったフラスコを窒素雰囲気下、150℃で16時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶液)で精製した。この際、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。溶媒を減圧留去した後、酢酸エチルで洗浄し、更にクロロベンゼン/酢酸エチル混合溶媒で再沈殿させ、式(424)で表される化合物(0.9g)を得た。
 合成例(44):
 2-フェニル-14b-アザ-14b-ボラベンゾ[p]インデノ[1,2,3,4-defg]クリセンの合成
Figure JPOXMLDOC01-appb-C000196
 まず、4-ビフェニルボロン酸(13.5g)、2-ブロモアニリン(12.9g)、炭酸カリウム(18.8g)、Pd(PPh(1.6g)、トルエン(135ml)、THF(65ml)および水(30ml)の入ったフラスコを窒素雰囲気化、還流温度で7時間撹拌した。反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン混合溶液)で精製し、[1,1’:4’,1”-テルフェニル]-2-アミン(11.1g)を得た。この際、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。また、シリカゲル上に試料をチャージする際は加熱したクロロベンゼンに溶解させた溶液を使用した。
Figure JPOXMLDOC01-appb-C000197
 次に、[1,1’:4’,1”-テルフェニル]-2-アミン(11.0g)、2-ブロモビフェニル(10.5g)、ナトリウム-t-ブトキシド(5.2g)、Pd(dba)(0.06g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン(0.06g)およびトルエンの入ったフラスコを窒素雰囲気化、還流温度で3時間撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分析した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン混合溶液)で精製し、N-([1,1’-ビフェニル]-2-イル)-[1,1’:4’,1”-テルフェニル]-2-アミン(17.5g)を得た。この際、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。
Figure JPOXMLDOC01-appb-C000198
 上記のようにして得たN-([1,1’-ビフェニル]-2-イル)-[1,1’:4’,1”-テルフェニル]-2-アミン(7.5g)およびトルエン(100ml)の入ったフラスコを-70℃まで冷却し、n-ブチルリチウムの1.6Mヘキサン溶液(11.7ml)を滴下した。滴下終了後、一旦0℃まで昇温し、0℃で5分間撹拌した。その後、再び-70℃まで冷却し、三塩化ホウ素の1.0Mヘプタン溶液(18.8ml)を滴下した。次いで、反応液を室温まで昇温した後、一旦溶媒を減圧留去した。ここにオルトジクロロベンゼン「ODCB」(100ml)、ジイソプロピルエチルアミン(3.2ml)、三塩化アルミニウム(10.0g)を加え、170℃で13時間撹拌した。反応液を室温まで冷却後、炭酸水素ナトリウム水溶液で中和し、クロロベンゼンおよび水を加えて分液した。次いで、活性アルミナショートカラム(展開液:トルエン)で精製し、更にクロロベンゼンから再結晶することで、式(660)で表される化合物(0.2g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=9.42(m,1H)、9.27(d,1H)、8.77(d,1H)、8.73(d,1H)、8.50(dd,2H)、8.27(dd,2H)、8.10(dd,1H)、7.88(m,3H)、7.73(m,3H)、7.60(t,2H)、7.47(t,1H).
 合成例(45):
 2-(14b-アザ-14b-ボラベンゾ[p]インデノ[1,2,3,4-defg]クリセン-6-イル)-9H-カルバゾールの合成
Figure JPOXMLDOC01-appb-C000199
 まず、窒素雰囲気下、14b-アザ-14b-ボラベンゾ[p]インデノ[1,2,3,4-defg]クリセン(1.0g)のオルトジクロロベンゼン(10ml)および酢酸(1ml)の混合溶液にN-ヨードスクシンイミド(NIS)(2.8g)を加え、室温で26時間撹拌した。チオ硫酸ナトリウム水溶液を加え反応を停止させ、析出した固体を吸引ろ過にて採取した。得られた固体を水、メタノールで洗浄した後、クロロベンゼンから再結晶させることで、6-ヨード-14b-アザ-14b-ボラベンゾ[p]インデノ[1,2,3,4-defg]クリセン(0.4g)を得た。
Figure JPOXMLDOC01-appb-C000200
 次に、6-ヨード-14b-アザ-14b-ボラベンゾ[p]インデノ[1,2,3,4-defg]クリセン(0.4g)、カルバゾール(0.2g)、ナトリウム-t-ブトキシド(0.1g)、Pd(dba)(0.03g)、1Mのトリ-t-ブチルホスフィントルエン溶液(0.13ml)および1,2,4-トリメチルベンゼン「MePh」(10ml)の入ったフラスコを窒素雰囲気化、還流温度で3時間撹拌した。反応液を室温まで冷却した後、水を加えて析出した固体を吸引ろ過にて採取した。得られた固体を水およびメタノールで洗浄した後、活性アルミナショートカラム(展開液:トルエン)に通した。更にクロロベンゼンから再結晶させ、式(687)で表される化合物(0.2g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=9.27(m,2H)、8.74(d,1H)、8.61(m,2H)、8.53(d,1H)、8.40(m,1H)、8.24(m,3H)、7.91(t,1H)、7.85(t,1H)、7.72-7.80(m,3H)、7.42-7.51(m,4H)、7.35(t,2H).
 合成例(46):
 2,5,8,11-テトラメチル-3b-アザ-9b-ボラ-ナフト[2,1-b:3,-b’:6,5-b”:7,8-b''']テトラチオフェンの合成
Figure JPOXMLDOC01-appb-C000201
 2-メチルチオフェン(5.0g)をTHF(50ml)に溶解させ、-78℃まで冷却した。そこへ1.6Mのn-ブチルリチウムヘキサン溶液(35.0ml)をゆっくり滴下した。滴下終了から30分経過したところで0℃まで昇温、3時間撹拌した後、塩化亜鉛テトラメチルエチレンジアミン錯体(14.2g)を加え、更に30分間撹拌した。次いで反応液を室温まで昇温した後、2-ブロモ-5-メチルチオフェン(6.8g)およびPd(PPhを加え、更に還流温度まで昇温して3時間撹拌した。反応液を室温まで冷却した後、エチレンジアミン四酢酸・四ナトリウム塩二水和物を適量の水に溶解した溶液(以後、EDTA・4Na水溶液と略記する。)およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン)で精製し、5,5’-ジメチル-2,2’-ビチオフェン(20.3g)を得た。
Figure JPOXMLDOC01-appb-C000202
 5,5’-ジメチル-2,2’-ビチオフェン(7.5g)をクロロホルム(75ml)/酢酸(37.5ml)の混合溶液に溶解させ、0℃に冷却した。そこへN-ブロモスクシンイミド「NBS」(6.9g)をゆっくり加えた後、室温まで昇温した。反応終了後、水を加え分液し、更に有機層を炭酸ナトリウム水溶液で洗浄した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン)で精製し、3-ブロモ-5,5’-ジメチル-2,2’-ビチオフェン(10.0g)を得た。
Figure JPOXMLDOC01-appb-C000203
 窒素雰囲気下、3-ブロモ-5,5’-ジメチル-2,2’-ビチオフェン(8.3g)、ジフェニルメタンイミン(11.0g)、Pd(dba)(0.5g)、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル「BINAP」(1.1g)、ナトリウム-t-ブトキシド(10.2g)およびトルエン(100ml)の入ったフラスコを還流温度で20時間撹拌した。反応液を室温まで冷却し、吸引ろ過にて固形分をろ別した。次いで、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン/トルエン=1/1(容量比))で精製し、N-(ジフェニルメチレン)-5,5’-ジメチル-[2,2’-ビチオフェン]-3-アミン(11.4g)を得た。
Figure JPOXMLDOC01-appb-C000204
 N-(ジフェニルメチレン)-5,5’-ジメチル-[2,2’-ビチオフェン]-3-アミン(11.4g)をTHF(165ml)に溶解させた。そこへ6M塩酸(98ml)を加え、室温で10分間撹拌した。溶媒を減圧留去し析出した固体を吸引ろ過にて採取し、ヘプタンで洗浄することで、5,5’-ジメチル-[2,2’-ビチオフェン]-3-アミン塩酸塩(10.0g)を得た。
Figure JPOXMLDOC01-appb-C000205
 5,5’-ジメチル-[2,2’-ビチオフェン]-3-アミン塩酸塩(10.0g)、 3-ブロモ-5,5’-ジメチル-2,2’-ビチオフェン(13.0g)、Pd(dba)(0.5g)、1Mトリ-t-ブチルホスフィントルエン溶液(4.3ml)、ナトリウム-t-ブトキシド(11.4g)およびキシレン(130ml)の入ったフラスコを窒素雰囲気下、120℃で12時間撹拌した。反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン/トルエン=10/1(容量比))で精製した後、ヘプタンから再結晶させることで、ビス(5,5’-ジメチル-[2,2’-ビチオフェン]-3-イル)アミン(10.7g)を得た。
Figure JPOXMLDOC01-appb-C000206
 窒素雰囲気下、ビス(5,5’-ジメチル-[2,2’-ビチオフェン]-3-イル)アミン(5.0g)、ジイソプロピルエチルアミン(4.4ml)およびオルトジクロロベンゼン(50ml)の入ったフラスコに三臭化ホウ素(1.8ml)を加え、180℃で8時間撹拌した。溶媒を減圧留去し、活性アルミナカラムクロマトグラフィー(展開液:クロロベンゼン)で精製した。溶媒を減圧留去し得られた固体を加熱したヘプタンで洗浄し、式(47)で表される化合物(0.7g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=7.73(s,2H)、7.71(s,2H)、2.69(s,6H)、2.66(s,6H).
 合成例(47):
 11b-アザ-3b-ボラジベンゾ[c,f]ジピロロ[2,1-a:1’,2’-h][2,7]ナフチリジンの合成
Figure JPOXMLDOC01-appb-C000207
 ビス(2-(1H-ピロール-1-イル)フェニルアミン(0.898g)、三臭化ホウ素(1.13g)、トリエチルアミン「NEt」(0.759g)および1,2-ジクロロベンゼン「ODCB」(20ml)の入ったフラスコをアルゴン雰囲気下、120℃で2時間攪拌した。反応液を室温まで冷却した後、1,4-ジアザビシクロ[2.2.2]オクタン(2.02g)を加え活性アルミナショートカラムを通過させた。この際、トルエンを用いてカラム中から溶出させた。溶媒を減圧留去した後、得られた固体をヘキサンで洗浄し、式(26)で表される化合物(0.789g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.01(dd,2H)、7.84(dd,2H)、7.74(dd,2H)、7.31(dd,2H)、7.16-7.23(m,4H)、6.73(dd,2H).
 合成例(48):
 2,7-ジシアノ-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000208
 2,7-ジブロモ-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(0.146g)、シアン化銅(80.6mg)およびキノリン(1.0mL)の入ったフラスコをアルゴン雰囲気下、200℃で40時間攪拌した。反応液を室温まで冷却した後、活性アルミナショートカラムを通過させた。この際、トルエンを用いてカラム中から溶出させた。溶媒を減圧留去した後、得られた粗生成物をGPCで単離することで淡黄色粉末として式(216)で表される化合物(58.0mg)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.66-8.70(m,4H)、8.38(d,2H)、8.05(d,2H)、7.89(d,2H)、7.73(d,2H)、7.65(dd,2H).
 合成例(49):
 3,6-ジフルオロ-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000209
 ジ([4-フルオロ-1,1’-ビフェニル]-2-イル)アミン(2.29g)およびトルエン(40ml)の入ったフラスコを-78℃まで冷却し、n-ブチルリチウムの1.6Mヘキサン溶液(4.0ml)を滴下した。滴下終了後、一旦0℃まで昇温し、0℃で1時間撹拌した。その後、再び-78℃まで冷却し、三塩化ホウ素の1.0Mトルエン溶液(6.4ml)を滴下した。次いで、反応液を室温まで昇温した後、一旦溶媒を減圧留去した。ここにオルトジクロロベンゼン(90ml)、2,2,6,6-テトラメチルピぺリジン「TMP」(1.49g)、三塩化ガリウム(4.51g)を加え、135℃で24時間、次いで150℃で15時間撹拌した。1,4-ジアザビシクロ[2.2.2]オクタン(5.74g)およびトルエン(100ml)を加え撹拌した。次いで、析出した沈殿をセライトを敷いたグラスフィルターを用いた吸引ろ過にて除去した後、溶媒を減圧留去した。トルエン(36ml)を加え、沈殿をろ紙を用いたろ過にて除去した。更にアルミナニュートラルを用いたショートカラム(展開液:トルエン/ジクロロメタン=1/1(容量比))で金属塩を除去し、得られた粗生成物をGPCで単離することで白色粉末として式(217)で表される化合物(1.05g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.63(dd,2H)、8.30(d,2H)、8.29(d,2H)、7.78(dd,2H)、7.76(dd,2H)、7.59(dd,2H)、7.08(dd,2H)、7.06(dd,2H).
 合成例(50):
 2,7,9,16-テトラフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000210
 まず、窒素雰囲気下、9,16-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.3g)のTHF(20ml)溶液に、N-ブロモスクシンイミド(NBS)(1.8g)を加え、室温で1時間撹拌した。反応終了後、亜硝酸ナトリウム水溶液を加えて析出した沈殿を吸引ろ過にて採取した。更に得られた固体を活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=99/1(容量比))で精製した。溶媒を減圧留去して得られた固体を酢酸エチルで洗浄し、2,7-ジブロモ-9,16-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(2.6g)を得た。
Figure JPOXMLDOC01-appb-C000211
 次に、2,7-ジブロモ-9,16-ジフェニル-4b-アザ-12b-ボラジベンゾ[g,p]クリセン(1.8g)、フェニルボロン酸(0.9g)、リン酸カリウム(1.8g)、ナトリウム-t-ブトキシド(0.3g)、Pd-132(ジョンソン・マッセイ)(0.04g)およびトルエン(30mL)の入ったフラスコを窒素雰囲気下、80℃で1時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(展開液:トルエン/トリエチルアミン=99/1(容量比))で精製した。更にトルエンに溶かした後にヘプタンを加えることで再沈殿させることで、式(213)で表される化合物(1.2g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.77(d,2H)、8.16(d,2H)、7.81(m,2H)、7.66-7.74(m,4H)、7.46-7.55(m,4H)、7.20-7.30(m,14H)、7.01(m,4H).
 合成例(51):
 2-フェニル-7-(トリフェニレン-2-イル)-4b-アザ-12b-ボラジベンゾ[g,p]クリセンの合成
Figure JPOXMLDOC01-appb-C000212
 2-ブロモ-7-フェニル-4b-アザ-12b-ボラベンゾ[g,p]クリセン(2.0g)、2-トリフェニレンボロン酸(1.2g)、Pd-132(0.06g)、リン酸三カリウム(0.9g)、ナトリウム-t-ブトキシド(0.4g)および1,2,4-トリメチルベンゼン(50ml)の入ったフラスコを115℃で1時間撹拌した。反応液を室温まで冷却し、水およびヘプタンを加え、析出した固体を吸引ろ過にて採取した。次いで、加熱したクロロベンゼンに溶解させ、活性アルミナショートカラム(展開液:トルエン/トリエチルアミン=99/1(容量比))に通した。溶媒を減圧留去し、得られた固体を酢酸エチルで洗浄した後、クロロベンゼンから再結晶させることで、式(215)で表される化合物(0.6g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=9.00(m,1H)、8.83(m,1H)、8.75-8.80(m,4H)、8.68-8.74(m,3H)、8.61(m,2H)、8.53(d,1H)、8.31(d,1H)、8.27(d,1H)、8.05(d,1H)、7.81-7.89(m,3H)、7.77(m,2H)、7.64-7.75(m,7H)、7.52(t,2H)、7.40(t,1H).
 合成例(52):
 13c-アザ-4b-ボラ-9-フェニル-9,13c-ジヒドロ-4bH-ベンゾ[a]フェナントロ[9,10-c]カルバゾールの合成
Figure JPOXMLDOC01-appb-C000213
 まず、1-フェニル-1H-インドール(31.0g)をTHF(500ml)に溶かした溶液を-78℃に冷却した。この溶液にt-ブチルリチウム(99.7ml)を滴下した後、ゆっくり室温まで昇温し、1時間撹拌した。再び-78℃まで冷却し、トリメトキシボラン(23.3g)を滴下した。その後室温まで昇温し、終夜撹拌を行い、THFを適量減圧留去し、塩化アンモニウム水溶液を加え1時間撹拌した。酢酸エチルを加え分液し、有機層の溶媒を減圧留去し、トルエンを加え共沸脱水を行い、(1-フェニル-1H-インドロ-2-イル)ボロン酸(31.0g)を得た。
Figure JPOXMLDOC01-appb-C000214
 次に、(1-フェニル-1H-インドロ-2-イル)ボロン酸(30.0g)、2-ブロモ-アニリン(20.0g)、Pd(PPh(5.0g)、炭酸カリウム(50.0g)、トルエン(200ml)、THF(70ml)および水(30ml)の入ったフラスコを窒素雰囲気下、80℃で4時間攪拌した。反応液を室温まで冷却した後、水および酢酸エチルを加え分液し、溶媒を減圧留去した。得られた油状物質をシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1(容量比))で精製した後、低沸成分を減圧留去して2-(1-フェニル-1H-インドロ-2-イル)アニリン(26.8g)を得た。
Figure JPOXMLDOC01-appb-C000215
 更に、2-(1-フェニル-1H-インドロ-2-イル)アニリン(25.0g)、2-ブロモビフェニル(20.5g)、ナトリウム-t-ブトキシド(13.0g)、Pd(dba)(0.13g)、4-(ジ-t-ブチルホスフィノ)-N,N-ジメチルアニリン(0.12g)およびキシレン(120ml)の入ったフラスコを窒素雰囲気化、90℃で1時間撹拌した。反応液を室温まで冷却した後、水およびクロロベンゼンを加え分析し、活性アルミナショートカラム(展開液:クロロベンゼン)で精製した。溶媒を減圧留去し、得られた油状物質にヘプタンおよび少量の酢酸エチルを加えることで再沈殿させ、N-(2-(1-フェニル-1H-インドロ-2-イル)フェニル)-[1,1’-ビフェニル]-2-アミン(36.2g)を得た。
Figure JPOXMLDOC01-appb-C000216
 上記のようにして得たN-(2-(1-フェニル-1H-インドロ-2-イル)フェニル)-[1,1’-ビフェニル]-2-アミン(16.3g)およびトルエン(150ml)の入ったフラスコを-70℃まで冷却し、n-ブチルリチウムの2.6Mヘキサン溶液(14.4ml)を滴下した。滴下終了後、一旦0℃まで昇温し、0℃で5分間撹拌した。その後、この溶液を-70℃に冷却し、1Mの三塩化ホウ素トルエン溶液(37.3ml)を滴下した。次いで一旦溶媒を減圧留去し、オルトジクロロベンゼン(150ml)、2,2,6,6-テトラメチルピぺリジン(11.1g)、三塩化アルミニウム(25.0g)を加え、160℃で8時間撹拌した。反応液を室温まで冷却後、1,4-ジアザビシクロ[2.2.2]オクタン「DABCO」(21.0g)をトルエンに懸濁させた溶液を加え、析出した固体をセライトを敷いたロートを用いて減圧濾過にてろ別した。更に活性アルミナカラムクロマトグラフィー(トルエン/ヘプタン/トリエチルアミン=30/70/2(容量比))で精製した後、ヘプタンで洗浄し、式(48)で表される化合物(12.0g)を得た。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.97(d,1H)、8.55(m,1H)、8.40(d,1H)、8.38(d,1H)、8.23(d,1H)、8.11(d,1H)、7.73-7.90(m,3H)、7.54-7.68(m,3H)、7.21-7.39(m,8H)、6.92(t,1H).
 原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の多環芳香族化合物を合成することができる。
 以下、本発明をさらに詳細に説明するために各実施例を示すが、本発明はこれらに限定されるものではない。
 実施例1~4および比較例1に係る電界発光素子を作製し、それぞれ1000cd/mの輝度が得られる電流密度で定電流駆動した際の駆動開始電圧(V)および電流効率(cd/A)を測定した。以下、実施例および比較例について詳細に説明する。
 作製した実施例1~4および比較例1に係る有機電界発光素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000217
 表1において、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、「NPD」はN,N4’-ジ(ナフタレン-1-イル)-N,N4’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン、「CBP」は4,4’-ジ(9H-カルバゾリル-9-イル)-1,1’-ビフェニル、「Ir(PPy)」はトリス(2-フェニルピリジン)イリジウム(III)、「BCP」は2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、そして「ET1」は2,5-ビス-(2’,2”-ビピリジン-6’-イル)-1,1-ジメチル-3,4-ビス(2,4,6-トリメチルフェニル)シラシクロペンタジエンである(以降の表でも同じ)。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000218
<実施例1>
<化合物(1)を発光層のホスト材料に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、本発明の化合物(1)を入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、BCPを入れたモリブデン製蒸着用ボート、ET1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、NPDが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔輸送層を形成した。次に、化合物(1)が入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(1)とIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、BCPの入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して正孔阻止層を形成した。次に、ET1の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.0Vであり、その時の電流効率は34.2cd/Aであった。
<実施例2>
<化合物(66)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(66)に替えた以外は実施例1に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.7Vであり、その時の電流効率は36.4cd/Aであった。
<実施例3>
<化合物(197)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(197)に替えた以外は実施例1に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.6Vであり、その時の電流効率は28.1cd/Aであった。
<実施例4>
<化合物(198)を正孔輸送層に用いた素子>
 正孔輸送材料であるNPDを化合物(198)に発光層のホスト材料である化合物(1)をCBPに替えた以外は実施例1に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.9Vであり、その時の電流効率は26.4cd/Aであった。
<比較例1>
 発光層のホスト材料である化合物(1)をCBPに替えた以外は実施例1に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.7Vであり、その時の電流効率は24.6cd/Aであった。
 以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000219
 次に、実施例5および比較例2に係る電界発光素子を作製し、それぞれ1000cd/mの輝度が得られる電流密度で定電流駆動した際の駆動開始電圧(V)および電流効率(cd/A)を測定した。以下、実施例および比較例について詳細に説明する。
 作製した実施例5および比較例2に係る有機電界発光素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000220
 表3において、「HT」はN-([1,1’-ビフェニル]-4-イル)-9,9-ジメチル-N-(4-(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミンである(以降の表でも同じ)。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000221
<実施例5>
<化合物(251)を発光層のホスト材料に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、本発明の化合物(251)を入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、BCPを入れたモリブデン製蒸着用ボート、ET1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して正孔輸送層を形成した。次に、化合物(251)が入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(251)とIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、BCPの入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して正孔阻止層を形成した。次に、ET1の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.0Vであり、その時の電流効率は33.7cd/Aであった。
<比較例2>
 発光層のホスト材料である化合物(251)をCBPに替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.9Vであり、その時の電流効率は31.8cd/Aであった。
 以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000222
 次に、実施例6~14および比較例3~4に係る電界発光素子を作製し、それぞれ1000cd/mの輝度が得られる電流密度で定電流駆動した際の駆動開始電圧(V)および電流効率(cd/A)を測定した。以下、実施例および比較例について詳細に説明する。
 作製した実施例6~14および比較例3~4に係る有機電界発光素子における、各層の材料構成を下記表5に示す。
Figure JPOXMLDOC01-appb-T000223
 表5において、「HB1」は9-(4’-(ジメシチルボリル)-[1,1’-ビナフタレン]-4-イル)-9H-カルバゾール、「ET2」は5,5”-(2-フェニルアントラセン-9,10-ジイル)ジ-2,2’-ビピリジンである(以降の表でも同じ)。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000224
<実施例6>
<化合物(1)を発光層のホスト材料に用いた素子 その2>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、本発明の化合物(1)を入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、HB1を入れたモリブデン製蒸着用ボート、ET2を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔輸送層を形成した。次に、化合物(1)が入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。化合物(1)とIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、HB1の入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔阻止層を形成した。次に、ET2の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.2Vであり、その時の電流効率は43.7cd/Aであった。
<実施例7>
<化合物(501)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(501)に替えた以外は実施例6に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.2Vであり、その時の電流効率は29.0cd/Aであった。
<実施例8>
<化合物(551)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(551)に替えた以外は実施例6に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は4.8Vであり、その時の電流効率は31.7cd/Aであった。
<実施例9>
<化合物(687)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(687)に替えた以外は実施例6に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は4.0Vであり、その時の電流効率は28.3cd/Aであった。
<比較例3>
<CBPを発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)をCBPに替えた以外は実施例6に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.4Vであり、その時の電流効率は24.2cd/Aであった。
<実施例10>
<化合物(301)を正孔阻止層兼電子輸送層(1層で使用)に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、本発明のCBPを入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、化合物(301)を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔輸送層を形成した。次に、CBPが入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。CBPとIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(301)の入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔阻止層兼電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.6Vであり、その時の電流効率は32.2cd/Aであった。
<実施例11>
<化合物(391)を正孔阻止層兼電子輸送層(1層で使用)に用いた素子>
 正孔阻止層兼電子輸送層である化合物(301)を化合物(391)に替えた以外は実施例10に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.0Vであり、その時の電流効率は28.0cd/Aであった。
<実施例12>
<化合物(392)を正孔阻止層兼電子輸送層(1層で使用)に用いた素子>
 正孔阻止層兼電子輸送層である化合物(301)を化合物(392)に替えた以外は実施例10に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.2Vであり、その時の電流効率は26.2cd/Aであった。
<実施例13>
<化合物(391)を正孔阻止層に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、本発明のCBPを入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、化合物(391)を入れたモリブデン製蒸着用ボート、ET2を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔輸送層を形成した。次に、CBPが入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。CBPとIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(391)の入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔阻止層を形成した。次に、ET2の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は3.6Vであり、その時の電流効率は28.0cd/Aであった。
<実施例14>
<化合物(392)を正孔阻止層に用いた素子>
 正孔阻止層である化合物(391)を化合物(392)に替えた以外は実施例13に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は4.9Vであり、その時の電流効率は32.7cd/Aであった。
<比較例4>
<BCPを正孔阻止層に用いた素子>
 正孔阻止層である化合物(391)をBCPに替えた以外は実施例13に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.7Vであり、その時の電流効率は28.7cd/Aであった。
 以上の結果を表6および表7にまとめた。
Figure JPOXMLDOC01-appb-T000225
Figure JPOXMLDOC01-appb-T000226
 更に、実施例15~29および比較例5に係る電界発光素子を作製し、それぞれ1000cd/mの輝度が得られる電流密度で定電流駆動した際の駆動開始電圧(V)および電流効率(cd/A)を測定した。以下、実施例および比較例について詳細に説明する。
 作製した実施例15~29および比較例5に係る有機電界発光素子における、各層の材料構成を下記表8に示す。
Figure JPOXMLDOC01-appb-T000227
 表8において、「HAT-CN」は1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル、「TBB」はN,N,N’,N’-テトラ([1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、「TPBi」は1,3,5-トリス(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)ベンゼンである(以降の表でも同じ)。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000228
<実施例15>
<化合物(1)を発光層のホスト材料に用いた素子 その3>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HAT-CNを入れたモリブデン製蒸着用ボート、TBBを入れたモリブデン製蒸着用ボート、本発明の化合物(1)を入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、TPBiを入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HAT-CNが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔注入層を形成し、次いで、TBBが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(1)が入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。化合物(1)とIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、TPBiの入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.2Vであり、その時の電流効率は28.9cd/Aであった。
<実施例16>
<化合物(66)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(66)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は4.8Vであり、その時の電流効率は37.0cd/Aであった。
<実施例17>
<化合物(84)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(84)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.6Vであり、その時の電流効率は35.9cd/Aであった。
<実施例18>
<化合物(86)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(86)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.0Vであり、その時の電流効率は29.0cd/Aであった。
<実施例19>
<化合物(197)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(197)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は4.9Vであり、その時の電流効率は32.4cd/Aであった。
<実施例20>
<化合物(51)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(51)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.1Vであり、その時の電流効率は39.2cd/Aであった。
<実施例21>
<化合物(214)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(214)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は4.2Vであり、その時の電流効率は35.2cd/Aであった。
<実施例22>
<化合物(26)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(26)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は4.7Vであり、その時の電流効率は42.2cd/Aであった。
<実施例23>
<化合物(210)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(210)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.1Vであり、その時の電流効率は32.7cd/Aであった。
<実施例24>
<化合物(212)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(212)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.3Vであり、その時の電流効率は27.0cd/Aであった。
<実施例25>
<化合物(215)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(215)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.5Vであり、その時の電流効率は27.7cd/Aであった。
<実施例26>
<化合物(48)を発光層のホスト材料に用いた素子>
 発光層のホスト材料である化合物(1)を化合物(48)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.5Vであり、その時の電流効率は29.2cd/Aであった。
<実施例27>
<化合物(209)を正孔輸送層に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HAT-CNを入れたモリブデン製蒸着用ボート、本発明の化合物(209)を入れたモリブデン製蒸着用ボート、CBPを入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、TPBiを入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HAT-CNが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔注入層を形成し、次いで、化合物(209)が入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、CBPが入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。CBPとIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次にTPBiの入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.8Vであり、その時の電流効率は27.2cd/Aであった。
<実施例28>
<化合物(366)を電子輸送層に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HAT-CNを入れたモリブデン製蒸着用ボート、TBBを入れたモリブデン製蒸着用ボート、CBPを入れたモリブデン製蒸着用ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、本発明の化合物(366)を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HAT-CNが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔注入層を形成し、次いで、TBBが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、CBPが入った蒸着用ボートとIr(PPy)の入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。CBPとIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(366)の入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
 その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.6Vであり、その時の電流効率は26.1cd/Aであった。
<実施例29>
<化合物(424)を電子輸送層に用いた素子>
 電子輸送材料である化合物(366)を化合物(424)に替えた以外は実施例28に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は6.4Vであり、その時の電流効率は27.5cd/Aであった。
<比較例5>
 電子輸送材料である化合物(366)をTPBiに替えた以外は実施例28に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、波長約515nmの緑色発光が得られた。また、初期輝度1000cd/mを得るための駆動電圧は5.5Vであり、その時の電流効率は27.1cd/Aであった。
 以上の結果を表9にまとめた。
Figure JPOXMLDOC01-appb-T000229
<キャリア移動度の測定>
<式(1)で表される化合物のキャリア移動度測定>
 26mm×28mm×0.5mmのガラス基板(日本板硝子(株)製)を透明支持基板とした。この透明支持基板を市販の蒸着装置の基板ホルダーに、2mm幅の下部アルミ電極を得るためのメタルマスクと同時に装着した。次いで、アルミニウムをのせたタングステン製の蒸着ボートを蒸着装置にセットした。真空槽を5×10-3Pa以下まで減圧し、蒸着用ボートを加熱して膜厚10nmになるように半透明の下部アルミ電極を形成した。蒸着速度は、0.05~1nm/秒であった。
 次に、下部アルミ電極を覆うように設計した有機層を形成するためのメタルマスクを基板ホルダーに装着し、式(1)で表される化合物を入れたモリブデン製蒸着用ボートと共に蒸着装置にセットした。真空槽を5×10-3Pa以下まで減圧し、蒸着用ボートを加熱して式(1)で表される化合物を蒸着した。膜厚は6μm、蒸着速度は0.1~10nm/秒であった。
 次に、基板ホルダーに上部アルミ電極を形成するためのメタルマスクを装着し、アルミニウムをのせたタングステン製の蒸着ボートと共に蒸着装置にセットした。このメタルマスクは、上部および下部アルミニウム電極の有機層を挟んだ重なり面積が4mmになるように設計されている。真空槽を5×10-3Pa以下まで減圧し、蒸着用ボートを加熱して膜厚50nmになるように上部アルミ電極を形成した。蒸着速度は、0.05~1nm/秒であった。
 移動度の測定は、Time Of Flight法を用いて実施した。測定は市販の測定装置であるTOF-401(住友重機械アドバンストマシナリー(株) 製)を用いて実施した。励起光源は、窒素ガスレーザーを用いた。上部アルミ電極と下部アルミ電極の間に適度な電圧を印加した状態で、半透明な下アルミ電極側から光を照射し、過渡光電流を観測して移動度を求めた。過渡光電流波形の解析から移動度を導出する手法については、文献「有機EL材料とディスプレイ」(出版:株式会社シーエムシー)のP69-70に記載されている。
 測定の結果、0.5MV/cmの電界強度において、式(1)で表される化合物の電子移動度として2×10-3(cm/V秒)、正孔移動度として4×10-4(cm/V秒)の結果が得られた。
<式(4)で表される化合物の移動度測定>
 式(1)で表される化合物を式(4)で表される化合物に変更し、蒸着した有機層の膜厚が8.2μmになった以外は同様の手法でサンプルを作製し、同様の方法で移動度の観測を行った。
 測定の結果、0.5MV/cmの電界強度において、式(4)で表される化合物の正孔移動度として4.6×10-4(cm/V秒)の結果が得られた。
 本発明の好ましい態様によれば、駆動電圧および電流効率を向上させた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。
 100  有機電界発光素子
 101  基板
 102  陽極
 103  正孔注入層
 104  正孔輸送層
 105  発光層
 106  電子輸送層
 107  電子注入層
 108  陰極

Claims (27)

  1.  下記一般式(I)で表される部分構造を有する多環芳香族化合物またはその塩を含む、有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(I)中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     A環、B環、C環およびD環は、それぞれ独立して、置換されていてもよい芳香族環または置換されていてもよいヘテロ芳香族環であり、隣接する2つの環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
     上記式(I)で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
  2.  下記一般式(II)で表される部分構造を有する多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000002

    (上記式(II)中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     Yは、それぞれ独立して、CまたはNであり、同じ環で隣接する2つのYとそれらの間の結合とが一緒になって、N、O、SまたはSeになってもよく、環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、隣接する2つの環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
     上記式(II)で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
  3.  下記一般式(III-1)で表される部分構造を有する多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000003

    (上記式(III-1)中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     上記式中のベンゼン環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
     上記式(III-1)で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
  4.  下記一般式(III-11)~(III-13)および一般式(III-33)~(III-36)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000004

    (上記各式中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     Zは、N、O、SまたはSeであり、
     上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
     上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
  5.  下記一般式(III-33)および一般式(III-55)~(III-57)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000005

    (上記各式中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
     上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
  6.  下記一般式(III-32)および一般式(III-5)~(III-7)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000006

    (上記各式中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     Zは、N、O、SまたはSeであり、
     上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
     上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
  7.  下記一般式(III-32)および一般式(III-58)~(III-60)のいずれかで表される部分構造を有する多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000007

    (上記各式中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     上記各式中のベンゼン環および五員環はそれぞれ独立して置換されていてもよく、同じ環における隣接する置換基が結合してシクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記各式中の隣接する2つのベンゼン環は連結基または単結合によりそれらの間に環を形成していてもよく、そして、
     上記各式で表される部分構造は少なくとも1つの水素を有し、そして、該部分構造における少なくとも1つの水素が重水素で置換されていてもよい。)
  8.  下記一般式(V-1)、一般式(V-3)、一般式(V-5)、一般式(V-15)、または一般式(V-16)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000008

    (上記各式中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     Rは、水素、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
     同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記各式中の隣接する2つのベンゼン環は、単結合、CH、CHR、C(R、NR、Si(R、BR(ここでRは前記に定義されるとおりである)、Se、S、またはOを介した結合により結合されて、それらの間に環を形成していてもよく、
     nは0~4の整数であり、mは0~3の整数であり、そして、
     上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
  9.  下記一般式(V-27)~(V-30)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000009

    (上記各式中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     Rは、水素、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
     同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記各式中の隣接する2つのベンゼン環は、単結合、CH、CHR、C(R、NR、Si(R、BR(ここでRは前記に定義されるとおりである)、Se、S、またはOを介した結合により結合されて、それらの間に環を形成していてもよく、
     nは0~4の整数であり、hは0~3の整数であり、そして、
     上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
  10.  下記一般式(V-31)~(V-34)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000010

    (上記各式中、
     Xは、B、P、P=O、P=S、P=Se、As、As=O、As=S、As=Se、Sb、Sb=O、Sb=S、Sb=Se、置換されていてもよい周期表第3~11族の金属元素、または置換されていてもよい周期表第13~14族の金属元素もしくは半金属元素であり、
     Rは、水素、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
     同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     上記各式中の隣接する2つのベンゼン環は、単結合、CH、CHR、C(R、NR、Si(R、BR(ここでRは前記に定義されるとおりである)、Se、S、またはOを介した結合により結合されて、それらの間に環を形成していてもよく、
     nは0~4の整数であり、hは0~3の整数であり、そして、
     上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
  11.  下記一般式(V-1’)~(V-3’)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000011

    (上記各式中、
     Rは、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
     同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     nは0~4の整数であり、mは0~3の整数であり、そして、
     上記各式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
  12.  下記一般式(V-27’)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000012

    (上記式中、
     Rは、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
     同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     nは0~4の整数であり、hは0~3の整数であり、そして、
     上記式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
  13.  下記一般式(V-32’)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000013

    (上記式中、
     Rは、フッ素置換または無置換のC1-20アルキル、C3-8シクロアルキル、C2-20アルケニル、モノもしくはジアリール置換C2-12アルケニル、モノもしくはジヘテロアリール置換C2-12アルケニル、フッ素置換または無置換のC1-20アルコキシ、C1-20アルキルカルボニル、シアノ、ニトロ、ジアリールアミノ、置換されていてもよいアリール、置換されていてもよいヘテロアリール、B(R、またはSi(R(ここでRは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールである。)であり、
     同じ環で隣接する2つのRが結合して、シクロヘキサン環、ベンゼン環またはピリジン環を形成してもよく、
     nは0~4の整数であり、hは0~3の整数であり、そして、
     上記式で表される化合物またはその塩における少なくとも1つの水素が重水素で置換されていてもよい。)
  14.  下記式(1)、式(66)、式(197)、式(198)、または式(251)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000014
  15.  下記式(301)、式(391)、式(392)、式(501)、式(551)、または式(687)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000015
  16.  下記式(26)、式(48)、式(51)、式(84)、式(86)、式(209)、式(210)、式(212)、式(214)、式(215)、式(366)または式(424)で表される多環芳香族化合物またはその塩を含む、請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000016
  17.  発光層用材料である、請求項1~16のいずれかに記載する有機電界発光素子用材料。
  18.  正孔注入層用材料または正孔輸送層用材料である、請求項1~16のいずれかに記載する有機電界発光素子用材料。
  19.  正孔阻止層用材料または電子輸送層用材料である、請求項1~16のいずれかに記載する有機電界発光素子用材料。
  20.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項17に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
  21.  陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陽極および前記発光層の間に配置され、請求項18に記載する正孔層用材料を含有する正孔注入層および/または正孔輸送層とを有する、有機電界発光素子。
  22.  陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陰極および前記発光層の間に配置され、請求項19に記載する正孔阻止層用材料または電子輸送層用材料を含有する正孔阻止層および/または電子輸送層とを有する、有機電界発光素子。
  23.  さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項20または21に記載する有機電界発光素子。
  24.  前記正孔阻止層および電子輸送層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項22に記載する有機電界発光素子。
  25.  前記正孔阻止層、電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項23または24に記載の有機電界発光素子。
  26.  請求項20~25のいずれかに記載する有機電界発光素子を備えた表示装置。
  27.  請求項20~25のいずれかに記載する有機電界発光素子を備えた照明装置。
PCT/JP2013/074561 2012-09-11 2013-09-11 有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置 WO2014042197A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201380047231.1A CN104641483B (zh) 2012-09-11 2013-09-11 有机电场发光元件用材料、有机电场发光元件、显示装置、以及照明装置
US14/386,153 US20150097162A1 (en) 2012-09-11 2013-09-11 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device
EP13836272.8A EP2897184A4 (en) 2012-09-11 2013-09-11 MATERIAL FOR ORGANIC ELECTROLUMINESCENE ELEMENTS, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2014535578A JP5819534B2 (ja) 2012-09-11 2013-09-11 有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置
KR1020157008326A KR102157994B1 (ko) 2012-09-11 2013-09-11 유기 전계 발광 소자용 재료, 유기 전계 발광 소자, 표시 장치 및 조명 장치
US15/782,065 US20180047913A1 (en) 2012-09-11 2017-10-12 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device
US16/354,164 US20190214575A1 (en) 2012-09-11 2019-03-14 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-199232 2012-09-11
JP2012199232 2012-09-11
JP2013140007 2013-07-03
JP2013-140007 2013-07-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/386,153 A-371-Of-International US20150097162A1 (en) 2012-09-11 2013-09-11 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device
US15/782,065 Continuation US20180047913A1 (en) 2012-09-11 2017-10-12 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device

Publications (1)

Publication Number Publication Date
WO2014042197A1 true WO2014042197A1 (ja) 2014-03-20

Family

ID=50278307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074561 WO2014042197A1 (ja) 2012-09-11 2013-09-11 有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置

Country Status (7)

Country Link
US (3) US20150097162A1 (ja)
EP (1) EP2897184A4 (ja)
JP (3) JP5819534B2 (ja)
KR (1) KR102157994B1 (ja)
CN (2) CN107266481B (ja)
TW (1) TWI612054B (ja)
WO (1) WO2014042197A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143624A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
JP2017028266A (ja) * 2015-07-21 2017-02-02 ▲いく▼▲雷▼光電科技股▲分▼有限公司 有機発光素子
WO2017195669A1 (ja) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US10033004B2 (en) 2015-06-01 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
JP2018125387A (ja) * 2017-01-31 2018-08-09 日本放送協会 有機エレクトロルミネッセンス素子
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10468609B2 (en) 2016-06-02 2019-11-05 Universal Display Corporation Organic electroluminescent materials and devices
US10913758B2 (en) 2017-03-27 2021-02-09 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic compound including the organometallic compound

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882151B2 (en) * 2014-11-14 2018-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US9871212B2 (en) * 2014-11-14 2018-01-16 Universal Display Corporation Organic electroluminescent materials and devices
KR102523099B1 (ko) * 2015-06-18 2023-04-18 엘지디스플레이 주식회사 유기전계발광소자
KR102491790B1 (ko) * 2015-09-25 2023-01-26 엘지디스플레이 주식회사 유기전계발광소자
CN106986894A (zh) * 2016-01-20 2017-07-28 中国科学院宁波材料技术与工程研究所 硫、磷杂原子取代二苯并[g,p]稠二萘型衍生物、其制备方法与应用
CN116096201A (zh) * 2016-02-10 2023-05-09 学校法人关西学院 延迟荧光有机电场发光元件、显示装置及照明装置
CN107459528A (zh) * 2016-06-03 2017-12-12 上海和辉光电有限公司 一种有机电致发光化合物
KR102600472B1 (ko) * 2016-09-13 2023-11-13 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US20190372023A1 (en) * 2017-02-09 2019-12-05 Kwansei Gakuin Education Foundation Organic electroluminescent element
US10998506B2 (en) 2017-08-22 2021-05-04 Beijing Summer Sprout Technology Co., Ltd. Boron containing heterocyclic compound for OLEDs, an organic light-emitting device, and a formulation comprising the boron-containing heterocyclic compound
EP3681972B1 (en) * 2017-09-12 2021-07-28 cynora GmbH Organic molecules, in particular for use in optoelectronic devices
KR102608283B1 (ko) * 2017-11-24 2023-11-29 가꼬우 호징 관세이 가쿠잉 유기 디바이스용 재료 및 이것을 사용한 유기 전계 발광 소자
CN108503657B (zh) * 2017-12-20 2022-08-16 天津理工大学 含五元杂环的硼氮掺杂稠环芳香烃及其合成方法及应用
CN108299481B (zh) * 2018-01-12 2020-10-09 华南协同创新研究院 电致发光聚合单体、聚合物及其制备方法和应用
CN108912157A (zh) * 2018-10-08 2018-11-30 天津理工大学 一种简单高效合成硼氮杂芳烃的方法
JP7468857B2 (ja) * 2018-12-27 2024-04-16 学校法人関西学院 多環芳香族化合物、有機デバイス用材料、有機el素子、表示装置および照明装置
US20220052265A1 (en) * 2018-12-28 2022-02-17 Cynora Gmbh Organic molecules for optoelectronic devices
KR20200086782A (ko) * 2019-01-09 2020-07-20 삼성디스플레이 주식회사 유기 전계 발광 소자 및 이를 포함하는 표시 장치
CN110003260B (zh) * 2019-04-30 2021-06-01 武汉天马微电子有限公司 硼杂环化合物、显示面板以及显示装置
KR102653917B1 (ko) * 2019-06-27 2024-04-01 주식회사 엘지화학 신규한 이미노티오펜계 화합물, 및 이미노티오펜계 공액계 고분자
KR20210043054A (ko) * 2019-10-10 2021-04-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN115023429A (zh) * 2019-12-20 2022-09-06 杜邦电子公司 电活性化合物
KR20210083464A (ko) * 2019-12-26 2021-07-07 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN113185541A (zh) * 2021-02-07 2021-07-30 上海蓝骋光电科技有限公司 一种有机化合物及含有该化合物的有机光电元件与应用
CN114835736B (zh) * 2022-03-31 2024-04-05 武汉天马微电子有限公司 化合物、显示面板及显示装置
CN115010734A (zh) * 2022-05-26 2022-09-06 武汉天马微电子有限公司 化合物、显示面板及显示装置

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245087A (ja) 1987-12-11 1989-09-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH02247278A (ja) 1989-03-20 1990-10-03 Idemitsu Kosan Co Ltd エレクトロルミネッセンス素子
JPH06298758A (ja) 1993-04-16 1994-10-25 Chisso Corp クマリン誘導体
JPH0812600A (ja) 1994-04-26 1996-01-16 Tdk Corp フェニルアントラセン誘導体および有機el素子
JPH10335066A (ja) 1997-06-02 1998-12-18 Sony Corp 有機電界発光素子およびこれを用いたフラットパネルディスプレイ
JPH1197178A (ja) 1997-09-24 1999-04-09 Mitsui Chem Inc 有機電界発光素子
JPH11297473A (ja) 1998-04-15 1999-10-29 Nec Corp 有機エレクトロルミネッセンス素子
JP2000026324A (ja) 1998-07-02 2000-01-25 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2000034234A (ja) 1998-07-15 2000-02-02 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2000133457A (ja) 1998-10-30 2000-05-12 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
WO2000040586A1 (fr) 1999-01-08 2000-07-13 Chisso Corporation Derives de borane et composes organiques electroluminescents
JP2001052869A (ja) 1999-08-11 2001-02-23 Hayashibara Biochem Lab Inc 有機電界発光素子
JP2001076876A (ja) 1999-09-01 2001-03-23 Hayashibara Biochem Lab Inc 有機電界発光素子
JP2001081090A (ja) 1999-03-09 2001-03-27 Hayashibara Biochem Lab Inc ピラン誘導体
JP2001172232A (ja) 1999-12-21 2001-06-26 Univ Osaka エレクトロルミネッセンス素子
JP2001217077A (ja) 2000-02-01 2001-08-10 Mitsui Chemicals Inc 有機電界発光素子
JP2001220577A (ja) 1999-03-09 2001-08-14 Hayashibara Biochem Lab Inc ピラン誘導体
JP2001267076A (ja) 2000-03-16 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001267078A (ja) 2000-03-23 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001267079A (ja) 2000-03-23 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001267075A (ja) 2000-03-16 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001307884A (ja) 2000-04-26 2001-11-02 Toray Ind Inc 発光素子
JP2002234892A (ja) 2000-11-07 2002-08-23 Hayashibara Biochem Lab Inc ピラン誘導体
JP2003123983A (ja) 2001-10-10 2003-04-25 Konica Corp 有機エレクトロルミネッセンス素子
JP2003146951A (ja) 2001-08-06 2003-05-21 Mitsubishi Chemicals Corp アントラセン系化合物、その製造方法および有機電界発光素子
JP2003257621A (ja) 2002-02-27 2003-09-12 Seiko Epson Corp 有機el素子とその製造方法ならびに表示装置
WO2003078541A1 (en) 2002-03-15 2003-09-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
JP2003277741A (ja) 2002-03-26 2003-10-02 Sharp Corp 有機el発光素子およびそれを用いた液晶表示装置
WO2003080760A1 (fr) 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
JP2003321546A (ja) 2002-04-26 2003-11-14 Nippon Hoso Kyokai <Nhk> 燐光発光性高分子化合物ならびにこれを用いた発光材料および有機el素子
JP2003347056A (ja) 2002-05-30 2003-12-05 Fuji Photo Film Co Ltd 発光素子
JP2004043646A (ja) 2002-07-11 2004-02-12 Hayashibara Biochem Lab Inc 有機電界発光素子
JP2004111379A (ja) 2002-08-29 2004-04-08 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2004119211A (ja) 2002-09-26 2004-04-15 Toyota Industries Corp El素子用透明基板及びel装置並びに液晶表示装置
WO2004061047A2 (en) 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds for use in organic light emitting devices
JP2004281086A (ja) 2003-03-12 2004-10-07 Nippon Hoso Kyokai <Nhk> フレキシブルフルカラー有機elディスプレイおよびその製造方法
JP2004335122A (ja) 2003-04-30 2004-11-25 Takasago Internatl Corp 発光素子
JP2004331508A (ja) 2003-04-30 2004-11-25 Takasago Internatl Corp 白金錯体
JP2005097283A (ja) 2003-08-29 2005-04-14 Semiconductor Energy Lab Co Ltd ピラン誘導体とその製造方法、並びにピラン誘導体を用いた発光素子及び発光装置。
JP2005097263A (ja) 2003-08-22 2005-04-14 National Institute Of Advanced Industrial & Technology 新規イリジウム錯体およびこれを用いた発光材料
JP2005126399A (ja) 2003-10-27 2005-05-19 Semiconductor Energy Lab Co Ltd ピラン誘導体
JP2005167175A (ja) 2003-12-04 2005-06-23 Novaled Gmbh 有機半導体をキノンジイミン誘導体によってドーピングする方法
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2005268199A (ja) 2003-07-31 2005-09-29 Mitsubishi Chemicals Corp 化合物、電荷輸送材料および有機電界発光素子
JP2005298483A (ja) 2004-03-17 2005-10-27 National Institute Of Advanced Industrial & Technology イリジウム錯体およびこれを用いた発光材料
JP2006080419A (ja) 2004-09-13 2006-03-23 Takasago Internatl Corp イリジウム錯体を含有する発光素子
JP2006089398A (ja) 2004-09-22 2006-04-06 Takasago Internatl Corp イリジウム錯体を含有する発光素子
JP2006093542A (ja) 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd 発光素子
JP2006128634A (ja) 2004-09-28 2006-05-18 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006156888A (ja) 2004-12-01 2006-06-15 Idemitsu Kosan Co Ltd 有機電界発光素子
JP2006190718A (ja) 2004-12-28 2006-07-20 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006199679A (ja) 2004-12-24 2006-08-03 Pioneer Electronic Corp 有機化合物、電荷輸送材料および有機電界発光素子
JP2007027587A (ja) 2005-07-20 2007-02-01 Chisso Corp 有機電界発光素子
JP2007088433A (ja) 2005-08-23 2007-04-05 Mitsubishi Chemicals Corp 電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
WO2008147721A1 (en) 2007-06-01 2008-12-04 E. I. Du Pont De Nemours And Company Chrysenes for blue luminescent applications
WO2010104047A1 (ja) * 2009-03-11 2010-09-16 国立大学法人京都大学 多環芳香族化合物
WO2012121398A1 (ja) * 2011-03-10 2012-09-13 国立大学法人京都大学 多環芳香族化合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004028217A1 (ja) * 2002-09-20 2006-01-19 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2006004721A (ja) * 2004-06-16 2006-01-05 Fuji Electric Holdings Co Ltd トップエミッション型有機el素子
JP5799772B2 (ja) * 2010-11-25 2015-10-28 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2012073541A1 (ja) * 2010-12-03 2012-06-07 Jnc株式会社 ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子
JP5865715B2 (ja) * 2012-01-25 2016-02-17 三菱電機株式会社 モータ制御装置
US9318710B2 (en) * 2012-07-30 2016-04-19 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245087A (ja) 1987-12-11 1989-09-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH02247278A (ja) 1989-03-20 1990-10-03 Idemitsu Kosan Co Ltd エレクトロルミネッセンス素子
JPH06298758A (ja) 1993-04-16 1994-10-25 Chisso Corp クマリン誘導体
JPH0812600A (ja) 1994-04-26 1996-01-16 Tdk Corp フェニルアントラセン誘導体および有機el素子
JPH10335066A (ja) 1997-06-02 1998-12-18 Sony Corp 有機電界発光素子およびこれを用いたフラットパネルディスプレイ
JPH1197178A (ja) 1997-09-24 1999-04-09 Mitsui Chem Inc 有機電界発光素子
JPH11297473A (ja) 1998-04-15 1999-10-29 Nec Corp 有機エレクトロルミネッセンス素子
JP2000026324A (ja) 1998-07-02 2000-01-25 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2000034234A (ja) 1998-07-15 2000-02-02 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2000133457A (ja) 1998-10-30 2000-05-12 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
WO2000040586A1 (fr) 1999-01-08 2000-07-13 Chisso Corporation Derives de borane et composes organiques electroluminescents
JP2001081090A (ja) 1999-03-09 2001-03-27 Hayashibara Biochem Lab Inc ピラン誘導体
JP2001220577A (ja) 1999-03-09 2001-08-14 Hayashibara Biochem Lab Inc ピラン誘導体
JP2001052869A (ja) 1999-08-11 2001-02-23 Hayashibara Biochem Lab Inc 有機電界発光素子
JP2001076876A (ja) 1999-09-01 2001-03-23 Hayashibara Biochem Lab Inc 有機電界発光素子
JP2001172232A (ja) 1999-12-21 2001-06-26 Univ Osaka エレクトロルミネッセンス素子
JP2001217077A (ja) 2000-02-01 2001-08-10 Mitsui Chemicals Inc 有機電界発光素子
JP2001267076A (ja) 2000-03-16 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001267075A (ja) 2000-03-16 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001267078A (ja) 2000-03-23 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001267079A (ja) 2000-03-23 2001-09-28 Mitsui Chemicals Inc 炭化水素化合物および有機電界発光素子
JP2001307884A (ja) 2000-04-26 2001-11-02 Toray Ind Inc 発光素子
JP2002234892A (ja) 2000-11-07 2002-08-23 Hayashibara Biochem Lab Inc ピラン誘導体
JP2003146951A (ja) 2001-08-06 2003-05-21 Mitsubishi Chemicals Corp アントラセン系化合物、その製造方法および有機電界発光素子
JP2003123983A (ja) 2001-10-10 2003-04-25 Konica Corp 有機エレクトロルミネッセンス素子
JP2003257621A (ja) 2002-02-27 2003-09-12 Seiko Epson Corp 有機el素子とその製造方法ならびに表示装置
WO2003078541A1 (en) 2002-03-15 2003-09-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
WO2003080760A1 (fr) 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
JP2003277741A (ja) 2002-03-26 2003-10-02 Sharp Corp 有機el発光素子およびそれを用いた液晶表示装置
JP2003321546A (ja) 2002-04-26 2003-11-14 Nippon Hoso Kyokai <Nhk> 燐光発光性高分子化合物ならびにこれを用いた発光材料および有機el素子
JP2003347056A (ja) 2002-05-30 2003-12-05 Fuji Photo Film Co Ltd 発光素子
JP2004043646A (ja) 2002-07-11 2004-02-12 Hayashibara Biochem Lab Inc 有機電界発光素子
JP2004111379A (ja) 2002-08-29 2004-04-08 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2004119211A (ja) 2002-09-26 2004-04-15 Toyota Industries Corp El素子用透明基板及びel装置並びに液晶表示装置
WO2004061047A2 (en) 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds for use in organic light emitting devices
JP2004281086A (ja) 2003-03-12 2004-10-07 Nippon Hoso Kyokai <Nhk> フレキシブルフルカラー有機elディスプレイおよびその製造方法
JP2004335122A (ja) 2003-04-30 2004-11-25 Takasago Internatl Corp 発光素子
JP2004331508A (ja) 2003-04-30 2004-11-25 Takasago Internatl Corp 白金錯体
JP2005268199A (ja) 2003-07-31 2005-09-29 Mitsubishi Chemicals Corp 化合物、電荷輸送材料および有機電界発光素子
JP2005097263A (ja) 2003-08-22 2005-04-14 National Institute Of Advanced Industrial & Technology 新規イリジウム錯体およびこれを用いた発光材料
JP2005097283A (ja) 2003-08-29 2005-04-14 Semiconductor Energy Lab Co Ltd ピラン誘導体とその製造方法、並びにピラン誘導体を用いた発光素子及び発光装置。
JP2005126399A (ja) 2003-10-27 2005-05-19 Semiconductor Energy Lab Co Ltd ピラン誘導体
JP2005167175A (ja) 2003-12-04 2005-06-23 Novaled Gmbh 有機半導体をキノンジイミン誘導体によってドーピングする方法
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2005298483A (ja) 2004-03-17 2005-10-27 National Institute Of Advanced Industrial & Technology イリジウム錯体およびこれを用いた発光材料
JP2006080419A (ja) 2004-09-13 2006-03-23 Takasago Internatl Corp イリジウム錯体を含有する発光素子
JP2006089398A (ja) 2004-09-22 2006-04-06 Takasago Internatl Corp イリジウム錯体を含有する発光素子
JP2006093542A (ja) 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd 発光素子
JP2006128634A (ja) 2004-09-28 2006-05-18 Fuji Photo Film Co Ltd 有機電界発光素子
JP2006156888A (ja) 2004-12-01 2006-06-15 Idemitsu Kosan Co Ltd 有機電界発光素子
JP2006199679A (ja) 2004-12-24 2006-08-03 Pioneer Electronic Corp 有機化合物、電荷輸送材料および有機電界発光素子
JP2006190718A (ja) 2004-12-28 2006-07-20 Fuji Photo Film Co Ltd 有機電界発光素子
JP2007027587A (ja) 2005-07-20 2007-02-01 Chisso Corp 有機電界発光素子
JP2007088433A (ja) 2005-08-23 2007-04-05 Mitsubishi Chemicals Corp 電荷輸送材料、電荷輸送材料組成物及び有機電界発光素子
WO2008147721A1 (en) 2007-06-01 2008-12-04 E. I. Du Pont De Nemours And Company Chrysenes for blue luminescent applications
WO2010104047A1 (ja) * 2009-03-11 2010-09-16 国立大学法人京都大学 多環芳香族化合物
WO2012121398A1 (ja) * 2011-03-10 2012-09-13 国立大学法人京都大学 多環芳香族化合物

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEMICAL INDUSTRY, June 2004 (2004-06-01), pages 13
J. AM. CHEM. SOC., vol. 133, 2011, pages 18614 - 18617
J. BLOCHWITZ; M. PHEIFFER; T. FRITZ; K. LEO, APPL. PHYS. LETT., vol. 73, no. 6, 1998, pages 729 - 731
M. PFEIFFER; A. BEYER; T. FRITZ; K. LEO, APPL. PHYS. LETT., vol. 73, no. 22, 1998, pages 3202 - 3204
RUI-HUA XIE ET AL.: "Tuning spectral properties of fullerenes by substitutional doping", PHYSICAL REVIEW B, vol. 69, no. 20, 20 May 2004 (2004-05-20), pages 201403-1 - 201403-4, XP002636359 *
See also references of EP2897184A4
TAKUJI HATAKEYAMA ET AL.: "Synthesis of BN- Fused Polycyclic Aromatics via Tandem Intramolecular Electrophilic Arene Borylation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 46, 25 October 2011 (2011-10-25), pages 18614 - 18617, XP055128034 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595325B1 (ko) * 2015-03-09 2023-10-26 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물
KR20170126888A (ko) * 2015-03-09 2017-11-20 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물
CN107406759A (zh) * 2015-03-09 2017-11-28 学校法人关西学院 多环芳香族化合物及发光层形成用组合物
JPWO2016143624A1 (ja) * 2015-03-09 2017-12-21 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
CN107406759B (zh) * 2015-03-09 2020-10-30 学校法人关西学院 多环芳香族化合物及发光层形成用组合物与其用途
WO2016143624A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10033004B2 (en) 2015-06-01 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
JP2017028266A (ja) * 2015-07-21 2017-02-02 ▲いく▼▲雷▼光電科技股▲分▼有限公司 有機発光素子
US10243147B2 (en) 2015-07-21 2019-03-26 E-Ray Optoelectronics Technology Co., Ltd. Organic light-emitting element
KR20180132129A (ko) * 2016-05-13 2018-12-11 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
JPWO2017195669A1 (ja) * 2016-05-13 2019-04-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR102237305B1 (ko) 2016-05-13 2021-04-06 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
WO2017195669A1 (ja) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US10468609B2 (en) 2016-06-02 2019-11-05 Universal Display Corporation Organic electroluminescent materials and devices
JP2018125387A (ja) * 2017-01-31 2018-08-09 日本放送協会 有機エレクトロルミネッセンス素子
US10913758B2 (en) 2017-03-27 2021-02-09 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic compound including the organometallic compound

Also Published As

Publication number Publication date
TW201412760A (zh) 2014-04-01
CN104641483A (zh) 2015-05-20
CN107266481A (zh) 2017-10-20
CN107266481B (zh) 2020-04-14
US20180047913A1 (en) 2018-02-15
KR102157994B1 (ko) 2020-09-21
JP2015216380A (ja) 2015-12-03
CN104641483B (zh) 2017-06-06
EP2897184A4 (en) 2016-05-11
TWI612054B (zh) 2018-01-21
JPWO2014042197A1 (ja) 2016-08-18
JP6298424B2 (ja) 2018-03-20
JP5819534B2 (ja) 2015-11-24
KR20150056567A (ko) 2015-05-26
JP6393657B2 (ja) 2018-09-19
JP2015188099A (ja) 2015-10-29
US20150097162A1 (en) 2015-04-09
US20190214575A1 (en) 2019-07-11
EP2897184A1 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP6393657B2 (ja) 有機電界発光素子用材料、有機電界発光素子、表示装置、及び照明装置
TWI688137B (zh) 有機電場發光元件、顯示裝置以及照明裝置
JP5353233B2 (ja) ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP5556168B2 (ja) ピリジルナフチル基を有するアントラセン誘導体及び有機電界発光素子
KR20190116976A (ko) 유기 전계 발광 소자
JP5780132B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP6156389B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
TW202017225A (zh) 有機電場發光元件、顯示裝置以及照明裝置
WO2013150674A1 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP2011037838A (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5699581B2 (ja) 縮合ピロール多環化合物、発光層用材料およびこれを用いた有機電界発光素子
JP5949779B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP6221560B2 (ja) 有機電界発光素子
WO2013114941A1 (ja) アントラセン誘導体およびこれを用いた有機電界発光素子
JP6750623B2 (ja) アゾリン環含有化合物、これを含有する電子輸送/注入層用材料およびこれを用いた有機電界発光素子
JP2012094823A (ja) ピリジルフェニル置換アントラセン化合物および有機電界発光素子
JP5783173B2 (ja) 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子
JP7113455B2 (ja) 有機電界発光素子
JP5807601B2 (ja) アントラセン誘導体およびこれを用いた有機電界発光素子
JP5867269B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5949354B2 (ja) 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535578

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14386153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008326

Country of ref document: KR

Kind code of ref document: A