WO2005045090A1 - タンタルスパッタリングターゲット - Google Patents

タンタルスパッタリングターゲット Download PDF

Info

Publication number
WO2005045090A1
WO2005045090A1 PCT/JP2004/015473 JP2004015473W WO2005045090A1 WO 2005045090 A1 WO2005045090 A1 WO 2005045090A1 JP 2004015473 W JP2004015473 W JP 2004015473W WO 2005045090 A1 WO2005045090 A1 WO 2005045090A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
tantalum
crystal
orientation
intensity
Prior art date
Application number
PCT/JP2004/015473
Other languages
English (en)
French (fr)
Inventor
Kunihiro Oda
Original Assignee
Nikko Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co., Ltd. filed Critical Nikko Materials Co., Ltd.
Priority to US10/572,252 priority Critical patent/US7892367B2/en
Priority to EP04792639.9A priority patent/EP1681368B1/en
Priority to KR1020067009993A priority patent/KR100760156B1/ko
Priority to CN2004800309185A priority patent/CN1871372B/zh
Priority to JP2005515251A priority patent/JP4593475B2/ja
Publication of WO2005045090A1 publication Critical patent/WO2005045090A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention provides tantalum having random crystal orientation, a high film forming rate, excellent film uniformity (uniformity), a small generation of arcing particles, and a good target use efficiency. It relates to a sputtering target.
  • the sputtering method itself is a well-known method in the above field, but recently, particularly in the field of electronics, a tantalum sputtering target suitable for forming a film having a complicated shape or forming a circuit has been required. .
  • this tantalum target is obtained by repeating hot forging and annealing (heat treatment) of an ingot or billet obtained by electron beam melting and manufacturing a tantalum raw material, and further rolling and finishing (mechanical, polishing, etc.) processing. It has been done.
  • hot forging of an ingot or a billet breaks down the forged structure, diffuses and eliminates pores and segregation, and further recrystallizes by annealing to improve the densification and strength of the tissue. Manufactured by enhancing.
  • an ingot or billet manufactured by melting has a crystal grain size of 50 mm or more. Then, by hot forging and recrystallization annealing of the ingot or billet, the microstructure is destroyed, and generally uniform and fine (100 m or less) crystal grains are obtained.
  • the target when sputtering is performed using the target manufactured as described above, the target is one in which the recrystallized yarn of the target is finer and more uniform, and the crystal orientation is aligned in a specific direction. It is said that a more uniform film can be formed, and a film having stable characteristics with less generation of arcing particles can be obtained.
  • the recrystallized structure is made finer and more uniform, and furthermore, There is a measure to make the crystal orientation to a specific crystal orientation (for example, see Patent Documents 1 and 2).
  • the recrystallization structure is generally such that individual crystals are assembled with different plane orientations, and the individual crystals are separated by grain boundaries.
  • the strain applied to the object by plastic working such as cold rolling is absorbed by causing intragranular slip in a certain plane direction in the primary crystal, and the strain is stored inside.
  • the primary crystal has a very fine and subtly different mesh cell structure in which lattice defects such as dislocations are gathered, and is further divided into a plurality of regions having greatly different orientations.
  • the cells change to subgrains due to the coalescence and rearrangement of metastases (recovery process). Changes in cell force to sub-grains are accompanied by little change in dimensions.
  • Patent Document 1 Japanese Patent Publication No. 2002-518593
  • Patent Document 2 U.S. Patent No. 6,331,233
  • the present invention provides a film formation rate higher than that of a conventional target aligned to a specific crystal orientation, excellent film uniformity (u-formity), and low generation of arcing particles.
  • An object is to obtain a target for tantalum sputtering having excellent film characteristics.
  • Means for solving the problem [0008] In order to solve the above-mentioned problems, the present invention improves the structure of the target and makes the crystal orientation random, so that the tantalum sputtering with more excellent film forming characteristics than the conventional one. Knowledge that a target for use can be obtained.
  • the tantalum sputtering target according to the above 1) wherein the value does not exceed 0.75.
  • the present invention also provides
  • Tantalum sputtering target On the surface of the tantalum target, when the sum of the whole crystal orientations is 1, one of (100) ⁇ 001>, (1 11) ⁇ 001>, (110) 001> The sum of the area ratios of the crystals that has a rotation error of 10 ° or less with respect to the ND direction axis (rolling surface normal direction axis) does not exceed 0.75. Tantalum sputtering target. 8) The surface of the tantalum target is a sputtered erosion surface. The tantalum sputtering target according to any one of 7) to 7).
  • the present invention also provides
  • the present invention also provides
  • the target has a microstructure of rolled kamen structure, and when the target surface is analyzed by EBSP, there are 100 to 1000 Zmm 2 crystal grains with a grain size of 25 to 150 m. ).
  • the film forming speed is high, the film uniformity (u-formity) is excellent, and the occurrence of arcing-partake is reduced.
  • the film uniformity u-formity
  • the occurrence of arcing-partake is reduced.
  • FIG. 1 is a microstructure photograph of a tantalum target obtained by subjecting a finish cold work and a recrystallization annealing of the present invention (magnification: X100).
  • FIG. 2 is a photomicrograph of a tantalum target obtained by subjecting the tantalum target of the present invention to cold finishing and recrystallization annealing (magnification: X50).
  • FIG. 3 is a microstructure photograph of a tantalum target obtained by conventional forging and recrystallization annealing. (Magnification x 100).
  • FIG. 4 is a micrograph of a tantalum target obtained by conventional forging and recrystallization annealing. (Magnification X 50).
  • the sputtering target of the present invention having a random crystal orientation is usually manufactured by the following steps.
  • a tantalum raw material usually, high purity tantalum of 4N (99.99%) or more is used. This is melted by electron beam melting, etc., and then manufactured to produce an ingot or billet. Next, the ingot or billet is subjected to a series of processes such as annealing-forging, rolling, annealing (heat treatment), and finishing.
  • One recrystallization starting temperature Recrystallization annealing between 1373K (If necessary, 5th) Finishing force is applied to obtain a target material.
  • the forged structure By forging or rolling, the forged structure can be destroyed, and pores and segregation can be diffused or eliminated, and this is annealed to be recrystallized.
  • This cold forging or cold rolling and recrystallization By repeating annealing, the structure can be densified, refined, and strengthened.
  • recrystallization annealing may be performed once, but by repeating it twice, structural defects can be reduced as much as possible.
  • the cold (hot) rolling and the recrystallization annealing between the recrystallization start temperature of 1373 K may be repeated, or may be performed in one cycle. After that, it is finished to the final target shape by finishing such as machining and polishing.
  • a tantalum target is manufactured by the above manufacturing process. What is particularly important in the present invention is that the crystal orientation of the target is not made to be in a specific direction, but the crystal orientation is made extremely polar. Therefore, it is not always necessary to limit only to this manufacturing process as long as it is a manufacturing process that can achieve the random crystal orientation of the present invention, which is a preferred example of the manufacturing process described above.
  • recrystallization annealing is performed at a recrystallization start temperature of about 1673 K to make the structure fine and uniform. Is desirable. In other words, until the final processing, the material properties are improved by performing the microstructuring with recrystallization and having a uniform and random crystal orientation as in the past, as before.
  • the structure of the tantalum target obtained is a recrystallized structure based on the rolled katakane structure, and the crystal orientation force is random. That is, on the surface of the tantalum target Assuming that the total sum of the crystal orientations is 1, a tantalum sputtering target having an area ratio not exceeding 0.5 can be obtained for a crystal having any of (100), (111), and (110) orientations. be able to. If the area ratio exceeds 0.5, a specific crystal orientation is given priority, and the object of the present invention cannot be achieved.
  • the total sum of the crystal orientations on the surface of the tantalum target is 1, any one of (100), (111), and (110) of a crystal having two orientations is used. It is desirable that the sum of the area ratios does not exceed 0.75. This is also a favorable condition for the crystal orientation to be random.
  • the surface of such a tantalum target has a random crystal orientation under the above conditions not only on the surface before the start of sputtering but also on the sputtered erosion surface. It is necessary to achieve it sufficiently.
  • the deviation of (100) ⁇ 001>, (111) ⁇ 001>, and (110) ⁇ 001> A tantalum crystal that has a direction of force and that has a rotation area within 10 ° with respect to the ND direction axis (rolling surface normal direction axis) and the crystal area ratio does not exceed 0.5.
  • it is a sputtering target.
  • the present invention also relates to a pole figure by EBSP in which the (100) orientation is measured on the surface of the tantalum target. It is desirable to use a tantalum sputtering target, which is represented by a divided scale and has a peak with an intensity of 1 or more in the middle where ⁇ on the pole figure is not only in the 0 ° or 90 ° direction. As a result, the random orientation becomes more controlled.
  • the average crystal grain size of the target is 80 m or less
  • the target has a fine structure of a rolled structure
  • the target surface is analyzed by EBSP. It is desirable that 100 to 1000 Zmm 2 crystal grains of 150 ⁇ m exist and that the purity of the target be 99.99% or more.
  • the condition that the crystal grain size is smaller and the crystal orientation is random has the effect of further improving the sputtering u-formity.
  • FIG. 1 The structure (annealed at 1173K) of the tantalum target of the present invention is shown in FIG. 1 (magnification X 100) and FIG. 2 (magnification X 50).
  • the conventional recrystallization structure (recrystallization annealing at 1373K) is shown in Fig. 3 (magnification X 100) and Fig. 4 (magnification X 50). As shown in the figure, the structure of the tantalum target of the present invention is clearly different from the conventional recrystallized structure.
  • a target that has undergone plastic casting such as rolling without annealing, may be warped (curved) or cracked due to heat during the sputtering operation, depending on the processing conditions. In the present invention, such distortion does not occur.
  • these target materials have a Vickers hardness of 90 or more, a Vickers hardness of 100 or more, and a Vickers hardness of 125 or more, so that a target having excellent strength can be obtained.
  • the most important thing in the present invention is to aim at a more random crystal orientation by rolling and recrystallization annealing, and it appears not only on the target surface but also on the stage where erosion has advanced, that is, on the sputter surface.
  • the erosion plane is also required to have a random crystal orientation according to the present invention.
  • Such a target organization has a significant effect of improving the u-formity. Because such a structure is only a change in the final heat treatment step, It can be applied to improved products, and has the feature that there is almost no increase in cost.
  • a tantalum raw material having a purity of 99.997% was melted by an electron beam, and the obtained material was formed into an ingot or a billet having a thickness of 200 mm and a diameter of 200 mm.
  • the crystal grain size in this case was about 55 mm.
  • this ingot or billet was forged at room temperature and then recrystallized and annealed at a temperature of 1500K. As a result, a material having a structure having an average crystal grain size of 200 / zm and a thickness of 100 mm and a diameter of 100 mm ⁇ was obtained.
  • the average crystal grain size of the target was 40 m.
  • 100 to 1000 Zmm 2 crystal grains having a grain size of 30 to 100 ⁇ m were present.
  • Example 1 the sheet resistance at 49 points on the wafer was measured, and the standard deviation ( ⁇ ) was calculated. The results are shown in Table 1. As is clear from Table 1, in Example 1, the variation in the resistance distribution in the sheet was small (2.6-3.2%) from the initial stage to the late stage of the sputtering, that is, the variation in the film thickness distribution was small. ing.
  • the tantalum target of Example 1 has a high film formation rate, good film uniformity (uniformity), and has a small variation in film thickness on an 8-inch wafer, and has no generation of arcing particles. As a result, the quality of the sputter film could be improved.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Comparison 2.60% 3.10% 3.10% 2.80% 3.00% 2.50% 4.5
  • Medium-term 2.80% 3.10% 3.20% 3.00% 3.10% 3.20% 5.5 3.20% 3.30% 3.40% 3.20% 3.30% 3.30% 5.5
  • a tantalum raw material having a purity of 99.997% was melted by an electron beam, and this was manufactured into an ingot or a billet having a thickness of 200 mm and a diameter of 200 mm.
  • the crystal grain size in this case was about 50 mm.
  • this ingot or billet was forged at room temperature and then recrystallized and annealed at a temperature of 1500K. As a result, a material having a structure having an average crystal grain size of 200 / zm and a thickness of 100 mm and a diameter of 100 mm ⁇ was obtained.
  • the average crystal grain size of the target was 60 m.
  • 100 to 1000 crystal grains having a grain size of 40 to 120 ⁇ m were present in Zmm 2 .
  • Example 1 the variation in the resistance distribution in the sheet was small from the initial stage to the late stage of the sputtering (3.1-3.3%), that is, the variation in the film thickness distribution was small. ing.
  • the tantalum target of Example 1 has a uniform film thickness (unifo The quality of the sputter film was improved because the film thickness was small on an 8-inch wafer and no arcing particles were generated.
  • Example 3
  • a tantalum raw material having a purity of 99.997% was melted by an electron beam, and the obtained material was manufactured into an ingot or a billet having a thickness of 200 mm and a diameter of 200 mm.
  • the crystal grain size in this case was about 60 mm.
  • this ingot or billet was forged at room temperature and then recrystallized and annealed at a temperature of 1500K. As a result, a material having a structure having an average crystal grain size of 200 / zm and a thickness of 100 mm and a diameter of 100 mm ⁇ was obtained.
  • the average crystal grain size of the target was 80 m.
  • the target surface was analyzed by EBSP, 100 to 1000 Zmm 2 crystal grains having a particle size of 50 to 150 m were found! /.
  • the sheet resistance depends on the film thickness
  • the distribution of the sheet resistance within the wafer (8 inches) was measured, and the distribution state of the film thickness was examined thereby.
  • Example 1 the fluctuation of the resistance distribution in the sheet was small (3.1-3.4%) from the initial stage to the latter period of the sputtering, that is, the fluctuation of the film thickness distribution was small.
  • the tantalum target of Example 1 has a high film formation rate, good film uniformity (uniformity), and has a small thickness variation on an 8-inch wafer, and has no generation of arcing particles. As a result, the quality of the sputter film could be improved.
  • Example 4
  • a tantalum raw material having a purity of 99.997% was melted by an electron beam, and the obtained material was manufactured into an ingot or a billet having a thickness of 200 mm and a diameter of 200 mm.
  • the crystal grain size in this case was about 55 mm.
  • this ingot or billet was forged at room temperature and then recrystallized and annealed at a temperature of 1500K. As a result, a material having a structure having an average crystal grain size of 200 / zm and a thickness of 100 mm and a diameter of 100 mm ⁇ was obtained.
  • the average crystal grain size of the target was 35 m.
  • 100 to 1000 Zmm 2 crystal grains having a grain size of 30 to 100 ⁇ m were present.
  • Example 1 the variation in the resistance distribution in the sheet was small (2.8-3.2%) from the initial stage to the late stage of the sputtering, that is, the variation in the film thickness distribution was small. ing.
  • the tantalum target of Example 1 has a high film formation rate, good film uniformity (uniformity), and has a small thickness variation on an 8-inch wafer, and has no generation of arcing particles. As a result, the quality of the sputter film could be improved.
  • Example 5
  • a tantalum raw material having a purity of 99.997% was melted by an electron beam, and the obtained material was manufactured into an ingot or a billet having a thickness of 200 mm and a diameter of 200 mm.
  • the crystal grain size in this case was about 55 mm.
  • this ingot or billet was forged at room temperature and then recrystallized and annealed at a temperature of 1500K. As a result, a material having a structure having an average crystal grain size of 200 / zm and a thickness of 100 mm and a diameter of 100 mm ⁇ was obtained.
  • the target material was 10 mm thick and 320 mm in diameter.
  • the average crystal grain size of the target was 60 m.
  • 100 to 1000 crystal grains having a grain size of 40 to 120 ⁇ m were present in Zmm 2 . Since the sheet resistance depends on the film thickness, the distribution of the sheet resistance in the wafer (8 inches) was measured, and the distribution state of the film thickness was examined based on the measurement.
  • Example 1 the variation in the resistance distribution in the sheet was small (3.0-3.3%) from the initial stage to the late stage of the sputtering, that is, the variation in the film thickness distribution was small. ing.
  • the tantalum target of Example 1 has a high film formation rate, good film uniformity (uniformity), and has a small variation in film thickness on an 8-inch wafer, and has no generation of arcing particles. As a result, the quality of the sputter film could be improved.
  • Example 6
  • a tantalum raw material having a purity of 99.997% was melted by an electron beam, and this was manufactured into an ingot or a billet having a thickness of 200 mm and a diameter of 200 mm.
  • the crystal grain size in this case was about 50 mm.
  • this ingot or billet was forged at room temperature and then recrystallized and annealed at a temperature of 1500K. As a result, a material having a structure having an average crystal grain size of 200 / zm and a thickness of 100 mm and a diameter of 100 mm ⁇ was obtained.
  • the orientation is 100) ⁇ 001>, (111) ⁇ 001>, (110) ⁇ 001>, and in the ND direction.
  • the average crystal grain size of the target was 80 m.
  • the target surface was analyzed by EBSP, 100 to 1000 Zmm 2 crystal grains having a particle size of 50 to 150 m were found! /.
  • the distribution of the sheet resistance in the wafer (8 inches) was measured, and the distribution state of the film thickness was examined thereby.
  • Example 1 the variation in the resistance distribution in the sheet was small (2.5-3.3%) from the initial stage to the late stage of the sputtering, that is, the variation in the film thickness distribution was small. ing.
  • the tantalum target of Example 1 has a high film formation rate, good film uniformity (uniformity), and has a small variation in film thickness on an 8-inch wafer, and has no generation of arcing particles. As a result, the quality of the sputter film could be improved.
  • a tantalum raw material having a purity of 99.997% similar to that in Example 1 was melted by an electron beam, and this was fabricated into an ingot or billet having a thickness of 200 mm and a diameter of 200 mm ⁇ .
  • the crystal grain size in this case was about 55 mm.
  • this ingot or billet was forged and upset forged at room temperature, and then recrystallized and annealed at a temperature of 1173K. As a result, a material with a thickness of 100 mm and a diameter of 100 mm having a structure with an average crystal grain size of 180 m was obtained.
  • the tantalum target obtained by the above process has an average crystal grain size of 55 ⁇ m, and there is some variation in location.
  • On the surface of the tantalum target when the total sum of crystal orientations is 1, (100 ), (111), and (110) were able to obtain uniformly oriented tantalum sputtering targets having an area ratio of 0.8, 0.2, and 0, respectively.
  • the uniformity (u-formity) of the film was degraded, resulting in a decrease in the quality of sputter deposition. Table 1 also shows the results.
  • Comparative Example 1 of Table 1 The results shown in Comparative Example 1 of Table 1 were obtained by measuring the sheet resistance at 49 points on the wafer (8 inches) in the same manner as in Example 1 and calculating the standard deviation ( ⁇ ).
  • the variation in the resistance distribution in the sheet was large (4.5-5.5%) from the initial stage to the late stage of the slitter, that is, the variation in the film thickness distribution was remarkable. .
  • a tantalum raw material having a purity of 99.997% similar to that in Example 1 was melted by an electron beam, and this was fabricated into an ingot or billet having a thickness of 200 mm and a diameter of 200 mm ⁇ .
  • the crystal grain size in this case was about 55 mm.
  • the ingot or billet was cold-kneaded and forged at room temperature, and then annealed at a temperature of 1173K. As a result, a material having a thickness of 100 mm and a diameter of 100 mm having a structure with an average crystal grain size of 180 m was obtained.
  • the tantalum target obtained by the above steps was a tantalum target having coarse crystals.
  • the tantalum target obtained by the above process has an average crystal grain size of 96 ⁇ m and varies, and when the total crystal orientation on the surface of the tantalum target is 1, the (100), (111), A tantalum sputtering target with uniform orientation in which the area ratio of the orientation of (110) was 0.2, 0.7, and 0.1, respectively, was obtained.
  • Comparative Example 2 of Table 1 are the results of measuring the sheet resistance at 49 points on the wafer (8 inches) in the same manner as in Example 1 and calculating the standard deviation ( ⁇ ).
  • the variation in the resistance distribution in the sheet was large (4.7-5.3%) from the initial stage to the late stage of the slitter, that is, the variation in the film thickness distribution was remarkable. .
  • This tantalum target has poor film uniformity (u-formity), has a large thickness variation on an 8-inch wafer, and generates arcing particles, which causes deterioration in sputter deposition quality.
  • a tantalum raw material having a purity of 99.997% similar to that in Example 1 was melted by an electron beam, and this was fabricated into an ingot or billet having a thickness of 200 mm and a diameter of 200 mm ⁇ .
  • the crystal grain size in this case was about 55 mm.
  • the ingot or billet was cold-kneaded and forged at room temperature, and then annealed at a temperature of 1173K. As a result, a material having a thickness of 100 mm and a diameter of 100 mm having a structure with an average crystal grain size of 180 m was obtained.
  • the tantalum target obtained by the above process has an average crystal grain size of 37 ⁇ m and has a variation.
  • the total crystal orientation on the surface of the tantalum target is set to 1, (100) ⁇ 001 >, (111) 001>, (110) 001> orientation, and the area ratio of the crystal such that there is a rotation error within 10 ° with respect to the ND direction axis (rolled surface normal direction axis).
  • Comparative Example 3 The results shown in Comparative Example 3 in Table 1 were obtained by measuring the sheet resistance at 49 points on the wafer (8 inches) in the same manner as in Example 1 and calculating the standard deviation ( ⁇ ).
  • the variation in the sheet resistance distribution was large (3.9-4.5%) from the initial stage to the late stage of the slitter, that is, the variation in the film thickness distribution was remarkable. .
  • This tantalum target has poor film uniformity (u-formity), has a large thickness variation on an 8-inch wafer, and generates arcing particles, which causes deterioration in sputter deposition quality.
  • the present invention is directed to a tantalum target having a coarse orientation by a conventional recrystallization annealing or a random orientation that is not a target having a crystal orientation aligned with a specific orientation. It can be applied to tantalum sputtering targets that require excellent uniformity (u-formity), low arcing particles, and higher utilization efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 タンタルターゲットの表面において、全体の結晶配向の総和を1とした時に、(100)、(111)、(110)のいずれの配向を有する結晶も、その面積率が0.5を超えないことを特徴とするタンタルスパッタリングターゲット。成膜速度が大きく、膜の均一性(ユニフォーミティ)に優れ、またアーキングやパーティクルの発生が少ない成膜特性に優れたタンタルスパッタリング用ターゲットを得ることを課題とする。

Description

明 細 書 技術分野
[0001] この発明は、ランダムな結晶配向を備え、成膜速度が大きぐ膜の均一性 (ュニフォ ーミティ)に優れ、またアーキングゃパーティクルの発生が少なぐさらにターゲットの 利用効率も良好であるタンタルスパッタリングターゲットに関する。
背景技術
[0002] 近年、エレクトロニクス分野、耐食性材料や装飾の分野、触媒分野、切削,研磨材や 耐摩耗性材料の製作等、多くの分野に金属やセラミックス材料等の被膜を形成する スパッタリングが使用されている。
スパッタリング法自体は上記の分野で、よく知られた方法であるが、最近では、特に エレクトロニクスの分野において、複雑な形状の被膜の形成や回路の形成に適合す るタンタルスパッタリングターゲットが要求されている。
[0003] 一般に、このタンタルターゲットは、タンタル原料を電子ビーム溶解'铸造したインゴ ット又はビレットの熱間鍛造、焼鈍 (熱処理)を繰り返し、さらに圧延及び仕上げ (機械 、研磨等)加工してターゲットにカ卩ェされている。
このような製造工程において、インゴット又はビレットの熱間鍛造は、铸造組織を破 壊し、気孔や偏析を拡散、消失させ、さらにこれを焼鈍することにより再結晶化し、組 織の緻密化と強度を高めることによって製造されている。
一般に溶解铸造されたインゴット又はビレットは、 50mm以上の結晶粒径を有して ヽ る。そして、インゴット又はビレットの熱間鍛造と再結晶焼鈍により、铸造組織が破壊さ れ、おおむね均一かつ微細(100 m以下の)結晶粒が得られる。
[0004] 一方、このようにして製造されたターゲットを用いて、スパッタリングを実施する場合 、ターゲットの再結晶糸且織がより細かくかつ均一であり、また結晶方位が特定の方向 に揃っているものほど均一な成膜が可能であり、アーキングゃパーティクルの発生が 少なぐ安定した特性を持つ膜を得ることができると言われている。
そのため、ターゲットの製造工程において、再結晶組織の微細化と均一化、さらに は特定の結晶方位に揃えようとする方策が採られている(例えば、特許文献 1及び 2 参照)。
[0005] 再結晶化の機構について考察すると、一般に再結晶組織は個々の結晶がそれぞ れ異なる面配向をもって集合したものであり、個々の結晶は粒界によって区切られて いる。再配列が起こる前は、冷間圧延等の塑性加工によって物体に加えられた歪を 一次結晶内で、ある面方向に粒内すベりを起こして吸収され、歪が内部に蓄えられる 歪んだ一次結晶は、転移などの格子欠陥が集まった、非常に微細で且つ微妙に方 位の異なる網目状セル構造をとつており、さらにはその方位の大きく異なる複数の領 域に分かれている。このような変形組織を加熱すると転移の合体や再配列により、セ ルがサブグレインへと変化する (回復過程)。セル力 サブグレインへの変化には寸法 の変化をほとんど伴わない。
そして、このサブダレインが合体し、さらに特定のサブダレインが成長して再結晶核と なり、未再結晶部分を侵食し、成長して再結晶化が進むと考えられる。
[0006] タンタルターゲットでは組織を安定ィ匕させるためにはフルアニーリングによる完全再 結晶化( Fully recrystallized )組織を達成し、かつ上記のように、特定の結晶方位に 揃えたターゲットが良 、とされて 、た。
し力し、このようなタンタルターゲットを用いてスパッタリングを実施すると、膜の均一 性 (ュ-フォーミティ)は必ずしも良くはなぐまたアーキングゃパーティクルの発生が 多くなり、スパッタ成膜の品質を低下させるという問題が発生した。
特許文献 1:特表 2002-518593号公報
特許文献 2 :米国特許第 6, 331, 233号
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、特定の結晶方位に揃えた従来のターゲットに比べて、成膜速度が大きく 、膜の均一性 (ュ-フォーミティ)に優れ、またアーキングゃパーティクルの発生が少 ない成膜特性に優れたタンタルスパッタリング用ターゲットを得ることを課題とする。 課題を解決するための手段 [0008] 本発明は、上記の問題を解決するために、ターゲットの組織を改良 *ェ夫し、結晶方 位をランダムとすることにより、従来に比べてさらに成膜特性に優れたタンタルスパッ タリング用ターゲットを得ることができるとの知見を得た。
本発明は、この知見に基づいて、 1)タンタルターゲットの表面において、全体の結 晶配向の総和を 1とした時に、(100)、(111)、(110)のいずれの配向を有する結晶 も、その面積率が 0. 5を超えないタンタルスパッタリングターゲット。 2)タンタルターゲ ットの表面において、全体の結晶配向の総和を 1とした時に、(100)、(111)、 (110 )の内の、いずれ力 2つの配向を有する結晶の面積率の和が 0. 75を超えないタンタ ルスパッタリングターゲット。 3)タンタルターゲットの表面において、全体の結晶配向 の総和を 1とした時に、(100)、(111)、(110)の内の、いずれ力 2つの配向を有す る結晶の面積率の和が 0. 75を超えない前記 1)記載のタンタルスパッタリングターゲ ット。 4)タンタルターゲットの表面がスパッタされたエロージョン面である前記 1)一 3) のいずれかに記載のタンタルスパッタリングターゲット。
を提供する。
[0009] 本発明は、また
5)タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100 ) < 001 >、(111) < 001 >、(110) < 001 >の!ヽずれ力の酉己向を有する結晶であ つて、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差であるような 結晶の面積率が 0. 5を超えないタンタルスパッタリングターゲット。 6)タンタルターゲ ットの表面において、全体の結晶配向の総和を 1とした時に、(100) < 001 >、 (111 ) < 001 >、(110) < 001 >の内の、いずれ力 2つの配向を有する結晶であって、 N D方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差であるような同結晶 の面積率の和が 0. 75を超えないタンタルスパッタリングターゲット。 7)タンタルター ゲットの表面において、全体の結晶配向の総和を 1とした時に、(100) < 001 >、 (1 11) < 001 >、(110)く 001 >の内の、いずれか 2つの配向を有する結晶であって、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差であるような同結 晶の面積率の和が 0. 75を超えない 5)記載のタンタルスパッタリングターゲット。 8)タ ンタルターゲットの表面がスパッタされたエロージョン面であることを特徴とする前記 5 )一 7)のいずれかに記載のタンタルスパッタリングターゲット。
を提供する。
[0010] 本発明は、また
9)タンタルターゲットの表面において、(100)配向を測定した EBSPによる極点図に おいて、結晶方位の完全ランダムを 1として強度を測定した場合において、 1以上の 強度を 6分割したスケールによって表現し、極点図上の Θが 0° 又は 90° 方向だけ でなぐその中間に強度 1以上のピークを持つタンタルスパッタリングターゲット。 10) タンタルターゲットの表面において、(100)配向を測定した EBSPによる極点図にお いて、結晶方位の完全ランダムを 1として強度を測定した場合において、 1以上の強 度を 6分割したスケールによって表現し、極点図上の Θが 0° 又は 90° 方向だけで なぐその中間に強度 1以上のピークを持つ前記 1)一 9)のいずれかに記載のタンタ ルスパッタリングターゲット。
を提供する。
[0011] 本発明は、また
11)タンタルターゲットの表面において、(100)配向を測定した EBSPによる極点図 において、結晶方位の完全ランダムを 1として強度を測定した場合において、 1以上 の強度を 6分割したスケールによって表現し、極点図上の ND方向(0° )以外に出現 するピークの強度 1以上で示される部分が 20° 以上の広がりを持つことを特徴とする タンタルスパッタリングターゲット。 12)タンタルターゲットの表面において、(100)配 向を測定した EBSPによる極点図において、結晶方位の完全ランダムを 1として強度 を測定した場合において、 1以上の強度を 6分割したスケールによって表現し、極点 図上の ND方向(0° )以外に出現するピークの強度 1以上で示される部分が 20° 以 上の広がりを持つことを特徴とする上記 1)一 9)のいずれかに記載のタンタルスパッタ リングターゲット。 13)ターゲットの平均結晶粒径が 80 m以下である前記 1)一 12) の!、ずれかに記載のターゲット。 14)ターゲットが圧延カ卩ェ組織による微細組織を備 え、ターゲット表面を EBSPで解析したとき、粒径 25— 150 mの結晶粒が 100 一 1000個 Zmm2存在している前記 1)一 13)のいずれかに記載のターゲット。 15)タ ンタルターゲットの表面がスパッタされたエロージョン面である前記 14)に記載のタン タルスパッタリングターゲット。 16)ターゲットの純度が 99. 99%以上である前記 1)一 15)のいずれかに記載のターゲット。
を提供する。
発明の効果
[0012] 本発明は、従来のターゲット表面に結晶方位を揃えたタンタルターゲットに比べ、成 膜速度が大きぐ膜の均一性 (ュ-フォーミティ)に優れ、またアーキングゃパーテイク ルの発生が少な 、成膜特性に優れ、さらにターゲットの利用効率も良好であるタンタ ルスパッタリングターゲットとすることができるという優れた効果を有する。
図面の簡単な説明
[0013] [図 1]本発明の仕上げ冷間加工しさらに再結晶焼鈍を施して得たタンタルターゲット の顕微鏡組織写真である (倍率 X 100)。
[図 2]本発明の仕上げ冷間加工しさらに再結晶焼鈍を施して得たタンタルターゲット の顕微鏡組織写真である (倍率 X 50)。
[図 3]従来の鍛造及び再結晶焼鈍を施して得たタンタルターゲットの顕微鏡組織写真 である。(倍率 X 100)。
[図 4]従来の鍛造及び再結晶焼鈍を施して得たタンタルターゲットの顕微鏡組織写真 である。(倍率 X 50)。
発明を実施するための最良の形態
[0014] ランダムな結晶方位を有する本発明のスパッタリングターゲットは、通常、次のような 工程によって製造する。
その一例を示すと、まずタンタル原料 (通常、 4N (99. 99%)以上の高純度タンタ ルを使用する。これを電子ビーム溶解等により溶解し、これを铸造してインゴット又は ビレットを作製する。次に、このインゴット又はビレットを焼鈍-鍛造、圧延、焼鈍 (熱処 理)、仕上げ加工等の一連の加工を行う。
具体的には、例えばインゴット- 1373K— 1673Kの温度での焼鈍(1回目) -冷間 鍛造( 1回目)一再結晶開始温度一 1373Kの温度での再結晶焼鈍 (2回目) 冷間鍛 造 (2回目) -再結晶開始温度一 1373Kの間での再結晶焼鈍 (3回目) -冷間 (熱間) 圧延( 1回目)一再結晶開始温度一 1373Kの間での再結晶焼鈍 (4回目) -冷間 (熱 間)圧延 (必要に応じて、 2回目)一再結晶開始温度一 1373Kの間での再結晶焼鈍( 必要に応じて、 5回目) 仕上げ力卩ェを行ってターゲット材とする。
[0015] 鍛造あるいは圧延によって、铸造組織を破壊し、気孔や偏析を拡散あるいは消失さ せることができ、さらにこれを焼鈍することにより再結晶化させ、この冷間鍛造又は冷 間圧延と再結晶焼鈍の繰返しにより、組織の緻密化、微細化と強度を高めることがで きる。
上記の加工プロセスにおいて、再結晶焼鈍は 1回でも良いが、 2回繰返すことによ つて組織上の欠陥を極力減少させることができる。また、冷間 (熱間)圧延と再結晶開 始温度一 1373Kの間での再結晶焼鈍は、繰返しても良いが 1サイクルでも良い。こ の後、機械加工、研磨加工等の仕上げ加工によって、最終的なターゲット形状に仕 上げる。
[0016] 上記の製造工程によってタンタルターゲットを製造するが、本発明において特に重 要なことは、ターゲットの結晶方位を特定の方向に揃えることなぐ結晶方位を極カラ ンダムにすることである。したがって、上記に製造工程の好適な例を示した力 本発 明のランダムな結晶方位が達成できる製造工程であれば、必ずしも、この製造工程 のみに限定する必要はない。
一連の加工において、鍛造'圧延で铸造組織を破壊するとともに、再結晶化を十分 に行うことが必要である。本発明においても、溶解铸造したタンタルインゴット又はビ レットに鍛造、圧延等の加工を加えた後には、再結晶開始温度一 1673K程度の温 度で再結晶焼鈍し、組織を微細かつ均一化するのが望ましい。つまり、最終加工前 までは従来と同様に再結晶を伴う組織微細化及び均一かつランダムな結晶方位を持 つように行うことで材料特性の向上を図る。
[0017] 本発明では、上記の通り最終的に圧延加工等の最終塑性加工後、さらに 1273K以 下の温度で焼鈍を行う事が望ましい。この焼鈍を行う場合には、ターゲットの反りや変 形等を緩和できる効果がある。さらにこれをターゲット形状に仕上げ加工 (機械加工 等を)する。
これによつて得られたタンタルターゲットの組織は、圧延カ卩ェ組織を基にした再結 晶組織が得られ、結晶方位力ランダムとなる。すなわち、タンタルターゲットの表面に おいて、全体の結晶配向の総和を 1とした時に、(100)、(111)、(110)のいずれの 配向を有する結晶も、その面積率が 0. 5を超えないタンタルスパッタリングターゲット を得ることができる。面積率が 0. 5を超えると特定の結晶方位が優先的となり、本発 明の目的を達成することができない。
[0018] さらに、本発明はタンタルターゲットの表面において、全体の結晶配向の総和を 1と した時に、(100)、(111)、(110)の内の、いずれ力 2つの配向を有する結晶の面積 率の和が 0. 75を超えないことが望ましい。これも結晶方位がランダムとなるための好 ましい条件である。
このようなタンタルターゲットの表面は、スパッタ開始前の面だけではなぐスパッタ されたエロージョン面においても、上記の条件のランダムな結晶方位を備えているこ とが望ましぐ本発明の目的と効果を十分に達成するためには、必要なことである。
[0019] 本発明は、タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時 に、(100) < 001 >、(111) < 001 >、(110) < 001 >の!ヽずれ力の酉己向を有する 結晶であって、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差で あるような結晶の面積率が 0. 5を超えな 、タンタルスパッタリングターゲットであること が望ましい。
同様に、さらにタンタルターゲットの表面において、全体の結晶配向の総和を 1とし た時に、(100) < 001 >、(111) < 001 >、(110) < 001 >の内の、!/ヽずれ力 2つ の配向を有する結晶であって、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以 内の回転誤差であるような同結晶の面積率の和が 0. 75を超えないタンタルスパッタ リングターゲットであることが望ましい。
[0020] タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100) < 001 >、(111) < 001 >、(110) < 001 >の内の、!/ヽずれ力 2つの酉己向を有する 結晶であって、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差で あるような同結晶の面積率の和が 0. 75を超えないタンタルスパッタリングターゲット 及びタンタルターゲットの表面がスパッタされたエロージョン面であることも、本発明の ターゲットの結晶方位をランダムにする目的と効果を十分に達成するために望ましい 条件である。 [0021] 本発明は、またタンタルターゲットの表面において、(100)配向を測定した EBSP による極点図において、結晶方位の完全ランダムを 1として強度を測定した場合にお いて、 1以上の強度を 6分割したスケールによって表現し、極点図上の Θが 0° 又は 90° 方向だけでなぐその中間に強度 1以上のピークを持つタンタノレスパッタリングタ 一ゲットとすることが望ましい。これによつて、ランダム配向が、よりコントロールされた ものとなる。
[0022] 本発明は、さらに望ましい条件として、ターゲットの平均結晶粒径が 80 m以下で あること、ターゲットが圧延加工組織による微細組織を備え、ターゲット表面を EBSP で解析したとき、粒径 25— 150 μ mの結晶粒が 100— 1000個 Zmm2存在している こと、さらにターゲットの純度が 99. 99%以上であることが望ましい。結晶粒度がより 小さぐさらには結晶方位がランダムである条件は、スパッタリングのュ-フォーミティ をより向上させる効果がある。
本発明のタンタルターゲットの組織( 1173Kで焼鈍)を図 1 (倍率 X 100)及び図 2 ( 倍率 X 50)に示す。
また、従来の再結晶組織(1373Kで再結晶焼鈍)を図 3 (倍率 X 100)及び図 4 (倍 率 X 50)に示す。図に示すように、本発明のタンタルターゲットの組織は、従来の再 結晶組織とは明らかに異なる。
[0023] また、焼鈍を行わない圧延等の塑性カ卩ェ上がりのターゲットは、加工条件によって はスパッタリング操作中の熱により歪を発生し、反り(湾曲)あるいは割れを発生する 場合があるが、本発明においては、このような歪みは発生しない。
また、これらのターゲット材は、硬度はビッカース硬度 90以上、またビッカース硬度 10 0以上、さらにはビッカース硬度 125以上となり、強度に優れたターゲットが得られる。
[0024] 本発明で最も重要なのは、圧延及び再結晶焼鈍によって、よりランダムな結晶方位 にすることを目的とするものであり、ターゲット表面のみならず、エロージョンが進んだ 段階、すなわちスパッタ面に現れるエロージョン面においても、同様に本発明のラン ダムな結晶方位を持つようにすることである。
このようなターゲット組織は、著しいュ-フォーミティの改善効果がある。このような 組織は、最終熱処理工程の変更のみであるため、これまでに行われてきたどのような 改善品にも適用可能で、コストの増加もほとんどないという特徴を有する。
[0025] 次に、実施例について説明する。なお、本実施例は発明の一例を示すためのもの であり、本発明はこれらの実施例に制限されるものではない。すなわち、本発明の技 術思想に含まれる他の態様及び変形を含むものである。
実施例 1
[0026] 純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造して厚さ 200mm 、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒径は約 55mmで あった。
次に、このインゴット又はビレットを室温で鍛伸した後、 1500Kの温度での再結晶 焼鈍した。これによつて平均結晶粒径が 200 /z mの組織を持つ厚さ 100mm、直径 1 00mm φの材料が得られた。
次に、これを再度室温で鍛伸及び据え込み鍛造し、再び 1480K温度で再結晶焼 鈍を実施した。これによつて平均結晶粒径が 100 mの組織を持つ厚さ 100mm、直 径 100mm φの材料が得られた。
[0027] 次に、これを冷間で鍛伸と据え込み鍛造及び 1173Kの再結晶焼鈍を行い、次い で再度冷間圧延し、次に 1173K(900° C)で焼鈍及び仕上げ力卩ェを行って厚さ 10 mm、直径 320mm φのターゲット材とした。
以上の工程により、タンタルターゲットの表面において、全体の結晶配向の総和を 1と した時に、(100)、(111)、 (110)の配向の面積率がそれぞれ 0. 5、 0. 4、0. 1であ るランダム配向のタンタルスパッタリングターゲットを得ることができた。また、このター ゲットは後述するスパッタリング後のエロージョン面でも同様の配向をもつ組織を備え ていた。
ターゲットの平均結晶粒径は 40 mであり、ターゲット表面を EBSPで解析したとき 、粒径 30— 100 μ mの結晶粒が 100— 1000個 Zmm2存在していた。
[0028] シート抵抗は膜厚に依存するので、ウェハー(8インチ)内のシート抵抗の分布を測 定し、それによつて膜厚の分布状況を調べた。
具体的には、ウェハー上の 49点のシート抵抗を測定し、その標準偏差( σ )を算出し た。その結果を表 1に示す。 表 1から明らかなように、実施例 1においては、スパッタ初期から後期にかけてシート 内抵抗分布の変動が少ない(2. 6— 3. 2%)、すなわち膜厚分布の変動が少ないこ とを示している。
以上力 実施例 1のタンタルターゲットは、成膜速度が大きぐ膜の均一性 (ュニフォ ーミティ)が良好であり、また 8インチウェハーで膜厚バラツキが小さぐさらにアーキン グゃパーティクルの発生が無いので、スパッタ成膜の品質を向上させることができた。
[表 1]
ウェハー內膜厚分布の推移 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 比較 スハ。ッタ初期 2. 60% 3. 10% 3. 10% 2. 80% 3. 00% 2. 50% 4. 5 スハ。ッタ中期 2. 80% 3. 10% 3. 20% 3. 00% 3. 10% 3. 20% 5. 5 スハ。ッタ後期 3. 20% 3. 30% 3. 40% 3. 20% 3. 30% 3. 30% 5. 5
実施例 2
[0030] 純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造して厚さ 200mm 、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒径は約 50mmで あった。
次に、このインゴット又はビレットを室温で鍛伸した後、 1500Kの温度での再結晶 焼鈍した。これによつて平均結晶粒径が 200 /z mの組織を持つ厚さ 100mm、直径 1 00mm φの材料が得られた。
次に、これを再度室温で鍛伸及び据え込み鍛造し、再び 1173K温度で再結晶焼 鈍を実施した。これによつて平均結晶粒径が 80 mの組織を持つ厚さ 100mm、直 径 100mm φの材料が得られた。
[0031] 次に、これを冷間で鍛伸と据え込み鍛造及び 1173Kの再結晶焼鈍を行い、次い で再度冷間圧延し、 1173K(900° C)で焼鈍の工程を 2回繰り返し、仕上げ力卩ェを 行って厚さ 10mm、直径 320mm φのターゲット材とした。
以上の工程により、タンタルターゲットの表面において、全体の結晶配向の総和を 1と した時に、(100)、(111)、 (110)の配向の面積率がそれぞれ 0. 4、 0. 4、 0. 1であ るランダム配向のタンタルスパッタリングターゲットを得ることができた。また、このター ゲットは後述するスパッタリング後のエロージョン面でも同様の配向をもつ組織を備え ていた。
ターゲットの平均結晶粒径は 60 mであり、ターゲット表面を EBSPで解析したとき 、粒径 40— 120 μ mの結晶粒が 100— 1000個 Zmm2存在していた。
[0032] シート抵抗は膜厚に依存するので、ウェハー(8インチ)内のシート抵抗の分布を測 定し、それによつて膜厚の分布状況を調べた。
具体的には、ウェハー上の 49点のシート抵抗を測定し、その標準偏差( σ )を算出し た。その結果を表 1に示す。
表 1から明らかなように、実施例 1においては、スパッタ初期から後期にかけてシート 内抵抗分布の変動が少ない(3. 1— 3. 3%)、すなわち膜厚分布の変動が少ないこ とを示している。
以上力 実施例 1のタンタルターゲットは、成膜速度が大きぐ膜の均一性 (ュニフォ ーミティ)が良好であり、また 8インチウェハーで膜厚バラツキが小さぐさらにアーキン グゃパーティクルの発生が無いので、スパッタ成膜の品質を向上させることができた。 実施例 3
[0033] 純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造して厚さ 200mm 、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒径は約 60mmで あった。
次に、このインゴット又はビレットを室温で鍛伸した後、 1500Kの温度での再結晶 焼鈍した。これによつて平均結晶粒径が 200 /z mの組織を持つ厚さ 100mm、直径 1 00mm φの材料が得られた。
次に、これを再度室温で鍛伸及び据え込み鍛造し、再び 1173K温度で再結晶焼 鈍を実施した。これによつて平均結晶粒径が 80 mの組織を持つ厚さ 100mm、直 径 100mm φの材料が得られた。
[0034] 次に、これを冷間で鍛伸と据え込み鍛造及び 1173Kの再結晶焼鈍を行 、、次 ヽ で冷間圧延し、 1173K(900° C)で焼鈍、冷間圧延し、 1273K(1000° C)で焼鈍 及び仕上げ力卩ェを行って厚さ 10mm、直径 320mm φのターゲット材とした。
以上の工程により、タンタルターゲットの表面において、全体の結晶配向の総和を 1と した時に、(100)、(111)、 (110)の配向の面積率がそれぞれ 0. 3、 0. 4、0. 1であ るランダム配向のタンタルスパッタリングターゲットを得ることができた。また、このター ゲットは後述するスパッタリング後のエロージョン面でも同様の配向をもつ組織を備え ていた。
ターゲットの平均結晶粒径は 80 mであり、ターゲット表面を EBSPで解析したとき 、粒径 50— 150 mの結晶粒が 100— 1000個 Zmm2存在して!/、た。
[0035] シート抵抗は膜厚に依存するので、ウェハー(8インチ)内のシート抵抗の分布を測 定し、それによつて膜厚の分布状況を調べた。
具体的には、ウェハー上の 49点のシート抵抗を測定し、その標準偏差( σ )を算出し た。その結果を表 1に示す。
表 1から明らかなように、実施例 1においては、スパッタ初期から後期にかけてシート 内抵抗分布の変動が少ない(3. 1— 3. 4%)、すなわち膜厚分布の変動が少ないこ とを示している。
以上力 実施例 1のタンタルターゲットは、成膜速度が大きぐ膜の均一性 (ュニフォ ーミティ)が良好であり、また 8インチウェハーで膜厚バラツキが小さぐさらにアーキン グゃパーティクルの発生が無いので、スパッタ成膜の品質を向上させることができた。 実施例 4
[0036] 純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造して厚さ 200mm 、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒径は約 55mmで あった。
次に、このインゴット又はビレットを室温で鍛伸した後、 1500Kの温度での再結晶 焼鈍した。これによつて平均結晶粒径が 200 /z mの組織を持つ厚さ 100mm、直径 1 00mm φの材料が得られた。
次に、これを再度室温で鍛伸及び据え込み鍛造し、再び 1480K温度で再結晶焼 鈍を実施した。これによつて平均結晶粒径が 100 mの組織を持つ厚さ 100mm、直 径 100mm φの材料が得られた。
[0037] 次に、これを冷間で鍛伸と据え込み鍛造及び 1173Kの再結晶焼鈍を行い、次い で再度冷間圧延し、次に 1173K(900° C)で焼鈍及び仕上げ力卩ェを行って厚さ 10 mm、直径 320mm φのターゲット材とした。
以上の工程により、タンタルターゲットの表面において、全体の結晶配向の総和を 1と した時に、(100)く 001 >、(111)く 001 >、(110)く 001 >の配向であって、 ND 方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差であるような結晶の面 積率がそれぞれ 0. 3、 0. 3、 0. 1であるランダム配向のタンタルスパッタリングターゲ ットを得ることができた。また、このターゲットは後述するスパッタリング後のエロージョ ン面でも同様の配向をもつ組織を備えて 、た。
ターゲットの平均結晶粒径は 35 mであり、ターゲット表面を EBSPで解析したとき 、粒径 30— 100 μ mの結晶粒が 100— 1000個 Zmm2存在していた。
[0038] シート抵抗は膜厚に依存するので、ウェハー(8インチ)内のシート抵抗の分布を測 定し、それによつて膜厚の分布状況を調べた。
具体的には、ウェハー上の 49点のシート抵抗を測定し、その標準偏差( σ )を算出し た。その結果を表 1に示す。
表 1から明らかなように、実施例 1においては、スパッタ初期から後期にかけてシート 内抵抗分布の変動が少ない(2. 8— 3. 2%)、すなわち膜厚分布の変動が少ないこ とを示している。
以上力 実施例 1のタンタルターゲットは、成膜速度が大きぐ膜の均一性 (ュニフォ ーミティ)が良好であり、また 8インチウェハーで膜厚バラツキが小さぐさらにアーキン グゃパーティクルの発生が無いので、スパッタ成膜の品質を向上させることができた。 実施例 5
[0039] 純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造して厚さ 200mm 、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒径は約 55mmで あった。
次に、このインゴット又はビレットを室温で鍛伸した後、 1500Kの温度での再結晶 焼鈍した。これによつて平均結晶粒径が 200 /z mの組織を持つ厚さ 100mm、直径 1 00mm φの材料が得られた。
次に、これを再度室温で鍛伸及び据え込み鍛造し、再び 1173K温度で再結晶焼 鈍を実施した。これによつて平均結晶粒径が 80 mの組織を持つ厚さ 100mm、直 径 100mm φの材料が得られた。
[0040] 次に、これを冷間で鍛伸と据え込み鍛造及び 1173Kの再結晶焼鈍を行 、、次 ヽ で再度冷間圧延し、 1173K(900° C)で焼鈍の工程を 2回繰り返し、仕上げ力卩ェを 行って厚さ 10mm、直径 320mm φのターゲット材とした。
以上の工程により、タンタルターゲットの表面において、全体の結晶配向の総和を 1と した時に、(100)く 001 >、(111)く 001 >、(110)く 001 >の配向であって、 ND 方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差であるような結晶の面 積率がそれぞれ 0. 5、 0. 2、 0. 1であるランダム配向のタンタルスパッタリングターゲ ットを得ることができた。また、このターゲットは後述するスパッタリング後のエロージョ ン面でも同様の配向をもつ組織を備えて 、た。
ターゲットの平均結晶粒径は 60 mであり、ターゲット表面を EBSPで解析したとき 、粒径 40— 120 μ mの結晶粒が 100— 1000個 Zmm2存在していた。 [0041] シート抵抗は膜厚に依存するので、ウェハー(8インチ)内のシート抵抗の分布を測 定し、それによつて膜厚の分布状況を調べた。
具体的には、ウェハー上の 49点のシート抵抗を測定し、その標準偏差( σ )を算出し た。その結果を表 1に示す。
表 1から明らかなように、実施例 1においては、スパッタ初期から後期にかけてシート 内抵抗分布の変動が少ない(3. 0— 3. 3%)、すなわち膜厚分布の変動が少ないこ とを示している。
以上力 実施例 1のタンタルターゲットは、成膜速度が大きぐ膜の均一性 (ュニフォ ーミティ)が良好であり、また 8インチウェハーで膜厚バラツキが小さぐさらにアーキン グゃパーティクルの発生が無いので、スパッタ成膜の品質を向上させることができた。 実施例 6
[0042] 純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造して厚さ 200mm 、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒径は約 50mmで あった。
次に、このインゴット又はビレットを室温で鍛伸した後、 1500Kの温度での再結晶 焼鈍した。これによつて平均結晶粒径が 200 /z mの組織を持つ厚さ 100mm、直径 1 00mm φの材料が得られた。
次に、これを再度室温で鍛伸及び据え込み鍛造し、再び 1173K温度で再結晶焼 鈍を実施した。これによつて平均結晶粒径が 80 mの組織を持つ厚さ 100mm、直 径 100mm φの材料が得られた。
[0043] 次に、これを冷間で鍛伸と据え込み鍛造及び 1173Kの再結晶焼鈍を行 、、次 ヽ で冷間圧延し、 1173K(900° C)で焼鈍、冷間圧延し、 1273K(1000° C)で焼鈍 及び仕上げ力卩ェを行って厚さ 10mm、直径 320mm φのターゲット材とした。
以上の工程により、タンタルターゲットの表面において、全体の結晶配向の総和を 1と した時に、 100)く 001 >、(111)く 001 >、(110)く 001 >の配向であって、 ND 方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差であるような結晶の面 積率がそれぞれ 0. 2、 0. 4、 0. 1であるランダム配向のタンタルスパッタリングターゲ ットを得ることができた。また、このターゲットは後述するスパッタリング後のエロージョ ン面でも同様の配向をもつ組織を備えて 、た。
ターゲットの平均結晶粒径は 80 mであり、ターゲット表面を EBSPで解析したとき 、粒径 50— 150 mの結晶粒が 100— 1000個 Zmm2存在して!/、た。
[0044] シート抵抗は膜厚に依存するので、ウェハー(8インチ)内のシート抵抗の分布を測 定し、それによつて膜厚の分布状況を調べた。
具体的には、ウェハー上の 49点のシート抵抗を測定し、その標準偏差( σ )を算出し た。その結果を表 1に示す。
表 1から明らかなように、実施例 1においては、スパッタ初期から後期にかけてシート 内抵抗分布の変動が少ない(2. 5— 3. 3%)、すなわち膜厚分布の変動が少ないこ とを示している。
以上力 実施例 1のタンタルターゲットは、成膜速度が大きぐ膜の均一性 (ュニフォ ーミティ)が良好であり、また 8インチウェハーで膜厚バラツキが小さぐさらにアーキン グゃパーティクルの発生が無いので、スパッタ成膜の品質を向上させることができた。
[0045] (比較例 1)
実施例 1と同様の純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造 して厚さ 200mm、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒 径は約 55mmであった。次に、このインゴット又はビレットを室温で鍛伸と据え込み鍛 造した後、 1173Kの温度での再結晶焼鈍した。これによつて平均結晶粒径が 180 mの組織を持つ厚さ 100mm、直径 100mm φの材料が得られた。
次に、これを再度室温で鍛伸と据え込み鍛造を行い、再び 1173K温度で再結晶 焼鈍を実施した。これによつて平均結晶粒径が 80 mの組織を持つ厚さ 100mm、 直径 100mm φの材料が得られた。
次に、これを冷間圧延と 1173Kでの再結晶焼鈍及び仕上げ加工を行って厚さ 10 mm、直径 320mm φのターゲット材とした。
[0046] 以上の工程により得たタンタルターゲットは、平均結晶粒径が 55 μ mで、場所による ノ ラツキがあり、タンタルターゲットの表面において、全体の結晶配向の総和を 1とし た時に、(100)、(111)、 (110)の配向の面積率がそれぞれ 0. 8、0. 2、 0である均 一配向のタンタルスパッタリングターゲットを得ることができた。 このタンタルターゲットを使用してスパッタリングを実施したところ、膜の均一性 (ュ- フォーミティ)が悪ぐスパッタ成膜の品質を低下させる原因となった。この結果を、同 様に表 1に示す。
表 1の比較例 1に示す結果は、実施例 1と同様にしてウェハー(8インチ)上の 49点 のシート抵抗を測定し、その標準偏差( σ )を算出した結果である。比較例 1では、ス ノ ッタ初期から後期にかけてシート内抵抗分布の変動が大きい (4. 5-5. 5%)、す なわち膜厚分布の変動が著し 、ことを示して 、る。
また、 8インチウェハーで膜厚バラツキが大きぐまたアーキングゃパーティクルの発 生があり、スパッタ成膜の品質を低下させる原因となった。
[0047] (比較例 2)
実施例 1と同様の純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造 して厚さ 200mm、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒 径は約 55mmであった。次に、このインゴット又はビレットを室温で冷間こねくり鍛造し た後、 1173Kの温度での再結晶焼鈍した。これによつて平均結晶粒径が 180 mの 組織を持つ厚さ 100mm、直径 100mm φの材料が得られた。
次に、これを再度室温で鍛伸と据え込み鍛造を行い、再び 1173K温度で再結晶 焼鈍を実施した。これによつて平均結晶粒径が 80 mの組織を持つ厚さ 100mm、 直径 100mm φの材料が得られた。
次に、これを冷間圧延と 1373Kでの再結晶焼鈍及び仕上げ加工を行って厚さ 10 mm、直径 320mm φのターゲット材とした。
[0048] 以上の工程により得たタンタルターゲットは粗大化した結晶を持つタンタルターゲット となった。
以上の工程により得たタンタルターゲットは、平均結晶粒径が 96 μ mでバラツキがあ り、タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100 )、(111)、(110)の配向の面積率がそれぞれ 0. 2、 0. 7、0. 1である均一配向のタ ンタルスパッタリングターゲットを得ることができた。
このタンタルターゲットを使用してスパッタリングを実施したところ、膜の均一性 (ュ- フォーミティ)が悪ぐスパッタ成膜の品質を低下させる原因となった。この結果を、同 様に表 1に示す。
表 1の比較例 2に示す結果は、実施例 1と同様にしてウェハー(8インチ)上の 49点 のシート抵抗を測定し、その標準偏差( σ )を算出した結果である。比較例 2では、ス ノ ッタ初期から後期にかけてシート内抵抗分布の変動が大きい (4. 7-5. 3%)、す なわち膜厚分布の変動が著し 、ことを示して 、る。
このタンタルターゲットは、膜の均一性(ュ-フォーミティ)が悪ぐ 8インチウェハーで 膜厚バラツキが大きぐまたアーキングゃパーティクルの発生があり、スパッタ成膜の 品質を低下させる原因となった。
[0049] (比較例 3)
実施例 1と同様の純度 99. 997%のタンタル原料を電子ビーム溶解し、これを铸造 して厚さ 200mm、直径 200mm φのインゴット又はビレットとした。この場合の結晶粒 径は約 55mmであった。次に、このインゴット又はビレットを室温で冷間こねくり鍛造し た後、 1173Kの温度での再結晶焼鈍した。これによつて平均結晶粒径が 180 mの 組織を持つ厚さ 100mm、直径 100mm φの材料が得られた。
次に、これを再度室温で鍛伸と据え込み鍛造を行い、再び 1173K温度で再結晶 焼鈍を実施した。これによつて平均結晶粒径が 80 mの組織を持つ厚さ 100mm、 直径 100mm φの材料が得られた。
次に、これを冷間圧延と 1123Kでの再結晶焼鈍及び仕上げ力卩ェを行って厚さ 10m m、直径 320mm φのターゲット材とした。
[0050] 以上の工程により得たタンタルターゲットは、平均結晶粒径が 37 μ mでバラツキがあ り、タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100 ) < 001 >、(111)く 001 >、(110)く 001 >の配向であって、 ND方向軸(圧延面 法線方向軸)に対して、 10° 以内の回転誤差であるような結晶の面積率がそれぞれ 0. 7、 0. 2、 0. 1である均一配向のタンタルスパッタリングターゲットを得ることができ た。ターゲットの表面から中心部にかけてはほぼ配向が揃ったタンタルターゲットとな つ 7こ。
このタンタルターゲットを使用してスパッタリングを実施したところ、膜の均一性 (ュ- フォーミティ)が悪ぐスパッタ成膜の品質を低下させる原因となった。この結果を、同 様に表 1に示す。
表 1の比較例 3に示す結果は、実施例 1と同様にしてウェハー(8インチ)上の 49点 のシート抵抗を測定し、その標準偏差( σ )を算出した結果である。比較例 2では、ス ノ ッタ初期から後期にかけてシート内抵抗分布の変動が大きい(3. 9-4. 5%)、す なわち膜厚分布の変動が著し 、ことを示して 、る。
このタンタルターゲットは、膜の均一性(ュ-フォーミティ)が悪ぐ 8インチウェハーで 膜厚バラツキが大きぐまたアーキングゃパーティクルの発生があり、スパッタ成膜の 品質を低下させる原因となった。
産業上の利用可能性
本発明は、従来の再結晶焼鈍による粗大結晶又は結晶方位が特定の方位に揃つ たターゲットではなぐランダムな方位を備えたタンタルターゲットであり、これによつて 、成膜速度が大きぐ膜の均一性 (ュ-フォーミティ)に優れ、またアーキングゃパー ティクルの発生が少なぐさらに高利用効率であることが要求されているタンタルスパ ッタリングターゲットに適用できる。

Claims

請求の範囲
[1] タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100) 、(111)、(110)のいずれの配向を有する結晶も、その面積率が 0. 5を超えないこと を特徴とするタンタルスパッタリングターゲット。
[2] タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100)、
(111)、(110)の内の、いずれ力 2つの配向を有する結晶の面積率の和が 0. 75を 超えないことを特徴とするタンタルスパッタリングターゲット。
[3] タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100)、
(111)、(110)の内の、いずれ力 2つの配向を有する結晶の面積率の和が 0. 75を 超えないことを特徴とする請求項 1記載のタンタルスパッタリングターゲット。
[4] タンタルターゲットの表面がスパッタされたエロージョン面であることを特徴とする請 求項 1一 3のいずれかに記載のタンタルスパッタリングターゲット。
[5] タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100) < 001 >、(111) < 001 >、(110) < 001 >の!ヽずれ力の酉己向を有する結晶であつ て、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差であるような結 晶の面積率が 0. 5を超えないことを特徴とするタンタルスパッタリングターゲット。
[6] タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100) < 001 >、(111) < 001 >、(110) < 001 >の内の、!/ヽずれ力 2つの酉己向を有する 結晶であって、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差で あるような同結晶の面積率の和が 0. 75を超えないことを特徴とするタンタルスパッタ リングターゲット。
[7] タンタルターゲットの表面において、全体の結晶配向の総和を 1とした時に、(100) < 001 >、(111) < 001 >、(110) < 001 >の内の、!/ヽずれ力 2つの酉己向を有する 結晶であって、 ND方向軸 (圧延面法線方向軸)に対して、 10° 以内の回転誤差で あるような同結晶の面積率の和が 0. 75を超えないことを特徴とする請求項 5記載の タンタノレスパッタリングターゲット。
[8] タンタルターゲットの表面がスパッタされたエロージョン面であることを特徴とする請 求項 5— 7のいずれかに記載のタンタルスパッタリングターゲット。 [9] タンタルターゲットの表面において、(100)配向を測定した EBSPによる極点図に おいて、結晶方位の完全ランダムを 1として強度を測定した場合において、 1以上の 強度を 6分割したスケールによって表現し、極点図上の Θが 0° 又は 90° 方向だけ でなぐその中間に強度 1以上のピークを持つことを特徴とするタンタルスパッタリング ターグット。
[10] タンタルターゲットの表面において、(100)配向を測定した EBSPによる極点図に おいて、結晶方位の完全ランダムを 1として強度を測定した場合において、 1以上の 強度を 6分割したスケールによって表現し、極点図上の Θが 0° 又は 90° 方向だけ でなぐその中間に強度 1以上のピークを持つことを特徴とする請求項 1一 9のいずれ かに記載のタンタルスパッタリングターゲット。
[11] タンタルターゲットの表面において、(100)配向を測定した EBSPによる極点図に おいて、結晶方位の完全ランダムを 1として強度を測定した場合において、 1以上の 強度を 6分割したスケールによって表現し、極点図上の ND方向(0° )以外に出現す るピークの強度 1以上で示される部分が 20° 以上の広がりを持つことを特徴とするタ ンタルスパッタリングターゲット。
[12] タンタルターゲットの表面において、(100)配向を測定した EBSPによる極点図に おいて、結晶方位の完全ランダムを 1として強度を測定した場合において、 1以上の 強度を 6分割したスケールによって表現し、極点図上の ND方向(0° )以外に出現す るピークの強度 1以上で示される部分が 20° 以上の広がりを持つことを特徴とする請 求項 1一 9のいずれかに記載のタンタルスパッタリングターゲット。
[13] ターゲットの平均結晶粒径が 80 m以下であることを特徴とする請求項 1一 12のい ずれかに記載のターゲット。
[14] ターゲットが圧延加工組織による微細組織を備え、ターゲット表面を EBSPで解析 したとき、粒径 25— 150 mの結晶粒が 100— 1000個 Zmm2存在して!/、ることを特 徴とする請求項 1一 13のいずれかに記載のターゲット。
[15] タンタルターゲットの表面がスパッタされたエロージョン面であることを特徴とする請 求項 14に記載のタンタルスパッタリングターゲット。
[16] ターゲットの純度が 99. 99%以上であることを特徴とする請求項 1一 15のいずれか
£LtSlO/tOOZd£/∑Jd SS 060S^0/S00Z OAV
PCT/JP2004/015473 2003-11-06 2004-10-20 タンタルスパッタリングターゲット WO2005045090A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/572,252 US7892367B2 (en) 2003-11-06 2004-10-20 Tantalum sputtering target
EP04792639.9A EP1681368B1 (en) 2003-11-06 2004-10-20 Method to produce a tantalum sputtering target
KR1020067009993A KR100760156B1 (ko) 2003-11-06 2004-10-20 탄탈륨 스퍼터링 타겟트
CN2004800309185A CN1871372B (zh) 2003-11-06 2004-10-20 钽溅射靶
JP2005515251A JP4593475B2 (ja) 2003-11-06 2004-10-20 タンタルスパッタリングターゲット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-376380 2003-11-06
JP2003376380 2003-11-06

Publications (1)

Publication Number Publication Date
WO2005045090A1 true WO2005045090A1 (ja) 2005-05-19

Family

ID=34567109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015473 WO2005045090A1 (ja) 2003-11-06 2004-10-20 タンタルスパッタリングターゲット

Country Status (7)

Country Link
US (1) US7892367B2 (ja)
EP (2) EP1681368B1 (ja)
JP (3) JP4593475B2 (ja)
KR (1) KR100760156B1 (ja)
CN (2) CN101857950B (ja)
TW (1) TW200523376A (ja)
WO (1) WO2005045090A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117949A1 (ja) * 2005-04-28 2006-11-09 Nippon Mining & Metals Co., Ltd. スパッタリングターゲット
WO2007040014A1 (ja) * 2005-10-04 2007-04-12 Nippon Mining & Metals Co., Ltd. スパッタリングターゲット
JP2007302996A (ja) * 2006-04-13 2007-11-22 Ulvac Material Kk Taスパッタリングターゲットおよびその製造方法
JP2010535943A (ja) * 2007-08-06 2010-11-25 エイチ.シー. スターク インコーポレイテッド 組織の均一性が改善された高融点金属プレート
WO2011111373A1 (ja) * 2010-03-11 2011-09-15 株式会社 東芝 スパッタリングターゲットとその製造方法、および半導体素子の製造方法
WO2012144407A1 (ja) * 2011-04-18 2012-10-26 株式会社東芝 高純度Niスパッタリングターゲットおよびその製造方法
WO2013080801A1 (ja) 2011-11-30 2013-06-06 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
WO2013141231A1 (ja) 2012-03-21 2013-09-26 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法並びに同ターゲットを用いて形成した半導体配線用バリア膜
WO2014097900A1 (ja) 2012-12-19 2014-06-26 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
WO2014136679A1 (ja) * 2013-03-04 2014-09-12 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
WO2015146516A1 (ja) * 2014-03-27 2015-10-01 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
KR20170127548A (ko) 2015-05-22 2017-11-21 제이엑스금속주식회사 탄탈 스퍼터링 타깃 및 그 제조 방법
WO2018179742A1 (ja) * 2017-03-30 2018-10-04 Jx金属株式会社 タンタルスパッタリングターゲット

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883546B2 (ja) * 2002-09-20 2012-02-22 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲットの製造方法
JP4263900B2 (ja) * 2002-11-13 2009-05-13 日鉱金属株式会社 Taスパッタリングターゲット及びその製造方法
EP1609881B1 (en) * 2003-04-01 2011-04-20 Nippon Mining & Metals Co., Ltd. Method of manufacturing a tantalum sputtering target
JP5187713B2 (ja) * 2006-06-09 2013-04-24 国立大学法人電気通信大学 金属材料の微細化加工方法
JP4290211B2 (ja) 2006-08-11 2009-07-01 キヤノン株式会社 結晶性金属膜
KR101070185B1 (ko) * 2006-10-03 2011-10-05 Jx닛코 닛세끼 킨조쿠 가부시키가이샤 구리-망간 합금 스퍼터링 타겟트 및 반도체 배선
SG173141A1 (en) 2009-05-22 2011-08-29 Jx Nippon Mining & Metals Corp Tantalum sputtering target
SG174153A1 (en) 2009-08-11 2011-10-28 Jx Nippon Mining & Metals Corp Tantalum sputtering target
KR20150039218A (ko) * 2009-11-17 2015-04-09 가부시끼가이샤 도시바 탄탈 스퍼터링 타겟 및 탄탈 스퍼터링 타겟의 제조 방법 및 반도체 소자의 제조 방법
SG186765A1 (en) 2010-08-09 2013-02-28 Jx Nippon Mining & Metals Corp Tantalum sputtering target
CN102658346A (zh) * 2012-04-06 2012-09-12 宁夏东方钽业股份有限公司 一种大规格钽靶材的锻造方法
WO2014097897A1 (ja) 2012-12-19 2014-06-26 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
CN104046942B (zh) * 2013-03-12 2016-09-14 中国兵器工业第五九研究所 一种金属钽涂层的制备方法
KR20170141280A (ko) 2013-10-01 2017-12-22 제이엑스금속주식회사 탄탈 스퍼터링 타깃
WO2016190160A1 (ja) * 2015-05-22 2016-12-01 Jx金属株式会社 タンタルスパッタリングターゲット及びその製造方法
CN107614744B (zh) 2015-12-28 2020-04-24 Jx金属株式会社 溅射靶的制造方法
TWI707956B (zh) * 2016-06-28 2020-10-21 光洋應用材料科技股份有限公司 鉭靶材及其製法
CN106521434B (zh) * 2016-11-07 2019-01-22 长沙南方钽铌有限责任公司 一种具有择优取向的高纯钽靶材的制备方法
CN114645253B (zh) * 2022-03-09 2023-09-05 先导薄膜材料(安徽)有限公司 一种半导体钽靶材及其锻造方法
CN115458675B (zh) * 2022-11-11 2023-04-18 阿里巴巴达摩院(杭州)科技有限公司 钽金属薄膜处理方法、量子器件及量子芯片

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195611A (ja) * 1996-12-27 1998-07-28 Dowa Mining Co Ltd 結晶方位の制御されたfcc金属及びその製造方法
JPH1180942A (ja) * 1997-09-10 1999-03-26 Japan Energy Corp Taスパッタターゲットとその製造方法及び組立体
JP2000323433A (ja) * 1999-05-11 2000-11-24 Toshiba Corp スパッタターゲット、配線膜および電子部品
JP2000323434A (ja) * 1999-05-11 2000-11-24 Toshiba Corp スパッタターゲット、配線膜および電子部品
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
JP2002518593A (ja) 1998-06-17 2002-06-25 ジヨンソン マテイ エレクトロニクス,インコーポレーテツド 微細で一様な構造とテキスチュアを有する金属製品及びその製造方法
JP2002530534A (ja) * 1998-11-25 2002-09-17 キャボット コーポレイション 高純度タンタルおよびそれを含む、スパッタターゲットのような製品
JP2002363736A (ja) * 2001-06-06 2002-12-18 Toshiba Corp スパッタターゲット、バリア膜および電子部品
JP2004027358A (ja) * 2003-01-10 2004-01-29 Nikko Materials Co Ltd ターゲットの製造方法及びターゲット
JP2004107758A (ja) * 2002-09-20 2004-04-08 Nikko Materials Co Ltd タンタルスパッタリングターゲット及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825634C2 (de) 1988-07-28 1994-06-30 Thyssen Stahl Ag Verfahren zur Erzeugung von Warmbad oder Grobblechen
US5590389A (en) * 1994-12-23 1996-12-31 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
US6197134B1 (en) 1997-01-08 2001-03-06 Dowa Mining Co., Ltd. Processes for producing fcc metals
US6323055B1 (en) 1998-05-27 2001-11-27 The Alta Group, Inc. Tantalum sputtering target and method of manufacture
US6193821B1 (en) 1998-08-19 2001-02-27 Tosoh Smd, Inc. Fine grain tantalum sputtering target and fabrication process
JP2000355761A (ja) 1999-06-17 2000-12-26 Hitachi Metals Ltd バリア材成膜用Ta系ターゲットおよびその製造方法
JP2001020065A (ja) * 1999-07-07 2001-01-23 Hitachi Metals Ltd スパッタリング用ターゲット及びその製造方法ならびに高融点金属粉末材料
JP4519981B2 (ja) * 2000-03-15 2010-08-04 アルバックマテリアル株式会社 固相拡散接合スパッタリングターゲット組立て体及びその製造方法
JP3905301B2 (ja) 2000-10-31 2007-04-18 日鉱金属株式会社 タンタル又はタングステンターゲット−銅合金製バッキングプレート組立体及びその製造方法
IL156802A0 (en) * 2001-01-11 2004-02-08 Cabot Corp Tantalum and niobium billets and methods of producing same
ES2272707T3 (es) * 2001-02-20 2007-05-01 H. C. Starck, Inc. Placas de metal refractario de textura uniforme y metodos para fabricar las mismas.
US6770154B2 (en) * 2001-09-18 2004-08-03 Praxair S.T. Technology, Inc. Textured-grain-powder metallurgy tantalum sputter target
WO2003046250A1 (fr) * 2001-11-26 2003-06-05 Nikko Materials Company, Limited Cible de pulverisation et procede de fabrication associe
JP3898043B2 (ja) * 2001-11-30 2007-03-28 株式会社東芝 スパッタリングターゲットとそれを用いた半導体デバイスおよびスパッタリング装置
JP4263900B2 (ja) 2002-11-13 2009-05-13 日鉱金属株式会社 Taスパッタリングターゲット及びその製造方法
EP1609881B1 (en) * 2003-04-01 2011-04-20 Nippon Mining & Metals Co., Ltd. Method of manufacturing a tantalum sputtering target

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195611A (ja) * 1996-12-27 1998-07-28 Dowa Mining Co Ltd 結晶方位の制御されたfcc金属及びその製造方法
JPH1180942A (ja) * 1997-09-10 1999-03-26 Japan Energy Corp Taスパッタターゲットとその製造方法及び組立体
JP2002518593A (ja) 1998-06-17 2002-06-25 ジヨンソン マテイ エレクトロニクス,インコーポレーテツド 微細で一様な構造とテキスチュアを有する金属製品及びその製造方法
JP2002530534A (ja) * 1998-11-25 2002-09-17 キャボット コーポレイション 高純度タンタルおよびそれを含む、スパッタターゲットのような製品
JP2000323433A (ja) * 1999-05-11 2000-11-24 Toshiba Corp スパッタターゲット、配線膜および電子部品
JP2000323434A (ja) * 1999-05-11 2000-11-24 Toshiba Corp スパッタターゲット、配線膜および電子部品
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
JP2002363736A (ja) * 2001-06-06 2002-12-18 Toshiba Corp スパッタターゲット、バリア膜および電子部品
JP2004107758A (ja) * 2002-09-20 2004-04-08 Nikko Materials Co Ltd タンタルスパッタリングターゲット及びその製造方法
JP2004027358A (ja) * 2003-01-10 2004-01-29 Nikko Materials Co Ltd ターゲットの製造方法及びターゲット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1681368A4

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117949A1 (ja) * 2005-04-28 2006-11-09 Nippon Mining & Metals Co., Ltd. スパッタリングターゲット
WO2007040014A1 (ja) * 2005-10-04 2007-04-12 Nippon Mining & Metals Co., Ltd. スパッタリングターゲット
KR100994663B1 (ko) 2005-10-04 2010-11-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 스퍼터링 타깃
JP4949259B2 (ja) * 2005-10-04 2012-06-06 Jx日鉱日石金属株式会社 スパッタリングターゲット
JP2007302996A (ja) * 2006-04-13 2007-11-22 Ulvac Material Kk Taスパッタリングターゲットおよびその製造方法
JP2014012893A (ja) * 2007-08-06 2014-01-23 Hc Starck Inc 組織の均一性が改善された高融点金属プレート
JP2010535943A (ja) * 2007-08-06 2010-11-25 エイチ.シー. スターク インコーポレイテッド 組織の均一性が改善された高融点金属プレート
US9767999B2 (en) 2007-08-06 2017-09-19 H.C. Starck Inc. Refractory metal plates
US9095885B2 (en) 2007-08-06 2015-08-04 H.C. Starck Inc. Refractory metal plates with improved uniformity of texture
JP5718896B2 (ja) * 2010-03-11 2015-05-13 株式会社東芝 スパッタリングターゲットとその製造方法、および半導体素子の製造方法
USRE47788E1 (en) 2010-03-11 2019-12-31 Kabushiki Kaisha Toshiba Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
WO2011111373A1 (ja) * 2010-03-11 2011-09-15 株式会社 東芝 スパッタリングターゲットとその製造方法、および半導体素子の製造方法
US9382613B2 (en) 2010-03-11 2016-07-05 Kabushiki Kaisha Toshiba Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
CN102791905A (zh) * 2010-03-11 2012-11-21 株式会社东芝 溅射靶及其制造方法、以及半导体元件的制造方法
JPWO2011111373A1 (ja) * 2010-03-11 2013-06-27 株式会社東芝 スパッタリングターゲットとその製造方法、および半導体素子の製造方法
JP5951599B2 (ja) * 2011-04-18 2016-07-13 株式会社東芝 高純度Niスパッタリングターゲットおよびその製造方法
WO2012144407A1 (ja) * 2011-04-18 2012-10-26 株式会社東芝 高純度Niスパッタリングターゲットおよびその製造方法
WO2013080801A1 (ja) 2011-11-30 2013-06-06 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
KR20160108570A (ko) 2011-11-30 2016-09-19 제이엑스금속주식회사 탄탈 스퍼터링 타깃 및 그 제조 방법
KR20140105004A (ko) 2012-03-21 2014-08-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 탄탈 스퍼터링 타깃 및 그 제조 방법 그리고 동 타깃을 사용하여 형성한 반도체 배선용 배리어막
KR20160148063A (ko) 2012-03-21 2016-12-23 제이엑스금속주식회사 탄탈 스퍼터링 타깃 및 그 제조 방법 그리고 동 타깃을 사용하여 형성한 반도체 배선용 배리어막
WO2013141231A1 (ja) 2012-03-21 2013-09-26 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法並びに同ターゲットを用いて形成した半導体配線用バリア膜
WO2014097900A1 (ja) 2012-12-19 2014-06-26 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
CN104937133A (zh) * 2013-03-04 2015-09-23 吉坤日矿日石金属株式会社 钽溅射靶及其制造方法
JP5905600B2 (ja) * 2013-03-04 2016-04-20 Jx金属株式会社 タンタルスパッタリングターゲット及びその製造方法
WO2014136679A1 (ja) * 2013-03-04 2014-09-12 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
KR20160027122A (ko) 2014-03-27 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 탄탈 스퍼터링 타깃 및 그 제조 방법
JP6009683B2 (ja) * 2014-03-27 2016-10-19 Jx金属株式会社 タンタルスパッタリングターゲット及びその製造方法
WO2015146516A1 (ja) * 2014-03-27 2015-10-01 Jx日鉱日石金属株式会社 タンタルスパッタリングターゲット及びその製造方法
KR20170127548A (ko) 2015-05-22 2017-11-21 제이엑스금속주식회사 탄탈 스퍼터링 타깃 및 그 제조 방법
WO2018179742A1 (ja) * 2017-03-30 2018-10-04 Jx金属株式会社 タンタルスパッタリングターゲット
JPWO2018179742A1 (ja) * 2017-03-30 2019-04-04 Jx金属株式会社 タンタルスパッタリングターゲット
US11177119B2 (en) 2017-03-30 2021-11-16 Jx Nippon Mining & Metals Corporation Tantalum sputtering target

Also Published As

Publication number Publication date
EP1681368B1 (en) 2021-06-30
EP1681368A1 (en) 2006-07-19
JP5578496B2 (ja) 2014-08-27
CN1871372B (zh) 2010-11-17
TW200523376A (en) 2005-07-16
EP1681368A4 (en) 2009-01-28
US7892367B2 (en) 2011-02-22
JP2009197332A (ja) 2009-09-03
TWI301512B (ja) 2008-10-01
CN1871372A (zh) 2006-11-29
CN101857950B (zh) 2012-08-08
JP2013174019A (ja) 2013-09-05
US20070023281A1 (en) 2007-02-01
EP2253730A2 (en) 2010-11-24
EP2253730A3 (en) 2011-01-19
KR20060097044A (ko) 2006-09-13
EP2253730B1 (en) 2018-05-02
KR100760156B1 (ko) 2007-09-18
JPWO2005045090A1 (ja) 2007-11-29
JP4593475B2 (ja) 2010-12-08
CN101857950A (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
WO2005045090A1 (ja) タンタルスパッタリングターゲット
KR100698745B1 (ko) 탄탈륨 스퍼터링 타겟트 및 그 제조방법
CN111197148B (zh) 靶材的制作方法
JP4263900B2 (ja) Taスパッタリングターゲット及びその製造方法
JP2004513228A (ja) 物理蒸着ターゲット及び金属材料の製造方法
ZA200306399B (en) Refractory metal plates with uniform texture and methods of making the same.
EP1552032A1 (en) Copper sputtering targets and methods of forming copper sputtering targets
JP2002518593A (ja) 微細で一様な構造とテキスチュアを有する金属製品及びその製造方法
WO2019058721A1 (ja) スパッタリング用チタンターゲット及びその製造方法、並びにチタン含有薄膜の製造方法
JP6293929B2 (ja) タンタルスパッタリングターゲット及びその製造方法
JP6293928B2 (ja) タンタルスパッタリングターゲット及びその製造方法
JPH10195611A (ja) 結晶方位の制御されたfcc金属及びその製造方法
CN111441020A (zh) 一种低成本制备tc4钛合金溅射靶材的方法
CN113718110B (zh) 一种采用累积能量控制板材组织的高品质铌板的制备方法
CN114657345A (zh) 铁靶材、铁镍合金靶材以及靶材的晶粒细化方法
CN115992342A (zh) 一种高纯银溅射靶材及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030918.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515251

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004792639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007023281

Country of ref document: US

Ref document number: 10572252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067009993

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792639

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009993

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10572252

Country of ref document: US