WO2004104097A1 - エポキシ樹脂組成物 - Google Patents

エポキシ樹脂組成物 Download PDF

Info

Publication number
WO2004104097A1
WO2004104097A1 PCT/JP2004/006943 JP2004006943W WO2004104097A1 WO 2004104097 A1 WO2004104097 A1 WO 2004104097A1 JP 2004006943 W JP2004006943 W JP 2004006943W WO 2004104097 A1 WO2004104097 A1 WO 2004104097A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
polyphenylene ether
resin composition
mass
epoxy
Prior art date
Application number
PCT/JP2004/006943
Other languages
English (en)
French (fr)
Inventor
Hiroshi Uchida
Kenzo Onizuka
Yoshihiko Takada
Tetsuji Tokiwa
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to US10/557,336 priority Critical patent/US20070093614A1/en
Priority to EP04734352A priority patent/EP1630199A4/en
Priority to JP2005506366A priority patent/JP4413190B2/ja
Priority to CN2004800141748A priority patent/CN1795238B/zh
Publication of WO2004104097A1 publication Critical patent/WO2004104097A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to an epoxy resin composition and an epoxy resin composition solution containing polyphenylene ether useful as an insulating material for a printed wiring board and the like, a varnish using an organic solvent for the epoxy resin composition, and a varnish using the varnish.
  • the present invention relates to films and printed wiring boards and electronic devices using them.
  • Epoxy resins which are excellent in cost performance, are widely used as insulating materials for printed wiring boards.
  • higher functionality has been demanded in order to cope with higher density wiring.
  • printed wiring boards used in high-frequency regions such as satellite communications require insulating materials with excellent dielectric properties such as low dielectric constant and low dielectric loss tangent to prevent signal delay.
  • a laminate having excellent dielectric properties can be obtained by using an epoxy resin composition containing polyphenylene ether.
  • the processability and the like are reduced by incorporating epoxy groups into polyphenylene ether to lower the melt viscosity of the resin. Those with improved properties such as adhesiveness are known.
  • a laminated plate is prepared by impregnating a base material such as glass fiber with a resin solution (varnish) to produce a dried pre-preda, and laminating the pre-preda with a metal foil such as a copper foil under pressure and heating. Is done.
  • a solvent generally used when preparing an epoxy resin composition containing polyphenylene ether as a varnish includes: There are halogen-based solvents such as dichloromethane and chloroform which are solvents for dissolving polyphenylene ether, and aromatic solvents such as benzene, toluene and xylene. They can be used alone or in combination with two or more solvents. It has been used.
  • the present invention is capable of overcoming the above problems, has excellent long-term stability to ketones widely used for preparing pre-preda, has excellent workability, and does not cause phase separation during the curing process.
  • Another object of the present invention is to provide an epoxy resin composition having excellent dielectric properties with high adhesiveness and heat resistance.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a varnish using ketones as a solvent can be obtained by using polyphenylene ether having a specific molecular weight. . Furthermore, it was surprisingly found that the epoxidation of polyphenylene ether having a specific molecular weight significantly stabilized the solubility in ketones.
  • the present inventors have found that the workability is drastically improved by including at least one of the cage-shaped cinoresesquioxane and the partially-cleaved cage-shaped cinoresesquioxane. Reached.
  • An epoxy resin composition containing a polyphenylene ether having a number average molecular weight of 1,000 to 4,000, a component having a molecular weight of 20,000 or more determined by GPC and substantially 20% or less, and an epoxy resin.
  • Polyphenylene ether having a number average molecular weight of 1,000 to 4000 and containing substantially no components having a molecular weight of 20000 or more determined by GPC, and an epoxy containing epoxy resin Resin composition.
  • An epoxy resin composition containing a polyphenylene ether having a number average molecular weight of 1,000 to 4,000 and containing substantially no component having a molecular weight of 300 or less determined by GPC, and an epoxy resin.
  • An epoxy resin composition comprising a polyphenylene ether having a number average molecular weight of 1,000 to 4,000, substantially free of a component having a molecular weight of 20000 or more and a component having a molecular weight of 300 or less determined by GPC, and an epoxy resin.
  • a ketone solution of an epoxy resin composition comprising at least 10% by mass of the epoxy resin composition according to claim 4 and substantially free of solid matter at room temperature.
  • An epoxidized polyphenylene ether resin obtained by reacting a phenolic hydroxyl group of a polyphenylene ether having a number average molecular weight of 1,000 to 4,000 with an epoxy group of an epoxy conjugate or an epoxy resin.
  • Epoxidized polyphenylene ether resin having an average of three or more epoxy groups per molecule.
  • Epoxidized polyphenylene ether resin having a number average molecular weight of 3,200 to 10,000.
  • An epoxy resin composition comprising the epoxidized polyphenylene ether resin according to claim 4, and an epoxy resin.
  • An epoxy resin composition comprising the epoxidized polyphenylene ether resin according to any one of claims 8 to 14 and an epoxy resin having a property of dissolving in ketone.
  • a ketone solution of the epoxy resin composition which contains the epoxy resin composition according to claim 16 in an amount of 10% by mass or more and has substantially no solid at room temperature.
  • An epoxy resin composition according to claim 16 and at least one of a brominated epoxy resin, a phosphazene compound having an epoxy group, a phosphate ester, a condensed phosphate ester, and a quinone derivative of a phosphine compound as a flame retardant.
  • Epoxy resin composition containing.
  • the epoxy resin composition according to claim 20 comprising 40 to 90% by mass of the epoxidized polyphenylene ether resin, 10 to 50% by mass of the flame retardant, and 0.1 to 30% by mass of the epoxy resin.
  • An electronic member comprising the epoxy resin composition according to any one of, 16, 17 and 19-125.
  • a method for producing an epoxy resin-based polyphenylene ether resin comprising reacting a phenolic hydroxyl group of polyphenylene ether having a number average molecular weight of 1000 4000 with an epoxy group of an epoxy compound or an epoxy resin. The above method.
  • an epoxy resin composition containing a polyphenylene ether having a specific molecular weight is excellent in heat resistance, dielectric properties, workability, and adhesion, and is a stable solution of ketones at room temperature.
  • a laminate having excellent dielectric properties can be provided by using this epoxy resin composition.
  • the polyphenylene ether resin used in the present invention has a number average molecular weight limited to the range of 1,000 to 4,000, and a component having a molecular weight of 20,000 or more is substantially 20% or less.
  • a component having a molecular weight of 20000 or more is substantially 20% or less means that the peak detection area of a molecular weight of 20000 or more in a molecular weight measurement by gel permeation chromatography is 20% or less.
  • substantially not containing a component having a molecular weight of 20000 or more means that the molecular weight at the start of peak detection is 20000 or less in molecular weight measurement by gel permeation chromatography.
  • the polyphenylene ether resin used in the present invention has a number average molecular weight within a range of 1,000 to 4,000 and does not substantially contain a component having a molecular weight of 300 or less.
  • Molecular weight Substantially not containing a component of 300 or less means that the molecular weight at the end of peak detection is 300 or more in molecular weight measurement by gel permeation chromatography.
  • the number average molecular weight of the polyphenylene ether resin used in the present invention is a force restricted to the range of 1000 to 4000, preferably 1500 to 4000, more preferably 2000 to 4000, and still more preferably 2400 to 4000.
  • the number average molecular weight is 4000 or less, the melt viscosity of the resin composition is low and the processability is good.
  • the number average molecular weight is 1,000 or more, an increase in the dielectric constant of the resin composition can be prevented.
  • a component having a molecular weight of 20000 or more is substantially 20. / o or less, the solubility of the polyphenylene ether resin in ketone solvents such as acetone / methyl ketone is good.
  • a component having a molecular weight of 20,000 or more is not substantially contained, and further preferably, a component having a molecular weight of 10,000 or more is not substantially contained, and the long-term stability of the polyphenylene ether resin to ketones is improved. Solubility is maintained.
  • the polyphenylene ether resin does not substantially contain a component having a molecular weight of 300 or less, the heat resistance of the resin composition can be improved and the dielectric constant can be prevented from increasing.
  • the polyphenylene ether resin is, for example, one composed of a structural unit represented by the following formula (1). Specifically, poly (2,6-dimethyl-1,4-phenylene oxide) and the like can be mentioned.
  • n represents a positive integer
  • R, R, R, R are hydrogen or a hydrocarbon having 13 carbon atoms.
  • R 1, R 2, R 3 and R 4 may be the same or different.
  • the polyphenylene ether resin is produced by a polymerization reaction.
  • the term "produced by a polymerization reaction” refers to, for example, a method of oxidatively polymerizing a phenolic compound using an oxygen-containing gas under a copper catalyst or an amine catalyst as disclosed in U.S. Pat. It is.
  • the polyphenylene ether resins obtained by these methods have a number average molecular weight of 0000,000.
  • polyphenylene ether resin having a number average molecular weight in the range of 1,000 to 4,000 in the present invention a commercially available polyphenylene ether resin having a large number average molecular weight is used, and the number average molecular weight is adjusted to the above range.
  • the preparation of the molecular weight of the polyphenylene ether resin is described, for example, in the scientific literature "Journal of organic chemistry, 34, 297-303 (1968)" (shown here. Polyphenylene having a large number-average molecular weight).
  • the ether resin is reacted with a polyphenolic compound such as bisphenol-8, tetramethylbisphenol A, tetramethylbiphenyl, dihydroxydiphenyl ether, phenol novolak, or cresol novolak in the presence of a radical initiator. Then, the above polyphenylene ether resin is subjected to a redistribution reaction to reduce the molecular weight, thereby obtaining a polyphenylene ether resin having a number average molecular weight in the range of 1,000 to 4,000.
  • a polyphenolic compound such as bisphenol-8, tetramethylbisphenol A, tetramethylbiphenyl, dihydroxydiphenyl ether, phenol novolak, or cresol novolak
  • radical initiator examples include dicumyl peroxide, tert-butyl tamyl peroxide, di-tert-butyl peroxide, 2,5-dimethinolate 2,5_di-tert-butyl cumyl peroxyhexine 3,2, 5-Dimethinolee 2,5-ditert-butylperoxyhexane, hi, ⁇ , -bis (tert-butylperoxym-isopropyl) benzene [1,4 (or 1,3) -bis (tert-butylperoxyisopropyl) benzene And benzoyl peroxide.
  • Polyphenylene ether having a number average molecular weight of 1000 4000 can also be produced by a method in which a usual method for producing polyphenylene ether is carried out, and the reaction is stopped at a point in time when the degree of polymerization is low. In addition, it can be efficiently produced by using a mixed solvent of two or more alcohols and a specific amine compound as a catalyst.
  • a radical initiator and / or a polyphenolic compound can be added to complete the redistribution reaction.
  • the obtained polyphenylene ether having a number average molecular weight of 1,000 to 4,000 may be simply dissolved in ketones such as methyl ethyl ketone and acetone, and the insoluble matter may be removed by means such as filtration.
  • the obtained polyphenylene ether having a number average molecular weight of 1,000 to 4,000 can be washed with a solvent such as methanol. Good.
  • the obtained polyphenylene ether preferably has at least 1.2 phenolic hydroxyl groups per molecule. More preferably, the number is 1.4 or more, further preferably 1.6 or more. If the amount of phenolic hydroxyl groups is small, crosslinking defects will occur when cured, resulting in an uneven cured product.
  • Polyphenylene ether having 1.2 or more phenolic hydroxyl groups per molecule can be produced by reacting polyphenylene ether with a polyphenolic compound and redistributing as described above.
  • a polyphenolic compound such as bisphenol A, tetramethylbisphenol A, tetramethyl biphenyl, dihydroxydiphenyl ether, phenol novolak, or cresol novolac is charged in advance in the usual method for producing polyphenylene ether. Can also be produced.
  • the epoxy compound used in the present invention refers to a glycidyl halide such as epichlorohydrin.
  • the epoxy resin used in the present invention has two or more epoxy groups in the molecule. Examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and hindertoin type epoxy resin. And biphenyl type epoxy resins, alicyclic epoxy resins, triphenylmethane type epoxy resins, phenol novolak type epoxy resins, cresol novolak type epoxy resins, and epoxy resins obtained by halogenating these.
  • the polyfunctional epoxy resin used in the present invention is an epoxy resin having three or more epoxy groups in one molecule. Any multifunctional epoxy resin can be used as long as there are three or more epoxy groups in one molecule.
  • phenol novolak epoxy resin, cresol novolak epoxy resin, naphthol novolak epoxy resin, A Novolak type epoxy resin, dicyclopentadiene / phenol epoxy resin, alicyclic amine epoxy resin and aliphatic amine epoxy resin may be used alone or in combination of two or more.
  • the polyfunctional epoxy resin contains at least 5% by mass, preferably 10% by mass, more preferably 20% by mass or more based on the whole epoxy resin. If the amount of the polyfunctional epoxy resin is less than 5% by mass, phase separation occurs as a cured product, and the adhesiveness and heat resistance of the laminate or film are inferior to those containing the polyfunctional epoxy at 5% by mass or more. .
  • the epoxidized polyphenylene ether resin of the present invention preferably has an average of three or more epoxy groups in one molecule. More preferably, it has an average of 5 or more epoxy groups in one molecule.
  • one molecule has an average of three or more epoxy groups, the compatibility with other epoxy resins is excellent.
  • phase separation does not occur because it is incorporated into the crosslinked structure of another epoxy resin during the rapid curing.
  • one molecule contains many polar groups, it is easily dissolved in a polar solvent such as a ketone solution.
  • Epoxidized polyphenylene ether resins include epoxidized polyphenylene ether.
  • the ratio of the skeleton of the polyphenylene ether in the epoxidized polyphenylene ether resin is preferably 30% by mass to 90% by mass. More preferably 40- 80 weight 0/0, more preferably from 50- 60 wt 0/0.
  • the proportion of the skeleton of the polyphenylene ether is 90% by mass or less, the solubility in a ketone at room temperature, which is a feature of the resin composition of the present invention, is exhibited. It is more preferably at most 80% by mass, further preferably at most 60% by mass.
  • the epoxidized polyphenylene ether resin of the present invention preferably has a number average molecular weight of 3200 1,000,000. More preferably, the number average molecular weight is 3500 to 8500, and still more preferably, the number average molecular weight is 5000 to 7000. When the number average molecular weight is 10,000 or less, the melt viscosity is low and the workability is good. A more preferred number average molecular weight is 8500, and an even more preferred number average molecular weight is 7000. Those with a number average molecular weight of 3200 or more and good electrical properties can get. More preferably, the number average molecular weight is 3500 or more, and further preferably, the number average molecular weight is 5000 or more.
  • the higher the number average molecular weight the better the electrical properties.
  • the ratio of the skeleton of polyphenylene ether is 30% by mass, which is the lower limit of the dissolution in the ketone solution, even if the number average molecular weight is 3200, the one with good electrical characteristics can be obtained.
  • the number average molecular weight is 5000, which has better electric properties, a substance having better electric properties can be obtained.
  • An epoxidized polyphenylene ether resin is obtained by reacting a polyphenylene ether with an epoxy compound.
  • a polyphenylene ether For example, it can be obtained by reacting polyphenylene ether and epipic hydrin by a known method. After dissolving the above polyphenylene ether in epichlorohydrin at least 1 times and preferably at least 5 times the phenolic hydroxyl group of polyphenylene ether, hydroxide of alkali metal such as Na ⁇ H, K ⁇ H May be added. The amount of the alkali hydroxide is 1 equivalent or more based on the phenolic hydroxide, and the reaction is carried out at 50-100 ° C for 110 hours.
  • the resulting composition is obtained by removing the produced salt by washing or filtering with water and volatilizing and recovering unreacted epichlorohydrin, or by adding a poor solvent such as methanol to cause precipitation.
  • the epoxidized polyphenylene ether resin is obtained by reacting polyphenylene ether and epoxy resin at 100 ° C to 200 ° C in the presence of a catalyst for the reaction between phenolic hydroxyl groups and epoxy groups. It can also be obtained by reacting for 20 hours and removing unreacted epoxy resin.
  • Catalysts include, for example, hydroxides such as sodium hydroxide and potassium hydroxide, alkylate salts such as sodium methylate and sodium butyrate, and phosphonium salts such as tetrabutylammonium phenylphosphonium bromide and amyl triphenylphosphonium bromide.
  • the epoxy resin used at this time may be any epoxy resin having two or more epoxy groups in the molecule.
  • diglycidyl ethers such as polyethylene glycol, polypropylene glycol, butanediol, hexanediol, cyclohexanedimethanol and the like can be mentioned. These may be used alone or in combination of two or more.
  • a solvent such as toluene
  • methanol a large excess of methanol is added, and the precipitated epoxidized polyphenylene ether resin is filtered off.
  • an epoxidized polyphenylene ether resin having an average of three or more epoxy groups per molecule of the present invention at least 5% by mass, preferably 10% by mass, of a polyfunctional epoxy resin as such in the epoxy resin itself. Preferably, it should be contained at least 20% by mass. By containing a large amount of the polyfunctional epoxy resin, the average number of epoxy groups of the obtained epoxy resin is increased.
  • a polyfunctional epoxy resin it is preferable to use two or more epoxy resins. In particular, it is preferable to use one or more of each of a polyfunctional epoxy resin and a bifunctional epoxy resin.
  • Polyfunctional epoxy resins are useful in increasing the number of epoxy groups in the resulting epoxidized polyphenylene ether resin.However, they make polyphenylene ether difficult to dissolve in the reaction system and react with polyphenylene ether. Gelation is likely to occur. Therefore, it is necessary to add a solvent. However, if the bifunctional epoxy resin is cured during the reaction, the polyphenylene ether is dissolved and the reaction is easily caused, while the effect of preventing gelation is produced. Therefore, the reaction proceeds even in a system in which the solvent cannot be removed, and the desired epoxidized polyphenylene ether resin is obtained.
  • the terminal phenolic hydroxyl group of the epoxidized polyphenylene ether resin is preferably lOmeqZkg or less. When it is less than lOmeqZkg, long-term stable solubility in ketones can be obtained. For long-term stable solubility in ketones, the terminal phenolic hydroxyl group is preferably 5 meq / kg or less, more preferably 3 meq / kg or less.
  • dissolving in ketones at room temperature means that a 10% by mass ketone solution can provide a transparent solution at room temperature. Learn more Preferably, when this solution is filtered, there is no filtration residue. Substantially no solids need to be maintained for at least one day, not just immediately after solution is formed. Preferably, a solution that stably maintains a solid-free state for 30 days or more, more preferably 90 days or more is preferable. Usually, it takes a long time to prepare an epoxy resin composition solution and actually use it.
  • ketones used in the present invention include aliphatic ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone and cyclohexanone, and aromatic ketones such as acetophenone. Preferred are acetone and methyl ethyl ketone, and more preferred is methyl ethyl ketone. Because methyl ether ketone, which depends on the structure of the dissolved polyphenylene ether, can maintain a solid-free state and is a solvent that is commonly used in varnishes for laminates. There is no need to make major changes to the process.
  • the ketone solution of the present invention is not particularly limited in mass as long as it contains ketones, but preferably contains 5% by mass or more, more preferably 15% by mass or more, more preferably 30% by mass or more. More preferably, it is at least 50% by mass.
  • Epoxy polyphenylene ether resin is difficult to stably dissolve in solvents other than ketones and halogen-based solvents. Therefore, when the amount of ketones is small, problems such as crystallization and precipitation occur.
  • the epoxidized polyphenylene ether resin of the present invention can be used as an epoxy resin composition by mixing it with an epoxy resin in order to impart properties other than electrical properties.
  • the amount of the epoxy resin polyphenylene ether resin is preferably 25% by mass or more of the epoxy resin composition. If the amount is less than 25% by mass, the ratio of the polyphenylene ether becomes small, and the electric characteristics deteriorate.
  • an epoxy resin having an oxazolidone ring is selected as the epoxy resin to be mixed, the adhesiveness to a copper foil or a plastic without lowering the heat resistance of the cured product can be improved.
  • at least one of a brominated epoxy resin, an epoxy group-containing phosphazene compound, a phosphate ester, a condensed phosphate ester, and a quinone derivative of a phosphine conjugate is used as a flame retardant. It is good to include more than one. When this flame retardant is contained in an amount of 10% by mass or more of the entire epoxy resin composition, flame retardancy can be achieved. At this time, Choosing a combination that does not contain a brominated epoxy resin results in a halogen-free flame retardant resin.
  • the mixing ratio of each component of the epoxy resin composition is as follows: 4090% by mass of the epoxy resin, 10-50% by mass of the flame retardant, and epoxy resin (preferably having an oxazolidone ring). 0.1 30% by mass. More preferably, 5060% by mass of an epoxidized polyphenylene ether resin having a skeleton of 5060% by mass of a polyphenylene ether, 20-25% by mass of a flame retardant, and an epoxy resin having an oxazolidone ring are used. It is 11 to 10% by mass. When mixed at this ratio, the electrical properties of the resin composition are good, and the balance between heat resistance, adhesiveness, and workability is very good while having flame retardancy.
  • silica is represented by [R 'Si ⁇ ], whereas silica is represented by SiO
  • a polysiloxane synthesized by the hydrolytic monocondensation of a hydride group, a silicon atom-containing group, X halogen atom, alkoxy group, etc.).
  • Ladder-like structure, cage-like (completely condensed cage-like) structure or its partially-cleaved structure (cage-like structure structure A structure in which one silicon atom is missing or a part of a cage-like structure in which a silicon-oxygen bond has been broken Structure) is known.
  • a cage-shaped cinoresesquioxane represented by the following general formula (A) can be given.
  • Examples of the specific structure of the partially-cleaved cage silsesquioxane used in the present invention include, for example, a partially-cleaved cage silsesquioxane represented by the following general formula (B). Structure.
  • the structure of the cage-like cinoresesquioxane or its partially cleaved structure used in the present invention is not limited to these structures.
  • R represents a hydrogen atom, an alkoxyl group having 1 to 6 carbon atoms, an aryloxy group, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or silicon. It is selected from silicon atom-containing groups having 1 to 10 atoms, and all R may be the same or may be composed of a plurality of groups.
  • Examples of the cage silsesquioxane represented by the general formula (A) used in the present invention include a type represented by a chemical formula of [RSiO] (the following general formula (2)) and a chemical formula of [RSiO].
  • the value is an integer of 6 to 14, preferably 8, 10, or 12, more preferably 8, 10, or a mixture of 8, 10, or a mixture of 8, 10, 12; Or 10.
  • X is OR (R is a hydrogen atom, an alkyl group, a quaternary ammonium radical), a halogen atom, or a group selected from the groups defined by R above. May be the same or different.
  • 1 is an integer of 2 to 12, preferably 4 to 10, and particularly preferably 4, 6 or 8.
  • k is 2 or 3.
  • the three Xs may be linked to each other X in the same molecule to form various linked structures.
  • a specific example of the connection structure will be described below.
  • Two Xs in the same molecule of general formula (B) may form an intramolecular linking structure represented by general formula (7). Further, two Xs present in different molecules may be connected to each other to form a dinuclear structure by the connection structure represented by the general formula (7). [Formula 7]
  • connection structure represented by the general formula (7) examples include, for example, a divalent group structure represented by the following formulas (8) and (14).
  • Ph represents a phenyl group.
  • Examples of the compound represented by the general formula (B) used in the present invention include, for example, a trisilanol compound having a structure in which a part of the general formula (3) is eliminated, or a compound synthesized therefrom (RSiO
  • a type that forms the linking structure represented by the general formula (7) (for example, the following general formula (16)), and a disilanol body force in which a part of the general formula (3) is cleaved (RSiO) (RXSiO)
  • connection structure for example, the following general formula (19)
  • R and X or Y and Z bonded to the same silicon atom in the general formulas (15) to (19) may be exchanged with each other.
  • two Xs present in different molecules are linked to each other to form a dinuclear structure by various linking structures represented by the general formula (7). May be good
  • the type of R in the compound represented by the general formula (A) and / or the general formula (B) used in the present invention includes a hydrogen atom, an alkoxyl group having 1 to 6 carbon atoms, an aryloxy group, a carbon atom
  • Examples include a substituted or unsubstituted hydrocarbon group having 1 to 20 atoms or a silicon atom-containing group having 1 to 10 silicon atoms.
  • alkoxyl group having 1 to 6 carbon atoms examples include a methoxy group, an ethoxy group, an n-propyloxy group, an i-propyloxy group, an n-butyloxy group, a t-butyloxy group, an n-xysiloxy group, a cyclohexynoleoxy group and the like.
  • aryloxy group examples include a phenoxy group and a 2,6-dimethylphenoxy group.
  • the total number of alkoxyl groups and aryloxy groups in one molecule of the compound of the general formula (A) or (B) is preferably 3 or less, more preferably 1 or less.
  • hydrocarbon group having 1 to 20 carbon atoms examples include methyl, ethyl, n-propyl, i-propyl, butyl (n-butyl, i-butyl, t-butyl, sec-butyl), pentyl ( n pen Tyl, i-pentyl, neopentyl, cyclopentyl, etc.
  • Hexyl (n-xyl, trihexyl, cyclohexyl, etc.), heptyl (n-butyl, i-butyl, etc.), octyl (n-octyl, i-octyl, t-octyl, etc.) nonyl
  • Non-rings such as (n-nonyl, i-nonyl, etc.), decyl (n-decyl, i_decinole, etc.), pendecyl (n-decinyl, i-decinyl, etc.), dodecyl (n-dodecyl, i-dodecyl, etc.)
  • Formula or cyclic aliphatic hydrocarbon group vinyl, probenole, buteninole, penteninole, hexeninole, cyclohexeninole, cyclohexeninoleetheno
  • hydrocarbon groups particularly, an aliphatic hydrocarbon group having 2 to 20 carbon atoms,
  • the ratio of the number of alkenyl groups of 2 to 20 to the total number of XY is large, particularly good melt fluidity during molding of the cured product can be obtained.
  • R is an aliphatic hydrocarbon group and / or an alkenyl group
  • the number of carbon atoms in R is usually 20 or less, preferably from the viewpoint of balance between melt fluidity, flame retardancy and operability during molding of a cured product. Is less than or equal to 16, more preferably less than or equal to 12.
  • R used in the present invention is such that a hydrogen atom of these various hydrocarbon groups or a part of the main skeleton is an ether bond, an ester group (bond), a hydroxyl group, a carbonyl group, a carboxylic acid, Polar groups (polar bonds) such as anhydride bonds, thiol groups, thioether bonds, sulfone groups, aldehyde groups, epoxy groups, amino groups, amide groups (bonds), urea groups (bonds), isocyanate groups, cyano groups, etc. It may be partially substituted with a substituent selected from a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom.
  • the low melt viscosity of the epoxy resin composition is closely related to improving the moldability of the epoxy resin curable composition containing the following curing agent.
  • an epoxy group and a curing agent, or a part of the epoxy group and a part of the phenolic hydroxyl group react with each other to be in a ⁇ -stage state.
  • This epoch was the stage When the xy-resin-curable composition is subsequently heated under pressure, the viscosity of the molten resin once exhibits the lowest viscosity in the system, and as the curing proceeds, the viscosity increases again.
  • the melt viscosity of the epoxy resin composition affects this minimum viscosity. This is because the lower the melt viscosity of the epoxy resin composition, the lower the minimum viscosity.
  • the present inventors have found that the melt viscosity of the epoxy resin composition of the present invention is significantly reduced by the addition of a cage silsesquioxane and a partially cleaved structure of Z or a cage silsesquioxane. Was found. Furthermore, it was found that the addition of the cage silsesquioxane and the partially-cleaved structure of Z or the cage silsesquioxane can also improve the flame retardancy.
  • the amount of the cage-shaped cinoresesquioxane and Z or the cage-shaped silsesquioxane in the epoxy resin composition is preferably 0.1% by mass to 50% by mass, and more preferably 0.5% by mass. 0 mass%, more preferably 1 mass% to 10 mass%. When the content is 0.1% by mass or more, the effect of reducing the melt viscosity and improving the flame retardancy of the resin composition is great.
  • Any curing agent for the epoxy resin may be used as long as it can react with the epoxy resin to form a three-dimensional network structure.
  • amide-based curing agents such as dicyandiamide and aliphatic polyamide, diaminodiphenylmethane, and metaphenylenediamine Curing agents such as phenol, ammonia, triethynoleamine, and getylamine; phenolic curing agents such as IJ, bisphenol A, bisphenol F, phenol novolak resin, cresol novolak resin, and p-xylene novolak resin
  • a latent curing agent such as an acid anhydride-based curing agent and a latent curing agent.
  • a curing accelerator such as 2-methylimidazole, 2-methyl-4-ethynoleimidazole, 2-phenylimidazole, 1,8-diazabicyclo [5.4.0] indene-17, triethylenediamine, benzyldimethyl Tertiary amines such as amine, tributyl phosphine, organic phosphines such as triphenylphosphine, tetraphenylphosphoniumtetraphenylborate, and tetraphenylboron salts such as triphenylphosphinetetraphenylborate.
  • a single type or a combination of two or more types may be used.
  • substantially causing phase separation means that the obtained cured product is measured by a light scattering device. In the measurement, it means that the scattering maximum exists between 0 ⁇ 1 ⁇ -100 ⁇ ⁇ . This can be confirmed by observing the phase separation with an optical microscope. Since the cured product of the epoxidized poly (phenylene ether) resin of the present invention does not substantially undergo phase separation, even when these phase separations are observed, a clear scattering maximum cannot be confirmed. Also, when the cured product is observed with an optical microscope, no clear phase separation can be confirmed.
  • a halogen-based solvent such as dichloromethane or chloroform used for preparing a varnish of a known polyphenylene ether-containing epoxy resin composition, benzene, toluene, or xylene is used. It is possible to use a ketone solvent, because it can be heated by aromatic solvents such as. Ketone solvents include, for example, aliphatic ketones such as acetone and methyl, and aromatic ketones such as acetophenone.
  • the varnish of the polyphenylene ether-containing epoxy resin composition must use toluene or the like as a solvent and maintain a temperature at which the varnish is stable, for example, 50 ° C or higher.
  • ketones are used as a solvent and can be kept at room temperature, the same handling as a normal epoxy resin varnish can be performed. Further, it is preferable because special handling and equipment such as ordinary polyphenylene ether-containing epoxy resin and varnish of the composition are not required.
  • ketones When using a hardening agent or a hardening accelerator which is hardly soluble in ketones such as dicyandiamide, for example, ketones are used as a main solvent, and as an auxiliary solvent, for example, dimethylformamide is used. Solvents such as methyl sorb, methyl propylene glycol monomethyl ether, and mesitylene can also be used.
  • the solid content in the varnish is not particularly limited, but is preferably 30% to 80%.
  • the pre-preda of the present invention is produced by impregnating the above-mentioned varnish into a substrate, and then drying the solvent and semi-curing by heating.
  • the substrate include glass cloth, aramide cloth, polyester cloth, glass nonwoven cloth, aramide nonwoven cloth, polyester nonwoven cloth, pulp paper, and linter paper.
  • the amount of resin impregnated in the base material is not particularly limited, but it is preferable to impregnate the resin so that the resin content after drying is 30 to 70% based on the mass of the pre-preda.
  • the curable resin metal foil composite of the present invention is composed of a film made of an epoxy resin curable composition and a metal foil. Although the thickness of the film is not particularly limited, it is usually 0.5 ⁇ -5 mm.
  • the metal foil used here is preferably a conductive one, such as a copper foil or an aluminum foil.
  • a method for producing a metal foil with a curable resin for example, a method in which a solution in which an epoxy resin curable composition is dissolved in a solvent, and this solution is cast on a metal foil, is used.
  • a film made of the epoxy resin curable composition of the present invention is prepared by forming a solution, applying it to a polyethylene terephthalate film or the like with a bar coder or the like, and removing the solvent by drying.
  • the thus-prepared B-staged film is laminated on a double-sided copper foil laminate using a hot roll or the like, and heated in an oven or the like to produce a multilayer molded body.
  • the laminate of the present invention can be produced by laminating a pre-preda, a curable resin metal foil composite, a film, and a copper foil in a layer configuration suitable for the purpose, and heating under pressure.
  • a laminate of a desired thickness can be obtained by laminating a plurality of pre-preda and a curable resin metal foil composite on a substrate, bonding the layers under heat and pressure and simultaneously performing thermal crosslinking.
  • a plurality of curable resin metal foil composites may be superposed on a substrate, and the layers may be bonded together under heat and pressure and simultaneously thermoset to obtain a laminate having a desired thickness.
  • the metal foil can be used as both a surface layer and an intermediate layer. It is also possible to sequentially form a multilayer by repeating lamination and curing a plurality of times.
  • the multilayer printed wiring board using the epoxidized polyphenylene ether resin of the present invention refers to a circuit board in which at least one or more conductive layers and organic insulating layers of a circuit board are laminated. Although it is not particularly limited, it can be manufactured by a build-up method using a plating method, a build-up method using a conductive paste connection, a copper-clad laminate, a bulk lamination method using a resin composition for an adhesive, and the like. No. At this time, when using the above-mentioned film and the above-mentioned laminated board, a multilayer print excellent in not only electrical properties but also adhesiveness, heat resistance and solvent resistance is produced. Wiring boards can be created.
  • the electronic device of the present invention refers to an electronic device using the above-mentioned multilayer printed wiring board, and is not particularly limited. Examples thereof include a communication router, a computer, a television, a mobile phone, a PDA, a DVD recorder, and a hard disk recorder. And a digital camera.
  • the sealing resin composition of the present invention is not particularly limited as long as it contains the epoxy resin composition of the present invention, and includes an inorganic filler, a release agent, a coloring agent, a flame retardant, and a low stress agent. It may be included as appropriate.
  • the inorganic filler may be subjected to a surface treatment with a coupling agent to improve the compatibility with the epoxy resin composition.
  • the release agent for example, carnauba wax, polyoxyl group containing lipoxyl group and the like can be mentioned.
  • examples of the colorant include carbon black and the like
  • examples of the flame retardant include antimony trioxide
  • examples of the low stress agent include silicon rubber and silicone oil.
  • the epoxy resin composition of the present invention can also be used for adhesives.
  • the method of use is not particularly limited, but when used in electrical applications, its effects such as electrical properties, adhesiveness, heat resistance, and workability can be sufficiently exhibited.
  • the melt viscosity at 180 ° C. (unit: mPa ⁇ s) of the epoxy resin composition was measured by Contraves rheomat_30.
  • JIS C 6481 Based on JIS C 6481, it was measured using a material testing machine 5582 type made by Instron.
  • the resin was heated and dissolved in a solvent, returned to room temperature, and filtered with a membrane filter.
  • the solvent was dissolved, and the solvent insoluble content (unit: mass%) was measured from the difference between the mass after the solvent was evaporated and the mass of the original filter.
  • the cured product obtained by curing the varnish was analyzed using a light scattering measurement device DYNA-3000 (manufactured by Otsuka Electronics) to determine the presence or absence of a scattering maximum between 0 ⁇ 1 / im-100 / im (that is, Was checked.
  • Surface observation was performed using a laser microscope VHX-100 (manufactured by KEYENCE). X was evaluated when there was phase separation, and ⁇ was evaluated when there was no phase separation.
  • the copper foil laminate was immersed in methylene chloride at 35 ° C for 5 minutes and the appearance changed.
  • the case where swelling occurred in the laminate was evaluated as X, and the case where no swelling occurred was evaluated as ⁇ .
  • the number of epoxy groups in the epoxidized polyphenylene ether resin was calculated by dividing the molecular weight of the epoxidized polyphenylene ether resin by the epoxy equivalent.
  • Tg measurement It was measured based on the DSC method of JIS C 6481.
  • the number average molecular weight was 1900, and did not include a component having a molecular weight of 20,000 or more and a component having a molecular weight of 300 or less.
  • the number of phenolic hydroxyl groups per molecule was 1.7.
  • Polyphenylene ether was obtained in the same manner as in Production example 1 of polyphenylene ether except for the post-washing step with methanol.
  • Polyphenylene ether IV was obtained in the same manner as in Polyphenylene ether production example 1, except for the step of removing additional benzoyl peroxide.
  • the number average molecular weight was 2300, and there were components having a molecular weight of 20000 or more, which did not include components having a molecular weight of 300 or less.
  • the number of phenolic hydroxyl groups per molecule was 1.6.
  • the number average molecular weight was 4500, and a component having a molecular weight of 20000 or more was contained without a component having a molecular weight of 300 or less.
  • the number of phenolic hydroxyl groups per molecule was 1.6.
  • Example 3 The procedure was the same as in Example 3 except that 2,6-dimethylphenol containing 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane was used.
  • the number average molecular weight was 2700 and the molecular weight was 20000 or more.
  • the number of phenolic hydroxyl groups per molecule of this polyphenylene ether was 1.8.
  • polyphenylene ether 7 100 parts by mass of a high molecular weight polyphenylene ether having a number average molecular weight of 20000 (manufactured by Asahi Kasei Corporation) and 30 parts by mass of bisphenol A were dissolved by heating in 100 parts by mass of toluene. 60 parts by mass of benzoyl peroxide was added thereto, and the mixture was stirred at 90 ° C for 60 minutes to cause a redistribution reaction. Further, 60 parts by mass of benzoyl peroxide was added and stirred at 90 ° C. for 30 minutes to complete the redistribution reaction. The reaction mixture was poured into 1000 parts by mass of methanol to obtain a precipitate, which was separated by filtration. The filtrate was washed with 1000 parts by mass of methanol to obtain polyphenylene ether VII.
  • the number average molecular weight was 1100, and did not include components having a molecular weight of 20,000 or more and components having a molecular weight of 300 or less.
  • the number of phenolic hydroxyl groups per molecule was 1.8.
  • 2-methylimidazole is used as a curing catalyst in an amount of 0.1-0.3% by mass based on the solid content of the varnish so that the varnish has a 170 ° C gel time (time required for gelling) between 4 minutes and 5 minutes.
  • the mixture was adjusted within the range described above.
  • an epoxy resin varnish was impregnated into a glass cloth (trade name: 2116, manufactured by Asahi Schwebel Co., Ltd.) and dried to obtain a pre-preda having a resin content of 50% by mass.
  • the Tg of the obtained double-sided copper-clad laminate was measured by DSC.
  • the bending strength of the laminate was evaluated by a bending test.
  • An epoxy resin composition (1) consisting of 100 parts by mass of a oxy resin (AER260 manufactured by Asahi Kasei Corporation) was dissolved in 130 parts by mass of methyl ethyl ketone. Obtained. When this solution was stored at 25 ° C., it was a brown transparent solution for 4 days, but became cloudy on the 5th day, and the insoluble content was measured to be 0.5% by mass.
  • a oxy resin AER260 manufactured by Asahi Kasei Corporation
  • a mixture obtained by adding 100 parts by mass of polyphenylene ether I and 100 parts by mass of AER260 was melt-mixed, and the melt viscosity at 180 ° C. was measured to be 2500 mPa's.
  • An epoxy resin composition (2) consisting of 100 parts by mass of polyphenylene ether II and 100 parts by mass of a bisphenol A type epoxy resin (AER260 manufactured by Asahi Kasei Corporation) as an epoxy resin was mixed with methyl ethyl ketone 130 When dissolved in parts by mass, a homogeneous solution was obtained at room temperature where insolubles disappeared. When this solution was stored at 25 ° C., it was a brown transparent solution for 4 days, but became cloudy on the 5th day, and the insoluble content was measured to be 0.5% by mass.
  • AER260 manufactured by Asahi Kasei Corporation
  • An epoxy resin composition (3) consisting of 100 parts by mass of polyphenylene ether III and 100 parts by mass of bisphenol A type epoxy resin (AER260 manufactured by Asahi Kasei Corporation) as an epoxy resin was mixed with 130 parts by mass of methyl ethyl ketone. When dissolved in water, a uniform solution was obtained at room temperature where no insoluble matter was present. When this solution was stored at 25 ° C, it was a brown clear solution for 3 days, but it became cloudy on the 4th day, and the insoluble content was measured to be 0.8% by mass.
  • AER260 manufactured by Asahi Kasei Corporation
  • An epoxy resin composition (4) consisting of 100 parts by mass of polyphenylene ether IV and 100 parts by mass of a bisphenol A type epoxy resin (AER260 manufactured by Asahi Kasei Corporation) as an epoxy resin was mixed with 130 parts by mass of methyl ethyl ketone. When dissolved in water, a uniform solution was not obtained at room temperature, and the solution was turbid. The insoluble content of this solution was measured and found to be 1.2% by mass.
  • the epoxy resin composition (6) had an epoxy equivalent of 502, a 180 ° C melt viscosity of 3100 mPa's, and a terminal phenolic hydroxyl group of 4.5 meq / kg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 33 parts by mass with respect to 100 parts by mass charged. Accordingly, the amount of the epoxidized polyphenylene ether resin was 67 parts by mass, and the amount of terminal phenolic hydroxyl groups per 1 kg of the resin was 6.7 meq / kg.
  • Epoxy-Dai polyphenylene ether resin I had a molecular weight of 2,900 and an epoxy equivalent of 2,260. Therefore, the proportion of the polyphenylene ether skeleton was 65% by mass, and the number of epoxy groups per molecule was 1.6.
  • the epoxy resin composition (7) had an epoxy equivalent of 1369, a 180 ° C melt viscosity of 70,000 mPa • s, and a terminal phenolic hydroxyl group of 6.3 meq / kg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 14 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the epoxidized polyphenylene ether resin was 86 parts by mass, and the calculated amount of terminal phenolic hydroxyl groups per 1 kg of the resin was 7.3 meq / kg.
  • Example 6 After dissolving 100 parts by mass of polyphenylene ether I in 120 parts by mass of epichlorohydrin, 10 parts by mass of 50% by mass aqueous sodium hydroxide solution was added at 60 ° C for 60 minutes, and the mixture was added. Thereafter, the mixture was stirred at 60 ° C for 60 minutes. 50 parts of water was added to the reaction solution, and after stirring, the mixture was allowed to stand and the aqueous layer was separated to remove the formed salts. Then, epichlorohydrin was removed by distillation under reduced pressure, and epoxidized polyphenylene ether was removed. Resin III was obtained.
  • the obtained epoxidized polyphenylene ether resin III had a molecular weight of 2010 and an epoxy equivalent of 1570. Therefore, the proportion of the polyphenylene ether skeleton in the epoxidized polyphenylene ether resin was 95% by mass, and the number of epoxy groups in one molecule was 1.7.
  • the epoxy resin composition (9) had an epoxy equivalent of 461, a 180 ° C melt viscosity of 1600 mPa's, and a terminal phenolic hydroxyl group of 2. OmeqZkg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 41 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the epoxidized polyphenylene ether resin IV was 59 parts by mass, and the amount of terminal phenolic hydroxyl groups based on 1 kg of the resin was 3.4 meq / kg.
  • An epoxy resin composition (10) was obtained in the same manner as in Example 4, except that the reaction time at 190 ° C was changed to 1 hour.
  • the epoxy resin composition (10) had an epoxy equivalent of 455, a 180 ° C melt viscosity of 2500 mPa's, and a terminal phenolic hydroxyl group of 20.9 meq / kg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 40 parts by mass with respect to 100 parts by mass charged. Therefore, the epoxy-terminated polyphenylene ether The resin was 60 parts by mass, and the amount of terminal phenolic hydroxyl groups based on 1 kg of the resin was calculated to be 34.6 meq / kg.
  • the epoxy resin composition (11) had an epoxy equivalent of 384, a 180 ° C. melt viscosity of 57,000 mPa ⁇ s, and a terminal phenolic hydroxyl group of 0.6 meq / kg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 32 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the terminal epoxy resin polyphenylene ether resin was 68 parts by mass, and the amount of the terminal phenolic hydroxyl group with respect to 1 kg of this resin was 0.9 meq / kg.
  • a copper-clad laminate was prepared using the epoxy resin composition (11).
  • the dielectric constant at 1MHz was 3.9
  • the dielectric loss tangent was 0.006
  • the Tg by DSC was 190 ° C
  • the copper foil peel strength was 1.4 7 kgfZcm. This cured product did not undergo phase separation, and no swelling was observed in the copper-clad laminate even after the solvent resistance test.
  • the epoxy resin composition (12) had an epoxy equivalent of 430, a 180 ° C melt viscosity of 9000 mPa's, and a terminal phenolic hydroxyl group of 5.2 meq / kg.
  • the amount of unreacted epoxy determined by gel permeation chromatography was 36 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the epoxidized polyphenylene ether resin was 64 parts by mass, and the amount of terminal phenolic hydroxyl groups per 1 kg of this resin was calculated to be 8. lmeq / kg.
  • the epoxy resin composition (13) had an epoxy equivalent of 453, a 180 ° C. melt viscosity of 12000 mPa ⁇ s, and a terminal phenolic hydroxyl group of 4.2 meq / kg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 42 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the epoxidized polyphenylene ether resin was 58 parts by mass, and the amount of terminal phenolic hydroxyl groups based on 1 kg of this resin was 7.2 meq / kg.
  • An epoxy resin composition (14) was obtained in the same manner as in Example 9 except that polyphenylene ether V was used.
  • Epoxy equivalent of epoxy resin composition (14) was 362, melt viscosity at 180 ° C was 114000 mPa's, and terminal phenolic hydroxyl group was 0.5 meq / kg.
  • the amount of unreacted epoxy determined by gel permeation chromatography was 40 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the epoxidized polyphenylene ether resin was 60 parts by mass, and when the amount of terminal phenolic hydroxyl groups per 1 kg of the epoxidized polyphenylene ether resin was calculated, it was found to be 0.83 meq kg.
  • Example 9 The same procedure as in Example 9 was carried out except that polyphenylene ether VII was used, to obtain an epoxy resin composition (15).
  • the epoxy equivalent of the epoxy resin composition (15) was 401, the melt viscosity at 180 ° C was 49,000 mPa's, and the terminal phenolic hydroxyl group was 0.9 meq / kg.
  • the amount of unreacted epoxy determined by gel permeation chromatography was 29 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the epoxidized polyphenylene ether resin was 71 parts by weight, and when the amount of terminal phenolic hydroxyl groups per 1 kg of this resin was calculated, it was 1.3 meqZkg.
  • a cresol novolak type epoxy resin (Asahi Kasei Epoxy Co., Ltd. ECN1299) 2 g and a bisphenol A type epoxy resin (Asahi Kasei Epoxy Co., Ltd. A250) were changed to 58 g. 16) was obtained.
  • the epoxy resin composition (16) had an epoxy equivalent of 490, a 180 ° C melt viscosity of 4500 mPa • s, and a terminal phenolic hydroxyl group of 2.7 meq / kg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 31 parts by mass with respect to 100 parts by mass of charged. Therefore, the amount of the epoxidized polyphenylene ether resin was 69 parts by mass, and the calculated amount of terminal phenolic hydroxyl groups per 1 kg of the resin was 3.9 meq / kg.
  • Example 9 Same as Example 9 except that the catalyst NaOCH was added and the heating temperature was set to 210 ° C-220 ° C.
  • an epoxy resin composition (17) was obtained.
  • Epoxy equivalent was 881
  • melt viscosity at 180 ° C was 74000 mPa's
  • terminal phenolic hydroxyl group was 0.3 meq / kg.
  • the amount of unreacted epoxy quantified by gel permeation chromatography was 23 parts by mass with respect to 100 parts by mass charged. Therefore, the amount of the epoxidized polyphenylene ether resin was 77 parts by mass, and the amount of terminal phenolic hydroxyl groups based on 1 kg of the epoxidized polyphenylene ether resin was 0.4 meqZkg.
  • an epoxy resin composition (11) 75% by mass of an epoxy resin composition (11) and 25% by weight of a brominated epoxy resin (AER8018, Asahi Kasei Epoxy Co., Ltd.) were melted and mixed.
  • the epoxy resin composition (18) had a melt viscosity at 180 ° C of 21000 mPa's.
  • Epoxy resin composition (11) 75% by mass, epoxy resin containing oxazolidone ring (Asahi Kasei Epoxy Co., Ltd., AER4152) 3% by mass, epoxidized phosphazene compound (Otsuka Chemical Co., Ltd., 3-0100) 12% by mass And 10% by mass of a phosphoric ester compound (Daichi Chemical Co., Ltd., PX200) were melt-mixed.
  • the epoxy resin composition (20) had a 180 ° C melt viscosity of 1900 OmPa's.
  • Table 1 shows the properties of the laminated board prepared by using the epoxy resin composition solution obtained in Examples 13 to 13.
  • Table 2 shows the properties of the copper-clad laminates prepared using the epoxy resin composition solutions obtained in Examples 419 and Comparative Examples 6-8.
  • the epoxy resin varnish obtained by further adding dicyandiamide as a curing agent and 2-methylimidazole as a curing catalyst was added to the epoxy resin composition solutions obtained in Examples 419 and Comparative Examples 618. Without impregnating the glass cloth, cast on a glass plate, cure at 150 ° C for 3 hours, and further cure at 200 ° C for 3 hours, and perform the light scattering measurement at the same time.
  • Table 3 shows the properties of the copper-clad laminates prepared using the epoxy resin composition solutions obtained in Examples 10-12.
  • Example 10 Example 1 1 Example 1 2 Epoxy resin composition (18) (19) (20) Epoxy resin composition (11)
  • Table 4 shows the properties of the copper-clad laminates prepared using the epoxy resin composition solutions obtained in Examples 13 and 14.
  • the epoxy resin composition of the present invention has advantages such as excellent processability with good long-term stability to ketones and excellent dielectric properties, and can be used for various applications.
  • the present composition can be used for a printed wiring board, an electronic device, and the like in the form of a varnish using an organic solvent, a pre-preda prepared by impregnating the varnish into a substrate, a laminate using the pre-preda.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 本発明は、数平均分子量が1000~4000であって、分子量20000以上の成分が実質20%以下であるポリフェニレンエーテルと、エポキシ樹脂を含むエポキシ樹脂組成物に関する。さらに、本発明は、数平均分子量が1000~4000であるポリフェニレンエーテルのフェノール性水酸基とエポキシ化合物またはエポキシ樹脂のエポキシ基とを反応させることにより得られるエポキシ化ポリフェニレンエーテル樹脂に関する。

Description

明 細 書
エポキシ樹脂組成物
技術分野
[0001] 本発明は、プリント配線基板等の絶縁材料として有用なポリフエ二レンエーテルを 含むエポキシ樹脂組成物およびエポキシ樹脂組成物溶液、このエポキシ樹脂組成 物に対し有機溶剤を用いたワニス、このワニスを基材に含浸してなるプリプレダ、この プリプレダを用いた積層板、ポリフエ二レンエーテルを含むエポキシ樹脂組成物と金 属箔を含む硬化性樹脂金属箔複合体、エポキシ樹脂硬化性組成物を含むフィルム 、及びこれらを使用したプリント配線板や電子装置に関するものである。
背景技術
[0002] プリント配線基板用の絶縁材料にはコストパフォーマンスに優れるエポキシ樹脂が 広く用いられているが、近年配線の高密度化への対応などからさらなる高機能化が 求められている。その一つとして衛星通信などの高周波領域で使用されるプリント配 線基板においては、信号の遅滞を防ぐため低誘電率や低誘電正接といった誘電特 性にすぐれる絶縁材料が要求されている。この要求を満たす一案として、ポリフエユレ ンエーテルを含有するエポキシ樹脂組成物を用いると、優れた誘電特性を示す積層 板が得られることが知られている。さらには特開昭 58—219217号公報ゃ特開平 09— 291148号公報で述べられているように、ポリフエ二レンエーテルにエポキシ基を含 有させ、樹脂の溶融粘度を下げることによって、加工性や接着性などの物性を向上さ せたものが知られている。
[0003] 一般に積層板は、ガラス繊維等の基材に樹脂溶液 (ワニス)を含浸させて乾燥した プリプレダをつくり、このプリプレダを銅箔等の金属箔と積層したものを加圧加熱して 作製される。上記の特開昭 58—219217号公報ゃ特開平 09—291148号公報など で述べられているように、一般にポリフエ二レンエーテルを含むエポキシ樹脂組成物 をワニスとする際に用いられる溶媒としては、ポリフエ二レンエーテルを溶解する溶媒 であるジクロロメタンやクロ口ホルムなどのハロゲン系溶媒やベンゼン、トルエン、キシ レンなどの芳香族系溶媒がある。それらは単独で、もしくは 2種類以上の混合溶媒と して用いられている。
[0004] しかし、ハロゲン系溶剤は環境への影響が懸念され使用が制限される方向にある。
一方芳香族系溶剤としてトルエンを用いた場合、ポリフエ二レンエーテルのゲル化が おこる力、、あるいはそれを防ぐにはワニスを高温に維持して基材へ含浸させる必要が あるなどプリプレダの製造に支障をきたすことが指摘されている。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、上記問題点の克服が可能で、プリプレダ作成に汎用されているケトン類 への長期安定性が良ぐ加工性に優れ、さらに硬化過程での相分離を起こさないた めに、接着性や耐熱性が高ぐ優れた誘電特性を有するエポキシ樹脂組成物を提供 することを目的とするものである。
課題を解決するための手段
[0006] 本発明者等は、前記課題を解決するため鋭意検討の結果、特定の分子量をもつポ リフエ二レンエーテルを用いることでケトン類を溶剤として用いたワニスが可能である ことを見出した。さらに、驚くべきことに、特定の分子量をもつポリフエ二レンエーテル をエポキシ化することにより、ケトン類への溶解性が顕著に安定化することを見出した
。さらには、変性するエポキシ樹脂に多官能エポキシ樹脂を含ませることで、硬化過 程での相分離を解消し、積層板やフィルムとしての物性が格段に向上することを見出 した。
また、籠状シノレセスキォキサンと籠状シノレセスキォキサンの部分開裂構造体の少な くとも 1つを含むことにより加工性が飛躍的に改善されることを見出し、本発明をなす に至った。
[0007] すなわち、本発明の態様は以下の通りである。
(1) 数平均分子量が 1000— 4000であって、 GPCから求めた分子量 20000以上 の成分が実質 20%以下であるポリフエ二レンエーテルと、エポキシ樹脂を含むェポ キシ樹脂組成物。
(2) 数平均分子量が 1000— 4000であって、 GPCから求めた分子量 20000以上 の成分を実質的に含まないポリフエ二レンエーテルと、エポキシ樹脂を含むエポキシ 樹脂組成物。
(3) 数平均分子量が 1000— 4000であって、 GPCから求めた分子量 300以下の 成分を実質的に含まないポリフエ二レンエーテルと、エポキシ樹脂を含むエポキシ樹 脂組成物。
(4) 数平均分子量が 1000— 4000であって、 GPCから求めた分子量 20000以上 の成分及び分子量 300以下の成分を実質的に含まないポリフエ二レンエーテルと、 エポキシ樹脂を含むエポキシ樹脂組成物。
(5) ポリフエ二レンエーテルがフエノール性水酸基を 1分子当たり平均 1. 2個以上 有する、請求項 1一 4のいずれか一項に記載のエポキシ樹脂組成物。
(6) エポキシ樹脂が多官能エポキシ樹脂を 5質量%以上含む、請求項 1一 5のいず れか 1項に記載のエポキシ樹脂組成物。
(7) 請求項 1一 6のいずれ力 4項に記載のエポキシ樹脂組成物を 10質量%以上含 有し、室温で実質的に固形物が存在しない、エポキシ樹脂組成物のケトン溶液。
(8) 数平均分子量が 1000— 4000であるポリフエ二レンエーテルのフエノール性水 酸基とエポキシィ匕合物またはエポキシ樹脂のエポキシ基とを反応させることにより得 られるエポキシ化ポリフエ二レンエーテル樹脂。
(9) エポキシ基を 1分子当たり平均 3個以上有するエポキシ化ポリフエ二レンエーテ ル樹脂。
(10) 数平均分子量が 3200— 10000であるエポキシ化ポリフエ二レンエーテル樹 脂。
(11) ポリフエ二レンエーテルの骨格部の割合が 30質量%— 90質量%であるェポ キシ化ポリフエ二レンエーテル樹脂。
(12) エポキシ基を 1分子当たり平均 3個以上有する、請求項 10または 11記載のェ ポキシ化ポリフエ二レンエーテル樹脂。
(13) 数平均分子量が 3200— 10000である、請求項 11記載のエポキシ化ポリフエ 二レンエーテル樹脂。
(14) エポキシ基を 1分子当たり平均 3個以上有し、数平均分子量が 3200 1000 0であり、ポリフエ二レンエーテルの骨格部の割合が 30質量%— 90質量%であるェ ポキシ化ポリフエ二レンエーテル樹脂。
(15) エポキシ化ポリフエ二レンエーテル樹脂のフエノール性水酸基が 1 Omeq/kg 以下である、請求項 8— 14のいずれか 1項に記載のエポキシ化ポリフエ二レンエーテ ル樹脂。
(16) 請求項 8— 14のいずれ力 4項に記載のエポキシ化ポリフヱニレンエーテル樹 脂と、エポキシ樹脂を含むエポキシ樹脂組成物。
(17) 請求項 8— 14のいずれ力 4項に記載のエポキシ化ポリフエ二レンエーテル樹 脂と、エポキシ樹脂を含みケトンに溶解する特性を持つエポキシ樹脂組成物。
(18) 請求項 16記載のエポキシ樹脂組成物を 10質量%以上含有し、室温で実質 的に固形物が存在しなレ、、エポキシ樹脂組成物のケトン溶液。
(19) エポキシィ匕ポリフエ二レンエーテル樹脂を 25質量%以上含む、請求項 16記 載のエポキシ樹脂組成物。
(20) 請求項 16記載のエポキシ樹脂組成物と、難燃剤として、臭素化エポキシ樹脂 、エポキシ基含有ホスファゼン化合物、リン酸エステル、縮合リン酸エステル、ホスフィ ン化合物のキノン誘導体の少なくとも一つ以上を含むエポキシ樹脂組成物。
(21) エポキシ化ポリフエ二レンエーテル樹脂を 40— 90質量%、難燃剤を 10— 50 質量%、エポキシ樹脂を 0. 1— 30質量%含有する、請求項 20記載のエポキシ樹脂 組成物。
(22) エポキシ樹脂はォキサゾリドン環を持つエポキシ樹脂を含む、請求項 20また は 21記載のエポキシ樹脂組成物。
(23) さらに籠状シルセスキォキサンと籠状シルセスキォキサンの部分開裂構造体 の少なくとも 1つを含む、請求項 1一 7、 16及び 19一 22のいずれ力 4項に記載のェポ キシ樹脂組成物。
(24) さらにエポキシ樹脂の硬化剤を含む、請求項 1一 7、 16及び 19一 22のいず れか 1項に記載のエポキシ樹脂組成物。
(25) 請求項 24記載のエポキシ樹脂組成物からなる、実質相分離がなく均一な硬 化体。
(26) 請求項 8— 14のいずれ力 4項に記載のエポキシ化ポリフヱニレンエーテル樹 脂にさらにエポキシ樹脂の硬化剤を含む、エポキシ樹脂組成物。
(27) 樹脂ワニス、プリプレダ、硬化性樹脂金属箔複合体、フィルム、積層板、多層 プリント配線板、封止用樹脂組成物、接着剤用硬化性樹脂組成物から選ばれた請求 項 1一 7、 16、 17及び 19一 25記載のエポキシ樹脂組成物を含有する電子部材。
(28) 樹脂ワニス、プリプレダ、硬化性樹脂金属箔複合体、フィルム、積層板、多層 プリント配線板、封止用樹脂組成物、接着剤用硬化性樹脂組成物から選ばれた請求 項 8— 14のいずれ力 4項に記載のエポキシ化ポリフヱニレンエーテル樹脂を含有す る電子部材。
(29) 請求項 27または 28記載の電子部材からなる電子装置。
(30) エポキシィ匕ポリフヱニレンエーテル樹脂の製造方法であって、数平均分子量 力 1000 4000であるポリフエ二レンエーテルのフエノール性水酸基とエポキシ化合 物またはエポキシ樹脂のエポキシ基とを反応させることを含む上記方法。
発明の効果
[0008] 本発明によると特定の分子量をもつポリフエ二レンエーテルを含むエポキシ樹脂組 成物は、耐熱性、誘電特性、加工性、接着性の優れ、室温でケトン類の安定な溶液 とすることができる。また、このエポキシ樹脂組成物を用いて誘電特性に優れた積層 板を与えることができる。
発明を実施するための最良の形態
[0009] 以下に本発明を詳しく述べる。
本発明で用いられるポリフエ二レンエーテル樹脂は、数平均分子量が 1000— 400 0の範囲に制限され、かつ分子量 20000以上の成分が実質 20%以下である。分子 量 20000以上の成分が実質 20%以下とは、ゲル浸透クロマトグラフィーによる分子 量測定において、分子量 20000以上のピーク検出面積が 20%以下であることを意 味する。分子量 20000以上の成分を実質的に含まないとは、ゲル浸透クロマトグラフ による分子量測定において、ピーク検出開始の分子量が 20000以下であることを意 味する。
[0010] また本発明で用いられるポリフエ二レンエーテル樹脂は、数平均分子量が 1000— 4000の範囲に制限され、かつ分子量 300以下の成分を実質的に含まなレ、。分子量 300以下の成分を実質的に含まないとは、ゲル浸透クロマトグラフによる分子量測定 において、ピーク検出終了の分子量が 300以上であることを意味する。
[0011] 本発明で用いられるポリフエ二レンエーテル樹脂の数平均分子量は 1000— 4000 の範囲に制限される力 好ましくは 1500 4000、より好ましくは 2000— 4000、さら に好ましくは 2400— 4000である。上記数平均分子量が 4000以下であると樹脂組 成物の溶融粘度が低ぐ加工性が良い。また上記数平均分子量が 1000以上である と樹脂組成物の誘電率の上昇が防止できる。上記数平均分子量が 1000 4000の 範囲内において高ければ高いほど、樹脂組成物の誘電率の上昇が防止できる効果 が大きくなる。
[0012] また、分子量 20000以上の成分が実質 20。/o以下であることにより、アセトンゃメチ ルェチルケトン等のケトン類溶剤に対しポリフエ二レンエーテル樹脂の溶解性が良く
、ケトン類溶剤を用いたワニスの作製が可能となる。より好ましくは分子量 20000以上 の成分が実質含まれないことであり、さらに好ましくは分子量 10000以上の成分が実 質的に含まれないことであり、ケトン類へのポリフエ二レンエーテル樹脂の長期安定し た溶解性が保たれる。
また、ポリフエ二レンエーテル樹脂が分子量 300以下の成分を実質的に含まないこ とにより、樹脂組成物の耐熱性の向上と誘電率の上昇防止できる。
[0013] 上記ポリフエ二レンエーテル樹脂としては、例えば、下記式(1)で表される構造単位 で構成されるものである。具体的には、ポリ(2, 6—ジメチルー 1 , 4_フエ二レンォキサ イド)等が挙げられる。
[化 1]
Figure imgf000007_0001
(式中、 nは正の整数を示し、 R , R, R , R は水素又は炭素数 1一 3の炭化水素 基を示し、 R , R , R , R は同じでも、異なっていてもよい。 )
1 2 3 4
[0014] 通常、ポリフエ二レンエーテル樹脂は重合反応により作成される。重合反応により作 成されるとは、例えば、米国特許第 4059568号明細書等に開示されているように、 銅触媒、ァミン触媒下で酸素含有ガスを用いてフエノール性化合物を酸化重合させ る方法である。しかし、これらの方法で得られるポリフエ二レンエーテル樹脂は数平均 分子量力 0000 30000である。
[0015] 本発明での数平均分子量が 1000— 4000の範囲のポリフエ二レンエーテル樹脂は 、上述の数平均分子量が大きい市販のものを用い、数平均分子量を上記範囲に調 製する。上記ポリフヱニレンエーテル樹脂の分子量の調製は、例えば、学術文献「Jo ural of organic chemistry, 34, 297一 303 (1968)」(こ示されてレヽる。数平均分 子量が大きいポリフエ二レンエーテル樹脂をラジカル開始剤の存在下で、ビスフエノ 一ル八、テトラメチルビスフエノーノレ A、テトラメチルビフエニル、ジヒドロキシジフエ二 ノレエーテル、フエノールノボラック、クレゾ一ルノボラック等のポリフエノール性化合物 と反応させて、上記ポリフエ二レンエーテル樹脂の再分配反応を行レ、分子量を低下 させ、数平均分子量が 1000— 4000の範囲のポリフエ二レンエーテル樹脂を得ること ができる。
[0016] 上記ラジカル開始剤としては、ジクミルパーオキサイド、 tert ブチルタミルパーォキ サイド、ジー tert-ブチルパーオキサイド、 2, 5-ジメチノレー 2, 5_ジー tert-ブチルクミ ルパーォキシへキシン 3、 2, 5—ジメチノレー 2, 5—ジー tert ブチルパーォキシへキ サン、 ひ, α,—ビス(tert—ブチルパーォキシ m イソプロピル)ベンゼン〔1 , 4 (また は 1, 3)—ビス(tert ブチルパーォキシイソプロピル)ベンゼンともいう〕、過酸化ベン ゾィル等の過酸化物が挙げられる。
[0017] 数平均分子量は 1000 4000のポリフエ二レンエーテルは、通常のポリフエ二レン エーテルの製法を実施し、その実施途中の重合度が低い時点で反応を停止させる 方法によっても作製される。また、 2種以上のアルコール混合溶媒及び特定のァミン 化合物を触媒とすることによつても効率よく作製される。
[0018] 分子量 20000以上の成分を実質的に含まないポリフエ二レンエーテルを得るには 、上記再分配反応を効率よく行うことが肝心である。例えば、一度目の再分配反応後 、さらにラジカル開始剤及び/またはポリフエノール性化合物を添加して、再分配反 応を完結させることができる。または、得られた数平均分子量 1000— 4000のポリフ ェニレンエーテルを単にメチルェチルケトンやアセトン等のケトン類に溶解後、不溶 解物をろ過等の手段で除去すればょレ、。
[0019] 分子量 300以下の成分を実質的に含まないようにするには、例えば、得られた数平 均分子量 1000— 4000のポリフエ二レンエーテルを、メタノール等の溶剤を用いて洗 浄すればよい。
[0020] また、得られたポリフヱニレンエーテルのフヱノール性水酸基は、 1分子当たり 1. 2 個以上であることが好ましい。より好ましくは、 1. 4個以上、さらに好ましくは 1. 6個以 上である。フエノール水酸基の量が少ないと、硬化した場合の架橋欠陥となり、不均 一な硬化体となる。
[0021] フエノール性水酸基を 1分子当たり 1. 2個以上有するポリフエ二レンエーテルは、前 述したようにポリフエ二レンエーテルをポリフエノール性化合物と反応させて、再分配 反応させることによって作製できる。あるいは、通常のポリフエ二レンエーテルの製法 において、あらかじめ、ビスフエノール A、テトラメチルビスフエノール A、テトラメチル ビフエニル、ジヒドロキシジフエニルエーテル、フエノールノボラック、クレゾールノボラ ック等のポリフエノール性化合物を仕込むことによつても作製できる。
[0022] 本発明で用いられるエポキシ化合物とは、ェピクロロヒドリンなどのハロゲン化グリシ ジルのことを言う。本発明で用いられるエポキシ樹脂は、分子内にエポキシ基を 2個 以上有するものであって、例えばビスフエノール A型エポキシ樹脂、ビスフエノール F 型エポキシ樹脂、ビスフエノール S型エポキシ樹脂、ヒンダトイン型エポキシ樹脂、ビ フエニル型エポキシ樹脂、脂環式エポキシ樹脂、トリフエニルメタン型エポキシ樹脂、 フエノールノボラック型エポキシ樹脂、クレゾ一ルノボラック型エポキシ樹脂、およびこ れらをハロゲン化したエポキシ樹脂等が挙げられる。
[0023] 本発明で用いられる多官能エポキシ樹脂とは、 1分子中に 3個以上エポキシ基を持 つたエポキシ樹脂のことである。使用される多官能エポキシ樹脂は、 1分子中に 3個 以上のエポキシ基があればどれでも良レ、。例えば、フエノールノボラック型エポキシ樹 脂、クレゾ一ルノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビス Aノボラック型エポキシ樹脂、ジシクロペンタジェン /フエノールエポキシ樹脂、脂環 式ァミンエポキシ樹脂、脂肪族ァミンエポキシ樹脂といったもの中から単独もしくは 2 種類以上を併用してもよい。上記で示した多官能エポキシ樹脂を、エポキシ樹脂全 体に対し少なくとも 5質量%、好ましくは 10質量%、より好ましくは 20質量%以上含 むものが好ましい。多官能エポキシ樹脂が 5質量%未満であると、硬化体として相分 離を起こしてしまい、積層板やフィルムの接着性、耐熱性が多官能エポキシ 5質量% 以上含まれるものと比較して劣る。
[0024] 本発明のエポキシ化ポリフエ二レンエーテル樹脂は、 1分子中に平均 3個以上ェポ キシ基を有するものが好ましい。より好ましくは 1分子中に平均 5個以上エポキシ基を 有するものである。 1分子中に平均 3個以上エポキシ基を有すると、他のエポキシ樹 脂との相溶性に優れる。また、硬化速度が速ぐ硬化時に他のエポキシ樹脂の架橋 構造に取り込まれるため、相分離を起さない。さらには、 1分子中に極性基を多く含 むことになるので、ケトン溶液といった極性溶剤に溶解しやすくなる。エポキシ化ポリ フエ二レンエーテル樹脂はエポキシ化ポリフエ二レンエーテルを含む。
[0025] 本発明において、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンエー テルの骨格部の割合は、 30質量%— 90質量%であることが好ましい。より好ましくは 40— 80質量0 /0、さらに好ましくは 50— 60質量0 /0である。ポリフエ二レンエーテルの 骨格部の割合が高ければ高いほど、樹脂組成物の誘電率の上昇防止の効果が大き くなる。そのため、 30質量%以上あることが好ましぐより好ましくは 40質量%以上、さ らに好ましくは 50質量0 /0以上である。ポリフエ二レンエーテルの骨格部の割合が 90 質量%以下であれば、本発明の樹脂組成物の特徴である、室温におけるケトンへの 溶解性が発現する。より好ましくは 80質量%以下であり、さらに好ましくは 60質量% 以下である。
[0026] 本発明のエポキシ化ポリフヱニレンエーテル樹脂は、数平均分子量が 3200 100 00であることが好ましレ、。より好ましくは数平均分子量が 3500 8500、さらに好まし くは数平均分子量が 5000— 7000である。数平均分子量が 10000以下であると溶 融粘度が低ぐ加工性が良い。より好ましい数平均分子量は 8500、さらに好ましい数 平均分子量は 7000である。数平均分子量が 3200以上で、電気特性の良いものが 得られる。より好ましくは数平均分子量 3500以上であり、さらに好ましくは数平均分 子量 5000以上である。エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンェ 一テルの骨格部が同じ割合であると、数平均分子量が大きいほど電気特性の良いも のが得られる。例えば、ポリフエ二レンエーテルの骨格部の割合力 ケトン溶液に溶 解する下限の割合である 30質量%の場合、数平均分子量が 3200でも電気特性の 良いものが得られる力 数平均分子量が 3500のものがさらに電気特性が良ぐ数平 均分子量が 5000であるとよりさらに電気特性の良いものが得られる。
[0027] エポキシ化ポリフエ二レンエーテル樹脂を得るには、ポリフエ二レンエーテルとェポ キシ化合物を反応させることにより得られる。例えば、ポリフエ二レンエーテルとェピク 口ルヒドリンを既知の方法で反応させることにより得られる。ポリフヱニレンエーテルの フエノール性水酸基に対して 1倍以上好ましくは 5倍以上のェピクロルヒドリンに上記 ポリフエ二レンエーテルを溶解後、 Na〇H、 K〇H等のアルカリ金属の水酸化物を添 加すればよい。アルカリ水酸化物の量は、フエノール性水酸化物に対して、 1当量以 上を用い、反応条件は、 50— 100°Cで 1一 10時間反応させる。得られた組成物から 、水洗またはろ過により生成塩を除去し、未反応のェピクロルヒドリンを揮発回収する か、メタノール等の貧溶剤を投入し、析出させることにより得られる。
[0028] また、エポキシ化ポリフエ二レンエーテル樹脂は、ポリフエ二レンエーテルとエポキシ 樹脂を、フエノール性水酸基とエポキシ基の反応のための触媒存在下、 100°C— 20 0°Cで、 1一 20時間反応させ、未反応のエポキシ樹脂を取り除くことによつても得られ る。触媒は、例えば、水酸化ナトリウムや水酸化カリウムといった水酸化物、ナトリウム メチラートやナトリウムブチラートといったアルキレート塩ゃテトラブチルアンモニゥムク ェニルホスホニゥムブロミドゃァミルトリフエニルホスホニゥムブロミドといったホスホニ ゥム塩、 2_メチルイミダゾールゃ 2—メチノレ— 4—イミダゾールといったイミダゾール系、 N、 N—ジェチルエタノールァミンといったアミン類ゃ塩化カリウムといったものから 1種 類以上が使用される。このとき使用されるエポキシ樹脂は、分子内にエポキシ基を 2 個以上有するエポキシ樹脂であればよぐ例えばビスフエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、ビスフエノール S型エポキシ樹脂、ヒンダトイン型ェ ポキシ樹脂、ビフエ二ル型エポキシ樹脂、脂環式エポキシ樹脂、トリフエニルメタン型 エポキシ樹脂、フエノールノボラック型エポキシ樹脂、クレゾ一ルノボラック型エポキシ 樹脂、およびこれらをハロゲン化したエポキシ樹脂等が挙げられる。また、ポリエチレ ングリコール,ポリプロピレングリコール,ブタンジオール,へキサンジオール,シクロ へキサンジメタノール等のジグリシジルエーテル等が挙げられる。これらは単独あるレ、 は 2種類以上を併用してもよい。未反応のエポキシ樹脂を取り除くには、例えば、トル ェン等の溶剤に溶解させた後で、大過剰のメタノールを添カ卩し、析出したエポキシィ匕 ポリフエ二レンエーテル樹脂をろ別するといつた手法が挙げられる。
[0029] 本発明のエポキシ基を 1分子当たり平均 3個以上有するエポキシ化ポリフヱニレン エーテル樹脂を得るには、エポキシ樹脂中に多官能エポキシ樹脂をそのものとして 少なくとも 5質量%、好ましくは 10質量%、より好ましくは 20質量%以上含ませればよ レ、。多官能エポキシ樹脂を多く含むことにより、得られるエポキシィ匕ポリフエ二レンェ 一テル樹脂のエポキシ基の平均個数が多くなる。ポリフエ二レンエーテルとエポキシ 樹脂を反応させるときには、エポキシ樹脂を 2種類以上使用することが好ましい。特 に、多官能エポキシ樹脂と 2官能のエポキシ樹脂をそれぞれ 1種類以上用いることが 好ましレ、。多官能エポキシ樹脂は得られるエポキシ化ポリフエ二レンエーテル樹脂の エポキシ基の個数を増やす点で有用であるが、ポリフエ二レンエーテルを反応系に 溶解しづらくし、また、ポリフエ二レンエーテルとの反応によりゲル化を起しやすい。そ のため、溶剤を加える必要が生じる。し力 ながら、反応時に 2官能のエポキシ樹脂 をカ卩えると、ポリフエ二レンエーテルを溶解させ反応が起こりやすくなる一方で、ゲル 化を防ぐ効果が生じる。そのため、溶剤をカ卩えない系でも反応が進行し、 目的のェポ キシ化ポリフヱニレンエーテル樹脂が得られる。
[0030] エポキシ化ポリフヱニレンエーテル樹脂の末端フヱノール性水酸基は、 lOmeqZk g以下であることが好ましい。 lOmeqZkg以下であるとケトン類への長期的な安定溶 解性が得られる。ケトン類への長期的な安定溶解性のためには、好ましくは末端フエ ノール性水酸基は 5meq/kg以下であり、さらに好ましくは 3meq/kg以下である。
[0031] 本明細書において、ケトン類に室温で溶解するとは、 10質量%のケトン溶液にした ときに、室温において透明性のある溶液状態が得られることを意味する。さらに詳しく は、この溶液をろ過した場合、ろ過残渣がないことが好ましい。実質的に固形物が存 在しない状態は、溶液化した直後だけでなぐ 1日以上保たれることが必要である。好 ましくは 30日以上、さらに好ましくは 90日以上安定して固形物が存在しない状態を 保つ溶液が好ましい。通常、エポキシ樹脂組成物溶液を作製して実際に使用される までには時間がかかるためである。
[0032] 本発明に用いられるケトン類としては、例えばアセトン、メチルェチルケトン、メチル イソプロピルケトン、メチルイソブチルケトン、シクロへキサノン等の脂肪族ケトン、ァセ トフェノン等の芳香族ケトンが挙げられる。好ましくはアセトン、メチルェチルケトンで あり、より好ましくはメチルェチルケトンである。なぜならば、溶解されるポリフエ二レン エーテルの構造にもよる力 メチルェチルケトンは、固形物が存在しない状態を維持 できるし、通常積層板用のワニスに使用されている溶剤であり、既存の工程を大きく 変更する必要がなくてすむ。
[0033] 本発明のケトン溶液はケトン類を含んでいれば質量に特に限定はないが、 5質量% 以上含んでいればよぐ好ましくは 15質量%以上、より好ましくは 30質量%以上、さ らに好ましくは 50質量%以上である。エポキシィ匕ポリフエ二レンエーテル樹脂は、ケト ン類溶剤、ハロゲン系溶剤以外に安定に溶解しにくいため、ケトン類が少ないと、結 晶化ゃ析出といった問題が起こる。
[0034] 本発明のエポキシ化ポリフエ二レンエーテル樹脂に、電気特性以外の特性を持た せるために、エポキシ樹脂と混合してエポキシ樹脂組成物として使用することができ る。そのとき、エポキシィ匕ポリフエ二レンエーテル樹脂はエポキシ樹脂組成物の 25質 量%以上が好ましい。 25質量%未満だと、ポリフエ二レンエーテルの比率が小さくな り、電気特性が悪くなる。
[0035] 混合するエポキシ樹脂に、ォキサゾリドン環を持つエポキシ樹脂を選ぶと、硬化体 の耐熱性を下げることなぐ銅箔やプラスチックとの接着性を向上させることができる。 また、硬化体に難燃性を持たせるために、難燃剤として、臭素化エポキシ樹脂、ェポ キシ基含有ホスファゼン化合物、リン酸エステル、縮合リン酸エステル、ホスフィンィ匕 合物のキノン誘導体のうち少なくとも一つ以上を含ませても良レ、。この難燃剤をェポ キシ樹脂組成物全体の 10質量%以上含むと、難燃性を達成できる。さらにこのとき、 臭素化エポキシ樹脂を含まない組合せを選ぶと、ハロゲンフリーの難燃性樹脂にな る。
[0036] エポキシ樹脂組成物の各成分の混合割合は、エポキシィ匕ポリフエ二レンエーテル 樹脂を 40 90質量%、難燃剤を 10— 50質量%、エポキシ樹脂 (好ましくはォキサ ゾリドン環を有するもの)を 0. 1 30質量%がよレ、。より好ましくは、骨格部のポリフエ 二レンエーテルの割合が 50 60質量%であるエポキシ化ポリフエ二レンエーテル樹 脂を 50 60質量%、難燃剤を 20— 25質量%、ォキサゾリドン環を有するエポキシ 樹脂を 1一 10質量%である。この割合で混合すると、樹脂組成物の電気特性が良く 、難燃性を持ちながら、耐熱性、接着性、加工性のバランスが非常に良い。
[0037] 次に、本発明に使用する籠状シノレセスキォキサン及びその部分開裂構造体につい て説明する。
シリカが SiOで表されるのに対し、シルセスキォキサンは [R' Si〇 ] で表される
2 3/2 n 化合物である。シノレセスキォキサンは、通常は R' SiX型化合物 (R' =水素原子、炭
3
化水素基、ケィ素原子含有基等、 X=ハロゲン原子、アルコキシ基等)の加水分解一 重縮合で合成されるポリシロキサンであり、分子配列の形状として、代表的には無定 形構造、ラダー状構造、籠状 (完全縮合ケージ状)構造あるいはその部分開裂構造 体 (籠状構造力 ケィ素原子が一原子欠けた構造や籠状構造の一部ケィ素-酸素結 合が切断された構造)等が知られている。
本発明に使用される籠状シノレセスキォキサンの具体的構造の例としては、例えば、 下記の一般式 (A)で表される籠状シノレセスキォキサンが挙げられる。又、本発明に 使用される籠状シルセスキォキサンの部分開裂構造体の具体的構造の例としては、 例えば、下記の一般式 (B)で表される籠状シルセスキォキサンの部分開裂構造体が 挙げられる。し力 ながら、本発明に使用される籠状シノレセスキォキサンあるいはそ の部分開裂構造体の構造は、これらの構造に限定されるものではなレ、。
[RSiO ] (A)
3/2 n
(RSiO ) (RXSiO) (B)
3/2 1 k
一般式 (A)、(B)において、 Rは水素原子、炭素原子数 1から 6のアルコキシノレ基、 ァリールォキシ基、炭素原子数 1から 20の置換又は非置換の炭化水素基又はケィ素 原子数 1から 10のケィ素原子含有基から選ばれ、 Rは全て同一でも複数の基で構成 されていても良い。
本発明で用いられる一般式 (A)で表される籠状シルセスキォキサンの例としては、 [RSiO ] の化学式で表されるタイプ(下記一般式(2) )、 [RSiO ] の化学式で
3/2 6 3/2 8
表されるタイプ(下記一般式(3) )、 [RSiO ] の化学式で表されるタイプ (例えば
3/2 10
下記一般式 (4) )、 [R i〇 ] の化学式で表されるタイプ (例えば下記一般式 (5) )
3/2 12
, [RSiO ] の化学式で表されるタイプ (例えば下記一般式 (6) )が挙げられる。
3/2
[化 2]
Figure imgf000015_0001
3]
Figure imgf000015_0002
[化 4]
Figure imgf000016_0001
[化 5]
(5 )
Figure imgf000016_0002
[化 6]
Figure imgf000017_0001
[0039] 本発明の一般式 (A) [RSiO ] で表される籠状シルセスキォキサンにおける nの
3/2 n
値としては、 6から 14の整数であり、好ましくは 8, 10あるいは 12であり、より好ましく は、 8、 10または 8, 10の混合物あるいは 8, 10, 12の混合物であり、特に好ましくは 8又は 10である。
[0040] また、本発明では、籠状シルセスキォキサンの一部のケィ素-酸素結合が部分開 裂した構造か、又は、籠状シノレセスキォキサンの一部が脱離した構造、あるいはそれ らカ 誘導される、一般式(B) [RSiO ] (RXSiO) (1は 2力 12の整数であり、 kは
3/2 1 k
2又は 3である。 )で表される籠状シノレセスキォキサンの部分開裂構造体を用いること あでさる。
[0041] 一般式(B)において Xは OR (Rは水素原子、アルキル基、第 4級アンモニゥムラ ジカル)、ハロゲン原子及び上記 Rで定義された基の中から選ばれる基であり、複数 の Xは同じでも異なっていても良い。ここで、 1は 2力ら 12の整数、好ましくは 4から 10 の整数、特に好ましくは 4、 6又は 8である。 kは 2又は 3である。 (RXSiO) 中の 2個又
k
は 3個の Xは、同一分子中の他の Xと互いに連結して各種の連結構造を形成しても 良い。その、連結構造の具体例を以下に説明する。
[0042] 一般式 (B)の同一分子中の 2個の Xは一般式(7)で示される分子内連結構造を形 成しても良い。さらに、それぞれ異なった分子中に存在する 2個の Xが互いに連結し て、上記一般式(7)で表される連結構造により複核構造を形成しても良い。 [化 7]
Figure imgf000018_0001
(式中、 Y及び Zは Xと同じ基の群の中から選ばれ、 Yと Zは同じでも異なっていても良 い。)
一般式(7)で示される連結構造の例としては、例えば、以下の式 (8) (14)で表さ れる 2価基構造が挙げられる。なお、式中 Phはフエ二ル基を表す。
[化 8]
Figure imgf000018_0002
[化 9]
Figure imgf000018_0003
[化 10]
Figure imgf000018_0004
[化 11]
Figure imgf000018_0005
[化 12]
Figure imgf000019_0001
本発明で使用される一般式 (B)で表される化合物の例としては、例えば一般式(3) の一部が脱離した構造であるトリシラノール体あるいは、それから合成される (RSiO
3
) (RXSiO) の化学式で表されるタイプ (例えば、下記一般式(15) )、一般式(15
/2 4 3
)あるいは(RSiO ) (RXSiO) の化学式の化合物の中の 3個の Xのうち 2個の Xが
3/2 4 3
一般式(7)で示される連結構造を形成するタイプ (例えば、下記一般式(16) )、一般 式(3)の一部が開裂したジシラノール体力 誘導される(RSiO ) (RXSiO) の化
3/2 6 2 学式で表されるタイプ (例えば、下記一般式(17)及び(18) )、一般式(17)あるいは (RSiO ) (RXSiO) の化学式の化合物の中の 2個の Xが一般式(7)で示される
3/2 6 2
連結構造を形成するタイプ (例えば、下記一般式(19) )等が挙げられる。一般式(15 )から(19)中の同一ケィ素原子に結合している Rと Xあるいは Yと Zはお互いの位置 を交換したものでもよレ、。さらに、それぞれ異なった分子中に存在する 2個の Xが互い に連結して、上記一般式 (7)で代表される各種の連結構造により複核構造を形成し ても良い [化 15]
Figure imgf000020_0001
[化 16]
Figure imgf000020_0002
[化 17]
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000022_0001
[0045] また、一般式(B)の中の 2個又は 3個の Xが連結して、ケィ素原子以外の他の金属 原子を含む連結構造を形成した化合物の具体例としては、例えば、一般式 (8)で示 される化合物の 3個の Xが Ti原子を含む連結構造を形成する(RSiO ) (RXSiO)
3/2 4 の化学式で表される化合物が挙げられる。
3
[0046] これらの各種の籠状シノレセスキォキサンあるいはその部分開裂構造体は、それぞ れ単独で用いてもレ、レ、し、複数の混合物として用いても良レ、。
[0047] 本発明に使用される一般式 (A)及び/又は一般式 (B)で表される化合物における Rの種類としては水素原子、炭素原子数 1から 6のアルコキシル基、ァリールォキシ基 、炭素原子数 1から 20の置換又は非置換の炭化水素基、またはケィ素原子数 1から 10のケィ素原子含有基が挙げられる。
[0048] 炭素原子数 1から 6のアルコキシル基の例としては、例えば、メトキシ基、エトキシ基 n プロピルォキシ基、 i プロピルォキシ基、 n ブチルォキシ基、 t ブチルォキシ 基、 n キシルォキシ基、シクロへキシノレオキシ基等が挙げられる。ァリールォキシ 基の例としては、フエノキシ基、 2, 6—ジメチルフエノキシ基等が挙げられる。一般式( A)又は一般式(B)の化合物の 1分子中のアルコキシル基及びァリールォキシ基の 数は合計で好ましくは 3以下、より好ましくは 1以下である。
[0049] 炭素数 1から 20までの炭化水素基の例としてはメチル、ェチル、 n プロピル、 iープ 口ピル、ブチル(n—ブチル、 iーブチル、 t—ブチル、 sec—ブチル)、ペンチル(n ペン チル、 i ペンチル、ネオペンチル、シクロペンチル等) へキシル(n キシル、卜へ キシル、シクロへキシル等)、ヘプチル(n プチル、 i プチル等)、ォクチル(n— ォクチル、 iーォクチル、 tーォクチル等) ノニル(n—ノニル、 i ノニル等)、デシル(n— デシル、 i_デシノレ等)、ゥンデシル (n—ゥンデシル、 i—ゥンデシル等)、ドデシル (n—ド デシル、 i -ドデシル等)等の非環式又は環式の脂肪族炭化水素基、ビニル、プロべ 二ノレ、ブテニノレ、ペンテ二ノレ、へキセニノレ、シクロへキセニノレ、シクロへキセニノレエチ ノレ、ノルボルネニルェチル、ヘプテュル、オタテュル、ノネ二ノレ、デセニル、ゥンデセ ニル、ドデセニル、スチレニル等の非環式及び環式アルケニル基、ベンジル、フエネ チル、 2—メチルベンジル、 3_メチルベンジル、 4一メチルベンジル等のァラルキル基 PhCH = CH—基のようなァラアルケニル基、フエニル基、トリル基あるいはキシリノレ 基のようなァリール基、 4—ァミノフエニル基、 4—ヒドロキシフエニル基、 4—メトキシフエ ニル基、 4—ビュルフヱニル基のような置換ァリール基等が挙げられる。
[0050] これらの炭化水素基の中でも、特に炭素数 2から 20の脂肪族炭化水素基、炭素数
2から 20のアルケニル基の数力 全 X Y Ζの数に対して割合が大きい場合には 特に良好な硬化体成形時の溶融流動性が得られる。また Rが脂肪族炭化水素基及 び/又はアルケニル基の場合に、硬化体成形時の溶融流動性、難燃性及び操作性 のバランスの観点から、 R中の炭素数は通常 20以下、好ましくは 16以下、より好まし くは 12以下である。
[0051] 又、本発明に使用される Rとしては、これらの各種の炭化水素基の水素原子又は主 查骨格の一部がエーテル結合、エステル基 (結合)、水酸基、カルボニル基、カルボ ン酸無水物結合、チオール基、チォエーテル結合、スルホン基、アルデヒド基、ェポ キシ基、アミノ基、アミド基 (結合)、ウレァ基 (結合)、イソシァネート基、シァノ基等の 極性基 (極性結合)あるいはフッ素原子、塩素原子、臭素原子等のハロゲン原子等か ら選ばれる置換基で部分置換されたものでも良い。
[0052] エポキシ樹脂組成物の溶融粘度が低いことは、下記の硬化剤を含むエポキシ樹脂 硬化性組成物の成形性を良くすることに密接に関係する。エポキシ樹脂硬化性組成 物を基材に含浸させて、乾燥させると、エポキシ基と硬化剤、またはエポキシ基とフエ ノール性水酸基の一部が反応し、 Βステージ状態となる。この Βステージとなったェポ キシ樹脂硬化性組成物は、次に加圧加熱される時、溶融樹脂の粘度は一度その系 での最低粘度を発現し、硬化が進むにつれて、また粘度は上昇する。エポキシ樹脂 組成物の溶融粘度は、この最低粘度に影響を与える。エポキシ樹脂組成物の溶融 粘度が低いほど、この最低粘度は低くなるからである。
[0053] 本発明者は、全く以外なことに籠状シルセスキォキサンおよび Zまたは籠状シルセ スキォキサンの部分開裂構造体の添加により、本発明のエポキシ樹脂組成物の溶融 粘度が著しく低下することを見出した。さらに、籠状シルセスキォキサンおよび Zまた は籠状シルセスキォキサンの部分開裂構造体の添加は、難燃性をも改良できること が判った。
[0054] 籠状シノレセスキォキサンおよび Zまたは籠状シルセスキォキサンのエポキシ樹脂 組成物中の量は、好ましくは 0. 1質量%— 50質量%、より好ましくは 0. 5質量% 3 0質量%、さらに好ましくは 1質量%— 10質量%である。 0. 1質量%以上であると、 樹脂組成物の溶融粘度低下や難燃性向上に対する効果が大きい。
[0055] エポキシ樹脂の硬化剤としては、エポキシ樹脂と反応して 3次元網状構造を形成で きればどれでも良ぐ例えばジシアンジアミド、脂肪族ポリアミド等のアミド系硬化剤、 ジアミノジフエ二ルメタン、メタフエ二レンジァミン、アンモニア、トリエチノレアミン、ジェ チルァミン等のアミン系硬化斉 IJ、ビスフエノール A、ビスフエノール F、フエノールノボラ ック榭脂、クレゾ一ルノボラック樹脂、 p—キシレンノボラック樹脂等のフエノール系硬化 剤および酸無水物系硬化剤といった顕在型硬化剤や潜在型硬化剤を挙げることが できる。これらは単独、あるいは 2種類以上を併用してもよい。
[0056] なお、エポキシ樹脂組成物には硬化反応を促進するために、硬化剤の他に硬化促 進剤の添加が現実的である。例えば、 2—メチルイミダゾール、 2—メチルー 4—ェチノレ イミダゾール、 2—フエ二ルイミダゾール等のイミダゾール類、 1, 8—ジァザビシクロ [5. 4. 0]ゥンデセン一 7、トリエチレンジァミン、ベンジルジメチルァミン等の 3級ァミン類、 トリブチルポスフイン、トリフエニルホスフィン等の有機ホスフィン類、テトラフエニルホス ホニゥムテトラフエニルボレート、トリフエニルホスフィンテトラフエニルボレート等のテト ラフヱニルボロン塩等が挙げられ、単独もしくは 2種類以上を併用してもよい。
[0057] 本発明において、実質相分離を起こすとは、得られた硬化体の光散乱装置による 測定において、 0· 1 μ ΐη— 100 μ ΐηの間に散乱極大が存在することを意味する。こ のことは光学顕微鏡による相分離の観察を行っても確認できる。本発明のエポキシ 化ポリフエ二レンエーテル樹脂の硬化体は実質相分離を起こさないため、これら相分 離の観察を行っても、はっきりとした散乱極大が確認できない。また、硬化体を光学 顕微鏡で観察した場合においても、はっきりとした相分離を確認できない。
[0058] 本発明のエポキシ樹脂組成物を含有するワニスの調製には、公知のポリフヱニレン エーテル含有エポキシ樹脂組成物のワニス調製に用いられるジクロロメタンやクロ口 ホルムなどのハロゲン系溶媒やベンゼン、トルエン、キシレンなどの芳香族系溶媒に カロえて、ケトン類溶剤の使用が可能である。ケトン類溶剤として、例えばアセトン、メチ 等の脂肪族ケトン、ァセトフエノン等の芳香族ケトンが挙げられる。
[0059] 通常ポリフエ二レンエーテル含有エポキシ樹脂組成物のワニスは、トルエン等を溶 剤とし、かつ例えば 50°C以上のようにワニスが安定する温度を維持しなければならな レ、。しかし、溶剤としてケトン類を使用し、室温で保持できることにより、通常のェポキ シ榭脂系ワニスと同等の取り扱いができる。また、通常のポリフエ二レンエーテル含有 エポキシ樹脂,組成物のワニスのような、特別な取り扱いや装置が必要でなくなるので 好ましい。
[0060] また、例えば、ジシアンジアミド等、ケトン類に溶解しにくい硬化剤や硬化促進剤を 使用する場合は、主な溶剤としてケトン類を使用し、その上で補助溶剤として、例え ば、ジメチルホルムアミド、メチルセ口ソルブ、プロピレングリコールモノメチルエーテ ノレ、メシチレン等の溶剤を使用することもできる。なお、ワニス中の固形分濃度は特に 限定しなレ、が、 30 %— 80%が好適である。
[0061] 本発明のプリプレダは、上記ワニスを基材に含浸させた後、溶媒の乾燥、加熱によ る半硬化させて作製するものである。基材としては、ガラスクロス、ァラミドクロス、ポリ エステルクロス、ガラス不織布、ァラミド不織布、ポリエステル不織布、パルプ紙、リン ター紙等が挙げられる。基材に含浸する樹脂量は特に限定しないが、乾燥後の樹脂 含有量がプリプレダの質量に対し 30— 70%となるように含浸させることが好適である [0062] 本発明の硬化性樹脂金属箔複合体は、エポキシ樹脂硬化性組成物からなるフィル ムと金属箔より構成される。フィルムの厚みは特に限定されるものではなレ、が、通常 は 0. 5 μ ΐη— 5mmである。ここで用いる金属箔は、導電性であることが好ましぐ例 えば、銅箔、アルミニウム箔等が挙げられる。
[0063] 硬化性樹脂付き金属箔を製造する方法としては、例えば、エポキシ樹脂硬化性組 成物を溶媒に溶解した溶液とし、この溶液を金属箔の上にキャストして作成する方法 、あら力 め作成したエポキシ樹脂硬化性組成物からなるフィルム上に金属箔を加熱 圧着する方法、エポキシ樹脂硬化性組成物よりなるフィルム上に、銅やアルミニウム 等の金属をスパッタゃ蒸着、メツキ等の手段により積層する方法等が挙げられる。
[0064] 本発明のエポキシ樹脂硬化性組成物からなるフィルムは、溶液化した後、ポリェチ レンテレフタレートフィルム等の上にバーコーダ一等で塗布し、溶剤を乾燥除去する ことにより作製される。このように作製された Bステージィ匕されたフィルムは、ホットロー ル等を用いて両面銅箔積層板にラミネートし、オーブン内等で加熱処理することによ り、多層成形体を作製できる。
[0065] 本発明の積層板は、プリプレダ、硬化性樹脂金属箔複合体、フィルムおよび銅箔を 目的に応じた層構成で積層し加圧加熱して製造することができる。例えば、基板上に プリプレダと硬化性樹脂金属箔複合体を複数枚重ね合わせ、加熱加圧下に各層間 を接着すると同時に熱架橋を行い、所望の厚みの積層板を得ることができる。あるい は、基板上に硬化性樹脂金属箔複合体を複数枚重ね合わせて、加熱加圧下に各層 間を接着すると同時に熱硬化を行い、所望の厚みの積層板を得ることもできる。金属 箔は表層としても中間層としても用いることができる。また積層と硬化を複数回繰り返 して逐次多層化することも可能である。
[0066] 本発明のエポキシ化ポリフエ二レンエーテル樹脂を使用した多層プリント配線板は 、回路板の導体層と有機絶縁層が少なくとも 1層以上積層したものをいう。特に限定 されないが、めっき法によるビルドアップ方式により製造することもできるし、導電性ぺ 一スト接続によるビルドアップ方式、銅張積層板、接着剤用樹脂組成物を用いた一 括積層法などが挙げられる。このとき、上記フィルム及び上記積層板を用いて製造す ると、電気特性のみならず、接着性、耐熱性、対溶剤性に非常に優れた多層プリント 配線板を作成できる。
[0067] 本発明の電子装置とは、上記多層プリント配線板を使用しているものをいい、特に 限定されないが、例えば、通信用ルーターやコンピューター、テレビ、携帯電話、 PDA、 DVDレコーダー、ハードディスクレコーダー、デジタルカメラなどが挙げられる。
[0068] 本発明の封止用樹脂組成物は、本発明のエポキシ樹脂組成物を含んでいれば特 に限定されないが、無機充填剤や離型剤、着色剤、難燃剤及び低応力剤を適宜含 有しても良い。無機充填剤は、エポキシ樹脂組成物となじみをよくするために、カップ リング剤で表面処理を行ってもよレ、。離型剤としては、例えば、カルナバワックス、力 ルポキシル基含有ポリオレフイン等が上げられる。着色剤としては、例えば、カーボン ブラック等が挙げられ、難燃剤としては、例えば、 3酸化アンチモン等が挙げられ、低 応力剤としては、例えば、シリコンゴム、シリコンオイル等が挙げられる。本発明のェポ キシ樹脂組成物を封止用樹脂組成物に用いると、加工性、耐熱性、吸湿性等非常 に優れる。
[0069] 本発明のエポキシ樹脂組成物は接着剤用途としても使用できる。使用法は特に限 定されないが、電気用途に用いると、電気特性、接着性、耐熱性、加工性等その効 果を十分に発揮できる。
[0070] (実施例及び比較例)
以下、実施例および比較例を参照して本発明の実施形態を具体的に説明する。 各特性等の評価は以下の方法で行った。
(1)溶融粘度
エポキシ樹脂組成物の 180°Cでの溶融粘度(単位: mPa · s)を、 Contraves社製 r heomat_30にて測定した。
(2)分子量
昭禾ロ電工社製 shodex A-804, A_803、 A_802、 A802をカラムとして使用して ゲル浸透クロマトグラフィー分析を行レ、、分子量既知のポリスチレンの溶出時間との 比較で分子量を求めた。
(3)フエノール性水酸基量
ポリフエ二レンエーテルを塩化メチレンに溶解後、 0. 1Nテトラエチルアンモニゥム ハイド口キシドのメタノール溶液を添加し、激しく撹拌後、 318nmでの吸光度を測定 し、 0. 1Nテトラェチルアンモニゥムハイド口キシドのメタノール溶液を添加しない場合 の吸光度との差から求めた(単位: meq/kg)。
(4)エポキシ当量
JIS K 7236により測定した。
(5)曲げ強さ
JIS C 6481に基づき、材料試験機 5582型 インストロン製を用いて測定した。
(6)積層板誘電率、誘電正接
JIS C 6481に基づき、アジレントテクノロジ一社製 LCRメーター 4284Aを用いて 測定した。
(7)溶剤不溶解分の測定
樹脂を溶剤に加熱溶解し、室温にもどした後、メンブランフィルターにてろ過した。 フィルターを加熱し、溶剤を揮発させた後の質量ともとのフィルターの質量の差から、 溶剤不溶解分 (単位:質量%)を測定した。
(8)相分離の測定
ワニスを硬化させて得られた硬化体を、光散乱測定装置 DYNA - 3000 (大塚電 子製)を用いて、 0· 1 /i m— 100 /i mの間の散乱極大の有無(すなわち相分離の有 無)を調べた。また、レーザー顕微鏡 VHX— 100 (KEYENCE製)を用いて、表面観 察を行った。相分離がある場合を X、相分離がない場合を〇として評価した。
(9)対溶剤性
銅箔積層板を 35°Cの塩化メチレンに 5分間浸漬し、外観の変化を見た。積層板に 膨れが生じる場合を X、膨れが生じない場合を〇として評価した。
(10)燃焼性試験
JIS C 6481に基づき測定した。
(11)エポキシ基の個数
エポキシ化ポリフエ二レンエーテル樹脂のエポキシ基の個数は、エポキシ化ポリフエ 二レンエーテル樹脂の分子量をエポキシ当量で割ることにより計算した。
(12) Tgの測定 JIS C 6481の DSC法に基づき測定した。
(13)銅箔剥離強度
JIS C 6481に基づき測定した。
[0071] [ポリフヱニレンエーテル製造例 1]
数平均分子量 20000の高分子量ポリフヱニレンエーテル (旭化成株式会社製) 10 0質量部およびビスフエノール A30質量部をトルエン 100質量部に加熱溶解させた。 この中に過酸化ベンゾィル 30質量部をいれ 90°Cにて 60分間攪拌し再分配反応さ せた。さらに過酸化ベンゾィル 10質量部をカ卩え、 90°Cにて 30分間攪拌し、再分配反 応を完結させた。反応混合物を 1000質量部のメタノールに投入し沈殿物を得て、濾 別した。さらにメタノール 1000質量部で濾別物を洗浄し、ポリフエ二レンエーテル Iを 得た。
ポリフヱニレンエーテル Iのゲル浸透クロマトグラフによる分子量測定の結果、数平 均分子量は 1900で、分子量 20000以上の成分及び分子量 300以下の成分を含ん でいなかった。また 1分子当たりのフエノール性水酸基の数は 1. 7個であった。
[0072] [ポリフエ二レンエーテル製造例 2]
メタノールによる後洗浄工程を除き、ポリフエ二レンエーテル製造例 1と同じ方法で ポリフエ二レンエーテル Πを得た。
ポリフエ二レンエーテル IIのゲル浸透クロマトグラフによる分子量測定の結果、数平 均分子量は 2000で、分子量 20000以上の成分は含んでいな力 た力 分子量 30 0以下の成分は存在した。また 1分子当たりのフエノール性水酸基の数は 1. 7個であ つに。
[0073] [ポリフヱニレンエーテル製造例 3]
既知のポリフエ二レンエーテルの製造法、例えば米国特許 6211327号明細書実 施例記載の方法で、反応初期段階で反応を停止し、メタノール洗浄を行った。すな わち、臭化銅とジ一 n—ブチルァミンを触媒にし、トルエン溶媒中、 40°C力 45°Cの温 度範囲で酸素供給下撹拌しながら 2, 6_ジメチルフヱノールを通常 100分のところを 30分間のみ反応させた。次いで酸素の供給を止め、窒素シール下二トリ口トリ酢酸の 水溶液を撹拌しながら加えて、水相に銅触媒を抽出しつつ温度を 55°Cにし、この状 態で 70分保った。その後、遠心分離で銅触媒を除き、メタノール溶液で洗浄した。そ の結果、数平均分子量 2000、分子量 20000以上及び分子量 300以下の成分を含 まなレ、ポリフエ二レンエーテル IIIを得た。このポリフエ二レンエーテルの 1分子当たりの フエノール性水酸基の数は 1. 0個であった。
[0074] [ポリフヱニレンエーテル製造例 4]
追加の過酸化ベンゾィルをカ卩える工程を除き、ポリフヱニレンエーテル製造例 1と同 じ方法でポリフエ二レンエーテル IVを得た。
ポリフヱニレンエーテル IVのゲル浸透クロマトグラフによる分子量測定の結果、数平 均分子量は 2300で、分子量 300以下の成分は含まれていなかった力 分子量 200 00以上の成分は存在した。また 1分子当たりのフヱノール性水酸基の数は 1. 6個で あった。
[0075] [ポリフヱニレンエーテル製造例 5]
数平均分子量 20000の高分子量ポリフエ二レンエーテル (旭化成株式会社製) 10 0質量部およびビスフエノール A6質量部をトルエン 100質量部に加熱溶解させた。こ の中に過酸化ベンゾィル 30質量部をいれ 90°Cにて 60分間攪拌し再分配反応させ た。反応混合物を 1000質量部のメタノールに投入し沈殿物を得て、濾別した。さらに メタノール 1000質量部で濾別物を洗浄し、ポリフエ二レンエーテル Vを得た。
ポリフエ二レンエーテル Vのゲル浸透クロマトグラフによる分子量測定の結果、数平 均分子量は 4500で、分子量 300以下の成分は含まれていな力 た力 分子量 200 00以上の成分を含んでいた。また 1分子当たりのフエノール性水酸基の数は 1. 6個 であった。
[0076] [ポリフヱニレンエーテル製造例 6]
2, 2—ビス(3, 5—ジメチルー 4—ヒドロキシフエニル)プロパンを含む 2, 6—ジメチルフ ヱノールを使用したこと以外は実施例 3と同様に行レ、、数平均分子量 2700、分子量 20000以上を 0. 5質量%含むが分子量 300以下の成分を含まなレ、ポリフエ二レンェ 一テル VIを得た。このポリフエ二レンエーテルの 1分子当たりのフエノール性水酸基の 数は 1. 8個であった。
[0077] [ポリフヱニレンエーテル製造例 7] 数平均分子量 20000の高分子量ポリフエ二レンエーテル (旭化成株式会社製) 10 0質量部およびビスフエノール A30質量部をトルエン 100質量部に加熱溶解させた。 この中に過酸化ベンゾィル 60質量部をいれ 90°Cにて 60分間攪拌し再分配反応さ せた。さらに過酸化ベンゾィル 60質量部をカ卩え、 90°Cにて 30分間攪拌し、再分配反 応を完結させた。反応混合物を 1000質量部のメタノールに投入し沈殿物を得て、濾 別した。さらにメタノール 1000質量部で濾別物を洗浄し、ポリフエ二レンエーテル VII を得た。
ポリフエ二レンエーテル VIIのゲル浸透クロマトグラフによる分子量測定の結果、数 平均分子量は 1100で、分子量 20000以上の成分及び分子量 300以下の成分を含 んでいなかった。また 1分子当たりのフエノール性水酸基の数は 1. 8個であった。
[0078] [銅張積層板の製造例]
硬化剤として組成物のエポキシ基に対し、アミノ基として 0. 6倍当量のジシアンジァ ミド、溶媒としてメチルェチルケトンをカ卩え、ワニスの固形分が 60質量0 /0となるように 調製した。後に述べる実施例 1一 3については、ポリフエ二レンエーテルのフエノール 性水酸基がエポキシ基と完全に反応するものとし、エポキシ基数からフエノール性水 酸基数を差し引いた量に対してジシアンジアミドを加えた。
また、硬化触媒として 2-メチルイミダゾールを、ワニスの 170°Cゲルタイム(ゲル化 に要する時間)が 4分一 5分の間にくるようにワニス固形分に対し 0. 1-0. 3質量% の範囲で調整して添カ卩した。
[0079] 次にエポキシ樹脂ワニスをガラスクロス(旭シュエーベル株式会社製、商品名 2116 )に含浸させ、乾燥することにより樹脂含有量 50質量%のプリプレダを得た。上記プリ プレダを 4枚重ね、その上下に厚み 35 μ mの銅箔を重ね合わせたものを温度 190°C 、圧力 20kg/cm2の条件下で 60分加熱加圧することにより両面銅張積層板を得た 得られた両面銅張積層板の Tgを DSCにより測定した。積層板の曲げ強さを曲げ試 験により評価した。
[0080] [実施例 1]
ポリフエ二レンエーテル Iを 100質量部と、エポキシ樹脂としてビスフエノール A型ェ ポキシ樹脂(旭化成株式会社製 AER260)を 100質量部とからなるエポキシ樹脂組 成物(1)を、メチルェチルケトン 130質量部に溶解したところ、不溶解分がなぐ室温 にて均一な溶液が得られた。この溶液を 25°Cにて貯蔵したところ、 4日間は褐色透明 溶液であつたが、 5日目に濁りが生じ、不溶解分を測定したところ 0. 5質量%であつ た。
また、ポリフエ二レンエーテル Iを 100質量部と、 AER260を 100質量部加えたもの を溶融混合し、 180°Cでの溶融粘度を測定したところ、 2500mPa' sであった。
[0081] [実施例 2]
ポリフエ二レンエーテル IIを 100質量部と、エポキシ樹脂としてビスフエノール A型ェ ポキシ樹脂(旭化成株式会社製 AER260)を 100質量部とからなるエポキシ樹脂組 成物(2)を、メチルェチルケトン 130質量部に溶解したところ、不溶解分がなぐ室温 にて均一な溶液が得られた。この溶液を 25°Cにて貯蔵したところ、 4日間は褐色透明 溶液であつたが、 5日目に濁りが生じ、不溶解分を測定したところ 0. 5質量%であつ た。
[0082] [実施例 3]
ポリフエ二レンエーテル IIIを 100質量部と、エポキシ樹脂としてビスフエノール A型 エポキシ樹脂(旭化成株式会社製 AER260)を 100質量部とからなるエポキシ樹脂 組成物(3)を、メチルェチルケトン 130質量部に溶解したところ、不溶解分がなぐ室 温にて均一な溶液が得られた。この溶液を 25°Cにて貯蔵したところ、 3日間は褐色透 明溶液であつたが、 4日目に濁りが生じ、不溶解分を測定したところ 0. 8質量%であ つに。
[0083] [比較例 1]
ポリフエ二レンエーテル IVを 100質量部と、エポキシ樹脂としてビスフエノール A型 エポキシ樹脂(旭化成株式会社製 AER260)を 100質量部とからなるエポキシ樹脂 組成物(4)を、メチルェチルケトン 130質量部に溶解したところ、室温にて均一な溶 液が得られず、濁りのある溶液であった。この溶液の不溶解分を測定したところ、 1. 2 質量%であった。
[0084] [比較例 2] ポリフエ二レンエーテル Vを 100質量部と、エポキシ樹脂としてビスフエノール A型ェ ポキシ樹脂(旭化成株式会社製 AER260)を 100質量部とからなるエポキシ樹脂組 成物(5)を、メチルェチルケトン 130質量部に溶解したところ、室温にて均一な溶液 が得られず、濁りのある溶液であった。この溶液の不溶解分を測定したところ、 2. 5質 量%であった。
[0085] [実施例 4]
ポリフエ二レンエーテル Iの 50質量部とエポキシ樹脂としてビスフエノール A型ェポ キシ樹脂(旭化成株式会社製 AER260)の 50質量部を 130°Cで加熱溶融混合し、こ れに 1質量%のナトリウムメチラート/メタノール溶液 1質量部を添加して均一になる ように攪拌した。 5分後溶融物を 190°Cに昇温し、 2時間攪拌し、エポキシ樹脂組成 物(6)を得た。
[0086] エポキシ樹脂組成物(6)のエポキシ当量は 502、 180°C溶融粘度は 3100mPa' s 、末端フエノール性水酸基は 4. 5meq/kgであった。またゲル浸透クロマトグラフ分 析により定量した未反応エポキシ量は仕込み 100質量部に対して、 33質量部であつ た。従って、エポキシ化ポリフエ二レンエーテル樹脂は 67質量部であり、このものの 1 kgに対する末端フエノール性水酸基量を計算すると、 6. 7meq/kgであった。
[0087] エポキシ樹脂組成物(6)の 60質量部をメチルェチルケトン 40質量部に溶解したと ころ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液は 25°C貯蔵にお レ、て 30日間以上析出物を発生させることがなぐ不溶解成分がなかった。同様にェ ポキシ樹脂組成物 Iの 60質量%アセトン溶液も 25°C貯蔵において 30日間以上析出 物を発生させることがな力 た。
[0088] エポキシ樹脂組成物(6) 10gをトルエン 100gに溶解させ、大過剰のメタノールを添 加して、エポキシィ匕ポリフエ二レンエーテル樹脂 Iを沈殿させた。得られたエポキシィ匕 ポリフエ二レンエーテル樹脂 Iは分子量 2900、エポキシ当量 2260であった。従って、 ポリフエ二レンエーテル骨格の割合は 65質量%、 1分子あたりのエポキシ基の個数 は 1. 6個であった。
[0089] エポキシ樹脂組成物(6)を用いて銅張積層板を作成したところ、 1MHzにおける誘 電率は 4. 2、誘電正接は 0. 011、 DSCによる Tgは 165°C、銅箔剥離強度は 0. 88k gf/cmであった。この硬化体は相分離を起しており、対溶剤性の試験後、銅張積層 板に膨れが生じていた。
[0090] [実施例 5]
ポリフエ二レンエーテル Iの 50質量部とエポキシ樹脂としてテトラブロモビスフエノー ノレ A型エポキシ樹脂(旭化成株式会社製 AER8018)の 50質量部を 130°Cで加熱 溶融混合し、これに 1質量%のナトリウムメチラート/メタノール溶液 1質量部を添加し て均一になるように攪拌した。 5分後溶融物を 190°Cに昇温し、 2時間攪拌し、ェポキ シ樹脂組成物(7)を得た。
[0091] エポキシ樹脂組成物(7)のエポキシ当量は 1369、 180°C溶融粘度は 70000mPa •s、末端フエノール性水酸基は 6. 3meq/kgであった。またゲル浸透クロマトグラフ 分析により定量した未反応エポキシ量は仕込み 100質量部に対して、 14質量部であ つた。従って、エポキシ化ポリフエ二レンエーテル樹脂は 86質量部であり、このものの lkgに対する末端フエノール性水酸基量を計算すると、 7. 3meq/kgであった。
[0092] エポキシ樹脂組成物(7)の 60質量部をメチルェチルケトンの 40質量部に溶解した ところ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液は 25°C貯蔵に おいて 30日間以上析出物を発生させることがなかった。同様にエポキシ樹脂組成物 (7)の 60質量%アセトン溶液も 25°C貯蔵において 30日間以上析出物を発生させる ことがなかった。
[0093] エポキシ樹脂組成物(7) 10gをトルエン 100gに溶解させ、大過剰のメタノールを添 加して、エポキシィ匕ポリフエ二レンエーテル樹脂 IIを沈殿させた。得られたエポキシィ匕 ポリフエ二レンエーテル樹脂 Πは分子量 3550、エポキシ当量 2260であった。従って 、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンエーテル骨格の割合は 53. 5質量%、 1分子あたりのエポキシ基の個数は 1. 7個であった。
[0094] エポキシ樹脂組成物(7)を用いて銅張積層板を作成したところ、 1MHzにおける誘 電率は 3. 9、誘電正接は 0. 008、 DSCによる Tgは 163°C、 同箔录猜隹強度は 0. 78k gf/cmであった。この硬化体は相分離を起しており、対溶剤性の試験後、銅張積層 板に膨れが生じていた。
[0095] [実施例 6] ポリフエ二レンエーテル Iの 100質量部をェピクロルヒドリン 120質量部に溶解後、 5 0質量%の水酸化ナトリウム水溶液 10質量部を 60°Cにて 60分間かけて添カ卩し、その 後 60°Cで 60分間撹拌した。この反応溶液に水 50部を加え、撹拌後静置して水層を 分離させることで生成塩を除去した後、ェピクロルヒドリンを減圧蒸留で除去し、ェポ キシ化ポリフエ二レンエーテル樹脂 IIIを得た。
[0096] 得られたエポキシ化ポリフエ二レンエーテル樹脂 IIIの分子量は 2010、エポキシ当 量は 1570であった。従って、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二 レンエーテル骨格部の割合は 95質量%、 1分子中のエポキシ基の個数は 1. 7個で あった。
[0097] エポキシ化ポリフエ二レンエーテル樹脂 IIIを 100部に対し、テトラブロモビスフエノー ノレ A型エポキシ樹脂(旭化成エポキシ (株)、 AER8018) 90質量部を 180°Cで加熱 溶融混合し、エポキシ樹脂組成物(8)を得た。エポキシ樹脂組成物(8)のエポキシ 当量は 632、 180°C溶融粘度は 17000mPa' s、末端フエノール性水酸基は 0. lme q/kg以下であった。
[0098] エポキシ樹脂組成物(8)の 60質量部をメチルェチルケトンの 40質量部に溶解した ところ不溶解物が存在した。そこで、溶液を 50°Cに加熱したところ、不溶解成分が溶 解し、完全に均一な溶液が得られた。この溶液は 25°C貯蔵において 10日間析出物 を発生させることがな力 た力 11日目に濁りを生じ、不溶解分は 0. 5質量%であつ た。同様にエポキシ樹脂組成物(8)の 60質量%アセトン溶液も、均一な溶液が得ら れ、不溶解物はなかった力 7日目に濁りを生じ、不溶解物は 0. 7質量%であった。
[0099] エポキシ樹脂組成物(8)を用いて銅張積層板を作成したところ、 1MHzにおける誘 電率は 4. 0、誘電正接は 0. 009、 DSCによる Tgは 166°C、$同箔录猜隹強度は 0. 86k gf/cmであった。この硬化体は相分離を起しており、対溶剤性の試験後、銅張積層 板に膨れが生じていた。
[0100] [実施例 7]
ポリフエ二レンエーテル IIIを 50質量部とエポキシ樹脂としてビスフエノール A型ェポ キシ樹脂(旭化成株式会社製 AER260)の 50質量部を 130°Cで加熱溶融混合し、こ れに 1質量%のナトリウムメチラート/メタノール溶液 1質量部を添加して均一になる ように攪拌した。 5分後溶融物を 190°Cに昇温し、 2時間攪拌し、エポキシ樹脂組成 物(9)を得た。
[0101] エポキシ樹脂組成物(9) 10gをトルエン 100gに溶解させ、大過剰のメタノールを添 加して、エポキシィ匕ポリフエ二レンエーテル樹脂 IVを沈殿させた。得られたエポキシ 化ポリフエ二レンエーテル樹脂 IVは分子量 2450、エポキシ当量 2500であった。従つ て、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンエーテル骨格の割合 は 82質量%、 1分子あたりのエポキシ基の個数は 0. 98個であった。
[0102] エポキシ樹脂組成物(9)のエポキシ当量は 461、 180°C溶融粘度は 1600mPa' s 、末端フエノール性水酸基は 2. OmeqZkgであった。またゲル浸透クロマトグラフ分 析により定量した未反応エポキシ量は仕込み 100質量部に対して、 41質量部であつ た。従って、エポキシ化ポリフエ二レンエーテル樹脂 IVは 59質量部であり、このものの lkgに対する末端フヱノール性水酸基量を計算すると、 3. 4meq/kgであった。
[0103] エポキシ樹脂組成物(9)の 60質量部をメチルェチルケトンの 40質量部に溶解した ところ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液は 25°C貯蔵に おいて 19日間析出物を発生させることがな力 た力 20日目に濁りを生じ、不溶解 分は 0. 7質量%であった。同様にエポキシ樹脂組成物(9)の 60質量%アセトン溶液 も、均一な溶液が得られた力 13日目に濁りが生じ、不溶解分 1. 3質量%が観察さ れた。
[0104] エポキシ樹脂組成物(9)を用いて銅張積層板を作成したところ、 1MHzにおける誘 電率は 4. 3、誘電正接は 0. 010、 DSCによる Tgは 155°C、 ί同箱录 隹強度は 0. 40k gf/cmであった。この硬化体は相分離を起しており、対溶剤性の試験後、銅張積層 板に膨れが生じていた。
[0105] [実施例 8]
190°Cでの反応時間を 1時間にした以外は実施例 4と同じ方法で、エポキシ樹脂組 成物(10)を得た。エポキシ樹脂組成物(10)のエポキシ当量は 455、 180°C溶融粘 度は 2500mPa' s、末端フエノール性水酸基は 20. 9meq/kgであった。
またゲル浸透クロマトグラフ分析により定量した未反応エポキシ量は仕込み 100質 量部に対して、 40質量部であった。従って、末端エポキシィ匕ポリフエ二レンエーテル 樹脂は 60質量部であり、このものの lkgに対する末端フエノール性水酸基量を計算 すると、 34· 6meq/kgであった。
[0106] エポキシ樹脂組成物(10)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液を 25°Cにて貯蔵 したところ、 5日間は褐色透明溶液であつたが、 6日目に濁りが生じ、不溶解分を測定 したところ、 0. 3質量%であった。
エポキシ樹脂組成物(10)を用いて銅張積層板を作成したところ、 1MHzにおける 誘電率は 4. 4、誘電正接は 0. 012、 DSCによる Tgは 163°C、銅箔剥離強度は 0. 8
5kgfZcmであった。この硬化体は相分離を起しており、対溶剤性の試験後、銅張積 層板に膨れが生じていた。
[0107] [実施例 9]
クレゾ一ルノボラック型エポキシ樹脂(旭化成エポキシ(株) ECN1299) 30g、ビス フエノール A型エポキシ樹脂(旭化成エポキシ(株)、 A250) 30gを 100°Cにカロ熱し 攪拌混合した。十分に混合した後、触媒として NaOCHを 0. 005g添加し、約 15分
3
攪拌した。その後、 180°Cまで加熱して、ポリフエ二レンエーテル I40gを添加した。そ のまま 180°C— 190°Cで 3時間加熱し、エポキシ樹脂組成物(11)を得た。
[0108] エポキシ樹脂組成物(11)のエポキシ当量は 384、 180°C溶融粘度は 57000mPa •s、末端フエノール性水酸基は 0. 6meq/kgであった。またゲル浸透クロマトグラフ 分析により定量した未反応エポキシ量は仕込み 100質量部に対して、 32質量部であ つた。従って、末端エポキシィ匕ポリフエ二レンエーテル樹脂は 68質量部であり、このも のの lkgに対する末端フエノール性水酸基量を計算すると、 0. 9meq/kgであった
[0109] エポキシ樹脂組成物(11)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液は 25°C貯蔵に おいて 90日以上析出物を発生させることがなぐ不溶解成分がなかった。同様にェ ポキシ樹脂組成物(11)の 60質量%アセトン溶液も 25°C貯蔵において 30日以上析 出物を発生させることがなかった。
[0110] エポキシ樹脂組成物(11) 10gをトルエン 100gに溶解させ、大過剰のメタノールを 添加して、エポキシィ匕ポリフエ二レンエーテル樹脂 Vを沈殿させた。得られたエポキシ 化ポリフエ二レンエーテル樹脂 Vは分子量 5200、エポキシ当量 830であった。従つ て、ポリフエ二レンエーテル骨格の割合は 52質量%、 1分子あたりのエポキシ基の個 数は 6. 3個であった。
[0111] エポキシ樹脂組成物(11)を用いて銅張積層板を作成したところ、 1MHzにおける 誘電率は 3. 9、誘電正接は 0. 006、 DSCによる Tgは 190°C、銅箔剥離強度は 1. 4 7kgfZcmであった。この硬化体は相分離を起しておらず、対溶剤性の試験後も、銅 張積層板に膨れは見られなかつた。
[0112] [比較例 3]
ポリフエ二レンエーテル IVの 50質量部とエポキシ樹脂としてビスフエノーノレ A型ェポ キシ樹脂(旭化成株式会社製 AER260)の 50質量部を 130°Cで加熱溶融混合し、こ れに 1質量%のナトリウムメチラート/メタノール溶液 1質量部を添加して均一になる ように攪拌した。 5分後溶融物を 190°Cに昇温し、 2時間攪拌し、エポキシ樹脂組成 物(12)を得た。
[0113] エポキシ樹脂組成物(12)のエポキシ当量は 430、 180°C溶融粘度は 9000mPa ' s、末端フエノール性水酸基は 5. 2meq/kgであった。またゲル浸透クロマトグラフ分 析により定量した未反応エポキシ量は仕込み 100質量部に対して、 36質量部であつ た。従って、エポキシ化ポリフエ二レンエーテル樹脂は 64質量部であり、このものの 1 kgに対する末端フエノール性水酸基量を計算すると、 8. lmeq/kgであった。
[0114] エポキシ樹脂組成物(12)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ、室温にて不溶解物が存在した。そこで、溶液を 50°Cに加熱したところ不溶解 成分が溶解し、完全に均一な溶液が得られた。この溶液は 25°C貯蔵において 17日 間析出物を発生させることがなかった力 18日目に濁りを生じ、不溶解分は 0. 5質 量%であった。同様にエポキシ樹脂組成物(12)の 60質量%アセトン溶液も均一な 溶液であり不溶解物はなかった力 9日目に濁りを生じ、不溶解分は 0. 7質量%であ つた。
[0115] [比較例 4]
ポリフエ二レンエーテル Vの 50質量部とエポキシ樹脂としてビスフエノール A型ェポ キシ樹脂(旭化成株式会社製 AER260)の 50質量部を 130°Cで加熱溶融混合し、こ れに 1質量%のナトリウムメチラート/メタノール溶液 1質量部を添加して均一になる ように攪拌した。 5分後溶融物を 190°Cに昇温し、 2時間攪拌し、エポキシ樹脂組成 物(13)を得た。
[0116] エポキシ樹脂組成物(13)のエポキシ当量は 453、 180°C溶融粘度は 12000mPa •s、末端フエノール性水酸基は 4. 2meq/kgであった。またゲル浸透クロマトグラフ 分析により定量した未反応エポキシ量は仕込み 100質量部に対して、 42質量部であ つた。従って、エポキシ化ポリフエ二レンエーテル樹脂は 58質量部であり、このものの lkgに対する末端フヱノール性水酸基量を計算すると、 7. 2meq/kgであった。
[0117] エポキシ樹脂組成物(13)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ、室温にて不溶解物が存在した。そこで、溶液を 50°Cに加熱したところ不溶解 成分が溶解し、完全に均一な溶液が得られた。この溶液は 25°C貯蔵において 4日間 析出物を発生させることがなかった力 5日目に濁りを生じ、不溶解分は 0. 5質量% であった。同様にエポキシ樹脂組成物(13)の 60質量%アセトン溶液も均一な溶液 であり不溶解物はなかった力 2日目に濁りを生じ、不溶解分は 0. 7質量%であった
[0118] [比較例 5]
ポリフエ二レンエーテル Vを用いたこと以外は実施例 9と同様に行い、エポキシ樹脂 組成物(14)を得た。エポキシ樹脂組成物(14)のエポキシ当量は 362、 180°C溶融 粘度は 114000mPa's、末端フエノール性水酸基は 0· 5meq/kgであった。またゲ ル浸透クロマトグラフ分析により定量した未反応エポキシ量は仕込み 100質量部に 対して、 40質量部であった。従って、エポキシ化ポリフエ二レンエーテル樹脂は 60質 量部であり、このものの lkgに対する末端フエノール性水酸基量を計算すると、 0. 83 meq kgで fcつた。
[0119] エポキシ樹脂組成物(14)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ室温にて不溶解物が存在した。そこで、溶液を 50°Cに加熱したところ不溶解成 分が溶解し、完全に均一な溶液が得られた。この溶液は 25°C貯蔵において 17日間 析出物を発生させることがなかった力 18日目に濁りを生じ、不溶解分は 0. 7質量 %であった。同様にエポキシ樹脂組成物(14)の 60質量%アセトン溶液も均一な溶 液であり不溶解物はなかった力 19日目に濁りを生じ、不溶解分は 0. 9質量%であ つに。
[0120] エポキシ樹脂組成物(14) 10gをトルエン 100gに溶解させ、大過剰のメタノールを 添加して、エポキシィ匕ポリフエ二レンエーテル樹脂 VIを沈殿させた。得られたェポキ シ化ポリフエ二レンエーテル樹脂 VIは分子量 11400、エポキシ当量 1960であった。 従って、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンエーテル骨格の 割合は 60質量%、 1分子あたりのエポキシ基の個数は 5. 8個であった。
[0121] [比較例 6]
ポリフエ二レンエーテル VIIを用いたこと以外は実施例 9と同様に行レ、、エポキシ樹 脂組成物(15)を得た。エポキシ樹脂組成物(15)のエポキシ当量は 401、 180°C溶 融粘度は 49000mPa' s、末端フエノール性水酸基は 0. 9meq/kgであった。また ゲル浸透クロマトグラフ分析により定量した未反応エポキシ量は仕込み 100質量部に 対して、 29質量部であった。従って、エポキシ化ポリフエ二レンエーテル樹脂は 71質 量部であり、このものの lkgに対する末端フエノール性水酸基量を計算すると、 1. 3 meqZkgでめった。
[0122] エポキシ樹脂組成物(15)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液は 25°C貯蔵に おいて 90日以上析出物を発生させることがなぐ不溶解成分がなかった。同様にェ ポキシ樹脂組成物(15)の 40質量%アセトン溶液も 25°C貯蔵において 30日以上析 出物を発生させることがな力 た。
[0123] エポキシ樹脂組成物(15) 10gをトルエン 100gに溶解させ、大過剰のメタノールを 添加して、エポキシィ匕ポリフエ二レンエーテル樹脂 VIIを沈殿させた。得られたェポキ シ化ポリフエ二レンエーテル樹脂 VIIは分子量 3030、エポキシ当量 510であった。従 つて、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンエーテル骨格の割 合は 36質量%、 1分子あたりのエポキシ基の個数は 5. 9個であった。
[0124] エポキシ樹脂組成物(15)を用いて銅張積層板を作成したところ、 1MHzにおける 誘電率は 4. 5、誘電正接は 0. 015と電気特性が非常に悪かった。 DSCによる Tgは 175°C、銅箔剥離強度は 1. 50kgf/cmであった。この硬化体は相分離しておらず 、対溶剤性の試験後、銅張積層板に変化はなかった。
[0125] [比較例 7]
クレゾ一ルノボラック型エポキシ樹脂(旭化成エポキシ(株) ECN1299) 2g、ビスフ ヱノール A型エポキシ樹脂(旭化成エポキシ (株) A250) 58gに変更したこと以外は 実施例 9と同様に行い、エポキシ樹脂組成物(16)を得た。
[0126] エポキシ樹脂組成物(16)のエポキシ当量は、 490、 180°C溶融粘度は 4500mPa •s、末端フエノール性水酸基は 2. 7meq/kgであった。またゲル浸透クロマトグラフ 分析により定量した未反応エポキシ量は仕込み 100質量部に対して、 31質量部であ つた。従って、エポキシ化ポリフエ二レンエーテル樹脂は 69質量部であり、このものの lkgに対する末端フヱノール性水酸基量を計算すると、 3. 9meq/kgであった。
[0127] エポキシ樹脂組成物(16)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液は 25°C貯蔵に おいて 30日以上析出物を発生させることがなぐ不溶解成分がなかった。同様にェ ポキシ樹脂組成物 Aの 40質量%アセトン溶液も 25°C貯蔵において 30日以上析出 物を発生させることがな力 た。
[0128] エポキシ樹脂組成物(16) 10gをトルエン 100gに溶解させ、大過剰のメタノールを 添加して、エポキシ化ポリフエ二レンエーテル樹脂 VIIIを沈殿させた。得られたェポキ シ化ポリフエ二レンエーテル樹脂 VIIIは分子量 3820、エポキシ当量 2060であった。 従って、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンエーテル骨格の 割合は 71質量%、 1分子あたりのエポキシ基の個数は 1. 85個であった。
[0129] エポキシ樹脂組成物(16)を用いて銅張積層板を作成したところ、 1MHzにおける 誘電率は 4. 2、誘電正接は 0. 010、 DSCによる Tgは 165°C、銅箔剥離強度は 1. 3 9kgfZcmであった。この硬化体は相分離を起しており、対溶剤性の試験後、銅張積 層板に膨れが生じていた。
[0130] [比較例 8]
触媒 NaOCH添加し、加熱温度を 210°C— 220°Cにすること以外は実施例 9と同
3
様に行い、エポキシ樹脂組成物(17)を得た。得られたエポキシ樹脂組成物(17)の エポキシ当量は、 881、 180°C溶融粘度は 74000mPa' s、末端フエノール性水酸基 は 0. 3meq/kgであった。またゲル浸透クロマトグラフ分析により定量した未反応ェ ポキシ量は仕込み 100質量部に対して、 23質量部であった。従って、エポキシ化ポリ フエ二レンエーテル樹脂は 77質量部であり、このものの lkgに対する末端フエノール 性水酸基量を計算すると、 0. 4meqZkgであった。
[0131] エポキシ樹脂組成物(17)の 60質量部をメチルェチルケトン 40質量部に溶解した ところ不溶解物が全くなぐ完全に均一な溶液が得られた。この溶液は 25°C貯蔵に おいて 30日以上析出物を発生させることがなぐ不溶解成分がなかった。同様にェ ポキシ樹脂組成物 Aの 40質量%アセトン溶液も 25°C貯蔵において 30日以上析出 物を発生させることがなかった。
[0132] エポキシ樹脂組成物(17) 10gをトルエン 100gに溶解させ、大過剰のメタノールを 添加して、エポキシィ匕ポリフエ二レンエーテル樹脂 IXを沈殿させた。得られたェポキ シ化ポリフエ二レンエーテル樹脂 IXは分子量 9460、エポキシ当量 2080であった。従 つて、エポキシ化ポリフエ二レンエーテル樹脂中のポリフエ二レンエーテル骨格の割 合は 28質量%、 1分子あたりのエポキシ基の個数は 3. 8個であった。
[0133] エポキシ樹脂組成物(17)を用いて銅張積層板を作成したところ、 1MHzにおける 誘電率は 4. 5、誘電正接は 0. 014と電気特性が非常に悪かった。 DSCによる Tgは 177°C、銅箔剥離強度は 1. 49kgf/cmであった。この硬化体は相分離しておらず 、対溶剤性の試験後、銅張積層板に変化はなかった。
[0134] [実施例 10]
エポキシ樹脂組成物(11) 75質量%、臭素化エポキシ樹脂 (旭化成エポキシ (株)、 AER8018) 25¾ft%をカロえ、溶融混合した。このエポキシ樹脂組成物(18)の 180 °C溶融粘度は 21000mPa' sであった。
[0135] [実施例 11]
エポキシ樹脂組成物(11) 75質量%、ォキサゾリドン環を含むエポキシ樹脂(旭化 成エポキシ (株)、 AER4152) 5質量%、臭素化エポキシ樹脂(旭化成エポキシ (株) AER8018) 20質量%を溶融混合した。このエポキシ樹脂組成物(19)の 180°C溶 融粘度は 18000mPa' sであった。 [0136] [実施例 12]
エポキシ樹脂組成物(11) 75質量%、ォキサゾリドン環を含むエポキシ樹脂 (旭化 成エポキシ (株)、 AER4152) 3質量%、エポキシ化ホスファゼン化合物(大塚化学( 株)、 3?0100) 12質量%、リン酸エステル化合物(大八化学工業(株)、 PX200) 10 質量%、を溶融混合した。このエポキシ樹脂組成物(20)の 180°C溶融粘度は 1900 OmPa' sであった。
[0137] [実施例 13]
ポリフエ二レンエーテル Iを 100質量部、 AER260を 100質量部、さらに下式(20) で表される籠状シルセスキォキサン Iを 5質量部加え、溶融混合した。このエポキシ樹 脂組成物(21)の 180°C溶融粘度は 720mPa' sであった。この組成物にメチルェチ ルケトン 130質量%をカ卩えて溶解したところ、不溶解物のない溶液となった。
[化 20]
Figure imgf000043_0001
[実施例 14]
エポキシ樹脂組成物(6)を 100質量部、下式(21)で表される籠状シルセスキォキ サンの部分開裂構造体 IIを 5質量部加え、溶融混合した。このエポキシ樹脂組成物 ( 22)の 180°C溶融粘度は 980mPa' sであった。この組成物にメチルェチルケトン 40 質量部をカ卩えて溶解したところ、不溶解物のなレ、溶液となった。
[化 21]
Figure imgf000044_0001
[0139] 実施例 1一 3で得られたエポキシ樹脂組成物溶液を用レ、て作成した積層板の特性 を表 1に示す。
[0140] [表 1]
Figure imgf000044_0002
[0141] また実施例 4一 9、比較例 6— 8で得られたエポキシ樹脂組成物溶液を用いて作成 した銅張積層板の特性を表 2に示す。また、表 2においては、実施例 4一 9、比較例 6 一 8で得られたエポキシ樹脂組成物溶液に対し、さらに硬化剤としてジシアンジアミド 、硬化触媒として 2—メチルイミダゾールを添加したエポキシ樹脂ワニスをガラスクロス に含浸させずに、ガラス板上にキャストし、 150°Cで 3時間硬化させた後、さらに 200 °Cで 3時間硬化させ、光散乱測定を行った結果を同時に記す。
[0142] [表 2] 実施例 実施例 実施例 実施例 実施例 実施例 4 5 6 7 8 9 エポキシ樹脂組成物 ( 6 ) ( 7 ) ( 8 ) ( 9 ) (10) (11) 誘電率(®1ΜΗζ) 4.3 3.9 4.0 4.3 4.4 3.9 銅 誘電正接 1MHz) 0.011 0.008 0.009 0.010 0.012 0.006 lg(°C) 165 163 166 155 163 190 積
曲げ強さ(MPa) 420 480 380 240 400 460 層
銅箔剥離強度
板 0.88 0.78 0.86 0.40 0.85 1. 7 の ( gf/cm)
特 対溶剤性 X X X X X 〇 性 光散乱による極大
X X X X X 〇 散乱 表 2の続き
Figure imgf000045_0001
[0143] 実施例 10— 12で得られたエポキシ樹脂組成物溶液を用レ、て作成した銅張積層板 の特性を表 3に示す。
[0144] [表 3]
実施例 1 0 実施例 1 1 実施例 1 2 エポキシ樹脂組成物 ( 1 8) ( 1 9) (20) エポキシ榭脂組成物( 11 )
75 75 75
(重量%)
AE R 80 1 8 (重量%) 25 20
A E R 1 52 (重量%) 5 3
S P G 1 00 (重量0 /o) 1 2
P X 200 (重量0 /。) 1 0 銅張積層板の特性
誘電率(®1ΜΗζ) 4. 0 4. 1 4. 1 誘電正接(®1ΜΗζ) 0.008 0.009 0.009
Tg(°C) 1 90 1 89 1 67 曲げ強さ(MPa) 420 435 41 0 銅箔剥離強度(Kgf/cm) 1. 39 1. 55 1. 2 1 対溶剤性 〇 〇 〇 光散乱による極大散乱 〇 〇 〇 難燃性 V- 0 V - 0 V - 0
[0145] 実施例 13、 14で得られたエポキシ樹脂組成物溶液を用いて作成した銅張積層板 の特性を表 4に示す。
[0146] [表 4]
Figure imgf000046_0001
(産業上の利用可能性)
本願発明のエポキシ樹脂組成物は、ケトン類への長期安定性が良ぐ加工性に優 れ、また優れた誘電特性を有する等の利点を有するため種々の用途に用いられうる 。本組成物は、有機溶剤を用いたワニス、このワニスを基材に含浸してなるプリプレダ 、このプリプレダを用いた積層板等の形態で、プリント配線板や電子装置等に使用さ れうる。

Claims

請求の範囲
[I] 数平均分子量が 1000 4000であって、 GPCから求めた分子量 20000以上の成 分が実質 20%以下であるポリフエ二レンエーテルと、エポキシ樹脂を含むエポキシ樹 脂組成物。
[2] 数平均分子量が 1000 4000であって、 GPCから求めた分子量 20000以上の成 分を実質的に含まないポリフエ二レンエーテルと、エポキシ樹脂を含むエポキシ樹脂 組成物。
[3] 数平均分子量が 1000— 4000であって、 GPCから求めた分子量 300以下の成分 を実質的に含まないポリフエ二レンエーテルと、エポキシ樹脂を含むエポキシ樹脂組 成物。
[4] 数平均分子量が 1000— 4000であって、 GPCから求めた分子量 20000以上の成 分及び分子量 300以下の成分を実質的に含まないポリフエ二レンエーテルと、ェポ キシ樹脂を含むエポキシ樹脂組成物。
[5] ポリフエ二レンエーテルがフエノール性水酸基を 1分子当たり平均 1. 2個以上有す る、請求項 1一 4のいずれか一項に記載のエポキシ樹脂組成物。
[6] エポキシ樹脂が多官能エポキシ樹脂を 5質量%以上含む、請求項 1一 5のいずれ 力、 1項に記載のエポキシ樹脂組成物。
[7] 請求項 1一 6のいずれ力 4項に記載のエポキシ樹脂組成物を 10質量%以上含有し
、室温で実質的に固形物が存在しない、エポキシ樹脂組成物のケトン溶液。
[8] 数平均分子量が 1000 4000であるポリフエ二レンエーテルのフエノール性水酸 基とエポキシィ匕合物またはエポキシ樹脂のエポキシ基とを反応させることにより得ら れるエポキシ化ポリフエ二レンエーテル樹脂。
[9] エポキシ基を 1分子当たり平均 3個以上有するエポキシ化ポリフエ二レンエーテル 樹脂。
[10] 数平均分子量が 3200— 10000であるエポキシ化ポリフエ二レンエーテル樹脂。
[II] ポリフエ二レンエーテルの骨格部の割合が 30質量0 /0— 90質量0 /0であるエポキシ化 ポリフエ二レンエーテル樹脂。
[12] エポキシ基を 1分子当たり平均 3個以上有する、請求項 10または 11記載のェポキ シ化ポリフエ二レンエーテル樹脂。
[13] 数平均分子量が 3200— 10000である、請求項 11記載のエポキシ化ポリフエニレ ンエーテル樹脂。
[14] エポキシ基を 1分子当たり平均 3個以上有し、数平均分子量が 3200 10000であ り、ポリフエ二レンエーテルの骨格部の割合が 30質量% 90質量%であるエポキシ 化ポリフエ二レンエーテル樹脂。
[15] エポキシ化ポリフエ二レンエーテル樹脂のフエノール性水酸基が 10meq/kg以下 である、請求項 8— 14のいずれ力 4項に記載のエポキシ化ポリフエ二レンエーテル樹 脂。
[16] 請求項 8— 14のいずれか 1項に記載のエポキシ化ポリフヱニレンエーテル樹脂と、 エポキシ樹脂を含むエポキシ樹脂組成物。
[17] 請求項 8— 14のいずれか 1項に記載のエポキシ化ポリフヱニレンエーテル樹脂と、 エポキシ樹脂を含みケトンに溶解する特性を持つエポキシ樹脂組成物。
[18] 請求項 16記載のエポキシ樹脂組成物を 10質量%以上含有し、室温で実質的に固 形物が存在しない、エポキシ樹脂組成物のケトン溶液。
[19] エポキシィ匕ポリフエ二レンエーテル樹脂を 25質量%以上含む、請求項 16記載のェ ポキシ樹脂組成物。
[20] 請求項 16記載のエポキシ樹脂組成物と、難燃剤として、臭素化エポキシ樹脂、ェ ポキシ基含有ホスファゼン化合物、リン酸エステル、縮合リン酸エステル、ホスフィン 化合物のキノン誘導体の少なくとも一つ以上を含むエポキシ樹脂組成物。
[21] エポキシィ匕ポリフエ二レンエーテル樹脂を 40— 90質量0 /0、難燃剤を 10— 50質量 %、エポキシ樹脂を 0. 1 30質量%含有する、請求項 20記載のエポキシ樹脂組成 物。
[22] エポキシ樹脂はォキサゾリドン環を持つエポキシ樹脂を含む、請求項 20または 21 記載のエポキシ樹脂組成物。
[23] さらに籠状シルセスキォキサンと籠状シルセスキォキサンの部分開裂構造体の少な くとも 1つを含む、請求項 1一 7、 16及び 19一 22のいずれ力、 1項に記載のエポキシ樹 脂組成物。
[24] さらにエポキシ樹脂の硬化剤を含む、請求項 1一 7、 16及び 19一 22のいずれか 1 項に記載のエポキシ樹脂組成物。
[25] 請求項 24記載のエポキシ樹脂組成物からなる、実質相分離がなく均一な硬化体。
[26] 請求項 8— 14のいずれか 1項に記載のエポキシ化ポリフエ二レンエーテル樹脂にさ らにエポキシ樹脂の硬化剤を含む、エポキシ樹脂組成物。
[27] 樹脂ワニス、プリプレダ、硬化性樹脂金属箔複合体、フィルム、積層板、多層プリン ト配線板、封止用樹脂組成物、接着剤用硬化性樹脂組成物から選ばれた請求項 1 一 7、 16、 17及び 19一 25記載のエポキシ樹脂組成物を含有する電子部材。
[28] 樹脂ワニス、プリプレダ、硬化性樹脂金属箔複合体、フィルム、積層板、多層プリン ト配線板、封止用樹脂組成物、接着剤用硬化性樹脂組成物から選ばれた請求項 8 一 14のいずれか 1項に記載のエポキシ化ポリフエ二レンエーテル樹脂を含有する電 子部材。
[29] 請求項 27または 28記載の電子部材からなる電子装置。
[30] エポキシィヒポリフエ二レンエーテル樹脂の製造方法であって、数平均分子量が 100 0— 4000であるポリフエ二レンエーテルのフエノール性水酸基とエポキシ化合物また はエポキシ樹脂のエポキシ基とを反応させることを含む上記方法。
PCT/JP2004/006943 2003-05-22 2004-05-21 エポキシ樹脂組成物 WO2004104097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/557,336 US20070093614A1 (en) 2003-05-22 2004-05-21 Epoxy resin composition
EP04734352A EP1630199A4 (en) 2003-05-22 2004-05-21 EPOXY RESIN COMPOSITION
JP2005506366A JP4413190B2 (ja) 2003-05-22 2004-05-21 エポキシ樹脂組成物
CN2004800141748A CN1795238B (zh) 2003-05-22 2004-05-21 环氧树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-145423 2003-05-22
JP2003145423 2003-05-22

Publications (1)

Publication Number Publication Date
WO2004104097A1 true WO2004104097A1 (ja) 2004-12-02

Family

ID=33475237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006943 WO2004104097A1 (ja) 2003-05-22 2004-05-21 エポキシ樹脂組成物

Country Status (8)

Country Link
US (1) US20070093614A1 (ja)
EP (1) EP1630199A4 (ja)
JP (1) JP4413190B2 (ja)
KR (1) KR100709149B1 (ja)
CN (1) CN1795238B (ja)
SG (1) SG157958A1 (ja)
TW (1) TWI313284B (ja)
WO (1) WO2004104097A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274011A (ja) * 2005-03-29 2006-10-12 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
WO2007097231A1 (ja) 2006-02-21 2007-08-30 Asahi Kasei Chemicals Corporation 低分子量ポリフェニレンエーテルの製造方法
JP2007216615A (ja) * 2006-02-20 2007-08-30 Panac Co Ltd 離型性を有する積層体およびその製造方法
JP2007526365A (ja) * 2004-02-18 2007-09-13 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー シロキサンを用いた難燃性組成物
JP2009046632A (ja) * 2007-08-22 2009-03-05 Asahi Kasei Chemicals Corp 多官能エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
JP2010031087A (ja) * 2008-07-25 2010-02-12 Asahi Kasei E-Materials Corp 繊維基材用含浸材、プリプレグ及び繊維強化複合材料
JP2010053179A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JP2010275341A (ja) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd 樹脂組成物、樹脂組成物の製造方法、プリプレグ、金属張積層板、及びプリント配線板
JP2014095090A (ja) * 2014-01-30 2014-05-22 Panasonic Corp ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
KR101442459B1 (ko) 2011-05-27 2014-09-22 다이요 잉키 세이조 가부시키가이샤 열경화성 수지 조성물, 드라이 필름 및 인쇄 배선판
KR20160073396A (ko) 2013-11-20 2016-06-24 아사히 가세이 가부시키가이샤 폴리페닐렌에테르를 포함하는 수지 조성물의 경화물
KR20190099477A (ko) * 2017-01-10 2019-08-27 스미토모 세이카 가부시키가이샤 에폭시 수지 조성물
US11603466B2 (en) 2017-01-10 2023-03-14 Sumitomo Seika Chemicals Co.. Ltd. Epoxy resin composition

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378455B2 (en) 2005-06-30 2008-05-27 General Electric Company Molding composition and method, and molded article
US7429800B2 (en) 2005-06-30 2008-09-30 Sabic Innovative Plastics Ip B.V. Molding composition and method, and molded article
US7655278B2 (en) 2007-01-30 2010-02-02 Sabic Innovative Plastics Ip B.V. Composite-forming method, composites formed thereby, and printed circuit boards incorporating them
TW200923034A (en) * 2007-09-20 2009-06-01 Nippon Kayaku Kk Primer resin for semiconductor device and semiconductor device
KR100962936B1 (ko) * 2007-12-20 2010-06-09 제일모직주식회사 반도체 조립용 접착 필름 조성물 및 접착 필름
KR101276590B1 (ko) * 2009-03-26 2013-06-19 파나소닉 주식회사 에폭시 수지 조성물, 프리프레그, 수지 부착 금속박, 수지 시트, 적층판, 및 다층판
CN101560322B (zh) * 2009-04-30 2011-12-21 苏州大学 聚苯醚包覆环氧树脂微胶囊及其制备方法
JPWO2010131655A1 (ja) * 2009-05-13 2012-11-01 日立化成工業株式会社 接着シート
JP5644249B2 (ja) * 2010-08-12 2014-12-24 日立金属株式会社 熱可塑性樹脂組成物および接着フィルム、並びにそれを用いた配線フィルム
CN102153590B (zh) * 2011-01-21 2013-06-12 华南理工大学 双环笼状磷酸酯硅氧烷阻燃剂及其制备方法
US8859672B2 (en) * 2011-06-27 2014-10-14 Sabic Global Technologies B.V. Poly(arylene ether)-poly(hydroxy ether) block copolymer and method of making
WO2013011677A1 (ja) * 2011-07-19 2013-01-24 パナソニック株式会社 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
TWI428390B (zh) 2011-10-21 2014-03-01 Ind Tech Res Inst 低介電樹脂配方、預聚合物、組成物及其複合材料與低介電樹脂預聚合物溶液的製備方法
CN102516530B (zh) * 2011-12-08 2014-03-12 中山台光电子材料有限公司 一种环氧基改质聚苯醚树脂、树脂组合物及其应用
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9018286B2 (en) 2012-05-24 2015-04-28 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9023922B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant compositions, articles comprising the same and methods of manufacture thereof
KR101476895B1 (ko) * 2012-12-26 2014-12-26 주식회사 두산 수지 조성물 및 이를 포함하는 금속박 적층체
EP3033370A1 (en) * 2013-08-16 2016-06-22 Dow Global Technologies LLC 1k thermoset epoxy composition
US10647877B2 (en) * 2014-11-19 2020-05-12 Sabic Global Technologies B.V. Particulate poly(phenylene ether)-containing varnish composition, composite and laminate prepared therefrom, and method of forming composite
EP3567066A1 (en) * 2018-05-08 2019-11-13 SABIC Global Technologies B.V. Curable epoxy composition and circiut material prepreg, thermoset epoxy composition, and article prepared therefrom

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141899A (en) * 1976-05-20 1977-11-26 Matsushita Electric Ind Co Ltd Epoxy resin composition
JPH09235349A (ja) * 1995-12-26 1997-09-09 Matsushita Electric Works Ltd エポキシ樹脂組成物、この樹脂組成物を用いたプリプレグ 、及びこのプリプレグを用いた積層板
JPH10279781A (ja) * 1997-04-01 1998-10-20 Matsushita Electric Works Ltd エポキシ樹脂組成物
JP2001261791A (ja) * 2000-03-23 2001-09-26 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板
JP2002220436A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd エポキシ樹脂組成物及びプリプレグ及び樹脂付き金属箔並びに積層板
JP2002308965A (ja) * 2001-04-13 2002-10-23 Asahi Kasei Epoxy Kk オキサゾリドン環含有エポキシ樹脂
JP2003119253A (ja) * 2001-08-08 2003-04-23 Asahi Kasei Epoxy Kk エポキシ樹脂組成物
JP2003292570A (ja) * 2002-03-29 2003-10-15 Mitsubishi Gas Chem Co Inc 積層板用エポキシ樹脂組成物
JP2004051904A (ja) * 2002-07-23 2004-02-19 Asahi Kasei Chemicals Corp ケイ素化合物含有ポリフェニレンエーテル−エポキシ系樹脂組成物
JP2004059703A (ja) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231743B2 (ja) * 1981-11-16 1990-07-16 Asahi Shueeberu Kk Jushisoseibutsu
US4831088A (en) * 1986-05-27 1989-05-16 General Electric Company Epoxide-functionalized polyphenylene ethers and method of preparation
GB8719616D0 (en) * 1987-08-19 1987-09-23 Shell Int Research Heat-hardenable compositions
US5043367A (en) * 1988-12-22 1991-08-27 General Electric Company Curable dielectric polyphenylene ether-polyepoxide compositions useful in printed circuit board production
CN1036402C (zh) * 1991-01-11 1997-11-12 旭化成工业株式会社 可固化的聚苯氧树脂组合物及由它制成的薄膜
TW593426B (en) * 2001-04-25 2004-06-21 Ind Tech Res Inst Epoxy group-containing curable polyphenylene ether resin, composition made therefrom, and process for preparing the resin
WO2003027167A1 (fr) * 2001-09-20 2003-04-03 Asahi Kasei Chemicals Corporation Ether de polyphenylene fonctionnalise
US6835785B2 (en) * 2002-01-28 2004-12-28 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether oligomer compound, derivatives thereof and use thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141899A (en) * 1976-05-20 1977-11-26 Matsushita Electric Ind Co Ltd Epoxy resin composition
JPH09235349A (ja) * 1995-12-26 1997-09-09 Matsushita Electric Works Ltd エポキシ樹脂組成物、この樹脂組成物を用いたプリプレグ 、及びこのプリプレグを用いた積層板
JPH10279781A (ja) * 1997-04-01 1998-10-20 Matsushita Electric Works Ltd エポキシ樹脂組成物
JP2001261791A (ja) * 2000-03-23 2001-09-26 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板
JP2002220436A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd エポキシ樹脂組成物及びプリプレグ及び樹脂付き金属箔並びに積層板
JP2002308965A (ja) * 2001-04-13 2002-10-23 Asahi Kasei Epoxy Kk オキサゾリドン環含有エポキシ樹脂
JP2003119253A (ja) * 2001-08-08 2003-04-23 Asahi Kasei Epoxy Kk エポキシ樹脂組成物
JP2003292570A (ja) * 2002-03-29 2003-10-15 Mitsubishi Gas Chem Co Inc 積層板用エポキシ樹脂組成物
JP2004051904A (ja) * 2002-07-23 2004-02-19 Asahi Kasei Chemicals Corp ケイ素化合物含有ポリフェニレンエーテル−エポキシ系樹脂組成物
JP2004059703A (ja) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1630199A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526365A (ja) * 2004-02-18 2007-09-13 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー シロキサンを用いた難燃性組成物
JP2006274011A (ja) * 2005-03-29 2006-10-12 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP4679201B2 (ja) * 2005-03-29 2011-04-27 旭化成ケミカルズ株式会社 熱可塑性樹脂組成物
JP2007216615A (ja) * 2006-02-20 2007-08-30 Panac Co Ltd 離型性を有する積層体およびその製造方法
JP4679388B2 (ja) * 2006-02-20 2011-04-27 パナック株式会社 離型性を有する積層体およびその製造方法
US7858726B2 (en) 2006-02-21 2010-12-28 Asahi Kasei Chemichals Corporation Process for producing low-molecular polyphenylene ether
WO2007097231A1 (ja) 2006-02-21 2007-08-30 Asahi Kasei Chemicals Corporation 低分子量ポリフェニレンエーテルの製造方法
EP1988112A1 (en) * 2006-02-21 2008-11-05 Asahi Kasei Chemicals Corporation Process for producing low-molecular polyphenylene ether
EP1988112A4 (en) * 2006-02-21 2012-02-01 Asahi Kasei Chemicals Corp PROCESS FOR THE PRODUCTION OF LOW MOLECULAR MASS POLY (PHENYLENE ETHER)
JP2009046632A (ja) * 2007-08-22 2009-03-05 Asahi Kasei Chemicals Corp 多官能エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
JP2010031087A (ja) * 2008-07-25 2010-02-12 Asahi Kasei E-Materials Corp 繊維基材用含浸材、プリプレグ及び繊維強化複合材料
JP2010053179A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JP2010275341A (ja) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd 樹脂組成物、樹脂組成物の製造方法、プリプレグ、金属張積層板、及びプリント配線板
KR101442459B1 (ko) 2011-05-27 2014-09-22 다이요 잉키 세이조 가부시키가이샤 열경화성 수지 조성물, 드라이 필름 및 인쇄 배선판
KR20160073396A (ko) 2013-11-20 2016-06-24 아사히 가세이 가부시키가이샤 폴리페닐렌에테르를 포함하는 수지 조성물의 경화물
US10047224B2 (en) 2013-11-20 2018-08-14 Asahi Kasei Kabushiki Kaisha Cured product of polyphenylene ether-containing resin composition
JP2014095090A (ja) * 2014-01-30 2014-05-22 Panasonic Corp ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
KR20190099477A (ko) * 2017-01-10 2019-08-27 스미토모 세이카 가부시키가이샤 에폭시 수지 조성물
US11603466B2 (en) 2017-01-10 2023-03-14 Sumitomo Seika Chemicals Co.. Ltd. Epoxy resin composition
KR102512801B1 (ko) * 2017-01-10 2023-03-23 스미토모 세이카 가부시키가이샤 에폭시 수지 조성물

Also Published As

Publication number Publication date
JPWO2004104097A1 (ja) 2006-07-20
KR20060012638A (ko) 2006-02-08
EP1630199A4 (en) 2006-05-17
TW200426190A (en) 2004-12-01
CN1795238B (zh) 2010-06-16
CN1795238A (zh) 2006-06-28
KR100709149B1 (ko) 2007-04-18
JP4413190B2 (ja) 2010-02-10
EP1630199A1 (en) 2006-03-01
TWI313284B (en) 2009-08-11
US20070093614A1 (en) 2007-04-26
SG157958A1 (en) 2010-01-29

Similar Documents

Publication Publication Date Title
WO2004104097A1 (ja) エポキシ樹脂組成物
TWI410441B (zh) 環氧樹脂組成物、預浸材、附樹脂金屬箔、樹脂薄片、積層板以及多層板
KR102376600B1 (ko) 수지 조성물 및 그것을 이용한 적층체
US6451878B1 (en) High molecular weight epoxy resin and resinous composition for printed circuit board
JP6022230B2 (ja) 高分子量エポキシ樹脂、それを用いた樹脂組成物および硬化物
JP2009001787A (ja) ポリフェニレンエーテル樹脂組成物及び電子部材
KR100209387B1 (ko) 주석 금속염 상용화제를 함유한 고성능 경화성 ppo/단량체 에폭시 조성물
JP4104107B2 (ja) エポキシ樹脂組成物及びその用途
CN106433407A (zh) 树脂组合物
JPH04502176A (ja) 電気ラミネート用ポリフェニレンオキサイド/ハイブリッドエポキシ樹脂系
JP2009046631A (ja) エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
JP5192198B2 (ja) 多官能エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
JP2009029923A (ja) 変性エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
JP3895694B2 (ja) オリゴマー変性エポキシ樹脂、その組成物、及びその組成物を用いたプリント配線板
JPH0819213B2 (ja) エポキシ樹脂組成物および銅張積層板
KR20210105912A (ko) 페녹시 수지, 그 수지 조성물, 그 경화물, 및 그 제조 방법
JPH04132730A (ja) 硬化可能なポリフェニレンエ―テル‐ポリエポキシド組成物
JP3226515B2 (ja) エポキシ基を含む含燐化合物の樹脂組成物およびその用途
JP2008155586A (ja) 銅張積層板
JP2006257137A (ja) エポキシ樹脂組成物及びその硬化物
JP2009029924A (ja) 多官能エポキシ化ポリフェニレンエーテル樹脂
JP2009024064A (ja) ポリフェニレンエーテル樹脂組成物
JP2005307032A (ja) 1液型エポキシ樹脂組成物及びその硬化物
JP2001011157A (ja) エポキシ樹脂組成物及び電気積層板
JP5504553B2 (ja) エポキシ樹脂組成物、その硬化物、ビルドアップフィルム絶縁層用樹脂組成物、及び新規エポキシ樹脂

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506366

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004734352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007093614

Country of ref document: US

Ref document number: 1020057022173

Country of ref document: KR

Ref document number: 10557336

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048141748

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057022173

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004734352

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10557336

Country of ref document: US