WO2007097231A1 - 低分子量ポリフェニレンエーテルの製造方法 - Google Patents
低分子量ポリフェニレンエーテルの製造方法 Download PDFInfo
- Publication number
- WO2007097231A1 WO2007097231A1 PCT/JP2007/052577 JP2007052577W WO2007097231A1 WO 2007097231 A1 WO2007097231 A1 WO 2007097231A1 JP 2007052577 W JP2007052577 W JP 2007052577W WO 2007097231 A1 WO2007097231 A1 WO 2007097231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molecular weight
- polyphenylene ether
- low molecular
- epoxy
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/44—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols by oxidation of phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/46—Post-polymerisation treatment, e.g. recovery, purification, drying
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
Definitions
- the present invention relates to a method for producing a low molecular weight polyphenylene ether, a low molecular weight polyphenylene ether, a method for producing an epoxy polyphenylene ether, an epoxy resin composition, and an electronic member.
- Epoxy resins having excellent cost performance are widely used as insulating materials for printed wiring boards.
- epoxy resins have been required to have higher physical properties due to measures for higher wiring density.
- printed wiring boards used in high-frequency areas such as satellite communications require an insulating material having a low dielectric constant and a low dielectric loss tangent and excellent dielectric characteristics from the viewpoint of preventing signal delay.
- Patent Document 1 and Patent Document 2 describe a method for producing a laminate by preparing a toluene solution of polyphenylene ether and impregnating the substrate while heating the toluene solution.
- the method of impregnating such a toluene solution while heating is very dangerous.
- polyphenylene ethers generally have poor compatibility with epoxy resins. For this reason, when a polyphenylene ether is simply mixed with epoxy resin as a raw material for a molded product, improvement of the mechanical strength of the resulting molded product is often a problem.
- Patent Document 3 and Patent Document 4 to solve these problems, a modified polyphenol is obtained by reducing the molecular weight of a polyphenylene ether by a redistribution reaction and then epoxidizing it with epichlorohydrin. A method for producing renether is described.
- Patent Documents 5 and 6 describe a method of producing a low molecular weight polyphenylene ether by a polymerization method and then epoxy-modifying it.
- Patent Document 1 Japanese Patent No. 2667625
- Patent Document 2 Japanese Patent No. 3300426
- Patent Document 3 Japanese Patent Laid-Open No. 9-235349
- Patent Document 4 Japanese Patent No. 3248424
- Patent Document 5 Pamphlet of International Publication No. 2004Z104097
- Patent Document 6 Japanese Patent Application Laid-Open No. 2004-256717
- Patent Document 3 and Patent Document 4 still have room for improvement from the viewpoint of the reaction rate during the redistribution reaction and the handleability of the resulting low molecular weight polyphenylene ether.
- the epoxidized polyphenylene ether described in Patent Document 3 and Patent Document 4 described above still has room for improvement from the viewpoint of curing speed when a composition with epoxy resin is formed. .
- Patent Document 5 and Patent Document 6 cannot be said to be simple methods, and have a viewpoint of production efficiency and still have room for improvement.
- the inventors of the present invention have intensively studied to solve the above problems. As a result, it was found that by controlling the reaction conditions during the redistribution reaction, low molecular weight polyphenylene ether suitable as a raw material for epoxidized polyphenylene ether having good handleability can be easily obtained.
- the present invention has been completed.
- the present invention provides the following low molecular weight polyphenylene ether production method, low molecular weight polyphenylene ether, epoxidized polyphenylene ether production method, epoxy resin composition, and electronic member. To do.
- the proportion of components with a molecular weight of 20,000 or more is 10% by mass or less by a redistribution reaction in which a raw polyphenylene ether having a number average molecular weight of 10,000 or more, a polyphenolic compound, and a radical initiator are reacted. And a method for producing a low molecular weight polyphenylene ether having a number average molecular weight of 4,000 or less,
- the redistribution reaction step is a step performed in a solvent
- the blending ratio of the raw material polyphenylene ether and the solvent is 0.4: 100 to 40: 100 (mass ratio) as (raw material polyphenylene ether) :( solvent) (mass ratio),
- the mixing ratio of the radical initiator to the solvent is (radical initiator): (solvent) (mass ratio) 0.5: 100 to 5: 100 (mass ratio)
- a process for producing a low molecular weight polyphenylene ether characterized in that
- the redistribution reaction step is one or two selected from the group consisting of metal salts of naphthenic acid, vanadium pentoxide, aniline, amine compounds, quaternary ammonium salts, imidazoles, and phospho-um salts.
- the redistribution reaction step is a step in which the radical initiator is blended at an average addition rate of 0.1 parts by weight Z or less with respect to 100 parts by weight of the raw polyphenylene ether [1], [ [2] or [3].
- the radical initiator has a threshold value obtained by dividing the decomposition rate constant of the radical initiator by the addition time of the peroxide, and is 0.5 (1 / hr) or less.
- the low molecular weight using water and Z or an alkaline solution.
- a low molecular weight polyphenylene ether having a proportion of a component having a molecular weight of 20,000 or more of 10% by mass or less and a number average molecular weight of 4,000 or less,
- a low molecular weight polyphenol characterized in that the proportion of the molecular chain terminal unit having a phenolic hydroxyl group and a methylene group at the ortho position of the phenolic hydroxyl group in one molecule is 1 to 20% by mass. Ren ether.
- Epoxy-polyphenylene ether resin is produced by addition reaction of phenolic hydroxyl group contained in low molecular weight polyphenylene ether having a number average molecular weight of 4,000 or less and epoxy group contained in epoxy compound.
- the proportion of the component having a molecular weight of 20,000 or more contained in the low molecular weight polyphenylene ether is 10% by mass or less
- An average number of the epoxy groups contained in one molecule of the epoxy compound is 2 or more.
- the low molecular weight polyphenylene ether is the low molecular weight polyphenylene ether obtained by the production method according to any one of claims 1 to 7, or the low molecular weight polyphenylene ether according to claim 8. [9 ] Or the production method of [10].
- Epoxidized polyphenylene obtained by the production method according to any one of An epoxy resin composition comprising an ether resin, an epoxy resin, and a curing agent for the epoxy resin.
- An electronic member selected from the group consisting of an epoxy prepreader, a laminate using an epoxy prepreader, a resin sheet, or a laminate using a resin sheet, wherein the epoxy according to [12] An electronic member formed using the greave composition.
- a method for producing an epoxy polyphenylene ether having good solubility in a solvent, excellent handling, and properties is provided.
- a method for producing a low molecular weight polyphenylene ether suitable as a raw material for the epoxy polyphenylene ether is provided.
- the low molecular weight polyphenylene ether is produced by a redistribution reaction in which a raw polyphenylene ether having a number average molecular weight of 10,000 or more, a polyphenolic compound, and a radical initiator are reacted.
- the redistribution reaction step is a step performed in a solvent
- the blending ratio of the raw material polyphenylene ether and the solvent is 0.4: 100 to 40: 100 (mass ratio) as (raw material polyphenylene ether) :( solvent) (mass ratio),
- the mixing ratio of the radical initiator to the solvent is (radical initiator): (solvent) (mass ratio) 0.5: 100 to 5: 100 (mass ratio)
- the “redistribution reaction” means, for example, the academic literature “Journal of organic chemistry”. , 34, 297-303 (1969) ". That is, the redistribution reaction is a reaction of a polyphenylene ether having a large number average molecular weight with a polyphenolic compound in the presence of a radical initiator, for example, a number average molecular weight of 4,000 or less. This is a reaction to obtain a polyphenylene ether.
- the following mechanism can be considered as a reaction mechanism of the redistribution reaction. That is, first, they are radicalized together with a polyphenylene ether and a polyphenolic compound power radical initiator. Next, radicals migrate within the polyphenylene ether molecule. Next, take away some of the constituent units of the radicalized phenolic compound polyphenylene ether at the radical destination.
- the redistribution reaction is a reaction in which the structural units of polyphenylene ether are distributed to phenolic compounds. As long as the radicals do not disappear, the polyphenylene ether building blocks are successively distributed to the phenolic compounds.
- low molecular weight polyphenylene ether refers to polyphenylene ether having a number average molecular weight of 4,000 or less.
- number average molecular weight and ratio of components having a molecular weight of 20,000 or more may be abbreviated as gel permeation chromatography using polystyrene as a standard substance (hereinafter referred to as “GPC method”). ).
- GPC method gel permeation chromatography using polystyrene as a standard substance
- “Ratio of components having a molecular weight of 20,000 or more” means the ratio of the peak detection area having a molecular weight of 20,000 or more.
- the fact that the component having a molecular weight of 20000 or more is substantially 0% by mass means that the molecular weight at the start of peak detection is 20,000 or less in the molecular weight measurement by gel permeation chromatography.
- polyphenolic compound used in the present embodiment a compound having two or more phenol groups in one molecule is used.
- Specific examples include bisphenol-8, tetramethylbisphenol A, tetramethylbiphenyl, dihydroxydiphenyl ether, phenol novolac, and creso novolac. These can be used alone or in combination of two or more.
- a commercially available product can be used as the polyphenolic compound.
- radical initiator used in the present embodiment for example, dicumyl peroxide, tert-butyl tamil peroxide, di-tert-butyl peroxide, 2,5-dimethyl 2,5-di-tert —Butyl Tamil Peroxyhexyne-3, 2, 5—Dimethyl 2, 5—Gee tert-Butyl Peroxyhexane, p-Mentane Hyde Peroxide, Diisopropylbenzene Hyde Peroxide, tert-Butyl Hyper Peroxide, tert —Butylperoxyacetate, tert-butylperoxybenzene, disobutyryl peroxide, tert-hexyloxyisopropyl monocarbonate, tert-butylperoxyisopropyl monocarbonate, tert-butylperoxide cetate Tert-Butylperoxybenzoate, peroxide Examples thereof include benzoyl or peroxybenzoic
- the number of hydroxyl groups contained in the low molecular weight polyphenylene ether can be increased by the alkali washing step described later.
- An increase in the number of hydroxyl groups can contribute to improving physical properties such as glass transition temperature of the cured product.
- benzoyl peroxide derivative refers to a compound having an embodiment in which a benzene ring structure contained in benzoyl peroxide has a substituent such as a methyl group or an ethyl group.
- the obtained low molecular weight polyphenylene ether may be abbreviated as a nuclear magnetic resonance apparatus (hereinafter, “NMR”). ) And can be judged by whether or not a peak derived from a benzyl group or a benzoyl group is observed.
- NMR nuclear magnetic resonance apparatus
- the redistribution reaction step is preferably a step performed in a solvent from the viewpoint of suppressing abnormal reactions.
- the solvent include aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene dichlorobenzene, and chloroform.
- the blend ratio of the raw material polyphenylene ether and the solvent is preferably 0.4: 100 to 40: 100 as (raw material polyphenylene ether): (solvent) (mass ratio).
- 100 mass of solvent On the other hand, when the blending amount of the raw material polyphenylene ether is 0.4 parts by mass or more, it can contribute to carrying out the redistribution reaction with high productivity without using an unnecessarily large amount of solvent.
- the radical initiator when the blending amount is 40 parts by mass or less, the solution viscosity before adding the radical initiator is maintained in an appropriate range, the radical initiator can be blended quickly and uniformly, or a by-product This can contribute to reducing the occurrence of.
- the blending ratio of the radical initiator and the solvent is preferably (radial initiator): (solvent) (mass ratio) of 0.5: 100 to 5: 100. More preferably, it is 1: 100 to 3: 100. Setting the blending amount of the radical initiator to 100 parts by mass of the solvent to 0.5 parts by mass or more can contribute to performing the redistribution reaction with good productivity without using an unnecessarily large amount of solvent. In addition, since both the raw polyphenylene ether and the polyphenolic compound can be radicalized, the reaction easily proceeds. On the other hand, when the amount of the above-mentioned combination is 50 parts by mass or less, it can contribute to suppressing the temperature rise due to heat generation during decomposition of the radical initiator or reducing the generation of by-products. .
- the mixing ratio of the raw polyphenylene ether and the solvent and the blending ratio of the radical initiator and the solvent are set within the above-described ranges.
- the residual rate of polyphenylene ether having a molecular weight of 20,000 or more is reduced.
- the reduction in the proportion of components with a molecular weight of 20,000 or more contained in the low molecular weight polyphenylene ether improves the solubility of the epoxy polyphenylene ether obtained by epoxidizing the low molecular weight polyphenylene ether in the solvent. It can contribute a lot. That is, it is possible to realize an epoxy-polyphenylene ether having excellent handleability (it is difficult to precipitate in a solvent even at room temperature or has good solution storage properties).
- the metal salt of naphthenic acid, vanadium pentoxide, arlin, amine compound, quaternary from the viewpoint of improving the reaction rate and reducing the high molecular weight component.
- the step is preferably performed using one or more catalysts selected from the group power consisting of an ammonium salt, an imidazole, and a phosphonium salt.
- an oxygen radical derived from a phenolic hydroxyl group present at the end of the molecular chain serves as a reaction point.
- the reaction may be stopped (peroxide is generated) when a plurality of oxygen radicals are bonded to each other.
- This can contribute to re-decomposing the peroxide to regenerate the reaction point.
- catalysts include naphthenates such as cobalt naphthenate, zinc naphthenate, manganese naphthenate, and naphthenic acid bell; vanadium pentoxide; and aryls such as dimethylenoline. Quaternary ammonium salts such as amine compounds, tetramethylammonium chloride, tetrabutylammonium bromide; imidazoles, phosphonium salts and the like. These can be used alone or in combination of two or more. In addition, the catalyst may be added after the addition just before adding the radical initiator.
- naphthenates such as cobalt naphthenate, zinc naphthenate, manganese naphthenate, and naphthenic acid bell
- vanadium pentoxide and aryls such as dimethylenoline.
- Quaternary ammonium salts such as amine compounds, tetramethylammonium chloride, tetrabutylammonium bromid
- the ratio of the catalyst to the raw polyphenylene ether is preferably (catalyst) :( raw polyphenylene ether) (mass ratio), preferably 0.01: 100-1 : 100, more preferably 0.1: 100 to 0.5: 100.
- Setting the compounding amount of the catalyst to 0.01 parts by mass or more with respect to 100 parts by mass of the raw positive-phenylene ether can contribute to reducing the molecular weight of the poly-phenylene ether satisfactorily.
- setting the above compounding agent to 1 part by mass or less can contribute to maintaining the electrical characteristics of the resulting epoxy resin composition without unnecessarily reducing the molecular weight of the polyphenylene ether.
- the radical initiator is preferably not more than 0.1 parts by mass Z, more preferably not more than 100 parts by mass of the raw polyphenylene ether. 0.05 parts by mass This is a step of blending at an average addition rate of Z minutes or less.
- Setting the average addition rate to 0.1 parts by mass or less of Z minutes prevents reactions between radicals generated from radical initiators, and radicals generated from radicalized polyphenylene ether and radical initiators. Reaction of radicals, reactions of radicalized phenolic compounds with radicals generated from radical initiators, reactions of radicalized polyphenylene ethers, or radicalized phenolic compounds. Can contribute. In other words, the polyphenylene ether and the phenolic compound can be efficiently reacted in the redistribution reaction. Therefore, setting the average addition rate to 0.1 parts by mass or less of Z is to increase the number of phenolic hydroxyl groups per radical molecule and to reduce the content of components having a molecular weight of 20,000 or more. Can contribute.
- the above-mentioned redistribution reaction step is carried out from the viewpoint of increasing the radical generation time.
- the initiator is preferably 0.5 (lZhr) or less, more preferably 0.2 (lZhr) as a threshold value obtained by dividing the decomposition rate constant of the radical initiator by the addition time of the peroxide. It is a process of adding at the following average addition rate.
- Setting the threshold value to 0.5 (lZhr) or less can contribute to suppressing the reaction between radicals.
- setting the above threshold value to 0.5 (lZhr) or less contributes to reducing the molecular weight distribution value of the resulting low molecular weight polyphenylene ether and improving the electrical properties and solubility in solvents. Can do.
- the molecular weight distribution can be confirmed by the GPC method.
- the “decomposition rate constant of the radical initiator” is obtained from the frequency factor of the radical initiator and the activity energy energy. If the frequency factor is A, the activation energy is ⁇ ⁇ , the gas constant is R, and the absolute temperature is ⁇ , the decomposition rate constant can be written as follows.
- Decomposition rate constant Aexp (— ⁇ ⁇ / RT)
- the production method of the present embodiment preferably has a washing step of washing the low molecular weight polyphenylene ether with water and Z or an alkaline solution after the redistribution reaction step.
- a redistribution reaction is performed, a radical initiator residue usually remains.
- This washing step can contribute to the removal of alcohol, carboxylic acid, etc. present in the reaction system, such as radical initiator residues, and can be used when epoxyating low molecular weight polyurethane ethers.
- the epoxy reaction can be dramatically accelerated.
- the gel reaction can be suppressed and the viscosity of the reaction solution can be lowered by using the epoxy reaction.
- the washing step is preferably performed at a temperature of 60 ° C. or higher, more preferably 80 ° C. or higher, which can be performed at room temperature. When the liquid temperature is high, the washing speed becomes faster.
- the low molecular weight polyphenylene ether obtained by the production method of the present embodiment can realize an MwZMn value of 2.3 or less.
- the low molecular weight polyphenylene ether of the present embodiment is a low molecular weight polyethylene ether in which the ratio of components having a molecular weight of 20,000 or more is 10% by mass or less and the number average molecular weight is 4,000 or less.
- the proportion of the molecular chain terminal unit having a phenolic hydroxyl group and a methylene group present at the extreme position of the phenolic hydroxyl group in one molecule is 1 to 20% by mass.
- Such a low molecular weight polyphenylene ether can be suitably obtained by the above-described method for producing a low molecular weight polyphenylene ether.
- the proportion of the molecular chain terminal unit having a phenolic hydroxyl group and a methylene group present at the ortho position of the phenolic hydroxyl group in one molecule is 1 to 20% by mass, preferably 2 to 10% by mass. Setting the ratio to 1% by mass or more can suppress the introduction of a double bond (quinonation) into the molecular chain terminal unit. Suppressing the amount of double bonds introduced leads to an improvement in the whiteness of the product, and is also suitable from the viewpoint of easily finding out impurities. On the other hand, setting the proportion to 20% by mass or less can contribute to an improvement in the reaction rate when the phenolic hydroxyl group at the molecular chain terminal is epoxyized.
- molecular chain terminal unit is a concept including a benzene ring present at the terminal position of a polyphenylene ether (one molecule) and a substituent that the benzene ring has.
- type of substituents introduced into such molecular chain terminal units can be analyzed by structural identification using NMR.
- the method for producing an epoxidized polyphenylene ether in the present embodiment includes adding a phenolic hydroxyl group contained in a low molecular weight polyphenylene ether having a number average molecular weight force of 000 or less and an epoxy group contained in an epoxy compound. This is a method for producing an epoxy-polyphenylene ether resin by reaction.
- the number average molecular weight of the low molecular weight polyphenylene ether is 4,000 or less, preferably 3,000 or less, more preferably 2,500 or less, and the lower limit is preferably 500 or less. Above, more preferably 1,000 or more. Setting the number average molecular weight of the low molecular weight polyphenylene ether to 4,000 or less can reduce the melt viscosity of the low molecular weight polyphenylene ether and contribute to improved handling. On the other hand, setting the number average molecular weight to 1,000 or more can contribute to improving electrical characteristics.
- the proportion of the component having a number average molecular weight of 20,000 or more contained in the low molecular weight polyphenylene ether is 10% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less, and still more preferably. Is 1% by mass or less, and may be substantially 0% by mass. Setting the above ratio in such a range can contribute to improving the handling property of the epoxidized polyethylene ether obtained by epoxidation (improving the solubility in a solvent). Further, setting the ratio to 1% or less can contribute to the realization of good solubility of ketones in a solvent.
- Such a low molecular weight polyphenylene ether can be obtained by the above-described method for producing a low molecular weight polyphenylene ether.
- the average number of phenolic hydroxyl groups contained in one molecule of the low molecular weight polyphenylene ether is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably. Or 1. 7 or more, and the upper limit is preferably 5 or less, more preferably 3 or less.
- the number of hydroxyl groups in the low molecular weight polyphenylene ether is 1.2 or more, it can contribute to improvement of reactivity with epoxy resin. The more phenolic hydroxyl groups, the closer to the properties of epoxy resin after epoxy, the better the reactivity.
- the average number of phenolic hydroxyl groups contained in one molecule of the low molecular weight polyphenylene ether can be determined from the phenolic hydroxyl group equivalent and the number average molecular weight.
- the average number of epoxy groups contained in one molecule of the epoxy compound used in the production method of the present embodiment is 2 or more, preferably 2.5 or more, more preferably. Is 3 or more, and the upper limit is preferably 7 or less, preferably 5.5 or less. 1 molecule Setting the average number of epoxy groups contained in it to 2 or more has the advantage of curing the epoxidized polyethylene ether uniformly with the epoxy resin. On the other hand, setting it to 7 or less can contribute to suppressing side reactions (such as gelation) when the low molecular weight polyphenylene ether is epoxy-modified.
- Examples of the epoxy compound in which the average number of epoxy groups contained in one molecule is 2 or more include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type.
- Epoxy resin, hindered epoxy resin, biphenyl epoxy resin, cycloaliphatic epoxy resin, triphenylmethane epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, naphthol Examples include novolak-type epoxy resin, bis-A novolak-type epoxy resin, dicyclopentagen Z phenol epoxy resin, alicyclic ammine epoxy resin, aliphatic ammine epoxy resin, and epoxy resins obtained by halogenating these. It is done. These can be used alone or in combination of two or more. In particular, it is preferred to select an epoxy compound so that the resulting epoxy polyphenylene ether has an average of 3 or more epoxy groups per molecule.
- reaction of the phenolic hydroxyl group contained in the low molecular weight polyphenylene ether and the epoxy group contained in the epoxy compound for example, reaction of phenolic hydroxyl group and epoxy group A method of reacting at 100 ° C. to 200 ° C. for 1 to 20 hours in the presence of a catalyst may be employed.
- the catalyst examples include hydroxides such as sodium hydroxide and potassium hydroxide; alkylate salts such as sodium methylate and sodium butyrate; quaternary ammonia such as tetraptyl ammonium chloride and tetramethyl ammonium chloride.
- the epoxy-polyphenylene ether obtained by the production method of the present embodiment not only exhibits good solubility in aromatic solvents such as toluene xylene, but also in ketones. May also exhibit good solubility.
- the epoxy polyphenylene ether is highly compatible with other epoxy resins and can provide an epoxy resin composition constituting a homogeneous varnish. Since the epoxidized polyethylene ether is highly reactive, it can give a uniform cured product without causing layer separation with other epoxy resins.
- the epoxy resin composition in the present embodiment includes an epoxy resin-polyethylene ether resin obtained by the above-described production method, an epoxy resin, and a curing agent for the epoxy resin.
- the epoxy resin composition of the present embodiment can realize an electronic member excellent in the peel strength of the metal foil, solder heat resistance, solvent resistance, electrical characteristics, and the like.
- epoxy resin it is preferable to use an epoxy resin having an oxazolidone ring because it can improve the adhesion to a copper foil or plastic without lowering the heat resistance of the cured product.
- the epoxy resin hardener is preferably a hardener capable of reacting with the epoxy resin to form a three-dimensional network structure.
- a curing agent include amide-based curing agents such as dicyandiamide and aliphatic polyamide, amine-based curing agents such as diaminodiphenylmethane, meta-phenylenediamine, ammonia, triethylamine, and jetylamine, and bisphenol-8.
- Phenphenol hardeners such as bisphenol F, phenol novolak resin, cresol novolac resin, ⁇ -xylene novolac resin; and actual hardeners such as acid anhydride hardeners and latent hardeners. These can be used alone or in combination of two or more.
- the amount of such a curing agent is preferably 0.1 to 10 equivalents, more preferably 0.3 to 3 equivalents, and still more preferably 0.5 to 5 equivalents of all epoxy equivalents of the epoxy resin composition. ⁇ 1.5 equivalents.
- the epoxy resin composition in the present embodiment may include a flame retardant.
- the flame retardant examples include one or more selected from the group power consisting of brominated epoxy resin, epoxy group-containing phosphazene compounds, phosphate esters, condensed phosphate esters, and quinone derivatives of phosphine compounds. It is done. As a blending amount of such a flame retardant, 10 mass% or more of the entire epoxy resin composition is preferable from the viewpoint of achieving flame retardance more reliably. When selecting a flame retardant, you must choose a brominated epoxy resin Then, it becomes a halogen-free flame retardant resin.
- the proportion of the epoxidized polyethylene ether in the epoxy resin composition is preferably 40 to 90% by mass, more preferably 50 to 60% by mass.
- the proportion of the epoxy resin in the epoxy resin composition is preferably 1 to 50% by mass, more preferably 50 to 60% by mass.
- the proportion of the flame retardant in the epoxy resin composition is preferably 10 to 50% by mass, and preferably 20 to 25% by mass.
- the epoxy resin composition in the present embodiment may further contain a curing accelerator.
- a curing accelerator examples include 2-methylimidazole and 2-methyl-4-ethylimidazole.
- Imidazoles such as 2-phenolimidazole, 1,8-diazabicyclo [5.4.0] undecene-7, tertiary amines such as triethylenediamine, benzyldimethylamine, tributylphosphine, Examples thereof include organic phosphines such as triphenylphosphine, and tetraphenylboron salts such as tetraphenylphosphorane tetraphenol and triphenylphosphine tetraphenylborate. These may be used alone or in combination of two or more.
- a varnish can be prepared in advance.
- the solvent for adjusting the varnish include ketone solvents in addition to halogen solvents such as dichloromethane and chloroform, and aromatic solvents such as benzene, toluene, and xylene.
- ketone solvent examples include aliphatic ketones such as methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, and cyclohexanone, and aromatic ketones such as acetophenone.
- auxiliary solvents such as dimethylformamide, methyl caffeosolve, Propylene glycol monomer Solvents such as tilether and mesitylene can also be used.
- the solid concentration in the varnish is not particularly limited, but is preferably 30% to 80%.
- the electronic member of the present embodiment is formed using the epoxy resin composition.
- an epoxy prepreader, a laminate using an epoxy prepreader, a resin sheet, or a laminate using a resin sheet can be given.
- an epoxy prepreg for example, a method of impregnating a base material with the above varnish, drying a solvent, and curing by heating can be mentioned.
- the substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, norp paper, linter paper and the like.
- the amount of greaves impregnated into the substrate is not particularly limited, but it is preferable that the greaves content after drying is set to 30 to 70% with respect to the mass of the prepreg.
- Examples of the method for producing the resin sheet include a method in which the varnish is applied on a metal foil or polyethylene terephthalate film with a bar coater or the like, and the solvent is removed by drying.
- the film thus produced and B-staged is laminated on a double-sided copper foil laminate using a hot glue or the like, and heated in an oven or the like to produce a multilayer molded body.
- Examples of the method for producing the laminated plate include a method in which a prepreader, a resin sheet, and a copper foil are laminated in a layer structure according to the purpose, and heated under pressure. Specifically, for example, a plurality of prepregs and curable resin metal foil composites are stacked on a substrate, and each layer is bonded together under heat and pressure, and at the same time, thermal crosslinking is performed to obtain a laminate having a desired thickness. A method is mentioned. Another example is a method in which a plurality of curable resin metal foil composites are stacked on a substrate, and the layers are bonded together under heat and pressure, and at the same time, thermally cured to obtain a laminate having a desired thickness.
- the metal foil can be used as a surface layer or an intermediate layer.
- stacking and hardening several times is also mentioned.
- the curing temperature for example, a condition for curing at 180 ° C. for 1 hour can be adopted as a condition for producing a general-purpose FR4 laminate.
- the epoxidized polyphenylene ether was mixed with a curing agent and a curing accelerator in the same manner as in (4) above, and cured at 180 ° C. for 1 hour.
- the obtained cured product was treated with 3% aqueous sodium hydroxide 40 It was immersed in ° C for 3 minutes and washed with running water for 20 minutes. The surface of the cured body after cleaning was observed for roughness. A comparison was made before and after cleaning, and “X” indicates that there is no change and “X” indicates that the surface is rough.
- the measurement object was heated and dissolved in a solvent so that the content of the measurement object was 30% by mass. After cooling to room temperature, the mixture was allowed to stand at 25 ° C for a predetermined number of days, and the solution after standing was filtered with a membrane filter. The number of days in which the difference between the mass of the filter after heating the filter and volatilizing the solvent (the total mass of the filter and the filtrate) and the mass of the filter itself was 0.1% by mass or less was measured. A case where the number of days was 10 days or more was evaluated as ⁇ , a case where it was 5 days or more and 9 days or less was evaluated as ⁇ , and a case where it was less than 53 was evaluated as X.
- toluene as a solvent in a reactor equipped with a low-stop valve, heat to 90 ° C, and start with 100g of polyphenylene ether (product name: S A202) manufactured by Asahi Kasei Chemicals Co., Ltd. with a number average molecular weight of 18,000.
- S A202 polyphenylene ether
- Production Example 3 production was carried out in the same manner except that cobalt naphthenate was added after the dropwise addition of benzoyl peroxide.
- the number average molecular weight determined by the GPC method was 1820, the component having a molecular weight of 20,000 or more was 0.8%, and the molecular weight distribution (MwZMn) was 2.0.
- MwZMn molecular weight distribution
- the solvent in the same organic layer was dried to measure the phenol hydroxyl group equivalent, it was 930 meqZkg, and a low molecular weight polyphenylene ether V having about 1.7 phenol groups per molecule was obtained. .
- the experiment was carried out in the same manner as in Production Example 3 except that both the dropping temperature and reaction temperature were set to 110 ° C. I got it.
- the decomposition rate constant of the radical initiator at this time was 5.1, and the value obtained by dividing the decomposition rate constant by the dropping time was 1.3 (lZhr).
- the number average molecular weight obtained by the GPC method was 1,750, the component having a molecular weight of 20,000 or more was 8.5%, and the molecular weight distribution (MwZ Mn) was 3.2.
- toluene as a solvent in a reactor with a low-stop valve, heat to 90 ° C, and then start polyphenylene ether with a number average molecular weight of 18,000 (Asahi Kasei Chemicals Co., Ltd., trade name: S A202) 100g and poly As a phenolic compound, 2 g of bisphenol A (BP A) was dissolved. To this, 100 g of a 2% toluene solution of peroxybenzoyl (manufactured by NOF Corporation, trade name: Nyper BMT) was added over 240 minutes and reacted at 90 ° C for 240 minutes. The decomposition rate constant of the radical initiator at this time was 0.55, and the value obtained by dividing the decomposition rate constant by the dropping time was 0.14 (lZhr).
- Example 8 In Production Example 1, the same experiment was conducted without washing with sodium hydrogen carbonate water, and low molecular weight polyphenylene ether X was obtained.
- the number average molecular weight determined by the GPC method was 2,610, the component having a molecular weight of 20,000 or more was 5.3%, and the molecular weight distribution (MwZMn) was 2.2.
- MwZMn molecular weight distribution
- the solvent in the same organic layer was dried and measured for phenol hydroxyl group equivalent, it was 580 meqZkg, and low molecular weight polyphenylene ether X having about 1.5 phenol groups per molecule was obtained.
- MOL ⁇ 20,000 (%) (content of components with a molecular weight of 20,000 or more) is 10% or less from the viewpoint of use of catalyst, adjustment of dripping time of radical initiator, raw material polypropylene Adjustment of the mixing ratio of ether and solvent and adjustment of the mixing ratio of radical initiator and solvent are effective.
- Bisphenol A type epoxy resin manufactured by Asahi Kasei Epoxy Co., Ltd., trade name: A250 40g, as a catalyst.
- Tolylphosphine was added and stirred sufficiently, the temperature was raised to 160 ° C.
- low molecular weight polyphenylene ethers I to XI or high molecular weight polyphenylene ether having a number average molecular weight of 18,000 (Asahi Kasei Chemicals Co., Ltd., trade name: SA202) is added so that the blending amount becomes 60 g ( The mixture was allowed to react for 5 hours to obtain an epoxy-polyphenylene ether (epoxidized PPE).
- Table 2 shows the evaluation results of various physical properties.
- Example 9- As for L1, it is assumed that the phenolic hydroxyl group of the low molecular weight polyphenylene ether reacts with the epoxy group, and the number of epoxy groups is also dicyandiamide with respect to the amount obtained by subtracting the number of phenolic hydroxyl groups. I got In addition, 2-methylimidazole as a curing catalyst was adjusted in the range of 0.1 to 0.3% by mass with respect to the varnish solid content so that the 170 ° C gel time of the varnish would be 4 to 5 minutes. did. In this way, an epoxy resin varnish was obtained.
- the above-mentioned epoxy resin varnish was impregnated into a glass cloth (trade name 2116, manufactured by Asahi Sebel Co., Ltd.) and dried to obtain a pre-preda having a resin content of 50% by mass.
- a glass cloth trade name 2116, manufactured by Asahi Sebel Co., Ltd.
- Four sheets of the above pre-predators were stacked, and a copper foil having a thickness of 35 m was stacked on the top and bottom, and heated and pressurized for 60 minutes under the conditions of a temperature of 190 ° C. and a pressure of 20 kgZcm 2 . Double-sided copper-clad lamination in this way I got a plate.
- the epoxidized polyphenylene ether obtained after epoxy modification is toluene at room temperature. It showed good solubility.
- the epoxy-polyphenylene ether obtained after epoxy modification shows good solubility in methyl ethyl ketone. It was.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
- Polyethers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
数平均分子量10,000以上の原料ポリフェニレンエーテルと、ポリフェノール性化合物と、ラジカル開始剤とを反応させる再分配反応により、分子量20,000以上の成分の割合が10質量%以下であり、且つ数平均分子量が4,000以下である低分子量ポリフェニレンエーテルを製造する方法であって、再分配反応工程は溶媒中で行われる工程であると共に、原料ポリフェニレンエーテルと前記溶媒との配合比は(原料ポリフェニレンエーテル):(溶媒)(質量比)として0.4:100~40:100(質量比)であり、ラジカル開始剤と溶媒との配合比は(ラジカル開始剤):(溶媒)(質量比)として0.5:100~5:100(質量比)であることを特徴とする低分子量ポリフェニレンエーテルの製造方法。
Description
明 細 書
低分子量ポリフエ二レンエーテルの製造方法
技術分野
[0001] 本発明は、低分子量ポリフエ-レンエーテルの製造方法、低分子量ポリフエ-レン エーテル、エポキシィ匕ポリフエ-レンエーテルの製造方法、エポキシ榭脂組成物、及 び電子部材に関する。
背景技術
[0002] プリント配線基板用の絶縁材料として、コストパフォーマンスに優れるエポキシ榭脂 が広く用いられている。また、近年、配線の高密度化への対応などにより、エポキシ 榭脂には更なる物性の高機能化が求められている。例えば、衛星通信などの高周波 領域で使用されるプリント配線基板においては、信号の遅滞を防ぐ観点から、低誘電 率や低誘電正接と 、つた誘電特性に優れる絶縁材料が要求されて ヽる。
[0003] 誘電特性に優れる材料の一つとして、ポリフエ-レンエーテルを使用することが 197 0年代ごろ力も知られている。し力しながら、高分子量のポリフエ-レンエーテルは溶 融粘度が高いため、成形加工性が非常に悪い。また、たとえば特許文献 1や特許文 献 2には、ポリフエ-レンエーテルのトルエン溶液を調製し、このトルエン溶液を加熱 しながら基材に含浸させて積層板を製造する方法が記載されている。しかしながら、 このようなトルエン溶液を加熱しながら含浸を行う方法は非常に危険である。
更に、一般に、ポリフエ-レンエーテルはエポキシ榭脂との相溶性に乏しい。そのた め、エポキシ榭脂にポリフエ-レンエーテルを単純に混合して成形品の原料とした場 合、得られる成形品の機械的強度の向上がしばしば課題となる。
[0004] これら課題を解決すベぐ特許文献 3、特許文献 4には、再分配反応によりポリフエ 二レンエーテルを低分子量ィ匕し、更にェピクロロヒドリンによりエポキシィ匕して変性ポリ フエ-レンエーテルを製造する方法が記載されて 、る。
また、特許文献 5、特許文献 6には、ポリフエ-レンエーテルの低分子量体を重合法 により製造し、その後、エポキシ変性する方法が記載されている。
[0005] 特許文献 1:特許第 2667625号公報
特許文献 2:特許第 3300426号公報
特許文献 3:特開平 9 - 235349号公報
特許文献 4:特許第 3248424号公報
特許文献 5:国際公開第 2004Z104097号パンフレット
特許文献 6:特開 2004 - 256717号公報
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、上記特許文献 3、特許文献 4に記載された方法は、再分配反応時の 反応率や、得られる低分子量ポリフ -レンエーテルの取り扱い性の観点から、なお 改善の余地を有していた。また、上記特許文献 3、特許文献 4に記載されたエポキシ 化ポリフエ-レンエーテルは、エポキシ榭脂との組成物を形成した場合の硬化速度 等の観点から、なお改善の余地を有していた。
一方、上記特許文献 5、特許文献 6に記載された方法は、簡易な方法と言うことは できず、生産効率の観点力 なお改善の余地を有して 、た。
本発明は、このような事情に鑑みてなされたものである。即ち、本発明の主たる目的 は、取り扱 、性の良好なエポキシィ匕ポリフエ-レンエーテルの製造方法を提供するこ とにある。また、本発明の他の目的は、そのようなエポキシィ匕ポリフエ二レンエーテル の原料として適した低分子量ポリフエ-レンエーテルの製造方法等を提供することに ある。
課題を解決するための手段
[0007] 本発明者等は、前記課題を解決するため鋭意検討を行なった。その結果、再分配 反応を行う際の反応条件を制御することによって、取り扱い性の良好なエポキシ化ポ リフエ-レンエーテルの原料として好適な低分子量ポリフエ-レンエーテルが簡易に 得られることを見出し、本発明を完成した。
[0008] すなわち、本発明は、以下の低分子量ポリフエ-レンエーテルの製造方法、低分子 量ポリフエ-レンエーテル、エポキシ化ポリフエ-レンエーテルの製造方法、エポキシ 榭脂組成物、及び電子部材を提供する。
〔1〕
数平均分子量 10, 000以上の原料ポリフエ-レンエーテルと、ポリフエノール性化 合物と、ラジカル開始剤とを反応させる再分配反応により、分子量 20, 000以上の成 分の割合が 10質量%以下であり、且つ数平均分子量が 4, 000以下である低分子 量ポリフエ二レンエーテルを製造する方法であって、
前記再分配反応工程は溶媒中で行われる工程であると共に、
前記原料ポリフエ-レンエーテルと前記溶媒との配合比は、(原料ポリフエ-レンエー テル):(溶媒)(質量比)として 0. 4 : 100〜40 : 100 (質量比)であり、
前記ラジカル開始剤と前記溶媒との配合比は、(ラジカル開始剤): (溶媒)(質量比) として 0. 5 : 100〜5 : 100 (質量比)
であることを特徴とする低分子量ポリフエ-レンエーテルの製造方法。
〔2〕
前記低分子量ポリフエ-レンエーテルの 1分子中に含まれるフエノール性水酸基の 平均数は 1. 2個以上である〔1〕記載の製造方法。
〔3〕
前記再分配反応工程は、ナフテン酸の金属塩、五酸化バナジウム、ァニリン、アミ ン化合物、 4級アンモ-ゥム塩、イミダゾール、及びホスホ-ゥム塩よりなる群力 選択 される 1種又は 2種以上の触媒を用いて行われる工程である〔1〕又は〔2〕記載の製造 方法。
〔4〕
前記再分配反応工程は、前記ラジカル開始剤が、前記原料ポリフ 二レンエーテ ル 100質量部に対して 0. 1質量部 Z分以下の平均添加速度で配合される工程であ る〔1〕、〔2〕又は〔3〕記載の製造方法。
〔5〕
前記再分配反応工程は、前記ラジカル開始剤が、当該ラジカル開始剤の分解速度 定数を当該過酸ィ匕物の添加時間で除したしきい値として 0. 5 (1/hr)以下となるよう な条件で配合される工程である〔1〕〜〔4〕の 、ずれかに記載の製造方法。
〔6〕
前記再分配反応工程の後に、水及び Z又はアルカリ溶液を用いて前記低分子量
ポリフエ-レンエーテルを洗浄する洗浄工程を有する〔1〕〜〔5〕のいずれかに記載の 製造方法。
〔7〕
前記ラジカル開始剤は過酸ィヒベンゾィル又は過酸ィヒベンゾィル誘導体である請求 項〔1〕〜〔6〕の 、ずれかに記載の製造方法。
〔8〕
分子量 20, 000以上の成分の割合が 10質量%以下であり、且つ数平均分子量が 4, 000以下である低分子量ポリフエ-レンエーテルであって、
フエノール性水酸基と、当該フ ノール性水酸基のオルト位に存するメチレン基とを 有する分子鎖末端ユニットが 1分子中に占める割合が、 1〜20質量%であることを特 徴とする低分子量ポリフエ-レンエーテル。
〔9〕
数平均分子量が 4, 000以下である低分子量ポリフエ-レンエーテルに含まれるフ ェノール性水酸基と、エポキシ化合物に含まれるエポキシ基とを付加反応させてェポ キシィ匕ポリフエ-レンエーテル榭脂を製造する方法であって、
前記低分子量ポリフエ-レンエーテルに含まれる分子量 20, 000以上の成分の割合 は 10質量%以下であり、且つ
前記エポキシ化合物の 1分子中に含まれる前記エポキシ基の平均数は 2個以上 あることを特徴とするエポキシィ匕ポリフエ-レンエーテルの製造方法。
〔10〕
前記低分子量ポリフエ-レンエーテルの 1分子中に含まれる前記フエノール性水酸 基の平均数は 1. 2個以上である〔9〕記載の製造方法。
〔11〕
前記低分子量ポリフエ-レンエーテルは、請求項 1〜7のいずれかに記載の製造方 法により得られる低分子量ポリフ 二レンエーテル、又は請求項 8に記載の低分子量 ポリフエ-レンエーテルである〔9〕又は〔10〕記載の製造方法。
〔12〕
〔9〕〜〔11〕の 、ずれかに記載の製造方法により得られたエポキシ化ポリフエ-レン
エーテル榭脂と、エポキシ榭脂と、エポキシ榭脂の硬化剤とを含むエポキシ榭脂組 成物。
〔13〕
エポキシプリプレダ、エポキシプリプレダを用いた積層板、榭脂シート、又は榭脂シ ートを用いた積層板よりなる群力 選択される電子部材であって、〔12〕に記載のェポ キシ榭脂組成物を用いて形成される電子部材。
発明の効果
[0009] 本発明によれば、溶媒への溶解性が良好な、取り扱 、性に優れるエポキシィ匕ポリフ ェ-レンエーテルの製造方法等が提供される。また、当該エポキシィ匕ポリフエ-レン エーテルの原料として好適な、低分子量ポリフエ-レンエーテルの製造方法が提供 される。
発明を実施するための最良の形態
[0010] 以下、本発明を実施するための最良の形態 (以下、発明の実施の形態)について 詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなぐその 要旨の範囲内で種々変形して実施することができる。
[0011] [低分子量ポリフ -レンエーテルの製造方法]
本実施の形態における低分子量ポリフ -レンエーテルの製造方法は、数平均分 子量 10000以上の原料ポリフエ-レンエーテルと、ポリフエノール性化合物と、ラジカ ル開始剤とを反応させる再分配反応により、分子量 20000以上の成分の割合が 10 質量%以下であり、且つ数平均分子量力 000以下である低分子量ポリフ 二レンェ 一テルを製造する方法であって、
前記再分配反応工程は溶媒中で行われる工程であると共に、
前記原料ポリフエ-レンエーテルと前記溶媒との配合比は、(原料ポリフエ-レンエー テル):(溶媒)(質量比)として 0. 4 : 100〜40 : 100 (質量比)であり、
前記ラジカル開始剤と前記溶媒との配合比は、(ラジカル開始剤): (溶媒)(質量比) として 0. 5 : 100〜5 : 100 (質量比)
であることを特徴とする。
[0012] ここで、「再分配反応」とは、例えば、学術文献「Journal of organic chemistry
, 34, 297〜303 (1969)」に示されている反応を意味する。即ち、再分配反応とは、 ラジカル開始剤の存在下で、数平均分子量が大きいポリフエ-レンエーテルと、ポリ フエノール性ィ匕合物とを反応させて、例えば、数平均分子量が 4, 000以下のポリフ ェ-レンエーテルを得る反応である。
再分配反応の反応機構としては、以下のような機構が考えられる。即ち、まず、ポリ フエ-レンエーテル、及びポリフエノール性ィ匕合物力 ラジカル開始剤により共にラジ カル化する。次に、ポリフエ-レンエーテルの分子内でラジカルが移動する。次に、ラ ジカルの移動先で、ラジカル化したフエノール性化合物力 ポリフエ-レンエーテル の構成ユニットの一部を奪う。このように、再分配反応とは、ポリフエ-レンエーテルの 構成ユニットをフエノール性ィ匕合物に分配して 、く反応である。ラジカルが消失しな い限り、ポリフエ-レンエーテルの構成ユニットは次々にフエノール性ィ匕合物に分配さ れる。
[0013] また、本実施の形態にお!、て「低分子量ポリフ -レンエーテル」とは、数平均分子 量が 4, 000以下のポリフエ-レンエーテルを指す。なお、本実施の形態において「 数平均分子量」や「分子量 20, 000以上の成分の割合」は、ポリスチレンを標準物質 とするゲル浸透クロマトグラフィー法 (以下、「GPC法」と略記することがある)により測 定される。「分子量 20, 000以上の成分の割合」は、分子量 20, 000以上のピーク検 出面積の比率を意味する。分子量 20000以上の成分が実質的に 0質量%であると は、ゲル浸透クロマトグラフによる分子量測定において、ピーク検出開始の分子量が 20, 000以下であることを意味する。
[0014] 本実施の形態において用いられる原料ポリフエ-レンエーテルとしては、市販品を 使用することができる。
また、本実施の形態において用いられるポリフエノール性ィ匕合物としては、 1分子中 にフエノール基を 2つ以上有する化合物が用いられる。具体的には、例えば、ビスフ エノール八、テトラメチルビスフエノール A、テトラメチルビフエニル、ジヒドロキシジフエ -ルエーテル、フエノールノボラック、クレゾ一ルノボラック等が挙げられる。これらは 1 種を単独で、又は 2種以上を併用することができる。なお、上記ポリフエノール性化合 物としては、市販品を用いることができる。
[0015] 本実施の形態にぉ 、て用いられるラジカル開始剤としては、例えば、ジクミルパー オキサイド、 tert—ブチルタミルパーオキサイド、ジー tert—ブチルパーオキサイド、 2, 5—ジメチル 2, 5—ジ—tert—ブチルタミルパーォキシへキシンー3、 2, 5—ジメ チル 2, 5—ジー tert—ブチルパーォキシへキサン、 p—メンタンハイド口パーォキサ イド、ジイソプロピルベンゼンハイド口パーオキサイド、 tert—ブチルハイド口パーォキ サイド、 tert—ブチルパーォキシアセテート、 tert—ブチルパーォキシベンゼン、ジィ ソブチリルパーオキサイド、 tert—へキシルバーォキシイソプロピルモノカーボネイト、 tert—ブチルパーォキシイソプロピルモノカーボネイト、 tert—ブチルパーォキシァ セテート、 tert—ブチルパーォキシベンゾエイト、過酸化べンゾィル、又は過酸化べ ンゾィル誘導体等が挙げられる。これらは 1種を単独で、又は 2種以上を併用すること ができる。
中でも、過酸化ベンゾィル又は過酸化ベンゾィル誘導体を使用した場合、後述する アルカリ洗浄工程により低分子量ポリフエ-レンエーテル中に含まれる水酸基の数が 増大し得る。水酸基の数の増大は、硬化物のガラス転位温度等の物性向上に寄与し 得る。
なお、ここでいう過酸化ベンゾィル誘導体とは、過酸化ベンゾィルに含まれるベンゼ ン環構造にメチル基やェチル基等の置換基を有する態様の化合物を指す。
また、ラジカル開始剤として過酸ィ匕ベンゾィルが用いられたカゝ否かについては、得 られた低分子量ポリフ 二レンエーテルを核磁気共鳴装置(以下、「NMR」と略記す ることがある。)により測定し、ベンジル基やベンゾィル基に由来するピークが観察さ れるか否かで判断することができる。
[0016] 本実施の形態において、上記再分配反応工程は、異常反応を抑える観点から、溶 媒中で行われる工程であることが好ましい。溶媒としては、例えば、芳香族炭化水素 系であるベンゼン、トルエン、キシレン、メシチレンゃジクロ口ベンゼン、クロ口ホルム 等が挙げられる。
[0017] ここで、上記原料ポリフエ-レンエーテルと上記溶媒との配合比は、(原料ポリフエ- レンエーテル): (溶媒)(質量比)として好ましくは 0. 4 : 100〜40: 100、より好ましく 【ま4 : 100〜40 : 100、更【こ好ましく【ま8 : 100〜20 : 100でぁる。溶媒 100質量咅 こ
対する原料ポリフエ-レンエーテルの配合量を 0. 4質量部以上とすることは、不必要 に多量の溶媒を使用することなぐ生産性良く再分配反応を実行することに寄与し得 る。また、上記配合量を 40質量部以下とすることは、ラジカル開始剤投入前の溶液 粘度を適切な範囲に維持すること、ラジカル開始剤を速やかに均一に配合させ得る こと、又は、副生成物の発生を低減することに寄与し得る。
[0018] また、本実施の形態において、上記ラジカル開始剤と上記溶媒との配合比は、(ラ ジカル開始剤): (溶媒)(質量比)として好ましくは 0. 5 : 100〜5: 100、より好ましくは 1 : 100〜3 : 100である。溶媒 100質量部に対するラジカル開始剤の配合量を 0. 5 質量部以上とすることは、不必要に多量の溶媒を使用することなぐ生産性良く再分 配反応を実行することに寄与し得る。また、原料ポリフエ-レンエーテルとポリフエノー ル性ィ匕合物の両方をラジカルィ匕させ得るため、反応が進行しやすい。一方、上記配 合量を 50質量部以下とすることは、ラジカル開始剤の分解時の発熱により温度上昇 が生じることを抑制すること、又は、副生成物の発生を低減することに寄与し得る。
[0019] 即ち、本実施の形態において、上記原料ポリフエ-レンエーテルと上記溶媒との配 合比、及び上記ラジカル開始剤と上記溶媒との配合比を上述した範囲に設定するこ とにより、詳細は明らかではないが、分子量 20, 000以上のポリフエ二レンエーテル の残存率が低減される。低分子量ポリフエ-レンエーテルに含まれる分子量 20, 00 0以上の成分の割合が低減することは、低分子量ポリフエ-レンエーテルをエポキシ 化して得られるエポキシィ匕ポリフエ-レンエーテルの溶媒に対する溶解性を向上させ ること〖こ寄与し得る。つまり、取り扱い性に優れた (室温でも溶媒に析出し難い、又は 、溶液貯蔵性の良好な)エポキシィ匕ポリフエ-レンエーテルが実現し得る。
[0020] 本実施の形態における上記再分配反応工程は、反応率を向上させ、高分子量成 分を低減させる観点から、ナフテン酸の金属塩、五酸化バナジウム、ァ-リン、ァミン 化合物、 4級アンモ-ゥム塩、イミダゾール、及びホスホ-ゥム塩よりなる群力 選択さ れる 1種又は 2種以上の触媒を用いて行われる工程であることが好ましい。
即ち、上記再分配反応においては、分子鎖末端に存在するフエノール性水酸基由 来の酸素ラジカルが反応点となる。ここで、複数の酸素ラジカル同士が結合すること により、反応が停止する (過酸化物が生成する)場合がある。上記のような触媒を用い
ることは、当該過酸化物を再度分解して反応点を再生することに寄与し得る。
[0021] このような触媒として具体的には、例えば、ナフテン酸コバルト、ナフテン酸亜鉛、 ナフテン酸マンガン、ナフテン酸鈴などのナフテン酸塩;五酸化バナジウム;ジメチノレ ァ-リンなどのァ-リン類;アミンィ匕合物、テトラメチルアンモ -ゥムクロライド、テトラブ チルアンモ -ゥムブロマイドなどの 4級アンモ-ゥム塩;イミダゾール類、ホスホ-ゥム 塩等が挙げられる。これらは 1種を単独で、又は 2種以上を併用することができる。 なお、触媒は、ラジカル開始剤を投入する前に添加するだけでなぐ投入後に添加 しても良い。
また、本実施の形態において、上記触媒と上記原料ポリフエ-レンエーテルとの配 合比としては、(触媒):(原料ポリフエ-レンエーテル)(質量比)として好ましくは 0. 01 : 100〜1 : 100、より好ましくは 0. 1 : 100〜0. 5 : 100である。原料ポジフエ-レン エーテル 100質量部に対する触媒の配合料を 0. 01質量部以上とすることは、ポリフ ェ-レンエーテルの分子量を良好に低減させることに寄与し得る。また、上記配合料 を 1質量部以下とすることは、ポリフエ-レンエーテルの分子量を必要以上に低減さ せず、得られるエポキシ榭脂組成物の電気的特性を保持することに寄与し得る。
[0022] 上記再分配反応工程は、副反応を抑える観点から、前記ラジカル開始剤が、前記 原料ポリフエ-レンエーテル 100質量部に対して好ましくは 0. 1質量部 Z分以下、よ り好ましくは 0. 05質量部 Z分以下の平均添加速度で配合される工程である。
平均添加速度を 0. 1質量部 Z分以下とすることは、ラジカル開始剤から生成したラ ジカル同士の反応を防ぐことや、ラジカル化されたポリフエ-レンエーテルとラジカル 開始剤から生成したラジカルとの反応、ラジカル化されたフエノール性化合物とラジ カル開始剤から生成したラジカルとの反応、ラジカルィ匕されたポリフエ-レンエーテル 同士、またはラジカル化されたフエノール性ィ匕合物同士の反応を防ぐことに寄与し得 る。即ち、再分配反応において効率良くポリフエ-レンエーテルとフエノール性ィ匕合 物とを反応させることができる。従って、平均添加速度を 0. 1質量部 Z分以下とする ことは、ラジカル 1分子当りのフエノール性水酸基数を多くすることや、分子量 20, 00 0以上の成分の含有率を低減させることに寄与し得る。
[0023] また、上記再分配反応工程は、ラジカル生成時間を長くする観点から、前記ラジカ
ル開始剤が、当該ラジカル開始剤の分解速度定数を当該過酸ィ匕物の添加時間で除 したしきい値として、好ましくは 0. 5 ( lZhr)以下、より好ましくは 0. 2 ( lZhr)以下の 平均添加速度で添加される工程である。
上記しきい値を 0. 5 ( lZhr)以下とすることは、ラジカル同士の反応を抑制すること に寄与し得る。即ち、上記しきい値を 0. 5 ( lZhr)以下とすることは、得られる低分子 量ポリフエ-レンエーテルの分子量分布値を小さくし、電気特性や溶剤への溶解性 を向上させることに寄与し得る。なお、分子量分布については上記 GPC法により確 認することができる。
[0024] 上記「ラジカル開始剤の分解速度定数」とは、ラジカル開始剤の頻度因子と活性ィ匕 エネルギーカゝら求められる。頻度因子を A、活性化エネルギーを Δ Ε、気体定数を R 、絶対温度を Τとすると分解速度定数は以下のように記載することができる。
分解速度定数 =Aexp (— Δ Ε/RT)
[0025] 本実施の形態の製造方法は、上記再分配反応工程の後に、水及び Z又はアル力 リ溶液を用いて低分子量ポリフエ-レンエーテルを洗浄する洗浄工程を有することが 好ましい。再分配反応を行った場合には通常、ラジカル開始剤の残渣が残存するこ ととなる。このような洗浄工程を経ることは、ラジカル開始剤の残渣等、反応系中に存 在するアルコールやカルボン酸等を除去することに寄与し得、低分子量ポリフエ-レ ンエーテルをエポキシィ匕する際のエポキシィ匕反応を飛躍的に促進させ得る。また、ェ ポキシィ匕反応にぉ ヽてゲルイ匕反応を抑制したり、反応溶液粘度を低粘度化したりす ることが可能となる。
なお、上記洗浄工程は室温でも実施可能である力 60°C以上であることが好ましく 、より好ましくは 80°C以上である。液温が高いと洗浄する速度が速くなる。
[0026] 本実施の形態の製造方法により得られた低分子量ポリフエ-レンエーテルは、その 詳細は明らかでないが、例えば、再分配反応が記載された学術文献 [Reactive Po lymers、 15、 9 23 (1991) ]内の Table8に示された数平均分子量から見積もられ る平均分子量に比べ、高い分子量を有する。また、当該低分子量ポリフエ二レンエー テルは、同 Tableから求められる MwZMnに比べ、飛躍的に小さな分子量分布値を 有する。 GPC法により求められた MwZMn値は 2. 7〜3. 4の間で変動し、減少す
る傾向は見られない。それに対し、本実施の形態の製造方法により得られた低分子 量ポリフエ-レンエーテルは、 2. 3以下の MwZMn値を実現し得る。
[0027] [低分子量ポリフエ-レンエーテル]
本実施の形態の低分子量ポリフエ-レンエーテルは、分子量 20, 000以上の成分 の割合が 10質量%以下であり、且つ数平均分子量が 4, 000以下である低分子量ポ リフエ二レンエーテルであって、フ ノール性水酸基と、当該フ ノール性水酸基のォ ルト位に存するメチレン基とを有する分子鎖末端ユニットが 1分子中に占める割合が 、 1〜20質量%であることを特徴とする。このような低分子量ポリフエ-レンエーテル は、上述した低分子量ポリフエ-レンエーテルの製造方法により好適に得ることがで きる。
[0028] ここで、フエノール性水酸基と、当該フエノール性水酸基のオルト位に存するメチレ ン基とを有する分子鎖末端ユニットが 1分子中に占める割合としては、 1〜20質量% 、好ましくは 2〜10質量%である。当該割合を 1質量%以上とすることは、分子鎖末 端ユニットに二重結合が導入される(キノン化)ことを抑制し得る。二重結合の導入量 を抑制することは、製品の白色度を向上させることにつながり、不純物の混入を容易 に発見する観点力も好適である。一方、当該割合を 20質量%以下にすることは、分 子鎖末端のフエノール性水酸基をエポキシィ匕する際の反応率向上に寄与し得る。 なお、ここでいう「分子鎖末端ユニット」とは、ポリフエ-レンエーテル(1分子)の末端 位置に存在するベンゼン環、及び当該ベンゼン環が有する置換基を含む概念であ る。また、このような分子鎖末端ユニットにどのような置換基が導入されているかにつ V、ては、 NMRを用いた構造同定により解析することができる。
[0029] [エポキシ化ポリフエ-レンエーテルの製造方法]
本実施の形態におけるエポキシ化ポリフエ-レンエーテルの製造方法は、数平均 分子量力 000以下である低分子量ポリフエ-レンエーテルに含まれるフエノール性 水酸基と、エポキシィ匕合物に含まれるエポキシ基とを付加反応させてエポキシィ匕ポリ フエ二レンエーテル榭脂を製造する方法である。
ここで、前記低分子量ポリフエ-レンエーテルの数平均分子量としては、 4, 000以 下、好ましくは 3, 000以下、より好ましくは 2, 500以下、下限として好ましくは 500以
上、より好ましくは 1, 000以上である。低分子量ポリフエ-レンエーテルの数平均分 子量を 4, 000以下とすることは、低分子量ポリフエ-レンエーテルの溶融粘度を減 少させ、取り扱い性の向上に寄与し得る。一方、数平均分子量を 1, 000以上とする ことは、電気特性を向上させることに寄与し得る。
[0030] また、上記低分子量ポリフエ-レンエーテルに含まれる数平均分子量 20, 000以 上の成分の割合は 10質量%以下、好ましくは 5質量%以下、より好ましくは 2質量% 以下、さらに好ましくは 1質量%以下であり、実質的に 0質量%であっても良い。上記 割合をこのような範囲に設定することは、エポキシ化して得られるエポキシ化ポリフエ 二レンエーテルの取り扱 、性を向上 (溶媒への溶解性を向上)させることに寄与し得 る。また、上記割合を 1%以下とすることは、ケトン類の溶剤に対する良好な溶解性の 実現に寄与し得る。
なお、このような低分子量ポリフエ-レンエーテルは、上述した低分子量ポリフエ- レンエーテルの製造方法により得ることができる。
[0031] ここで、上記低分子量ポリフエ-レンエーテルの 1分子中に含まれるフエノール性水 酸基の平均数としては、好ましくは 1. 2個以上、より好ましくは 1. 5個以上、更に好ま しくは 1. 7個以上、上限として好ましくは 5個以下、より好ましくは 3個以下である。上 記低分子量ポリフエ-レンエーテルの水酸基個数が 1. 2個以上であることは、ェポキ シ榭脂との反応性の向上に寄与し得る。フエノール性水酸基が多ければ多いほど、 エポキシィ匕したあとにエポキシ榭脂の性質に近くなり、反応性が向上し得る。一方、 上記低分子量ポリフエ-レンエーテルの水酸基個数が 5個以下とすることは、ェポキ シ変性時にポリフエ-レンエーテルを多く投入しても溶融粘度の急激な上昇を抑える というメリットがある。
なお、本実施の形態において、低分子量ポリフエ-レンエーテルの 1分子中に含ま れるフ ノール性水酸基の平均数は、フ ノール性水酸基当量と数平均分子量から 求められる。
[0032] 一方、本実施の形態の製造方法において用いられるエポキシィ匕合物の、 1分子中 に含まれるエポキシ基の平均数としては、 2個以上、好ましくは 2. 5個以上、より好ま しくは 3個以上、上限として好ましくは 7個以下、好ましくは 5. 5個以下である。 1分子
中に含まれるエポキシ基の平均数を 2個以上に設定することは、エポキシ化ポリフエ 二レンエーテルをエポキシ榭脂と均一に硬化するというメリットがある。一方、 7個以下 とすることは、低分子量ポリフエ-レンエーテルをエポキシ変性する際の副反応 (ゲル 化等)を抑制することに寄与し得る。
[0033] 1分子中に含まれるエポキシ基の平均数が 2個以上のエポキシィ匕合物としては、例 えば、ビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビスフエノ ール S型エポキシ榭脂、ヒンダトイン型エポキシ榭脂、ビフエ-ル型エポキシ榭脂、脂 環式エポキシ榭脂、トリフエニルメタン型エポキシ榭脂、フエノールノボラック型ェポキ シ榭脂、クレゾ一ルノボラック型エポキシ榭脂、ナフトールノボラック型エポキシ榭脂、 ビス Aノボラック型エポキシ榭脂、ジシクロペンタジェン Zフエノールエポキシ榭脂、脂 環式ァミンエポキシ榭脂、脂肪族ァミンエポキシ榭脂、及び、これらをハロゲン化した エポキシ榭脂等が挙げられる。これらは 1種を単独で、又は 2種以上を併用すること ができる。特に、得られるエポキシィ匕ポリフエ-レンエーテルが 1分子あたり平均 3個 以上のエポキシ基を有するよう、エポキシィ匕合物を選択することが好まし 、。
[0034] また、上記低分子量ポリフエ-レンエーテルに含まれるフエノール性水酸基と、上記 エポキシィ匕合物に含まれるエポキシ基とを付加反応させる方法としては、例えば、フ ェノール性水酸基とエポキシ基の反応のための触媒の存在下、 100°C〜200°Cで、 1〜20時間反応させる方法を採用し得る。
ここで、触媒としては、例えば、水酸化ナトリウムや水酸化カリウムといった水酸化物 ;ナトリウムメチラートやナトリウムブチラートといったアルキレート塩;テトラプチルアン モ -ゥムクロライドゃテトラメチルアンモ-ゥムブロミドといった 4級アンモ-ゥム塩;テト ラフエ-ルホスホ -ゥムブロミドゃァミルトリフエ-ルホスホ-ゥムブロミドといったホスホ -ゥム塩; 2メチルイミダゾールゃ 2メチル 4イミダゾールと 、つたイミダゾール系触媒; N、N—ジェチルエタノールァミンといったアミン類触媒;塩ィ匕カリウム;等が挙げられ る。これらは 1種を単独で、又は 2種以上を併用しても良い。
[0035] 本実施の形態の製造方法により得られたエポキシィ匕ポリフエ-レンエーテルは、ト ルェンゃキシレンなどの芳香族系の溶剤に対して良好な溶解性を示すだけでなぐ ケトン類に対しても良好な溶解性を示し得る。
また、当該エポキシィ匕ポリフエ-レンエーテルは、他のエポキシ榭脂との相溶性に 富み、均質なワニスを構成するエポキシ榭脂組成物を与え得る。当該エポキシ化ポリ フエ-レンエーテルは反応性が高いため、他のエポキシ榭脂と層分離を起こすことな ぐ均一な硬化物を与え得る。
[0036] [エポキシ榭脂組成物、電子部材]
本実施の形態におけるエポキシ榭脂組成物は、上述した製造方法により得られた エポキシィ匕ポリフエ-レンエーテル榭脂と、エポキシ榭脂と、エポキシ榭脂の硬化剤と を含む。本実施の形態のエポキシ榭脂組成物は、金属箔の引き剥がし強さや、半田 耐熱性、耐溶剤性、電気特性等に優れた電子部材を実現し得る。
[0037] 上記エポキシ榭脂としては、ォキサゾリドン環を持つエポキシ榭脂を用いることが、 硬化体の耐熱性を下げることなぐ銅箔やプラスチックとの接着性を向上させることが できて好適である。
また、上記エポキシ榭脂の硬化剤としては、エポキシ榭脂と反応して 3次元網状構 造を形成し得る硬化剤が好ましい。このような硬化剤としては、例えば、ジシアンジァ ミド、脂肪族ポリアミド等のアミド系硬化剤、ジアミノジフエ-ルメタン、メタフエ-レンジ ァミン、アンモニア、トリエチルァミン、ジェチルァミン等のアミン系硬化剤、ビスフエノ 一ル八、ビスフエノール F、フエノールノボラック榭脂、クレゾ一ルノボラック榭脂、 ρ— キシレンノボラック榭脂等のフエノール系硬化剤;酸無水物系硬化剤といった顕在型 硬化剤や潜在型硬化剤が挙げられる。これらは 1種を単独で、又は 2種類以上を併 用することができる。なお、このような硬化剤の配合量としては、エポキシ榭脂組成物 全てのエポキシ当量あたり、好ましくは 0. 1〜10当量、より好ましくは 0. 3〜3当量、 更に好ましく ίま 0. 5〜1. 5当量である。
[0038] また、本実施の形態におけるエポキシ榭脂組成物は、難燃剤を含んでも良 、。
上記難燃剤としては、例えば、臭素化エポキシ榭脂、エポキシ基含有ホスファゼン 化合物、リン酸エステル、縮合リン酸エステル、及びホスフィン化合物のキノン誘導体 よりなる群力 選択された 1種又は 2種以上が用いられる。このような難燃剤の配合量 としては、エポキシ榭脂組成物全体の 10質量%以上であることが、より確実に難燃性 を達成する観点カゝら好適である。難燃剤選択の際、臭素化エポキシ榭脂を選ばなけ
れば、ハロゲンフリーの難燃性榭脂になる。
[0039] 上記エポキシ榭脂組成物において、エポキシ化ポリフエ-レンエーテルがエポキシ 榭脂組成物中に占める割合としては、好ましくは 40〜90質量%、より好ましくは 50〜 60質量%である。
また、エポキシ榭脂がエポキシ榭脂組成物中に占める割合としては、好ましくは 1〜 50質量%、より好ましくは 50〜60質量%である。
更に、難燃剤がエポキシ榭脂組成物中に占める割合としては、好ましくは 10〜50 質量%、好ましくは 20〜25質量%である。
このような配合とすることは、電気特性が良ぐ難燃性を維持しながら、耐熱性、接 着性、加工性のバランスが非常に良好な硬化物を実現し得る。
[0040] 本実施の形態におけるエポキシ榭脂組成物は、更に、硬化促進剤を含んでも良 ヽ このような硬化促進剤としては、例えば、 2—メチルイミダゾール、 2—メチル—4— ェチルイミダゾール、 2—フエ-ルイミダゾール等のイミダゾール類、 1, 8—ジァザビ シクロ [5. 4. 0]ゥンデセン— 7、トリエチレンジァミン、ベンジルジメチルァミン等の 3級 アミン類、トリブチルポスフイン、トリフエ-ルホスフィン等の有機ホスフィン類、テトラフ ェ-ルホスホ-ゥムテトラフエ-ルポレート、トリフエ-ルホスフィンテトラフエ-ルボレ ート等のテトラフエニルボロン塩等が挙げられる。これらは 1種を単独で、もしくは 2種 類以上を併用してもよい。
[0041] 本実施の形態のエポキシ榭脂組成物を用いて電子部材等の成形体を得る場合、 予めワニスを調製することができる。ここで、ワニスを調整する際の溶媒としては、例え ばジクロロメタンやクロ口ホルムなどのハロゲン系溶媒やベンゼン、トルエン、キシレン などの芳香族系溶媒に加えて、ケトン類溶剤が挙げられる。
ケトン類溶剤としては、例えばメチルェチルケトン、メチルイソプロピルケトン、メチル イソプチルケトン、シクロへキサノン等の脂肪族ケトンや、ァセトフエノン等の芳香族 ケトンが挙げられる。また、例えば、ジシアンジアミド等、ケトン類に溶解しにくい硬化 剤や硬化促進剤を使用する場合は、主な溶剤としてケトン類を使用しても、補助溶剤 として、例えば、ジメチルホルムアミド、メチルセ口ソルブ、プロピレングリコールモノメ
チルエーテル、メシチレン等の溶剤を使用することもできる。
ワニス中の固形分濃度は、特に限定されないが、 30%〜80%が好適である。
[0042] 本実施の形態の電子部材は、上記エポキシ榭脂組成物を用いて形成される。電子 部材の態様としては、例えば、エポキシプリプレダ、エポキシプリプレダを用いた積層 板、榭脂シート、又は榭脂シートを用いた積層板が挙げられる。
エポキシプリプレダの製造方法としては、例えば、上記ワニスを基材に含浸させた 後、溶媒を乾燥させ、加熱硬化させる方法が挙げられる。上記基材としては、ガラスク ロス、ァラミドクロス、ポリエステルクロス、ガラス不織布、ァラミド不織布、ポリエステノレ 不織布、ノルプ紙、リンター紙等が挙げられる。基材に含浸する榭脂量は特に限定 されないが、乾燥後の榭脂含有量がプリプレダの質量に対し 30〜70%となるように 設定されることが好適である。
[0043] 上記榭脂シートの製造方法としては、例えば、上記ワニスを金属箔ゃポリエチレン テレフタレートフィルム等の上にバーコ一ター等で塗布し、溶剤を乾燥除去して作製 する方法が挙げられる。このように作製され、 Bステージィ匕されたフィルムは、ホット口 一ル等を用いて両面銅箔積層板にラミネートされ、オーブン内等で加熱処理されて、 多層成形体が作成される。
[0044] 上記積層板の製造方法としては、例えば、プリプレダ、榭脂シートおよび銅箔を、目 的に応じた層構成で積層し、加圧加熱して製造する方法が挙げられる。具体的には 、例えば、基板上にプリプレダと硬化性榭脂金属箔複合体を複数枚重ね合わせ、加 熱加圧下に各層間を接着すると同時に熱架橋を行い、所望の厚みの積層板を得る 方法が挙げられる。また、基板上に硬化性榭脂金属箔複合体を複数枚重ね合わせ て、加熱加圧下に各層間を接着すると同時に熱硬化を行い、所望の厚みの積層板 を得る方法が挙げられる。金属箔は、表層としても中間層としても用いることができる 。また、積層板の製造方法としては、積層と硬化を複数回繰り返して逐次多層化する 方法も挙げられる。
なお、硬化温度としては、例えば、汎用 FR4積層板の作成条件として、 180°Cで 1 時間硬化の条件を採用し得る。
実施例
[0045] 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明は、 以下の実施例に限定されるものでない。
[0046] 各特性の評価は以下の方法で行った。
(1)数平均分子量 (Mn)、分子量、分子量分布 (MwZMn)
昭和電工社製商品名: shodex A— 804、 A— 803、 A— 802、 A802をカラムとし て使用して、ゲル浸透クロマトグラフィー分析を行った。分子量既知のポリスチレンの 溶出時間との比較で分子量を求めた。
(2)フエノール性水酸基当量、フエノール基数(OH基数)
低分子量ポリフエ-レンエーテルを塩化メチレンに溶解後、 0. 1Nテトラエチルアン モ -ゥムハイド口キシドのメタノール溶液を添カロし、激しく撹拌後、 318nmでの吸光 度を測定した。 0. 1Nテトラエチルアンモ -ゥムハイド口キシドのメタノール溶液を添 カロした場合と添加しな 、場合との差から、フエノール性水酸基当量を求めた (単位: m eq/kg)0更に、この求めたフ ノール性水酸基当量と数平均分子量から、 1分子あ たりのフエノール基数を求めた。
(3)エポキシ当量
JIS K 7236により測定した。
(4) ATgの測定
エポキシ化ポリフエ-レンエーテルに、エポキシ当量に対して 0. 6当量のジシアン ジアミドを硬ィ匕剤として添カ卩し、更に、 170°Cのゲルタイムが 4分 30秒になるよう 2メチ ルイミダゾールを硬化促進剤として添加して配合物を得た。この配合物を 180°Cで 1 時間硬化させ、エスアイアイ'ナノテクノロジ一社製の示差走査熱量計 (商品名: DSC 6220)にてガラス転位温度を測定した。窒素雰囲気下、 20°CZminで 40°C力ら 25 0°Cまで加熱し、 1回目に測定されたガラス転位温度を Tgl、冷却後、同一条件で測 定して得られたガラス転位温度を Tg2とし、 Tgl— Tg2の絶対値を Δ Tgとした。 Δ Tg は、硬化の進行具合を見る目安となる。
(5)耐溶剤性
エポキシ化ポリフエ-レンエーテルに、上記 (4)と同様に硬化剤、硬化促進剤を混 合し、 180°Cで 1時間硬化させた。得られた硬化体を 3%水酸化ナトリウム水溶液 40
°Cに 3分間浸漬し、 20分間流水で洗浄した。洗浄後の硬化体の、表面の荒れ具合を 観察した。洗浄前後を比較し、変化がないものを〇、表面が荒れているものを Xとし た。
(6)溶解性の評価
測定対象物の含有率が 30質量%になるように、測定対象物を溶剤へ加熱溶解し た。室温まで冷却した後、所定の日数 25°Cで放置し、放置後の溶液をメンブランフィ ルターにてろ過した。フィルターを加熱し、溶剤を揮発させた後のフィルター質量 (フ ィルターとろ過物との合計質量)と、フィルター自体の質量との差が 0. 1質量%以下と なる日数を測定した。当該日数が 10日以上の場合を〇、 5日以上 9日以下の場合を △、5 3未満の場合を Xと評価した。
(7)積層板誘電率、誘電正接
JIS C 6481に基づき測定した。測定装置として、アジレントテクノロジ一社製 LC Rメーター(商品名:4284A)を用いた。
[0047] [実施例 1〜8、比較例 1〜3]
表 1に示す配合'反応条件によって再分配反応を行い、低分子量ポリフエ二レンェ 一テル I〜XIを得た。得られた低分子量ポリフエ-レンエーテルの分析結果を表 1に 併記した。なお、反応条件の詳細については以下に示した。
[0048] [実施例 1]
底栓弁つきのリアクターに溶媒としてメシチレン 300gを入れ、 90°Cに加熱後、数平 均分子量 18, 000の原料ポリフエ-レンエーテル (旭化成ケミカルズ (株)製、商品名 : SA202) 100gおよび、ポリフエノール性化合物としてビスフエノール A (BPA) 6gを 溶解させた。この中に過酸ィ匕ベンゾィル (BPO) (日本油脂 (株)製、商品名:ナイパ 一 BMT)の 10%メシチレン溶液 60gを 240分かけて添カ卩し、 90°Cにて 60分間攪拌 し再分配反応させた。このときのラジカル開始剤の分解速度定数は 0. 55であり、分 解速度定数を添加時間で割った値は 0. 14 (l/hr)である。
この反応溶液に、炭酸水素ナトリウム水を添加し、十分洗浄 (アルカリ洗浄)した後 に、水溶液のみを取り除いた。このときの有機層を少量取り、 GPC法により数平均分 子量(Mn)を求めたところ 2, 560であり、分子量 20, 000以上の成分は 4. 9%であ
り、分子量分布 (MwZMn)は 2. 2であった。また、同じ有機層中の溶剤を乾固させ てフエノール水酸基当量を測定してみたところ、 625meqZkgであり、 1分子あたりの フエノール基数が約 1. 6個の低分子量ポリフエ-レンエーテル Iを得た。
[0049] [実施例 2]
低栓弁つきのリアクターに溶媒としてキシレン 300gを入れ、 90°Cに加熱後、数平 均分子量 20, 000の原料ポリフエ-レンエーテル (旭化成ケミカルズ (株)製、商品名 : SA201) 100gおよびポリフエノール性化合物としてビスフエノール A (BPA) 8gを溶 解させた。この中に過酸ィ匕ベンゾィル (BPO) (日本油脂 (株)製、商品名:ナイパー B MT)の 2. 5%キシレン溶液 400gを 120分力、けて添カロし、 90°Cで 120分反応させた 。このときのラジカル開始剤の分解速度定数は 0. 55であり、分解速度定数を滴下時 間で割った値は 0. 28 ( lZhr)である。
この反応溶液に、炭酸水素ナトリウム水を添加し、十分洗浄 (アルカリ洗浄)した後 に、水溶液のみを取り除いた。このときの有機層を少量取り、 GPC法により数平均分 子量(Mn)を求めたところ 2, 120であり、分子量 20, 000以上の成分は 3. 1%であ り、分子量分布 (MwZMn)は 2. 1であった。また、同じ有機層中の溶剤を乾固させ てフエノール水酸基当量を測定してみたところ、 850meqZkgであり、 1分子あたりの フエノール基数が約 1. 8個の低分子量ポリフエ-レンエーテル IIを得た。
[0050] [実施例 3]
低栓弁つきのリアクターに溶媒としてトルエン 300gを入れ、 90°Cに加熱後、数平均 分子量 18, 000の原料ポリフエ-レンエーテル (旭化成ケミカルズ (株)製、商品名: S A202) 100gおよび、ポリフエノール性化合物としてビスフエノール A (BP A) 8gを溶 解させ、 70°Cに冷却した後に、触媒としてナフテン酸コノ レトミネラルスピリッツ 7%液 (和光純薬 (株)製)を 1.6ml添加した。この中に過酸ィ匕ベンゾィル(日本油脂 (株)製 、商品名:ナイパー BMT)の 2. 5%トルエン溶液 400gを 240分力、けて添加し、 70°C で 240分反応させた。このときのラジカル開始剤の分解速度定数は 0. 05であり、分 解速度定数を滴下時間で割った値は 0. 013 ( lZhr)である。
この反応溶液に、炭酸水素ナトリウム水を添加し、十分洗浄 (アルカリ洗浄)した後 に、水溶液のみを取り除いた。このときの有機層を少量取り、 GPC法により数平均分
子量を求めたところ 1, 820であり、分子量 20, 000以上の成分は 0. 5%であり、分 子量分布 (MwZMn)は 1. 7であった。また、同じ有機層中の溶剤を乾固させてフエ ノール水酸基当量を測定してみたところ、 1050meqZkgであり、 1分子あたりのフエ ノール基数が約 1. 9個の低分子量ポリフエ-レンエーテル IIIを得た。
[0051] [実施例 4]
低栓弁つきのリアクターに溶媒としてトルエン 500gを入れ、 90°Cに加熱後、数平均 分子量 18, 000の原料ポリフエ-レンエーテル (旭化成ケミカルズ (株)製、商品名: S A202) 100gおよび、ポリフエノール性化合物としてビスフエノール A (BP A) 8gを溶 解させ、 80°Cに冷却した後に、触媒としてナフテン酸コノ レトミネラルスピリッツ 7%液 (和光純薬 (株)製)を 1.6ml添カ卩した。この中にジイソプロピルベンゼンノヽイド口パー オキサイド(日本油脂 (株)製、商品名:パークミル P) 15gを 60分かけて添加し、 80°C で 240分反応させた。このときの分解速度定数は 0. 0001であり、分解速度定数を 滴下時間で割った値は 0. 0001 (lZhr)である。
この反応溶液に、炭酸水素ナトリウム水を添加し、十分洗浄 (アルカリ洗浄)した後 に、水溶液のみを取り除いた。このときの有機層を少量取り、 GPC法により数平均分 子量を求めたところ 3, 900であり、分子量 20, 000以上の成分は 1. 9%であり、分 子量分布 (MwZMn)は 1. 8であった。また、同じ有機層中の溶剤を乾固させてフエ ノール水酸基当量を測定してみたところ、 450meqZkgであり、 1分子あたりのフエノ ール基数が約 1. 7個の低分子量ポリフエ-レンエーテル IVを得た。
[0052] [実施例 5]
製造例 3において、ナフテン酸コバルトを、過酸化ベンゾィルの滴下後に入れる以 外は同様に製造した。 GPC法により数平均分子量を求めたところ 1820であり、分子 量 20, 000以上の成分は 0. 8%であり、分子量分布(MwZMn)は 2. 0であった。 また、同じ有機層中の溶剤を乾固させてフエノール水酸基当量を測定してみたところ 、 930meqZkgであり、 1分子あたりのフエノール基数が約 1. 7個の低分子量ポリフ ェニレンエーテル Vを得た。
[0053] [比較例 1]
底栓弁つきのリアクターに溶媒としてトルエン 100gを入れ、 90°Cに加熱後、数平均
分子量 18, 000の原料ポリフエ-レンエーテル (旭化成ケミカルズ (株)製、商品名: S A202) 100gおよび、ポリフエノール性化合物としてビスフエノール A (BP A) 6gを溶 解させた。この中に過酸ィ匕ベンゾィル (日本油脂 (株)製、商品名:ナイパー BMT) 6g を 6分かけて添加し、 90°Cにて 60分間攪拌し再分配反応させた。このときのラジカル 開始剤の分解速度定数は 0. 55であり、分解速度定数を滴下時間で割った値は 5. 5 ( lZhr)であった。
この反応溶液に、炭酸水素ナトリウム水を添加し、十分洗浄 (アルカリ洗浄)した後 に、水溶液のみを取り除いた。このときの有機層を少量取り、 GPC法により数平均分 子量を求めたところ 2, 300であり、分子量 20, 000以上の成分は 21. 0%であり、分 子量分布 (MwZMn)は 3. 2であった。また、同じ有機層中の溶剤を乾固させてフエ ノール水酸基当量を測定してみたところ、 625meqZkgであり、 1分子あたりのフエノ ール基数が約 1. 4個の低分子量ポリフエ-レンエーテル VIを得た。
[0054] [比較例 2]
底栓弁つきのリアクターに溶媒としてトルエン 100gを入れ、 90°Cに加熱後、数平均 分子量 18, 000の原料ポリフエ-レンエーテル (旭化成ケミカルズ (株)製、商品名: S A202) 100gおよび、ポリフエノール性化合物としてビスフエノール A (BP A) 6gを溶 解させた。この中に過酸ィ匕ベンゾィル (日本油脂 (株)製、商品名:ナイパー BMT)の 10%トルエン溶液 60gを 120分かけて添カ卩し、 90°Cにて 60分間攪拌し再分配反応 させた。このときのラジカル開始剤の分解速度定数は 0. 55であり、分解速度定数を 滴下時間で割った値は 0. 28 ( lZhr)であった。
この反応溶液に、炭酸水素ナトリウム水を添加し十分洗浄 (アルカリ洗浄)した後に 、水溶液のみを取り除いた。このときの有機層を少量取り、 GPC法により数平均分子 量を求めたところ 2, 400であり、分子量 20, 000以上の成分は 13. 0%であり、分子 量分布(MwZMn)は 3. 1であった。また、同じ有機層中の溶剤を乾固させてフエノ ール水酸基当量を測定してみたところ、 650meqZkgであり、 1分子あたりのフエノー ル基数が約 1. 6個の低分子量ポリフエ-レンエーテル VIIを得た。
[0055] [実施例 6]
滴下時の温度、反応温度をともに 110°Cにする以外は製造例 3と同様に実験を行
つた。このときのラジカル開始剤の分解速度定数は 5. 1であり、分解速度定数を滴下 時間で割った値は 1. 3 ( lZhr)であった。 GPC法により数平均分子量を求めたとこ ろ 1, 750であり、分子量 20, 000以上の成分は 8. 5%であり、分子量分布(MwZ Mn)は 3. 2であった。また、同じ有機層中の溶剤を乾固させてフエノール水酸基当 量を測定してみたところ、 810meqZkgであり、 1分子あたりのフエノール基数が約 1 . 4個の低分子量ポリフエ-レンエーテル VIIIを得た。
[0056] [実施例 7]
ビスフエノール Aの代わりの 2, 6キシレノールを使用した以外は製造例 1と同様の実 験を行った。 GPC法により数平均分子量を求めたところ 2, 380であり、分子量 20, 0 00以上の成分は 9. 3%であり、分子量分布(MwZMn)は 2. 5であった。また、同じ 有機層中の溶剤を乾固させてフエノール水酸基当量を測定してみたところ、 460me qZkgであり、 1分子あたりのフエノール基数が約 1. 1個の低分子量ポリフエ-レンェ 一テル IXを得た。
[0057] [比較例 3]
低栓弁つきのリアクターに溶媒としてトルエン 900gを入れ、 90°Cに加熱後、数平均 分子量 18, 000の原料ポリフエ-レンエーテル (旭化成ケミカルズ (株)製、商品名: S A202) 100gおよび、ポリフエノール性化合物としてビスフエノール A (BP A) 2gを溶 解させた。この中に過酸ィ匕ベンゾィル (日本油脂 (株)製、商品名:ナイパー BMT)の 2%トルエン溶液 100gを 240分かけて添カ卩し、 90°Cで 240分反応させた。このときの ラジカル開始剤の分解速度定数は 0. 55であり、分解速度定数を滴下時間で割った 値は 0. 14 ( lZhr)であった。
この反応溶液に、炭酸水素ナトリウム水を添加し、十分洗浄 (アルカリ洗浄)した後 に、水溶液のみを取り除いた。このときの有機層を少量取り、 GPC法により数平均分 子量を求めたところ 8, 400であり、分子量 20, 000以上の成分は 36. 2%であり、分 子量分布 (MwZMn)は 2. 7であった。また、同じ有機層中の溶剤を乾固させてフエ ノール水酸基当量を測定してみたところ、 160meqZkgであり、 1分子あたりのフエノ ール基数が約 1. 3個の低分子量ポリフエ-レンエーテル Xを得た。
[0058] [実施例 8]
製造例 1において、炭素水素ナトリウム水による洗浄をなくし、同様の実験を行い、低 分子量ポリフエ-レンエーテル Xを得た。 GPC法により数平均分子量を求めたところ 2, 610であり、分子量 20, 000以上の成分は 5. 3%であり、分子量分布(MwZMn )は 2. 2であった。同じ有機層中の溶剤を乾固させてフ ノール水酸基当量を測定し てみたところ、 580meqZkgであり、 1分子あたりのフエノール基数が約 1. 5個の低 分子量ポリフエ二レンエーテル Xを得た。
[表 1]
[0060] 表 1の結果から、以下の内容が読み取れる。
(1) MOL≥20, 000 (%) (分子量が 20, 000以上の成分の含有率)を 10%以下と する観点から、触媒の使用、ラジカル開始剤の滴下時間の調整、原料ポリフ -レン エーテルと溶媒との配合比の調整、ラジカル開始剤と溶媒との配合比の調整が有効 である。
(2)分子量分布 (Mw/Mn)を改良する(小さくする)観点から、ラジカル開始剤の滴 下時間の調整、原料ポリフエ-レンエーテルと溶媒との配合比の調整、ラジカル開始 剤と溶媒との配合比の調整が有効である。
[0061] [実施例 9〜16、比較例 4〜7]
ビスフ ノール A型エポキシ榭脂 (旭化成エポキシ (株)製、商品名: A250) 40gに 、触媒としてトリ—。—トリルホスフィンを 0. lg添加し、十分攪拌した後、 160°Cまで昇 温した。更に、低分子量ポリフエ-レンエーテル I〜XI、又は数平均分子量 18, 000 の高分子量ポリフ 二レンエーテル (旭化成ケミカルズ (株)製、商品名: SA202)の 配合量が 60gとなるように添加 (滴下)し、 5時間反応させて、エポキシィ匕ポリフエ-レ ンエーテル (エポキシ化 PPE)を得た。各種物性の評価結果を表 2に示す。
[0062] また、上記のようにして得られたエポキシ化 PPE70gに、高臭素化エポキシ榭脂( 旭化成ケミカルズ (株)製、商品名: AER8018)を 30g加え、硬化剤として組成物の エポキシ基に対しアミノ基量として 0. 6倍当量のジシアンジアミドを加え、溶媒としてメ チルェチルケトンをカ卩えた。ワニスの固形分は 60質量%であった。実施例 9〜: L 1に っ 、ては、低分子量ポリフエ-レンエーテルのフエノール性水酸基がエポキシ基と反 応するものと仮定し、エポキシ基数力もフエノール性水酸基数を差し引いた量に対し てジシアンジアミドをカ卩えた。また、硬化触媒として 2—メチルイミダゾールを、ワニス の 170°Cゲルタイムが 4分〜 5分となるよう、ワニス固形分に対し 0. 1〜0. 3質量%の 範囲で調整して添カ卩した。このようにして、エポキシ榭脂ワニスを得た。
次に、上記エポキシ榭脂ワニスをガラスクロス (旭シュエーベル株式会社製、商品名 2116)に含浸させ、乾燥させて、榭脂含有量 50質量%のプリプレダを得た。上記プ リプレダを 4枚重ね、その上下に厚み 35 mの銅箔を重ね合わせたものを温度 190 °C、圧力 20kgZcm2の条件下で 60分加熱加圧した。このようにして両面銅張積層
板を得た。
得られた両面銅張積層板につき、各種積層板物性を評価した。結果を表 2に示す 。なお、比較例 4、比較例 5においては Tgが二つ現われたので、 ATgは解析不能と した。
[表 2]
表 2の結果から、以下の内容が読み取れる。
(1) MOL≥ 20, 000 (%)が 10%以下 (好ましくは 5%以下)の低分子量ポリフエ-レ ンエーテルを用いることにより、エポキシ変性後に得られるエポキシ化ポリフエ-レン エーテルは、室温でトルエンに対し良好な可溶性を示した。また、 MOL≥20, 000 ( %)が 2%以下の低分子量ポリフエ-レンエーテルを用いることにより、エポキシ変性 後に得られるエポキシィ匕ポリフエ-レンエーテルは、メチルェチルケトンに対し良好な 可溶性を示した。
(2) MOL≥20, 000 (%)が 10%以下であり、フエノール性水酸基数が 1. 2個以上 の低分子量ポリフエ-レンエーテルを用いることにより、エポキシ変性後に得られるェ ポキシィ匕ポリフエ-レンエーテルを含むエポキシ榭脂組成物は、積層板製造時に相 分離を起こすことなく硬化が進行した。さらに、積層板の対溶剤性が向上した。
(3)低分子量ポリフエ-レンエーテルを製造する際にアルカリ洗浄工程を採用するこ とで、ガラス転位温度や電気特性などが良好な積層板が得られた。
Claims
[1] 数平均分子量 10, 000以上の原料ポリフエ-レンエーテルと、ポリフエノール性化 合物と、ラジカル開始剤とを反応させる再分配反応により、分子量 20, 000以上の成 分の割合が 10質量%以下であり、且つ数平均分子量が 4, 000以下である低分子 量ポリフエ二レンエーテルを製造する方法であって、
前記再分配反応工程は溶媒中で行われる工程であると共に、
前記原料ポリフエ-レンエーテルと前記溶媒との配合比は、(原料ポリフエ-レンエー テル):(溶媒)(質量比)として 0. 4 : 100〜40 : 100 (質量比)であり、
前記ラジカル開始剤と前記溶媒との配合比は、(ラジカル開始剤): (溶媒)(質量比) として 0. 5 : 100〜5 : 100 (質量比)
であることを特徴とする低分子量ポリフエ-レンエーテルの製造方法。
[2] 前記低分子量ポリフエ-レンエーテルの 1分子中に含まれるフエノール性水酸基の 平均数は 1. 2個以上である請求項 1記載の製造方法。
[3] 前記再分配反応工程は、ナフテン酸の金属塩、五酸化バナジウム、ァニリン、アミ ン化合物、 4級アンモ-ゥム塩、イミダゾール、及びホスホ-ゥム塩よりなる群力 選択 される 1種又は 2種以上の触媒を用いて行われる工程である請求項 1又は 2記載の製 造方法。
[4] 前記再分配反応工程は、前記ラジカル開始剤が、前記原料ポリフ 二レンエーテ ル 100質量部に対して 0. 1質量部 Z分以下の平均添加速度で配合される工程であ る請求項 1、 2又は 3記載の製造方法。
[5] 前記再分配反応工程は、前記ラジカル開始剤が、当該ラジカル開始剤の分解速度 定数を当該過酸ィ匕物の添加時間で除したしきい値として 0. 5 (1/hr)以下となるよう な条件で配合される工程である請求項 1〜4のいずれか 1項に記載の製造方法。
[6] 前記再分配反応工程の後に、水及び Z又はアルカリ溶液を用いて前記低分子量 ポリフエ-レンエーテルを洗浄する洗浄工程を有する請求項 1〜5のいずれ力 1項に 記載の製造方法。
[7] 前記ラジカル開始剤は過酸ィ匕ベンゾィル又は過酸ィ匕ベンゾィル誘導体である請求 項 1〜6のいずれか 1項に記載の製造方法。
[8] 分子量 20, 000以上の成分の割合が 10質量%以下であり、且つ数平均分子量が 4, 000以下である低分子量ポリフエ-レンエーテルであって、
フエノール性水酸基と、当該フ ノール性水酸基のオルト位に存するメチレン基とを 有する分子鎖末端ユニットが 1分子中に占める割合が、 1〜20質量%であることを特 徴とする低分子量ポリフエ-レンエーテル。
[9] 数平均分子量が 4, 000以下である低分子量ポリフエ-レンエーテルに含まれるフ ェノール性水酸基と、エポキシ化合物に含まれるエポキシ基とを付加反応させてェポ キシィ匕ポリフエ-レンエーテル榭脂を製造する方法であって、
前記低分子量ポリフエ-レンエーテルに含まれる分子量 20, 000以上の成分の割合 は 10質量%以下であり、且つ
前記エポキシ化合物の 1分子中に含まれる前記エポキシ基の平均数は 2個以上 あることを特徴とするエポキシィ匕ポリフエ-レンエーテルの製造方法。
[10] 前記低分子量ポリフエ-レンエーテルの 1分子中に含まれる前記フエノール性水酸 基の平均数は 1. 2個以上である請求項 9記載の製造方法。
[11] 前記低分子量ポリフ -レンエーテルは、請求項 1〜7のいずれかに記載の製造方 法により得られる低分子量ポリフ 二レンエーテル、又は請求項 8に記載の低分子量 ポリフエ-レンエーテルである請求項 9又は 10記載の製造方法。
[12] 請求項 9〜: L 1のいずれかに記載の製造方法により得られたエポキシ化ポリフエ-レ ンエーテル榭脂と、エポキシ榭脂と、エポキシ榭脂の硬化剤とを含むエポキシ榭脂組 成物。
[13] エポキシプリプレダ、エポキシプリプレダを用いた積層板、榭脂シート、又は榭脂シ ートを用いた積層板よりなる群力も選択される電子部材であって、請求項 12に記載 のエポキシ榭脂組成物を用いて形成される電子部材。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008501682A JPWO2007097231A1 (ja) | 2006-02-21 | 2007-02-14 | 低分子量ポリフェニレンエーテルの製造方法 |
EP07708379A EP1988112A4 (en) | 2006-02-21 | 2007-02-14 | PROCESS FOR THE PRODUCTION OF LOW MOLECULAR MASS POLY (PHENYLENE ETHER) |
CN2007800062415A CN101389691B (zh) | 2006-02-21 | 2007-02-14 | 低分子量聚苯醚的制造方法 |
US12/224,181 US7858726B2 (en) | 2006-02-21 | 2007-02-14 | Process for producing low-molecular polyphenylene ether |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043881 | 2006-02-21 | ||
JP2006-043881 | 2006-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007097231A1 true WO2007097231A1 (ja) | 2007-08-30 |
Family
ID=38437269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/052577 WO2007097231A1 (ja) | 2006-02-21 | 2007-02-14 | 低分子量ポリフェニレンエーテルの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7858726B2 (ja) |
EP (1) | EP1988112A4 (ja) |
JP (1) | JPWO2007097231A1 (ja) |
CN (1) | CN101389691B (ja) |
TW (1) | TW200745208A (ja) |
WO (1) | WO2007097231A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009046632A (ja) * | 2007-08-22 | 2009-03-05 | Asahi Kasei Chemicals Corp | 多官能エポキシ化ポリフェニレンエーテル樹脂及びその製造方法 |
JP2011099044A (ja) * | 2009-11-06 | 2011-05-19 | Fushimi Pharm Co Ltd | オリゴ(フェニレンオキシ)基含有環状ホスファゼン化合物およびその製造方法 |
US20120006588A1 (en) * | 2009-03-26 | 2012-01-12 | Hidetaka Kakiuchi | Epoxy resin composition, prepreg, resin-coated metal foil, resin sheet, laminate and multilayer board |
WO2013083062A1 (zh) * | 2011-12-08 | 2013-06-13 | 中山台光电子材料有限公司 | 一种环氧基改质聚苯醚树脂、树脂组合物及其应用 |
KR20140073487A (ko) * | 2011-12-29 | 2014-06-16 | 셍기 테크놀로지 코. 엘티디. | 저분자량의 인-함유 폴리페닐렌 옥사이드 수지를 제조하는 방법 |
WO2019189829A1 (ja) * | 2018-03-29 | 2019-10-03 | 旭化成株式会社 | ポリフェニレンエーテル、その組成物及び製造方法 |
JP2019189686A (ja) * | 2018-04-19 | 2019-10-31 | 旭化成株式会社 | ポリフェニレンエーテル及びその製造方法 |
JPWO2021065275A1 (ja) * | 2019-10-02 | 2021-04-08 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8058359B2 (en) * | 2008-11-10 | 2011-11-15 | Sabic Innovative Plastics Ip B.V. | Varnish compositions for electrical insulation and method of using the same |
CN102532520A (zh) * | 2011-12-29 | 2012-07-04 | 广东生益科技股份有限公司 | 含磷低分子量聚苯醚树脂的制备方法 |
US9243164B1 (en) | 2012-02-21 | 2016-01-26 | Park Electrochemical Corporation | Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound |
US9051465B1 (en) | 2012-02-21 | 2015-06-09 | Park Electrochemical Corporation | Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound |
CN104070737B (zh) * | 2012-03-19 | 2016-08-17 | 旭化成株式会社 | 层压板 |
CN104781307B (zh) * | 2012-11-06 | 2017-04-12 | 日本化药株式会社 | 多元亚苯基醚酚醛清漆树脂、环氧树脂组合物及其固化物 |
WO2014197458A1 (en) * | 2013-06-03 | 2014-12-11 | Polyone Corporation | Low molecular weight polyphenylene ether prepared without solvents |
WO2015103427A1 (en) * | 2013-12-31 | 2015-07-09 | Saint-Gobain Performance Plastics Corporation | Composites for protecting signal transmitters/receivers |
US10252220B2 (en) | 2014-05-01 | 2019-04-09 | Sabic Global Technologies B.V. | Porous asymmetric polyphenylene ether membranes and associated separation modules and methods |
JP2017515663A (ja) | 2014-05-01 | 2017-06-15 | サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ | スキンド非対称ポリ(フェニレンエーテル)共重合体膜、気体分離装置、及びこれらの作製方法 |
US10207230B2 (en) | 2014-05-01 | 2019-02-19 | Sabic Global Technologies B.V. | Composite membrane with support comprising poly(phenylene ether) and amphilphilic polymer; method of making; and separation module thereof |
KR20170005039A (ko) | 2014-05-01 | 2017-01-11 | 사빅 글로벌 테크놀러지스 비.브이. | 양친매성 블록 공중합체;그것의 조성물, 막, 및 분리 모듈;및 그것의 제조 방법 |
CN104744687B (zh) * | 2015-04-16 | 2017-12-12 | 腾辉电子(苏州)有限公司 | 一种低分子量聚苯醚的制备方法 |
US10421046B2 (en) | 2015-05-01 | 2019-09-24 | Sabic Global Technologies B.V. | Method for making porous asymmetric membranes and associated membranes and separation modules |
CN105315454B (zh) * | 2015-11-23 | 2019-01-15 | 浙江华正新材料股份有限公司 | 有机硅改性制备含硅双羟基聚苯醚的方法及产物的应用 |
US10307717B2 (en) * | 2016-03-29 | 2019-06-04 | Sabic Global Technologies B.V. | Porous membranes and associated separation modules and methods |
CN108371931B (zh) * | 2017-12-29 | 2020-07-03 | 上海载正化工科技发展有限公司 | 一种合成小分子量聚苯醚的生产设备 |
TW202007709A (zh) * | 2018-07-17 | 2020-02-16 | 日商太陽控股股份有限公司 | 聚苯醚、包含聚苯醚之硬化性組成物、乾膜、預浸體、硬化物、積層板,及電子零件 |
CN110437439A (zh) * | 2019-08-27 | 2019-11-12 | 广东省石油与精细化工研究院 | 一种烯基封端聚苯醚的合成方法 |
CN110746594B (zh) * | 2019-11-14 | 2020-08-04 | 杭州聚丰新材料有限公司 | 一种低分子量含氟聚苯醚及其制备方法与应用 |
CN111732849B (zh) * | 2020-06-23 | 2022-02-08 | 西南石油大学 | 具有自修复性能的vpc纳米复合材料及其涂层的制备方法 |
CN118027390A (zh) | 2021-06-18 | 2024-05-14 | 山东圣泉新材料股份有限公司 | 一种多官能聚亚芳基醚树脂及其制备方法 |
CN115477748B (zh) * | 2022-09-20 | 2023-10-13 | 广东省科学院化工研究所 | 一种低分子量双羟基聚苯醚及其制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09235349A (ja) | 1995-12-26 | 1997-09-09 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、この樹脂組成物を用いたプリプレグ 、及びこのプリプレグを用いた積層板 |
JP2667625B2 (ja) | 1992-10-09 | 1997-10-27 | ゼネラル・エレクトリック・カンパニイ | 絶縁積層板用のポリフェニレンエーテル/ポリエポキシド樹脂組成物 |
JP2000509097A (ja) * | 1997-02-14 | 2000-07-18 | ゼネラル・エレクトリック・カンパニイ | ポリフェニレンエーテルの再分配および新規な構造を有するポリフェニレンエーテル |
JP3248424B2 (ja) | 1996-02-29 | 2002-01-21 | 松下電工株式会社 | 変成ポリフェニレンオキサイドの製法、この製法による変成ポリフェニレンオキサイドを用いたエポキシ樹脂組成物、この組成物を用いたプリプレグ、及びこのプリプレグを用いた積層板 |
JP3300426B2 (ja) | 1991-10-09 | 2002-07-08 | ゼネラル・エレクトリック・カンパニイ | 熱硬化性ポリフェニレンオキシド/エポキシ積層体の製造のための無溶剤高温配合法 |
JP2003002965A (ja) * | 2000-07-26 | 2003-01-08 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、プリプレグ、及び、金属張積層板 |
JP2003292570A (ja) * | 2002-03-29 | 2003-10-15 | Mitsubishi Gas Chem Co Inc | 積層板用エポキシ樹脂組成物 |
JP2004256717A (ja) | 2003-02-27 | 2004-09-16 | Japan Epoxy Resin Kk | オリゴマー変性エポキシ樹脂、その組成物、及びその組成物を用いたプリント配線板 |
WO2004104097A1 (ja) | 2003-05-22 | 2004-12-02 | Asahi Kasei Chemicals Corporation | エポキシ樹脂組成物 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02233723A (ja) | 1989-03-08 | 1990-09-17 | Asahi Chem Ind Co Ltd | 新規な官能化ポリフェニレンエーテル樹脂組成物 |
JPH03248424A (ja) | 1990-02-26 | 1991-11-06 | Sharp Corp | ドライエッチング方法 |
JPH08236942A (ja) | 1995-02-28 | 1996-09-13 | Asahi Chem Ind Co Ltd | 新しい多層回路基板 |
US5834565A (en) * | 1996-11-12 | 1998-11-10 | General Electric Company | Curable polyphenylene ether-thermosetting resin composition and process |
US20030045757A1 (en) * | 2000-02-23 | 2003-03-06 | Yoshiyuki Ishii | Modified polyphenylene ether |
EP1176172B1 (en) | 2000-07-26 | 2004-12-15 | Matsushita Electric Works, Ltd. | Epoxy resin composition, prepreg and metal-clad laminate |
US6835785B2 (en) * | 2002-01-28 | 2004-12-28 | Mitsubishi Gas Chemical Company, Inc. | Polyphenylene ether oligomer compound, derivatives thereof and use thereof |
-
2007
- 2007-02-14 WO PCT/JP2007/052577 patent/WO2007097231A1/ja active Application Filing
- 2007-02-14 JP JP2008501682A patent/JPWO2007097231A1/ja active Pending
- 2007-02-14 US US12/224,181 patent/US7858726B2/en not_active Expired - Fee Related
- 2007-02-14 EP EP07708379A patent/EP1988112A4/en not_active Withdrawn
- 2007-02-14 CN CN2007800062415A patent/CN101389691B/zh not_active Expired - Fee Related
- 2007-02-15 TW TW096105749A patent/TW200745208A/zh not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3300426B2 (ja) | 1991-10-09 | 2002-07-08 | ゼネラル・エレクトリック・カンパニイ | 熱硬化性ポリフェニレンオキシド/エポキシ積層体の製造のための無溶剤高温配合法 |
JP2667625B2 (ja) | 1992-10-09 | 1997-10-27 | ゼネラル・エレクトリック・カンパニイ | 絶縁積層板用のポリフェニレンエーテル/ポリエポキシド樹脂組成物 |
JPH09235349A (ja) | 1995-12-26 | 1997-09-09 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、この樹脂組成物を用いたプリプレグ 、及びこのプリプレグを用いた積層板 |
JP3248424B2 (ja) | 1996-02-29 | 2002-01-21 | 松下電工株式会社 | 変成ポリフェニレンオキサイドの製法、この製法による変成ポリフェニレンオキサイドを用いたエポキシ樹脂組成物、この組成物を用いたプリプレグ、及びこのプリプレグを用いた積層板 |
JP2000509097A (ja) * | 1997-02-14 | 2000-07-18 | ゼネラル・エレクトリック・カンパニイ | ポリフェニレンエーテルの再分配および新規な構造を有するポリフェニレンエーテル |
JP2003002965A (ja) * | 2000-07-26 | 2003-01-08 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、プリプレグ、及び、金属張積層板 |
JP2003292570A (ja) * | 2002-03-29 | 2003-10-15 | Mitsubishi Gas Chem Co Inc | 積層板用エポキシ樹脂組成物 |
JP2004256717A (ja) | 2003-02-27 | 2004-09-16 | Japan Epoxy Resin Kk | オリゴマー変性エポキシ樹脂、その組成物、及びその組成物を用いたプリント配線板 |
WO2004104097A1 (ja) | 2003-05-22 | 2004-12-02 | Asahi Kasei Chemicals Corporation | エポキシ樹脂組成物 |
Non-Patent Citations (3)
Title |
---|
"redistribution reaction" refers to the reaction described in an academic document", JOURNAL OF ORGANIC CHEMISTRY, vol. 34, 1969, pages 297 - 303 |
REACTIVE POLYMERS, vol. 15, 1991, pages 9 - 23 |
See also references of EP1988112A4 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009046632A (ja) * | 2007-08-22 | 2009-03-05 | Asahi Kasei Chemicals Corp | 多官能エポキシ化ポリフェニレンエーテル樹脂及びその製造方法 |
US20120006588A1 (en) * | 2009-03-26 | 2012-01-12 | Hidetaka Kakiuchi | Epoxy resin composition, prepreg, resin-coated metal foil, resin sheet, laminate and multilayer board |
US10307990B2 (en) * | 2009-03-26 | 2019-06-04 | Panasonic Intellectual Property Management Co., Ltd. | Epoxy resin composition, prepreg, resin-coated metal foil, resin sheet, laminate and multilayer board |
JP2011099044A (ja) * | 2009-11-06 | 2011-05-19 | Fushimi Pharm Co Ltd | オリゴ(フェニレンオキシ)基含有環状ホスファゼン化合物およびその製造方法 |
WO2013083062A1 (zh) * | 2011-12-08 | 2013-06-13 | 中山台光电子材料有限公司 | 一种环氧基改质聚苯醚树脂、树脂组合物及其应用 |
KR20140073487A (ko) * | 2011-12-29 | 2014-06-16 | 셍기 테크놀로지 코. 엘티디. | 저분자량의 인-함유 폴리페닐렌 옥사이드 수지를 제조하는 방법 |
KR101636628B1 (ko) | 2011-12-29 | 2016-07-05 | 셍기 테크놀로지 코. 엘티디. | 저분자량의 인-함유 폴리페닐렌 옥사이드 수지를 제조하는 방법 |
JP7019032B2 (ja) | 2018-03-29 | 2022-02-14 | 旭化成株式会社 | ポリフェニレンエーテル、その組成物及び製造方法 |
KR20200125648A (ko) * | 2018-03-29 | 2020-11-04 | 아사히 가세이 가부시키가이샤 | 폴리페닐렌에테르, 그의 조성물 및 제조 방법 |
JPWO2019189829A1 (ja) * | 2018-03-29 | 2021-01-07 | 旭化成株式会社 | ポリフェニレンエーテル、その組成物及び製造方法 |
WO2019189829A1 (ja) * | 2018-03-29 | 2019-10-03 | 旭化成株式会社 | ポリフェニレンエーテル、その組成物及び製造方法 |
KR102434711B1 (ko) * | 2018-03-29 | 2022-08-22 | 아사히 가세이 가부시키가이샤 | 폴리페닐렌에테르, 그의 조성물 및 제조 방법 |
US11548981B2 (en) | 2018-03-29 | 2023-01-10 | Asahi Kasei Kabushiki Kaisha | Polyphenylene ether, composition of the same, and manufacturing method of the same |
JP2019189686A (ja) * | 2018-04-19 | 2019-10-31 | 旭化成株式会社 | ポリフェニレンエーテル及びその製造方法 |
JP7102202B2 (ja) | 2018-04-19 | 2022-07-19 | 旭化成株式会社 | ポリフェニレンエーテル及びその製造方法 |
JPWO2021065275A1 (ja) * | 2019-10-02 | 2021-04-08 | ||
CN114514261A (zh) * | 2019-10-02 | 2022-05-17 | 旭化成株式会社 | 聚苯醚组合物 |
JP7202476B2 (ja) | 2019-10-02 | 2023-01-11 | 旭化成株式会社 | ポリフェニレンエーテル組成物 |
Also Published As
Publication number | Publication date |
---|---|
CN101389691B (zh) | 2013-01-02 |
JPWO2007097231A1 (ja) | 2009-07-09 |
EP1988112A1 (en) | 2008-11-05 |
TWI363770B (ja) | 2012-05-11 |
US7858726B2 (en) | 2010-12-28 |
US20090018303A1 (en) | 2009-01-15 |
CN101389691A (zh) | 2009-03-18 |
EP1988112A4 (en) | 2012-02-01 |
TW200745208A (en) | 2007-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007097231A1 (ja) | 低分子量ポリフェニレンエーテルの製造方法 | |
US9828466B2 (en) | Polyphenylene ether derivative having N-substituted maleimide group, and heat curable resin composition, resin varnish, prepreg, metal-clad laminate, and multilayer printed wiring board using same | |
TWI448509B (zh) | 樹脂組成物,預浸片及其用途 | |
TWI512008B (zh) | A method for producing a compatible resin, a thermosetting resin composition, a prepreg, and a laminate | |
US9567481B2 (en) | Resin composition, resin varnish, prepreg, metal-clad laminate and printed wiring board | |
TWI313284B (en) | Epoxy resin composition | |
KR20210056996A (ko) | 말레이미드 수지, 경화성 수지 조성물 및 그 경화물 | |
US20180127547A1 (en) | Thermosetting resin composition, prepreg, laminate and multilayer printed wiring board | |
EP2445949A1 (en) | Hardener composition for epoxy resins | |
WO2007037206A1 (ja) | 熱硬化性樹脂、及びそれを含む熱硬化性組成物、並びにそれから得られる成形体 | |
JP6515255B1 (ja) | 硬化性樹脂組成物、ワニス、プリプレグ、硬化物、及び、積層板または銅張積層板 | |
JP6307236B2 (ja) | 硬化性樹脂組成物、硬化物、電気・電子部品及び回路基板材料 | |
TW201806985A (zh) | 熱硬化性樹脂組成物、預浸體及其硬化物 | |
CN102482501B (zh) | 热固化性树脂组合物 | |
WO2018164833A1 (en) | Non-migratory, high-melting/softening polymeric phosphorus-containing flame retardant for printed wiring boards | |
TWI510454B (zh) | A polyhydroxy compound, a method for producing the same, and an epoxy resin composition, and a hardened product thereof | |
CN117836346A (zh) | 烯丙基醚化合物、树脂组合物及其固化物 | |
WO2007080871A1 (ja) | 芳香族エーテル型重合体、その製造方法及び重合体組成物 | |
JP2014122339A (ja) | 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板、及び実装基板、並びに熱硬化性樹脂組成物の製造方法 | |
JP2009046631A (ja) | エポキシ化ポリフェニレンエーテル樹脂及びその製造方法 | |
JP2017155230A (ja) | ポリ(ビニルベンジル)エーテル化合物、これを含む硬化性樹脂組成物及び硬化物 | |
JP5192198B2 (ja) | 多官能エポキシ化ポリフェニレンエーテル樹脂及びその製造方法 | |
JP2009029923A (ja) | 変性エポキシ化ポリフェニレンエーテル樹脂及びその製造方法 | |
WO2011125665A1 (ja) | ベンゾオキサジン環を有する熱硬化性樹脂組成物及びその製造方法、並びにその成形体及び硬化体 | |
EP3312213B1 (en) | Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008501682 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007708379 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12224181 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780006241.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |