JP7202476B2 - ポリフェニレンエーテル組成物 - Google Patents

ポリフェニレンエーテル組成物 Download PDF

Info

Publication number
JP7202476B2
JP7202476B2 JP2021550442A JP2021550442A JP7202476B2 JP 7202476 B2 JP7202476 B2 JP 7202476B2 JP 2021550442 A JP2021550442 A JP 2021550442A JP 2021550442 A JP2021550442 A JP 2021550442A JP 7202476 B2 JP7202476 B2 JP 7202476B2
Authority
JP
Japan
Prior art keywords
polyphenylene ether
formula
group
methyl
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021550442A
Other languages
English (en)
Other versions
JPWO2021065275A1 (ja
Inventor
載勲 金
真一 福圓
大嗣 福岡
尚史 大谷
亮子 福岡
暢子 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JPWO2021065275A1 publication Critical patent/JPWO2021065275A1/ja
Application granted granted Critical
Publication of JP7202476B2 publication Critical patent/JP7202476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/44Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols by oxidation of phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、ポリフェニレンエーテル組成物に関する。
ポリフェニレンエーテルは、優れた高周波特性、難燃性、耐熱性を有するため、電気・電子分野、自動車分野、その他の各種工業材料分野の材料として幅広く用いられている。近年、通常の高分子量ポリフェニレンエーテルよりも、極めて低分子量を示すポリフェニレンエーテルが基板材料等の電子材料用途に対して有効であることが期待されている。このため、2,6-ジメチルフェノールを原料として用い一般的な高分子量ポリフェニレンエーテルよりもさらに低誘電化した低分子量ポリフェニレンエーテル及びその効率的な製造方法が、特許文献1に提案されている。
一方、基板材料等の成形材料としてポリフェニレンエーテルを利用する際には、誘電特性に優れるだけではなく、耐熱性や成形性等に優れていることも求められる。しかし、従来のポリフェニレンエーテルは熱可塑性であり、充分な耐熱性を得ることができない場合があった。このため、ポリフェニレンエーテルに、エポキシ樹脂等の熱硬化性樹脂を添加したものを用いることや、ポリフェニレンエーテルを変性させたものを用いること等が提案されている。
特許文献2には、所定のポリフェニレンエーテル部分を分子構造内に有し、かつ、この分子末端に、p-エテニルベンジル基やm-エテニルベンジル基等を少なくとも1つ以上有してなる変性ポリフェニレンエーテル化合物が記載されている。
また、特許文献3にはポリフェニレンエーテル部分を分子構造内に有し、かつ、この分子末端に、メタクリル基を有した変性ポリマーについて記載されている。
特許文献2や特許文献3に開示された化合物のように、末端変性した熱硬化性ポリフェニレンエーテルの耐熱性を容易に確保するためには、熱硬化性ポリフェニレンエーテルと熱硬化性架橋剤との架橋密度を高くする方法が効果的である。そのため、一つの分子に複数の末端を有する多官能ポリフェニレンエーテルが必要となる。このため、多官能フェノール化合物存在下で重合することにより得られる、低分子の多官能ポリフェニレンエーテルが特許文献4、5及び6に提案されている。これら多官能ポリフェニレンエーテルは、分岐構造を有するため、同じ分子量において、直鎖状のポリマーよりも溶液粘度が低く、同じ分子量でも直鎖状ポリマーに対して高い流動性を有するため、硬化工程で比較的高い分子量のポリマーを用いることができ、硬化物の物性向上が期待できる。また、架橋反応点が多くなることから、上記の物性向上に寄与するほかに、架橋反応コントロールが行いやすくなることも期待できる。
特開2004-99824号公報 特開2004-339328号公報 特許第5147397号公報 米国特許第9012572号明細書 特許第5176336号公報 特許第5439700号公報
高周波対応の基板材料を製造する方法として、低誘電性ポリマー材料を溶かしたワニスをガラスクロスのような支持材に含浸させ熱硬化させる工程を用いるが、多官能ポリフェニレンエーテル組成物をこの工程に適用するためには様々な物性を確保する必要がある。
例えば、熱硬化工程を適用する上で、硬化生成物の耐熱性を確保するために、多官能ポリフェニレンエーテル組成物は熱硬化温度以上のガラス転移温度を有する必要がある。また、ガラスクロス等の支持材に均等に含浸させるためにワニスを作製、貯蔵する上で、ワニスに用いられるメチルエチルケトンのような溶媒に、長期にわたり溶解している必要がある。さらに、基板材料適用時の加工性、特にガラスクロス等の支持材への含浸性を良くするため、ワニスの液粘度が低い必要がある。
本発明は、上記課題に鑑みてなされたものであり、高いガラス転移温度及び溶媒への長期溶解性を有し、かつ溶媒溶解時の粘度が低い、ポリフェニレンエーテル組成物を提供することを目的とする。
すなわち、本発明は、以下の通りである。
[1]
下記式(1)の構造を有するポリフェニレンエーテルを60mol%以上含み、
H-NMR測定結果における、下記式(2)の構造由来のピークの積算値に対する、7.6~8.3ppmに現れるピークの積算値の割合が1以下であり、
ポリスチレン換算の数平均分子量が、500~15000g/molである、
ことを特徴とする、ポリフェニレンエーテル組成物。
Figure 0007202476000001
式(1)
(式(1)中、Zは下記式(2)で表されるa価の部分構造であり、aは2~6の整数を表し、Yは各々独立に下記式(4)の構造を有する2価の連結基であり、nはYの繰り返し数を表し、各々独立に0~200の整数であり、a個の(-Y-H)中少なくとも1つのnは1以上の整数である。
Figure 0007202476000002
式(2)
式(2)中、Xは単結合又はエステル結合を介して、R が結合しているベンゼン環に結合するa価のアルキル骨格であり、Rは各々独立に任意の置換基であり、kは各々独立に1~4の整数であり、Rのうち少なくとも1つは下記式(3)で表される部分構造であり、
Figure 0007202476000003
式(3)
式(3)中、R11は各々独立に置換されていてもよい炭素数1~8のアルキル基であり、R12は各々独立に置換されていてもよい炭素数1~8のアルキレン基であり、bは各々独立に0又は1であり、R13は水素原子、置換されていてもよい炭素数1~8のアルキル基又は置換されていてもよいフェニル基のいずれかを表し、
式(2)中の-O-が結合するベンゼン環の炭素原子を1位とし、2位又は6位の一方の炭素原子に式(3)の部分構造を有するRが結合し、2位又は6位の他方の炭素原子に水素原子、メチル基又はエチル基が結合し、
Figure 0007202476000004
式(4)
式(4)中、R21は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかであり、2つのR21は、同時に水素原子ではなく、2つのR21は、一方が上記式(3)で表される部分構造、もう一方が水素原子、メチル基又はエチル基のいずれかである組み合わせではなく、R22は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかである。)
[2]
前記式(3)で表される部分構造がt-ブチル基である、[1]に記載のポリフェニレンエーテル組成物。
[3]
前記ポリフェニレンエーテル組成物中に含まれるOH末端数が1000~3000μmol/gである、[1]又は[2]に記載のポリフェニレンエーテル組成物。
[4]
下記式(1)’の構造を有する変性ポリフェニレンエーテルを含み、
下記式(1)’の構造を有する変性ポリフェニレンエーテル、下記式(1)’の構造において1つ以上の(-Y-A)が(-Y-H)であり、かつすべての(-Y-A)が(-Y-H)ではない変性ポリフェニレンエーテル、及び下記式(1)’の構造においてすべての(-Y-A)が(-Y-H)であるポリフェニレンエーテルをこれらの化合物の全量として60mol%以上含み、
H-NMR測定結果における、下記式(2)’の構造由来のピークの積算値に対する、7.6~8.3ppmに現れるピークの積算値の割合が1以下であり、
ポリスチレン換算の数平均分子量が、500~15000g/molである、
ことを特徴とする、ポリフェニレンエーテル組成物。
Figure 0007202476000005
式(1)’
(式(1)’中、Zは下記式(2)’で表されるa価の部分構造であり、aは2~6の整数を表し、Aは各々独立に炭素-炭素二重結合及び/又はエポキシ結合を含有する置換基を表し、Yは各々独立に下記式(4)’の構造を有する2価の連結基であり、nはYの繰り返し数を表し、各々独立に0~200の整数であり、a個の(-Y-A)中少なくとも1つのnは1以上の整数である。
Figure 0007202476000006
式(2)’
式(2)’中、Xは単結合又はエステル結合を介して、R が結合しているベンゼン環に結合するa価のアルキル骨格であり、Rは各々独立に任意の置換基であり、kは各々独立に1~4の整数であり、Rのうち少なくとも1つは下記式(3)’で表される部分構造であり、
Figure 0007202476000007
式(3)’
式(3)’中、R11は各々独立に置換されていてもよい炭素数1~8のアルキル基であり、R12は各々独立に置換されていてもよい炭素数1~8のアルキレン基であり、bは各々独立に0又は1であり、R13は水素原子、置換されていてもよい炭素数1~8のアルキル基又は置換されていてもよいフェニル基のいずれかを表し、
式(2)’中の-O-が結合するベンゼン環の炭素原子を1位とし、2位又は6位の一方の炭素原子に式(3)’の部分構造を有するR5が結合し、2位又は6位の他方の炭素原子に水素原子、メチル基又はエチル基が結合し、
Figure 0007202476000008
式(4)’
式(4)’中、R21は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかであり、2つのR21は、同時に水素原子ではなく、2つのR21は、一方が上記式(3)’で表される部分構造、もう一方が水素原子、メチル基又はエチル基のいずれかである組み合わせではなく、R22は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかである。)
[5]
前記式(3)’で表される部分構造がt-ブチル基である、[4]に記載のポリフェニレンエーテル組成物。
[6]
前記Aが、下記式(5)’で表される基である、[4]又は[5]に記載のポリフェニレンエーテル組成物
Figure 0007202476000009
式(5)’
(式(5)’中、
31は、それぞれ独立に水素原子、水酸基又は炭素数1~30の炭化水素基、アリール基、アルコキシ基、アリロキシ基、アミノ基、ヒドロキシアルキル基であり、
32は、それぞれ独立に炭素数1~30の炭化水素基であり、
sは、0~5の整数である。)
[7]
前記ポリフェニレンエーテル組成物中に含まれる前記A基の数が700~3000μmol/gである、[4]から[6]のいずれかに記載のポリフェニレンエーテル組成物。
本発明によれば、高いガラス転移温度及び溶媒への長期溶解性を有し、かつ溶媒溶解時の粘度が低い、ポリフェニレンエーテル組成物を提供することができる。
以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明は、この本実施形態にのみ限定されるものではなく、本発明は、その要旨の範囲内で適宜に変形して実施できる。
なお、本明細書において、A(数値)~B(数値)は、A以上B以下を意味する。
本実施形態に係るポリフェニレンエーテル組成物は、下記式(1)で表される構造を有するポリフェニレンエーテルを60mol%以上含み、1H-NMR測定結果における、下記式(2)の構造由来のピークの積算値に対する7.6~8.3ppmに現れるピークの積算値の割合が1以下であり、ポリスチレン換算の数平均分子量が、500~15000g/molである。本明細書において、該ポリフェニレンエーテル組成物を「多官能ポリフェニレンエーテル組成物」と称する場合がある。
また、本実施形態に係るポリフェニレンエーテル組成物は、下記式(1)’で表される構造を有するポリフェニレンエーテルを含む。上記変性ポリフェニレンエーテル組成物は、下記式(1)’で表される構造を有する変性ポリフェニレンエーテル、及び下記式(1’)の構造において少なくとも1つの(-Yn-A)が(-Yn-H)である変性又は未変性ポリフェニレンエーテルを60mol%以上含み、1H-NMR測定結果における、下記式(2)’の構造由来のピークの積算値に対する7.6~8.3ppmに現れるピークの積算値の割合が1以下であり、ポリスチレン換算の数平均分子量が、500~15000g/molである。本明細書において、該ポリフェニレンエーテル組成物を、「多官能変性ポリフェニレンエーテル組成物」、「変性ポリフェニレンエーテル組成物」と称する場合がある。
<多官能ポリフェニレンエーテル組成物>
本実施形態の多官能ポリフェニレンエーテル組成物に含まれる上記ポリフェニレンエーテルは、一種であってもよいし、複数種であってもよい。
本実施形態の多官能ポリフェニレンエーテル組成物は、さらに、溶媒、重合触媒、界面活性剤等の添加物を含んでいてもよい。本実施形態の多官能ポリフェニレンエーテル組成物は、固体であってよい。
(ポリフェニレンエーテル)
上記ポリフェニレンエーテルとしては、下記式(1)で表される構造であることが好ましい。
Figure 0007202476000010
式(1)
式(1)中、Zに結合するa個の(-Yn-H)は、それぞれ同じであってもよいし、異なっていてもよい。Zは下記式(2)で表されるa価の中心フェノール部位である。aは2~6の整数である。
上記中心フェノール部位とは、多官能ポリフェニレンエーテルを重合する際に反応の起点となる中心骨格を意味し、多官能ポリフェニレンエーテル組成物をNMR、質量分析等の手法で解析することによりその構造を同定できる。多官能ポリフェニレンエーテル組成物から上記中心フェノール部位の構造を同定する具体的方法としては、多官能ポリフェニレンエーテル組成物の質量分析結果から低分子量成分のみを分析し、EIでフラグメントイオンのピークから中心フェノール部位の構造を推定する方法が挙げられる。さらに、多官能ポリフェニレンエーテル組成物のNMR測定を行い、公知の多官能フェノール化合物のNMR測定結果と照らし合わせることで中心フェノール部位の構造を推定する方法が挙げられる。この質量分析結果とNMR測定結果を組み合わせることでより正確に中心フェノール部位の構造を同定することが可能となる。
上記ポリフェニレンエーテルは、a価の中心部Xにa個の部分構造(例えば、R5等で置換されていてもよいフェノール)が結合し、a価の部分構造(即ち、式(2)で表される中心フェノール部位)に式(1)の(-Yn-H)が結合する構造であってよい。
Figure 0007202476000011
式(2)
(式(2)中、aは式(1)と同様の整数が挙げられ、式(1)と同じ整数であることが好ましい。式(2)の中心フェノール部位において、a個の各部分構造は、同じ構造であってもよいし、異なっていてもよい。中でも、ガラス転移温度が一層高く、溶媒への長期溶解性に一層優れ、溶媒溶解時の粘度が一層低いポリフェニレンエーテル組成物が得られる観点から、a個の各部分構造は同じ構造であることが好ましい。)
式(2)中、Xはa価の任意の連結基であり、特に制限されないが、例えば、鎖式炭化水素、環式炭化水素等の炭化水素基;窒素、リン、ケイ素及び酸素から選ばれる、一つ又は複数の原子を含有する炭化水素基;窒素、リン、ケイ素等の原子;若しくはこれらを組み合わせた基;等が挙げられる。Xは単結合を除く連結基であってよい。
Xは、a価の部分構造を互いに連結する連結基であってよい。
上記Xとしては、単結合又はエステル結合等を介して、R5が結合しているベンゼン環に結合するa価のアルキル骨格、単結合又はエステル結合等を介して、R5が結合しているベンゼン環に結合するa価のアリール骨格、単結合又はエステル結合等を介して、R5が結合しているベンゼン環に結合するa価の複素環骨格、等が挙げられる。
ここで、アルキル骨格としては、特に制限されないが、例えば、炭素数2~6の少なくともa個に分岐した鎖式炭化水素(例えば、鎖式飽和炭化水素)の分岐末端が部分構造のベンゼン環に直接結合する骨格(a個の分岐末端にベンゼン環が結合していればよく、ベンゼン環が結合しない分岐末端があってもよい。)、等が挙げられる。また、アリール骨格としては、特に制限されないが、例えば、ベンゼン環、メシチレン基、又は2-ヒドロキシ-5-メチル-1,3-フェニレン基が、単結合又はアルキル鎖を介して、R5が結合しているベンゼン環に結合する骨格等が挙げられる。さらに、複素環骨格としては、特に制限されないが、例えば、トリアジン環が単結合又はアルキル鎖を介して、R5が結合しているベンゼン環に結合する骨格等が挙げられる。
式(2)中のR5は各々独立に任意の置換基であり、kは各々独立に1~4の整数である。
上記R5としては、メチル基、エチル基、n-プロピル基等の炭素数1~8の直鎖状アルキル基、下記式(3)の部分構造を有する基、等が挙げられ、R5のうち少なくとも1つは下記式(3)の部分構造であることが好ましい。
Figure 0007202476000012
式(3)
上記式(3)中、
11は各々独立に置換されていてもよい炭素数1~8のアルキル基であり、
12は各々独立に置換されていてもよい炭素数1~8のアルキレン基であり、bは各々独立に0又は1であり、
13は水素原子、置換されていてもよい炭素数1~8のアルキル基又はフェニル基のいずれかを表す。
上記置換基としては、ハロゲン原子等が挙げられる。
上記式(3)は、好ましくは、2級及び/又は3級炭素を含む基であり、例えばイソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、tert-アミル基、2,2-ジメチルプロピル基や、これらの末端にフェニル基を有する構造等が挙げられ、より好ましくは、tert-ブチル基である。
上記式(2)のa価の部分構造は、式(2)の-O-が結合するベンゼン環の炭素原子を1位とし、2位又は6位の一方の炭素原子に式(3)の部分構造を有するR5が結合し、2位又は6位の他方の炭素原子に水素原子、メチル基又はエチル基が結合している。2位及び6位の炭素原子に、炭化水素基又は上記式(3)の部分構造が結合する構造であってもよい。上記式(2)のベンゼン環は、2位及び6位以外の炭素原子に、中心部X及び酸素原子を介して上記式(1)の(Yn-H)が結合していてよく、1位に酸素原子を介して上記式(1)の(Yn-H)が結合し、4位に中心部Xが結合することが好ましい。
上記式(1)中、Yは各々独立に下記式(4)の構造を有する2価の連結基(置換基を持つフェノールユニット)であり、nはYの繰り返し数を表し、各々独立に0~200の整数であり、少なくとも1つのnは1以上の整数である。
Figure 0007202476000013
式(4)
上記式(4)中、R21は各々独立に、水素原子;置換されていてもよい炭素数1~6の炭化水素基;置換されていてもよい炭素数6~12のアリール基;ハロゲン原子;を表し、置換されていてもよい炭素数1~6の飽和又は不飽和の炭化水素基が好ましく、より好ましくはメチル基、エチル基、n-プロピル基、ビニル基、アリール基、エチニル基、プロパルギル基であり、さらに好ましくはメチル基、エチル基であり、特に好ましくはメチル基である。上記式(4)中、2つのR21は、同時に水素原子ではなく、2つのR21は、一方が上記式(3)で表される部分構造、もう一方が水素原子、メチル基又はエチル基のいずれかである組み合わせではない。
22は、各々独立に、水素原子;置換されていてもよい炭素数1~6の炭化水素基;置換されていてもよい炭素数6~12のアリール基;ハロゲン原子;を表し、水素原子又は置換されていてもよい炭素数1~6の飽和又は不飽和の炭化水素基が好ましく、より好ましくは水素原子、メチル基、エチル基、n-プロピル基であり、さらに好ましくは水素原子、メチル基であり、特に好ましくは水素原子である。
上記置換基としては、ハロゲン原子等が挙げられる。
上記ポリフェニレンエーテルは、例えば、下記式(5)で表される一価のフェノール化合物と下記式(6)で表されるa価のフェノール化合物(中心フェノール)とを共重合して得られる。
Figure 0007202476000014
式(5)
(上記式(5)中、R21、R22は、上記式(4)と同様の基が挙げられ、上記式(4)と同じであることが好ましい。)
Figure 0007202476000015
式(6)
(上記式(6)中、X、R5、aは、上記式(2)と同様のものが挙げられ、上記式(2)と同じであることが好ましい。Xに結合するa個の部分構造は、それぞれ同じであってもよいし異なっていてもよいが、同じであることが好ましい。)
上記式(5)で表される一価のフェノール化合物としては、例えば、o-クレゾール、2,6-ジメチルフェノール、2-エチルフェノール、2-メチル-6-エチルフェノール、2,6-ジエチルフェノール、2-n-プロピルフェノール、2-エチル-6-n-プロピルフェノール、2-メチル-6-クロルフェノール、2-メチル-6-ブロモフェノール、2-メチル-6-n-プロピルフェノール、2-エチル-6-ブロモフェノール、2-メチル-6-n-ブチルフェノール、2,6-ジ-n-プロピルフェノール、2-エチル-6-クロルフェノール、2-メチル-6-フェニルフェノール、2-フェニルフェノール、2,6-ジフェニルフェノール、2,6-ビス-(4-フルオロフェニル)フェノール、2-メチル-6-トリルフェノール、2,6-ジトリルフェノール、2,5-ジメチルフェノール、2,3,6-トリメチルフェノール、2,5-ジエチルフェノール、2-メチル-5-エチルフェノール、2-エチル-5-メチルフェノール、2-アリル-5-メチルフェノール、2,5-ジアリルフェノール、2,3-ジエチル-6-n-プロピルフェノール、2-メチル-5-クロルフェノール、2-メチル-5-ブロモフェノール、2-メチル-5-イソプロピルフェノール、2-メチル-5-n-プロピルフェノール、2-エチル-5-ブロモフェノール、2-メチル-5-n-ブチルフェノール、2,5-ジ-n-プロピルフェノール、2-エチル-5-クロルフェノール、2-メチル-5-フェニルフェノール、2,5-ジフェニルフェノール、2,5-ビス-(4-フルオロフェニル)フェノール、2-メチル-5-トリルフェノール、2,5-ジトリルフェノール、2,6-ジメチル-3-アリルフェノール、2,3,6-トリアリルフェノール、2,3,6-トリブチルフェノール、2,6-ジ-n-ブチル-3-メチルフェノール、2,6-ジメチル-3-n-ブチルフェノール、2,6-ジメチル-3-t-ブチルフェノール等が挙げられる。
上記一価のフェノール化合物の中でも、特に、安価であり入手が容易であるため、2,6-ジメチルフェノール、2,6-ジエチルフェノール、2,6-ジフェニルフェノール、2,3,6-トリメチルフェノール、2,5-ジメチルフェノールが好ましく、2,6-ジメチルフェノール、2,3,6-トリメチルフェノールがより好ましい。
なお、上記フェノール化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
上記一価のフェノール化合物としては、例えば、2,6-ジメチルフェノールと2,6-ジエチルフェノールとを組み合わせて使用する方法、2,6-ジメチルフェノールと2,6-ジフェニルフェノールとを組み合わせて用いる方法、2,3,6-トリメチルフェノールと2,5-ジメチルフェノールとを組み合わせて使用する方法、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとを組み合わせて用いる方法等が挙げられる。このとき、組み合わせるフェノール化合物の混合比は任意に選択できる。
また、使用するフェノール化合物には、製造の際の副産物として含まれ得る、少量のm-クレゾール、p-クレゾール、2,4-ジメチルフェノール、2,4,6-トリメチルフェノール等が含まれていてもよい。
上記式(6)で表されるようなa価のフェノール化合物は、対応する一価のフェノール化合物と、アルデヒド類(例えば、ホルムアルデヒド等)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、シクロヘキサノン等)、又はジハロゲン化脂肪族炭化水素との反応や、対応する一価のフェノール化合物同士の反応等により、工業的に有利に製造できる。
上記式(6)で表される多価フェノール化合物の例を以下に列挙する。
4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’-[(2-ヒドロキシ-3-メトキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(4-ヒドロキシ-3-エトキシフェニル)メチレン]ビス(2,3,6-トリメチルエチルフェノール)、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、2,2’-[(4-ヒドロキシフェニル)メチレン]ビス(3,5,6-トリメチルフェノール)、4,4’-[4-(4-ヒドロキシフェニル)シクロヘキシリデン]ビス(2,6-ジメチルフェノール)、4,4’-[(2-ヒドロキシフェニル)メチレン]-ビス(2,3,6-トリメチルフェノール)、4,4’-[1-[4-[1-(4-ヒドロキシ-3,5-ジメチルフェニル)-1-メチルエチル]フェニル]エチリデン]ビス(2,6-ジメチルフェノール)、4,4’-[1-[4-[1-(4-ヒドロキシ-3-フルオロフェニル)-1-メチルエチル]フェニル]エチリデン]ビス(2,6-ジメチルフェノール)、2,6-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)エチル]-4-メチルフェノール、2,6-ビス[(4-ヒドロキシ-2,3,6-トリメチルフェニル)メチル]-4-メチルフェノール、2,6-ビス[(4-ヒドロキシ-3,5,6-トリメチルフェニル)メチル]-4-エチルフェノール、2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)メチル]-6-メチルフェノール、2,6-ビス[(4-ヒドロキシ-3-メチルフェニル)メチル]-4-メチルフェノール、2,4-ビス[(4-ヒドロキシ-3-シクロヘキシルフェニル)メチル]-6-メチルフェノール、2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)メチル]-6-シクロヘキシルフェノール、2,4-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-6-シクロヘキシルフェノール、2,4-ビス[(4-ヒドロキシ-2,3,6-トリメチルフェニル)メチル]-6-シクロヘキシルフェノール、3,6-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,2-ベンゼンジオール、4,6-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,3-ベンゼンジオール、2,4,6-トリス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,3-ベンゼンジオール、2,4,6-トリス[(2-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,3-ベンゼンジオール、2,2’-メチレンビス[6-[(4/2-ヒドロキシ-2,5/3,6-ジメチルフェニル)メチル]-4-メチルフェノール]、2,2’-メチレンビス[6-[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-4-メチルフェノール]、2,2’-メチレンビス[6-[(4/2-ヒドロキシ-2,3,5/3,4,6-トリメチルフェニル)メチル]-4-メチルフェノール]、2,2’-メチレンビス[6-[(4-ヒドロキシ-2,3,5-トリメチルフェニル)メチル]-4-メチルフェノール]、4,4’-メチレンビス[2-[(2,4-ジヒドロキシフェニル)メチル]-6-メチルフェノール]、4,4’-メチレンビス[2-[(2,4-ジヒドロキシフェニル)メチル]-3,6-ジメチルフェノール]、4,4’-メチレンビス[2-[(2,4-ジヒドロキシ-3-メチルフェニル)メチル]-3,6-ジメチルフェノール]、4,4’-メチレンビス[2-[(2,3,4-トリヒドロキシフェニル)メチル]-3,6-ジメチルフェノール]、6,6’-メチレンビス[4-[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,2,3-ベンゼントリオール]、1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(2-ヒドロキシ-5-メチルフェニル)メチル]フェノール]、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]フェノール]、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(4-ヒドロキシ-2-メチル-5-シクロヘキシルフェニル)メチル]フェノール]、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(2,3,4-トリヒドロキシフェニル)メチル]フェノール]、4,4’,4’’,4’’’-(1,2-エタンジイリデン)テトラキス(2,6-ジメチルフェノール)、4,4’,4’’,4’’’-(1,4-フェニレンジメチリデン)テトラキス(2,6-ジメチルフェノール)、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-ターシャリーブチルフェニル)ブタン等が挙げられるが、これらに限定されるものではない。
多価フェノール化合物におけるフェノール性水酸基の数は2個以上であれば特に制限はないが、ポリフェニレンエーテル末端が多くなると重合時の分子量変化が大きくなる可能性があるため、好ましくは3~6個、より好ましくは3~4個である。
特に好ましい多価フェノール化合物は、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’,4’’,4’’’-(1,4-フェニレンジメチリデン)テトラキス(2,6-ジメチルフェノール)、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-ターシャリーブチルフェニル)ブタン、1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタンである。
本実施形態の多官能ポリフェニレンエーテル組成物は、下記式(7)で表される単官能ポリフェニレンエーテル、下記式(8)で表される二官能ポリフェニレンエーテル、及び上記式(1)の構造を有するポリフェニレンエーテルの合計モルに対して、上記式(1)の構造を有するポリフェニレンエーテルを60mol%以上含み、好ましくは70mol%以上、より好ましくは80mol%以上、さらに好ましくは90mol%以上含む。
本実施形態の多官能ポリフェニレンエーテル組成物は、上記式(1)の構造を有するポリフェニレンエーテルを製造する際に発生する副生成物を含んでいてもよい。
上記副生成物としては、下記式(7)で表される単官能ポリフェニレンエーテル、下記式(8)で表される中心ビフェニル構造を有する二官能ポリフェニレンエーテル等が挙げられる。
Figure 0007202476000016
式(7)
Figure 0007202476000017
式(8)
上記式(7)、式(8)中、c、d、eは1~100の任意の整数である。R21及びR22は、上記式(4)と同様のものが挙げられ、同じであることが好ましい。
上記式(7)で表される単官能ポリフェニレンエーテルは、上記式(5)の構造を有する一価のフェノール化合物同士の酸化重合により生成する副生成物である。また、上記式(8)で表される中心ビフェニル構造を有する二官能ポリフェニレンエーテルは、上記式(5)の構造を有する一価のフェノール化合物同士がC-Cカップリングして生成されるビフェニル化合物と別の一価のフェノール化合物の酸化重合により生成する副生成物である。
多官能ポリフェニレンエーテル組成物中、上記式(1)の構造を有するポリフェニレンエーテルの含有率が60mol%以上であることで、多官能ポリフェニレンエーテル成分に比べ副生成物(例えば、上記式(7)(8)で表される構造を有する副生成物)が少なく、ポリフェニレンエーテル組成物としての特性、特に溶媒への長期溶解性と、溶媒溶解時の低粘度が達成される。
本実施形態の多官能ポリフェニレンエーテル組成物において、上記式(1)の構造を有する多官能ポリフェニレンエーテルは、単官能ポリフェニレンエーテルを酸化剤の存在下で多価フェノールと平衡化する再分配反応によって製造することもできる。再分配反応は、当該技術において公知であり、例えばCooperらの米国特許第3496236号明細書、及びLiskaらの米国特許第5880221号明細書に記載されている。
しかしながら、再分配反応を用いて多官能ポリフェニレンエーテル組成物を生成する場合、反応開始剤と酸化剤として過酸化物を用いることが多いが、この過酸化物は反応性が高く様々な形態の副生成物を生成する。その副生成物の代表的な一例としては、生成するポリフェニレンエーテルへの過酸化物付加体である。また、目的物である多官能ポリフェニレンエーテルだけではなく、原料である単官能ポリフェニレンエーテル、多価フェノールにも過酸化物が付加した副生成物が生成するので、目的物である上記式(1)の構造を有する多官能ポリフェニレンエーテルの純度が低下してしまう。
過酸化物が付加した副生成物の有無は、1H-NMR測定により判断することができる。1H-NMR測定において、過酸化物由来のピークは広い範囲で現れるが、フェノール原料やポリフェニレンエーテル組成物由来のピークと重ならない領域としては7.6~8.3ppmである。
本実施形態の多官能ポリフェニレンエーテル組成物は、1H-NMR測定結果において上記式(1)中に含まれる上記式(2)で表される中心フェノール部位由来のピークの積算値に対する、上記7.6~8.3ppmの領域に現れる過酸化物由来のピークの積算値の割合が、1以下であり、0.8以下であることが好ましく、0.5以下であることがより好ましい。上記中心フェノール部位由来ピークの積算値に対して、過酸化物由来ピークの積算値が1以下であることは、多官能ポリフェニレンエーテル組成物中に副生成物の過酸化物付加体が含まれておらず、目的物の多官能ポリフェニレンエーテルの純度が高いことを意味する。その結果、ポリフェニレンエーテル組成物のガラス転移温度(Tg)を高くすることができる。
上記割合は、後述の実施例に記載の方法により測定することができる。
本実施形態における多官能ポリフェニレンエーテル組成物の数平均分子量(Mn)は、500~15000g/molであり、好ましくは1000~10000g/molであり、より好ましくは2000~8000g/molである。数平均分子量(Mn)が上記範囲内であることにより、基板材料への適用工程においてワニスを作製する溶媒に溶解させた際の流動性がより向上し、基板材料適用時の加工性を確保することができる。
数平均分子量は、後述の実施例に記載の方法により測定することができる。
本実施形態における多官能ポリフェニレンエーテル組成物のOH末端数は、特に制限されない。その中でも、組成物中に1000~3000μmol/gのOH末端数を含むことが好ましく、より好ましくは1000~2000μmol/g、さらに好ましくは1200~2000μmol/gを含む。組成物中のOH末端数が1000μmol/g以上であることで、多官能ポリフェニレンエーテル組成物を末端変性し熱硬化させる際に、架橋密度を高くすることができ、高いガラス転移温度を有し、誘電特性に優れた硬化物を得られる傾向にある。組成物中のOH末端数が3000μmol/g以下であることで、多官能ポリフェニレンエーテル組成物を溶媒に溶かしたワニスの粘度を低くでき、基板材料適用時に加工性が良好となる傾向にある。
上記OH末端数は、後述の実施例に記載の方法により測定することができる。
本実施形態の多官能ポリフェニレンエーテル組成物の液粘度は、35mPa・s以下であることが好ましく、より好ましくは30mPa・s以下、さらに好ましくは25mPa・s以下である。
上記液粘度は、後述の実施例に記載の方法により測定することができる。
本実施形態における多官能ポリフェニレンエーテル組成物は、基板材料を製造するときワニスに用いる溶剤を乾燥する温度、及びワニス組成物を熱硬化するときに加える温度以上であることが好ましいことから、ガラス転移温度は120℃以上であることが好ましく、140℃以上であることがより好ましい。
<多官能ポリフェニレンエーテル組成物の製造方法>
本実施形態の多官能ポリフェニレンエーテル組成物の製造方法は、重合溶剤として、芳香族系溶媒を少なくとも一種類使用し、重合触媒として、銅触媒とアミン系配位子を使用することが好ましい。当該製造方法により、好適に本実施形態の多官能ポリフェニレンエーテル組成物を得ることができる。
(重合工程)
ここで、本実施形態の多官能ポリフェニレンエーテル組成物の製造方法では、重合工程において、重合溶剤として多官能ポリフェニレンエーテル組成物の良溶剤である芳香族系溶剤を用いることが好ましい。
ここで、多官能ポリフェニレンエーテル組成物の良溶剤とは、多官能ポリフェニレンエーテルを溶解させることができる溶剤であり、このような溶剤を例示すると、ベンゼン、トルエン、キシレン(o-、m-、p-の各異性体を含む)、エチルベンゼン、スチレン等の芳香族炭化水素やクロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素;ニトロベンゼンのようなニトロ化合物;等が挙げられる。
本実施形態で用いられる重合触媒としては、一般的にポリフェニレンエーテルの製造に用いることが可能な公知の触媒系を使用できる。一般的に知られている触媒系としては、酸化還元能を有する遷移金属イオンと当該遷移金属イオンと錯形成可能なアミン化合物からなるものが知られており、例えば、銅化合物とアミン化合物からなる触媒系、マンガン化合物とアミン化合物からなる触媒系、コバルト化合物とアミン化合物からなる触媒系、等である。重合反応は若干のアルカリ性条件下で効率よく進行するため、ここに若干のアルカリもしくは更なるアミン化合物を加えることもある。
本実施形態で好適に使用される重合触媒は、触媒の構成成分として銅化合物、ハロゲン化合物並びにアミン化合物からなる触媒であり、より好ましくは、アミン化合物として一般式(9)で表されるジアミン化合物を含む触媒である。
Figure 0007202476000018
式(9)
式(9)中、R14、R15、R16、R17は、それぞれ独立に、水素原子、炭素数1から6の直鎖状又は分岐状アルキル基であり、全てが同時に水素原子ではない。R18は、炭素数2から5の直鎖状又はメチル分岐を持つアルキレン基である。
ここで述べられた触媒成分の銅化合物の例を列挙する。好適な銅化合物としては、第一銅化合物、第二銅化合物又はそれらの混合物を使用することができる。第二銅化合物としては、例えば、塩化第二銅、臭化第二銅、硫酸第二銅、硝酸第二銅等を例示することができる。また、第一銅化合物としては、例えば、塩化第一銅、臭化第一銅、硫酸第一銅、硝酸第一銅等を例示することができる。これらの中で特に好ましい金属化合物は、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅である。またこれらの銅塩は、酸化物(例えば酸化第一銅)、炭酸塩、水酸化物等と対応するハロゲン又は酸から使用時に合成しても良い。しばしば用いられる方法は、先に例示の酸化第一銅とハロゲン化水素(又はハロゲン化水素の溶液)を混合して作製する方法である。
ハロゲン化合物としては、例えば、塩化水素、臭化水素、ヨウ化水素、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム等である。また、これらは、水溶液や適当な溶剤を用いた溶液として使用できる。これらのハロゲン化合物は、成分として単独でも用いられるし、2種類以上組み合わせて用いても良い。好ましいハロゲン化合物は、塩化水素の水溶液、臭化水素の水溶液である。
これらの化合物の使用量は、特に限定されないが、銅原子のモル量に対してハロゲン原子として2倍以上20倍以下が好ましく、重合反応に添加するフェノール化合物100モルに対して好ましい銅原子の使用量としては0.02モルから0.6モルの範囲である。
次に触媒成分のジアミン化合物の例を列挙する。例えば、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’-トリメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N-メチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’-トリエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N-エチルエチレンジアミン、N,N-ジメチル-N’-エチルエチレンジアミン、N,N’-ジメチル-N-エチルエチレンジアミン、N-n-プロピルエチレンジアミン、N,N’-n-プロピルエチレンジアミン、N-i-プロピルエチレンジアミン、N,N’-i-プロピルエチレンジアミン、N-n-ブチルエチレンジアミン、N,N’-n-ブチルエチレンジアミン、N-i-ブチルエチレンジアミン、N,N’-i-ブチルエチレンジアミン、N-t-ブチルエチレンジアミン、N,N’-t-ブチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’-トリメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N-メチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,3-ジアミノ-1-メチルプロパン、N,N,N’,N’-テトラメチル-1,3-ジアミノ-2-メチルプロパン、N,N,N’,N’-テトラメチル-1,4-ジアミノブタン、N,N,N’,N’-テトラメチル-1,5-ジアミノペンタン等が挙げられる。本実施形態にとって好ましいジアミン化合物は、2つの窒素原子をつなぐアルキレン基の炭素数が2又は3のものである。これらのジアミン化合物の使用量は、特に限定されないが、重合反応に添加するフェノール化合物100モルに対して0.01モルから10モルの範囲が好ましい。
本実施形態においては、重合触媒の構成成分として、第1級アミン及び第2級モノアミンを含むことができる。第2級モノアミンとしては、以下に限定されるものではないが、例えば、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジ-i-プロピルアミン、ジ-n-ブチルアミン、ジ-i-ブチルアミン、ジ-t-ブチルアミン、ジペンチルアミン類、ジヘキシルアミン類、ジオクチルアミン類、ジデシルアミン類、ジベンジルアミン類、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、シクロヘキシルアミン、N-フェニルメタノールアミン、N-フェニルエタノールアミン、N-フェニルプロパノールアミン、N-(m-メチルフェニル)エタノールアミン、N-(p-メチルフェニル)エタノールアミン、N-(2’,6’-ジメチルフェニル)エタノールアミン、N-(p-クロロフェニル)エタノールアミン、N-エチルアニリン、N-ブチルアニリン、N-メチル-2-メチルアニリン、N-メチル-2,6-ジメチルアニリン、ジフェニルアミン等が挙げられる。
本実施形態における重合触媒の構成成分として、第3級モノアミン化合物を含むこともできる。第3級モノアミン化合物とは、脂環式第3級アミンを含めた脂肪族第3級アミンである。例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリイソブチルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、アリルジエチルアミン、ジメチル-n-ブチルアミン、ジエチルイソプロピルアミン、N-メチルシクロヘキシルアミン等が挙げられる。これらの第3級モノアミンは、単独でも用いられるし、2種類以上組み合わせて用いても良い。これらの使用量は、特に限定されないが、重合反応に添加するフェノール化合物100モルに対して15モル以下の範囲が好ましい。
本実施形態では、従来より重合活性に向上効果を有することが知られている界面活性剤を添加することについて、何ら制限されない。そのような界面活性剤として、例えば、Aliquat336やCapriquatの商品名で知られるトリオクチルメチルアンモニウムクロライドが挙げられる。その使用量は、重合反応混合物の全量100質量%に対して0.1質量%を超えない範囲が好ましい。
本実施形態の重合における酸素含有ガスとしては、純酸素の他、酸素と窒素等の不活性ガスとを任意の割合で混合したもの、空気、更には空気と窒素等の不活性ガスとを任意の割合で混合したもの等が使用できる。重合反応中の系内圧力は、常圧で充分であるが、必要に応じて減圧でも加圧でも使用できる。
重合の温度は、特に限定されないが、低すぎると反応が進行しにくく、また高すぎると反応選択性の低下や高分子量成分が生成する恐れがあるので、0~60℃、好ましくは10~50℃の範囲である。
本実施形態の多官能ポリフェニレンエーテル組成物の製造方法では、ポリフェニレンエーテル重合時において、溶液状態で重合すること(本明細書中、「溶液重合」とも称する)が好ましい。溶液重合により製造することにより、かさ高い構造を有している中心フェノールを用いた場合においても、上記式(1)の構造を含まないポリフェニレンエーテル成分や、過酸化物による副生成物が生成する割合を少なくし、目的物の上記式(1)の構造を含む多官能ポリフェニレンエーテルを純度よく生成することができる。
(銅抽出及び副生成物除去工程)
本実施形態において、重合反応終了後の後処理方法については、特に制限はない。通常、塩酸や酢酸等の酸、又はエチレンジアミン4酢酸(EDTA)及びその塩、ニトリロトリ酢酸及びその塩等を反応液に加えて、触媒を失活させる。また、ポリフェニレンエーテルの重合により生じる二価フェノール体の副生成物を除去処理する方法も、従来既知の方法を用いて行うことができる。上記の様に触媒である金属イオンが実質的に失活されている状態であれば、該混合物を加熱するだけで脱色される。また既知の還元剤を必要量添加する方法でも可能である。既知の還元剤としては、ハイドロキノン、亜二チオン酸ナトリウム等が挙げられる。
(液液分離工程)
本実施形態の多官能ポリフェニレンエーテル組成物の製造方法においては、銅触媒を失活させた化合物を抽出するため水を添加し、有機相と水相に液液分離を行った後、水相を除去することで有基礎から銅触媒を除去してよい。この液液分離工程は、特に限定しないが、静置分離、遠心分離機による分離等の方法が挙げられる。上記液液分離を促進させるためには、公知の界面活性剤等を用いてもよい。
(濃縮・乾燥工程)
続いて、本実施形態の多官能ポリフェニレンエーテル組成物の製造方法においては、液液分離後の上記多官能ポリフェニレンエーテル組成物が含まれた有機相を、溶剤を揮発させることで濃縮・乾燥させてよい。
上記有機相に含まれる溶剤を揮発させる方法としては、特に限定はしないが、有機相を高温の濃縮槽に移し溶剤を留去させて濃縮する方法やロータリーエバポレーター等の機器を用いてトルエンを留去させて濃縮する方法等が挙げられる。
乾燥工程における乾燥処理の温度としては、少なくとも60℃以上が好ましく、80℃以上がより好ましく、120℃以上がさらに好ましく、140℃以上が最も好ましい。多官能ポリフェニレンエーテル組成物の乾燥を60℃以上の温度で行うと、ポリフェニレンエーテル粉体中の高沸点揮発成分の含有量を効率よく低減できる。
多官能ポリフェニレンエーテル組成物を高効率で得るためには、乾燥温度を上昇させる方法、乾燥雰囲気中の真空度を上昇させる方法、乾燥中に撹拌を行う方法等が有効であるが、特に、乾燥温度を上昇させる方法が製造効率の観点から好ましい。乾燥工程は、混合機能を備えた乾燥機を使用することが好ましい。混合機能としては、撹拌式、転動式の乾燥機等が挙げられる。これにより処理量を多くすることができ、生産性を高く維持できる。
本実施形態の多官能ポリフェニレンエーテル組成物の製造方法は、上述の本実施形態の多官能ポリフェニレンエーテル組成物の製造方法に限定されることなく、上述の、重合工程、銅抽出及び副生成物除去工程、液液分離工程、濃縮・乾燥工程の順序や回数等を適宜調整してよい。
<多官能変性ポリフェニレンエーテル組成物>
本実施形態に係る多官能変性ポリフェニレンエーテル組成物は、下記式(1)’で表される構造を有するポリフェニレンエーテルを含む。上記変性ポリフェニレンエーテル組成物は、下記式(1)’で表される構造を有する変性ポリフェニレンエーテル、及び下記式(1)’の構造において少なくとも1つの(-Yn-A)が(-Yn-H)である変性又は未変性ポリフェニレンエーテルを60mol%以上含み、1H-NMR測定結果における、下記式(2)’の構造由来のピークの積算値に対する7.6~8.3ppmに現れるピークの積算値の割合が1以下であり、ポリスチレン換算の数平均分子量が、500~15000g/molである。
本実施形態の変性ポリフェニレンエーテル組成物に含まれる下記式(1)’で表される構造を有する変性ポリフェニレンエーテルは、一種であってもよいし、複数種であってもよい。また、本実施形態の変性ポリフェニレンエーテル組成物は、下記式(1)’の構造において1つ以上の(-Yn-A)が(-Yn-H)であり、かつすべての(-Yn-A)が(-Yn-H)ではない変性ポリフェニレンエーテル、及び下記式(1)’の構造においてすべての(-Yn-A)が(-Yn-H)である未変性ポリフェニレンエーテルを含んでいてもよい。ここで、変性ポリフェニレンエーテルの(-Yn-A)と、未変性ポリフェニレンエーテルの(-Yn-H)とにおいて、Y及びnは同じであることが好ましい。
本実施形態の多官能変性ポリフェニレンエーテル組成物は、さらに、溶媒、重合触媒、界面活性剤等の添加物を含んでいてもよい。本実施形態の多官能変性ポリフェニレンエーテル組成物は、固体であってよい。
(変性ポリフェニレンエーテル)
上記変性ポリフェニレンエーテルとしては、下記式(1)’で表される構造であることが好ましい。
Figure 0007202476000019
式(1)’
式(1)’中、Zに結合するa個の(-Yn-A)は、それぞれ同じであってもよいし、異なっていてもよい。Zは下記式(2)’で表されるa価の中心フェノール部位である。aは2~6の整数である。
上記中心フェノール部位とは、多官能ポリフェニレンエーテルを重合する際に反応の起点となる中心骨格を意味し、多官能変性ポリフェニレンエーテル組成物をNMR、質量分析等の手法で解析することによりその構造を同定できる。多官能変性ポリフェニレンエーテル組成物から上記中心フェノール部位の構造を同定する具体的方法としては、多官能変性ポリフェニレンエーテル組成物の質量分析結果から低分子量成分のみを分析し、EIでフラグメントイオンのピークから中心フェノール部位の構造を推定する方法が挙げられる。さらに、多官能変性ポリフェニレンエーテル組成物のNMR測定を行い、公知の多官能フェノール化合物のNMR測定結果と照らし合わせることで中心フェノール部位の構造を推定する方法が挙げられる。この質量分析結果とNMR測定結果を組み合わせることでより正確に中心フェノール部位の構造を同定することが可能となる。
上記変性ポリフェニレンエーテルは、a価の中心部Xにa個の部分構造(例えば、R5等で置換されていてもよいフェノール)が結合し、a価の部分構造(即ち、式(2)’で表される中心フェノール部位)に式(1)’の(-Yn-A)が結合する構造であってよい。
Figure 0007202476000020
式(2)’
(式(2)’中、aは式(1)’と同様の整数が挙げられ、式(1)’と同じ整数であることが好ましい。式(2)’の中心フェノール部位において、a個の各部分構造は、同じ構造であってもよいし、異なっていてもよい。中でも、ガラス転移温度が一層高く、溶媒への長期溶解性に一層優れ、溶媒溶解時の粘度が一層低い変性ポリフェニレンエーテル組成物が得られる観点から、a個の各部分構造は同じ構造であることが好ましい。)
式(2)’中、Xはa価の任意の連結基であり、特に制限されないが、例えば、鎖式炭化水素、環式炭化水素等の炭化水素基;窒素、リン、ケイ素及び酸素から選ばれる、一つ又は複数の原子を含有する炭化水素基;窒素、リン、ケイ素等の原子;若しくはこれらを組み合わせた基;等が挙げられる。Xは単結合を除く連結基であってよい。
Xは、a価の部分構造を互いに連結する連結基であってよい。
上記Xとしては、単結合又はエステル結合等を介して、R5が結合しているベンゼン環に結合するa価のアルキル骨格、単結合又はエステル結合等を介して、R5が結合しているベンゼン環に結合するa価のアリール骨格、単結合又はエステル結合等を介して、R5が結合しているベンゼン環に結合するa価の複素環骨格、等が挙げられる。
ここで、アルキル骨格としては、特に制限されないが、例えば、炭素数2~6の少なくともa個に分岐した鎖式炭化水素(例えば、鎖式飽和炭化水素)の分岐末端が部分構造のベンゼン環に直接結合する骨格(a個の分岐末端にベンゼン環が結合していればよく、ベンゼン環が結合しない分岐末端があってもよい。)、等が挙げられる。また、アリール骨格としては、特に制限されないが、例えば、ベンゼン環、メシチレン基、又は2-ヒドロキシ-5-メチル-1,3-フェニレン基が、単結合又はアルキル鎖を介して、R5が結合しているベンゼン環に結合する骨格等が挙げられる。さらに、複素環骨格としては、特に制限されないが、例えば、トリアジン環が単結合又はアルキル鎖を介して、R5が結合しているベンゼン環に結合する骨格等が挙げられる。
式(2)’中のR5は各々独立に任意の置換基であり、kは各々独立に1~4の整数である。
上記R5としては、メチル基、エチル基、n-プロピル基等の炭素数1~8の直鎖状アルキル基、下記式(3)’の部分構造を有する基、等が挙げられ、R5のうち少なくとも1つは下記式(3)’の部分構造であることが好ましい。
Figure 0007202476000021
式(3)’
上記式(3)’中、
11は各々独立に置換されていてもよい炭素数1~8のアルキル基であり、
12は各々独立に置換されていてもよい炭素数1~8のアルキレン基であり、bは各々独立に0又は1であり、
13は水素原子、置換されていてもよい炭素数1~8のアルキル基又はフェニル基のいずれかを表す。
上記置換基としては、ハロゲン原子等が挙げられる。
上記式(3)’は、好ましくは、2級及び/又は3級炭素を含む基であり、例えばイソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、tert-アミル基、2,2-ジメチルプロピル基や、これらの末端にフェニル基を有する構造等が挙げられ、より好ましくは、tert-ブチル基である。
上記式(2)’のa価の部分構造は、式(2)’の-O-が結合するベンゼン環の炭素原子を1位とし、2位又は6位の一方の炭素原子に式(3)’の部分構造を有するR5が結合し、2位又は6位の他方の炭素原子に水素原子、メチル基又はエチル基が結合している。2位及び6位の炭素原子に、炭化水素基又は上記式(3)’の部分構造が結合する構造であってもよい。上記式(2)’のベンゼン環は、2位及び6位以外の炭素原子に、中心部X及び酸素原子を介して上記式(1)’の(Yn-A)が結合していてよく、1位に酸素原子を介して上記式(1)’の(Yn-A)が結合し、4位に中心部Xが結合することが好ましい。
上記式(1)’中、Yは各々独立に下記式(4)’の構造を有する2価の連結基(置換基を持つフェノールユニット)であり、nはYの繰り返し数を表し、各々独立に0~200の整数であり、少なくとも1つのnは1以上の整数である。
Figure 0007202476000022
式(4)’
上記式(4)’中、R21は各々独立に、水素原子;置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基;ハロゲン原子;を表し、置換されていてもよい炭素数1~6の飽和又は不飽和の炭化水素基が好ましく、より好ましくはメチル基、エチル基、n-プロピル基、ビニル基、アリール基、エチニル基、プロパルギル基であり、さらに好ましくはメチル基、エチル基であり、特に好ましくはメチル基である。上記式(4)’中、2つのR21は、同時に水素原子ではなく、2つのR21は、一方が上記式(3)’で表される部分構造、もう一方が水素原子、メチル基又はエチル基のいずれかである組み合わせではない。
22は、各々独立に、水素原子;置換されていてもよい炭素数1~6の炭化水素基;置換されていてもよい炭素数6~12のアリール基;ハロゲン原子;を表し、水素原子又は置換されていてもよい炭素数1~6の飽和又は不飽和の炭化水素基が好ましく、より好ましくは水素原子、メチル基、エチル基、n-プロピル基であり、さらに好ましくは水素原子、メチル基であり、特に好ましくは水素原子である。
上記置換基としては、ハロゲン原子等が挙げられる。
上記式(1)’中、Aは、各々独立に、炭素-炭素2重結合及び/又はエポキシ結合を含有する置換基である。
上記Aとしては、ガラス転移温度が一層高く、溶媒への長期溶解性に一層優れ、溶媒溶解時の粘度が一層低い変性ポリフェニレンエーテル組成物が得られる観点から下記式(5)’で表される置換基が好ましい。
Figure 0007202476000023
式(5)’
上記式(5)’中、R31は、それぞれ独立に水素原子、水酸基又は炭素数1~30の炭化水素基(例えば、鎖状炭化水素基、環状炭化水素基)、アリール基、アルコキシ基、アリロキシ基、アミノ基、ヒドロキシアルキル基である。R32は、それぞれ独立に炭素数1~30の炭化水素基(例えば、アルキレン基)である。sは、0~5の整数である。
31の炭化水素基の具体例としては、メチル、エチル、n-プロピル、2-プロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、1-エチルプロピル、1-メチルブチル、2-メチルブチル、3-メチルブチル、アミル、シクロペンチル、2,2-ジメチルプロピル、1,1-ジメチルプロピル、n-へキシル、シクロヘキシル、1-エチルブチル、2-エチルブチル、3-エチルブチル、1-メチルペンチル、2-メチルペンチル、3-メチルペンチレン、4-メチルペンチレン、1,1-ジメチルブチレン、2,2-ジメチルブチレン、3,3-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,3-ジメチルブチル、n-ヘプチル、1-メチルへキシル、2-メチルへキシル、3-メチルへキシル、4-メチルへキシル、5-メチルへキシル、1-エチルペンチル、2-エチルペンチル、3-エチルペンチル、1,1-ジメチルペンチル、2,2-ジメチルペンチル、3,3-ジメチルペンチル、4,4-ジメチルペンチル、1,2-ジメチルペンチル、1,3-ジメチルペンチル、1,4-ジメチルペンチル、2,3-ジメチルペンチル、2,4-ジメチルペンチル、3,4-ジメチルペンチル、2-メチル-3,3-ジメチルブチル、1-メチル-3,3-ジメチルブチル、1,2,3-トリメチルブチル、1,3-ジメチル-2-ペンチル、2-イソプロピルブチル、2-メチルシクロヘキシル、3-メチルシクロヘキシル、4-メチルシクロヘキシル、1-シクロヘキシルメチル、2-エチルシクロペンチル、3-エチルシクロペンチル、2,3-ジメチルシクロペンチル、2,4-ジメチルシクロペンチル、2-メチルシクロペンチルメチル、2-シクロペンチルエチル、1-シクロペンチルエチル、n-オクチル、2-オクチル、3-オクチル、4-オクチル、2-メチルヘプチル、3-メチルヘプチル、4-メチルヘプチル、5-メチルヘプチル、6-メチルヘプチル、2-エチルへキシル、3-エチルへキシル、4-エチルへキシル、5-エチルへキシル、1,1-ジメチルへキシル、2,2-ジメチルへキシル、3,3-ジメチルへキシル、4,4-ジメチルへキシル、5,5-ジメチルへキシル、1,2-ジメチルへキシル、1,3-ジメチルへキシル、1,4-ジメチルへキシル、1,5-ジメチルへキシル、2,3-ジメチルへキシル、2,4-ジメチルへキシル、2,5-ジメチルへキシル、1,1-エチルメチルペンチル、2,2-エチルメチルペンチル、3,3-エチルメチルペンチル、4,4-エチルメチルペンチル、1-エチル-2-メチルペンチル、1-エチル-3-メチルペンチル、1-エチル-4-メチルペンチル、2-エチル-1-メチルペンチル、3-エチル-1-メチルペンチル、4-エチル-1-メチルペンチル、2-エチル-3-メチルペンチル、2-エチル-4-メチルペンチル、3-エチル-2-メチルペンチル、4-エチル-3-メチルペンチル、3-エチル-4-メチルペンチル、4-エチル-3-メチルペンチル、1-(2-メチルプロピル)ブチル、1-(2-メチルプロピル)-2-メチルブチル、1,1-(2-メチルプロピル)エチル、1,1-(2-メチルプロピル)エチルプロピル、1,1-ジエチルプロピル、2,2-ジエチルプロピル、1,1-エチルメチル-2,2-ジメチルプロピル、2,2-エチルメチル-1,1-ジメチルプロピル、2-エチル-1,1-ジメチルブチル、2,3-ジメチルシクロヘキシル、2,3-ジメチルシクロヘキシル、2,5-ジメチルシクロヘキシル、2,6-ジメチルシクロヘキシル、3,5-ジメチルシクロヘキシル、2-メチルシクロヘキシルメチル、3-メチルシクロヘキシルメチル、4-メチルシクロヘキシルメチル、2-エチルシクロヘキシル、3-エチルシクロヘキシル、4-エチルシクロヘキシル、2-シクロヘキシルエチル、1-シクロヘキシルエチル、1-シクロヘキシル-2-エチレン、ノニル、イソノニル、デシル、イソデシル、ウンデシル、ドデシル、ベンジル、2-フェニルエチル等が挙げられ、好ましくは、メチル、エチル、n-プロピル、2-プロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、1-エチルプロピル、1-メチルブチル、2-メチルブチル、3-メチルブチル、アミル、シクロペンチル、n-へキシル、シクロヘキシル、1-エチルブチル、2-エチルブチル、3-エチルブチル、1-メチルペンチル、2-メチルペンチル、3-メチルペンチル、4-メチルペンチル、n-ヘプチル、1-メチルへキシル、2-メチルへキシル、3-メチルへキシル、4-メチルへキシル、5-メチルへキシル、1-エチルペンチル、2-エチルペンチル、3-エチルペンチル、2-メチルシクロヘキシル、3-メチルシクロヘキシル、4-メチルシクロヘキシル、n-オクチル、2-オクチル、3-オクチル、4-オクチル、2-メチルヘプチル、3-メチルヘプチル、4-メチルヘプチル、5-メチルヘプチル、6-メチルヘプチル、2-エチルへキシル、3-エチルへキシル、4-エチルへキシル、5-エチルへキシル、ノニル、イソノニル、デシル、イソデシル、ウンデシル、ドデシル、ベンジルであり、より好ましくはメチル、エチル、n-プロピル、2-プロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、1-エチルプロピル、1-メチルブチル、2-メチルブチル、3-メチルブチル、アミル、シクロペンチル、n-へキシル、シクロヘキシル、n-ヘプチル、n-オクチル、2-オクチル、3-オクチル、4-オクチル、2-メチルヘプチル、3-メチルヘプチル、4-メチルヘプチル、5-メチルヘプチル、6-メチルヘプチル、2-エチルへキシル、3-エチルへキシル、4-エチルへキシル、5-エチルへキシル、ノニル、イソノニル、デシル、イソデシル、ウンデシル、ドデシル、ベンジルであり、さらに好ましくは、メチル、エチル、n-プロピル、2-プロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、アミル、シクロペンチル、n-へキシル、シクロヘキシル、n-ヘプチル、n-オクチル、2-オクチル、3-オクチル、4-オクチル、2-メチルヘプチル、3-メチルヘプチル、4-メチルヘプチル、5-メチルヘプチル、6-メチルヘプチル、2-エチルへキシル、3-エチルへキシル、4-エチルへキシル、5-エチルへキシル、ノニル、イソノニル、デシル、イソデシル、ウンデシル、ドデシル、ベンジルである。
32の炭化水素基の具体例としては、メチレン、エチレン、トリメチレン、1,2-プロピレン、テトラメチレン、2-メチル-1,3-トリメチレン、1,1-ジメチルエチレン、ペンタメチレン、1-エチル-1,3-プロピレン、1-メチル-1,4-ブチレン、2-メチル-1,4-ブチルレン、3-メチル-1,4-ブチレン、2,2-ジメチル-1,3-プロピレン、1,2-シクロペンチレン、1,3-シクロペンチレン、2,2-ジメチル-1,3-プロピレン、1,1-ジメチル-1,3-プロピレン、3,3-ジメチル-1,3-プロピレン、ヘキサメチレン、1,2-シクロヘキシレン、1,3-シクロヘキシレン、1,4-シクロヘキシレン、1-エチル-1,4-ブチレン、2-エチル-1,4-ブチレン、3-エチル-1,4-ブチレン、1-メチル-1,5-ペンチレン、2-メチル-1,5-ペンチレン、3-メチル-1,5-ペンチレン、4-メチルペンチレン、1,1-ジメチル-1,4-ブチレン、2,2-ジメチル-1,4-ブチレン、3,3-ジメチル-1,4-ブチレン、1,2-ジメチル-1,4-ブチレン、1,3-ジメチル-1,4-ブチレン、2,3-ジメチル-1,4-ブチレン、ヘプタメチレン、1-メチル-1,6-へキシレン、2-メチル-1,6-ヘキシレン、3-メチル-1,6-ヘキシレン、4-メチル-1,6-ヘキシレン、5-メチル-1,6-ヘキシレン、1-エチル-1,5-ペンチレン、2-エチル-1,5-ペンチレン、3-エチル-1,5-ペンチレン、1,1-ジメチル-1,5-ペンチレン、2,2-ジメチル-1,5-ペンチレン、3,3-ジメチル-1,5-ペンチレン、4,4-ジメチル-1,5-ペンチレン、1,2-ジメチル-1,5-ペンチレン、1,3-ジメチル-1,5-ペンチレン、1,4-ジメチル-1,5-ペンチレン、2,3-ジメチル-1,5-ペンチレン、2,4-ジメチル-1,5-ペンチレン、3,4-ジメチル-1,5-ペンチレン、2-メチル-3,3-ジメチル-1,4-ブチレン、1-メチル-3,3-ジメチル-1,4-ブチレン、1,2,3-トリメチル-1,4-ブチレン、1,3-ジメチル-1,4-ペンチレン、2-イソプロピル-1,4-ブチレン、2-メチル-1,4-シクロヘキシレン、3-メチル-1,4-シクロヘキシレン、4-メチル-1,4-シクロヘキシレン、1-シクロヘキシルメチレン、2-エチル-1,3-シクロペンチレン、3-エチル-1,3-シクロペンチレン、2,3-ジメチル-1,3-シクロペンチレン、2,4-ジメチル-1,3-シクロペンチレン、2-メチル-1,3-シクロペンチルメチレン、2-シクロペンチルエチレン、1-シクロペンチルエチレン、オクタメチレン、1メチル-1,7-ヘプチレン、1-エチル1,6-へキシレン、1-プロピル-1,5-ペンチレン、2-メチル-1,7-ヘプチレン、3-メチル-1,7-ヘプチレン、4-メチル-1,7-ヘプチレン、5-メチル-1,7-ヘプチレン、6-メチル-1,7-ヘプチレン、2-エチル-1,6-ヘキシレン、3-エチル-1,6-ヘキシレン、4-エチル-1,6-ヘキシレン、5-エチル-1,6-ヘキシレン、1,1-ジメチル-1,6-ヘキシレン、2,2-ジメチル-1,6-ヘキシレン、3,3-ジメチル-1,6-ヘキシレン、4,4-ジメチル-1,6-ヘキシレン、5,5-ジメチル-1,6-ヘキシレン、1,2-ジメチル-1,6-ヘキシレン、1,3-ジメチル-1,6-ヘキシレン、1,4-ジメチル-1,6-ヘキシレン、1,5-ジメチル-1,6-ヘキシレン、2,3-ジメチル-1,6-ヘキシレン、2,4-ジメチル-1,6-ヘキシレン、2,5-ジメチル-1,6-ヘキシレン、1,1-エチルメチル-1,5-ペンチレン、2,2-エチルメチル-1,5-ペンチレン、3,3-エチルメチル-1,5-ペンチレン、4,4-エチルメチル-1,5-ペンチレン、1-エチル-2-メチル-1,5-ペンチレン、1-エチル-3-メチル-1,5-ペンチレン、1-エチル-4-メチル-1,5-ペンチレン、2-エチル-1-メチル-1,5-ペンチレン、3-エチル-1-メチル-1,5-ペンチレン、4-エチル-1-メチル-1,5-ペンチレン、2-エチル-3-メチル-1,5-ペンチレン、2-エチル-4-メチル-1,5-ペンチレン、3-エチル-2-メチル-1,5-ペンチレン、4-エチル-3-メチル-1,5-ペンチレン、3-エチル-4-メチル-1,5-ペンチレン、4-エチル-3-メチル-1,5-ペンチレン、1-(2-メチルプロピル)-1,4-ブチレン、1-(2-メチルプロピル)-2-メチル-1,4-ブチレン、1,1-(2-メチルプロピル)エチレン、1,1-(2-メチルプロピル)エチル-1,3-プロピレン、1,1-ジエチル-1,3-プロピレン、2,2-ジエチル-1,3-プロピレン、1,1-エチルメチル-2,2-ジメチル-1,3-プロピレン、2,2-エチルメチル-1,1-ジメチル-1,3-プロピレン、2-エチル-1,1-ジメチル-1,4-ブチレン、2,3-ジメチル-1,4-シクロヘキシレン、2,3-ジメチル-1,4-シクロヘキシレン、2,5-ジメチル-1,4-シクロヘキシレン、2,6-ジメチル-1,4-シクロヘキシレン、3,5-ジメチル-1,4-シクロヘキシレン、2-メチル-1,4-シクロヘキシル-1-メチレン、3-メチル-1,4-シクロヘキシル-1-メチレン、4-メチル-1,4-シクロヘキシル-1-メチレン、2-エチル-1,4-シクロヘキシレン、3-エチル-1,4-シクロヘキシレン、4-エチル-1,4-シクロヘキシレン、2-シクロヘキシルエチレン、1-シクロヘキシルエチレン、1-シクロヘキシル-2-エチレン、ノニルメチレン、1-メチル-1,8-オクチレン、デシルメチレン、1-メチル-1,8-ノニレン、ウンデシルメチレン、ドデシルメチレン、1,4-フェニレン、1,3-フェニレン、1,2-フェニレン、メチレン-1,4-フェニレン-メチレン、エチレン-1,4-フェニレン-エチレン等が挙げられ、好ましくはメチレン、エチレン、トリメチレン、1,2-プロピレン、テトラメチレン、2-メチル-1,2-プロピレン、1,1-ジメチルエチレン、ペンタメチレン、1-エチル-1,3-プロピレン、1-メチル-1,4-ブチレン、2-メチル-1,4-ブチレン、3-メチル-1,4-ブチレン、2,2-ジメチル-1,3-プロピレン、1,3-シクロペンチレン、1,6-へキサメチレン、1,4-シクロヘキシレン、1-エチル-1,4-ブチレン、2-エチル-1,4-ブチレン、3-エチル-1,4-ブチレン、1-メチル-1,5-ペンチレン、2-メチル-1,5-ペンチレン、3-メチル-1,5-ペンチレン、4-メチル-1,5-ペンチレン、ヘプタメチレン、1-メチル-1,6-ヘキシレン、2-メチル-1,6-ヘキシレン、3-メチル-1,6-ヘキシレン、4-メチル-1,6-ヘキシレン、5-メチル-1,6-ヘキシレン、1-エチル-1,5-ペンチレン、2-エチル-1,5-ペンチレン、3-エチル-1,5-ペンチレン、2-メチル-1,4-シクロヘキシレン、3-メチル-1,4-シクロヘキシレン、4-メチル-1,4-シクロヘキシレン、オクタメチレン、1-メチル-1,7-ヘプチレン、3-メチル-1,7-ヘプチレン、4-メチル-1,7-ヘプチレン、2-メチル-1,7-ヘプチレン、5-メチル-1,7-ヘプチレン、6-メチル-1,7-ヘプチレン、2-エチル-1,6-ヘキシレン、3-エチル-1,6-ヘキシレン、4-エチル-1,6-ヘキシレン、5-エチル-1,6-ヘキシレン、ノニルメチレン、デシルメチレン、ウンデシルメチレン、ドデシルメチレンであり、より好ましくはメチレン、エチレン、トリメチレン、1,2-プロピレン、テトラメチレン、2-メチル-1,2-プロピレン、1,1-ジメチルエチレン、ペンタメチレン、1-エチル-1,3-プロピレン、1-メチル-1,4-ブチレン、2-メチル―1,4-ブチレン、3-メチル―1,4-ブチレン、2,2-ジメチル―1,3-プロピレン、1,3-シクロペンチレン、1,6-へキサメチレン、1,4-シクロヘキシレン、ヘプタメチレン、オクタメチレン、1-メチル-1,7-ヘプチレン、3-メチル-1,7-ヘプチレン、4-メチル-1,7-ヘプチレン、2-メチル-1,7-ヘプチレン、5-メチル-1,7-ヘプチレン、6-メチル-1,7-ヘプチレン、2-エチル-1,6-ヘキシレン、3-エチル-1,6-ヘキシレン、4-エチル-1,6-ヘキシレン、5-エチル-1,6-ヘキシレン、ノニルメチレン、デシルメチレン、ウンデシルメチレン、ドデシルメチレンであり、さらに好ましくは、メチレン、エチレン、トリメチレン、1,2-プロピレン、テトラメチレン、2-メチル-1,2-プロピレン、1,1-ジメチルエチレン、ペンタメチレン、2,2-ジメチル-1,3-プロピレン、1,3-シクロペンチレン、1,6-へキサメチレン、1,4-シクロヘキシレン、ヘプタメチレン、オクタメチレン、1-メチル-1,7-ヘプチレン、3-メチル-1,7-ヘプチレン、4-メチル-1,7-ヘプチレン、2-メチル-1,7-ヘプチレン、5-メチル-1,7-ヘプチレン、6-メチル-1,7-ヘプチレン、2-エチル-1,6-ヘキシレン、3-エチル-1,6-ヘキシレン、4-エチル-1,6-ヘキシレン、5-エチル-1,6-ヘキシレン、ノニルメチレン、デシルメチレン、ウンデシルメチレン、ドデシルメチレンである。
Aの炭素-炭素2重結合を含有する置換基の具体例としては、ビニル基、アリル基、イソプロペニル基、1-ブテニル基、1-ペンテニル基、p-ビニルフェニル基、p-イソプロペニルフェニル基、m-ビニルフェニル基、m-イソプロペニルフェニル基、o-ビニルフェニル基、o-イソプロペニルフェニル基、p-ビニルベンジル基、p-イソプロペニルベンジル基、m-ビニルベンジル基、m-イソプロペニルベンジル基、o-ビニルベンジル基、o-イソプロペニルベンジル基、p-ビニルフェニルエテニル基、p-ビニルフェニルプロペニル基、p-ビニルフェニルブテニル基、m-ビニルフェニルエテニル基、m-ビニルフェニルプロペニル基、m-ビニルフェニルブテニル基、o-ビニルフェニルエテニル基、o-ビニルフェニルプロペニル基、o-ビニルフェニルブテニル基、メタクリル基、アクリル基、2―エチルアクリル基、2-ヒドロキシメチルアクリル基等が挙げられる。
Aのエポキシ結合を含有する置換基の具体例としては、グリシジル基等が挙げられる。
上記変性ポリフェニレンエーテルは、例えば、下記式(6)’で表される一価のフェノール化合物と下記式(7)’で表されるa価のフェノール化合物(中心フェノール)とを共重合し、変性反応をして得られる。
Figure 0007202476000024
式(6)’
(上記式(6)’中、R21、R22は、上記式(4)’と同様の基が挙げられ、上記式(4)’と同じであることが好ましい。)
Figure 0007202476000025
式(7)’
(上記式(7)’中、X、R5、aは、上記式(2)’と同様のものが挙げられ、上記式(2)’と同じであることが好ましい。Xに結合するa個の部分構造は、それぞれ同じであってもよいし異なっていてもよいが、同じであることが好ましい。)
上記式(6)’で表される一価のフェノール化合物としては、例えば、o-クレゾール、2,6-ジメチルフェノール、2-エチルフェノール、2-メチル-6-エチルフェノール、2,6-ジエチルフェノール、2-n-プロピルフェノール、2-エチル-6-n-プロピルフェノール、2-メチル-6-クロルフェノール、2-メチル-6-ブロモフェノール、2-メチル-6-n-プロピルフェノール、2-エチル-6-ブロモフェノール、2-メチル-6-n-ブチルフェノール、2,6-ジ-n-プロピルフェノール、2-エチル-6-クロルフェノール、2-メチル-6-フェニルフェノール、2-フェニルフェノール、2,6-ジフェニルフェノール、2,6-ビス-(4-フルオロフェニル)フェノール、2-メチル-6-トリルフェノール、2,6-ジトリルフェノール、2,5-ジメチルフェノール、2,3,6-トリメチルフェノール、2,5-ジエチルフェノール、2-メチル-5-エチルフェノール、2-エチル-5-メチルフェノール、2-アリル-5-メチルフェノール、2,5-ジアリルフェノール、2,3-ジエチル-6-n―プロピルフェノール、2-メチル-5-クロルフェノール、2-メチル-5-ブロモフェノール、2-メチル-5-イソプロピルフェノール、2-メチル-5-n-プロピルフェノール、2-エチル-5-ブロモフェノール、2-メチル-5-n-ブチルフェノール、2,5-ジ-n-プロピルフェノール、2-エチル-5-クロルフェノール、2-メチル-5-フェニルフェノール、2,5-ジフェニルフェノール、2,5-ビス-(4-フルオロフェニル)フェノール、2-メチル-5-トリルフェノール、2,5-ジトリルフェノール、2,6-ジメチル-3-アリルフェノール、2,3,6-トリアリルフェノール、2,3,6-トリブチルフェノール、2,6-ジ-n-ブチル-3-メチルフェノール、2,6-ジメチル-3-n-ブチルフェノール、2,6-ジメチル-3-t-ブチルフェノール等が挙げられる。
上記一価のフェノール化合物の中でも、特に、安価であり入手が容易であるため、2,6-ジメチルフェノール、2,6-ジエチルフェノール、2,6-ジフェニルフェノール、2,3,6-トリメチルフェノール、2,5-ジメチルフェノールが好ましく、2,6-ジメチルフェノール、2,3,6-トリメチルフェノールがより好ましい。
なお、上記フェノール化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
上記一価のフェノール化合物としては、例えば、2,6-ジメチルフェノールと2,6-ジエチルフェノールとを組み合わせて使用する方法、2,6-ジメチルフェノールと2,6-ジフェニルフェノールとを組み合わせて用いる方法、2,3,6-トリメチルフェノールと2,5-ジメチルフェノールとを組み合わせて使用する方法、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとを組み合わせて用いる方法等が挙げられる。このとき、組み合わせるフェノール化合物の混合比は任意に選択できる。
また、使用するフェノール化合物には、製造の際の副産物として含まれ得る、少量のm-クレゾール、p-クレゾール、2,4-ジメチルフェノール、2,4,6-トリメチルフェノール等が含まれていてもよい。
上記式(7)’で表されるようなa価のフェノール化合物は、対応する一価のフェノール化合物と、アルデヒド類(例えば、ホルムアルデヒド等)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、シクロヘキサノン等)、又はジハロゲン化脂肪族炭化水素との反応や、対応する一価のフェノール化合物同士の反応等により、工業的に有利に製造できる。
上記式(7)’で表される多価フェノール化合物の例を以下に列挙する。
4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’-[(2-ヒドロキシ-3-メトキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(4-ヒドロキシ-3-エトキシフェニル)メチレン]ビス(2,3,6-トリメチルエチルフェノール)、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、2,2’-[(4-ヒドロキシフェニル)メチレン]ビス(3,5,6-トリメチルフェノール)、4,4’-[4-(4-ヒドロキシフェニル)シクロヘキシリデン]ビス(2,6-ジメチルフェノール)、4,4’-[(2-ヒドロキシフェニル)メチレン]-ビス(2,3,6-トリメチルフェノール)、4,4’-[1-[4-[1-(4-ヒドロキシ-3,5-ジメチルフェニル)-1-メチルエチル]フェニル]エチリデン]ビス(2,6-ジメチルフェノール)、4,4’-[1-[4-[1-(4-ヒドロキシ-3-フルオロフェニル)-1-メチルエチル]フェニル]エチリデン]ビス(2,6-ジメチルフェノール)、2,6-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)エチル]-4-メチルフェノール、2,6-ビス[(4-ヒドロキシ-2,3,6-トリメチルフェニル)メチル]-4-メチルフェノール、2,6-ビス[(4-ヒドロキシ-3,5,6-トリメチルフェニル)メチル]-4-エチルフェノール、2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)メチル]-6-メチルフェノール、2,6-ビス[(4-ヒドロキシ-3-メチルフェニル)メチル]-4-メチルフェノール、2,4-ビス[(4-ヒドロキシ-3-シクロヘキシルフェニル)メチル]-6-メチルフェノール、2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)メチル]-6-シクロヘキシルフェノール、2,4-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-6-シクロヘキシルフェノール、2,4-ビス[(4-ヒドロキシ-2,3,6-トリメチルフェニル)メチル]-6-シクロヘキシルフェノール、3,6-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,2-ベンゼンジオール、4,6-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,3-ベンゼンジオール、2,4,6-トリス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,3-ベンゼンジオール、2,4,6-トリス[(2-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,3-ベンゼンジオール、2,2’-メチレンビス[6-[(4/2-ヒドロキシ-2,5/3,6-ジメチルフェニル)メチル]-4-メチルフェノール]、2,2’-メチレンビス[6-[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-4-メチルフェノール]、2,2’-メチレンビス[6-[(4/2-ヒドロキシ-2,3,5/3,4,6-トリメチルフェニル)メチル]-4-メチルフェノール]、2,2’-メチレンビス[6-[(4-ヒドロキシ-2,3,5-トリメチルフェニル)メチル]-4-メチルフェノール]、4,4’-メチレンビス[2-[(2,4-ジヒドロキシフェニル)メチル]-6-メチルフェノール]、4,4’-メチレンビス[2-[(2,4-ジヒドロキシフェニル)メチル]-3,6-ジメチルフェノール]、4,4’-メチレンビス[2-[(2,4-ジヒドロキシ-3-メチルフェニル)メチル]-3,6-ジメチルフェノール]、4,4’-メチレンビス[2-[(2,3,4-トリヒドロキシフェニル)メチル]-3,6-ジメチルフェノール]、6,6’-メチレンビス[4-[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-1,2,3-ベンゼントリオール]、1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(2-ヒドロキシ-5-メチルフェニル)メチル]フェノール]、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]フェノール]、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(4-ヒドロキシ-2-メチル-5-シクロヘキシルフェニル)メチル]フェノール]、4,4’-シクロヘキシリデンビス[2-シクロヘキシル-6-[(2,3,4-トリヒドロキシフェニル)メチル]フェノール]、4,4’,4’’,4’’’-(1,2-エタンジイリデン)テトラキス(2,6-ジメチルフェノール)、4,4’,4’’,4’’’-(1,4-フェニレンジメチリデン)テトラキス(2,6-ジメチルフェノール)、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-ターシャリーブチルフェニル)ブタン等が挙げられるが、これらに限定されるものではない。
多価フェノール化合物におけるフェノール性水酸基の数は2個以上であれば特に制限はないが、ポリフェニレンエーテル末端が多くなると重合時の分子量変化が大きくなる可能性があるため、好ましくは3~6個、より好ましくは3~4個である。
特に好ましい多価フェノール化合物は、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,6-ジメチルフェノール)、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’-[(3-ヒドロキシフェニル)メチレン]ビス(2,3,6-トリメチルフェノール)、4,4’,4’’,4’’’-(1,4-フェニレンジメチリデン)テトラキス(2,6-ジメチルフェノール)、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-ターシャリーブチルフェニル)ブタン、1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタンである。
本実施形態の変性ポリフェニレンエーテル組成物は、下記式(8)’で表される単官能ポリフェニレンエーテル、下記式(8)’で表される単官能ポリフェニレンエーテルの末端変性物、下記式(9)’で表される二官能ポリフェニレンエーテル、下記式(9)’で表される二官能ポリフェニレンエーテルの末端変性物、上記式(1)’の構造を有する変性ポリフェニレンエーテル、上記式(1)’の構造において1つ以上の(-Yn-A)が(-Yn-H)であり、かつすべての(-Yn-A)が(-Yn-H)ではない変性ポリフェニレンエーテル、及び上記式(1)’の構造においてすべての(-Yn-A)が(-Yn-H)であるポリフェニレンエーテルの合計モル(100mol%)に対して、上記式(1)’の構造を有する変性ポリフェニレンエーテル、上記式(1)’の構造において1つ以上の(-Yn-A)が(-Yn-H)であり、かつすべての(-Yn-A)が(-Yn-H)ではない変性ポリフェニレンエーテル、及び上記式(1)’の構造においてすべての(-Yn-A)が(-Yn-H)であるポリフェニレンエーテルをこれらの化合物の全量として60mol%以上含み、好ましくは70mol%以上、より好ましくは80mol%以上、さらに好ましくは90mol%以上含む。
本実施形態の変性ポリフェニレンエーテル組成物は、上記式(1)’の構造を有する変性ポリフェニレンエーテルを製造する際に発生する副生成物を含んでいてもよい。
上記副生成物としては、下記式(8)’で表される単官能ポリフェニレンエーテル、下記式(8)’で表される単官能ポリフェニレンエーテルの末端変性物、下記式(9)’で表される中心ビフェニル構造を有する二官能ポリフェニレンエーテル、下記式(9)’で表される二官能ポリフェニレンエーテルの末端変性物、上記式(1)’の構造において1つ以上の(-Yn-A)が(-Yn-H)であり、かつすべての(-Yn-A)が(-Yn-H)ではない変性ポリフェニレンエーテル、及び上記式(1)’の構造においてすべての(-Yn-A)が(-Yn-H)であるポリフェニレンエーテル等が挙げられる。
Figure 0007202476000026
式(8)’
Figure 0007202476000027
式(9)’
上記式(8)’、式(9)’中、c、d、eは1~100の任意の整数である。R21及びR22は、上記式(4)’と同様のものが挙げられ、同じであることが好ましい。
上記式(8)’で表される単官能ポリフェニレンエーテルは、上記式(6)’の構造を有する一価のフェノール化合物同士の酸化重合により生成する副生成物である。また、上記式(9)’で表される中心ビフェニル構造を有する二官能ポリフェニレンエーテルは、上記式(6)’の構造を有する一価のフェノール化合物同士がC-Cカップリングして生成されるビフェニル化合物と別の一価のフェノール化合物の酸化重合により生成する副生成物である。本実施形態の変性ポリフェニレンエーテル組成物には、これらの副生成物が末端変性された副生成物を含んでいてよい。
変性ポリフェニレンエーテル組成物中、上記式(1)’の構造を有する変性ポリフェニレンエーテル、上記式(1)’の構造において1つ以上の(-Yn-A)が(-Yn-H)であり、かつすべての(-Yn-A)が(-Yn-H)ではない変性ポリフェニレンエーテル、及び上記式(1)’の構造においてすべての(-Yn-A)が(-Yn-H)であるポリフェニレンエーテル全量の含有率が60mol%以上であることで、多官能ポリフェニレンエーテル成分に比べ副生成物(例えば、上記式(8)’、(9)’で表される構造を有する副生成物)が少なく、変性ポリフェニレンエーテル組成物としての特性、特に溶媒への長期溶解性と、溶媒溶解時の低粘度が達成される。
本実施形態の変性ポリフェニレンエーテル組成物において、上記式(1)’の構造を有する多官能変性ポリフェニレンエーテルの原料となる多官能ポリフェニレンエーテルは、単官能ポリフェニレンエーテルを酸化剤の存在下で多価フェノールと平衡化する再分配反応によって製造することもできる。再分配反応は、当該技術において公知であり、例えばCooperらの米国特許第3496236号明細書、及びLiskaらの米国特許第5880221号明細書に記載されている。
しかしながら、再分配反応を用いて多官能変性ポリフェニレンエーテル組成物を生成する場合、反応開始剤と酸化剤として過酸化物を用いることが多いが、この過酸化物は反応性が高く様々な形態の副生成物を生成する。その副生成物の代表的な一例としては、生成するポリフェニレンエーテルへの過酸化物付加体である。また、目的物である多官能ポリフェニレンエーテルだけではなく、原料である単官能ポリフェニレンエーテル、多価フェノールにも過酸化物が付加した副生成物が生成するので、目的物である上記式(1)’の構造を有する多官能変性ポリフェニレンエーテル等の純度が低下してしまう。
過酸化物が付加した副生成物の有無は、1H-NMR測定により判断することができる。1H-NMR測定において、過酸化物由来のピークは広い範囲で現れるが、フェノール原料やポリフェニレンエーテル組成物由来のピークと重ならない領域としては7.6~8.3ppmである。
本実施形態の変性ポリフェニレンエーテル組成物は、1H-NMR測定結果において上記式(1)’の構造を有する変性ポリフェニレンエーテル、上記式(1)’の構造において1つ以上の(-Yn-A)が(-Yn-H)であり、かつすべての(-Yn-A)が(-Yn-H)ではない変性ポリフェニレンエーテル、及び上記式(1)’の構造においてすべての(-Yn-A)が(-Yn-H)であるポリフェニレンエーテルに含まれる、上記式(2)’で表される中心フェノール部位由来のピークの積算値に対する、上記7.6~8.3ppmの領域に現れる過酸化物由来のピークの積算値の割合が、1以下であり、0.8以下であることが好ましく、0.5以下であることがより好ましい。上記中心フェノール部位由来ピークの積算値に対して、過酸化物由来ピークの積算値が1以下であることは、変性ポリフェニレンエーテル組成物中に副生成物の過酸化物付加体が含まれておらず、目的物の多官能変性ポリフェニレンエーテル等の純度が高いことを意味する。その結果、変性ポリフェニレンエーテル組成物のガラス転移温度(Tg)を高くすることができる。
上記割合は、後述の実施例に記載の方法により測定することができる。
本実施形態における変性ポリフェニレンエーテル組成物の数平均分子量(Mn)は、500~15000g/molであり、好ましくは1000~10000g/molであり、より好ましくは2000~8000g/molである。数平均分子量(Mn)が上記範囲内であることにより、基板材料への適用工程においてワニスを作製する溶媒に溶解させた際の流動性がより向上し、基板材料適用時の加工性を確保することができる。
数平均分子量は、後述の実施例に記載の方法により測定することができる。
本実施形態における多官能変性ポリフェニレンエーテル組成物に含まれるA置換基の数は特に制限されない。その中でも、組成物中に700~3000μmol/gのA置換基数を含むことが好ましく、より好ましくは700~2000μmol/gを含む。組成物中のA置換基数が700μmol/g以上であることで、硬化させる際に、架橋密度を高くすることができ、高いガラス転移温度を有し、誘電特性に優れた硬化物を得られる傾向にある。組成物中のA置換基数が3000μmol/g以下であることで、変性ポリフェニレンエーテル組成物を溶媒に溶かしたワニスの粘度を低くでき、基板材料適用時に加工性が良好となる傾向にある。
A置換基数の評価方法は、官能基の種類に応じて滴定法、分光法、定量NMR法等、公知の方法を用いることができる。例えば定量NMR法では、1H-NMRを用いる場合は構造既知の標準試料と多官能変性ポリフェニレンエーテル組成物を共存させて測定する。重量既知の多官能変性ポリフェニレンエーテル組成物と標準試料を重水素化溶媒に溶解させて1H-NMRを測定し、A由来のピークと標準試料のピークの積分値の比、多官能変性ポリフェニレンエーテル組成物の重量、標準試料の重量、及び標準試料の分子量から計算により求めることができる。標準試料は重水素化溶媒に溶解し、多官能変性ポリフェニレンエーテル組成物と反応せず、かつ1H-NMRにおけるピークが多官能変性ポリフェニレンエーテル組成物由来のピークと干渉しないものであれば特に制限されない。
本実施形態の変性ポリフェニレンエーテル組成物の液粘度は、35mPa・s未満であることが好ましく、より好ましくは30mPa・s以下、さらに好ましくは28mPa・s以下である。
上記液粘度は、後述の実施例に記載の方法により測定することができる。
本実施形態における多官能変性ポリフェニレンエーテル組成物は、基板材料を製造するときワニスに用いる溶剤を乾燥する温度、及びワニス組成物を熱硬化するときに加える温度以上であることが好ましいことから、ガラス転移温度は120℃以上であることが好ましく、140℃以上であることがより好ましい。
<多官能変性ポリフェニレンエーテル組成物の製造方法>
本実施形態の多官能変性ポリフェニレンエーテル組成物の製造方法は、例えば、重合法により下記式(1)’’で表される、分子末端が水酸基である多官能ポリフェニレンエーテル組成物(以下、未変性多官能ポリフェニレンエーテル組成物ともいう)を合成し、その末端に式(1)’におけるA置換基を導入する、すなわち変性することにより製造することができる。
Figure 0007202476000028
式(1)’’
(式(1)’’中、Z、Yn、aは式(1)’と同様のものが挙げられ、同じであることが好ましい。)
(重合工程)
ここで、未変性多官能ポリフェニレンエーテル組成物の製造方法では、重合工程において、重合溶剤として未変性多官能ポリフェニレンエーテル組成物の良溶剤である芳香族系溶剤を用いることが好ましい。
ここで、未変性多官能ポリフェニレンエーテル組成物の良溶剤とは、多官能ポリフェニレンエーテルを溶解させることができる溶剤であり、このような溶剤を例示すると、ベンゼン、トルエン、キシレン(o-、m-、p-の各異性体を含む)、エチルベンゼン、スチレン等の芳香族炭化水素やクロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素;ニトロベンゼンのようなニトロ化合物;等が挙げられる。
本実施形態で用いられる重合触媒としては、一般的にポリフェニレンエーテルの製造に用いることが可能な公知の触媒系を使用できる。一般的に知られている触媒系としては、酸化還元能を有する遷移金属イオンと当該遷移金属イオンと錯形成可能なアミン化合物からなるものが知られており、例えば、銅化合物とアミン化合物からなる触媒系、マンガン化合物とアミン化合物からなる触媒系、コバルト化合物とアミン化合物からなる触媒系、等である。重合反応は若干のアルカリ性条件下で効率よく進行するため、ここに若干のアルカリもしくは更なるアミン化合物を加えることもある。
本実施形態で好適に使用される重合触媒は、触媒の構成成分として銅化合物、ハロゲン化合物並びにアミン化合物からなる触媒であり、より好ましくは、アミン化合物として一般式(10)’で表されるジアミン化合物を含む触媒である。
Figure 0007202476000029
式(10)’
式(10)’中、R14、R15、R16、R17は、それぞれ独立に、水素原子、炭素数1から6の直鎖状又は分岐状アルキル基であり、全てが同時に水素原子ではない。R18は、炭素数2から5の直鎖状又はメチル分岐を持つアルキレン基である。
ここで述べられた触媒成分の銅化合物の例を列挙する。好適な銅化合物としては、第一銅化合物、第二銅化合物又はそれらの混合物を使用することができる。第二銅化合物としては、例えば、塩化第二銅、臭化第二銅、硫酸第二銅、硝酸第二銅等を例示することができる。また、第一銅化合物としては、例えば、塩化第一銅、臭化第一銅、硫酸第一銅、硝酸第一銅等を例示することができる。これらの中で特に好ましい金属化合物は、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅である。またこれらの銅塩は、酸化物(例えば酸化第一銅)、炭酸塩、水酸化物等と対応するハロゲン又は酸から使用時に合成しても良い。しばしば用いられる方法は、先に例示の酸化第一銅とハロゲン化水素(又はハロゲン化水素の溶液)を混合して作製する方法である。
ハロゲン化合物としては、例えば、塩化水素、臭化水素、ヨウ化水素、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム等である。また、これらは、水溶液や適当な溶剤を用いた溶液として使用できる。これらのハロゲン化合物は、成分として単独でも用いられるし、2種類以上組み合わせて用いても良い。好ましいハロゲン化合物は、塩化水素の水溶液、臭化水素の水溶液である。
これらの化合物の使用量は、特に限定されないが、銅原子のモル量に対してハロゲン原子として2倍以上20倍以下が好ましく、重合反応に添加するフェノール化合物100モルに対して好ましい銅原子の使用量としては0.02モルから0.6モルの範囲である。
次に触媒成分のジアミン化合物の例を列挙する。例えば、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’-トリメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N-メチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’-トリエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N-エチルエチレンジアミン、N,N-ジメチル-N’-エチルエチレンジアミン、N,N’-ジメチル-N-エチルエチレンジアミン、N-n-プロピルエチレンジアミン、N,N’-n-プロピルエチレンジアミン、N-i-プロピルエチレンジアミン、N,N’-i-プロピルエチレンジアミン、N-n-ブチルエチレンジアミン、N,N’-n-ブチルエチレンジアミン、N-i-ブチルエチレンジアミン、N,N’-i-ブチルエチレンジアミン、N-t-ブチルエチレンジアミン、N,N’-t-ブチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’-トリメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N-メチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,3-ジアミノ-1-メチルプロパン、N,N,N’,N’-テトラメチル-1,3-ジアミノ-2-メチルプロパン、N,N,N’,N’-テトラメチル-1,4-ジアミノブタン、N,N,N’,N’-テトラメチル-1,5-ジアミノペンタン等が挙げられる。本実施形態にとって好ましいジアミン化合物は、2つの窒素原子をつなぐアルキレン基の炭素数が2又は3のものである。これらのジアミン化合物の使用量は、特に限定されないが、重合反応に添加するフェノール化合物100モルに対して0.01モルから10モルの範囲が好ましい。
本実施形態においては、重合触媒の構成成分として、第1級アミン及び第2級モノアミンを含むことができる。第2級モノアミンとしては、以下に限定されるものではないが、例えば、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジ-i-プロピルアミン、ジ-n-ブチルアミン、ジ-i-ブチルアミン、ジ-t-ブチルアミン、ジペンチルアミン類、ジヘキシルアミン類、ジオクチルアミン類、ジデシルアミン類、ジベンジルアミン類、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、シクロヘキシルアミン、N-フェニルメタノールアミン、N-フェニルエタノールアミン、N-フェニルプロパノールアミン、N-(m-メチルフェニル)エタノールアミン、N-(p-メチルフェニル)エタノールアミン、N-(2’,6’-ジメチルフェニル)エタノールアミン、N-(p-クロロフェニル)エタノールアミン、N-エチルアニリン、N-ブチルアニリン、N-メチル-2-メチルアニリン、N-メチル-2,6-ジメチルアニリン、ジフェニルアミン等が挙げられる。
本実施形態における重合触媒の構成成分として、第3級モノアミン化合物を含むこともできる。第3級モノアミン化合物とは、脂環式第3級アミンを含めた脂肪族第3級アミンである。例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリイソブチルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、アリルジエチルアミン、ジメチル-n-ブチルアミン、ジエチルイソプロピルアミン、N-メチルシクロヘキシルアミン等が挙げられる。これらの第3級モノアミンは、単独でも用いられるし、2種類以上組み合わせて用いても良い。これらの使用量は、特に限定されないが、重合反応に添加するフェノール化合物100モルに対して15モル以下の範囲が好ましい。
本実施形態では、従来より重合活性に向上効果を有することが知られている界面活性剤を添加することについて、何ら制限されない。そのような界面活性剤として、例えば、Aliquat336やCapriquatの商品名で知られるトリオクチルメチルアンモニウムクロライドが挙げられる。その使用量は、重合反応混合物の全量100質量%に対して0.1質量%を超えない範囲が好ましい。
本実施形態の重合における酸素含有ガスとしては、純酸素の他、酸素と窒素等の不活性ガスとを任意の割合で混合したもの、空気、更には空気と窒素等の不活性ガスとを任意の割合で混合したもの等が使用できる。重合反応中の系内圧力は、常圧で充分であるが、必要に応じて減圧でも加圧でも使用できる。
重合の温度は、特に限定されないが、低すぎると反応が進行しにくく、また高すぎると反応選択性の低下や高分子量成分が生成する恐れがあるので、0~60℃、好ましくは10~50℃の範囲である。
本実施形態の未変性多官能ポリフェニレンエーテル組成物の製造方法では、ポリフェニレンエーテル重合時において、溶液状態で重合すること(本明細書中、「溶液重合」とも称する)が好ましい。溶液重合により製造することにより、かさ高い構造を有している中心フェノールを用いた場合においても、未変性多官能ポリフェニレンエーテル組成物の製造時に上記式(1)’’の構造を含まないポリフェニレンエーテル成分や、過酸化物による副生成物が生成する割合を少なくし、目的物の上記式(1)’の構造を含む多官能変性ポリフェニレンエーテル等を純度よく生成することができる。
(銅抽出及び副生成物除去工程)
本実施形態において、重合反応終了後の後処理方法については、特に制限はない。通常、塩酸や酢酸等の酸、又はエチレンジアミン4酢酸(EDTA)及びその塩、ニトリロトリ酢酸及びその塩等を反応液に加えて、触媒を失活させる。また、ポリフェニレンエーテルの重合により生じる二価フェノール体の副生成物を除去処理する方法も、従来既知の方法を用いて行うことができる。上記の様に触媒である金属イオンが実質的に失活されている状態であれば、該混合物を加熱するだけで脱色される。また既知の還元剤を必要量添加する方法でも可能である。既知の還元剤としては、ハイドロキノン、亜二チオン酸ナトリウム等が挙げられる。
(液液分離工程)
本実施形態の未変性多官能ポリフェニレンエーテル組成物の製造方法においては、銅触媒を失活させた化合物を抽出するため水を添加し、有機相と水相に液液分離を行った後、水相を除去することで有基礎から銅触媒を除去してよい。この液液分離工程は、特に限定しないが、静置分離、遠心分離機による分離等の方法が挙げられる。上記液液分離を促進させるためには、公知の界面活性剤等を用いてもよい。
(濃縮・乾燥工程)
続いて、本実施形態の多官能変性ポリフェニレンエーテル組成物の製造方法においては、液液分離後の上記未変性多官能ポリフェニレンエーテル組成物が含まれた有機相を、溶剤を揮発させることで濃縮・乾燥させてよい。なお、続いて変性反応(未変性多官能ポリフェニレンエーテル組成物の末端に式(1)’における置換基Aを導入する反応)を行う場合はこの工程を省略してもよい。
上記有機相に含まれる溶剤を揮発させる方法としては、特に限定はしないが、有機相を高温の濃縮槽に移し溶剤を留去させて濃縮する方法やロータリーエバポレーター等の機器を用いてトルエンを留去させて濃縮する方法等が挙げられる。
乾燥工程における乾燥処理の温度としては、少なくとも60℃以上が好ましく、80℃以上がより好ましく、120℃以上がさらに好ましく、140℃以上が最も好ましい。多官能ポリフェニレンエーテル組成物の乾燥を60℃以上の温度で行うと、ポリフェニレンエーテル粉体中の高沸点揮発成分の含有量を効率よく低減できる。
未変性多官能ポリフェニレンエーテル組成物を高効率で得るためには、乾燥温度を上昇させる方法、乾燥雰囲気中の真空度を上昇させる方法、乾燥中に撹拌を行う方法等が有効であるが、特に、乾燥温度を上昇させる方法が製造効率の観点から好ましい。乾燥工程は、混合機能を備えた乾燥機を使用することが好ましい。混合機能としては、撹拌式、転動式の乾燥機等が挙げられる。これにより処理量を多くすることができ、生産性を高く維持できる。
〔変性反応工程〕
Aの置換基(例えば、上記式(5)’の官能基)を得られた未変性ポリフェニレンエーテルの末端へ導入する方法に限定はなく、例えば、未変性ポリフェニレンエーテルの末端の水酸基と、炭素-炭素2重結合を有するカルボン酸(以下カルボン酸)とのエステル結合の形成反応により得られる。エステル結合の形成法は、公知の様々な方法を利用することが出来る。たとえば、a.カルボン酸ハロゲン化物とポリマー末端の水酸基との反応、b.カルボン酸無水物との反応によるエステル結合の形成、c.カルボン酸との直接反応、d.エステル交換反応による方法、等があげられる。aのカルボン酸ハロゲン化物との反応は最も一般的な方法の一つである。カルボン酸ハロゲン化物としては、塩化物、臭化物が一般的に用いられるが、他のハロゲンを利用してもかまわない。反応は、水酸基との直接反応、水酸基のアルカリ金属塩との反応いずれでも構わない。カルボン酸ハロゲン化物と水酸基との直接反応ではハロゲン化水素等の酸が発生するため、酸をトラップする目的でアミン等の弱塩基を共存させてもよい。bのカルボン酸無水物との反応やcのカルボン酸との直接反応では、反応点を活性化し、反応を促進するために、例えばカルボジイミド類やジメチルアミノピリジン等の化合物を共存させてもかまわない。dのエステル交換反応の場合は、必要に応じて、生成したアルコール類の除去を行うことが望ましい。また、反応を促進させるために公知の金属触媒類を共存させてもかまわない。反応後は、アミン塩等の副生物等を除くために、水、酸性、もしくはアルカリ性の水溶液で洗浄してもかまわないし、ポリマー溶液をアルコール類のような貧溶媒中に滴下し、再沈殿により、目的物を回収してもかまわない。またポリマー溶液を洗浄後、減圧下に溶媒を留去し、ポリマーを回収してもかまわない。
本実施形態の多官能変性ポリフェニレンエーテル組成物の製造方法は、上述の本実施形態の多官能変性ポリフェニレンエーテル組成物の製造方法に限定されることなく、上述の、重合工程、銅抽出及び副生成物除去工程、液液分離工程、濃縮・乾燥工程の順序や回数等を適宜調整してよい。
(多官能ポリフェニレンエーテル組成物の実施例)
以下、実施例に基づいて本実施形態を更に詳細に説明するが、本実施形態は、以下の実施例に限定されるものではない。
まず、下記に各物性及び評価の測定方法及び評価基準について述べる。
(1)式(1)の構造を有するポリフェニレンエーテル(主成分ポリフェニレンエーテル)の存在割合
(1-1)
実施例1~2及び比較例1~3で得られたポリフェニレンエーテル組成物、及び原料として用いる多価フェノールを重クロロホルムに溶解し、テトラメチルシランを内部標準として用い、1H-NMR測定(JEOL製500MHz)を行った。
(1-2)
中心フェノール部位に起因するピーク位置より、生成物に含まれる多価フェノールのピークを同定した。
(1-3)
式(2)で表される主成分ポリフェニレンエーテルの中心フェノールユニット、及び式(10)で表される副生成物に特有の末端フェノキシユニット、また式(11)で表される副生成物に特有のジフェニルユニットを、得られたNMRスペクトル中のピークにそれぞれ帰属させ、各種ポリフェニレンエーテルの存在割合を下記数式(12)に従い定量した。
Figure 0007202476000030
式(10)
Figure 0007202476000031
式(11)
上記式(10)、式(11)中、c、d、eは1~100の任意の整数である。
Figure 0007202476000032
数式(12)
C:式(10)で表される副生成物に特有の末端フェノキシユニットのH1、R22'部位に起因するピーク面積の積算値
D:式(11)で表される副生成物に特有の中心フェノール内部のR22"部位に起因するピーク面積の積算値
E:式(2)で表される主成分ポリフェニレンエーテルの中心フェノール部位に起因するピーク面積の積算値
F:積分値Eを求めたピークに該当する式(2)で表される中心フェノール部位由来のプロトン数
なお、実施例及び比較例に用いられる式(2)で表される主成分ポリフェニレンエーテルの中心フェノール部位に起因するピークや式(10)で表される副生成物末端フェノールのH1、R22'に起因するピーク、式(11)で表される副生成物の中心フェノール内部のR22"に起因するピークは次のような領域に現れる。
1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(1H):2.8~3.2ppm
1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(1H):4.0~4.3ppm
2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン(4H):6.95~7.0ppm
式(10)で表される副生成物末端フェノキシユニット(3H):7.05~7.1ppm
式(11)で表される副生成物のジフェニル(4H):7.34~7.4ppm
(2)式(2)の構造由来のピークの積算値に対する、7.6~8.3ppmに現れるピークの積算値の割合(過酸化物ピークの存在割合)
式(2)で表される主成分ポリフェニレンエーテルの中心フェノール部位に起因するピーク面積の積算値をEとし、7.6~8.3ppmの領域に現れる過酸化物由来の不純物ピーク面積の積算値Gを計算し、下記数式(13)に代入することで不純物ピークの存在割合を解析した。
Figure 0007202476000033
数式(13)
(3)数平均分子量(Mn)
測定装置として、昭和電工(株)製ゲルパーミエーションクロマトグラフィーSystem21を用い、標準ポリスチレンとエチルベンゼンにより検量線を作成し、この検量線を利用して、得られたポリフェニレンエーテル組成物の数平均分子量(Mn)の測定を行った。
標準ポリスチレンとしては、分子量が、3650000、2170000、1090000、681000、204000、52000、30200、13800、3360、1300、550のものを用いた。
カラムは、昭和電工(株)製K-805Lを2本直列につないだものを使用した。溶剤は、クロロホルムを使用し、溶剤の流量は1.0mL/分、カラムの温度は40℃として測定した。測定用試料としては、ポリフェニレンエーテル組成物の1g/Lクロロホルム溶液を作製して用いた。検出部のUVの波長は、標準ポリスチレンの場合は254nm、ポリフェニレンエーテルの場合は283nmとした。
上記測定データに基づきGPCにより得られた分子量分布を示す曲線に基づくピーク面積の割合から数平均分子量(Mn)(g/mol)算出した。
(4)ガラス転移温度(Tg)
ポリフェニレンエーテル組成物のガラス転移温度は、示差走査熱量計DSC(PerkinElmer製-Pyrisl)を用いて測定した。窒素雰囲気中、毎分20℃の昇温速度で室温から200℃まで加熱後、50℃まで毎分20℃で降温し、その後、毎分20℃の昇温速度でガラス転移温度を測定した。
(5)組成物中に含まれるOH末端数
ポリフェニレンエーテル組成物を5.0mg秤量した。そして、この秤量したポリフェニレンエーテル組成物を、25mLの塩化メチレンに溶解させた。調製した溶液2.0mLに対して、2質量%テトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液を150μL添加した後、UV分光光度計(日立製作所:U-3210型)を用いて、318nmの吸光度(Abs)を測定した(セル長1cmの吸光度測定用セルを使用)。そして、その測定結果に基づき、吸光度から得られる擬似分子量を、下記数式(9)により求めた。
吸光度から得られる擬似分子量(g/mol)=[((ε×5)/(25×Abs)]
数式(9)
ここで、εは、吸光係数を示し、4700L/mol・cmである。
また、上記疑似分子量の逆数に106をかけることでポリフェニレンエーテル組成物1g当たりのOH末端数(μmol/g)を計算した。
(6)メチルエチルケトンに対する溶解性(MEK溶解性)
ガラス製の透明スクリュー管にポリフェニレンエーテル組成物を2gとメチルエチルケトン3gを秤量した。攪拌子とマグネチックスターラーを用い1時間攪拌し溶液が透明になるまで完全に溶解させることで40wt%のメチルエチルケトン溶液を調製した。この溶液を25℃で7日間放置し、透明性を保っている場合は「〇」(良好)、溶液中に濁りが発生した場合は「×」(不良)と判定した。
(7)ポリフェニレンエーテル組成物のトルエン溶液の粘度(液粘度)
ポリフェニレンエーテル組成物を2gとトルエン3gを秤量した。攪拌子とマグネチックスターラーを用い1時間攪拌し溶液が透明になるまで完全に溶解させることで40wt%のトルエン溶液を調製した。この溶液を、B型粘度計を用い25℃、30rpmの条件で液粘度を測定した。
以下、各実施例及び比較例のポリフェニレンエーテル組成物の製造方法を説明する。
(実施例1)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5リットルのジャケット付き反応器に、予め調整した0.1026gの酸化第一銅及び0.7712gの47%臭化水素の混合物と、0.2471gのN,N’-ジ-t-ブチルエチレンジアミン、3.6407gのジメチル-n-ブチルアミン、1.1962gのジ-n-ブチルアミン、894.04gのトルエン、73.72gの2,6-ジメチルフェノール、26.28gの1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-30)を入れた。次いで激しく攪拌しながら反応器へ1.05L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。空気を導入し始めてから160分後、空気の通気をやめ、この重合混合物に1.1021gのエチレンジアミン四酢酸四ナトリウム塩四水和物(同仁化学研究所製試薬)を100gの水溶液として添加し、70℃に温めた。70℃にて2時間保温し触媒抽出と副生したジフェノキノン除去処理を行った後、混合液をシャープレス社製遠心分離機に移し、ポリフェニレンエーテル組成物溶液(有機相)と、触媒金属を移した水性相とに分離した。得られたポリフェニレンエーテル組成物溶液をジャケット付き濃縮槽に移し、ポリフェニレンエーテル組成物溶液中の固形分が55質量%になるまでトルエンを留去させて濃縮した。次いで、230℃に設定したオイルバスとロータリーエバポレーターを用いて更にトルエンを留去し、固形分を乾固させてポリフェニレンエーテル組成物を得た。得られたポリフェニレンエーテル組成物の分析結果を表1に示す。
(実施例2)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5リットルのジャケット付き反応器に、予め調整した0.1081gの酸化第一銅及び0.8126gの47%臭化水素の混合物と、0.2603gのN,N’-ジ-t-ブチルエチレンジアミン、3.8360gのジメチル-n-ブチルアミン、1.2604gのジ-n-ブチルアミン、893.72gのトルエン、76.33gの2,6-ジメチルフェノール、23.67gの1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-40)を入れた。次いで激しく攪拌しながら反応器へ1.05L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。空気を導入し始めてから160分後、空気の通気をやめ、この重合混合物に1.1612gのエチレンジアミン四酢酸四ナトリウム塩四水和物(同仁化学研究所製試薬)を100gの水溶液として添加し、70℃に温めた。70℃にて2時間保温し触媒抽出と副生したジフェノキノン除去処理を行った後、混合液をシャープレス社製遠心分離機に移し、ポリフェニレンエーテル組成物溶液(有機相)と、触媒金属を移した水性相とに分離した。得られたポリフェニレンエーテル組成物溶液をジャケット付き濃縮槽に移し、ポリフェニレンエーテル組成物溶液中の固形分が55質量%になるまでトルエンを留去させて濃縮した。次いで、230℃に設定したオイルバスとロータリーエバポレーターを用いて更にトルエンを留去し、固形分を乾固させてポリフェニレンエーテル組成物を得た。得られたポリフェニレンエーテル組成物の分析結果を表1に示す。
(比較例1)
500mLの3つ口フラスコに、3方コックをつけた、ジムロート、等圧滴下ロートを設置した。フラスコ内を窒素に置換した後、原料ポリフェニレンエーテルとしてS202A 100g、トルエン200g、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-30)12.8gを加えた。フラスコに温度計を設置し、マグネチックスターラーにて撹拌しながら、オイルバスにてフラスコを90℃に加熱し、原料ポリフェニレンエーテルを溶解させた。開始剤として、ベンゾイルペルオキシド、ベンゾイルm-メチルベンゾイルペルオキシド、m-トルイルペルオキシドの混合物の40%メタキシレン溶液(日本油脂製:ナイパーBMT)の37.5gをトルエン87.5gに希釈し、等圧滴下ロートに仕込んだ。フラスコ内の温度を80℃まで降温させたのち、開始剤溶液を、フラスコ内へ滴下開始し、反応を開始した。開始剤を2時間かけて滴下し、滴下後、再び90℃に昇温し、4時間撹拌を継続した。反応後、ポリマー溶液をメタノール中に滴下し、再沈させた後、溶液と濾別し、ポリマーを回収した。その後、これを真空下100℃で3時間乾燥させた。得られたポリフェニレンエーテル組成物の分析結果を表1に示す。
(比較例2)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5Lのジャケット付き反応器に、0.04gの塩化第二銅2水和物、0.19gの35%塩酸、1.70gのN,N,N’,N’-テトラメチルプロパンジアミン、718.0gのメタノール、21.0gの2,6-ジメチルフェノール、59.0gの1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-30)を入れた。次いで激しく攪拌しながら反応器へ1.05L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。重合液は次第にスラリーの様態を呈した。
酸素を導入し始めてから120分後、酸素含有ガスの通気をやめ、この重合混合物に0.23gのエチレンジアミン四酢酸3カリウム塩(同仁化学研究所製試薬)を溶かした50%水溶液を添加し、60℃で2時間反応させた。反応終了後、濾過して、メタノール洗浄液(b)と、洗浄されるポリフェニレンエーテル組成物(a)との質量比(b/a)が4となる量の洗浄液(b)で3回洗浄し、湿潤ポリフェニレンエーテル組成物を得た。次いで120℃で1時間、真空乾燥し乾燥ポリフェニレンエーテル組成物を得た。得られたポリフェニレンエーテル組成物の分析結果を表1に示す。
(比較例3)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5リットルのジャケット付き反応器に、予め調整した0.1590gの酸化第一銅及び2.2854gの47%臭化水素の混合物と、0.4891gのN,N’-ジ-t-ブチルエチレンジアミン、7.1809gのジメチル-n-ブチルアミン、3.3629gのジ-n-ブチルアミン、666.52gのトルエン、265.6gの2,6-ジメチルフェノール、54.40gの2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパンを入れた。次いで激しく攪拌しながら反応器へ2.19L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。空気を導入し始めてから160分後、空気の通気をやめ、この重合混合物に1.0053gのエチレンジアミン四酢酸四ナトリウム塩四水和物(同仁化学研究所製試薬)を100gの水溶液として添加し、70℃に温めた。70℃にて2時間保温し触媒抽出と副生したジフェノキノン除去処理を行った後、混合液をシャープレス社製遠心分離機に移し、ポリフェニレンエーテル組成物溶液(有機相)と、触媒金属を移した水性相とに分離した。得られたポリフェニレンエーテル組成物溶液をジャケット付き濃縮槽に移し、ポリフェニレンエーテル組成物溶液中の固形分が55質量%になるまでトルエンを留去させて濃縮した。次いで、230℃に設定したオイルバスとロータリーエバポレーターを用いて更にトルエンを留去し、固形分を乾固させてポリフェニレンエーテル組成物を得た。得られたポリフェニレンエーテル組成物中の主成分は2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパンを中心フェノールとして2,6-ジメチルフェノールが結合した重合体であり、式(7)で表される単官能ポリフェニレンエーテル、式(8)で表される二官能ポリフェニレンエーテル、及び2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパンを中心フェノールとして2,6-ジメチルフェノールが結合した重合体の合計モルに対する、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパンを中心フェノールとして2,6-ジメチルフェノールが結合した重合体のモル割合は、93mol%であった。また、得られたポリフェニレンエーテル組成物の分析結果を表1に示す。
Figure 0007202476000034
表1に示す通り、実施例1、2では、主成分ポリフェニレンエーテルの存在割合が60mol%以上を示し、過酸化物ピークの存在割合も低いポリフェニレンエーテル組成物を得ることができた。さらに、実施例1~2によるポリフェニレンエーテル組成物は140℃以上の高いTgを有しメチルエチルケトンへの長期溶解性にも優れ、同水準の数平均分子量におけるトルエン溶液の液粘度が低いので、基板材料適用時の加工性にも優れていることが判明した。
一方、比較例1によるポリフェニレンエーテル組成物は主成分ポリフェニレンエーテルの存在割合は60mol%以上を示し、トルエン溶液の液粘度は低かったが、過酸化物由来の不純物ピークが多く、メチルエチルケトンへの長期溶解性が確保できず、かつ低いTgを示しており、基板材料への適用が困難と考えられる。
比較例2によるポリフェニレンエーテル組成物は不純物ピークが存在せず、高いTgを示したものの、主成分ポリフェニレンエーテルの存在割合が低く、メチルエチルケトンへの長期溶解性が確保できないことから基板材料への適用は困難と考えられる。
また、比較例3によるポリフェニレンエーテル組成物は、主成分ポリフェニレンエーテルの存在割合、不純物ピークの存在有無、OH末端数、Tg、メチルエチルケトンへの長期溶解性に関しては優れた物性を示したものの、数平均分子量に対するトルエン溶液の液粘度が高く、各実施例に比較して基板材料適用時に加工性が劣ると考えられる。
(変性ポリフェニレンエーテル組成物の実施例)
まず、下記に各物性及び評価の測定方法及び評価基準について述べる。
(1)ポリフェニレンエーテル(式(1)’の構造を有する変性ポリフェニレンエーテル、式(1)’の構造において1つ以上の(-Yn-A)が(-Yn-H)であり、かつすべての(-Yn-A)が(-Yn-H)ではない変性ポリフェニレンエーテル、及び式(1)’の構造においてすべての(-Yn-A)が(-Yn-H)であるポリフェニレンエーテル(主成分ポリフェニレンエーテル))の存在割合
(1-1)
実施例及び比較例で得られた変性ポリフェニレンエーテル組成物、及び原料として用いる多価フェノールを重クロロホルムに溶解し、テトラメチルシランを内部標準として用い、1H-NMR測定(JEOL製500MHz)を行った。
(1-2)
中心フェノール部位に起因するピーク位置より、生成物に含まれる多価フェノールのピークを同定した。
(1-3)
式(2)’で表される主成分ポリフェニレンエーテルの中心フェノールユニット、及び式(11)’で表される副生成物に特有の末端フェノキシユニット、また式(12)’で表される副生成物に特有のジフェニルユニットを、得られたNMRスペクトル中のピークにそれぞれ帰属させ、各種ポリフェニレンエーテルの存在割合を下記数式(13)’に従い定量した。
Figure 0007202476000035
式(11)’
Figure 0007202476000036
式(12)’
上記式(11)’及び式(12)’中、c、d、eは1~100の任意の整数である。
Figure 0007202476000037
数式(13)’
C:式(11)’で表される副生成物に特有の末端フェノキシユニットのH1、R22'に起因するピーク面積の積算値
D:式(12)’で表される副生成物に特有の中心フェノール内部のR22"に起因するピーク面積の積算値
E:式(2)’で表される主成分ポリフェニレンエーテルの中心フェノール部位に起因するピーク面積の積算値
F:積分値Eを求めたピークに該当する式(2)’で表される中心フェノール部位由来のプロトン数
なお、実施例及び比較例に用いられる式(2)’で表される主成分ポリフェニレンエーテルの中心フェノール部位に起因するピークや式(11)’で表される副生成物末端フェノールのH1、R22'に起因するピーク、式(12)’で表される副生成物の中心フェノール内部のR22"に起因するピークは次のような領域に現れる。
1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(1H):2.8~3.2ppm
1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(1H):4.0~4.3ppm
2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン(4H):6.95~7.0ppm
式(11)’で表される副生成物末端フェノキシユニット(3H):7.05~7.1ppm
式(12)’で表される副生成物のジフェニル(4H):7.34~7.4ppm
(2)式(2)’の構造由来のピークの積算値に対する、7.6~8.3ppmに現れるピークの積算値の割合(過酸化物ピークの存在割合)
式(2)’で表される主成分ポリフェニレンエーテルの中心フェノール部位に起因するピーク面積の積算値をEとし、7.6~8.3ppmの領域に現れる過酸化物由来の不純物ピーク(過酸化物ピーク)面積の積算値Gを計算し、下記数式(14)’に代入することで過酸化物ピークの存在割合を解析した。
Figure 0007202476000038
数式(14)’
(3)数平均分子量(Mn)
測定装置として、昭和電工(株)製ゲルパーミエーションクロマトグラフィーSystem21を用い、標準ポリスチレンとエチルベンゼンにより検量線を作成し、この検量線を利用して、得られた変性ポリフェニレンエーテル組成物の数平均分子量(Mn)の測定を行った。
標準ポリスチレンとしては、分子量が、3650000、2170000、1090000、681000、204000、52000、30200、13800、3360、1300、550のものを用いた。
カラムは、昭和電工(株)製K-805Lを2本直列につないだものを使用した。溶剤は、クロロホルムを使用し、溶剤の流量は1.0mL/分、カラムの温度は40℃として測定した。測定用試料としては、変性ポリフェニレンエーテル組成物の1g/Lクロロホルム溶液を作製して用いた。検出部のUVの波長は、標準ポリスチレンの場合は254nm、ポリフェニレンエーテルの場合は283nmとした。
上記測定データに基づきGPCにより得られた分子量分布を示す曲線に基づくピーク面積の割合から数平均分子量(Mn)(g/mol)算出した。
(4)ガラス転移温度(Tg)
変性ポリフェニレンエーテル組成物のガラス転移温度は、示差走査熱量計DSC(PerkinElmer製-Pyrisl)を用いて測定した。窒素雰囲気中、毎分20℃の昇温速度で室温から200℃まで加熱後、50℃まで毎分20℃で降温し、その後、毎分20℃の昇温速度でガラス転移温度を測定した。
(5)組成物中に含まれるA置換基数
変性ポリフェニレンエーテル組成物及び内部標準試料として1,3,5-トリメトキシベンゼン標準品(富士フィルム和光純薬株式会社製、分子量168.19)を規定量採り、トリメチルシラン入り重クロロホルムに溶解させ、1H-NMR測定(JEOL製500MHz)を行った。
次いで、1,3,5-トリメトキシベンゼンのメトキシ基由来のプロトンのピーク(3.7~3.8ppm:9H)の積分値、及びメタクリル基のC=C結合末端のプロトンのうち高磁場側に現れるピーク(5.5~5.9ppm:1H)の積分値を求め、これらの積分値と、測定に用いたポリフェニレンエーテル組成物と1,3,5-トリメトキシベンゼンの重量から変性ポリフェニレンエーテル組成物1g当たりのメタクリル基数(単位μmol/g)を算出した。
(6)メチルエチルケトンに対する溶解性(MEK溶解性)
ガラス製の透明スクリュー管に変性ポリフェニレンエーテル組成物を2gとメチルエチルケトン3gを秤量した。攪拌子とマグネチックスターラーを用い1時間攪拌し溶液が透明になるまで完全に溶解させることで40wt%のメチルエチルケトン溶液を調製した。この溶液を25℃で7日間放置し、透明性を保っている場合は「〇」(良好)、溶液中に濁りが発生した場合は「×」(不良)と判定した。
(7)変性ポリフェニレンエーテル組成物のトルエン溶液の粘度(液粘度)
変性ポリフェニレンエーテル組成物を2gとトルエン3gを秤量した。攪拌子とマグネチックスターラーを用い1時間攪拌し溶液が透明になるまで完全に溶解させることで40wt%のトルエン溶液を調製した。この溶液を、B型粘度計を用い25℃、30rpmの条件で液粘度を測定した。
以下、各製造例、製造比較例の未変性ポリフェニレンエーテル組成物の製造方法、及び各実施例及び比較例の変性ポリフェニレンエーテル組成物の製造方法を説明する。
(製造例1)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5リットルのジャケット付き反応器に、予め調整した0.1026gの酸化第一銅及び0.7712gの47%臭化水素の混合物と、0.2471gのN,N’-ジ-t-ブチルエチレンジアミン、3.6407gのジメチル-n-ブチルアミン、1.1962gのジ-n-ブチルアミン、894.04gのトルエン、73.72gの2,6-ジメチルフェノール、26.28gの1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-30)を入れた。次いで激しく攪拌しながら反応器へ1.05L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。空気を導入し始めてから160分後、空気の通気をやめ、この重合混合物に1.1021gのエチレンジアミン四酢酸四ナトリウム塩四水和物(同仁化学研究所製試薬)を100gの水溶液として添加し、70℃に温めた。70℃にて2時間保温し触媒抽出と副生したジフェノキノン除去処理を行った後、混合液をシャープレス社製遠心分離機に移し、未変性ポリフェニレンエーテル組成物溶液(有機相)と、触媒金属を移した水性相とに分離した。得られた未変性ポリフェニレンエーテル組成物溶液をジャケット付き濃縮槽に移し、未変性ポリフェニレンエーテル組成物溶液中の固形分が55質量%になるまでトルエンを留去させて濃縮した。次いで、230℃に設定したオイルバスとロータリーエバポレーターを用いて更にトルエンを留去し、固形分を乾固させて未変性ポリフェニレンエーテル組成物を得た。
(製造例2)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5リットルのジャケット付き反応器に、予め調整した0.1081gの酸化第一銅及び0.8126gの47%臭化水素の混合物と、0.2603gのN,N’-ジ-t-ブチルエチレンジアミン、3.8360gのジメチル-n-ブチルアミン、1.2604gのジ-n-ブチルアミン、893.72gのトルエン、76.33gの2,6-ジメチルフェノール、23.67gの1,1-ビス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-40)を入れた。次いで激しく攪拌しながら反応器へ1.05L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。空気を導入し始めてから160分後、空気の通気をやめ、この重合混合物に1.1612gのエチレンジアミン四酢酸四ナトリウム塩四水和物(同仁化学研究所製試薬)を100gの水溶液として添加し、70℃に温めた。70℃にて2時間保温し触媒抽出と副生したジフェノキノン除去処理を行った後、混合液をシャープレス社製遠心分離機に移し、未変性ポリフェニレンエーテル組成物溶液(有機相)と、触媒金属を移した水性相とに分離した。得られた未変性ポリフェニレンエーテル組成物溶液をジャケット付き濃縮槽に移し、未変性ポリフェニレンエーテル組成物溶液中の固形分が55質量%になるまでトルエンを留去させて濃縮した。次いで、230℃に設定したオイルバスとロータリーエバポレーターを用いて更にトルエンを留去し、固形分を乾固させて未変性ポリフェニレンエーテル組成物を得た。
(製造比較例1)
500mLの3つ口フラスコに、3方コックをつけた、ジムロート、等圧滴下ロートを設置した。フラスコ内を窒素に置換した後、原料ポリフェニレンエーテルとしてS202A 100g、トルエン200g、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-30)12.8gを加えた。フラスコに温度計を設置し、マグネチックスターラーにて撹拌しながら、オイルバスにてフラスコを90℃に加熱し、原料ポリフェニレンエーテルを溶解させた。開始剤として、ベンゾイルペルオキシド、ベンゾイルm-メチルベンゾイルペルオキシド、m-トルイルペルオキシドの混合物の40%メタキシレン溶液(日本油脂製:ナイパーBMT)の37.5gをトルエン87.5gに希釈し、等圧滴下ロートに仕込んだ。フラスコ内の温度を80℃まで降温させたのち、開始剤溶液を、フラスコ内へ滴下開始し、反応を開始した。開始剤を2時間かけて滴下し、滴下後、再び90℃に昇温し、4時間撹拌を継続した。反応後、ポリマー溶液をメタノール中に滴下し、再沈させた後、溶液と濾別し、ポリマーを回収した。その後、これを真空下100℃で3時間乾燥させ、未変性ポリフェニレンエーテル組成物を得た。
(製造比較例2)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5Lのジャケット付き反応器に、0.04gの塩化第二銅2水和物、0.19gの35%塩酸、1.70gのN,N,N’,N’-テトラメチルプロパンジアミン、718.0gのメタノール、21.0gの2,6-ジメチルフェノール、59.0gの1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン(ADEKA製:AO-30)を入れた。次いで激しく攪拌しながら反応器へ1.05L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。重合液は次第にスラリーの様態を呈した。
酸素を導入し始めてから120分後、酸素含有ガスの通気をやめ、この重合混合物に0.23gのエチレンジアミン四酢酸3カリウム塩(同仁化学研究所製試薬)を溶かした50%水溶液を添加し、60℃で2時間反応させた。反応終了後、濾過して、メタノール洗浄液(b)と、洗浄される未変性ポリフェニレンエーテル組成物(a)との質量比(b/a)が4となる量の洗浄液(b)で3回洗浄し、湿潤未変性ポリフェニレンエーテル組成物を得た。次いで120℃で1時間真空乾燥し、未変性多官能ポリフェニレンエーテル組成物を得た。
(製造比較例3)
反応器底部に酸素含有ガス導入の為のスパージャー、攪拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器を備えた1.5リットルのジャケット付き反応器に、予め調整した0.1590gの酸化第一銅及び2.2854gの47%臭化水素の混合物と、0.4891gのN,N’-ジ-t-ブチルエチレンジアミン、7.1809gのジメチル-n-ブチルアミン、3.3629gのジ-n-ブチルアミン、666.52gのトルエン、265.6gの2,6-ジメチルフェノール、54.40gの2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパンを入れた。次いで激しく攪拌しながら反応器へ2.19L/分の速度で空気をスパージャーより導入し始めると同時に、重合温度は40℃を保つようにジャケットに熱媒を通して調節した。空気を導入し始めてから160分後、空気の通気をやめ、この重合混合物に1.0053gのエチレンジアミン四酢酸四ナトリウム塩四水和物(同仁化学研究所製試薬)を100gの水溶液として添加し、70℃に温めた。70℃にて2時間保温し触媒抽出と副生したジフェノキノン除去処理を行った後、混合液をシャープレス社製遠心分離機に移し、未変性ポリフェニレンエーテル組成物溶液(有機相)と、触媒金属を移した水性相とに分離した。得られた未変性ポリフェニレンエーテル組成物溶液をジャケット付き濃縮槽に移し、未変性ポリフェニレンエーテル組成物溶液中の固形分が55質量%になるまでトルエンを留去させて濃縮した。次いで、230℃に設定したオイルバスとロータリーエバポレーターを用いて更にトルエンを留去し、固形分を乾固させて未変性ポリフェニレンエーテル組成物を得た。
(実施例3)
300ml3つ口フラスコに撹拌子を入れ、主管に三方コックを付けたジムロート冷却器を設置し、一方の側管に温度計を差したゴム栓を取り付けた。もう一方の側管から製造例1で得られた未変性ポリフェニレンエーテル組成物20gを投入し、ゴム栓を取り付けた。フラスコ内部を窒素置換した後、マグネチックスターラーで内部の攪拌をしながらシリンジを用いてトルエン140gで溶解させ、次いでトリエチルアミン6.32gを加えた。その後塩化メタクリロイル3.27gをシリンジに採取し、ゴム栓から系内に滴下した。滴下終了後から3時間常温で攪拌を継続した後にオイルバスでフラスコを加熱し、還流状態で反応を継続した。還流開始から2時間経過した段階で加熱をやめ、常温に戻った後にメタノール1.00gを加えて反応を停止した。次いで当該反応液を固形分濃度が20重量%となるまで濃縮した後、濃縮液と等重量のイオン交換水を用いて水洗した。その後、水槽を除去し、有機層をメタノール(有機層の5倍重量)に攪拌しながら滴下した。次いで沈殿物をろ過し、ろ物を110℃で1時間真空乾燥し、変性ポリフェニレンエーテル組成物を得た。得られた変性ポリフェニレンエーテル組成物の分析結果を表2に示す。
(実施例4)
未変性ポリフェニレンエーテル組成物として製造例2で得られた組成物20gを用い、トリエチルアミンの量を7.94g、塩化メタクリロイルの量を4.10gとした他は実施例3と同様の方法で操作を実施し、変性ポリフェニレンエーテル組成物を得た。得られた変性ポリフェニレンエーテル組成物の分析結果を表2に示す。
(実施例5)
製造例1において未変性ポリフェニレンエーテル組成物溶液中の固形分が55質量%になるまでトルエンを留去させて濃縮した濃縮液36.4gにトルエン123.6gを加えた未変性ポリフェニレンエーテル組成物溶液を用いて実施例3と同様の方法で操作を実施し、変性ポリフェニレンエーテル組成物を得た。得られた変性ポリフェニレンエーテル組成物の分析結果を表2に示す。
(比較例4)
未変性ポリフェニレンエーテル組成物として製造比較例1で得られた組成物20gを用い、トリエチルアミンの量を10.79g、塩化メタクリロイルの量を5.57gとした他は実施例3と同様の方法で操作を実施し、変性ポリフェニレンエーテル組成物を得た。得られた変性ポリフェニレンエーテル組成物の分析結果を表2に示す。
(比較例5)
未変性ポリフェニレンエーテル組成物として製造比較例2で得られた組成物20gを用い、トリエチルアミンの量を10.94g、塩化メタクリロイルの量を5.65gとした他は実施例3と同様の方法で操作を実施し、変性ポリフェニレンエーテル組成物を得た。得られた変性ポリフェニレンエーテル組成物の分析結果を表2に示す。
(比較例6)
未変性ポリフェニレンエーテル組成物として製造比較例3で得られた組成物20gを用い、トリエチルアミンの量を7.86g、塩化メタクリロイルの量を4.06gとした他は実施例3と同様の方法で操作を実施し、変性ポリフェニレンエーテル組成物を得た。得られた変性多官能ポリフェニレンエーテルの分析結果を表2に示す。
Figure 0007202476000039
表2に示す通り、実施例3~5では、主成分ポリフェニレンエーテルの存在割合が60mol%以上を示し、過酸化物ピークの存在割合も低い変性ポリフェニレンエーテル組成物を得ることができた。さらに、実施例3~5による変性ポリフェニレンエーテル組成物は140℃以上の高いTgを有しメチルエチルケトンへの長期溶解性にも優れ、同水準の数平均分子量におけるトルエン溶液の液粘度が低いので、基板材料適用時の加工性にも優れることが判明した。
一方、比較例4によるポリフェニレンエーテル組成物は主成分ポリフェニレンエーテルの存在割合は60mol%以上を示し、トルエン溶液の液粘度は低かったが、過酸化物ピークが多く、メチルエチルケトンへの長期溶解性が確保できず、低いTgを示しており、基板材料への適用が困難と考えられる。
比較例5によるポリフェニレンエーテル組成物は過酸化物ピークが存在せず、高いTgを示したものの、主成分ポリフェニレンエーテルの存在割合が低く、メチルエチルケトンへの長期溶解性が確保できないことから基板材料への適用は困難と考えられる。
また、比較例6によるポリフェニレンエーテル組成物は、主成分ポリフェニレンエーテルの存在比率、過酸化物ピークの存在有無、置換基Aの数、Tg、メチルエチルケトンへの長期溶解性に関しては優れた物性を示したものの、数平均分子量に対するトルエン溶液の液粘度が高く、各実施例に比較して基板材料適用時に加工性が劣ると考えられる。
本発明のポリフェニレンエーテル組成物及び/又は変性ポリフェニレンエーテル組成物は、高ガラス転移温度かつ基板材料への工程適用性をさらに向上させることができるため、電子材料用途として産業上の利用価値がある。

Claims (7)

  1. 下記式(1)の構造を有するポリフェニレンエーテルを60mol%以上含み、
    H-NMR測定結果における、下記式(2)の構造由来のピークの積算値に対する、7.6~8.3ppmに現れるピークの積算値の割合が1以下であり、
    ポリスチレン換算の数平均分子量が、500~15000g/molである、
    ことを特徴とする、ポリフェニレンエーテル組成物。
    Figure 0007202476000040
    式(1)
    (式(1)中、Zは下記式(2)で表されるa価の部分構造であり、aは2~6の整数を表し、Yは各々独立に下記式(4)の構造を有する2価の連結基であり、nはYの繰り返し数を表し、各々独立に0~200の整数であり、a個の(-Y-H)中少なくとも1つのnは1以上の整数である。
    Figure 0007202476000041
    式(2)
    式(2)中、Xは単結合又はエステル結合を介して、R が結合しているベンゼン環に結合するa価のアルキル骨格であり、Rは各々独立に任意の置換基であり、kは各々独立に1~4の整数であり、Rのうち少なくとも1つは下記式(3)で表される部分構造であり、
    Figure 0007202476000042
    式(3)
    式(3)中、R11は各々独立に置換されていてもよい炭素数1~8のアルキル基であり、R12は各々独立に置換されていてもよい炭素数1~8のアルキレン基であり、bは各々独立に0又は1であり、R13は水素原子、置換されていてもよい炭素数1~8のアルキル基又は置換されていてもよいフェニル基のいずれかを表し、
    式(2)中の-O-が結合するベンゼン環の炭素原子を1位とし、2位又は6位の一方の炭素原子に式(3)の部分構造を有するRが結合し、2位又は6位の他方の炭素原子に水素原子、メチル基又はエチル基が結合し、
    Figure 0007202476000043
    式(4)
    式(4)中、R21は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかであり、2つのR21は、同時に水素原子ではなく、2つのR21は、一方が上記式(3)で表される部分構造、もう一方が水素原子、メチル基又はエチル基のいずれかである組み合わせではなく、R22は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかである。)
  2. 前記式(3)で表される部分構造がt-ブチル基である、請求項1に記載のポリフェニレンエーテル組成物。
  3. 前記ポリフェニレンエーテル組成物中に含まれるOH末端数が1000~3000μmol/gである、請求項1又は2に記載のポリフェニレンエーテル組成物。
  4. 下記式(1)’の構造を有する変性ポリフェニレンエーテルを含み、
    下記式(1)’の構造を有する変性ポリフェニレンエーテル、下記式(1)’の構造において1つ以上の(-Y-A)が(-Y-H)であり、かつすべての(-Y-A)が(-Y-H)ではない変性ポリフェニレンエーテル、及び下記式(1)’の構造においてすべての(-Y-A)が(-Y-H)であるポリフェニレンエーテルをこれらの化合物の全量として60mol%以上含み、
    H-NMR測定結果における、下記式(2)’の構造由来のピークの積算値に対する、7.6~8.3ppmに現れるピークの積算値の割合が1以下であり、
    ポリスチレン換算の数平均分子量が、500~15000g/molである、
    ことを特徴とする、ポリフェニレンエーテル組成物。
    Figure 0007202476000044
    式(1)’
    (式(1)’中、Zは下記式(2)’で表されるa価の部分構造であり、aは2~6の整数を表し、Aは各々独立に炭素-炭素二重結合及び/又はエポキシ結合を含有する置換基を表し、Yは各々独立に下記式(4)’の構造を有する2価の連結基であり、nはYの繰り返し数を表し、各々独立に0~200の整数であり、a個の(-Y-A)中少なくとも1つのnは1以上の整数である。
    Figure 0007202476000045
    式(2)’
    式(2)’中、Xは単結合又はエステル結合を介して、R が結合しているベンゼン環に結合するa価のアルキル骨格であり、Rは各々独立に任意の置換基であり、kは各々独立に1~4の整数であり、Rのうち少なくとも1つは下記式(3)’で表される部分構造であり、
    Figure 0007202476000046
    式(3)’
    式(3)’中、R11は各々独立に置換されていてもよい炭素数1~8のアルキル基であり、R12は各々独立に置換されていてもよい炭素数1~8のアルキレン基であり、bは各々独立に0又は1であり、R13は水素原子、置換されていてもよい炭素数1~8のアルキル基又は置換されていてもよいフェニル基のいずれかを表し、
    式(2)’中の-O-が結合するベンゼン環の炭素原子を1位とし、2位又は6位の一方の炭素原子に式(3)’の部分構造を有するR5が結合し、2位又は6位の他方の炭素原子に水素原子、メチル基又はエチル基が結合し、
    Figure 0007202476000047
    式(4)’
    式(4)’中、R21は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかであり、2つのR21は、同時に水素原子ではなく、2つのR21は、一方が上記式(3)’で表される部分構造、もう一方が水素原子、メチル基又はエチル基のいずれかである組み合わせではなく、R22は各々独立に、水素原子、置換されていてもよい炭素数1~6の炭化水素基、置換されていてもよい炭素数6~12のアリール基、及びハロゲン原子のいずれかである。)
  5. 前記式(3)’で表される部分構造がt-ブチル基である、請求項4に記載のポリフェニレンエーテル組成物。
  6. 前記Aが、下記式(5)’で表される基である、請求項4又は5に記載のポリフェニレンエーテル組成物
    Figure 0007202476000048
    式(5)’
    (式(5)’中、
    31は、それぞれ独立に水素原子、水酸基又は炭素数1~30の炭化水素基、アリール基、アルコキシ基、アリロキシ基、アミノ基、ヒドロキシアルキル基であり、
    32は、それぞれ独立に炭素数1~30の炭化水素基であり、
    sは、0~5の整数である。)
  7. 前記ポリフェニレンエーテル組成物中に含まれる前記A基の数が700~3000μmol/gである、請求項4から6のいずれか一項に記載のポリフェニレンエーテル組成物。
JP2021550442A 2019-10-02 2020-08-28 ポリフェニレンエーテル組成物 Active JP7202476B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2019182437 2019-10-02
JP2019182437 2019-10-02
JP2019182436 2019-10-02
JP2019182436 2019-10-02
PCT/JP2020/032709 WO2021065275A1 (ja) 2019-10-02 2020-08-28 ポリフェニレンエーテル組成物

Publications (2)

Publication Number Publication Date
JPWO2021065275A1 JPWO2021065275A1 (ja) 2021-04-08
JP7202476B2 true JP7202476B2 (ja) 2023-01-11

Family

ID=75337922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021550442A Active JP7202476B2 (ja) 2019-10-02 2020-08-28 ポリフェニレンエーテル組成物

Country Status (7)

Country Link
US (1) US20220356302A1 (ja)
EP (1) EP4039728B1 (ja)
JP (1) JP7202476B2 (ja)
KR (1) KR102660658B1 (ja)
CN (1) CN114514261A (ja)
TW (1) TWI753560B (ja)
WO (1) WO2021065275A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008561B2 (ja) * 2018-03-29 2022-01-25 旭化成株式会社 特定のフェノールユニットを含む変性ポリフェニレンエーテル及びその製造方法。
EP4342930A1 (en) * 2021-05-21 2024-03-27 Asahi Kasei Kabushiki Kaisha Polyphenylene ether, production method therefor, thermosetting composition, prepreg, and multilayer body
CN113624798A (zh) * 2021-07-06 2021-11-09 黄河三角洲京博化工研究院有限公司 一种定量核磁共振氢谱测定杜仲胶含量的方法
CN117181174B (zh) * 2023-11-07 2024-01-02 山东广浦生物科技有限公司 一种双(1-乙基(3-氧杂环丁基)甲基)醚的制备方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339328A (ja) 2003-05-14 2004-12-02 Matsushita Electric Works Ltd 変性ポリフェニレンエーテル化合物及びその製造方法
WO2005073264A1 (ja) 2004-01-30 2005-08-11 Nippon Steel Chemical Co., Ltd. 硬化性樹脂組成物
JP2007070598A (ja) 2005-08-11 2007-03-22 Mitsubishi Gas Chem Co Inc 多官能フェニレンエーテルオリゴマー体、エポキシ樹脂、及び樹脂組成物
WO2007097231A1 (ja) 2006-02-21 2007-08-30 Asahi Kasei Chemicals Corporation 低分子量ポリフェニレンエーテルの製造方法
JP2014005468A (ja) 2007-07-02 2014-01-16 Kaneka Corp 高分子電解質、高分子電解質膜、燃料電池用触媒層バインダー、およびその利用
US20140323666A1 (en) 2013-04-30 2014-10-30 Industrial Technology Research Institute Polyphenylene ether oligomer and article employing the same
US20160102174A1 (en) 2013-06-03 2016-04-14 Polyone Corporation Low molecular weight polyphenylene ether prepared without solvents
JP2019023263A (ja) 2017-07-25 2019-02-14 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496236A (en) 1966-05-03 1970-02-17 Gen Electric Equilibration of poly-(1,4-phenylene ethers)
JPS5176336U (ja) 1974-09-17 1976-06-16
JPS5147397U (ja) 1974-10-04 1976-04-08
JPS5643260Y2 (ja) 1977-08-22 1981-10-09
JPS59174623A (ja) * 1983-03-23 1984-10-03 Japan Synthetic Rubber Co Ltd ポリフエニレンエ−テルの製造方法
US5880221A (en) 1997-02-14 1999-03-09 General Electric Company Redistribution of polyphenylene ethers and polyphenylene ethers with novel structure
JP2004099824A (ja) 2002-09-12 2004-04-02 Asahi Kasei Chemicals Corp 低分子量ポリフェニレンエーテルパウダー
CN102037055B (zh) * 2008-05-20 2013-07-10 住友化学株式会社 聚醚聚合物和其生产方法
TWI759590B (zh) * 2018-03-29 2022-04-01 日商旭化成股份有限公司 聚伸苯醚、其組成物及製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339328A (ja) 2003-05-14 2004-12-02 Matsushita Electric Works Ltd 変性ポリフェニレンエーテル化合物及びその製造方法
WO2005073264A1 (ja) 2004-01-30 2005-08-11 Nippon Steel Chemical Co., Ltd. 硬化性樹脂組成物
JP2007070598A (ja) 2005-08-11 2007-03-22 Mitsubishi Gas Chem Co Inc 多官能フェニレンエーテルオリゴマー体、エポキシ樹脂、及び樹脂組成物
WO2007097231A1 (ja) 2006-02-21 2007-08-30 Asahi Kasei Chemicals Corporation 低分子量ポリフェニレンエーテルの製造方法
JP2014005468A (ja) 2007-07-02 2014-01-16 Kaneka Corp 高分子電解質、高分子電解質膜、燃料電池用触媒層バインダー、およびその利用
US20140323666A1 (en) 2013-04-30 2014-10-30 Industrial Technology Research Institute Polyphenylene ether oligomer and article employing the same
US20160102174A1 (en) 2013-06-03 2016-04-14 Polyone Corporation Low molecular weight polyphenylene ether prepared without solvents
JP2019023263A (ja) 2017-07-25 2019-02-14 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Also Published As

Publication number Publication date
JPWO2021065275A1 (ja) 2021-04-08
EP4039728A4 (en) 2022-12-07
EP4039728A1 (en) 2022-08-10
US20220356302A1 (en) 2022-11-10
EP4039728B1 (en) 2023-10-11
TWI753560B (zh) 2022-01-21
CN114514261A (zh) 2022-05-17
TW202115155A (zh) 2021-04-16
KR20220029709A (ko) 2022-03-08
WO2021065275A1 (ja) 2021-04-08
KR102660658B1 (ko) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7202476B2 (ja) ポリフェニレンエーテル組成物
TWI809678B (zh) 聚苯醚、其製造方法、熱硬化組合物、預浸體、及積層體
TWI809679B (zh) 聚苯醚、其製造方法、熱硬化組合物、預浸體、及積層體
CN110387037B (zh) 聚苯醚及其制造方法
JP2023008216A (ja) 変性ポリフェニレンエーテル組成物の製造方法
WO2022239631A1 (ja) 新規末端変性ポリフェニレンエーテルおよび末端変性ポリフェニレンエーテル組成物
JP2023034824A (ja) 硬化性樹脂組成物
JP2023088477A (ja) 硬化性樹脂組成物
JP2022085241A (ja) 末端変性ポリフェニレンエーテル組成物の製造方法
JP2023013860A (ja) 硬化性樹脂組成物
JP2023012895A (ja) 硬化性樹脂組成物
JP7256108B2 (ja) 水素化ポリフェニレンエーテル及びその製造方法
JP2023058365A (ja) 硬化性樹脂組成物
JP2023088752A (ja) 変性ポリフェニレンエーテルの製造方法、変性ポリフェニレンエーテル及び硬化性組成物
JP2023054651A (ja) 末端変性ポリフェニレンエーテルの製造方法
JP2023081061A (ja) 硬化性樹脂組成物
TWI816404B (zh) 聚苯醚、其製造方法、熱硬化組合物、預浸體及積層體
JP2023088748A (ja) 変性ポリフェニレンエーテルの製造方法
JP2023103094A (ja) 硬化性樹脂組成物
JP2023127460A (ja) 硬化性樹脂組成物
JP2023132166A (ja) 変性ポリフェニレンエーテルの製造方法
JP2023135421A (ja) 変性ポリフェニレンエーテルの製造方法
JP2022117890A (ja) ポリフェニレンエーテル及びその製造方法、並びに接着剤組成物
JP2023132326A (ja) 変性ポリフェニレンエーテルの製造方法
JP2022077400A (ja) 変性ポリフェニレンエーテル、その製造方法、プリプレグ及び積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221223

R150 Certificate of patent or registration of utility model

Ref document number: 7202476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150