WO2004066472A1 - バッテリ用電力回路 - Google Patents

バッテリ用電力回路 Download PDF

Info

Publication number
WO2004066472A1
WO2004066472A1 PCT/JP2003/014664 JP0314664W WO2004066472A1 WO 2004066472 A1 WO2004066472 A1 WO 2004066472A1 JP 0314664 W JP0314664 W JP 0314664W WO 2004066472 A1 WO2004066472 A1 WO 2004066472A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage source
voltage
battery
power
Prior art date
Application number
PCT/JP2003/014664
Other languages
English (en)
French (fr)
Inventor
Tatsuya Okuda
Takahiro Urakabe
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP03772867A priority Critical patent/EP1587201A4/en
Priority to US10/505,211 priority patent/US7023107B2/en
Priority to JP2004567152A priority patent/JP3977841B2/ja
Publication of WO2004066472A1 publication Critical patent/WO2004066472A1/ja
Priority to US11/312,685 priority patent/US7221064B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0885Capacitors, e.g. for additional power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/063Battery voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/02Battery voltage drop at start, e.g. drops causing ECU reset
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/106Control of starter current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery power circuit, and more particularly, to a battery power circuit used by being mounted on a vehicle such as an automobile. Background art
  • a conventional battery power circuit uses a capacitor (or a small-capacity, high-power battery) in series with a 12 V battery to reduce the capacitor capacity while ensuring output power at the start-up and driving of the motor.
  • a small-capacity D CZD C converter is connected for energy transfer.
  • this battery power circuit it is possible to obtain a desired output with a relatively small capacitor capacity (or a relatively small capacity battery) by boosting the DC / DC converter during the operation of the motor. (For example, refer to Japanese Patent Laid-Open No. 2000-218-67 (see FIG. 3).)
  • the predetermined start-up operation is an operation that raises the engine rotation from the stopped state to the idle rotation (about 80 ° rpm by engine rotation) by the motor.
  • sufficient motor output could not be obtained, and the motor could not be started.
  • the capacitor recharge time will not be sufficient, so the capacitor voltage at the start operation will have various values, and the start operation will be performed in that state.
  • D is constant output regardless of the capacitor voltage.
  • capacitors have internal resistance
  • the charging voltage of the capacitor is low and the battery SOC (State Of Charge) is low, the battery current required for engine restart increases and the battery output voltage decreases. There was a spot.
  • the energy generated by the electric motor is charged to the battery and capacitor in series.
  • the allowable output power density of a lead-acid battery as a battery is as low as about 10 O W / kg to 20 O W / kg, and the allowable input power density is even lower. For this reason, the charging current during regeneration was determined by the allowable input current of the battery. Note that the allowable input power density of the battery is proportional to the allowable input current because the battery voltage is almost constant. As a result, the high-speed charging characteristics of the capacitor could not be used, and it was necessary to limit the power generated by the motor. Disclosure of the invention
  • the present invention has been made to solve such a problem, and prevents a decrease in power supplied to the motor at the start even when the idle stop operation is continuously performed.
  • the purpose is to obtain a battery power circuit for obtaining the rotational speed.
  • the second purpose is to obtain a battery power circuit that regenerates instantaneous large energy generated by an electric motor during vehicle braking or the like without damaging the battery.
  • the battery power circuit according to the present invention includes a first energy storage source, a second energy storage source connected in series to the first energy storage source, the first energy storage source, and the second energy storage source. To convert power to and from different energy storage sources DC /
  • a DC converter and control means for controlling the DC / DC converter The
  • the control means of the present invention detects the voltage of the energy storage source arranged on the high voltage side among the first and second energy storage sources of the series-connected power source, and the detected voltage is a predetermined first voltage. If the DC voltage is smaller than the threshold direct voltage, the DC ZDC converter charges the energy storage source located on the high voltage side, so even when performing idle stop operation continuously, The power supplied to the motor can be prevented from being reduced, and a predetermined engine speed can be obtained.
  • the present invention further includes a power conversion circuit that converts electric power between an electric motor coupled to a vehicle axle and the first energy storage source and the second energy storage source connected in series.
  • the control means is configured such that the input current of the first energy storage source is Since the DC ZDC converter is controlled so as to be less than the allowable input current of the first energy storage source, the charging power of the battery and capacitor can be increased.
  • FIG. 1 is a configuration diagram showing a configuration of a battery power circuit according to the present invention.
  • FIG. 2 is an explanatory diagram showing a calculation model for determining the control conditions of the DCZDC converter provided in the battery power circuit according to the present invention.
  • FIG. 3 is an explanatory diagram showing the relationship between the charging voltage of the capacitor group and the output voltage at each DC / DC converter output provided in the battery power circuit according to the present invention.
  • FIG. 4 is an explanatory diagram showing the relationship between the capacitor initial voltage value and the number of idle starts (continuous operation) in a conventional battery power circuit.
  • FIG. 5 is a flowchart showing a control method in the battery power circuit according to the present invention.
  • FIG. 6 is an explanatory diagram showing the relationship between the battery voltage in the battery power circuit according to the present invention and the threshold voltage of the capacitor that can raise the motor to a desired rotational speed.
  • FIG. 7 is a graph showing the DC / DC output power for each battery power circuit according to the present invention.
  • FIG. 5 is an explanatory diagram showing a relationship between a capacitor voltage, a system efficiency when a notch, a capacitor group, and a DCZDC converter are regarded as one power circuit.
  • FIG. 8 is an explanatory diagram showing the relationship between the capacitor voltage and the output threshold voltage of the DC / DC converter in the battery power circuit according to the present invention.
  • FIG. 9 is a flowchart showing the operation of the battery power circuit according to the second embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing the relationship between the DC / DC converter output and the battery terminal voltage in the battery power circuit according to Embodiment 2 of the present invention.
  • FIG. 11 is a circuit diagram showing a configuration of a battery power circuit according to Embodiment 3 of the present invention.
  • FIG. 12 is a detailed block diagram of the control circuit of FIG.
  • FIG. 13 is a flowchart of the regeneration control of FIG.
  • FIG. 14 is a flowchart of the regeneration control of FIG.
  • FIG. 15 is a diagram showing how the battery power circuit of FIG. 11 is charged.
  • Fig. 16 is a diagram showing the relationship between the capacitor voltage and the maximum regenerative power of the battery power circuit when the allowable input power of the battery is 1 kW.
  • Figure 17 shows the regenerative power regenerated in the battery power circuit when a large vehicle braking force is required in a relatively short time.
  • FIG. 18 is a flowchart of regenerative control of the battery power circuit according to the fourth embodiment of the present invention.
  • FIG. 19 is a flowchart of regenerative control of the battery power circuit according to the fourth embodiment of the present invention.
  • FIG. 20 is a diagram showing how charging is performed using the flowcharts of FIGS. 18 and 19.
  • FIG. 21 is a flowchart of the regeneration control of the battery power circuit according to the fifth embodiment of the present invention.
  • Figure 23 shows the regeneration control of the battery power circuit according to Embodiment 6 of the present invention. It is a flow chart.
  • FIG. 24 is a flowchart of regenerative control of the battery power circuit according to the sixth embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a configuration of a battery power circuit according to an embodiment of the present invention.
  • a battery (first battery group) 1 and a capacitor group 2 as a second battery group are connected in series to form a series-connected power source.
  • the capacitor group is a large-capacity capacitor.
  • an electric double layer capacitor or an aluminum electrolytic capacitor can be used.
  • battery 1 is an energy storage source arranged on the low voltage side of the series-connected power source, and capacitor group 2 is arranged on the high voltage side of the series-connected power source. It is assumed that it is a stored energy source.
  • 3 is a D CZD C converter inserted between battery 1 and capacitor group 2.
  • S F E T (switching element) 3 2, inductance 3 3, smoothing capacitor 3 4 4 is a power conversion circuit connected to both ends of the series pair of battery 1 and capacitor group 2, and the energy of battery 1 and capacitor group 2 and the motor
  • 5 is a control device for giving an output command signal of the DC / DC converter 3 according to the voltage between the terminals of the battery 1, the voltage between the terminals of the smoothing capacitor 3 4 and the input current of the power conversion circuit 4. 1 and MO SFE
  • a command signal is output to T 3 2.
  • DCZD C converter 3 In addition to the configuration shown in Fig. 1, various schemes can be used for the DCZD C converter 3. However, any configuration can be used as long as power can be transmitted between battery 1 and capacitor group 2. The method may be used.
  • the D CZD C converter 3 MO SF ET 3 1 and 32 are used, but semiconductor elements such as IGBT and bipolar transistors may be used.
  • the power conversion circuit 4 is applied with a voltage obtained by subtracting each voltage drop from the total voltage of the battery 1 and the capacitor group 2.
  • the present invention relates to a method for controlling the DC / DC converter 3.
  • Note 1 has an output voltage of 12 V and an internal impedance of 8 ⁇ .
  • Capacitor group 2 is a capacitor block in which three electric double layer capacitors with a withstand voltage of 2.5 V, an internal impedance of 8 ⁇ , and a capacity of 10 OF are connected in parallel and in series.
  • the maximum voltage of capacitor group 2 is 10V.
  • the power conversion circuit 4 is applied with the battery 1 voltage of 12 V and a maximum of 22 V.
  • Figure 2 shows the calculation model for determining the control conditions of the DC / DC converter 3 of the present invention. Since the operation time at start-up is as short as 0.3 seconds, capacitor group 2 is regarded as a power supply and 'transient changes in capacitor voltage are ignored. ⁇ is the efficiency, and the output power of DC / DC converter 3 is 0.5 kW to 2 kW, and changes from 0.975 to 0.9. n is the boost ratio, AV is the capacitor voltage of capacitor group 2, r is the capacitor internal resistance, V is the battery voltage of battery 1, and R is the battery internal resistance. The equation obtained from the calculation model is shown below.
  • the relationship between the charging voltage (accumulated voltage in the figure) of the capacitor group 2 for each output of the DCZDC converter 3 and the output voltage (Vout, power converter circuit 4 input voltage) can be derived.
  • the output condition is 4 kW at which a predetermined motor output of the electric motor 9 can be obtained.
  • Figure 3 shows the relationship between the charging voltage of capacitor group 2 and the output voltage at the output of each DC / DC converter 3.
  • the output voltage (input voltage of the power conversion circuit 4) needs to be 10 V or higher. The reason is that if the motor speed increases during the start-up operation, the back electromotive force generated by the motor 9 itself will cause the voltage to be low and current will not flow to the motor 9, making it impossible to obtain motor output. It is.
  • the maximum output power of the DC / DC converter 3 is 2 kW. From Fig. 3, the output voltage is less than 4 V
  • the predetermined output when the accumulated voltage is less than 4 V, the predetermined output
  • the capacitor group 2 is charged by boosting the DC / DC converter 3 using the time from the idle stop until the restart, or the electric motor 9 generates power when the vehicle is running. Charging using electric power.
  • the charging voltage at that time is about 10 V near the breakdown voltage.
  • the charging time is about several seconds.
  • Figure 4 shows the relationship between the number of idle stops and the initial voltage value of capacitor group 2 when the idle stop operation is performed continuously from the fully charged state to the recharged state. This is the calculation result when 4 kW is output to power conversion circuit 4 for 0.3 seconds.
  • the DCZDC converter 3 controls the output of the DC / DC converter 3 so that the system composed of the battery 1, the capacitor group 2, and the DC / DC converter 3 has maximum efficiency. This maximum efficiency control will be described later. From Fig. 4, it can be seen that if the capacitor voltage is continuously idled nine times, the capacitor initial charge voltage for the ninth time is about 3.2 V, and the specified motor output cannot be obtained.
  • step S1 when the vehicle stops and the engine stops, the capacitor voltage Vc is detected (step S1), and it is determined whether the voltage is less than 4 V (first threshold voltage) (step S2). . If it is less than 4 V, the idle state is maintained (step S3). Then, while maintaining the idle state, the DC / DC converter 3 is operated, the capacitor voltage V c is boosted, and the capacitor group 2 is charged so that the capacitor voltage V c becomes 4 V or more ( Step S4). On the other hand, if the capacitor voltage Vc is 4 V or higher in the determination in step S2, the engine 10 is stopped (step S5).
  • step S3 If the capacitor voltage Vc is insufficient and starts (ie, less than 4V), engine 10 is idle at step S3 and will start without idle stop at step S5.
  • This control method eliminates concerns about the motor 9 being unable to start due to insufficient voltage, and increases the amount of harmful exhaust due to engine ignition below a predetermined engine speed when the motor is started due to insufficient voltage. Also disappear.
  • the motor start after idle stop is more reliable. Can be performed.
  • the control method goes to 3 ⁇ 4d.
  • Notch 1 has a slight change in the output voltage V when there is no load depending on its SOC (State Of Charge). If it is a 12 V battery, it will have a voltage fluctuation of about ⁇ 1 V to ⁇ 2 V. 1 When the voltage value of the 2 V battery fluctuates, the maximum output of battery 1 Since the power also fluctuates, the power conversion circuit 4 cannot be supplied with the desired power or voltage (in this embodiment, 4 kW / 10 V or more), which may result in insufficient motor start.
  • Figure 6 shows the relationship between the battery voltage and the threshold voltage of capacitor group 2 that can raise the motor to the desired number of revolutions.
  • the threshold voltage of capacitor group 2 was 4 V when the battery voltage was 12 V, whereas the threshold voltage of capacitor group 2 increased to 5.5 V when the battery voltage dropped to 11 V. Conversely, when the battery voltage is 13 V, the capacitor threshold voltage drops to 2.5 V.
  • S0C of battery group 1 is high
  • the first threshold voltage of the capacitor voltage is lowered
  • SOC of battery group 1 is low
  • increasing the first threshold voltage of the capacitor voltage ensures that the engine can be restarted by idling.
  • FIG. 8 shows the relationship between the capacitor voltage (accumulated voltage in the figure) and the output threshold voltage of the DC / DC converter 3 in this embodiment.
  • Figure 8 is derived from Figure 7.
  • the output power value of the DC / DC converter 3 can be adjusted according to the value of the capacitor voltage. Can behave like
  • the current from the battery 1 to the DC / DC converter 3 and the voltage of the battery 1 are detected, and the output target current value is controlled by the control circuit.
  • the duty ratio of the MOSFET 32 gate voltage signal which is a switching element, is adjusted by comparing the detected current value with the target current value.
  • the present invention is not limited to this case. If the notch, the internal impedance of the capacitor, or the efficiency of the DC / DC converter changes, Needless to say, the capacitor threshold voltage (4 V) and the DC / DC converter output conditions corresponding to the capacitor voltage will change.
  • the DC / DC converter 3 for transition is detected, and the voltage V c of the capacitor group 2 which is the energy storage source arranged on the high voltage side of the series connected power supply is detected, and the detected voltage V c is -predetermined value (The first threshold voltage, here 4 V.) If the voltage is smaller, the voltage of capacitor group 2 is charged to the threshold voltage (first threshold voltage) or higher by the boost operation of D CZD C converter 3 As a result, the battery power circuit can always output sufficient power.
  • the first threshold voltage here 4 V.
  • capacitor group 2 which is an energy storage source arranged on the high voltage side of the series-connected power supply, is detected and the detected voltage is lower than the predetermined value (first threshold voltage), Since the engine 10 is maintained at the idling speed without performing the stop operation, it is possible to prevent the engine 9 from being disabled by the electric motor 9.
  • capacitor group 2 which is an energy storage source arranged on the high voltage side of the series-connected power supply, is detected. If the detected voltage is lower than the predetermined value (first threshold voltage), the engine speed Is maintained, and the capacitor voltage is charged above the threshold voltage (first threshold voltage) by the boost operation of the DCZD C converter 3, and then the engine is stopped. Even when the idle stop operation is performed, the power supplied to the motor 9 at the time of start-up is sufficient, and the motor 9 can increase the engine speed to a predetermined level. There will be no increase in the amount of harmful exhaust due to fire. In addition, the engine starting operation is not disabled by the electric motor 9.
  • the voltage of battery 1 as the energy storage source arranged on the low voltage side is detected by detecting the voltage of battery 1 as the first energy storage source and the voltage of capacitor group 2 as the second energy storage source.
  • the threshold voltage of capacitor group 2 (first threshold voltage), which is a criterion for determining whether or not to restart the engine, is adjusted accordingly, and when battery 1 has a high SOC (battery voltage is high), the threshold voltage of the capacitor is reduced.
  • the voltage of the capacitor group 2 which is the energy storage source arranged on the high voltage side of the series connected power supply, is detected and detected.
  • the entire battery power circuit system can be operated at maximum efficiency, and the overall system heat generation can be minimized. It is possible to reduce the deterioration of the life of the capacitor group 2 due to the temperature rise due to and the influence on other devices such as heating.
  • FIG. 9 is a flowchart showing an operation flow of the battery power circuit according to the embodiment of the present invention. Since the configuration of the battery power circuit according to the present embodiment is the same as that in FIG. 1, detailed description thereof is omitted here with reference to FIG. As shown in FIG. 9, in the present embodiment, first, if there is an engine start command in step S10, the terminal voltage V of battery 1 is set to the second threshold voltage in step S11. It is determined whether or not it is greater than V TH 2 (for example, 8.0 V), and if it is greater, the process proceeds to step S 12 and the maximum efficiency control described in the first embodiment is performed, In S 1 5, start the engine.
  • V TH 2 for example, 8.0 V
  • the terminal voltage V of the battery 1 in step S 11 is determined at a predetermined time interval while performing maximum efficiency control.
  • the second threshold voltage V TH 2 for example, 8.0 V
  • the battery current is determined in step S 13.
  • the first threshold voltage V of capacitor group 2 (the initial value in this embodiment is 4 V), which is the determination condition for stopping the vehicle and stopping the engine, is set to the minimum control. Raise the engine and start the engine in step S 1 5.
  • step S 14 is performed.
  • This condition determination may be performed before step S 14.
  • a condition for increasing the capacitor threshold voltage it is set to be performed when the terminal voltage V of the battery 1 is larger than a third threshold voltage (for example, 8.0 V). You may keep it.
  • the output path of the battery power circuit according to the present invention includes a path output from the battery 1 through the DCZ DC converter 3 (hereinafter referred to as output P), and a path output from the battery 1 through the capacitor group 2 (hereinafter referred to as output P). , Called output P 2 ), and the total power P 1 + P 2 of output Pi and output P 2 becomes the power input to power conversion circuit 4. Motor 9 generates power, if the battery is recharged 1 or capacitor group 2 may be considered as the output and output P 2 is a negative value.
  • the voltage V between the no-load terminals of battery 1 is 12 V
  • the voltage AV between the no-load terminals of capacitor group 2 is 6 V
  • the internal resistance R of battery 1 is 9.6 ⁇ (due to deterioration, etc.
  • DC / DC comparator 3 output when the battery power circuit outputs 4 kW, assuming that the internal resistance r of capacitor group 2 is 10.7 ⁇ .
  • Figure 10 shows the relationship with the battery terminal voltage. In the figure, the maximum efficiency operation point described in the first embodiment and the battery current minimum point described in the present embodiment are shown. '
  • battery voltage is 7.
  • the battery voltage at the minimum battery current point is 8.3 V, indicating that the battery voltage increases by about 5%. In this way, the battery voltage is detected, and the battery voltage is set to the second threshold voltage set in advance.
  • the maximum efficiency control is switched to the minimum battery current control (steps Sll and S13 in Fig. 9) to suppress the battery output voltage drop. I understand that it is possible. In addition, when switching to the minimum battery current control, the vehicle is stopped and
  • the first threshold voltage of capacitor group 2 (the initial value in this embodiment is 4 V in this embodiment), which is a determination condition for stopping 10 is increased (step S 14 in FIG. 9).
  • the first threshold voltage of capacitor group 2 is reset according to the detected battery voltage.
  • the first threshold voltage of the capacitor group 2 which is the engine stop condition, is 4 V + a (a> 0), and the output voltage drop of the battery 1 can be prevented. .
  • the internal resistance of battery 1 and capacitor group 2 rises due to deterioration of battery 1 and capacitor group 2, etc. Since the output voltage drop of the battery 1 can be suppressed, the starting operation of the engine 10 can be surely performed without adversely affecting other on-vehicle devices connected to the battery 1.
  • a condition for switching from maximum efficiency control to minimum battery current control (second threshold voltage), a condition for increasing the capacitor threshold voltage (third threshold voltage), and
  • second threshold voltage a condition for switching from maximum efficiency control to minimum battery current control
  • third threshold voltage a condition for increasing the capacitor threshold voltage
  • a series-connected power source in which battery 1 and capacitor group 2 are connected in series with each other, between battery 1 and capacitor group 2, and DC ZD C converter 3 for transferring power between battery 1 and electric load, and detects voltage V c of capacitor group 2, which is an energy storage source arranged on the high voltage side of the series connected power supply
  • V c is an energy storage source arranged on the high voltage side of the series connected power supply
  • the voltage of the capacitor group 2 is set to the threshold voltage (first threshold voltage by the boost operation of the DC ZDC converter 3). (Threshold voltage) Since the battery is charged above, the battery power circuit can always output sufficient power.
  • the voltage of the capacitor group 2 that is an energy storage source arranged on the high voltage side of the series-connected power supply is detected, and the detected voltage is a predetermined value (first
  • the engine If the voltage is smaller than the threshold voltage of 1, the engine is not stopped and the engine 1 0 Since the engine speed is maintained at idle speed, it is possible to eliminate the inability of the motor 9 to start the engine.
  • the voltage of the capacitor group 2 that is the energy storage source arranged on the high voltage side of the series-connected power supply is detected, and the detected voltage is a predetermined value (first threshold voltage). If smaller, maintain the engine speed, charge the capacitor voltage to the threshold voltage (first threshold voltage) or higher by boosting the DC / DC comparator 3, and then stop the engine. Even when the stop / start operation (idle stop operation) is performed continuously, the power supplied to the motor 9 at the start becomes sufficient, and the motor 9 can increase the engine speed to a predetermined level. There is no longer any increase in the amount of harmful exhaust due to gasoline ignition. In addition, the engine 9 cannot be disabled by the electric motor 9.
  • the voltage value of the battery 1 as the first energy storage source is detected, and the battery voltage is set in advance at the time of high power output such as when the engine 10 is restarted ( When the voltage drops below the second threshold voltage), the DC / DC converter 3 is controlled so that the battery current is minimized. Therefore, the voltage drop due to the internal resistance of the battery 1 is suppressed, and the battery 1 It is possible to eliminate adverse effects on other in-vehicle devices connected to the.
  • FIG. 11 is a circuit diagram showing a configuration of a battery power circuit according to Embodiment 3 of the present invention.
  • FIG. 12 is a detailed block diagram of the control device of FIG. FIG. 13 and FIG. 14 are flowcharts of the regeneration control in FIG. Figure 15
  • FIG. 11 is a diagram showing how the battery power circuit of 1 is charged.
  • the battery power circuit is the first energy storage source. 4 battery 1 in series with battery 1 and a capacitor 2 as a second energy storage source with a permissible input current greater than the permissible input current of battery 1 and between battery 1 and capacitor 2 DC / DC converter 3, power conversion circuit 4 connected to both ends of the series body of battery 1 and capacitor 2, and control device 5 for controlling DC / DC converter 3 and power conversion circuit 4. ing.
  • Battery 1 is a lead acid battery with a rated voltage of 12 V and an equivalent series resistance of 8 mQ. Battery 1 has a characteristic of allowable input power PBMAX (W). If battery 1 is rapidly charged with high power, the battery will deteriorate, so battery 1 is set to an allowable input power P BMAX that corresponds to the battery temperature and S 0 C (State Of Charge). ing. Since the voltage of battery 1 does not change significantly, the allowable input current I BMAX is set instead of the allowable input power PB MAX. The allowable input power P BMAX for lead acid batteries is around 10 OW / kg per weight.
  • Capacitor 2 is an electric double layer capacitor or an aluminum electrolytic capacitor having a large capacitance.
  • the allowable input power PCMAX (W) of capacitor 2 is larger than that of lead acid batteries, and is about 100 OW / kg per weight.
  • PCMAX (W) of capacitor 2 is larger than that of lead acid batteries, and is about 100 OW / kg per weight.
  • the capacitor 2 three parallel electric double layer capacitors of allowable applied voltage (VCMAX) 2.5 V ⁇ equivalent series resistance (r) 8 ⁇ and capacitance (C) 100 F are used. 1 5 Capacitor blocks connected in series are used.
  • the allowable applied voltage of capacitor 2 is 37.5 V.
  • the DC / DC converter 3 includes an upper arm switching element 6 a as an upper arm switch, a lower arm switching element 6 b as a lower arm switch, a choke coil inductor 7, and a smoothing capacitor 8.
  • This DC / DC converter 3 forms a bidirectional buck-boost DC chopper circuit and converts power between the battery 1 and the capacitor 2.
  • the switching elements 6a and 6b are composed of MOS FETs.
  • the DC / DC converter 3 performs power conversion under the following control.
  • power conversion from battery 1 to capacitor 2 hereinafter referred to as boost mode D
  • step-down mode DC / DC converter operation Power conversion from the capacitor 2 to the battery 1 (hereinafter referred to as step-down mode DC / DC converter operation) can be performed by performing the operation opposite to that described above.
  • MOSFETs as switching elements are switched by inputting the gate ONZOFF signal.
  • the power conversion circuit 4 performs power conversion between the series body of the battery 1 and the capacitor 2 and the electric motor 9.
  • the electric motor 9 is connected to an axle 27 connected to the engine 10.
  • the electric power of the battery 1 and the capacitor 2 is converted into an alternating current by the power conversion circuit 4, and the axle 27 is rotated using the electric motor 9 as a motor.
  • the AC power generated from the electric motor 9 as the generator is converted into DC by the power conversion circuit 4 and the battery 1 and the capacitor 2 are charged. This AC power acts as a braking force against the rotation of the axle 27.
  • the axle 27 has a brake mechanism 26 that brakes the rotation of the axle 27.
  • the brake mechanism 26 has a mechanical brake (not shown) that mechanically brakes the rotation of the axle 27 in response to a command from the control device 5. Further, the brake pedal 28 is provided as a braking command device that issues a braking command for decelerating the speed of the vehicle, and the braking command is input to the control device as a braking force PF.
  • the control device 5 includes a DC / DC converter control unit 11 as shown in FIG.
  • the DC / DC converter control unit 1 1 has input current calculation means 1 3, regenerative power calculation means 14, allowable input current calculation means 15, DC / DC converter control means 16, and mechanical brake control means 18. .
  • the control device 5 is constituted by a microcomputer including a CPU, RAM, ROM, and an interface circuit. As shown in Fig. 11, the battery power circuit further includes a battery voltmeter 20 as the first voltmeter that measures the terminal voltage VB of battery 1, and a second voltmeter that measures the terminal voltage VC of capacitor 2. Capacitor voltmeter 21, battery 1 thermometer 24 that measures TB, and vehicle speed sensor 25 that measures vehicle speed SV. An electric load 22 such as an in-vehicle device is connected to the battery 1.
  • the input current calculation means 13 calculates the regenerative energy P G (W) from the vehicle speed S V (km / hr) from the vehicle speed sensor 25 and the brake force P F (N) from the brake pedal 28.
  • Regenerative energy PG is a value obtained by converting braking energy necessary for braking a vehicle having a vehicle speed S V with a predetermined braking force PF as an electric quantity.
  • the input current I (A) is obtained from the terminal voltage VB of battery 1, the terminal voltage VC of capacitor 2, and regenerative energy PG.
  • the regenerative power calculating means 14 calculates the SOC (%) of the battery 1 from the terminal voltage VB (V) of the battery 1.
  • the battery SOC is a value corresponding to the terminal voltage VB of the battery 1, and the value is stored in the regenerative power calculating means 14 as table data.
  • the battery allowable input power PB MAX (W) is calculated from the battery SOC.
  • the battery allowable input power PBMAX is small, and when the battery SOC is large, the battery allowable input power PBMAX is small.
  • the maximum regenerative power P I NVMAX (0) (W) is calculated from the battery allowable input power P BMAX.
  • the allowable input current calculation means 15 obtains the allowable input current I BMAX (A) of the battery 1 from the battery allowable input 'power PBMAX and the terminal voltage VB of the battery 1.
  • DC ZD C converter control means 16 has a regenerative energy PG of maximum regenerative power P
  • DCZD C converter manipulated variable PD is calculated from regenerative power PI NVMAX (0), battery voltage VB, capacitor voltage VC and battery maximum current I BMAX.
  • step-up / step-down ratio n is obtained from the DCZDC converter manipulated variable PD.
  • the switching means ON / OFF cycle is calculated so that the step-up / step-down ratio n is obtained, and the DC / DC converter is operated.
  • the DC / DC converter control means 16 converts power from the battery 1 to the capacitor 2 in this case.
  • the DC / DC converter control means 16 uses the DCZDC converter from the regenerative power PI NVMAX (0), the battery voltage VB, the capacitor voltage VC, and the battery maximum current I BMAX. Calculate the manipulated variable PD.
  • the DC / DC converter control means 16 converts power from the capacitor 2 to the battery 1.
  • the mechanical brake control means 18 compares the regenerative energy PG and the maximum regenerative power PI NVM AX (1 00) .When the regenerative energy PG is large, the mechanical brake control means 18 calculates the difference ⁇ between the regenerative energy PG and the maximum regenerative power PI NVMAX (100). The difference ⁇ PA is converted into the mechanical brake operation amount MF.
  • the mechanical brake is actuated based on this mechanical brake operation amount MF to brake the vehicle.
  • the input current calculation means 13 obtains the vehicle speed SV (km / Hr) of the vehicle speed sensor 25 and determines whether or not the vehicle speed Sv is zero. Since the vehicle is stopped when the vehicle speed is zero, the regenerative control ends. When the vehicle speed is not zero, go to S102.
  • the input current calculation means 13 obtains the braking force PF (N) from the brake pedal 28, and determines whether or not a braking command has been issued. When the braking force is zero, no regenerative energy is generated because braking is not being attempted, so regenerative control ends. When the braking command is issued, the process proceeds to S103.
  • the input current calculation means 13 calculates the regenerative energy PG (W) from the vehicle speed S V and the braking force PF.
  • the input current I (A) is obtained from this regenerative energy PG, battery terminal voltage VB (V), and capacitor terminal voltage VC (V).
  • the allowable input current calculation means 15 calculates the SOC (%) of the battery from the battery terminal voltage VB (V).
  • the allowable input current calculation means 15 calculates the allowable battery input power P BMAX (W) from the battery temperature TB (° C) and the battery SOC. Calculate battery allowable input current I BMAX (A) from battery allowable input power P BMAX and battery terminal voltage VB.
  • the regenerative power calculation means 14 compares the input current I with the battery allowable input current I BMAX. When the input current I is larger than the allowable input current I BMAX, the process proceeds to S107. When the input current I is less than or equal to the allowable input current I BMAX, regeneration control ends.
  • the regenerative power calculation means 14 obtains the capacitor input power PC (I BMAX) from the battery allowable input current I BMAX and the capacitor terminal voltage VC.
  • the maximum regenerative power P I NVM AX (0) when the DC / DC converter is not driven is calculated from the allowable battery input power PBMAX and the capacitor input power P C (I BMA X).
  • the regenerative power calculation means 14 reinforces the battery allowable input power PBMAX, the preset DC / DC converter maximum drive power P DMA X, the battery terminal voltage VB, and the capacitor terminal voltage VC. Obtain the maximum regenerative power PIN VMAX (1 00) from Equation 1.
  • the DC / DC converter control means 16 compares the regenerative energy PG with the maximum regenerative power PI NVMAX (100). When the regenerative energy PG is larger than the reinforcement maximum regenerative power PI NVMAX (1 00), the process proceeds to S 1 1 0. When the regenerative energy PG is less than the reinforcement maximum regenerative power PI NVMAX (100), the process proceeds to S 1 1 3.
  • the DC / DC converter control means 16 sets the reinforced maximum regenerative power P I N VMAX (1 00) as the regenerative operation amount P I NV.
  • the mechanical brake control means 18 obtains a difference ⁇ PA between the regenerative energy P G and the reinforced maximum regenerative power P I NVMAX (1 0 0).
  • the mechanical brake control means 18 obtains the mechanical brake operation amount MF from the difference ⁇ ⁇ .
  • the mechanical brake control means 18 operates the brake mechanism 26 based on the mechanical brake operation amount MF, applies brake braking to the vehicle, and proceeds to S 1 14.
  • the DC / DC converter control means 16 sets the regenerative energy PG to the regenerative manipulated variable P I NV and proceeds to S 1 14.
  • the DC / DC converter control means 16 determines the DC / DC converter based on the number 2 from the regenerative manipulated variable PI NV, the battery allowable input power I BMAX, the battery terminal voltage VB, and the capacitor terminal voltage VC. Find DC / DC converter conversion power PD.
  • the DC / DC converter control means 16 obtains the DC, DC converter output voltage V OUT from the DC / DC converter converted power PD.
  • the DC / DC converter control means 16 compares the DC / DC converter output voltage VOUT with the capacitor allowable application voltage VCMAX. That DC /
  • the DC / DC converter control means 16 obtains the step-up / step-down ratio n from the converter output voltage VO UT and the battery voltage.
  • the DC / DC converter control means 16 obtains the step-up / step-down ratio n from the capacitor allowable application voltage V CM A X and the battery voltage V B.
  • the DCZDC converter control means 16 drives the DCZDC converter to convert power from the battery to the capacitor, and charges the capacitor.
  • the vehicle braking force shown in Fig. 15 is generated, for example, when the vehicle decelerates from a certain speed at a substantially constant acceleration.
  • the DC / DC converter is operated in boost mode at the maximum output, so that the regenerative regenerative power is increased, and the regenerative power increases as the capacitor voltage increases.
  • the mechanical brake consumes the amount that cannot be fully regenerated by the battery power circuit.
  • section B if the regenerative regenerative power is greater than the regenerative energy generated by vehicle braking, the mechanical brake will not operate, and all vehicle braking power will be converted to the power generated by the motor, allowing all kinetic energy to be regenerated. Become. At this time, the output of the DC / DC converter is controlled so that the charging power to the battery becomes the allowable input power PB MAX.
  • section C the output of the DC / DC converter is zero.
  • the charging power for the battery capacitor varies depending on the voltage ratio between the battery and the capacitor.
  • FIG. Figure 16 shows the relationship between the capacitor voltage VC and the maximum regenerative power P I NV of the battery power circuit when the allowable input power P BMAX of battery 1 is 1 kW.
  • the regenerative power is D
  • the regenerative power is doubled when the capacitor voltage VC is equal to the battery voltage VB, and 2.5 times when the capacitor voltage Vc is 3 times the battery voltage VB. Become.
  • the larger the DCZDC converter output the higher the regenerative power of the battery power circuit.
  • the regenerative power of the battery power circuit is increased by converting power from the battery to the capacitor via the DCZDC converter 3 during energy regeneration.
  • Figure 17 shows the regenerative power regenerated in the battery power circuit when a large vehicle braking force is required in a relatively short time.
  • the charging current of the capacitor is determined by the allowable charging current of the battery. Therefore, the charging power to the capacitor cannot be increased, and the amount of energy that can be regenerated in the battery power circuit does not increase that much.
  • power is converted from battery 1 to capacitor 2 via DCZDC converter 3
  • charging power to capacitor 2 increases, so that regenerative power to the battery power circuit can be increased.
  • the capacitor charging power increases with time because the voltage increases as the capacitor is charged, and the allowable input power to the capacitor increases accordingly.
  • the battery power circuit according to the present invention converts the power from the battery to the capacitor having a larger input power density than the battery through the DCZDC converter during braking of the automobile, so that the charging power of the battery and the capacitor can be increased.
  • the battery power circuit controls the generated power of the motor below the sum of the allowable input power of the first energy storage source and the allowable input power of the second energy storage source.
  • the vehicle's braking energy can be regenerated efficiently and the fuel efficiency of the vehicle can be improved.
  • various methods other than the one shown in FIG. 11 can be considered. However, any method that basically performs power transmission between the battery 1 and the capacitor 2 can be used. The method may be used.
  • the switching element of the DC / DC converter 3 uses a MOS FET, a semiconductor element such as an IGBT or a bipolar transistor may be used.
  • the electric double layer capacitor is used as the second energy storage source, but an aluminum electrolytic capacitor can provide the same effect.
  • the regenerative power can be increased in the same manner even if a battery having a large allowable input power is used as the second energy storage source.
  • a nickel cadmium battery, a nickel metal hydride battery, or a lithium ion battery may be used. Embodiment 4.
  • FIGS. 18 and 19 are flowcharts of the regeneration control of the battery power circuit according to the fourth embodiment of the present invention.
  • the configuration of the battery power circuit according to the fourth embodiment is the same as that shown in FIGS.
  • the flowcharts of FIGS. 18 and 19 are the same as the flowcharts of FIGS. 13 and 14 except that new steps S 201 to S 203 are added.
  • the DC / DC converter control means 16 calculates the maximum regenerative power P I NVMAX (0) as in S 107.
  • the DC / DC converter control means 16 obtains the difference ⁇ . P B between the maximum regenerative power P I NVM AX (0) and the regenerative energy PG.
  • the DC / DC converter control means 16 drives the DCZDC converter based on the difference ⁇ to convert power from the capacitor to the battery, and charges the battery.
  • Power conversion of the DCZDC converter in this direction is called step-down mode DC ZDC converter operation.
  • FIG. 20 the state of charging while braking the vehicle will be described.
  • the vehicle braking force shown in FIG. 20 is generated, for example, when the vehicle decelerates from a certain speed at a substantially constant acceleration.
  • the battery allowable input power PBM AX (m) is obtained as a predetermined value by multiplying the battery allowable input power PB MAX by a coefficient m (for example, m is 0.5). Further, the battery allowable input power PBMAX (m) and the battery terminal voltage VB Obtain the terry allowable input current I BMAX (m). The battery allowable input current P BMAX (m) is used after S 307 as in the battery allowable input power PBMAX of the third embodiment.
  • the input current I is compared with the battery allowable input current I BMAX (m). When the input current I is larger than the allowable input current I BMAX (m), the process proceeds to S 3 07. When the input current I is less than or equal to the allowable input current I BMAX (m), the process proceeds to S 320.
  • the input power has a margin. Even if instantaneous regenerative power is input, there is a margin, so charging can be performed by instantaneously inputting large power. In addition, because the specified value is matched to the power with little deterioration in life, the first energy storage and source deterioration are not easy.
  • 0.5 is set as a coefficient for obtaining the predetermined value, but a similar effect can be obtained if the value is between 0.3 and 0.8.
  • Embodiment 6 is set as a coefficient for obtaining the predetermined value, but a similar effect can be obtained if the value is between 0.3 and 0.8.
  • S O C is a threshold value 10. /.
  • the battery is charged from the capacitor when it falls below, but the same effect can be obtained even if the threshold value is set to 5% to 20%.
  • the battery power circuit according to the present invention can be used in a hybrid vehicle that combines an internal combustion engine and an electric motor, and can regenerate more braking energy with an electric brake and store it in an energy storage source. Therefore, fuel efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Secondary Cells (AREA)
  • Control Of Eletrric Generators (AREA)
  • Dc-Dc Converters (AREA)

Abstract

この発明は、連続してアイドルストップ動作を行った場合でも、始動時のモータへの供給電力の低下を防止し、所定のエンジン回転数を得ることができるバッテリ用電力回路を得ることを目的としている。この発明のバッテリ用電力回路は、電力供給対象である負荷(図示せず)が接続されるバッテリ1と、コンデンサ群2とを互いに直列に接続した直列接続電源と、バッテリ1とコンデンサ群2との間、および、バッテリ1と負荷との間で電力を移行させるためのDC/DCコンバータ3と、DC/DCコンバータ3の制御を行う制御装置5とを備え、制御装置5は、コンデンサ群2の電圧を検知し、検知した電圧が第1の閾値電圧(例えば、4.0V)より小さい場合はDC/DCコンバータ3により、コンデンサ群2への充電を行う。

Description

明 細 書 バッテリ用電力回路 技術分野
この発明はバッテリ用電力回路に関し、 特に、 自動車等の車両に搭載されて用 いられるバッテリ用電力回路に関する。 背景技術
従来のバッテリ用電力回路は、 電動機の始動時およびカ行時の出力電力を確保 しつつ、 コンデンサ容量を低減するために、 1 2 Vバッテリと直列にコンデンサ (又は小容量の高出力バッテリ ) を接続し、 それらのエネルギー移行のための小 容量の D CZD Cコンバータを付加している。 このバッテリ用電力回路では、 電 動機のカ行時に D C/D Cコンバータを昇圧動作させることで、 比較的小容量の コンデンサ容量 (又は比較的小容量のバッテリ) で所望の出力を得ることが可能 となる (例えば、 特開 2 0 0 2— 2 1 8 6 6 7号公報 (図 3 ) 参照。 ) 。
従来のバッテリ用電力回路において、 アイ ドルス トップ動作 (停止 Z始動動 作) を連続して行うと、 バッテリ群に直列接続されたコンデンサ群への再充電が 不十分となり、 ィンバータを介してモータへ十分な電力を供給することができな くなり、 車両のモータによる所定の始動動作ができなくなるという問題点があつ た。 所定の始動動作というのは、 モータによりエンジン回転を停止状態からアイ ドル回転 (エンジン回転で 8 0 0 r p m程度) 域まで上げる動作のことである。 また、 コンデンサの電圧不足のため、 十分なモータ出力を得ることができなく なり、 モータでの始動ができなくなるという問題点があった。
また、 アイ ドルストップ動作が連続すると、 コンデンサへの再充電時間が十分 とれなくなるため、 始動動作時のコンデンサ電圧が様々な値になり、 その状態で 始動動作を行うことになる。 始動動作時、 コンデンサ電圧に依らず一定出力で D
CZD Cコンバータを動作させると、 コンデンサ電圧値に寄ってはバッテリ、 コ ンデンサ、 D C /D Cコンバータで構成されるノ ッテリ駆動回路システム全体の 効率が悪くなるという問題点があった。 効率の悪化はシステム全体としての発熱 量の増大をまねき、 特に、 発熱による温度上昇によるコンデンサの寿命劣化、 そ して、 他の機器への加熱という問題が懸念される。
また、 コンデンサゃバッテリには内部抵抗が存在するため、 エンジン再始動時 等の大電力出力時には、 内部抵抗による電圧ドロップのため、 バッテリに接続さ れた他の車載機器に悪影響を及ぼす可能性があった。 特に、 コンデンサの充電電 圧が低い場合ゃバッテリの S O C ( S t a t e O f C h a r g e ) が低い場 合には、 エンジン再始動に必要なバッテリ電流が増加し、 バッテリ出力電圧が低 下するという問題点があつた。
エネルギー回生時において、 電動機によって発電したエネルギーは、 バッテリ とコンデンサの直列体に充電する。 バッテリとしての鉛酸蓄電池の許容出力電力 密度は 1 0 O W/ k g〜2 0 O W/ k g程度と低く、 許容入力電力密度はさらに 低い。 このため、 回生時の充電電流は、 バッテリの許容入力電流によって決まつ ていた。 なお、 バッテリの許容入力電力密度は、 バッテリの電圧がほぼ一定であ るので、 許容入力電流に比例する。 そのため、 コンデンサの高速充電特性を利用 できず、 電動機の発電電力を制限する必要があつた。 発明の開示
この発明は、 かかる問題点を解決するためになされたものであり、 連続してァ ィドルストップ動作を行った場合でも、 始動時のモータへの供給電力の低下を防 止し、 所定のエンジン回転数を得るためのバッテリ用電力回路を得ることを目的 とする。
また、 第 2の目的は、 車両制動時などに電動機により発電される瞬時的な大き なエネルギーを、 バッテリへのダメージを与えることなく回生するバッテリ用電 力回路を得ることである。
この発明に係るバッテリ用電力回路は、 第 1のエネルギー蓄積源と、 上記第 1 のエネルギー蓄積源に直列に接続された第 2のエネルギー蓄積源と、 上記第 1の エネルギー蓄積源と上記第 2のエネルギー蓄積源との間で電力を変換する D C /
D Cコンバータと、 上記 D C /D Cコンバータを制御する制御手段とを備えてい る。
この発明の上記制御手段は、 上記直列接続電源の第 1および第 2のエネルギー 蓄積源のうち、 高電圧側に配置されたエネルギー蓄積源の電圧を検知し、 検知し た電圧が所定の第 1の閾 ί直電圧より小さい場合は上記 D C ZD Cコンバータによ り、 上記高電圧側に配置されたエネルギー蓄積源への充電を行うので、 連続して アイドルストップ動作を行った場合でも、 始動時のモータへの供給電力の低下を 防止し、 所定のエンジン回転数を得ることができる。
また、 この発明は、 車両の車軸に連結した電動機と上記直列接続された上記第 1のエネルギー蓄積源および上記第 2のエネルギー蓄積源との間で電力を変換す る電力変換回路をさらに備え、 制御手段は、 上記電動機の回生電力が上記電力変 換回路から上記第 1のエネルギー蓄積源と上記第 2のエネルギー蓄積源とに充電 されるとき、 上記第 1のエネルギー蓄積源の入力電流が上記第 1のエネルギー蓄 積源の許容入力電流以下になるように上記 D C ZD Cコンバータを制御するので、 バッテリおよびコンデンサの充電電力を増加することができる。 図面の簡単な説明 '
図 1は、 本発明に係るバッテリ用電力回路の構成を示した構成図である。
図 2は、 本発明に係るバッテリ用電力回路に設けられた D CZD Cコンバータ の制御条件を決定するための計算モデルを示した説明図である。
図 3は、 本発明に係るバッテリ用電力回路に設けられた各 D C /D Cコンバー タ出力におけるコンデンサ群の充電電圧と出力電圧の関係を示した説明図である。 図 4は、 従来のバッテリ用電力回路におけるコンデンサ初期電圧値とアイドル スタート回数 (連続動作) との関係を示した説明図である。
図 5は、 本発明に係るバッテリ用電力回路における制御方法を示した流れ図で ある。
図 6は、 本発明に係るバッテリ用電力回路におけるバッテリ電圧とモータを所 望の回転数まで上昇させることができるコンデンサの閾値電圧との関係を示した 説明図である。
図 7は、 本発明に係るバッテリ用電力回路における D C /D C出力電力毎のコ ンデンサ電圧と、 ノ ッテリとコンデンサ群と D CZD Cコンバータを 1つの電力 回路とみた場合のシステム効率との関係を示した説明図である。
図 8は、 本発明に係るバッテリ用電力回路におけるコンデンサ電圧と D C/D Cコンバータの出力閾値電圧との関係を示した説明図である。
図 9は、 本発明の実施の形態 2に係るバッテリ用電力回路の動作を示した流れ 図である。
図 1 0は、 本発明の実施の形態 2に係るバッテリ用電力回路における D C/D Cコンバータ出力とバッテリ端子電圧との関係を示した説明図である。
図 1 1は、 この発明の実施の形態 3に係るバッテリ用電力回路の構成を示す回 路図である。
図 1 2は、 図 1 1の制御回路の詳細なプロック図である。
図 1 3は、 図 1 1の回生制御のフローチャートである。
図 1 4は、 図 1 1の回生制御のフローチャートである。
図 1 5は、 図 1 1のバッテリ用電力回路の充電する様子を示す図である。 図 1 6は、 バッテリの許容入力電力を 1 k Wとしたときの、 コンデンサ電圧と バッテリ用電力回路の最大回生電力との関係を示す図である。
図 1 7は、 比較的短時間で大きな車両制動力が要求された時に、 バッテリ用電 力回路に回生する回生電力を示す。
図 1 8は、 この発明の実施の形態 4に係わるバッテリ用電力回路の回生制御の フローチヤ一トである。
図 1 9は、 この発明の実施の形態 4に係わるバッテリ用電力回路の回生制御の フローチヤ一トである。
図 2 0は、 図 1 8および図 1 9のフローチヤ一トで充電する様子を示す図であ る。
図 2 1は、 この発明の実施の形態 5に係わるバッテリ用電力回路の回生制御の フローチャートである。
図 2 2は、 この発明の実施の形態 5に係わるバッテリ用電力回路の回生制御の フローチャートである。 '
図 2 3は、 この発明の実施の形態 6に係わるバッテリ用電力回路の回生制御の フローチヤ一トである。
図 2 4は、 この発明の実施の形態 6に係わるバッテリ用電力回路の回生制御の フローチヤ一トである。 発明を実施するための最良の形態
実施の形態 1 .
図 1は、 本発明の実施の形態に係るバッテリ用電力回路の構成を示した回路図 である。 図示されているように、 バッテリ (第 1のバッテリ群) 1と、 第 2のバ ッテリ群としてのコンデンサ群 2とが直列接続されて、 直列接続電源を構成して いる。 コンデンサ群は大容量のキャパシタであり、 例えば電気二重層キャパシタ やアルミ電解コンデンサ等が使用できる。 図 1には表記していないが、 バッテリ
1には車載機器等の電気負荷 (図示せず、 特許文献 1参照) が接続される。 なお、 以下の説明においては、 バッテリ 1が、 上記直列接続電源のうち、 低電圧側に配 置されたエネルギー蓄積源であり、 コンデンサ群 2が、 上記直列接続電源のうち、 高電圧側に配置されたエネルギー蓄積源であるとする。 3はバッテリ 1とコンデ ンサ群 2との間に挿入された D CZD Cコンバータであり、 上アームスィッチと しての MO S F E T (スィツチング素子) 3 1、 下アームスィッチとしての MO
S F E T (スイッチング素子) 3 2、 インダクタンス 3 3、 平滑コンデンサ 3 4 によって構成されている。 4はバッテリ 1とコンデンサ群 2の直列対の両端に接 続された電力変換回路で、 バッテリ 1とコンデンサ群 2のエネルギーと、 電動機
(モータ) 9のエネルギーの電力変換を行っている。 1 0はエンジンで、 電動機
9に直結またはベルト等を介して機械的に接続されることで、 エンジン 1 0と電 動機 9の動力伝達が行われる。 5は D C /D Cコンバータ 3の出力指令信号を与 えるための制御装置で、 バッテリ 1の端子間電圧、 平滑コンデンサ 3 4の端子間 電圧、 電力変換回路 4の入力電流に応じて、 MO S F E T 3 1および MO S F E
T 3 2に指令信号を出力する。
なお、 D CZD Cコンバータ 3の構成については、 図 1に示したものの他に、 種々の方式が考えられるが、 基本的にバッテリ 1とコンデンサ群 2間の電力電送 が行えるものであれば、 どの方式でもよい。 また、 D CZD Cコンバータ 3には MO S F ET 3 1 , 32を使用しているが、 I GBTやバイポーラ トランジスタ 等の半導体素子を用いるようにしても構わない。
また、 図 1には記載していないが、 バッテリ 1とコンデンサ群 2には内部抵抗 が存在し、 バッテリ 1やコンデンサ群' 2に大電流が流れると、 その内部抵抗によ つて電圧ドロップが発生し、 電力変換回路 4には、 バッテリ 1とコンデンサ群 2 の合計電圧から各々の電圧ドロップを引いた電圧が印加される。
次に、 動作について説明する。 本発明は、 DC/DCコンバータ 3の制御方法 に関するものである。 以下においては、 本発明についてある一つの条件を例にと つて説明する。 ノ ッテリ 1は出力電圧 1 2 V、 内部インピーダンス 8πιΩである。 コンデンサ群 2は、 耐電圧 2. 5 V、 内部インピーダンス 8 ΙΏΩ、 容量 10 O F の電気二重層キャパシタを 3並列 4直列に接続したコンデンサプロックである。 コンデンサ群 2の最大電圧は 10Vということになる。 始動動作時、 電力変換回 路 4には、 バッテリ 1の電圧 1 2 Vが加えられて最大 22 Vが印加されている。 これは、 始動時、 電力変換回路 4の入力電圧をバッテリ電圧以上にして、 高出力 化し、 所定のモータ回転数 (アイ ドル回転数、 エンジン回転数で 800 r pm程 度、 モータ回転数で 2000 r 程度) に達するまで、 電動機 9のみで上げる ためである。
図 2に本発明の DC/DCコンバータ 3の制御条件を決めるための計算モデル を示す。 始動時の動作時間は 0. 3秒程度と短いため、 コンデンサ群 2を電源と 見なし、 'コンデンサ電圧の過渡的な変化を無視している。 ηは効率であり、 DC /DCコンバータ 3の出力電力 0. 5 kW〜2 kWで、 0. 975〜0. 9と変 化するとした。 nは昇圧比、 AVはコンデンサ群 2のコンデンサ電圧、 rはコン デンサ内部抵抗、 Vはバッテリ 1のバッテリ電圧、 Rはバッテリ内部抵抗である。 計算モデルから得られる方程式を以下に示す。
Void
二 (1)
Idc = - (2)
n
R(I、+I2) + Vi" = V (3) Iout = Idc + I2 (4)
Pdc = IdcVout (5)
R(7, + /, ) + rl2 + owt = F + Λ V (6)
上式を解く とにより、 DCZDCコンバータ 3の出力毎のコンデンサ群 2の 充電電圧 (図中、 積み上げ電圧) と出力電圧 (V o u t、 電力変換回路 4入力電 圧) の関係を導くことができる。 出力条件は、 電動機 9の所定のモータ出力を得 ることができる 4 kWである。
図 3に各 DC/DCコンバータ 3の出力におけるコンデンサ群 2の充電電圧と 出力電圧の関係を示す。 上記の所定の始動動作を満足するには、 出力電圧 (電力 変換回路 4の入力電圧) が 1 0 V以上必要である。 なぜなら、 始動動作時、 モー タ回転数が上がってくると、 電動機 9自身が発生する逆起電圧により、 電圧が低 レ、と電動機 9へ電流が流せなくなり、 モータ出力を得ることができなくなるため である。 また、 本発明の実施の形態において、 DC/DCコンバータ 3の最大出 力電力は 2 k Wである。 図 3より、 積み上げ電圧 4 V未満においては出力電圧が
1 0V以上得られないことがわかる。 また、 同図より、 積み上げ電圧 4Vでは D
CZDC出力 2 kWが必要なこともわかる。
このように、 本実施の形態において、 積み上げ電圧が 4 V未満では所定の出力
( 1 0 V以上、 4 kW) が得られないことがわかる。 本実施の形態では、 アイ ド ル停止がら再始動までの時間を利用して D C/D Cコンバータ 3を昇圧動作させ ることによりコンデンサ群 2を充電するか、 車両の走行時に電動機 9から発電さ れる電力を利用して充電している。 そのときの充電電圧は耐圧近くの約 1 0 Vで ある。 D C/D Cコンバータ 3を用いて充電する場合、 充電時間は数秒程度であ る。 しかし、 停止一始動動作が連続して発生する場合、 コンデンサ群 2への充電 時間を十分とることができなくなるため、 コンデンサ電圧が徐々に低下してしま い、 最終的には電圧不足になり、 所定のモータ出力が得られなくなる。 図 4に、 コンデンサ満充電状態から再充電なレに連続してアイ ドルストップ動作をした場 合の、 アイドルストップ回数とそのときのコンデンサ群 2の初期電圧値の関係を 示す。 4 kWを 0. 3秒間、 電力変換回路 4へ出力した場合の計算結果である。 このとき、 DCZDCコンバータ 3は、 バッテリ 1、 コンデンサ群 2、 DC/D Cコンバータ 3で構成されるシステムが最大効率となるように DC/DCコンパ ータ 3の出力を制御している。 この最大効率制御に関しては、 後で説明する。 図 4より、 コンデンサ電圧はアイドルストップ動作を 9回連続で行うと、 9回 目のコンデンサ初期充電電圧が 3. 2 V程度となり、 所定のモータ出力が得られ なくなることがわかる。 本発明の実施の形態では、 アイ ドルストップ動作が連続 した場合においても所定のモータ出力が得られるように、 図 5に示すようなェン ジン 10、 電動機 9、 電力変換回路 4を含めたシステム的な制御を行っている。 動作について図 5を用いて説明する。 まず、 車両が停止しエンジンを停止する 場合は、 コンデンサ電圧 V cを検知し (ステップ S 1) 、 その電圧が 4 V (第 1 の閾値電圧) 未満か否かを判定する (ステップ S 2) 。 4 V未満の場合は、 アイ ドル状態を維持する (ステップ S 3) 。 そして、 そのままアイドル状態を維持し つつ、 DC/DCコンバータ 3を動作させ、 コンデンサ電圧 V cを昇圧して、 コ ンデンサ電圧 V cが 4 V以上になるようにコンデンサ群 2への充電を行う (ステ ップ S4) 。 一方、 ステップ S 2の判定において、 コンデンサ電圧 V cが 4 V以 上の場合は、 エンジン 10を停止させる (ステップ S 5) 。 コンデンサ電圧 Vc が不十分で始動する場合は (すなわち、 4V未満のとき) 、 エンジ 10はステ ップ S 3においてアイドル状態であるから、 ステップ S 5のアイドル停止なしに 始動することになる。 この制御方法により、 電圧不十分による電動機 9による始 動不能状態への懸念が無くなり、 また、 電圧不足でモータ始動した場合の所定の エンジン回転数以下でのエンジン点火による有害排気物量の増大といった問題も 無くなる。
また、 バッテリ 1の電圧を検知し、 バッテリ 1の電圧に応じてコンデンサ電圧 の第 1の閾値電圧 (本実施の形態では 4 V) を調整する事で、 アイ ドルス トップ 後のモータ始動をより確実に行う事が可能となる。 以下、 その制御方法について ¾dへる。
ノ ッテリ 1はその SOC (S t a t e O f Ch a r g e) によって、 無負 荷時の出力電圧 Vが若干変化し、 1 2 Vバッテリであれば ±1 V〜±2 V程度の 電圧変動を伴う。 1 2 Vバッテリの電圧値が変動すると、 バッテリ 1の最大出力 電力も変動するため、 電力変換回路 4に所望の電力や電圧 (本実施の形態では、 4 kW/10V以上) を供給できなくなり、 モータ始動不足になる可能性がある。 図 6に、 バッテリ電圧とモータを所望の回転数まで上昇させる事ができるコンデ ンサ群 2の閾値電圧との関係を示す。 バッテリ電圧が 1 2 Vの時のコンデンサ群 2の閾値電圧は 4 Vであったのに対し、 バッテリ電圧が 1 1 Vに低下するとコン デンサ群 2の閾値電圧は 5. 5Vに上昇する。 逆に、 バッテリ電圧が 1 3Vの時 のコンデンサの閾値電圧は 2. 5 Vに低下する。 このように本実施の形態では、 バッテリ群 1の S〇Cが高い (バッテリ電圧が高い) 時にはコンデンサ電圧の第 1の閾値電圧を低くし、 バッテリ群 1の SOCが低い (バッテリ電圧が低い) 時 にはコンデンサ電圧の第 1の閾値電圧を高くする事で、 アイドルストップによる エンジン再始動を確実に行う事ができる。
次に、 本発明の実施の形態のもう一つの DC/DCコンバータ制御 (最大効率 制御) に関して説明する。 上述の (1) 〜 (6) 式を用いて計算した、 DCZD C出力電力毎のコンデンサ電圧 (図中、 積み上げ電圧) と、 バッテリ群 1とコン デンサ群 2と DC/DCコンバータ 3を一つの電力回路とみた場合のシステム効 率の関係を図 7に示す。 出力条件は 4 k Wである。 図からわかるように、 各コン デンサ電圧条件においてシステムの最大効率が得られる D C/D Cコンバータ 3 の駆動出力条件は異なり、 各コンデンサ電圧にぉレ、て最適条件があることがわか る。 コンデンサ電圧値が一定値にできない理由は上述の通りである。 ' 最大効率が得られる条件で、 アイドルストップ状態から電動機 9によってェン ジン 10を始動動作させることのメリットは、 同じ出力を得るのに効率が良い分 だけ、 発熱がシステムとして小さいということである。 効率最大条件で電力回路 を動作させることにより、 発熱が最小限に抑えることが可能となり、 特にコンデ ンサ群 2の発熱が大幅に抑制される。 コンデンサ群 2の発熱が抑えられることに より、 コンデンサ群 2の温度上昇による寿命劣化の問題が無くなり、 さらに、 ェ ンジンルームに配置される電力回路全体の発熱が抑えられることにより、 他の機 器への加熱という問題も小さくなる。 図 7において、 例えば、 積み上げ電圧 6 V とした場合、 DC/DCコンバータ出力 0Wでは瞬時発熱 2260Wであるのに 対して、 DC/DCコンバータ 6を 1. 5 kW動作させると 1 530Wの瞬時発 熱量に低下することがわかる。 また、 1 OVのポイントをみると、 DCZDCコ ンバータ 6を 2 kW動作させると、 瞬時 1 26 OW発熱するのに対して、 0. 5 kW動作では瞬時 880Wになることがわかる。
よって、 本発明の実施の形態においては、 コンデンサ電圧を検知しその電圧値 に対応して DCZDCコンバータ 3の出力電力を制御している。 図 8に、 本実施 の形態のコンデンサ電圧 (図中、 積み上げ電圧) と DC/DCコンバータ 3の出 力閾値電圧の関係を示す。 図 8は図 7から求めている。 本発明の実施の形態は、 図 8に示したように、 コンデンサ電圧の値に応じて DC/DCコンバータ 3の出 力電力値を調節できるようになっているため、 電力回路を最大効率になるように 動作できる。
本実施の形態は、 DC/DCコンバータ 3の出力電力値をコントロールするた め、 バッテリ 1から DC/DCコンバータ 3への電流とバッテリ 1の電圧とを検 知し、 出力目標電流値を制御回路 8内で設定され、 検知された電流値と目標電流 値との比較により、 スィッチング素子である MOSFET 32のゲート電圧信号 のデューティー比を調節している。
第 2のエネルギー蓄積源としてコンデンサ群を用いた形態について述べてきた 、 このコンデンサ群をバッテリに置き換えても同様の効果が得られることは言 うまでもない。 (バッテリも放電を繰り返すと出力電圧が低下する。 )
なお、 上記の説明においては、 上述のある条件において本発明の効果を説明し たが、 この場合に限らず、 ノ ッテリ、 コンデンサの内部インピーダンス、 DC/ DCコンバータの効率が変化したら、 アイドルス トップ条件のコンデンサ閾値電 圧 (4 V) 、 コンデンサ電圧に対応した D C/D Cコンバータ出力条件は変化す ることは言うまでもない。
また、 アイドルストップ後のモータ再始動での動作 (4 を0. 3 s e c間 出力) として説明したが、 モータ再始動後のトルクアシス ト (1 s e c程度) を 行う場合においても、 コンデンサエネルギーの放出により、 経時的に降下するコ ンデンサ電圧降下に応じて D C/D Cコンバータ出力を制御することで、 同様の 効果が得られる。 トルクアシス トとは、 エンジンを用いて車両'を動作させる時に、 モータも同時に動作させることである。 以上のように、 本実施の形態においては、 バッテリ 1とコンデンサ群 2を互い に直列に接続した直列接続電源と、 バッテリ 1およびコンデンサ群 2間、 および、 バッテリ 1と電気負荷間で、 電力を移行させるための D C/D Cコンバータ 3を 備え、 直列接続電源のうち高電圧側に配置されたエネルギー蓄積源であるコンデ ンサ群 2の電圧 V cを検知し、 検知した電圧 V cが-所定値 (第 1の閾値電圧、 こ こでは 4 Vとした。 ) より小さい場合は、 D CZD Cコンバータ 3の昇圧動作に よりコンデンサ群 2の電圧を閾値電圧 (第 1の閾値電圧) 以上に充電するように したので、 常時、 バッテリ用電力回路が十分な電力を出力できるようになる。 . また、 直列接続電源のうち高電圧側に配置されたエネルギー蓄積源であるコン デンサ群 2の電圧を検知し、 検知した電圧が所定値 (第 1の閾値電圧) より小さ い場合は、 ェンジン停止動作を行わずに、 エンジン 1 0の回転数をアイドル回転 に維持するようにしたので、 電動機 9によるェンジン始動動作不能といったこと を無くすことができる。
また、 直列接続電源のうち高電圧側に配置されたエネルギー蓄積源であるコン デンサ群 2の電圧を検知し、 検知した電圧が所定値 (第 1の閾値電圧) より小さ い場合は、 エンジン回転を維持し、 D CZD Cコンバータ 3の昇圧動作によりコ ンデンサ電圧を閾値電圧 (第 1の閾値電圧) 以上に充電した後、 エンジンを停止 するようにしたことにより、 連続して停止/始動動作 (アイ .ドルストップ動作) を行った場合でも、 始動時の電動機 9への供給電力が十分となり、 電動機 9によ り所定のエンジン回転数まで上げることができ、 始動時低回転域でのガソリン点 火による有害排気物量の増加といったことが無くなる。 また、 電動機 9によるェ ンジン始動動作不能といったことが無くなる。
また、 第 1のエネルギー蓄積源であるバッテリ 1の電圧と、 第 2のエネルギー 蓄積源であるコンデンサ群 2の電圧を検知し、 低電圧側に配置されたエネルギー 蓄積源であるバッテリ 1の電圧値に応じて、 エンジン再始動可否の基準となるコ ンデンサ群 2の閾値電圧 (第 1の閾値電圧) を調整し、 バッテリ 1の S O Cが高 い (バッテリ電圧が高い) 時にはコンデンサの閾値電圧を低くし、 バッテリ 1の
S O Cが低い (バッテリ電圧が低い) 時にはコンデンサ群 2の閾値電圧を高くす るようにしたので、 アイドルストップによるエンジン再始動を確実に行う事がで 03 014664 さる。 '
また、 アイドルストップ状態.(モータ停止状態) からモータによってエンジン を始動動作させる時、 直列接続電源のうち、 高電圧側に配置されたエネルギー蓄 積源であるコンデンサ群 2の電圧を検知し、 検知したコンデンサ電圧によって D C ZD Cコンバータ 3の出力電力を変化させたことにより、 バッテリ電力回路シ ステム全体を最大効率で動作させることが可能となり、 システム全体の発熱量を 最小限にでき、 特に、 発熱による温度上昇によるコンデンサ群 2の寿命劣化、 そ して、 加熱といった他の機器への影響が小さくすることができる。 実施の形態 2 .
図 9は、 本発明の実施の形態に係るバッテリ用電力回路の動作の流れを示す流 れ図である。 なお、 本実施の形態に係るバッテリ用電力回路の構成は図 1と同様 であるため、 ここでは、 図 1を参照することとして、 詳細な説明は省略する。 図 9に示すように、 本実施の形態においては、 まず、 ステップ S 1 0で、 ェン ジン始動指令があると、 ステップ S 1 1で、 バッテリ 1の端子電圧 Vが第 2の閾 値電圧 V TH 2 (例えば、 8 . 0 V ) より大きいか否かを判定し、 大きかった場合 には、 ステップ S 1 2に進み、 上述の実施の形態 1で説明した最大効率制御を行 つて、 ステップ S 1 5で、 エンジンを始動する。 このとき、 最大効率制御を行い ながら、 所定の時間間隔でステップ S 1 1のバッテリ 1の端子電圧 Vの判定を行 う。 一方、 ステップ S 1 1でバッテリ 1の端子電圧 Vが第 2の閾値電圧 V T H 2 (例えば、 8 . 0 V) 以下であると判定された場合には、 ステップ S 1 3で、 バ ッテリ電流最小制御に切り換え、 ステップ S 1 4で、 車両を停止しエンジンを停 止する判断条件となるコンデンサ群 2の第 1の閾値電圧 V— (本実施の形態での初 期値は 4 V ) を上昇させて、 ステップ S 1 5で、 エンジンを始動する。
なお、 ここで、 上述の説明においては、 ステップ S 1 3とステップ S 1 4とを 続けて行う例につレ、て説明したが、 その場合に限らず、 ステップ S 1 4の処理を 行うための条件判断をステップ S 1 4の前に行うようにしてもよい。 すなわち、 コンデンサ閾値電圧を上昇させるための条件として、 バッテリ 1の端子電圧 Vが 第 3の閾値電圧 (例えば、 8 . 0 V) より大きい場合に行うということを設定し ておいてもよい。
なお、 実施の形態 1においても述べたが、 図 1には記載していないが、 バッテ リ 1とコンデンサ群 2には内部抵抗が存在し、 バッテリ 1やコンデンサ群 2に大 電流が流れると、 その内部抵抗によって電圧降下または電圧上昇が発生する。 バ ッテリ 1には車載機器等の電気負荷 (図示省略、 特許文献 1参照) が接続されて おり、 バッテリ 1の端子間電圧が極端に低下すると電気負荷に悪影響を及ぼす可 能性がある。 一般的に使用されている 1 2 Vバッテリ (充電電圧は 14 V) に接 続される電気負荷は、 ノ ッテリ電圧が 8 V以上で動作保証をしている製品が多い。 また、 今後普及するとされている 36 Vバッテリ (充電電圧は 42V) を使用す るシステムでは、 バッテリ端子間電圧の最低電圧を 21 V〜 25 V、 最高電圧を 5 1〜55 Vの範囲内に抑えるという規格が決まりつつある。 このように、 電気 負荷がバッテリ 1に接続される場合、 バッテリ 1の端子間電圧がある基準電圧値 (公称電圧値の約 3分の 2程度) 以下にならないように、 バッテリ電流を制限す る必要がある。
本実施の形態では、 DC/DCコンバータ 3の出力電力によってバッテリ電圧 が変化するので、 DC/DCコンバータ 3の出力電力とバッテリ電圧との関係を 求める。 本発明によるバッテリ用電力回路の出力経路は、 バッテリ 1力 ら DCZ DCコンバータ 3を介して出力する経路 (以下、 出力 P と称す) と、 バッテリ 1からコンデンサ群 2を介して出力する経路 (以下、 出力 P2と称す) の 2経路 が存在し、 出力 Piと出力 P2の合計電力 P1 + P2が、 電力変換回路 4に入力さ れる電力となる。 電動機 9が発電し、 バッテリ 1やコンデンサ群 2に充電される 場合は、 出力 と出力 P 2が負の値になると考えればよい。
次に、 図 2の計算モデルを用いて、 出力 Piと P2と、 その時のバッテリ 1の 出力電圧 (DCZDCコンバータの入力電圧) Vi nを計算する。 バッテリ 1の 無負荷端子間電圧を V、 コンデンサ群 2の無負荷端子間電圧を AV、 バッテリ 1 の内部抵抗を R、 コンデンサ群 2の内部抵抗を r、 バッテリ 1を流れる電流を I B、 コンデンサ群 2を流れる電流を I 2、 DC/DCコンバータ 3への入力電流 を Iい DCZDCコンバータ 3の電力変換効率を 11とすると、 Pい P2は以下 の式で表される。
Figure imgf000016_0001
P2 = Vi nX I ! X 77
Vi n=V-RX】 B
I B= I i+ I 2 上式より、 バッテリ用電力回路の出力電力が Pの時 を流れる電 流 I Bは、 次式で表される。 V + AV) + {(\-^R + 2r}l
2(R + r)
+ ^ + )/,} 4(R +り ^
2(R + r)
これより、 バッテリ用電力回路の出力電力 Pが一定であっても、 バッテリ電流 は D C /D Cコンバータ 3の入力電流 I iと、 コンデンサ群 2の無負荷端子間電 圧 Δλ に依存する事が分かる。
—例とじて、 バッテリ 1の無負荷端子間電圧 Vを 1 2 V、 コンデンサ群 2の無 負荷端子間電圧 AVを 6 V、 バッテリ 1の内部抵抗 Rを 9. 6 πιΩ (劣化等によ つて 8 πιΩから 2 0 %増加した値とした) 、 コンデンサ群 2の内部抵抗 rを 1 0. 7πιΩとし、 バッテリ用電力回路が 4 kWを出力する時の、 D C/D Cコンパ一 タ 3出力.とバッテリ端子電圧との関係を図 1 0に示す。 図中には、 実施の形態 1 で述べた最大効率運転ボイントと、 本実施の形態で述べたバッテリ電流最小ボイ ントを示している。 '
図 1 0より、 最大効率運転ポイントでの D C/D Cコンバータ出力は 1 5 0 0
W、 バッテリ電圧は 7。 9 Vであるのに対し、 バッテリ電流最小ポイントでのバ ッテリ電圧は 8. 3 Vとなり、 バッテリ電圧が約 5 %上昇する事が分かる。 この ように、 バッテリ電圧を検知し、 バッテリ電圧が予め設定された第 2の閾値電圧
(例えば 8. 0 V) 以下になった場合には、 最大効率制御からバッテリ電流最小 制御に切り換える (図 9のステップ S l l , S 1 3) 事で、 バッテリの出力電圧 低下を抑制する事が可能となる事が分かる。 また、 バッテリ電流最小制御に切り替わった場合には、 車両を停止しェン
1 0を停止する判断条件となるコンデンサ群 2の第 1の閾値電圧 (本実施の形態 での初期値は 4 V) を上昇させる (図 9のステップ S 1 4 ) 。 コンデンサ群 2の 第 1の閾値電圧は、 検知されたバッテリ電圧に応じて再設定される。 これにより、 次回の車両停止時では、 エンジン停止条件であるコンデンサ群 2の第 1の閾値電 圧は 4 V +a (a> 0 ) となり、 バッテリ 1の出力電圧低下を防止する事ができ る。
このような制御を行う事で、 ノ ッテリ 1やコンデンサ群 2の劣化等によってバ ッテリ 1やコンデンサ群 2の内部抵抗が上昇し、 バッテリ能力やコンデンサ能力 が低下した場合でも、 所定電力出力時のバッテリ 1の出力電圧低下を抑制できる ため、 バッテリ 1に接続された他の車载機器への悪影響を及ぼすことなく、 確実 にエンジン 1 0の始動動作を行う事ができる。
なお、 本実施の形態では、 最大効率制御からバッテリ電流最小制御に切り替わ るための条件 (第 2の閾値電圧) と、 コンデンサ閾値電圧を上昇させるための条 件 (第 3の閾値電圧) とを 8 . 0 Vという同じ値としているが、 これに限らず、 第 2の閾値電圧と第 3の閾値電圧を異なる値にしても同様の効果が得られるのは 言うまでもない。
以上のように、 本実施の形態においては、 上述の実施の形態 1と同様に、 バッ テリ 1とコンデンサ群 2を互いに直列に接続した直列接続電源と、 バッテリ 1お よびコンデンサ群 2間、 および、 バッテリ 1と電気負荷間で、 電力を移行させる ための D C ZD Cコンバータ 3を備え、 直列接続電源のうち高電圧側に配置され たエネルギー蓄積源であるコンデンサ群 2の電圧 V cを検知し、 検知した電圧 V cが所定値 (第 1の閾値電圧、 ここでは 4 Vとした。 ) より小さい場合は、 D C ZD Cコンバータ 3の昇圧動作によりコンデンサ群 2の電圧を閾値電圧 (第 1の 閾値電圧) 以上に充電するようにしたので、 常時、 バッテリ用電力回路が十分な 電力を出力できるようになる。
また、 実施の形態 1と同様に、 直列接続電源のうち高電圧側に配置されたエネ ルギー蓄積源であるコンデンサ群 2の電圧を検知し、 検知した電圧が所定値 (第
1の閾値電圧) より小さい場合は、 エンジン停止動作を行わずに、 エンジン 1 0 の回転数をアイドル回転に維持するようにしたので、 電動機 9によるエンジン始 動動作不能といったことを無くすことができる。
また、 実施の形態 1と同様に、 直列接続電源のうち高電圧側に配置されたエネ ルギー蓄積源であるコンデンサ群 2の電圧を検知し、 検知した電圧が所定値 (第 1の閾値電圧) より小さい場合は、 エンジン回転を維持し、 D C/D Cコンパ一 タ 3の昇圧動作によりコンデンサ電圧を閾値電圧 (第 1の閾値電圧) 以上に充電 した後、 エンジンを停止するようにしたことにより、 連続して停止/始動動作 (アイドルストップ動作) を行った場合でも、 始動時の電動機 9への供給電力が 十分となり、 電動機 9により所定のエンジン回転数まで上げることができ、 始動 時低回転域でのガソリン点火による有害排気物量の増加といったことが無くなる。 また、 電動機 9によるエンジン始動動作不能といったことが無くなる。
さらに、 本実施の形態においては、 第 1のエネルギー蓄積源であるバッテリ 1 の電圧値を検知し、 エンジン 1 0の再始動時等の大電力出力時にバッテリ電圧が あらかじめ設定された基準電圧値 (第 2の閾値電圧) よりも低下した場合に、 バ ッテリ電流が最小となるように D C/D Cコンバータ 3を制御するようにしたの で、 バッテリ 1の内部抵抗による電圧ドロップを抑制し、 バッテリ 1に接続され た他の車載機器への悪影響をなくす事ができる。
また、 第 1のエネルギー蓄積源であるバッテリ 1の電圧値を検知し、 バッテリ 電圧があらかじめ設定された閾値電圧値 (第 3の閾値電圧) よりも低下した場合、 第 1の閾値電圧を上昇させて次回からのアイ ドルストップ条件に反映させるよう にしたので、 モータ始動時のバッテリ電圧低下を抑制する事ができ、 バッテリ 1 に接続された他の車载機器への悪影響をなくす事ができる。 実施の形態 3 .
図 1 1は、 この発明の実施の形態 3に係るバッテリ用電力回路の構成を示す回 路図である。 図 1 2は、 図 1 1の制御装置の詳細なブロック図である。 図 1 3お よび図 1 4は、 図 1 1における回生制御のフローチャートである。 図 1 5は、 図
1 1のバッテリ用電力回路の充電する様子を示す図である。
図 1 1に示すように、 バッテリ用電力回路は、 第 1のエネルギー蓄積源として 4 のバッテリ 1と、 そのバッテリ 1と直列に接続し、 許容入力電流がバッテリ 1の 許容入力電流より大きな第 2のエネルギー蓄積源としてのコンデンサ 2と、 バッ テリ 1とコンデンサ 2との間に挿入した DC/DCコンバータ 3と、 バッテリ 1 とコンデンサ 2の直列体の両端に接続された電力変換回路 4と、 D C/D Cコン バータ 3と電力変換回路 4とを制御する制御装置 5とを有している。
バッテリ 1は、 定格電圧 1 2V、 等価直列抵抗 8 mQの鉛酸蓄電池である。 バ ッテリ 1は、 許容入力電力 PBMAX (W) の特性を有している。 バッテリ 1を 大電力で急速充電を行うとバッテリが劣化してしまうため、 バッテリ 1にはバッ テリ温度および S〇C (S t a t e O f Ch a r g e) に応じた許容入力電 力 P BMAXを設定している。 バッテリ 1の電圧は大幅には変化しないので、 許 容入力電力 PB MAXの替わりに、 許容入力電流 I BMAXを設定している。 鉛 酸蓄電池の許容入力電力 P BMAXは、 重量当たり 10 OW/k g位である。 コンデンサ 2は、 静電容量の大きな電気二重層コンデンサまたはアルミ電解コ ンデンサ等である。 コンデンサ 2の許容入力電力 PCMAX (W) は、 鉛酸蓄電 池に比べて大きく、 重量当たり 100 OW/k g位である。 この実施の形態 3に おいては、 コンデンサ 2として、 許容印加電圧 (VCMAX) 2. 5 Vヽ 等価直 列抵抗 (r) 8πιΩ、 静電容量 (C) 100 Fの電気二重層コンデンサを 3並列 1 5直列に接続したコンデンサブロックを用いている。 コンデンサ 2の許容印加 電圧は、 37. 5 Vである。
DC/DCコンバータ 3は、 上アームスィツチとしての上アームスィツチング 素子 6 a、 下アームスィッチとしての下アームスイッチング素子 6 b、 チョーク コイルインダクタ 7、 平滑コンデンサ 8を有している。 この DC/DCコンバー タ 3は、 双方向の昇降圧直流チョッパ回路を構成し、 バッテリ 1とコンデンサ 2 との間で電力を変換する。 スイッチング素子 6 a、 6 bは、 MOS FETで構成 している。
この DC/DCコンバータ 3は、 以下のように制御されて電力変換する。 この 説明では、 バッテリ 1からコンデンサ 2に向けた電力変換 (以下、 昇圧モード D
C/DCコンバータ作動と称す。 ) を例に取り上げている。
上アームスィツチング素子 6 aを OF Fし、 下アームスィツチング素子 6 bを ON'してバッテリ 1から電流をチョークコイルインダクタ 7に流す。 次に、 下ァ 一ムスィツチング素子 6 bを OF Fし、 同時に上アームスィツチング素子 6 aを ONして、 チョークコイルインダクタ 7に流れた電流を上アームスィツチング素 子 6 aを介してコンデンサ 2の端子間に印加ずる。 この操作を繰り返すことによ り、 バッテリ 1の電力をコンデンサ 2に供給する。 DC/DCコンバータ 3の出 力電流は、 上アームスイッチング素子 6 aと下アームスイッチング素子 6 bの O N時間の比率を変えることにより変化できる。
コンデンサ 2からバッテリ 1に向けた電力変換 (以下、 降圧モード DC/DC コンバー^作動と称す。 ) は上述の説明の反対の操作を行うことにより行うこと ができる。
スィツチング素子としての MOSFETは、 そのゲート ONZOFFの信号を 入力することによりスィツチングする。
電力変換回路 4は、 バッテリ 1およびコンデンサ 2の直列体と電動機 9との間 の電力変換を行っている。 電動機 9は、 エンジン 10に連結した車軸 27に接続 されている。 始動時にはバッテリ 1およびコンデンサ 2の電力を電力変換回路 4 によって交流に変換し、 電動機 9をモータとして車軸 27を回転する。 制動時に は、 発電機としての電動機 9から発電される交流電力を電力変換回路 4によって 直流に変換し、 バッテリ 1およびコンデンサ 2に充電する。 この交流電力は、 車 軸 27の回転に対して制動力として働く。 車軸 27には、 車軸 27の回転を制動 するブレーキ機構 26を有している。 ブレーキ機構 26には、 制御装置 5からの 指令で車軸 27の回転を機械的に制動する図示しなレ、機械ブレーキを有している。 さらに、 車両のスピードを減速する制動指令を発する制動指令装置としてのブ レーキペダル 28を有し、 制動指令は、 ブレーキ力 P Fとして制御装置に入力さ れる。
制御装置 5は、 図 1 2に示すように DC/DCコンバータ制御部 1 1を有する。
DC/DCコンバータ制御部 1 1は、 入力電流算出手段 1 3、 回生可能電力算出 手段 14、 許容入力電流算出手段 15、 DC/DCコンバータ制御手段 16、 機 械ブレーキ制御手段 18を有している。 制御装置 5は、 CPU、 RAM、 ROM、 インターフェス回路を備えたマイクロコンピュータによって構成されている。 バッテリ用電力回路は、 図 1 1に示すようにさらにバッテリ 1の端子電圧 VB を計測する第 1の電圧計としてのバッテリ電圧計 20、 コンデンサ 2の端子電圧 VCを計測する第 2の電圧計としてのコンデンサ電圧計 21、 バッテリ 1の温度 TBを計測する温度計 24、 車速 S Vを計測する車速センサー 25を有している。 車載機器等の電気負荷 22は、 バッテリ 1に接続されている。
次に、 図 1 2に示したバッテリ用電力回路の制御装置 5の構成に付いて説明す る。
入力電流算出手段 1 3は、 車速センサー 25からの車速 S V (km/h r ) と ブレーキペダル 2 8からのブレーキ力 P F (N) とから回生エネノレギー P G (W) を算出する。 回生エネルギー PGは、 車速 S Vの車両を所定のブレーキ力 P Fで制動するために必要な制動エネルギーを電気量として換算した値である。 さらに、 バッテリ 1の端子電圧 VBとコンデンサ 2の端子電圧 VCと回生エネル ギー PGとから入力電流 I (A) を求める。
一方、 回生可能電力算出手段 14は、 バッテリ 1の端子電圧 VB (V) からバ ッテリ 1の SOC (%) を算出する。 バッテリ SOCは、 バッテリ 1の端子電圧 VBに対応する値であり、 その値はテーブルデータとして回生可能電力算出手段 14に記憶されている。
さらに、 バッテリ SOCからバッテリ許容入力電力 PB MAX (W) を算出す る。 バッテリ温度 TBの高いとき、 バッテリ許容入力電力 PBMAXは小さくな り、 また、 バッテリ SOCの大きいとき、 バッテリ許容入力電力 PBMAXは小 さくなる。
さらに、 バッテリ許容入力電力 P BMAXから最大回生電力 P I NVMAX (0) (W) を算出する。
さらに、 バッテリ許容入力電力 P B Ivl A Xおよび予め設定した D C / D Cコン バータ最大出力 P DMA X (W) とから DCZDCコンバータ 3を最大に動作し て電力変換するときの最大回生電力 P I NVMAX (1 00) (W) を算出する。 許容入力電流算出手段 1 5は、 バッテリ許容入力'電力 PBMAXとバッテリ 1 の端子電圧 VBとからバッテリ 1の許容入力電流 I BMAX (A) を求める。
DC ZD Cコンバータ制御手段 16は、 回生エネルギー PGが最大回生電力 P I NVMAX (0) より大きいとき、 回生電力 P I NVMAX (0) 、 ノくッテリ 電圧 VB、 コンデンサ電圧 VCおよびバッテリ最大電流 I BMAXから DCZD Cコンバータ操作量 PDを算出する。
さらに、 DCZDCコンバータ操作量 PDから昇降圧比 nを求める。 この際、 バッテリ 1の電流 I B *とすると、 DC/DCコンバータ 3のバッテリ 1からコ ンデンサ 2へ変換した電力 PD (W) は、 PD = VDX (I C— I B) である。 VD = PD/ (I C— I B) を求め、 昇降圧比 n=VDZVBを求める。
さらに、 昇降圧比 nになるようにスィツチング手段のオンオフの周期を求め、 D C/D Cコンバータを作動する。
このように、 DC/DCコンバータ制御手段 1 6は、 この場合、 バッテリ 1か らコンデンサ 2に電力変換する。
DC/DCコンバータ制御手段 16は、 回生エネルギー PGが最大回生電力 P I NVMAX (0) 以下のとき、 回生電力 P I NVMAX (0) 、 バッテリ電圧 VB、 コンデンサ電圧 VCおよびバッテリ最大電流 I BMAXから DCZDCコ ンバータ操作量 PDを算出する。
D C/D Cコンバータ制御手段 16は、 この場合、 コンデンサ 2からバッテリ 1に電力変換する。
機械ブレーキ制御手段 18は、 回生エネルギー PGと最大回生電力 P I NVM AX (1 00) とを比較し、 回生エネルギー PGが大きいとき、 回生エネルギー PGと最大回生電力 P I NVMAX (100) との差分 ΔΡΑを求め、 その差分 厶 P Aを機械ブレーキ操作量 MFに変換する。
さらに、 この機械ブレーキ操作量 M Fに基づいて機械ブレーキを作動して車両 を制動する。
次に、 図 1 3および図 14を参照してバッテリ用電力回路の回生制御の手順に ついて説明する。
ステップ (以下、 Sと略す。 ) 101で、 入力電流算出手段 13は、 車速セン サー 25の車速 S V (km/Hr) を入手し、 車速 S vがゼロかどうか判断する。 車速がゼロのとき車両が停止しているので、 回生制御は終了する。 車速がゼロで ないとき、 S 102へ進む。 S 102で、 入力電流算出手段 1 3は、 ブレーキペダル 28からブレーキ力 P F (N) を入手し、 制動指令が発せられているかどうか判断する。 ブレーキ力が ゼロのとき、 制動を掛けようとしていないために、 回生エネルギーは発生しない ので、 回生制御は終了する。 制動指令は発せられているときは、 S 103へ進む。
S 103で、 入力電流算出手段 1 3は、 車速 S Vとブレーキ力 PFとから回生 エネルギー PG (W) を算出する。 この回生エネルギー PG、 バッテリ端子電圧 VB (V) 、 コンデンサ端子電圧 VC (V) から入力電流 I (A) を求める。
S 104で、 許容入力電流算出手段 1 5は、 バッテリ端子電圧 VB (V) から、 バッテリの SOC (%) を算出する。
S 105で、 許容入力電流算出手段 1 5は、 バッテリ温度 TB (°C) とノ ッテ リの SOCとから、 バッテリ許容入力電力 P BMAX (W) を算出する。 バッテ リ許容入力電力 P BMAXとバッテリ端子電圧 VBとから、 バッテリ許容入力電 流 I BMAX (A) を算出する。
S 106で、 回生可能電力算出手段 14は、 入力電流 I とバッテリ許容入力電 流 I BMAXとを比較する。 入力電流 Iが許容入力電流 I BMAXより大きいと きは、 S 107へ進む。 入力電流 Iが許容入力電流 I BMAX以下のときは、 回 生制御は終了する。
S 107で、 回生可能電力算出手段 14は、 バッテリ許容入力電流 I BMAX とコンデンサ端子電圧 VCとから、 コンデンサ入力電力 PC ( I BMAX) を求 める。 バッテリ許容入力電力 PBMAXとコンデンサ入力電力 P C ( I BMA X) とから、 DC/DCコンバータを駆動しないときの最大回生電力 P I NVM AX (0) を算出する。
S 108で、 回生可能電力算出手段 14は、 バッテリ許容入力電力 P B M A X とあらかじめ設定した DC ,/D Cコンバータの最大駆動電力 P DMA Xとバッテ リの端子電圧 VBとコンデンサの端子電圧 VCとから、 補強最大回生電力 P I N VMAX (1 00) を数 1から求める。
Figure imgf000023_0001
S 109で、 DC/DCコンバータ制御手段 1 6は、 回生エネルギー PGと補 強最大回生電力 P I NVMAX (100) とを比較する。 回生エネルギー PGが 補強最大回生電力 P I NVMAX (1 00) より大きいとき、 S 1 1 0へ進む。 回生エネルギー PGが補強最大回生電力 P I NVMAX (100) 以下のとき、 S 1 1 3へ進む。
S 1 10で、 DC/DCコンバータ制御手段 1 6は、 補強最大回生電力 P I N VMAX (1 00) を回生操作量 P I NVと設定する。 同時に、 機械ブレーキ制 御手段 1 8は、 回生エネルギー P Gと補強最大回生電力 P I NVMAX (1 0 0) との差分 Δ PAを求める。
S 1 1 1で、 機械ブレーキ制御手段 1 8は、 差分 Δ ΡΑから、 機械ブレーキ操 作量 MFを求める。
S 1 1 2で、 機械ブレーキ制御手段 1 8は、 機械ブレーキ操作量 M Fに基づレ、 てブレーキ機構 26を作動して、 車両にブレーキ制動を加え、 S 1 14へ進む。
S 1 1 3で、 DC/DCコンバータ制御手段 1 6は、 回生エネルギー PGを回 生操作量 P I NVに設定し、 S 1 14に進む。
S 1 14で、 DC/DCコンバータ制御手段 1 6は、 回生操作量 P I NVとバ ッテリ許容入力電力 I BMAXとバッテリの端子電圧 VBとコンデンサの端子電 圧 VCとから数 2に基づいて DC//DCコンバータ変換電力 PDを求める。
Figure imgf000024_0001
S I 1 5で、 DC/DCコンバータ制御手段 1 6は、 DC/DCコンバータ変 換電力 PDから、 DC ,,D Cコンバータ出力電圧 V OUTを求める。
S 1 1 6で、 DC/DCコンバータ制御手段 1 6は、 DC/DCコンバータ出 力電圧 VOUTとコンデンサ許容印加電圧 VCMAXとを比較する。 その DC/
D Cコンバータ出力電圧がコンデンサ許容印加電圧 VCMAXより低いときは S
1 1 7へ進む。 また、 その DC /DCコンバータ出力電圧がコンデンサ許容印加 電圧 VCMAX以上のときは、 S 1 1 8へ進む。 S I 1 7で、 DCノ DCコンバータ制御手段 16は、 コンバータ出力電圧 VO UTとバッテリ電圧とから昇降圧比 nを求める。
S 1 1 8で、 DC/DCコンバータ制御手段 1 6は、 コンデンサ許容印加電圧 V CM A Xとバッテリ電圧 V Bとから昇降圧比 nを求める。
S 1 1 9で、 DCZDCコンバータ制御手段 1 6は、 DCZDCコンバータを 駆動してバッテリからコンデンサに電力を変換して、 コンデンサに充電を行う。
(この方向の D C/D Cコンバータの電力変換を昇圧モード D C/D Cコンバー タ作動と称す。 ) S 101へ戻る。
次に、 図 1 5を参照して車両に制動を掛けながら充電する様子を説明する。 図 1 5に示した車両制動力は、 例えば、 車両がある速度からほぼ一定加速度で減速 する時に発生するものである。
区間 Aでは、 上述したように D C/D Cコンバータを最大出力で昇圧モード作 動させることで、 補強回生電力を増加させており、 コンデンサの電圧上昇に応じ て回生電力は増加する。 この時、 バッテリ用電力回路で回生しきれない分は機械 ブレーキによって消費する。
区間 Bでは、 補強回生電力が車両制動による回生エネルギーよりも大きくなる と、 機械ブレーキは動作せず、 車両制動力は全て電動機の発電電力に変換され、 全ての運動エネルギーを回生する事が可能となる。 この時、 DC/DCコンバー タは、 バッテリへの充電電力が許容入力電力 PB MAXとなるように出力制御さ れる。
区間 Cでは、 DC/DCコンバータの出力はゼロとなる。 バッテリゃコンデン ザへの充電電力は、 バッテリとコンデンサの電圧比に応じて変化する。
このようなバッテリ用電力回路を用いた回生電力の増加について図 1 6を参照 して説明する。 図 1 6は、 バッテリ 1の許容入力電力 P BMAXを 1 kWとした 時に、 コンデンサ電圧 VCとバッテリ用電力回路の最大回生電力 P I NVとの関 係を示す。
例えば、 DC/DCコンバータ 3を 1 kWで動作させた場合の回生電力は、 D
C /DCコンバータ 3を動作させない時に比べ、 コンデンサ電圧 VCがバッテリ 電圧 VBと等しいとき 1. 5倍、 コンデンサ電圧 Vcがバッテリ電圧 VBの 3倍 のとき 1. Ί 5倍になる。
また、 DCZDCコンバータ 3を 2 kWで動作させた場合の回生電力は、 コン デンサ電圧 VCがバッテリ電圧 VBと等しいとき 2倍、 コンデンサ電圧 Vc力バ ッテリ電圧 VBの 3倍のとき 2. 5倍になる。
このように、 DCZDCコンバータ出力を大きくするほど、 バッテリ用電力回 路の回生電力は上昇する。 これより、 エネルギー回生時にバッテリからコンデン サに DCZDCコンバータ 3を介して電力を変換することにより、 バッテリ用電 力回路の回生電力は大きくなる。
図 17は、 比較的短時間で大きな車両制動力が要求された時に、 バッテリ用電 力回路に回生する回生電力を示す。 DCZDCコンバータ 3を動作させない場合 のコンデンサの充電電流は、 バッテリの許容充電電流によって決まっているため、 コンデンサへの充電電力を上げる事ができず、 バッテリ用電力回路に回生できる エネルギー量がそれほど大きくならない。 これに対して、 バッテリ 1からコンデ ンサ 2に DCZDCコンバータ 3を介して電力を変換すると、 コンデンサ 2への 充電電力が増加するため、 バッテリ用電力回路への回生電力を上げる事が可能と なる。 時間と共にコンデンサ充電電力が増加するのは、 コンデンサが充電される と電圧が上昇するので、 それに応じてコンデンサへの許容入力電力が増加するた めである。
この発明のバッテリ用電力回路は、 自動車の制動時に入力電力密度がバッテリ より大きなコンデンサにバッテリから DCZDCコンバータを介して電力を変換 するので、 バッテリおよびコンデンサの充電電力を増加することができる。
さらに、 バッテリの許容入力電力以下で充電するので、 バッテリの過電力での 充電を防止し、 バッテリの寿命を延ばすことができる。
さらに、 コンデンサの許容印加電圧以下の条件で充電するので、 過電圧による コンデンサの劣化を防止し、 コンデンサの寿命を延ばすことができる。
バッテリ用電力回路は、 第 1のエネルギ^ "蓄積源の許容入力電力と第 2のエネ ルギー蓄積源の許容入力電力とを加算した電力以下に電動機の発電電力を制御す るので、 車両減速時の制動エネルギーを効率よく回生し、 車両の燃費を向上する ことができる。 なお、 DC/DCコンバータ 3の構成については、 図 1 1に示したものの他に、 種々の方式を考えられるが、 基本的にバッテリ 1とコンデンサ 2間の電力伝送を 行うものであれば、 どの方式でもよい。 また、 DC/DCコンバータ 3のスイツ チング素子は、 MOS FETを使用しているが、 I GBTまたはバイポーラ トラ ンジスタ等の半導体素子を用いるようにしても構わない。
'なお、 実施の形態 3では、 電気二重層コンデンサを第 2のエネルギー蓄積源と して用いたが、 アルミ電解コンデンサでも同様な効果が得られる。
また、 第 1のエネルギー蓄積源として鉛酸蓄電池を用いたときは、 第 2のエネ ルギー蓄積源として許容入力電力の大きなバッテリを用いても同様に回生電力を 増加することができる。 例えば、 ニッケルカドミウムバッテリ、 ニッケル水素バ ッテリまたはリチウムイオンバッテリを用いてもよい。 実施の形態 4. '
図 18および図 1 9は、 この発明の実施の形態 4に係わるバッテリ用電力回路 の回生制御のフローチヤ一トである。 この実施の形態 4のバッテリ用電力回路の 構成は、 図 1 1および図 1 2と同様である。 図 18および図 1 9のフローチヤ一 トは、 図 1 3および図 14のフローチヤ一トに新たなステップ S 20 1〜S 20 3を追加したものであり、 その他は同様である。
S 106で入力電流 Iがバッテリ許容入力電流 I BMAXより大きいとき、 S 107へ進む。 一方、 入力電流 Iがバッテリ許容入力電流 I BMAX以下のとき、 S 201へ進む。
S 20 1で、 D C/D Cコンバータ制御手段 16は、 S 107と同様に最大回 生電力 P I NVMAX (0) を求める。
S 202で、 DC/DCコンバータ制御手段 1 6は、 最大回生電力 P I NVM AX (0) と回生エネルギー P Gとの差分 Δ. P Bを求める。
S 203で、 DC/DCコンバータ制御手段 16は、 差分 Δ ΡΒに基づいて、 DCZDCコンバータを駆動してコンデンサからバッテリに電力変換して、 バッ テリに充電する。 (この方向の DCZDCコンバータの電力変換を降圧モード D C ZD Cコンバータ作動と称す。 ) 次に、 図 20を参照して車両に制動を掛けながら充電する様子を説明する。 図 20に示した車両制動力は、 例えば、 車両がある速度からほぼ一定加速度で減速 する時に発生するものである。
区間 Aと Bは図 1 5と同様である。 区間 Cにおいて、 バッテリへの入力電流が 許容入力電力 I B MAXとなるように、 コンデンサからバッテリに DC/DCコ ンバータを降圧モード作動して電力変換する。 区間 Dでは、 コンデンサに蓄えら れるエネルギーは増加しない。 すなわち、 図 1 5と比較すると、 AECだけコン デンサに蓄えられるエネルギーは少ない。
この降圧モード作動により、 D C/D Cコンバータを降圧モード作動させない 図 1 5と比べ、 バッテリ用電力回路への回生エネルギー量は同じであるにも係わ らず、 コンデンサへの充電エネルギー量を低減する事が可能となる。 その結果、 コンデンサ容量を低減する事ができ、 低コスト化が可能となる。
この発明のバッテリ用電力回路は、 バッテリへの入力電力が許容入力電力以下 となると、 DC/DCコンバータを介してコンデンサからバッテリへ電力を伝送 するので、 小さな容量のコンデンサを使用することができる。 実施の形態 5.
図 21および図 22は、 この発明の実施の形態 5に係わるバッテリ用電力回路 の回生制御のフローチヤ一トである。 この実施の形態 5のバッテリ用電力回路の 構成は、 図 1 1および図 1 2と同様である。 図 2 1および図 22のフローチヤ一 トは図 18および図 1 9のフローチャートと一部分異なっているがその他は同様 である。 S 301〜S 304および S 307〜S 322は図 18および図 1 9の S 101〜S 104および S 107〜S 1 1 9、 S 201〜S 203と同様であ る。 異なっているステップは、 S 305と S 306である。
S 305では、 入力電流算出手段 1バッテリ温度 TB (°C) とバッテリの SO
Cとから、 バッテリ許容入力電力 PBMAX (W) を算出する。 そのバッテリ許 容入力電力 P B MAXに所定値を求めるための係数 m (例えば、 mは 0. 5) を 掛けて所定値としてバッテリ許容入力電力 PBM A X (m) を求める。 さらに、 このバッテリ許容入力電力 PBMAX (m) とバッテリ端子電圧 VBとからバッ テリ許容入力電流 I BMAX (m) を求める。 バッテリ許容入力電流 P BMAX (m) は、 実施の形態 3のバッテリ許容入力電力 PBMAXと同様に S 30 7以 降に用いられる。
また、 S 306で、 入力電流 I とバッテリ許容入力電流 I BMAX (m) とを 比較する。 入力電流 Iが許容入力電流 I BMAX (m) より大きいときは、 S 3 07へ進む。 入力電流 Iが許容入力電流 I BMAX (m) 以下のときは、 S 32 0へ進む。
このようなバッテリ用電力回路は、 バッテリ許容入力電力より小さな所定値に 調整されているので、 入力電力に余裕がある。 瞬時的な回生電力が入力されても、 余裕があるので瞬時的に大きな電力が入力されての充電することができる。 また、 寿命の劣化の少ない電力に所定値を合わせてあるので、 第 1のエネルギー蓄積、源 の劣化はすくない。
なお、 実施の形態 5では所定値を求めるための係数として 0. 5を設定してい るが、 0. 3から 0. 8の間の値であれば同様な効果が得られる。 実施の形態 6.
図 23および図 24は、 この発明の実施の形態 6に係わるバッテリ用電力回路 の回生制御のフローチヤ一トである。 この実施の形態 6のバッテリ用電力回路の 構成は、 図 1 1および図 12と同様である。 図 23および図 24のフローチヤ一 トは、 図 1 8および図 1 9のフローチャートに新たなステップを追加したもので あり、 その他は同様である。
図 18および図 1 9のフローチヤ一トでは、 車速 S Vがゼロまたはブレーキ力 P Fがゼロのとき回生制御を終了している。 一方、 図 23および図 24では、 S 101で車速 SVがゼロのとき、 または S 1 02でブレーキ力 PFがゼロのとき、 S 401に進む。 S 40 1で、 バッテリ端子電圧 V— B (V) からバッテリの SO C (%) を求める。 S 402で、 バッテリの SOCがあらかじめ設定された閾値 10 %以下かどうか判断し、 1 0 °/0以下のとき S 403へ進む。 バッテリの S〇 Cが 10%を超えているときは、 回生制御を終了する。 S 403で、 DC/DC コンバータを駆動してコンデンサからバッテリに電力変換して、 バッテリに充電 する。 (この方向に DC/DCコンバータの電力変換を降り DC/DCコンバー タ作動と称す。 )
このようなバッテリ用電力回路は、 バッテリの SOCがあらかじめ設定された 閾値、 すなわち許容 SO Cの下限値付近に達した場合、 コンデンサからバッテリ に充電するので、 バッテリの s〇cが極端に低下して過放電状態を継続すること がなく、 ノ ッテリの寿命は長くなる。
なお、 実施の形態 6では S O Cを閾値 1 0。/。以下になったとき、 コンデンサか らバッテリに充電しているが、 閾値としては 5%から 20%位を設定しても同様 な効果が得られる。
' 産業上の利用可能性
以上のように、 本発明にかかるバッテリ用電力回路は、 内燃機関と電動機とを 合わせもったハイプリッド自動車などに利用可能であり、 制動エネルギーを電気 ブレーキでより多く回生し、 エネルギー蓄積源に蓄えられるので、 燃費が向上す る。

Claims

請 求 の 範 囲
1 . 第 1のエネルギー蓄積源と、
上記第 1のエネルギー蓄積源に直列に接続された第 2のエネルギー蓄積源と、 上記第 1のエネルギー蓄積源と上記第 2のエネルギー蓄積源との間で電力を変 換する D C //D Cコンバータと、
上記 D C ZD Cコンバータを制御する制御手段と
を備えたバッテリ用電力回路であって、
上記制御手段は、
上記直列接続電源の第 1および第 2のエネルギー蓄積源のうち、 高電圧側に配 置されたエネルギー蓄積源の電圧を検知し、
検知した電圧が所定の第 1の閾値電圧より小さい場合は上記 D C /D Cコンバ ータにより、 上記高電圧側に配置されたエネルギー蓄積源への充電を行う
ことを特徴とするバッテリ用電力回路。
2 . 上記制御手段は、 上記高電圧側に配置されたエネルギー蓄積源の電圧を検 知し、 検知した電圧が上記第 1の閾値電圧より小さい場合は、 エンジン回転を維 持して、 ェンジン停止動作を行わな V、ことを特徴とする請求項 1に記載のパッテ リ用電力回路。
3 . 上記制御手段は、 上記高電圧側に配置されたエネルギー蓄積源の電圧を検 知し、 検知した電圧が上記第 1の閾値電圧より小さい場合は、 エンジン回転を維 持して、 上記 D CZD Cコンバータにより上記高電圧側に配置されたエネルギー 蓄積源への充電を行い、 検知した電圧が上記第 1の閾値電圧よりも大きい場合は、 エンジンを停止させることを特徴とする請求項 1に記載のバッテリ用電力回路。
4 . 上記制御手段は、 上記第 1のエネルギー蓄積源の電圧と、 上記第 2のエネ ルギー蓄積 ¾ ^の電圧とを検知し、 それらのうち低電圧側に配置されたエネルギー 蓄積源の電圧値に応じて、 上記第 1の閾値電圧の値を調整することを特徴とする 請求項 1ないし 3のいずれか 1項に記載のバッテリ用電力回路。
5 . 第 1のエネルギー蓄積源と、
上記第 1のエネルギー蓄積源に直列に接続された第 2のエネルギー蓄積源と、 上記第 1のエネルギー蓄積源と上記第 2のエネルギー蓄積源との間で電力を変 換する D CZD Cコンバータと、 '
上記 D Cノ D Cコンバータを制御する制御手段と
を備え、 電力変換回路を介して電動機に接続されるバッテリ用電力回路であつ て、
上記制御手段は、
停止状態の電動機を始動するときに、
上記直列接続電源の第 1および第 2のエネルギー蓄積源のうち、 高電圧側に配 置されたエネルギー蓄積源の電圧を検知し、
検知した電圧値に応じて上記 D C/D Cコンバータの出力電力を調節する ことを特徴とするバッテリ用電力回路。
6 · 上記制御手段は、 上記直列接続電源の第 1および第 2のエネルギー蓄積源 のうち、 低電圧側に配置されたエネルギー蓄積源の電圧を検知し、 上記電圧値が 予め設定された所定の第 2の閾値電圧以下である場合に、 上記低電圧側に配置さ れたエネルギー蓄積源の電流が最小となるように上記 D C/D Cコンバータ出力 を制御することを特徴とする請求項 5に記載のバッテリ用電力回路。
7 . 上記制御手段は、 上記低電圧側に配置されたエネルギー蓄積源の電圧値を 検知し、 上記電圧値が所定の第 3の閾値電圧以下である場合に、 上記第 1の閾値 電圧の値を上昇させることを特徵とする請求項 1ないし 4のいずれか 1項に記載 のバッテリ用電力回路。
8 . 第 1のエネルギー蓄積源と、 上記第 1のエネルギー蓄積源に直列に接続し、 上記第 1のエネルギー蓄積源よ り許容入力電流の大きな第 2のエネルギー蓄積源と、
車両の車軸に連結した電動機と上記直列接続された上記第 1のエネルギー蓄積 源および上記第 2のエネルギー蓄積源との間で電力を変換する電力変換回路と、 上記第 1のエネルギー蓄積源と上記第 2のエネルギー蓄積源との間で電力を変 換する D C ZD Cコンバータと、
上記 D C /D Cコンバータを制御する制御手段と
を備えたバッテリ用電力回路であって、
上記制御手段は、
上記電動機の回生電力が上記電力変換回路から上記第 1のエネルギー蓄積源と 上記第 2のエネルギー蓄積 ¾gとに充電されるとき、 上記第 1のエネルギー蓄積源 の入力電流が上記第 1のエネルギー蓄積源の許容入力電流以下になるように上記 D C /D Cコンバータを制御する D C /D Cコンバータ制御手段を有する
ことを特徴とするバッテリ用電力回路。
9 . 上記車両の車速を検出する車速センサーと、
上記車両に所望のブレーキ力で制動を掛ける制動指令を発生する制動指令装置と、 上記第 1のエネルギー蓄積源の端子電圧を検出する第 1の電圧計と、
を有し、
上記制御手段は、
検出された上記車速と上記ブレーキ力とに基づき、 上記電力回生時に上記電動 機が発電する回生エネルギーを算出し、 上記 D C/D Cコンバータで電力変換を 行わずに上記回生エネルギーが上記第 1のエネルギー蓄積源と上記第 2のェネル ギー蓄積源とに充電される入力電流を算出する入力電流算出手段と、
上記第 1のエネルギー蓄積源の端子電圧に基づいて上記第 1のエネルギー蓄積源 の S O Cを求め、 上記 S O Cに基づき上記第 1のエネルギー蓄積源の許容入力電 流を算出する許容入力電流算出手段と
を有し、
上記電動機の回生電力が上記電力変換回路から上記第 1のエネルギー蓄積源と 上記第 2のエネルギー蓄積源とに充電されるとき、 上記 D C /D Cコンバータ制 御手段は、 上記入力電流算出手段により得られる入力電流が上記許容入力電流算 出手段により得られる許容入力電流より大きい場合、 上記第 1のエネルギー蓄積 源から上記第 2のエネルギー蓄積源に電力を変換するように上記 D C /D Cコン バータを制御することを特徴とする請求項 8に記載のバッテリ用電力回路。
1 0 . 上記電動機の回生電力が上記電力変換回路から上記第 1のエネルギー蓄 積源と上記第 2のエネルギー蓄積源とに充電されるとき、 上記 D C /D Cコンバ ータ制御手段は、 上記入力電流算出手段により得られる入力電流が上記許容入力 電流算出手段により得られる許容入力電流以下の場合、 上記第 2のエネルギー蓄 積源から上記第 1のエネルギー蓄積源に電力を変換するように上記 D C/D Cコ ンバータを制御することを特徴とする請求項 9に記載のバッテリ用電力回路。
1 1 . 上記車両の車速を検出する車速センサーと、
上記車両に所望のブレーキ力で制動を掛ける制動指令を発生する制動指令装置と、 上記第 iのエネルギー蓄積源の端子電圧を検出する第 1の電圧計と、
を有し、
上記制御手段は、
検出された上記車速と上記ブレーキ力とに基づき、 上記電力回生時に上記電動機 が発電する回生エネルギーを算出し、 上記 D C /D Cコンバータで電力変換を行 わずに上記回生エネルギーが上記第 1のエネルギー蓄積源と上記第 2のエネルギ 一蓄積源とに充電される入力電流を算出する入力電流算出手段を有し、
上記電動機の回生電力が上記電力変換回路から上記第 1のエネルギー蓄積源と 上記第 2のエネルギー蓄積源とに充電されるとき、 上記 D C ./D Cコンバータ制 御手段は、 上記入力電流算出手段により得られる入力電流があらかじめ設定した 所定値より大きい場合、 上記第 1のエネルギー蓄積源から上記第 2のエネルギー 蓄積源に電力を変換するように、 上記入力電流算出手段により得られる入力電流 があらかじめ設定した所定値以下の場合、 上記第 2のエネルギー蓄積源から上記 第 1のエネルギー蓄積源に電力を変換するように上記 D C /D Cコンバータを制 御することを特徴とする請求項 8に記載のバッテリ用電力回路。
1 2 . 上記第 2のエネルギー蓄積源の端子電圧を検出する第 2の電圧計と、 上記車両の車軸に連結し、 上記車軸の回転を機械的に制動するブレーキ機構と、 を有し、
上記制御手段は、
上記第 1のエネルギー蓄積源から上記第 2のエネルギー蓄積源に上記 D C/D Cコンバータで最大に電力変換するとき'、 上記第 1のエネルギー蓄積源の端子電 圧と上記第 2のエネルギー蓄積源の端子電圧に基づき、 上記第 1のエネルギー蓄 積源と上記第 2のエネルギー蓄積源とに回生できる回生可能電力を算出する回生 可能電力算出手段と、
上記入力電流算出手段により得られる回生エネルギーが上記回生可能電力より 大きいとき、 上記回生エネルギーと上記回生可能電力との差分から機械プレーキ 操作量を算出し、 上記機械ブレーキ操作量に基づいて上記ブレーキ機構を制御す る機械プレーキ制御手段と
を有することを特徴とする請求項 9ないし 1 1のいずれか 1項に記載のバッテ リ用電力回路。
1 3 . 上記第 2のエネルギー蓄積源は、 コンデンサからなり、
上記電動機の回生電力が上記電力変換回路から上記第 1のエネルギー蓄積源と 上記コンデンサとに充電されるとき、 上記 D C/D Cコンバータ制御手段は、 上 記コンデンサの許容印加電圧以下になるように上記 D CZD Cコンバータを制御 することを特徴とする請求項 1 2に記載のバッテリ用電力回路。
PCT/JP2003/014664 2003-01-24 2003-11-18 バッテリ用電力回路 WO2004066472A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03772867A EP1587201A4 (en) 2003-01-24 2003-11-18 BATTERY POWER SWITCH
US10/505,211 US7023107B2 (en) 2003-01-24 2003-11-18 Power circuit for battery
JP2004567152A JP3977841B2 (ja) 2003-01-24 2003-11-18 バッテリ用電力回路
US11/312,685 US7221064B2 (en) 2003-01-24 2005-12-21 Power circuit for battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003015476 2003-01-24
JP2003-015476 2003-01-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10505211 A-371-Of-International 2003-11-18
US11/312,685 Division US7221064B2 (en) 2003-01-24 2005-12-21 Power circuit for battery

Publications (1)

Publication Number Publication Date
WO2004066472A1 true WO2004066472A1 (ja) 2004-08-05

Family

ID=32767440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014664 WO2004066472A1 (ja) 2003-01-24 2003-11-18 バッテリ用電力回路

Country Status (5)

Country Link
US (2) US7023107B2 (ja)
EP (1) EP1587201A4 (ja)
JP (1) JP3977841B2 (ja)
CN (1) CN100444495C (ja)
WO (1) WO2004066472A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081368A (ja) * 2004-09-13 2006-03-23 Casio Comput Co Ltd 電源回路
JP2007159311A (ja) * 2005-12-07 2007-06-21 Hitachi Industrial Equipment Systems Co Ltd 発電装置
WO2008105161A1 (ja) * 2007-02-28 2008-09-04 Panasonic Corporation 電源装置
JP2010104165A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010104169A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010102991A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010104166A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010102992A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 燃料電池車両の電源システム
JP2010104168A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2013522105A (ja) * 2010-03-13 2013-06-13 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両用車載電源システム
WO2013114573A1 (ja) * 2012-01-31 2013-08-08 本田技研工業株式会社 負荷電源装置
US9520736B2 (en) 2011-07-27 2016-12-13 Mitsubishi Electric Corporation Charging control apparatus and charging control method for secondary battery
CN108347202A (zh) * 2017-01-23 2018-07-31 宝山钢铁股份有限公司 一种大容量风机用变频器抗电压暂降的方法
WO2019181936A1 (ja) * 2018-03-20 2019-09-26 マツダ株式会社 車両駆動装置
JP2019163020A (ja) * 2018-03-20 2019-09-26 マツダ株式会社 車両駆動装置
WO2019181935A1 (ja) * 2018-03-20 2019-09-26 マツダ株式会社 車両駆動装置
WO2024053460A1 (ja) * 2022-09-09 2024-03-14 株式会社デンソー 電力変換装置及びプログラム
WO2024069759A1 (ja) * 2022-09-27 2024-04-04 日本電信電話株式会社 放電制御装置および蓄電池システム

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066472A1 (ja) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha バッテリ用電力回路
JP4073880B2 (ja) * 2003-03-31 2008-04-09 セイコーインスツル株式会社 電子機器
CN101175917B (zh) * 2005-05-17 2010-12-15 松下电器产业株式会社 发动机起动装置
US7560904B2 (en) * 2005-10-03 2009-07-14 Lear Corporation Method and system of managing power distribution in switch based circuits
US7531978B2 (en) * 2006-03-23 2009-05-12 Dura Global Technologies, Inc. System and method for controlling motion of electromechanical devices such as seats and opening elements of motor vehicles
JP2007328955A (ja) * 2006-06-06 2007-12-20 Matsushita Electric Ind Co Ltd 電源装置
JP4179352B2 (ja) * 2006-07-10 2008-11-12 トヨタ自動車株式会社 車両の電力制御装置
TWM319578U (en) * 2007-02-09 2007-09-21 Ctech Technology Corp Voltage stabilizing circuit of power device for car
JP5426102B2 (ja) 2007-02-28 2014-02-26 エスティーマイクロエレクトロニクス,インコーポレイテッド 車両のバッテリチャージを保存し且つトレーラー負荷を保護する集積回路及び方法
JP2008253129A (ja) * 2007-03-07 2008-10-16 Matsushita Electric Ind Co Ltd リチウム系二次電池の急速充電方法およびそれを用いる電子機器
EP2143124A4 (en) * 2007-04-04 2017-06-28 Cooper Technologies Company System and method for boosting battery output
US7969105B2 (en) * 2007-10-24 2011-06-28 Calloway Randall L Capacitor based energy storage
JP2009171694A (ja) * 2008-01-15 2009-07-30 Nisshinbo Holdings Inc 充電装置
DE102008009568A1 (de) * 2008-02-16 2009-08-20 Bayerische Motoren Werke Aktiengesellschaft Energieversorgungseinrichtung für ein Hybridfahrzeug und Verfahren zum Betrieb einer elektrischen Hochvolt-Energiespeichereinrichtung
JP4513886B2 (ja) * 2008-03-31 2010-07-28 三菱自動車工業株式会社 電池の評価方法、及びその評価装置
US8392030B2 (en) * 2008-04-17 2013-03-05 Levant Power Corporation System and method for control for regenerative energy generators
US8839920B2 (en) 2008-04-17 2014-09-23 Levant Power Corporation Hydraulic energy transfer
US8376100B2 (en) * 2008-04-17 2013-02-19 Levant Power Corporation Regenerative shock absorber
JP5223920B2 (ja) * 2008-07-11 2013-06-26 トヨタ自動車株式会社 バッテリの充放電制御装置、およびこれを備えたハイブリッド自動車
WO2010047422A2 (en) * 2008-10-24 2010-04-29 Honda Motor Co., Ltd. Power supply device and power supply system for fuel cell vehicle
CN101740830B (zh) * 2008-11-19 2012-11-21 比亚迪股份有限公司 电动车充电方法和电动车充电系统
JP4877418B2 (ja) * 2008-12-05 2012-02-15 トヨタ自動車株式会社 車両の制御装置および制御方法
EP2415140B1 (en) 2009-04-01 2019-07-10 EaglePicher Technologies, LLC Hybrid energy storage system, energy system including the storage system, and method of using same
BRPI1010878A2 (pt) * 2009-06-09 2019-07-09 Poskatcheev Willis Andre circuito e método de coleta de potência para fontes de alimentação cc acopladas em série
EP2460256B1 (en) 2009-07-31 2017-11-15 Thermo King Corporation Bi-directional battery voltage converter
US8026638B2 (en) * 2009-08-11 2011-09-27 General Electric Company System for multiple energy storage and management and method of making same
US8916993B2 (en) 2009-08-11 2014-12-23 General Electric Company System for multiple energy storage and management and method of making same
JP5333126B2 (ja) * 2009-09-29 2013-11-06 株式会社デンソー 組電池制御装置
JP5460727B2 (ja) * 2009-10-16 2014-04-02 三菱電機株式会社 車両用電源システム
WO2011058633A1 (ja) * 2009-11-12 2011-05-19 トヨタ自動車株式会社 昇圧制御装置及びこれを用いるアイドリングストップシステム
RU2524363C2 (ru) 2009-11-19 2014-07-27 Сименс Акциенгезелльшафт Статический преобразователь частоты и подмодуль статического преобразователя частоты для зарядки или разрядки накопителя энергии
JP5380550B2 (ja) * 2009-12-01 2014-01-08 本田技研工業株式会社 電源装置の起動方法
US8928272B2 (en) 2009-12-04 2015-01-06 Hyundai Motor Company Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
JP2011190735A (ja) * 2010-03-15 2011-09-29 Fujitsu Ten Ltd アイドリングストップ装置、エンジン始動システム、及び、エンジン始動方法
US20110258126A1 (en) * 2010-04-14 2011-10-20 Lg Chem, Ltd. Systems and methods for determining a warranty obligation of a supplier to an original equipment manufacturer for a vehicle battery pack
EP2559588B1 (en) * 2010-06-04 2017-11-08 Honda Motor Co., Ltd. Control apparatus for vehicle
CN105386951B (zh) 2010-06-16 2021-11-16 动态清晰公司 整合式能量产生阻尼器
KR101171908B1 (ko) * 2010-07-09 2012-08-07 현대자동차주식회사 플러그인 하이브리드 자동차의 충전장치
KR101116428B1 (ko) * 2010-07-14 2012-03-05 삼성에스디아이 주식회사 에너지 저장 시스템
US8493032B2 (en) * 2010-07-20 2013-07-23 Tesla Motors, Inc. Bidirectional polyphase multimode converter including boost and buck-boost modes
JP5267733B2 (ja) * 2010-08-30 2013-08-21 トヨタ自動車株式会社 蓄電装置の充電装置および充電方法
JP5302945B2 (ja) * 2010-11-15 2013-10-02 三菱電機株式会社 車両用電源装置
WO2012074531A1 (en) * 2010-12-03 2012-06-07 International Truck Intellectual Property Company, Llc Battery management system for restricted idle vehicles
JP5478743B2 (ja) * 2011-02-14 2014-04-23 三菱電機株式会社 電力回生電源システム
DE102011007874A1 (de) * 2011-04-21 2012-10-25 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zum Starten eines in einem Fahrzeug angeordneten Verbrennungsmotors
EP2548757B1 (de) * 2011-07-18 2014-10-29 Siemens Aktiengesellschaft Antriebssystem und Verfahren zum Betrieb eines solchen Antriebssystems
EP2738928A4 (en) * 2011-09-29 2015-03-18 Fuji Electric Co Ltd POWER CONVERTER
FR2982911B1 (fr) * 2011-11-18 2013-11-15 Valeo Equip Electr Moteur Demarreur electrique a filtre electronique integre pour moteur a combustion interne
US20130266825A1 (en) * 2012-03-13 2013-10-10 Maxwell Technologies, Inc. Ultracapacitor and battery device with standard form factor
JP5836860B2 (ja) * 2012-03-21 2015-12-24 株式会社デンソー 発電制御装置
JP5921921B2 (ja) * 2012-03-21 2016-05-24 本田技研工業株式会社 アイドルストップ車両における発電制御装置
DE102012217193A1 (de) * 2012-09-24 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Bordnetzes
FR2997583B1 (fr) * 2012-10-31 2014-11-21 Valeo Equip Electr Moteur Systeme d'alimentation electrique a double stockeurs d'energie electrique d'un vehicule automobile ou hybride
TW201426777A (zh) * 2012-12-22 2014-07-01 Univ Nat Pingtung Sci & Tech 以磁力控制大型超級電容池充放電之方法及該超級電容池
JP6396414B2 (ja) 2013-03-15 2018-09-26 クリアモーション,インコーポレイテッド 多経路流体ダイバータバルブ
US9702349B2 (en) 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9174508B2 (en) 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
EP3626485B1 (en) 2013-03-15 2024-05-29 ClearMotion, Inc. Active vehicle suspension improvements
EP3825156A1 (en) 2013-04-23 2021-05-26 ClearMotion, Inc. Active suspension with structural actuator
CN103516039B (zh) * 2013-09-23 2015-11-25 深圳市华为技术软件有限公司 一种分级供电系统及方法
FR3023992B1 (fr) * 2014-07-16 2016-08-26 Valeo Systemes De Controle Moteur Circuit electrique et procede de gestion associe
US9702424B2 (en) 2014-10-06 2017-07-11 ClearMotion, Inc. Hydraulic damper, hydraulic bump-stop and diverter valve
CN104467414B (zh) * 2014-12-12 2015-09-30 山东大学 一种电源-电容串联型直流变换器
EP3068010A1 (de) * 2015-03-10 2016-09-14 HILTI Aktiengesellschaft Netzbetreibbares Akku-Ladegerät und Ladesystem
CN104795858A (zh) * 2015-03-27 2015-07-22 小米科技有限责任公司 一种进行充电的方法和装置
US11144106B2 (en) 2015-04-13 2021-10-12 Semiconductor Components Industries, Llc Battery management system for gauging with low power
JP6459868B2 (ja) * 2015-09-04 2019-01-30 トヨタ自動車株式会社 充電装置
CN108028602B (zh) * 2015-09-16 2020-03-06 三菱电机株式会社 电力变换装置以及驱动装置
CN105337549B (zh) * 2015-11-30 2018-02-23 王一淋 电机驱动系统
US10293804B2 (en) * 2016-05-19 2019-05-21 GM Global Technology Operations LLC Hybrid vehicle engine starter systems and methods
US10505415B2 (en) 2016-05-19 2019-12-10 GM Global Technology Operations LLC Permanent magnet electric machine
JP6747131B2 (ja) * 2016-07-21 2020-08-26 株式会社豊田自動織機 バッテリ式産業車両
JP6691665B2 (ja) * 2016-08-05 2020-05-13 株式会社Gsユアサ 蓄電装置、蓄電装置の制御方法、車両
EP3360719B1 (en) * 2017-02-09 2020-09-09 Samsung SDI Co., Ltd Dual power supply system
US10605217B2 (en) 2017-03-07 2020-03-31 GM Global Technology Operations LLC Vehicle engine starter control systems and methods
TWM578899U (zh) 2017-06-30 2019-06-01 美商米沃奇電子工具公司 電氣組合、動力工具系統、電動馬達總成、電動馬達、電池組以及馬達總成
TWM576750U (zh) 2017-07-25 2019-04-11 美商米沃奇電子工具公司 電氣組合物、電動化裝置系統、電池組、電馬達、馬達總成及電馬達總成
US10480476B2 (en) 2018-04-24 2019-11-19 GM Global Technology Operations LLC Starter system and method of control
US10436167B1 (en) 2018-04-24 2019-10-08 GM Global Technology Operations LLC Starter system and method of control
US10948550B2 (en) * 2018-07-03 2021-03-16 Schneider Electric It Corporation Power device with electrolytic capacitors
US10946746B2 (en) * 2019-01-28 2021-03-16 Ford Global Technologies, Llc Vehicle power system including ultra-capacitor for mitigating transient current events
EP3917708A4 (en) 2019-02-18 2022-11-30 Milwaukee Electric Tool Corporation IMPACT TOOL
CN110441692A (zh) * 2019-07-22 2019-11-12 南方电网科学研究院有限责任公司 一种电池组电量交流测算方法、装置及存储介质
US11296363B2 (en) * 2019-09-20 2022-04-05 Apple Inc. Multi-cell battery pack
JP7247906B2 (ja) * 2020-01-24 2023-03-29 株式会社デンソー 昇圧装置
GB202116919D0 (en) * 2021-11-24 2022-01-05 Rolls Royce Plc Electrical power system
JP2023154668A (ja) * 2022-04-07 2023-10-20 トヨタ自動車株式会社 車両の制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795701A (ja) * 1993-09-21 1995-04-07 Toshiba Corp 回転電機制御装置
JP2753907B2 (ja) * 1991-11-18 1998-05-20 株式会社エクォス・リサーチ モータ駆動のための電源装置
JP2000354303A (ja) * 1999-06-08 2000-12-19 Chugoku Electric Power Co Inc:The モータ駆動用電力変換装置
JP2002218667A (ja) * 2001-01-16 2002-08-02 Mitsubishi Electric Corp バッテリー用電力回路および自動車のバッテリー用電力回路
JP2002330545A (ja) * 2001-04-27 2002-11-15 Nissan Motor Co Ltd 電源装置
JP2003148310A (ja) * 2001-08-31 2003-05-21 Denso Corp エンジン始動用電源装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338276A (ja) * 1995-06-15 1996-12-24 Hino Motors Ltd エンジンの自動停止始動装置
JPH10191576A (ja) * 1996-12-27 1998-07-21 Fuji Heavy Ind Ltd 電気二重層コンデンサを用いた車両用電源装置
JP3980690B2 (ja) * 1996-12-27 2007-09-26 富士重工業株式会社 電気二重層コンデンサを用いた車両用電源装置
DE19709298C2 (de) * 1997-03-06 1999-03-11 Isad Electronic Sys Gmbh & Co Startersysteme für einen Verbrennungsmotor sowie Verfahren zum Starten eines Verbrennungsmotors
JP3612938B2 (ja) * 1997-05-26 2005-01-26 日産自動車株式会社 車両用内燃機関の自動停止始動装置
US5986436A (en) * 1997-10-10 1999-11-16 Liu; Ping Yin Electric power recovering system
DE69922495T2 (de) * 1999-06-16 2005-11-03 Stmicroelectronics S.R.L., Agrate Brianza Schaltung zur Verbindung zwischen einem Autoradio und einer Kraftfahrzeugbatterie
JP2001136735A (ja) * 1999-11-02 2001-05-18 Toyota Autom Loom Works Ltd 電力変換供給方法及び電力変換供給装置並びに車両
JP2001304008A (ja) * 2000-04-25 2001-10-31 Nissan Motor Co Ltd 車両の制御装置
JP3736300B2 (ja) * 2000-06-19 2006-01-18 株式会社日立製作所 自動車、およびその電源装置
JP3826992B2 (ja) * 2000-07-25 2006-09-27 三菱自動車工業株式会社 アイドルストップ車両
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle
US6420793B1 (en) * 2000-09-21 2002-07-16 Ford Global Technologies, Inc. Power delivery circuit with boost for energetic starting in a pulsed charge starter/alternator system
US6543243B2 (en) * 2001-06-21 2003-04-08 Visteon Global Technologies, Inc. Hybrid compressor
US6605921B2 (en) 2001-08-31 2003-08-12 Denso Corporation Electric power supply system for engine starters
WO2004066472A1 (ja) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha バッテリ用電力回路
US6989653B2 (en) * 2003-05-09 2006-01-24 Mitsubishi Denki Kabushiki Kaisha Battery power circuit and automobile battery power circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753907B2 (ja) * 1991-11-18 1998-05-20 株式会社エクォス・リサーチ モータ駆動のための電源装置
JPH0795701A (ja) * 1993-09-21 1995-04-07 Toshiba Corp 回転電機制御装置
JP2000354303A (ja) * 1999-06-08 2000-12-19 Chugoku Electric Power Co Inc:The モータ駆動用電力変換装置
JP2002218667A (ja) * 2001-01-16 2002-08-02 Mitsubishi Electric Corp バッテリー用電力回路および自動車のバッテリー用電力回路
JP2002330545A (ja) * 2001-04-27 2002-11-15 Nissan Motor Co Ltd 電源装置
JP2003148310A (ja) * 2001-08-31 2003-05-21 Denso Corp エンジン始動用電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1587201A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081368A (ja) * 2004-09-13 2006-03-23 Casio Comput Co Ltd 電源回路
JP4650667B2 (ja) * 2004-09-13 2011-03-16 カシオ計算機株式会社 電源回路
JP2007159311A (ja) * 2005-12-07 2007-06-21 Hitachi Industrial Equipment Systems Co Ltd 発電装置
JP4629562B2 (ja) * 2005-12-07 2011-02-09 株式会社日立産機システム 発電装置
WO2008105161A1 (ja) * 2007-02-28 2008-09-04 Panasonic Corporation 電源装置
JP2008211952A (ja) * 2007-02-28 2008-09-11 Matsushita Electric Ind Co Ltd 電源装置
JP2010102991A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010104166A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010102992A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 燃料電池車両の電源システム
JP2010104168A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010104169A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2010104165A (ja) * 2008-10-24 2010-05-06 Honda Motor Co Ltd 電源装置および燃料電池車両の電源システム
JP2013522105A (ja) * 2010-03-13 2013-06-13 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両用車載電源システム
US9520736B2 (en) 2011-07-27 2016-12-13 Mitsubishi Electric Corporation Charging control apparatus and charging control method for secondary battery
WO2013114573A1 (ja) * 2012-01-31 2013-08-08 本田技研工業株式会社 負荷電源装置
CN108347202A (zh) * 2017-01-23 2018-07-31 宝山钢铁股份有限公司 一种大容量风机用变频器抗电压暂降的方法
US11364783B2 (en) 2018-03-20 2022-06-21 Mazda Motor Corporation Hybrid driving apparatus that selectively causes main driving electric motor and sub-driving electric motors to generate forces depending on traveling mode and traveling status of vehicle
JP2019163020A (ja) * 2018-03-20 2019-09-26 マツダ株式会社 車両駆動装置
WO2019181935A1 (ja) * 2018-03-20 2019-09-26 マツダ株式会社 車両駆動装置
JP2019165614A (ja) * 2018-03-20 2019-09-26 マツダ株式会社 車両駆動装置
WO2019181936A1 (ja) * 2018-03-20 2019-09-26 マツダ株式会社 車両駆動装置
US11427067B2 (en) 2018-03-20 2022-08-30 Mazda Motor Corporation Vehicle drive device
JP7146168B2 (ja) 2018-03-20 2022-10-04 マツダ株式会社 車両駆動装置
JP7217860B2 (ja) 2018-03-20 2023-02-06 マツダ株式会社 車両駆動装置
US11718168B2 (en) 2018-03-20 2023-08-08 Mazda Motor Corporation Vehicle drive device
US11738630B2 (en) 2018-03-20 2023-08-29 Mazda Motor Corporation Vehicle in-wheel drive motor and a body side drive motor
US11938801B2 (en) 2018-03-20 2024-03-26 Mazda Motor Corporation Vehicle drive device
WO2024053460A1 (ja) * 2022-09-09 2024-03-14 株式会社デンソー 電力変換装置及びプログラム
WO2024069759A1 (ja) * 2022-09-27 2024-04-04 日本電信電話株式会社 放電制御装置および蓄電池システム

Also Published As

Publication number Publication date
CN1703816A (zh) 2005-11-30
JPWO2004066472A1 (ja) 2006-05-18
US20050099155A1 (en) 2005-05-12
CN100444495C (zh) 2008-12-17
US7221064B2 (en) 2007-05-22
US20060097579A1 (en) 2006-05-11
JP3977841B2 (ja) 2007-09-19
US7023107B2 (en) 2006-04-04
EP1587201A1 (en) 2005-10-19
EP1587201A4 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
WO2004066472A1 (ja) バッテリ用電力回路
CA2574470C (en) Vehicle propulsion system
JP5079709B2 (ja) 車両推進システム
JP5321742B1 (ja) 車両の電池システムと、この制御方法
US8603687B2 (en) Fuel cell system
US6995480B2 (en) Power supply equipment for motor vehicle with inverter for controlling motor generator
US8673514B2 (en) Fuel cell system and boost converter for fuel cell
US8084988B2 (en) Power supply system
EP2322376A2 (en) Apparatus for driving motor of electric vehicle
JP7178892B2 (ja) 車両のバッテリ充電制御装置
US10797360B2 (en) Control device for power system with battery and fuel cell
US20120139522A1 (en) Converter controller
US11070156B2 (en) Power system
JP2007181328A (ja) 車両用制御装置
US11485234B2 (en) Power supply system
US8097373B2 (en) Fuel cell power supply device
CN115911464A (zh) 燃料电池系统的控制方法、燃料电池汽车和燃料电池系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004567152

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 10505211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A03670

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003772867

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003772867

Country of ref document: EP